WO2018028739A1 - Verfahren zum gegenseitigen justierten einer magnetsensorvorrichtung und eines aktuators und aktuatoreinrichtung mit einem aktuator und einer magnetsensorvorrichtung - Google Patents

Verfahren zum gegenseitigen justierten einer magnetsensorvorrichtung und eines aktuators und aktuatoreinrichtung mit einem aktuator und einer magnetsensorvorrichtung Download PDF

Info

Publication number
WO2018028739A1
WO2018028739A1 PCT/DE2017/100605 DE2017100605W WO2018028739A1 WO 2018028739 A1 WO2018028739 A1 WO 2018028739A1 DE 2017100605 W DE2017100605 W DE 2017100605W WO 2018028739 A1 WO2018028739 A1 WO 2018028739A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
sensor
outer ring
spindle rod
rotation
Prior art date
Application number
PCT/DE2017/100605
Other languages
English (en)
French (fr)
Inventor
Paul WALDEN
Markus Dietrich
Viktor Franz
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN201780048249.1A priority Critical patent/CN109565215B/zh
Priority to DE112017003975.4T priority patent/DE112017003975A5/de
Priority to KR1020197003404A priority patent/KR102470803B1/ko
Publication of WO2018028739A1 publication Critical patent/WO2018028739A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa

Definitions

  • the invention relates to a method for mutual adjustment of a magnetic sensor device and an actuator, the magnetic sensor device comprising a transmitter module with at least one permanent magnet and a sensor module with a sensor for counting the revolution, the actuator having an electric motor with a stator and a rotor, a spindle rod and a Outer ring, wherein the encoder module is arranged on the outer ring.
  • the invention relates to an actuator with an actuator and a magnetic sensor device, the actuator having an electric motor with a stator and a rotor, a spindle rod and an outer ring, the magnetic sensor device comprising a Gebermo- module with at least one permanent magnet and a sensor module with a sensor for counting the revolution wherein the encoder module is rotatable with the outer ring.
  • a method is known from DE 10 2013 205 905 A1 for determining and / or controlling a position of an electric motor, in particular in a clutch actuating system of a motor vehicle, in which the position of a rotor of the electric motor is from a position outside a rotational axis of the electric motor Sensor, which is taken from the sensor, is evaluated by an evaluation unit, whereby the position signal output by the sensor during a sinusoidal control of the electric motor is made plausible by means of at least one position signal detected during a block control of the electric motor.
  • a magnetic encoder ring of a rotor position sensor of an electrically commutated motor which is rotatably connected to a rotor of the electrically commutated motor and which has a predetermined number of magnetic poles with an alternating magnetization direction, wherein each magnetic pole pair at least one indentation having.
  • a method for determining a position of an electric motor in particular in a clutch actuation system of a motor vehicle, in which a position signal of a rotor of the electric motor from one, outside a rotational axis of the electric motor to a stator of the electric motor arranged sensor system is removed and is evaluated by an evaluation unit with respect to the position of the electric motor, wherein after detecting a change in the position signal commutation of a control of the electric motor is triggered, wherein after detection of the change of the position signal, a determination of the current position of the rotor is performed , wherein the commutation of the electric motor is triggered in dependence on the detected current position of the rotor.
  • a method is known from DE 10 2013 213 948 A1 for determining a position of an electric motor, in particular in a clutch actuation system of a motor vehicle, in which a position signal of a rotor of the electric motor is taken from a sensor arranged outside a rotation axis of the electric motor on a stator of the electric motor which is evaluated by an evaluation unit with respect to the position of the electric motor, wherein at standstill of the rotor, this is acted upon by a voltage and the position of the rotor corresponding response response of a commutation of the electric motor is assigned.
  • a method is known from DE 10 2013 222 366 A1 for determining and / or controlling a position of an electric motor, in particular in a clutch actuating system of a motor vehicle, in which the position of a rotor of the electric motor is from a position outside a rotational axis of the electric motor Sensor sensor system is removed, wherein the position signal picked up by the sensor is evaluated by an evaluation unit, the position signal as a function of transmission distance between see sensor and evaluation at short transmission distances by means of an SPI protocol signal and / or longer Transmission distances is transmitted by means of a PWM signal.
  • the invention has for its object to improve a method mentioned above.
  • the invention has the object, structurally and / or functionally to improve an actuator mentioned above.
  • the object is achieved by a method having the features of claim 1.
  • the magnetic sensor device and the actuator can be mutually adjusted so that a secure detection of a rotation angle and a safe rotation count is enabled.
  • the magnetic sensor device and the actuator can be mutually adjusted such that a detection range of the sensor and an actuator travel range are correlated with each other.
  • the magnetic sensor device and the actuator can be mutually adjusted so that tolerance errors are compensated. It can be rotated either the spindle rod or the outer ring.
  • the spindle rod can be twisted while the outer ring is not twisted.
  • the outer ring can be twisted while the spindle rod is not twisted.
  • the default setting value may be a revolution count.
  • the predetermined setting value may be an actuator position.
  • the spindle rod and the outer ring can be detachably connected with each other.
  • a rotationally fixed connection between the spindle rod and the outer ring Before rotating the spindle rod or the outer ring, a rotationally fixed connection between the spindle rod and the outer ring can be achieved.
  • the following steps can be carried out: applying a predetermined setting magnetic field to the sensor module; Rotating the tuning magnetic field and the sensor module relative to each other in a first twisting direction until a rotation count range of the sensor is exited; Twisting the Einstellmagnetfelds and the sensor module relative to each other in a first direction of rotation opposite to the second direction of rotation by a predetermined number of revolutions to set the sensor to a predetermined revolution count; Storing an orientation of the adjustment magnetic field and terminating the application of the adjustment magnetic field to the sensor module; Attaching the sensor module; mechanical Adjusting the actuator according to the given revolution count, whereby the spindle rod is twisted and the outer ring is not twisted.
  • the method can be performed by means of an adjusting device.
  • the adjusting device may have at least one setting magnet.
  • the setting magnet can be used to apply the predetermined setting magnetic field to the sensor module.
  • the setting magnet can be placed axially against the sensor module.
  • the adjusting magnet may be rotatable.
  • the adjustment magnetic field can be rotated relative to the sensor module.
  • the tuning magnetic field can be rotated while the sensor module is fixed.
  • the adjustment magnet may be removed from the sensor module to terminate the application of the adjustment magnetic field to the sensor module.
  • an orientation of the magnetic field of the permanent magnet can be set in accordance with the orientation of the setting magnetic field.
  • an adjustment gauge may be used.
  • the adjusting device may have an adjustment measuring device for mechanically adjusting the actuator. After the stator-side fastening of the sensor module, an actuator mechanism can be completed.
  • the outer ring can be held against rotation.
  • the following steps can be performed: mechanical adjustment of the actuator to a predetermined actuator position; Twisting the outer ring and the sensor module relative to one another in a first twisting direction until a revolution counting range of the sensor is left, wherein the spindle rod is not twisted; Rotate the outer ring and the sensor module relative to each other in a first twisting direction opposite the second direction of rotation according to the predetermined actuator position, wherein the spindle rod is not rotated.
  • the actuator device can be used to actuate a friction coupling device.
  • the actuator device can be used to act on a master cylinder of a hydrostatic actuating device of a friction coupling device.
  • the hydrostatic actuator may have a hydraulic path.
  • the hydrostatic actuator may comprise a slave cylinder.
  • the slave cylinder may be associated with the friction coupling device.
  • the actuator device may be controllable by means of an electrical control device.
  • the electrical control device may be a controller.
  • the electrical control device may be a local actuator control device.
  • the electrical control device may include a computing device.
  • the electrical control device may include a memory device.
  • the electrical control device may have at least one electrical signal input.
  • the electrical control device may have at least one electrical signal output.
  • the electrical control device may be structurally and / or functionally connected to at least one further electrical control device signal-conducting.
  • the signal-conducting connection can be a bus system, such as a CAN bus.
  • the friction clutch device may be for placement in a drive train of a vehicle.
  • the drive train may have at least one drive machine.
  • the at least one prime mover may be an internal combustion engine.
  • the at least one prime mover may be an electric machine.
  • the electric machine can be operated as a motor.
  • the electric machine can be operated as a generator.
  • the powertrain may include a friction clutch device.
  • the drive train may have a transmission.
  • the transmission can be a manual transmission.
  • the drive train may have at least one drivable vehicle wheel.
  • the vehicle may be a hybrid electric vehicle.
  • the encoder module can be fastened to the actuator on the rotor side.
  • the sensor module can be attached to the stator on the stator side.
  • the encoder module and the sensor Modules can limit a measuring gap for contactless rotation angle measurement and revolution counting.
  • the sensor can be a GMR sensor (giant magneto-resistance sensor).
  • a GMR sensor is a sensor based on the giant magneto-resistance effect.
  • a GMR sensor can have a spiral. The spiral may have spiral arms. The spiral can be arranged in a diamond shape.
  • a GMR sensor may comprise a GMR layer stack.
  • a GMR sensor may include a reference layer and a sensor layer. A magnetization state of the sensor layer can be changed.
  • a GMR sensor may include a domain wall generator. The domain wall generator may be disposed at one end of the spiral. In the domain wall generator 180 ° domains can be generated. The domains may be injectable and / or erasable in the coil.
  • a magnetization state of the spiral arms can be changeable under the influence of a moving magnetic field.
  • a magnetization state of the spiral arms may be changeable by rotating a magnetic field and the spiral relative to each other. One number of revolutions can be stored magnetically.
  • a rotational movement can also be detected without electrical power supply.
  • a rotational movement can be stored without electrical power supply.
  • An electrical resistance value of the spiral may depend on a magnetization state.
  • the magnetic sensor device may include another sensor.
  • the additional sensor can be used for the rotation angle measurement.
  • the additional sensor can have a measuring range of approx. 360 °.
  • the further sensor may have at least one Hall element.
  • the further sensor can have a plurality of Hall elements arranged distributed in the circumferential direction of the further sensor.
  • the sensor and the further sensor can be arranged on a common printed circuit board.
  • the actuator device may have a housing.
  • the housing may have a lid.
  • the stator can be arranged fixed to the housing.
  • the rotor may be rotatably mounted in the housing.
  • the actuator may have a transmission.
  • the gear can be used to convert a rotary motion into a linear motion.
  • the transmission may have a spindle rod.
  • the spindle rod can be arranged rotatably and axially displaceably in the housing.
  • the transmission may have a ball screw.
  • the gearbox can be a planetary ball screw exhibit.
  • the transmission may comprise a roller screw spindle.
  • the transmission may comprise a planetary roller screw.
  • the transmission may have a spindle nut.
  • the spindle nut can be rotatably connected to the rotor.
  • the spindle nut can be rotatably and axially fixedly mounted in the housing.
  • the spindle rod can be connected to a master cylinder so as to be capable of
  • the actuator may have an anti-rotation element for the positive connection of the spindle rod and the outer ring with each other.
  • the anti-rotation element may have a sleeve-like shape.
  • the anti-rotation element may have a profiled cross-section.
  • the anti-rotation element can serve for the positive connection with the spindle rod on the one hand and with the outer ring on the other hand.
  • the invention thus provides, inter alia, a method for multiturn sensor commissioning and calibration by removing an anti-twist device.
  • a multi-turn sensor can be adjusted / calibrated.
  • a multi-turn sensor information can be set to a path axis to be measured.
  • a procedure may refer to a (path) measuring system which includes a 360 ° magnetic angle sensor capable of detecting a B-field in its magnitude in all three spatial directions.
  • a multi-turn sensor which is capable of outputting entire revolutions of the path axis by means of a GMR effect due to magnetic domain transitions, this information also remaining after a supply voltage loss.
  • Both sensors can detect an angular position of a sensor magnet by an orientation of its B-field to these sensors.
  • An apparatus on which the displacement sensor is used can consist of a circuit board which contains the sensors and a mechanical part whose spindle revolution or stroke information is to be detected. In the case of an initial assembly of both modules, the sensor is to be adjusted once to a path information of a mechanical system.
  • the path axis should be smaller than a coverage area of the sensor, so that it does not cause adjustment operations between the sensor and the path during operation (Total angle of rotation) of the mechanism can come. This would be the case if the overall detection angle of the multiturn sensor is run over, so that, depending on how many revolutions the sensor is overtravelled in a direction of rotation, the point would be interpreted as a new zero point from the reversal in a subsequent reversal of the direction of rotation, so that a source calibration of the path axis would be adjusted. This would result in adjusting the operation of the apparatus, which are interpreted by the sensor with regard to a total stroke wrong (too small or too large stroke than actually available).
  • the aim of the procedure may be to connect the sensor information (number of revolutions) to a previously unknown calibration point.
  • the sensor and the mechanism can be calibrated / configured as follows:
  • a device-bound Sensoreinstellmagnet known magnet strength can be set against a defined, a design corresponding known axial dimension of both sensors.
  • the sensor may be rotated in one direction by a twist number greater than a total twist angle detection range of the multi-turn sensor.
  • the direction of rotation can be reversed and it can be driven to a certain number of revolutions.
  • a magnetic field intensity information of the rotation angle sensor and / or the multi-turn sensor can be read out and stored.
  • the magnet can be moved axially away from the sensor, wherein the magnetic field orientation can be noted / recorded in accordance with the last set angle.
  • the sensor can now be built on a mechanic. It can be noted here that the angle of rotation of the sensor magnet is that of the original one
  • Adjustment sensor corresponds.
  • the sensor magnet and a linear drive can be arranged so that an outer ring is rigidly coupled to the sensor magnet.
  • a spindle axis corresponding be secured against rotation, so that an adjustment of a path axis can be effected.
  • the outer ring can also be locked and instead the spindle can be twisted.
  • a rotation of the spindle for the adjustment can be removed, so that the spindle can be rotated instead of the outer ring for the adjustment.
  • the cover of the electronics unit can be designed in two parts, so that the rotation even after commissioning of an electronics can still be joined.
  • the sensor magnet can thereby be fixed in its original position and the stroke can be adjusted.
  • the anti-rotation lock of the spindle can then be re-introduced.
  • the sensor and the mechanism can be calibrated / configured as follows:
  • the position of the spindle can be preset to a defined axial value and the multi-turn sensor can only then be adjusted to the corresponding count value.
  • the rotation of the spindle can be removed, but then the outer ring are rotated in one direction until the multi-turn sensor is driven beyond its detection range. Then, by turning in the other direction, the count value of the multiturn sensor can be set to the previously set value on the spindle axis.
  • the axial position of the spindle axis can remain unchanged in this method, since the spindle itself can not be lubreharretiert, so that no hub is driven.
  • Outer ring and spindle can rotate as a rigid unit, since the coefficient of friction between the spindle and outer ring can be large enough to prevent an adjustment of the spindle in an axial position.
  • the cage could be blocked. After the multi-turn sensor has been adjusted, the anti-twist device can then be joined again.
  • the invention enables an adjusted fastening of a magnetic sensor device to an actuator. Commissioning is possible. Initial assembly of a magnetic sensor device and an actuator is enabled. A matching of a magnetic sensor device to a path information of a mechanism is made possible. Referencing a sensor signal on a linear axis is made possible. Unintentional adjustment during operation is prevented. A misinterpretation of an actuator movement is prevented. A perfect determination of a rotation angle and a perfect revolution count are guaranteed.
  • FIG. 1 shows an actuator device with an actuator and a magnetic sensor device adjusted to the actuator and having a transmitter module and a sensor module
  • an actuator device with an outer ring, permanent magnets, a
  • FIG. 3 shows an actuator device with an outer ring, permanent magnets, a spindle rod and an open housing
  • FIG. 3 shows an actuator device with an outer ring, permanent magnets, a spindle rod and an opened housing
  • FIG. 4 shows an actuator device with an outer ring, permanent magnets and a set to a predetermined set value spindle rod and 5 shows an actuator, a cover of an actuator housing and an anti-rotation element.
  • 1 shows an actuator device 100 with an actuator and a magnetic sensor device adjusted to the actuator and having a transmitter module and a sensor module.
  • the actuator device 100 is used to load a master cylinder of a hydraulic actuator of a friction clutch device of a motor vehicle.
  • the actuator has a housing 102 and an electric motor with a stator and a rotor 104.
  • the stator is fixed to the housing.
  • the rotor 104 is rotatably supported in the housing 102.
  • the actuator has a spindle drive with a spindle nut 106 and a spindle rod 108.
  • the spindle drive is used to convert a rotational movement of the rotor 104 into a linear movement of the spindle rod 108.
  • the spindle rod 108 is axiallyterrorismsübertragend connected to a piston 1 10 of the donor cylinder not shown here.
  • the transmitter module of the magnetic sensor device has permanent magnets 1 12 and is fixed to the rotor 104 of the electric motor. In the present case, the permanent magnets 1 12 are pressed.
  • the sensor module of the magnetic sensor device is arranged fixed to the housing.
  • the sensor module has a first sensor 1 14 for measuring the angle of rotation and a second sensor 1 16 for counting the revolution.
  • the first sensor 1 14 has Hall elements and can detect angles of rotation of up to 360 ° and a strength of a B-field.
  • the second sensor 1 16 is a GMR sensor with counting function.
  • the sensors 1 14, 1 16 are arranged on a common printed circuit board 1 18.
  • FIG. 2 shows an actuator device 200, such as actuator device 100 according to FIG. 1, with an outer ring 202, permanent magnets, such as 204, a spindle rod 206, a housing 208 with cover 210 and an anti-rotation element 212.
  • FIG. 3 shows the actuator device 200 with its open Housing 208 without cover.
  • the actuator device 200 has an actuator with an electric motor and a planetary roller screw drive.
  • the electric motor has the stator 216 and a rotor.
  • the stator 216 is fixed to the housing.
  • the outer ring 202 belongs to the planetary roller screw.
  • the outer ring 202 is rotatably and axially fixed in the housing.
  • the outer ring 202 and the permanent magnets 204 are rotatably connected to the rotor of the electric motor and rotate with the rotor.
  • the spindle rod 206 belongs to the planetary roller screw drive.
  • a rotation of the rotor of the electric motor causes an axial displacement of the spindle rod 206 when the spindle rod 206 is held against rotation.
  • the anti-rotation element 212 serves to hold the spindle rod 206 in a rotationally fixed manner.
  • the anti-rotation element 212 can be removed with the cover 210 open in order to release a connection between the spindle rod 206 and the housing-fixed stator 216.
  • the anti-rotation element 212 has a sleeve-like shape.
  • the anti-rotation element 212 has a profiled outer cross section 218 for the positive rotationally fixed connection with a corresponding profile 220 on the stator 216 and a profiled inner cross section 222 for the positive rotationally fixed connection with a corresponding profile 224 on the spindle rod 206.
  • the anti-rotation element 212 is arranged to be axially displaceable on the stator 216 and on the spindle rod 206.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Verfahren zum gegenseitigen Justierten einer Magnetsensorvorrichtung und eines Aktuators, die Magnetsensorvorrichtung aufweisend ein Gebermodul mit wenigstens einem Permanentmagnet (112) sowie ein Sensormodul mit einem Sensor (116) zur Umdrehungszählung, der Aktuator aufweisend einen Elektromotor mit einem Stator und einem Rotor (104), eine Spindelstange (108) und einen Außenring, wobei das Gebermodul an dem Außenring angeordnet ist, wobei folgende Schritte durchgeführt werden: Verdrehen der Spindelstange (108) oder des Außenrings, bis ein vorgegebener Einstellwert erreicht ist, und nach Erreichen des vorgegebenen Einstellwerts drehfestes Verbinden der Spindelstange (108) und des Außenrings miteinander, und Aktuatoreinrichtung (100) mit einem Aktuator und einer Magnetsensorvorrichtung, der Aktuator aufweisend einen Elektromotor mit einem Stator und einem Rotor (104), eine Spindelstange (108) und einen Außenring, die Magnetsensorvorrichtung aufweisend ein Gebermodul mit wenigstens einem Permanentmagnet (112) sowie ein Sensormodul mit einem Sensor (116) zur Umdrehungszählung, wobei das Gebermodul an dem Außenring angeordnet ist, bei dem die Magnetsensorvorrichtung und der Aktuator gemäß eines derartigen Verfahrens gegenseitig justiert sind.

Description

Verfahren zum gegenseitigen Justierten einer Magnetsensorvorrichtung und eines Aktuators und Aktuatoreinrichtung mit einem Aktuator und einer
Magnetsensorvorrichtung
Die Erfindung betrifft ein Verfahren zum gegenseitigen Justierten einer Magnetsensorvorrichtung und eines Aktuators, die Magnetsensorvorrichtung aufweisend ein Gebermodul mit wenigstens einem Permanentmagnet sowie ein Sensormodul mit einem Sensor zur Umdrehungszählung, der Aktuator aufweisend einen Elektromotor mit ei- nem Stator und einem Rotor, eine Spindelstange und einen Außenring, wobei das Gebermodul an dem Außenring angeordnet ist. Außerdem betrifft die Erfindung eine Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung, der Aktuator aufweisend einen Elektromotor mit einem Stator und einem Rotor, eine Spindelstange und einen Außenring, die Magnetsensorvorrichtung aufweisend ein Gebermo- dul mit wenigstens einem Permanentmagnet sowie ein Sensormodul mit einem Sensor zur Umdrehungszählung, wobei das Gebermodul mit dem Außenring drehbar ist.
Aus der DE 10 2013 205 905 A1 ist ein Verfahren bekannt zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbe- tätigungssystem eines Kraftfahrzeuges, bei welchem die Position eines Rotors des Elektromotors von einer, außerhalb einer Drehachse des Elektromotors an einem Stator des Elektromotors angeordneten Sensorik abgenommen wird, wobei das von der Sensorik abgenommene Positionssignal von einer Auswerteeinheit ausgewertet wird, wobei das während einer Sinusansteuerung des Elektromotors von der Sensorik ab- gegebene Positionssignal mittels mindestens einem, während einer Blockansteuerung des Elektromotors erfassten Positionssignal plausibilisiert wird.
Aus der DE 10 2013 208 986 A1 ist ein Magnetgeberring einer Rotorlagesensorik eines elektrisch kommutierten Motors bekannt, welcher drehfest mit einem Rotor des elektrisch kommutierten Motors verbunden ist und welcher eine vorgegebene Anzahl von Magnetpolen mit einer alternierenden Magnetisierungsrichtung aufweist, bei dem jedes Magnetpolpaar mindestens eine Einbuchtung aufweist. Aus der DE 10 2013 21 1 041 A1 ist ein Verfahren bekannt zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges, bei welchem ein Positionssignal eines Rotors des Elektromotors von einer, außerhalb einer Drehachse des Elektromotors an einem Stator des Elektromo- tors angeordneten Sensorik abgenommen wird und von einer Auswerteeinheit hinsichtlich der Position des Elektromotors ausgewertet wird, wobei nach einer Erkennung einer Änderung des Positionssignals eine Kommutierung einer Ansteuerung des Elektromotors ausgelöst wird, wobei nach der Erkennung der Änderung des Positionssignals eine Bestimmung der aktuellen Position des Rotors ausgeführt wird, wobei die Kommutierung des Elektromotors in Abhängigkeit von der detektierten aktuellen Position des Rotors ausgelöst wird.
Aus der DE 10 2013 213 948 A1 ist ein Verfahren bekannt zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges, bei welchem ein Positionssignal eines Rotors des Elektromotors von einem, außerhalb einer Drehachse des Elektromotors an einem Stator des Elektromotors angeordneten Sensor abgenommen wird, welches von einer Auswerteeinheit hinsichtlich der Position des Elektromotors ausgewertet wird, wobei im Stillstand des Rotors dieser mit einer Spannung beaufschlagt wird und eine der Position des Rotors entsprechende Antwortreaktion einer Kommutierung des Elektromotors zugeordnet wird.
Aus der DE 10 2013 222 366 A1 ist ein Verfahren bekannt zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbe- tätigungssystem eines Kraftfahrzeuges, bei welchem die Position eines Rotors des Elektromotors von einer, außerhalb einer Drehachse des Elektromotors an einem Stator des Elektromotors angeordneten Sensorik abgenommen wird, wobei das von der Sensorik abgenommene Positionssignal von einer Auswerteeinheit ausgewertet wird, wobei das Positionssignal in Abhängigkeit von einer Übertragungsentfernung zwi- sehen Sensorik und Auswerteeinheit bei kurzen Übertragungsentfernungen mittels eines SPI-Protokoll- Signals und/oder bei längeren Übertragungsentfernungen mittels eines PWM-Signals übertragen wird. Der Erfindung liegt die Aufgabe zugrunde, ein eingangs genanntes Verfahren zu verbessern. Außerdem liegt der Erfindung die Aufgabe zugrunde, einen eingangs genannten Aktuator baulich und/oder funktional zu verbessern. Die Aufgabe wird gelöst mit einem Verfahren mit den Merkmalen des Anspruchs 1 .
Die Magnetsensorvorrichtung und der Aktuator können derart gegenseitig justiert werden, dass ein sicheres Erfassen eines Drehwinkels und eine sichere Umdrehungszählung ermöglicht wird. Die Magnetsensorvorrichtung und der Aktuator können derart gegenseitig justiert werden, dass ein Erfassungsbereich des Sensors und ein Aktua- torwegbereich miteinander korreliert werden. Die Magnetsensorvorrichtung und der Aktuator können derart gegenseitig justiert werden, dass Toleranzfehler kompensiert werden. Es kann wahlweise die Spindelstange oder der Außenring verdreht werden. Die Spindelstange kann verdreht werden, während der Außenring nicht verdreht wird. Der Außenring kann verdreht werden, während die Spindelstange nicht verdreht wird. Der vorgegebene Einstellwert kann ein Umdrehungszählwert sein. Der vorgegebene Einstellwert kann eine Aktuatorposition sein. Die Spindelstange und der Außenring kön- nen lösbar miteinander verbunden werden.
Vor dem Verdrehen der Spindelstange oder des Außenrings kann eine drehfeste Verbindung zwischen der Spindelstange und dem Außenring gelöst werden. Zum gegenseitigen Justierten der Magnetsensorvorrichtung und des Aktuators können folgende Schritte durchgeführt werden: Beaufschlagen des Sensormoduls mit einem vorgegebenen Einstellmagnetfeld; Verdrehen des Einstellmagnetfelds und des Sensormoduls relativ zueinander in einer ersten Verdrehrichtung, bis ein Umdrehungszählbereich des Sensors verlassen wird; Verdrehen des Einstellmagnetfelds und des Sensormoduls relativ zueinander in einer der ersten Verdrehrichtung entgegengesetzten zweiten Verdrehrichtung um eine vorgegebene Umdrehungszahl, um den Sensor auf einen vorgegebenen Umdrehungszählwert einzustellen; Speichern einer Orientierung des Einstellmagnetfelds und Beenden der Beaufschlagung des Sensormoduls mit dem Einstellmagnetfeld; Befestigen des Sensormoduls; mechanisches Einstellen des Aktuators entsprechend dem vorgegebenen Umdrehungszählwert, wobei die Spindelstange verdreht und der Außenring nicht verdreht wird.
Das Verfahren kann mithilfe einer Justiervorrichtung durchgeführt werden. Die Justier- Vorrichtung kann wenigstens einen Einstellmagnet aufweisen. Der Einstellmagnet kann dazu dienen, das Sensormodul mit dem vorgegebenen Einstellmagnetfeld zu beaufschlagen. Der Einstellmagnet kann axial an das Sensormodul herangestellt werden. Der Einstellmagnet kann drehbar sein. Das Einstellmagnetfeld kann relativ zu dem Sensormodul verdreht werden. Das Einstellmagnetfeld kann verdreht werden, während das Sensormodul fixiert ist. Während eines Verdrehens des Einstellmagnetfelds und des Sensormoduls relativ zueinander kann eine Magnetfeldstärkeninformation des Sensors erfasst und gespeichert werden. Der Einstellmagnet kann von dem Sensormodul entfernt werden, um die Beaufschlagung des Sensormoduls mit dem Einstellmagnetfeld zu beenden. Beim statorseitigen Befestigen des Sensormoduls kann eine Orientierung des Magnetfelds des Permanentmagnets entsprechend der Orientierung des Einstellmagnetfelds eingestellt werden. Zum mechanischen Einstellen des Aktuators auf eine vorgegebene Aktuatorposition kann eine Einstellmesseinrichtung verwendet werden. Die Justiervorrichtung kann eine Einstellmesseinrichtung zum mechanischen Einstellen des Aktuators aufweisen. Nach dem statorseitigen Be- festigen des Sensormoduls kann eine Aktuatormechanik komplettiert werden.
Während dem mechanischen Einstellen des Aktuators kann der Außenring drehfest gehalten werden. Zum gegenseitigen Justierten der Magnetsensorvorrichtung und des Aktuators können folgende Schritte durchgeführt werden: mechanisches Einstellen des Aktuators auf eine vorgegebene Aktuatorposition; Verdrehen des Außenrings und des Sensormoduls relativ zueinander in einer ersten Verdrehrichtung, bis ein Umdrehungszählbereich des Sensors verlassen wird, wobei die Spindelstange nicht verdreht wird; Ver- drehen des Außenrings und des Sensormoduls relativ zueinander in einer der ersten Verdrehrichtung entgegengesetzten zweiten Verdrehrichtung entsprechend der vorgegebene Aktuatorposition, wobei die Spindelstange nicht verdreht wird.
Während dem Verdrehen des Außenrings kann die Spindelstange drehfest gehalten werden. Außerdem wird die der Erfindung zugrundeliegende Aufgabe gelöst mit einer Aktua- toreinrichtung mit den Merkmalen des Anspruchs 7. Die Aktuatoreinrichtung kann zur Betätigung einer Reibungskupplungsvorrichtung dienen. Die Aktuatoreinrichtung kann zum Beaufschlagen eines Geberzylinders einer hydrostatischen Betätigungsvorrichtung einer Reibungskupplungsvorrichtung dienen. Die hydrostatische Betätigungsvorrichtung kann eine hydraulische Strecke aufweisen. Die hydrostatische Betätigungsvorrichtung kann einen Nehmerzylinder aufweisen. Der Nehmerzylinder kann der Reibungskupplungsvorrichtung zugeordnet sein.
Die Aktuatoreinrichtung kann mithilfe einer elektrischen Kontrollvorrichtung kontrollierbar sein. Die elektrische Kontrollvorrichtung kann ein Steuergerät sein. Die elektrische Kontrollvorrichtung kann ein lokales Aktuatorsteuergerät sein. Die elektrische Kontroll- Vorrichtung kann eine Rechenvorrichtung aufweisen. Die elektrische Kontrollvorrichtung kann eine Speichervorrichtung aufweisen. Die elektrische Kontrollvorrichtung kann wenigstens einen elektrischen Signaleingang aufweisen. Die elektrische Kontrollvorrichtung kann wenigstens einen elektrischen Signalausgang aufweisen. Die elektrische Kontrollvorrichtung kann baulich und/oder funktional mit wenigstens einer weiteren elektrischen Kontrollvorrichtung signalleitend verbunden sein. Zur signalleitenden Verbindung kann ein Bussystem, wie CAN-Bus, dienen.
Die Reibungskupplungseinrichtung kann zur Anordnung in einem Antriebsstrang eines Fahrzeugs dienen. Der Antriebsstrang kann wenigstens eine Antriebsmaschine auf- weisen. Die wenigstens eine Antriebsmaschine kann eine Brennkraftmaschine sein. Die wenigstens eine Antriebsmaschine kann eine elektrische Maschine sein. Die elektrische Maschine kann als Motor betreibbar sein. Die elektrische Maschine kann als Generator betreibbar sein. Der Antriebsstrang kann eine Reibungskupplungseinrichtung aufweisen. Der Antriebsstrang kann ein Getriebe aufweisen. Das Getriebe kann ein Schaltgetriebe sein. Der Antriebsstrang kann wenigstens ein antreibbares Fahrzeugrad aufweisen. Das Fahrzeug kann ein Hybridelektrokraftfahrzeug sein.
Das Gebermodul kann an dem Aktuator rotorseitig befestigt sein. Das Sensormodul kann an dem Aktuator statorseitig befestigt sein. Das Gebermodul und das Sensor- modul können einen Messspalt zur berührungslosen Drehwinkelmessung und Umdrehungszählung begrenzen.
Der Sensor kann ein GMR-Sensor (Giant-Magneto-Resistance-Sensor) sein. Ein GMR-Sensor ist ein Sensor, der auf dem Giant-Magneto-Resistance-Effekt basiert. Ein GMR-Sensor kann eine Spirale aufweisen. Die Spirale kann Spiralarme aufweisen. Die Spirale kann rautenförmig angeordnet sein. Ein GMR-Sensor kann einen GMR-Schichtstapel aufweisen. Ein GMR-Sensor kann eine Referenzschicht und eine Sensorschicht aufweisen. Ein Magnetisierungszustand der Sensorschicht kann verän- derbar sein. Ein GMR-Sensor kann einen Domänenwandgenerator aufweisen. Der Domänenwandgenerator kann an einem Ende der Spirale angeordnet sein. In dem Domänenwandgenerator können 180°-Domänen erzeugbar sein. Die Domänen können in die Spirale injizierbar und/oder wieder löschbar sein. Ein Magnetisierungszustand der Spiralarme kann unter Einfluss eines bewegten Magnetfelds veränderbar sein. Ein Magnetisierungszustand der Spiralarme kann veränderbar sein durch Drehen eines Magnetfelds und der Spirale relativ zueinander. Eine Umdrehungsanzahl kann magnetisch speicherbar sein. Eine Drehbewegung kann auch ohne elektrische Spannungsversorgung erfassbar sein. Eine Drehbewegung kann auch ohne elektrische Spannungsversorgung speicherbar sein. Ein elektrischer Widerstandswert der Spirale kann von einem Magnetisierungszustand abhängig sein. Die Magnetsensorvorrichtung kann einen weiteren Sensor aufweisen. Der weitere Sensor kann zur Drehwinkelmessung dienen. Der weitere Sensor kann einen Messbereich von ca. 360° aufweisen. Der weitere Sensor kann wenigstens ein Hall-Element aufweisen. Der weitere Sensor kann mehrere in Umfangsrichtung des weiteren Sensors verteilt ange- ordnete Hall-Elemente aufweisen. Der Sensor und der weitere Sensor können auf einer gemeinsamen Leiterplatte angeordnet sein.
Die Aktuatoreinrichtung kann ein Gehäuse aufweisen. Das Gehäuse kann einen Deckel aufweisen. Der Stator kann gehäusefest angeordnet sein. Der Rotor kann in dem Gehäuse drehbar gelagert sein. Der Aktuator kann ein Getriebe aufweisen. Das Getriebe kann zum Wandeln einer rotatorischen Bewegung in eine lineare Bewegung dienen. Das Getriebe kann eine Spindelstange aufweisen. Die Spindelstange kann in dem Gehäuse drehbar und axial verlagerbar angeordnet sein. Das Getriebe kann eine Kugelgewindespindel aufweisen. Das Getriebe kann einen Planetenkugelgewindetrieb aufweisen. Das Getriebe kann eine Rollengewindespindel aufweisen. Das Getriebe kann einen Planetenrollengewindetrieb aufweisen. Das Getriebe kann eine Spindelmutter aufweisen. Die Spindelmutter kann mit dem Rotor drehfest verbunden sein. Die Spindelmutter kann in dem Gehäuse drehbar und axial fest gelagert sein. Die Spin- delstange kann mit einem Geberzylinder axialbewegungsübertragend verbindbar sein. Der Außenring kann gehäusefest angeordnet sein.
Der Aktuator kann ein Verdrehsicherungselement zum formschlüssigen Verbinden der Spindelstange und des Außenrings miteinander aufweisen. Das Verdrehsicherungs- element kann eine hülsenartige Form aufweisen. Das Verdrehsicherungselement kann einen profilierten Querschnitt aufweisen. Das Verdrehsicherungselement kann zur formschlüssigen Verbindung mit der Spindelstange einerseits und mit dem Außenring andererseits dienen. Zusammenfassend und mit anderen Worten dargestellt ergibt sich somit durch die Erfindung unter anderem ein Verfahren zur Multiturn-Sensor Inbetriebnahme und Kalibration mittels Entnahme einer Verdrehsicherung. Ein Multiturnsensor kann eingestellt/kalibriert werden. Eine Multiturnsensorinformation kann an eine zu messende Wegachse eingestellt werden.
Eine Prozedur kann sich auf ein (Weg)-Messsystem beziehen, welches einen magnetischen 360°-Winkelsensor beinhaltet, der in der Lage ist, ein B-Feld in seiner Stärke in allen drei Raumrichtungen zu erfassen. Daneben kann ein Multiturn-Sensor bestehen, welcher in der Lage ist, durch einen GMR-Effekt aufgrund magnetischer Domä- nenübergänge ganze Umdrehungen der Wegachse auszugeben, wobei diese Information auch nach einem Versorgungsspannungsverlust bestehen bleibt. Beide Sensoren können eine Winkellage eines Sensormagneten durch eine Orientation dessen B-Feldes zu diesen Sensoren detektieren. Ein Apparat, an welchem der Wegsensor zur Anwendung kommt, kann bestehen aus eine Platine, welche die Sensoren bein- haltet, und einem mechanischen Teil, dessen Spindelumdrehung bzw. dessen Hubinformation erfasst werden soll. Bei einem initialen Zusammenfügen beider Module soll einmalig der Sensor auf eine Weginformation einer Mechanik abgeglichen werden. Die Wegachse soll kleiner als ein Überdeckungsbereich des Sensors sein, damit es während eines Betriebs nicht zu Verstellvorgängen zwischen Sensor und Wegstrecke (Gesamtdrehwinkel) der Mechanik kommen kann. Dies wäre der Fall, wenn der Ge- samterfassungswinkel des Multiturn-Sensors überfahren wird, so dass, je nachdem wie viele Umdrehungen der Sensor in eine Drehrichtung überfahren wird, bei einer anschließenden Richtungsumkehr der Drehrichtung der Punkt ab der Umkehr als neuer Nullpunkt interpretiert würde, sodass eine Ursprungskalibration der Wegachse verstellt wäre. Hieraus würden sich beim Betrieb des Apparats Verstellvorgänge ergeben, die vom Sensor hinsichtlich eines Gesamthubes falsch interpretiert werden (zu kleiner oder zu großer Hub als tatsächlich vorhanden). Ziel der Prozedur kann es sein, die Sensorinformation (Umdrehungszahl) mit einem zuvor unbekannten Kalibrierpunkt zu verbinden.
Gemäß einer Variante zum Abgleich einer Wegachse an einen Sensorumdrehungs- zählwert können Sensor und Mechanik folgendermaßen zueinander kalibriert/ausgelegt werden:
- Ein vorrichtungsgebundener Sensoreinstellmagnet bekannter Magnetstärke kann gegen ein definiertes, einer Auslegung entsprechendes bekanntes Axialmaß an beide Sensoren herangestellt werden.
Der Sensor kann in eine Richtung verdreht werden, um eine Verdrehungszahl, die größer als ein Gesamtverdrehwinkelerfassungsbereich des Multiturn- Sensors ist.
Die Drehrichtung kann umgekehrt und es kann auf eine bestimmte Anzahl von Umdrehungen gefahren werden.
Während dieses Einstellvorgangs kann eine Magnetfeldstärkeninformation des Drehwinkel-Sensors und/oder des Multiturn-Sensors ausgelesen und abge- speichert werden.
Der Magnet kann von dem Sensor axial weg gefahren werden, wobei die Magnetfeldorientierung entsprechend des zuletzt eingestellten Winkels no- tiert/erfasst werden kann.
Der Sensor kann nun an eine Mechanik gebaut werden. Hierbei kann beachtet werden, dass der Drehwinkel des Sensormagneten dem des ursprünglichen
Einstellsensors entspricht.
der Sensormagnet und ein Lineartrieb können so angeordnet sein, dass ein Außenring mit dem Sensormagneten starr gekoppelt ist. Bei einem Verdrehen des Außenrings des Lineargetriebes kann eine Spindelachse entsprechend verdrehgesichert werden, damit ein Verstellen einer Wegachse bewirkt werden kann.
Um zu vermeiden dass sich der Sensormagnet bei dieser Verstellbewegung mitdreht kann ebenso der Außenring arretiert werden und stattdessen die Spin- del verdreht werden.
Hierfür kann eine Verdrehsicherung der Spindel für den Einstellvorgang entfernt werden, sodass die Spindel statt des Außenringes für den Verstellvorgang verdreht werden kann.
Der Deckel der Elektronikeinheit kann hierfür zweiteilig ausgeführt sein, sodass die Verdrehsicherung auch nach Inbetriebnahme einer Elektronik noch gefügt werden kann.
Der Sensormagnet kann dadurch in seiner Ursprungslage fixiert und der Hub abgeglichen werden.
Nach dem Einstellvorgang kann dann die Verdrehsicherung der Spindel wieder eingebracht werden.
Gemäß einer Variante zum Abgleich einer Wegachse an einen Sensorumdrehungs- zählwert können Sensor und Mechanik folgendermaßen zueinander kalibriert/ausgelegt werden:
- Die Position der Spindel kann auf einen definierten axialen Wert voreingestellt gefügt werden und der Multiturnsensor kann erst danach auf den entsprechenden Zählwert abgeglichen werden.
Hierzu kann auch wieder die Verdrehsicherung der Spindel entfernt werden, dann jedoch der Außenring solange in eine Richtung verdreht werden, bis der Multiturnsensor über seinen Erfassungsbereich hinaus angesteuert wird. Danach kann durch Verdrehen in die andere Richtung der Zählwert des Multiturn- sensors auf den zuvor eingestellten Wert an der Spindelachse eingestellt werden.
Die axiale Position der Spindelachse kann bei dieser Methode unverändert bleiben, da die Spindel selbst nicht verdreharretiert sein kann, sodass auch kein Hub gefahren wird. Außenring und Spindel können sich als starre Einheit drehen, da der Reibwert zwischen Spindel und Außenring groß genug sein kann, um eine Verstellung der Spindel in axialer Lage zu verhindern. Alternativ könnte der Käfig blockiert werden. Nachdem der Multiturnsensor abgeglichen ist, kann dann die Verdrehsicherung wieder gefügt werden.
Mit der Erfindung wird ein justiertes Befestigen einer Magnetsensorvorrichtung an ei- nem Aktuator ermöglicht. Eine Inbetriebnahme wird ermöglicht. In initiales Zusammenfügen einer Magnetsensorvorrichtung und eines Aktuators wird ermöglicht. Ein Abgleichen einer Magnetsensorvorrichtung auf eine Weginformation einer Mechanik wird ermöglicht. Ein Referenzieren eines Sensorsignals auf einer Linearachse wird ermöglicht. Ein unbeabsichtigtes Verstellen während eines Betriebs wird verhindert. Eine Fehlinterpretation einer Aktuatorbewegung wird verhindert. Ein einwandfreies Feststellen eines Drehwinkels und eine einwandfreie Umdrehungszählung werden gewährleistet.
Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf Figu- ren näher beschrieben. Aus dieser Beschreibung ergeben sich weitere Merkmale und Vorteile. Konkrete Merkmale dieser Ausführungsbeispiele können allgemeine Merkmale der Erfindung darstellen. Mit anderen Merkmalen verbundene Merkmale dieser Ausführungsbeispiele können auch einzelne Merkmale der Erfindung darstellen.
Es zeigen schematisch und beispielhaft:
Fig. 1 eine Aktuatoreinrichtung mit einem Aktuator und einer justiert an dem Aktuator befestigten Magnetsensorvorrichtung mit einem Gebermodul und einem Sensormodul,
Fig. 2 eine Aktuatoreinrichtung mit einem Außenring, Permanentmagneten, einer
Spindelstange, einem Gehäuse mit Deckel und einem Verdrehsicherungsele- ment, Fig. 3 eine Aktuatoreinrichtung mit einem Außenring, Permanentmagneten, einer Spindelstange und einem geöffneten Gehäuse,
Fig. 4 eine Aktuatoreinrichtung mit einem Außenring, Permanentmagneten und einer auf einen vorgegebenen Einstellwert eingestellten Spindelstange und Fig. 5 einen Aktuator, einen Deckel eines Aktuatorgehäuses und ein Verdrehsiche- rungselement. Fig. 1 zeigt eine Aktuatoreinrichtung 100 mit einem Aktuator und einer justiert an dem Aktuator befestigten Magnetsensorvorrichtung mit einem Gebermodul und einem Sensormodul.
Die Aktuatoreinrichtung 100 dient zum Beaufschlagen eines Geberzylinders einer hyd- rostatischen Betätigungsvorrichtung einer Reibungskupplungsvorrichtung eines Kraftfahrzeugs. Der Aktuator weist ein Gehäuse 102 und einen Elektromotor mit einem Stator und einem Rotor 104 auf. Der Stator ist gehäusefest angeordnet. Der Rotor 104 ist in dem Gehäuse 102 drehbar gelagert. Der Aktuator weist einen Spindeltrieb mit einer Spindelmutter 106 und einer Spindelstange 108 auf. Der Spindeltrieb dient zum Wandeln einer rotatorischen Bewegung des Rotors 104 in eine lineare Bewegung der Spindelstange 108. Die Spindelstange 108 ist mit einem Kolben 1 10 des hier nicht näher dargestellten Geberzylinders axialbewegungsübertragend verbunden.
Das Gebermodul der Magnetsensorvorrichtung weist Permanentmagnete 1 12 auf und ist an dem Rotor 104 des Elektromotors fest angeordnet. Vorliegend sind die Permanentmagnete 1 12 eingepresst. Das Sensormodul der Magnetsensorvorrichtung ist gehäusefest angeordnet. Das Sensormodul weist einen ersten Sensor 1 14 zur Drehwinkelmessung und einen zweiten Sensor 1 16 zur Umdrehungszählung auf. Der erste Sensor 1 14 weist Hall-Elemente auf und kann Drehwinkel bis 360° sowie eine Stärke eines B-Felds erfassen. Der zweite Sensor 1 16 ist ein GMR-Sensor mit Zählfunktion. Die Sensoren 1 14, 1 16 sind auf einer gemeinsamen Leiterplatte 1 18 angeordnet.
Die Magnetsensorvorrichtung und der Aktuator sind gegenseitig justiert, sodass eine Wegachse des Aktuators und ein Umdrehungszählwert des zweiten Sensors 1 16 auf- einander abgestimmt sind. Die Magnetsensorvorrichtung ist damit an dem Aktuator derart justiert befestigt, dass ein Aktuatorweg 120 innerhalb eines Messbereichs 122 des zweiten Sensors 1 16 liegt und der Messbereichs 122 auch in den Endpositionen 124, 126 des Aktuators nicht verlassen wird. Das Sensorsignal ist auf einer Linearachse referenziert. Fig. 2 zeigt eine Aktuatoreinrichtung 200, wie Aktuatoreinrichtung 100 gemäß Fig. 1 , mit einem Außenring 202, Permanentmagneten, wie 204, einer Spindelstange 206, einem Gehäuse 208 mit Deckel 210 und einem Verdrehsicherungselement 212. Fig. 3 zeigt die Aktuatoreinrichtung 200 mit geöffnetem Gehäuse 208 ohne Deckel. Fig. 4 zeigt die Aktuatoreinrichtung 200 mit auf einen vorgegebenen Einstellwert 214 eingestellter Spindelstange 206. Fig. 5 zeigt einen Stator 216, den Außenring 202 und das Verdrehsicherungselement 212. Die Aktuatoreinrichtung 200 weist einen Aktuator mit einem Elektromotor und einem Planetenrollengewindetrieb auf. Der Elektromotor weist den Stator 216 und einen Rotor auf. Der Stator 216 ist gehäusefest angeordnet. Der Außenring 202 gehört zu dem Planetenrollengewindetrieb. Der Außenring 202 ist in dem Gehäuse drehbar und axial fest angeordnet. Der Außenring 202 und die Permanentmagneten 204 sind mit dem Rotor des Elektromotors drehfest verbunden und drehen mit dem Rotor. Die Spindelstange 206 gehört zu dem Planetenrollengewindetrieb. Ein Drehen des Rotors des Elektromotors bewirkt eine axiale Verlagerung der Spindelstange 206, wenn die Spindelstange 206 drehfest gehalten ist. Das Verdrehsicherungselement 212 dient zum drehfesten Halten der Spindelstange 206. Das Verdrehsicherungselement 212 kann bei geöffnetem Deckel 210 entfernt werden, um eine Verbindung zwischen der Spindelstange 206 und dem gehäusefesten Stator 216 zu lösen. Das Verdrehsicherungselement 212 weist eine hülsenartige Form auf. Das Verdrehsicherungselement 212 weist einen profilierten Außenquer- schnitt 218 zur formschlüssigen drehfesten Verbindung mit einem korrespondierenden Profil 220 an dem Stator 216 und einen profilierten Innenquerschnitt 222 zur formschlüssigen drehfesten Verbindung mit einem korrespondierenden Profil 224 an der Spindelstange 206 auf. Das Verdrehsicherungselement 212 ist an dem Stator 216 und an der Spindelstange 206 axial verschieblich angeordnet.
Zum gegenseitigen Justieren der Magnetsensorvorrichtung und des Aktuators wird zunächst eine Verbindung zwischen der Spindelstange 206 und dem gehäusefesten Stator 216 gelöst. Nachfolgend wird die Spindelstange 206 gedreht, während der Außenring 202 drehfest gehalten wird, um den Aktuator entsprechend einem voreinge- stellten Umdrehungszählwert der Magnetsensorvorrichtung auf den Einstellwert 214 einzustellen. Im Übrigen wird ergänzend insbesondere auf Fig. 1 und die zugehörige Beschreibung verwiesen.
Bezuqszeichenliste
100 Aktuatoreinrichtung
102 Gehäuse
104 Rotor
106 Spindelmutter
108 Spindelstange
1 10 Kolben
1 12 Permanentmagnet
1 14 Sensor, erster Sensor
1 16 weiterer Sensor, zweiter Sensor
1 18 Leiterplatte
20 Aktuatorweg
122 Messbereich
124 Endposition
126 Endposition
200 Aktuatoreinrichtung
202 Außenring
204 Permanentmagnet
206 Spindelstange
208 Gehäuse
210 Deckel
212 Verdrehsicherungselement
214 Einstellwert
216 Stator
218 Außenquerschnitt
220 Profil
222 Innenquerschnitt
224 Profil

Claims

Patentansprüche
1 . Verfahren zum gegenseitigen Justierten einer Magnetsensorvorrichtung und eines Aktuators, die Magnetsensorvorrichtung aufweisend ein Gebermodul mit wenigstens einem Permanentmagnet (1 12) sowie ein Sensormodul mit einem Sensor (1 16) zur Umdrehungszählung, der Aktuator aufweisend einen
Elektromotor mit einem Stator (216) und einem Rotor (104), eine Spindelstange (108, 206) und einen Außenring (202), wobei das Gebermodul an dem
Außenring (202) angeordnet ist, dadurch gekennzeichnet, dass folgende Schritte durchgeführt werden:
- Verdrehen der Spindelstange (108, 206) oder des Außenrings (202), bis ein vorgegebener Einstellwert (214) erreicht ist, und
- nach Erreichen des vorgegebenen Einstellwerts drehfestes Verbinden der Spindelstange (108, 206) und des Außenrings (202) miteinander.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass vor dem Verdrehen der Spindelstange (108, 206) oder des Außenrings (202) eine drehfeste
Verbindung zwischen der Spindelstange (108, 206) und dem Außenring (202) gelöst wird.
3. Verfahren nach wenigstens einem der Ansprüche 1 bis 2, dadurch
gekennzeichnet, dass folgende Schritte durchgeführt werden:
Beaufschlagen des Sensormoduls mit einem vorgegebenen
Einstellmagnetfeld,
Verdrehen des Einstellmagnetfelds und des Sensormoduls relativ zueinander in einer ersten Verdrehrichtung, bis ein Umdrehungszählbereich des Sensors (1 16) verlassen wird,
Verdrehen des Einstellmagnetfelds und des Sensormoduls relativ zueinander in einer der ersten Verdrehrichtung entgegengesetzten zweiten Verdrehrichtung um eine vorgegebene Umdrehungszahl, um den Sensor (1 16) auf einen vorgegebenen Umdrehungszählwert einzustellen, Speichern einer Orientierung des Einstellmagnetfelds und Beenden der Beaufschlagung des Sensormoduls mit dem Einstellmagnetfeld, Befestigen des Sensormoduls,
mechanisches Einstellen des Aktuators entsprechend dem vorgegebenen Umdrehungszählwert, wobei die Spindelstange (108, 206) verdreht und der Außenring (202) nicht verdreht wird.
Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass während dem mechanischen Einstellen des Aktuators der Außenring (202) drehfest gehalten wird.
Verfahren nach wenigstens einem der Ansprüche 1 bis 2, dadurch
gekennzeichnet, dass folgende Schritte durchgeführt werden:
mechanisches Einstellen des Aktuators auf eine vorgegebene
Aktuatorposition,
Verdrehen des Außenrings (202) und des Sensormoduls relativ zueinander in einer ersten Verdrehrichtung, bis ein Umdrehungszählbereich des Sensors (1 16) verlassen wird, wobei die Spindelstange (108, 206) nicht verdreht wird,
Verdrehen des Außenrings (202) und des Sensormoduls relativ zueinander in einer der ersten Verdrehrichtung entgegengesetzten zweiten
Verdrehrichtung entsprechend der vorgegebenen Aktuatorposition, wobei die Spindelstange (108, 206) nicht verdreht wird.
Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass während dem Verdrehen des Außenrings (202) die Spindelstange (108, 206) drehfest gehalten wird.
Aktuatoreinrichtung (100, 200) mit einem Aktuator und einer
Magnetsensorvorrichtung, der Aktuator aufweisend einen Elektromotor mit einem Stator (216) und einem Rotor (104), eine Spindelstange (108, 206) und einen Außenring (202), die Magnetsensorvorrichtung aufweisend ein
Gebermodul mit wenigstens einem Permanentmagnet (1 12) sowie ein
Sensormodul mit einem Sensor (1 16) zur Umdrehungszählung, wobei das Gebermodul mit dem Außenring (202) drehbar ist, dadurch gekennzeichnet, dass die Magnetsensorvorrichtung und der Aktuator gemäß eines Verfahrens nach wenigstens einem der vorhergehenden Ansprüche gegenseitig justiert sind.
Aktuatoreinrichtung (100, 200) nach Anspruch 7, dadurch gekennzeichnet, dass der Aktuator ein Verdrehsicherungselement (212) zum formschlüssigen Verbinden der Spindelstange (108, 206) und des Außenrings (202) miteinander aufweist.
Aktuatoreinrichtung (100, 200) nach wenigstens einem der Ansprüche 7 bis 8, dadurch gekennzeichnet, dass die Aktuatoreinrichtung (100, 200) ein Gehäuse (208) mit einem Deckel (210) aufweist.
10. Aktuatoreinrichtung (100, 200) nach wenigstens einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass der Sensor (1 16) ein GMR-Sensor ist.
PCT/DE2017/100605 2016-08-11 2017-07-20 Verfahren zum gegenseitigen justierten einer magnetsensorvorrichtung und eines aktuators und aktuatoreinrichtung mit einem aktuator und einer magnetsensorvorrichtung WO2018028739A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780048249.1A CN109565215B (zh) 2016-08-11 2017-07-20 用于磁传感器装置与致动器进行相互校准的方法及包括致动器和磁传感器装置的致动器设备
DE112017003975.4T DE112017003975A5 (de) 2016-08-11 2017-07-20 Verfahren zum gegenseitigen Justierten einer Magnetsensorvorrichtung und eines Aktuators und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
KR1020197003404A KR102470803B1 (ko) 2016-08-11 2017-07-20 자기 센서 장치와 액추에이터를 상호 조정하기 위한 방법, 그리고 액추에이터 및 자기 센서 장치를 갖는 액추에이터 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016214947.4A DE102016214947A1 (de) 2016-08-11 2016-08-11 Verfahren zum gegenseitigen Justierten einer Magnetsensorvorrichtung und eines Aktuators und Aktuatoreinrichtung mit einem Aktuator und einer Magnetsensorvorrichtung
DE102016214947.4 2016-08-11

Publications (1)

Publication Number Publication Date
WO2018028739A1 true WO2018028739A1 (de) 2018-02-15

Family

ID=59579367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/100605 WO2018028739A1 (de) 2016-08-11 2017-07-20 Verfahren zum gegenseitigen justierten einer magnetsensorvorrichtung und eines aktuators und aktuatoreinrichtung mit einem aktuator und einer magnetsensorvorrichtung

Country Status (4)

Country Link
KR (1) KR102470803B1 (de)
CN (1) CN109565215B (de)
DE (2) DE102016214947A1 (de)
WO (1) WO2018028739A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019134460A1 (de) 2019-12-16 2021-06-17 Fte Automotive Gmbh Kupplungsaktuator und Verfahren zur Ansteuerung eines Kupplungsaktuators
DE102020105795A1 (de) * 2020-03-04 2021-09-09 Schaeffler Technologies AG & Co. KG Linearaktuator für Hinterachslenkung eines Kraftfahrzeuges
KR102653300B1 (ko) * 2021-06-29 2024-04-02 현대위아 주식회사 액추에이터 위치제어장치 및 방법
WO2023287881A1 (en) * 2021-07-14 2023-01-19 Nidec Motor Corporation Motor encoder assembly providing optimized sensor alignment
MX2023007077A (es) * 2022-06-16 2023-12-18 Tolomatic Inc Monitor de dispositivo pasivo.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090078489A1 (en) * 2007-09-25 2009-03-26 Magna Powertrain Ag & Co Kg Transmission unit
DE102009027155A1 (de) * 2009-06-24 2010-12-30 Robert Bosch Gmbh Antriebsvorrichtung für eine Scheibenwischanlage
US20120181958A1 (en) * 2009-07-31 2012-07-19 Antoine Chabaud Commutated electric drive and method for controlling a commutated electric motor
DE102011007147A1 (de) * 2011-04-11 2012-10-11 Robert Bosch Gmbh Elektronisch kommutierter Elektromotor mit einer Rotorpositionserfassung mit Störfeldkompensation
DE102013205905A1 (de) 2012-04-25 2013-10-31 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013208986A1 (de) 2012-06-11 2013-12-12 Schaeffler Technologies AG & Co. KG Magnetgeberring einer Rotorlagesensorik eines elektrisch kommutierten Elektromotors
DE102013213948A1 (de) 2012-08-02 2014-02-06 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013222366A1 (de) 2012-11-22 2014-05-22 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors
DE102013211041A1 (de) 2013-06-13 2014-12-18 Schaeffler Technologies Gmbh & Co. Kg Verfahren und Vorrichtung zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013222184A1 (de) * 2013-10-31 2015-04-30 Continental Teves Ag & Co. Ohg Vorrichtung zur Bestimmung der Absolutposition eines Linearaktuators

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223548B1 (ko) * 2007-04-19 2013-01-18 고쿠사이 게이소쿠키 가부시키가이샤 만능 시험 장치, 직동 액추에이터, 및 비틀림 시험 장치
JP4533928B2 (ja) * 2007-12-28 2010-09-01 シーケーディ株式会社 電動アクチュエータ
US20120161498A1 (en) 2008-04-15 2012-06-28 Mr. Dana Allen Hansen MAW-DirectDrives
JP2015061411A (ja) * 2013-09-19 2015-03-30 村田機械株式会社 直動−回転アクチュエータとその制御方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090078489A1 (en) * 2007-09-25 2009-03-26 Magna Powertrain Ag & Co Kg Transmission unit
DE102009027155A1 (de) * 2009-06-24 2010-12-30 Robert Bosch Gmbh Antriebsvorrichtung für eine Scheibenwischanlage
US20120181958A1 (en) * 2009-07-31 2012-07-19 Antoine Chabaud Commutated electric drive and method for controlling a commutated electric motor
DE102011007147A1 (de) * 2011-04-11 2012-10-11 Robert Bosch Gmbh Elektronisch kommutierter Elektromotor mit einer Rotorpositionserfassung mit Störfeldkompensation
DE102013205905A1 (de) 2012-04-25 2013-10-31 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013208986A1 (de) 2012-06-11 2013-12-12 Schaeffler Technologies AG & Co. KG Magnetgeberring einer Rotorlagesensorik eines elektrisch kommutierten Elektromotors
DE102013213948A1 (de) 2012-08-02 2014-02-06 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013222366A1 (de) 2012-11-22 2014-05-22 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors
DE102013211041A1 (de) 2013-06-13 2014-12-18 Schaeffler Technologies Gmbh & Co. Kg Verfahren und Vorrichtung zur Bestimmung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102013222184A1 (de) * 2013-10-31 2015-04-30 Continental Teves Ag & Co. Ohg Vorrichtung zur Bestimmung der Absolutposition eines Linearaktuators

Also Published As

Publication number Publication date
CN109565215B (zh) 2021-03-05
DE112017003975A5 (de) 2019-05-09
KR20190038822A (ko) 2019-04-09
KR102470803B1 (ko) 2022-11-28
DE102016214947A1 (de) 2018-02-15
CN109565215A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2018028739A1 (de) Verfahren zum gegenseitigen justierten einer magnetsensorvorrichtung und eines aktuators und aktuatoreinrichtung mit einem aktuator und einer magnetsensorvorrichtung
EP2272162B1 (de) Offsetwinkelbestimmung bei synchronmaschinen
EP2601739B1 (de) Verfahren und schaltungsanordnung zur überprüfung der rotorposition einer synchronmaschine
DE112012002732T5 (de) Drehwinkelmessvorrichtung, Steuervorrichtung und Drehmaschinensystem
DE102011055717B4 (de) Verfahren und Anordnung zur Bestimmung des dynamischen Zustands eines Elektromotors
WO2020249313A1 (de) Verfahren zur ermittlung des winkels des rotors eines elektromotors, steuergerät sowie fahrzeug
DE102020211327A1 (de) DC-Motor, Liege mit DC-Motor und Verfahren zum Betreiben eines DC-Motors
DE102021212470A1 (de) Steer-by-wire-Lenkung für ein Kraftfahrzeug
EP3152831B1 (de) Verfahren und vorrichtung zum verstellen eines stellglieds eines stellgebersystems mit einem elektronisch kommutierten stellantrieb
WO2017162232A1 (de) Verfahren zum justierten befestigen einer magnetsensorvorrichtung an einem aktuator und aktuator mit einem elektromotor und einer magnetsensorvorrichtung
EP2686537A1 (de) Verfahren und vorrichtung zum kalibrieren eines stellgebersystems mit einem elektronisch kommutierten stellantrieb
DE102011089820A1 (de) Verfahren zum Ermitteln der Absolutposition eines Linearaktuators
DE102014112266A1 (de) Verfahren zum Kalibrieren einer dreiphasigen Permanentmagnet-Synchronmaschine
DE102016206768A1 (de) Bürstenloser Gleichstrommotor und Verfahren zur Bereitstellung eines Winkelsignals
WO2019001629A1 (de) Verfahren und vorrichtung zur justierung einer position eines magneten zu einem gmr-sensor
DE10333414A1 (de) Verfahren zum Betrieb einer motorischen Positionierungsvorrichtung sowie zugehörige Positionierungsvorrichtung
DE102014211881A1 (de) Verfahren zur Überprüfung einer Lage eines Rotors einer elektrischen Maschine
WO2018028736A1 (de) Verfahren zum justieren einer aktuatoreinrichtung mit einer magnetsensorvorrichtung und einem aktuator und aktuatoreinrichtung mit einem aktuator und einer magnetsensorvorrichtung
DE102016206714A1 (de) Verfahren zum Ermitteln einer absoluten Winkellage einer rotierenden Welle
WO2018028737A1 (de) Verfahren zum justierten befestigen einer magnetsensorvorrichtung an einem aktuator und aktuatoreinrichtung mit einem aktuator und einer magnetsensorvorrichtung
DE102015202229A1 (de) Verfahren und Vorrichtung zur Drehmomentwelligkeitsbestimmung
WO2018065002A1 (de) Verfahren zur absoluten positionsbestimmung, elektromotor und betätigungseinrichtung für eine reibungskupplung
WO2018024280A1 (de) Steuerungseinheit und verfahren zum steuern einer elektrischen maschine
DE102015116438B4 (de) Verfahren und Vorrichtung zum Betreiben eines Servolenksystems, Servolenksystem
DE102016211837A1 (de) Verfahren zur Bestimmung einer Position eines Rotors eines kommutierten Elektromotors, insbesondere für ein Kupplungsbetätigungssystem eines Fahrzeuges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17751008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003404

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112017003975

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17751008

Country of ref document: EP

Kind code of ref document: A1