WO2018224049A1 - 离子迁移率分析器及分析方法 - Google Patents

离子迁移率分析器及分析方法 Download PDF

Info

Publication number
WO2018224049A1
WO2018224049A1 PCT/CN2018/091594 CN2018091594W WO2018224049A1 WO 2018224049 A1 WO2018224049 A1 WO 2018224049A1 CN 2018091594 W CN2018091594 W CN 2018091594W WO 2018224049 A1 WO2018224049 A1 WO 2018224049A1
Authority
WO
WIPO (PCT)
Prior art keywords
migration
analysis region
ion
electric field
ions
Prior art date
Application number
PCT/CN2018/091594
Other languages
English (en)
French (fr)
Inventor
吉尔里格肯特·詹姆斯
王珂珂
孙文剑
张小强
Original Assignee
岛津分析技术研发(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岛津分析技术研发(上海)有限公司 filed Critical 岛津分析技术研发(上海)有限公司
Priority to JP2019527945A priority Critical patent/JP6783392B6/ja
Priority to US16/321,164 priority patent/US10739308B2/en
Priority to EP18812992.8A priority patent/EP3637455A4/en
Publication of WO2018224049A1 publication Critical patent/WO2018224049A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/061Ion deflecting means, e.g. ion gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • H01J49/063Multipole ion guides, e.g. quadrupoles, hexapoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters

Definitions

  • the present invention relates to the field of ion mobility spectrometry and ion analysis, and more particularly to ion mobility analyzers and analytical methods.
  • Ion mobility spectroscopy is a technique for separating ions based on the mobility of ions.
  • the ion mobility spectrum can be classified into two types, separation in time and separation in distance, depending on the manner of separation.
  • the traditional time-of-flight ion mobility spectra are separated in time, and the differential mobility spectrum analyzer is separated in distance.
  • the resolution and sensitivity of ion mobility spectra are poor compared to mass spectrometry, which is mainly limited by the diffusion of ions.
  • the ion mobility spectrum provides additional information based on molecular collision cross sections and can also serve as an ion pre-separation device for the front end of the mass spectrometer.
  • the resolution of the differential mobility spectrum can be improved by optimizing the geometry of the device (eg, tilted field, cross-flow field, and periodic focus differential migration spectrum).
  • resolution can be increased by lengthening the length of the migration tube, increasing the voltage contained, and increasing the radial bound electric field (such as the RF ion funnel, RF quadrupole field, and DC periodic electrostatic field).
  • Zeleny (Zeleny, J. Philos. Mag. 46, 120 (1898) proposes the use of oppositely directed air and electric fields in a parallel flow analyzer.
  • Zeleny's device consists of two parallel grids, with ions of a specific mobility balanced by two opposing forces (airflow and electric field).
  • Subsequent attempts have been made to create parallel flow analyzers, including oblique grid methods, ion traps with gas flow, vertical extraction ion mobility spectra, Loboda reverse gas flow segmented quadrupole fields, and Park's parallel flow ion mobility spectra. / Later ion capture migration spectra.
  • an ion mobility filter can be used to separate a continuous ion beam.
  • the differential mobility spectrum separates ions with different mobility in the direction of the vertical gas flow. It is also possible to separate continuous ion beams by setting a high and low pass mobility filter.
  • Such a device is disclosed by Hashimoto et al. in U.S. Patent 7,718,960 B2.
  • the device has two migration zones, with electric fields and airflow in opposite directions, and the airflow directions in the two migration zones are opposite.
  • the device gas is introduced vertically by the connection regions in the two regions.
  • a schematic of the device is shown in Figure 1A.
  • Parks also employs a vertical introduction of airflow, but the device employs a radio-frequency quadrupole field to radially bind ions.
  • the structure of the device is shown in Figure 1B. Hashimoto and Parks have a problem with the high and low pass filter device, that is, the airflow direction in the airflow introduction area is not fixed, and there is obvious turbulent flow phenomenon, which will greatly affect the resolution and ion passage rate of the device.
  • the ion mobility spectrum needs to be further improved in resolution and sensitivity.
  • a mobility spectrometer that can achieve high resolution at large ion volumes or as a continuous ion beam ion mobility filter while maintaining high resolution and sensitivity.
  • the present invention provides an ion mobility analyzer comprising: an ion source; a first migration/analysis region provided with an ion inlet connected to the ion source; the first migration/analysis The region includes a first DC electric field and a first gas flow, wherein the first DC electric field and the first gas flow cause ions to move along an axis of the first migration/analysis region, wherein the first DC electric field and the first gas flow act on the ions
  • the second migration/analysis region includes an ion outlet; the second migration/analysis region includes a second DC electric field and a second gas flow, wherein the second DC electric field and the second gas flow cause the ions to follow the second An axis motion of the migration/analysis region, wherein the second direct current electric field and the second air flow act in opposite directions to the ions; and the second air flow is in the same direction as the air flow of the first air flow; the third connection region is located in the Between the first migration/analysis region and the second migration/analysis region, wherein the third connection
  • the first airflow and the second airflow are laminar.
  • the direction in which the ion inlet introduces ions is perpendicular to the direction of the gas flow; and/or the direction in which the ion outlet extracts ions is perpendicular to the direction of the gas flow.
  • the ion source is located upstream or downstream of the gas stream.
  • the detector is located upstream or downstream of the gas stream.
  • the axis of the second migration/analysis region is not in line with the axis of the first migration/analysis region.
  • the axis of the second migration/analysis region is parallel to the axis of the first migration/analysis region.
  • the first migration/analysis region and the second migration/analysis region are stacked in parallel or placed side by side.
  • the first migration/analysis region and the second migration/analysis region respectively comprise a series of electrode pairs arranged along an axis, and the plane of the electrode pair is perpendicular to the airflow direction.
  • a radio frequency voltage having a different phase is applied to each of the adjacent electrode pairs, and a quadrupole field or a multi-pole field of the bound ions is formed in a direction perpendicular to the air flow.
  • the first migration/analysis region and the second migration/analysis region respectively comprise a series of electrode pairs arranged along a line perpendicular to the axis, wherein the plane of the pair of electrodes is parallel to the direction of the airflow.
  • a radio frequency voltage having a different phase is applied to each of the adjacent electrode pairs, and a quadrupole field or a multi-pole field of the bound ions is formed in a direction parallel to the air flow.
  • a section of the second migration/analysis region adjacent to the detector comprises a plurality of electrodes, and a voltage is applied to each of the electrodes to form ions that are bound during transmission and focused to the detector. Electric field.
  • a mass analyzer is provided in the front stage, the rear stage, or the front stage and the rear stage of the analyzer to constitute an ion mobility and mass to charge ratio combination analyzer.
  • one of the first migration/analysis region and the second migration/analysis region is used as a first ion mobility filter for passing ions higher than the first predetermined mobility; And/or the other of the first migration/analysis region and the second migration/analysis region is used as a second ion mobility filter that passes ions below the second predetermined mobility.
  • the first preset mobility is less than the second preset mobility.
  • one of the first migration/analysis region and the second migration/analysis region functions as an ion mobility analyzer, and the DC electric field contained therein changes with time to have different ion mobility.
  • the ions pass through the analysis region at different times; the other of the first migration/analysis region and the second migration/analysis region acts as an ion transport and/or enrichment channel.
  • the first DC electric field of the first migration/analysis region is scanned with time to pass ions having different ion mobility at different times and enter the second through the third connection region.
  • a migration/analysis region, the second DC electric field of the second migration/analysis region passes all ions through the region to the detector.
  • the first DC electric field of the first migration/analysis region is a nonlinear DC electric field to enrich ions in at least a portion of the first migration/analysis region
  • the first A DC electric field changes with time such that ions pass through the first migration/analysis region and enter the second migration/analysis region via a third connection region
  • the second DC electric field of the second migration/analysis region being scanned over time to Ions with different ion mobility pass through this region to the detector at different times.
  • the first DC electric field of the first migration/analysis region passes all ions through the first migration/analysis region and enters the second migration/analysis via the third connection region.
  • the second DC electric field of the second migration/analysis region is scanned over time such that ions having different ion mobility pass through the second migration/analysis region to the detector at different times.
  • the DC electric field of the first migration/analysis region, the second migration/analysis region, and the third migration/analysis region causes ions to pass from the ion source in a direction perpendicular to the gas flow direction.
  • the first migration/analysis region, the third connection region, and the second migration/analysis region arrive at the detector.
  • the DC electric field of the first migration/analysis region, the second migration/analysis region, and the third migration/analysis region causes ions to pass the first migration in a direction parallel to the airflow direction.
  • the analysis region enters the third connection region and enters the second migration/analysis region via the third connection region, and reaches the detector through the second migration/analysis region in a direction parallel to the airflow direction.
  • the present invention provides an ion mobility analysis method for separating and identifying an ionic analyte, comprising: providing an ion source that generates ions; and providing a first electrode having an ion inlet connected to the ion source a first migration/analysis region comprising a first DC electric field and a first gas flow, wherein the first DC electric field and the first gas flow cause ions to move along an axis of the first migration/analysis region, wherein The first DC electric field and the first air flow are opposite to each other; the second migration/analysis region is provided with an ion outlet, and the second migration/analysis region includes a second DC electric field and a second air flow, wherein The second direct current electric field and the second air flow move ions along an axis of the second migration/analysis region, wherein the second direct current electric field and the second air flow act in opposite directions to the ions; and the second air flow and the second air flow a gas flow direction is uniform; a third connection region is provided between the
  • the ion mobility analysis method includes: introducing ions from the ion inlet perpendicular to the gas flow direction; and/or, causing ions to be perpendicular to the gas flow direction from the The ion outlet is taken out.
  • the ion mobility analysis method includes: using one of the first migration/analysis region and the second migration/analysis region as a command higher than the first by controlling a DC electric field a first ion mobility filter through which a predetermined mobility of ions passes; and/or using the other of the first migration/analysis region and the second migration/analysis region as a lower than the second preset The mobility of ions passes through a second ion mobility filter.
  • the ion mobility analysis method includes: changing a DC electric field of one of the first migration/analysis region and the second migration/analysis region as a function of time as ion mobility An analyzer that passes ions having different ion mobility through the ion mobility analyzer at different times and causes the other of the first migration/analysis region and the second migration/analysis region to be ion transported and/or Enrichment channel.
  • the ion mobility analysis method includes: controlling an ion along a direct current electric field of the first migration/analysis region, the second migration/analysis region, and the third connection region
  • the detector is passed from the ion source through the first migration/analysis region, the third connection region, and the second migration/analysis region perpendicular to the direction of the gas flow.
  • the ion mobility analyzer and the analysis method of the present invention include: a first migration/analysis region provided with an ion inlet, a second migration/analysis region provided with an ion outlet, and a first migration/connection a third connection region of the analysis region and the second migration/analysis region, and a detector connected to the ion outlet, wherein the first and second migration/analysis regions have a DC electric field and a gas flow to the ion The direction of action is reversed, and the second gas stream is in a direction consistent with the gas flow of the first gas stream; the third connection region comprises a third DC electric field, the third DC electric field causing ions from the first migration/analysis region Transfer to the second migration/analysis region, since the first and second regions have the same airflow direction, avoiding the formation of turbulent flow, whether as a high-resolution ion mobility analyzer or as a continuous ion beam ion mobility
  • the filter, the present invention has excellent stability in both resolution and sensitivity.
  • Figure 1A shows a schematic of a prior art Hashimoto ion mobility filter.
  • Figure 1B shows a schematic of a Parks mobility filter in the prior art.
  • FIG. 2A shows a schematic diagram of an ion mobility analyzer of the present invention.
  • 2B is a schematic view showing the xy plane of the ion mobility analyzer of the present invention.
  • Figure 3 is a graph showing the relationship between the ion mobility analyzer of the present invention and its successive vacuum systems.
  • FIG. 4A is a schematic view showing the structure of a first embodiment of the ion mobility analyzer of the present invention.
  • 4B is a schematic view showing the electric field distribution of the analysis process in the first embodiment of the ion mobility analyzer of the present invention.
  • 4C shows an ion trajectory simulation diagram of the first embodiment of the ion mobility analyzer of the present invention.
  • Fig. 5A is a view showing the structure of a second embodiment of the ion mobility analyzer of the present invention.
  • Fig. 5B is a view showing the electric field distribution of the analysis process in the second embodiment of the ion mobility analyzer of the present invention.
  • Figure 5C is a graph showing the ion trajectory simulation of the second embodiment of the ion mobility analyzer of the present invention.
  • Fig. 6A is a view showing the structure of a third embodiment of the ion mobility analyzer of the present invention.
  • Fig. 6B is a view showing the electric field distribution of the analysis process in the third embodiment of the ion mobility analyzer of the present invention.
  • Fig. 7A is a view showing the structure of a fourth embodiment of the ion mobility analyzer of the present invention.
  • Fig. 7B is a view showing the electric field distribution of the analysis process in the fourth embodiment of the ion mobility analyzer of the present invention.
  • 7C is a view showing the simulation of the ion trajectory of the fourth embodiment of the ion mobility analyzer of the present invention.
  • Fig. 8A is a view showing the structure of a fifth embodiment of the ion mobility analyzer of the present invention.
  • Fig. 8B is a view showing the electric field distribution of the analysis step in the fifth embodiment of the ion mobility analyzer of the present invention.
  • 8C is a view showing the simulation of the ion trajectory of the fifth embodiment of the ion mobility analyzer of the present invention.
  • Fig. 9A is a view showing the structure of a sixth embodiment of the ion mobility analyzer of the present invention.
  • Fig. 9B is a view showing the electric field distribution of the analysis process in the sixth embodiment of the ion mobility analyzer of the present invention.
  • Fig. 9C is a view showing the simulation of the ion trajectory of the sixth embodiment of the ion mobility analyzer of the present invention.
  • FIG. 2A is a schematic view showing the structure of the ion mobility analyzer 1 of the present invention; the present invention consists of four groups of electrodes 8, 9, 10, and 11, each of which is arranged in parallel in the same plane, and the planes of the four groups of electrodes are parallel to each other. Airflows 4 and 5 exist between electrode groups 8 and 9 and between 10 and 11. Airflows 4 and 5 are in the same direction. DC groups 6 and 7 having directions opposite to the directions of the gas streams 4 and 5 are applied to the electrode groups 8 and 9 and 10 and 11. More specifically as shown in Figure 2B.
  • FIG. 2B is a schematic view showing the xy plane structure of the ion mobility analyzer 1 of the present invention; the ion source 2 is disposed outside the ion inlet of the ion mobility analyzer 1, and the detector 3 is disposed outside the outlet of the ion mobility analyzer 1; In the middle, two rows of parallel electrode groups 8 and 9 constitute a first migration/analysis region, and two rows of parallel electrode groups 10 and 11 constitute a second migration/analysis region, each electrode group 8, 9, 10, 11 comprising along an axis Distributed multiple electrodes.
  • a third connection region is formed between the electrode at the end of the parallel electrode groups 8, 9, 10 and 11 and the electrode group 12 to connect the first and second migration/analysis regions.
  • a linear or non-linear first DC electric field 6E1 can be applied to the electrode groups 8 and 9, and an arrow at E1 in the figure indicates the direction of action of the first DC electric field on the ions, and has a first
  • the gas stream 4U1 flows through the first migration/analysis region, which acts in the direction of the ions opposite to the direction of the first DC electric field.
  • a linear or non-linear DC electric field 7E2 is applied to the electrode groups 10 and 11, and a second gas flow 5U2 exists in the second migration/analysis region, which acts on the direction of the ions and the direction of the DC electric field. Instead, it is simultaneously the same as the first airflow 4 in the first migration/analysis region.
  • a DC electric field is applied to transport ions from the first migration/analysis region to the second migration/analysis region; and, on the electrode groups 8, 9, 10 and 11, the RF voltage is superimposed to be perpendicular to the axis direction The ions are bound in the radial direction.
  • the plurality of electrodes in the first migration/analysis region and the second migration/analysis region form a plurality of electrode pairs arranged along the axis (the A frame in the figure identifies one electrode) Pair), each of the pair of electrodes comprises two electrodes in the same plane, the plane is perpendicular to the axis, and adjacent pairs of electrodes respectively apply RF voltages of different phases to form bound ions in a direction perpendicular to the airflow Quadrupole field or multipole field.
  • the plurality of electrodes in the first migration/analysis region and the second migration/analysis region form a plurality of electrode unit pairs arranged along an axis, each of the electrode unit pairs being located Two electrode units of the same plane, the plane being perpendicular to the axis, each of the electrode units comprising a plurality of segment electrodes distributed in a radial direction perpendicular to the axis, the adjacent segment electrodes respectively applying different phases
  • the RF voltage to form a quadrupole field or a multipole field that binds ions in a direction parallel to the gas flow.
  • a section of the second migration/analysis region proximate to the detector comprises a plurality of electrodes, each of which applies a voltage to form an electric field that causes the ions to be trapped during transmission and focused to the detector.
  • the ions exhibit a U-shaped ion trajectory under the action of the electric field and the gas flow field, and in the first migration/analysis region, the first DC electric field acts on the ions stronger than the air flow field. Thereby, the ions are pushed to reach the third connection region, and in the second migration/analysis region, the airflow field acts on the ions stronger than the second DC electric field, thereby pushing the ions to the detector 3 for detection.
  • Figure 3 is a graph showing the relationship between the ion mobility analyzer of the present invention and its front and rear stage vacuum systems.
  • a mass spectrometer From the atmospheric pressure of the ion source to the high vacuum of 10 -6 Torr in the mass analyzer, a mass spectrometer has a multi-stage vacuum zone. Ions are generated from the ion source and enter the first stage vacuum region 15 through a capillary 14 where the ions are focused by a radio frequency ion guide 24 and then passed through a dispenser 25 into the second stage vacuum region 16 .
  • the ion mobility analyzer 1 of the present invention is disposed in a second stage vacuum zone 16 having a vacuum pressure range of 2 to 4 Torr.
  • the ions After passing through the ion mobility analyzer 1, the ions enter a third-stage vacuum region 17, in which a second ion guiding device 27 is disposed, which is followed by a fourth-stage vacuum in which the mass analyzer 29 is located.
  • the mass analyzer 29 can be a triple quadrupole or a Q-TOF or the like.
  • Small holes 26 and 28 are connected between each stage of the vacuum area.
  • An evacuation device is attached to each vacuum zone to maintain a vacuum.
  • a gas introduction device 23 is present to introduce a pure mobility analysis buffer gas.
  • FIG. 4A is a schematic view of a first embodiment of an ion mobility analyzer of the present invention.
  • the first ion transport/analysis region acts as a high resolution, high ion capacity scanning ion mobility analyzer and the second ion transport/analysis region is used to transport ions to the detector 3.
  • a first DC electric field 6E1 having a nonlinearity opposite to the direction of the first gas stream 4U1 may be applied to the electrode groups 8 and 9 to cause ions 32, 33, 34, 35, and 36 having different ion mobility K1 to K5 to be in the first migration.
  • the analysis region is separated; a second DC electric field 7E2 opposite to the second gas flow 5U2 is applied to the electrode groups 10 and 11 to transport the ions to the detector 3.
  • the ion analysis performed in this example has three analytical steps: enrichment, capture, and efflux.
  • the electric field distribution in the first migration/analysis region (1st region) can be divided into four regions: an ion implantation region 41, an ion transmission region 42, an electric field intensity falling edge region 43, and a flat region 44.
  • the ions are first introduced continuously into the first migration/analysis zone, and all ions pass through zones 41 and 42 to enter the electric field strength drop zone 43 under the push of a high electric field.
  • region 43 ions having different mobility will be balanced with the gas flow at different electric field strength locations.
  • Fig. 4C is a simulation diagram of the ion trajectory of this embodiment.
  • Figure 5A is a schematic view of a second embodiment of the present invention.
  • the first ion transport/analysis region is used to enrich and transport ions
  • the second ion transport/analysis region is used as a high resolution scan mobility analyzer.
  • the inclusion of a DC electric field opposite the direction of the gas stream 4U1 on the electrode groups 8 and 9 enriches the ions in the first migration/analysis region and is transmitted to the third connection region.
  • the inclusion of a non-linear DC electric field opposite the direction of the gas stream 5U2 on the electrode groups 10 and 11 causes ions 32 to 36 having different mobility to be separated in the second migration/analysis region.
  • the directions of the airflows 4U1 and 5U2 are the same.
  • the electric field intensity distribution is shown in Figure 5B.
  • the analysis process of this embodiment also has three steps: enrichment, capture, and outflow.
  • the electric field distribution in the first migration/analysis zone can be divided into two parts: an ion implantation zone 49 and an ion enrichment zone 50.
  • the electric field distribution in the second migration/analysis zone can be divided into three parts: an ion transport zone 53, an electric field strength rise zone 52, and a plateau zone 51.
  • the ions are first introduced continuously into the first migration/analysis zone, and all ions pass through the 49, 50 and 51 zones into the electric field strength rise zone 52, driven by the high electric field. Under the combined action of airflow and electric field, ions with different mobility are balanced at different electric field strength positions.
  • Fig. 5C is a simulation diagram of the ion trajectory of this embodiment.
  • Figure 6A is a schematic view of a third embodiment of the present invention.
  • the first migration/analysis region is used to transport ions, the ions are enriched at locations near the junction region, and the second migration/analysis region acts as a high resolution scan mobility analyzer.
  • the analysis of this embodiment has only two steps: enrichment/outflow and transmission/capture. Enrichment and efflux are performed simultaneously in two different migration/analysis regions. Transmission and capture are also performed simultaneously in two different migration/analysis areas.
  • the electric field intensity distribution is shown in Fig. 6B.
  • the second migration/analysis region can be divided into three sections: an ion transport zone 56, an electric field rise edge zone 55, and a plateau zone 54.
  • the ions 32-36 are first enriched at the end of the first migration/analysis region, after a period of enrichment, the ions are transported through the junction region to the second migration/analysis region, and the electric field rising edge region 55 in the second migration/analysis region Captured to reach equilibrium. After a period of time, the electric field strength rises along the initial field E0 from the initial value E0, and the electric field strength decreases slowly at a certain speed ⁇ (the electric field strength decreases as 45 to 48). As the electric field strength decreases, ions with lower ion mobility will first reach the detector. At the same time, the first migration/analysis region is enriching ions. As described above, in this embodiment, enrichment and efflux are performed simultaneously in two different migration/analysis zones. Transmission and capture are also performed simultaneously in two different migration/analysis areas. This embodiment has a duty cycle close to 100%.
  • Figure 7A is a schematic view of a fourth embodiment of the present invention.
  • the first migration/analysis region acts as a "high pass” (ie, ion mobility is higher than the first predetermined ion mobility) mobility filter
  • the second migration/analysis region acts as a "low pass” (ie, ion)
  • the mobility is lower than the second predetermined ion mobility) mobility filter
  • the connection region serves as an ion transmission channel.
  • This embodiment is used to perform target mobility analysis.
  • An electric field E1 having a direction opposite to the direction of the gas flow 4U1 is included on the electrode groups 8 and 9 so that ions having an ion mobility greater than U1/E1 pass through the first migration/analysis region.
  • An electric field E2 having a direction opposite to the direction of the gas flow 5U2 is included on the parallel electrode groups 10 and 11, so that ions having a mobility smaller than U2/E2 pass through the second migration/analysis region to the detector 3.
  • the directions of the airflows 4U1 and 5U2 are the same.
  • the electric field intensity distribution is shown in Fig. 7B.
  • the electric field strengths of the first and second migration/analysis regions were 57 and 58, respectively.
  • the electric field strength 57 of the first migration/analysis region passes ions 34, 35 and 36 having a mobility greater than K2.
  • the electric field strength 58 of the second migration/analysis region causes ions 34 having a mobility less than K4 to pass through to the detector.
  • the result of this embodiment is to obtain a continuous ion beam with a range of mobility.
  • Fig. 7C shows the ion trajectory simulation of the present embodiment.
  • Figure 8A is a schematic view of a fifth embodiment of the present invention.
  • all ions are transmitted from the ion source 2 to the detector 3 through three regions.
  • the inclusion of a high electric field E1 in the direction opposite to the direction of the gas flow 4U1 on the electrode groups 8 and 9 causes all ions 32 to 36 to pass through the first migration/analysis region.
  • a low electric field E2 comprising a direction opposite to the direction of the gas flow 5U2 on the electrode groups 10 and 11 causes all ions 32 to 36 to pass through the second migration/analysis region to the detector 3.
  • the electric field intensity distribution of this embodiment is as shown in Fig. 8B.
  • Fig. 8C is a simulation diagram of the ion trajectory of this embodiment. The simulation results show that the ion transmission efficiency is close to 100%.
  • Figure 9A is a schematic view of a sixth embodiment of the present invention.
  • all ions are transmitted from the ion source 2 to the detector 3 in a direction perpendicular to the gas streams U1 and U2 through three regions.
  • the non-linear DC electric fields E1 and E2, which are oriented in the opposite direction to the gas streams 4, 5, U1 and U2, on the electrode groups 8, 9, 10 and 11 are such that ions are transmitted from the ion source to the detector in a direction perpendicular to the gas flow.
  • the electric field intensity distribution of this embodiment is as shown in Fig. 9B.
  • Figure 9C shows an ion trajectory simulation of this embodiment. The simulation results show that the ion transmission efficiency is close to 100%, and the transmission time is also very short (about 100us).
  • the ion mobility analyzer and the analysis method of the present invention comprise: a first migration/analysis region provided with an ion inlet, a second migration/analysis region provided with an ion outlet, and a first migration connection a third connection region of the analysis region and the second migration/analysis region, and a detector connected to the ion outlet, wherein the first and second migration/analysis regions have a DC electric field and a gas flow pair ion The direction of action is reversed, and the second gas stream is in the same direction as the gas flow of the first gas stream; the third connection region comprises a third DC electric field, the third DC electric field causes ions to migrate/transform from the first The region is transported to the second migration/analysis region, since the first and second regions have the same airflow direction, avoiding turbulence, whether as a high-resolution ion mobility analyzer or as a continuous ion beam ion migration Rate filter, the invention has good stability in both resolution and sensitivity.
  • the invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Abstract

本发明提出一种离子迁移率分析器及分析方法,该分析器包括:离子源、设有离子入口的第一迁移/分析区域、设有离子出口的第二迁移/分析区域、连接第一迁移/分析区域和第二迁移/分析区域的第三连接区域、及连接离子出口的检测器,其中,第一迁移/分析区域和第二迁移/分析区域中直流电场和气流对离子的作用方向相反,并且第二气流与第一气流的气流方向一致;第三连接区域包含第三直流电场,第三直流电场使离子从第一迁移/分析区域传输到第二迁移/分析区域,由于第一和第二两个区域的气流方向相同,无论是作为高分辨率的离子迁移率分析器还是作为连续离子束离子迁移率过滤器,本发明在分辨率和灵敏度上都具有很好的稳定性。

Description

离子迁移率分析器及分析方法 技术领域
本发明涉及离子迁移谱和离子分析领域,尤其是涉及离子迁移率分析器及分析方法。
背景技术
离子迁移谱是一种根据离子的迁移率分离离子的技术。根据分离方式的不同可以把离子迁移谱分成在时间上的分离和在距离上的分离两种类型。传统的飞行时间离子迁移谱是在时间上的分离,差分迁移谱分析器是在距离上的分离。与质谱相比,离子迁移谱的分辨率和灵敏度较差,这主要受限于离子的扩散。但离子迁移谱可提供基于分子碰撞截面的附加信息,还可以作为质谱前端的离子预分离装置。对于差分迁移谱的分辨率,可以通过优化装置的几何结构来提高(如倾斜场,交叉气流场和周期聚焦差分迁移谱)。对于飞行时间迁移谱,可以通过加长迁移管的长度、提高包含的电压以及增加径向束缚电场(如射频离子漏斗、射频四极场和直流周期静电场)的方式来提高分辨率。
为了进一步提高分辨率,Zeleny(Zeleny,J.Philos.Mag.46,120(1898))提出在平行流分析器中采用方向相反的气流与电场的方式。Zeleny的装置包含两个平行的网格,具有特定迁移率的离子在两种相反的作用力(气流和电场)作用下平衡。其后出现了多种制作平行流分析器的尝试,包括斜网格法、存在气流的离子阱、垂直引出离子迁移谱、Loboda反向气流分段四极场和Park提出的平行流离子迁移谱/后来离子捕获迁移谱。实验上,只有Loboda和Park的装置获得比较好的结果。他们均采用射频四极场在径向束缚离子。在美国专利6630662B1中,Loboda采用一均匀的电场,随着电场的缓慢升高,离子在电场的作用下克服气流的作用被逐出。在美国专利7838826B1中,Park采用非均匀的电场首先将具有不同迁移率的离子分离,之后缓慢降低电场使离子在气流的作用下被逐出分析器。Parks采用比较高的气压获得了比Loboda更高的分辨率。但是他的装置存在分析时间长和单次分析离子数受限的问题。
要分离连续的离子束,可以使用离子迁移率过滤器。差分迁移谱可将具有不同迁移率的离子在垂直气流的方向进行分离。另外还可以通过设置高低通迁移率过滤器来分离连续的离子束。在美国专利7718960B2中,Hashimoto等人公开了这样一种装置。该装置有两个迁移区域,区域内存在方向相反的电场和气流,并且两个迁移区域内的气流方向相反。该装置气体由两个区域中的连接区域垂直引入。该装置示意图如图1A所示。在美国专利9281170B2中,Parks同样采用垂直引入气流的方式,但是该装置采用射频四极场在径向束缚离子。该 装置结构示意图如图1B所示。Hashimoto和Parks的高低通过滤装置都存在一个问题,就是在气流引入区域气流方向是不固定的,存在明显的乱流现象,这种乱流会极大的影响装置的分辨率和离子通过率。
因此,离子迁移谱在分辨率和灵敏度上还需要进一步提高。同时还需要一种迁移谱装置,该装置既可以在大的离子容量下具有很高的分辨率,也可以在保持高的分辨率和灵敏度下作为一个连续离子束离子迁移率过滤器。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供离子迁移率分析器及分析方法,解决现有技术的问题。
为实现上述目的及其他相关目的,本发明提供一种离子迁移率分析器,包括:离子源;第一迁移/分析区域,设有连接所述离子源的离子入口;所述第一迁移/分析区域包含第一直流电场及第一气流,其中,所述第一直流电场及第一气流令离子沿第一迁移/分析区域的轴线运动,其中,第一直流电场及第一气流对离子的作用方向相反;第二迁移/分析区域,设有离子出口;所述第二迁移/分析区域包含第二直流电场及第二气流,其中,所述第二直流电场及第二气流令离子沿第二迁移/分析区域的轴线运动,其中,第二直流电场及第二气流对离子的作用方向相反;并且所述第二气流与所述第一气流的气流方向一致;第三连接区域,位于所述第一迁移/分析区域和第二迁移/分析区域之间,其中,所述第三连接区域包含第三直流电场,所述第三直流电场使离子从所述第一迁移/分析区域传输到所述第二迁移/分析区域;检测器,连接所述离子出口。
于本发明的一实施例中,所述第一气流和第二气流为层流。
于本发明的一实施例中,所述离子入口引入离子的方向垂直于所述气流方向;以及/或者,所述离子出口引出离子的方向垂直于所述气流方向。
于本发明的一实施例中,所述离子源位于气流的上游或下游。
于本发明的一实施例中,所述检测器位于气流的上游或下游。
于本发明的一实施例中,所述第二迁移/分析区域的轴线与所述第一迁移/分析区域的轴线不在同一直线上。
于本发明的一实施例中,所述第二迁移/分析区域的轴线与所述第一迁移/分析区域的轴线平行。
于本发明的一实施例中,所述第一迁移/分析区域及第二迁移/分析区域间相互平行地堆叠放置或并排放置。
于本发明的一实施例中,所述第一迁移/分析区域及第二迁移/分析区域分别包含一系列沿轴线排列的电极对,所述电极对所在平面与所述气流方向垂直,在所述相邻电极对上分别施加相位不同的射频电压,在垂直于气流的方向上形成束缚离子的四极场或多极场。
于本发明的一实施例中,所述第一迁移/分析区域及第二迁移/分析区域分别包含一系列沿垂直于轴线排列的电极对,所述电极对所在平面与所述气流方向平行,在所述相邻电极对上分别施加相位不同的射频电压,在平行于气流的方向上形成束缚离子的四极场或多极场。
于本发明的一实施例中,在所述第二迁移/分析区域接近检测器的一段包含多个电极,各所述电极上施加电压以形成令离子在传输过程中被束缚并聚焦至检测器的电场。
于本发明的一实施例中,在所述分析器的前级、后级、或前级和后级设有质量分析器,以组成离子迁移率和质荷比组合分析器。
于本发明的一实施例中,所述第一迁移/分析区域及第二迁移/分析区域中的一个用作为令高于第一预设迁移率的离子通过的第一离子迁移率过滤器;以及/或者,所述第一迁移/分析区域及第二迁移/分析区域中的另一个用作为令低于第二预设迁移率的离子通过的第二离子迁移率过滤器。
于本发明的一实施例中,所述第一预设迁移率小于所述第二预设迁移率。
于本发明的一实施例中,所述第一迁移/分析区域及第二迁移/分析区域中的一个作为离子迁移率分析器,其包含的直流电场随时间变化以使具有不同离子迁移率的离子在不同时间通过所述分析区域;所述第一迁移/分析区域及第二迁移/分析区域中的另一个作为离子传输和/或富集通道。
于本发明的一实施例中,所述第一迁移/分析区域的第一直流电场随时间扫描以使具有不同离子迁移率的离子在不同时间通过,并通过所述第三连接区域进入第二迁移/分析区域,所述第二迁移/分析区域的第二直流电场使所有离子通过该区域到达检测器。
于本发明的一实施例中,其中所述第一迁移/分析区域的第一直流电场为一非线性直流电场以使离子在该第一迁移/分析区域的至少部分区域富集,所述第一直流电场随时间改变使离子通过该第一迁移/分析区域并经第三连接区域进入所述第二迁移/分析区域,所述第二迁移/分析区域的第二直流电场随时间扫描以使具有不同离子迁移率的离子在不同时间通过该区域到达检测器。
于本发明的一实施例中,所述第一迁移/分析区域的第一直流电场使所有离子通过所述第一迁移/分析区域并经所述第三连接区域进入所述第二迁移/分析区域,所述第二迁移/分析区域的第二直流电场随时间扫描以使具有不同离子迁移率的离子在不同时间通过该第二迁移 /分析区域到达检测器。
于本发明的一实施例中,所述第一迁移/分析区域、第二迁移/分析区域、及第三迁移/分析区域的直流电场使离子沿垂直于所述气流方向从所述离子源经第一迁移/分析区域、第三连接区域及第二迁移/分析区域到达检测器。
于本发明的一实施例中,所述第一迁移/分析区域、第二迁移/分析区域、及第三迁移/分析区域的直流电场使离子沿平行于所述气流方向通过所述第一迁移/分析区域进入第三连接区域,并经所述第三连接区域进入第二迁移/分析区域,沿平行于所述气流方向通过第二迁移/分析区域到达检测器。
为实现上述目的及其他相关目的,本发明提供一种分离和标识离子分析物的离子迁移率分析方法,包含:提供产生离子的离子源;提供设有连接所述离子源的离子入口的第一迁移/分析区域,所述第一迁移/分析区域包含第一直流电场及第一气流,其中,所述第一直流电场及第一气流令离子沿第一迁移/分析区域的轴线运动,其中,第一直流电场及第一气流对离子的作用方向相反;提供设有离子出口的所述第二迁移/分析区域,所述第二迁移/分析区域包含第二直流电场及第二气流,其中,所述第二直流电场及第二气流令离子沿第二迁移/分析区域的轴线运动,其中,第二直流电场及第二气流对离子的作用方向相反;并且所述第二气流与所述第一气流的气流方向一致;提供第三连接区域,位于所述第一迁移/分析区域和第二迁移/分析区域之间,其中,所述第三连接区域包含第三直流电场,所述第三直流电场使离子从所述第一迁移/分析区域传输到所述第二迁移/分析区域;提供连接所述离子出口的检测器。
于本发明的一实施例中,所述的离子迁移率分析方法,包括:令离子垂直于所述气流方向从所述离子入口引入;以及/或者,令离子垂直于所述气流方向从所述离子出口引出。
于本发明的一实施例中,所述的离子迁移率分析方法,包括:通过控制直流电场,将所述第一迁移/分析区域及第二迁移/分析区域中的一个用作为令高于第一预设迁移率的离子通过的第一离子迁移率过滤器;以及/或者,将所述第一迁移/分析区域及第二迁移/分析区域中的另一个用作为令低于第二预设迁移率的离子通过的第二离子迁移率过滤器。
于本发明的一实施例中,所述的离子迁移率分析方法,包括:令所述第一迁移/分析区域及第二迁移/分析区域中的一个的直流电场随时间变化来作为离子迁移率分析器,使具有不同离子迁移率的离子在不同时间通过所述离子迁移率分析器,并令所述第一迁移/分析区域及第二迁移/分析区域中的另一个作为离子传输和/或富集通道。
于本发明的一实施例中,所述的离子迁移率分析方法,包括:通过控制所述第一迁移/ 分析区域、第二迁移/分析区域、及第三连接区域的直流电场,使离子沿垂直于所述气流方向从所述离子源经第一迁移/分析区域、第三连接区域及第二迁移/分析区域到达检测器。
如上所述,本发明的离子迁移率分析器及分析方法,该分析器包括:设有离子入口的第一迁移/分析区域、设有离子出口的第二迁移/分析区域、连接第一迁移/分析区域和第二迁移/分析区域的第三连接区域、及连接所述离子出口的检测器,其中,所述第一迁移/分析区域和第二迁移/分析区域中直流电场和气流对离子的作用方向相反,并且所述第二气流与所述第一气流的气流方向一致;所述第三连接区域包含第三直流电场,所述第三直流电场使离子从所述第一迁移/分析区域传输到所述第二迁移/分析区域,由于第一和第二两个区域的气流方向相同,避免形成乱流,无论是作为高分辨率的离子迁移率分析器还是作为连续离子束离子迁移率过滤器,本发明在分辨率和灵敏度上都具有很好的稳定性。
附图说明
图1A显示为现有技术中Hashimoto离子迁移率过滤器示意图。
图1B显示为现有技术中Parks迁移率过滤器示意图。
图2A显示为本发明的离子迁移率分析器示意图。
图2B显示为本发明的离子迁移率分析器xy面示意图。
图3显示为本发明的离子迁移率分析器与其先后级真空系统的关系图。
图4A显示为本发明离子迁移率分析器的第一实施例的结构示意图。
图4B显示为本发明离子迁移率分析器的第一实施例中分析过程的电场分布示意图。
图4C显示为本发明离子迁移率分析器的第一实施例的离子轨迹仿真图。
图5A显示为本发明离子迁移率分析器的第二实施例的结构示意图。
图5B显示为本发明离子迁移率分析器的第二实施例中分析过程的电场分布示意图。
图5C显示为本发明离子迁移率分析器的第二实施例的离子轨迹仿真图。
图6A显示为本发明离子迁移率分析器的第三实施例的结构示意图。
图6B显示为本发明离子迁移率分析器的第三实施例中分析过程的电场分布示意图。
图7A显示为本发明离子迁移率分析器的第四实施例的结构示意图。
图7B显示为本发明离子迁移率分析器第四实施例中分析过程的电场分布示意图。
图7C显示为本发明离子迁移率分析器第四实施例的离子轨迹仿真图
图8A显示为本发明离子迁移率分析器的第五实施例的结构示意图。
图8B显示为本发明离子迁移率分析器第五实施例中分析步骤的电场分布示意图。
图8C显示为本发明离子迁移率分析器第五实施例的离子轨迹仿真图
图9A显示为本发明离子迁移率分析器第六实施例的结构示意图。
图9B显示为本发明离子迁移率分析器第六实施例中分析过程的电场分布示意图。
图9C显示为本发明离子迁移率分析器第六实施例的离子轨迹仿真图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
请参阅本发明的说明书附图。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
图2A为本发明离子迁移率分析器1的结构示意图;本发明由8、9、10、11四组电极组成,每组电极相互平行布置于同一平面内,四组电极所在平面相互平行。电极组8和9之间以及10和11之间存在气流4和5。气流4和5方向相同。电极组8和9以及10和11上施加方向与气流4和5方向相反的直流电场6和7。更具体的如图2B所示。
图2B为本发明离子迁移率分析器1的xy面结构示意图;离子源2设置在离子迁移率分析器1的离子入口外部,检测器3设置在离子迁移率分析器1的出口外部;图示中,两排平行的电极组8和9组成第一迁移/分析区域,两排平行的电极组10和11组成第二迁移/分析区域,每个电极组8、9、10、11包含沿轴线分布的多个电极。
平行电极组8,9,10和11的末端处的电极和电极组12间组成第三连接区域以连接第一和第二迁移/分析区域。
在第一迁移/分析区域,在电极组8和9上可以施加线性或非线性的第一直流电场6E1,图中的E1处的箭头表示第一直流电场对离子的作用方向,并且有第一气流4U1,流过第一迁移/分析区域,其作用于离子的方向与第一直流电场方向相反。
并且,在第二迁移/分析区域,在电极组10和11上施加线性或非线性的直流电场7E2,第二迁移/分析区域内存在第二气流5U2,其作用于离子的方向与直流电场方向相反,同时与第一迁移/分析区域内的第一气流4方向相同。
在第三连接区域,施加有直流电场使离子从第一迁移/分析区域传输到第二迁移/分析区 域;并且,在电极组8,9,10和11上叠加射频电压以在垂直于轴线方向的径向上束缚离子。
举例来说,如图2所示,所述第一迁移/分析区域及第二迁移/分析区域中的多个电极形成沿轴线排列的多个电极对(图示中的A框标识出一个电极对),每个所述电极对包含位于同一平面的两个电极,所述平面垂直于所述轴线,相邻电极对分别施加相位不同的射频电压,以在垂直于气流的方向上形成束缚离子的四极场或多极场。
以及/或者,在其它实施例中,所述第一迁移/分析区域及第二迁移/分析区域中的多个电极形成沿轴线排列的多个电极单元对,每个所述电极单元对包含位于同一平面的两个电极单元,所述平面垂直于所述轴线,每个所述电极单元包括沿垂直于所述轴线的径向分布的多个分段电极,相邻分段电极分别施加相位不同的射频电压,以在在平行于气流的方向上形成束缚离子的四极场或多极场。
以及/或者,在所述第二迁移/分析区域接近检测器的一段包含多个电极,各所述电极上施加电压以形成令离子在传输过程中被束缚并聚焦至检测器的电场。
在以上举例中,通过在电极施加射频电压来束缚离子,并可叠加施加直流电压以形成直流电场来实现离子径向偏移或聚焦的结构数量众多,故此处不对其具体实现进行赘述。
由图2可见,在三个区域内,离子在电场和气流场的共同作用下呈现U型的离子轨迹,在第一迁移/分析区域是第一直流电场对离子的作用力强于气流场,从而将离子推动到达第三连接区域,而在第二迁移/分析区域是气流场对离子的作用力强于第二直流电场,从而将离子推动到达检测器3处进行检测。
图3为本发明的离子迁移率分析器与其前后级真空系统的关系图。从离子源的大气压到质量分析器的10 -6Torr的高真空,一台质谱仪器具有多级真空区域。离子从离子源产生,通过一个毛细管14进入第一级真空区域15,离子在该级真空区域15内被一个射频离子导引装置24聚焦,之后通过一个分液器25进入第二级真空区域16。本发明的离子迁移率分析器1设置在第二级真空区域16,该级真空区域16的真空气压范围为2到4Torr。离子经过离子迁移率分析器1之后进入第三级真空区域17,该级真空区域17内设置第二个离子导引装置27,该级真空区域17之后是质量分析器29所在的第四级真空区域18,该质量分析器29可以是三重四极杆或者是Q-TOF等。每级真空区域之间采用小孔26和28连接。每级真空区域均连接有抽气装置以保持真空。在离子迁移率分析器所在的这一级真空区域16,存在一个气体引入装置23以引入纯的迁移率分析缓冲气。同时在该级真空的入口和出口位置有气流整流装置,以使离子迁移率分析器内的气流为层流。
图4A为本发明离子迁移率分析器第一实施例示意图。在本发明的第一实施例中,第一 离子迁移/分析区域作为高分辨率高离子容量的扫描型离子迁移率分析器,第二离子迁移/分析区域用来将离子传输到检测器3。在电极组8和9上可以施加与第一气流4U1方向相反的非线性的第一直流电场6E1使具有不同离子迁移率K1~K5的离子32、33、34、35、及36在第一迁移/分析区域被分离;在电极组10和11上施加与第二气流5U2方向相反的第二直流电场7E2使离子传输到检测器3。
本实施例中所执行的离子分析有三个分析步骤:富集、捕获和流出。
在三个分析步骤中,电场的分布存在差异,如图4B所示。该实施例中,第一迁移/分析区域(1st region)内的电场分布可以分为4个区域:离子注入区41、离子传输区42、电场强度下降沿区43和平坦区44。离子首先被连续的引入到第一迁移/分析区,在高电场的推动下,所有离子通过41和42区进入电场强度下降沿区43。在区域43内,具1有不同迁移率的离子将在不同的电场强度位置与气流平衡。平衡的条件是KE=U,其中,K是离子迁移率,E是电场强度,U是气流速度;假设气流速度U是常数,则具有高的迁移率的离子将在较低的电场强度位置平衡,即如图中(1)Accumulation阶段所示;如图中(2)Trap阶段所示,经过一定的富集时间后,离子注入区41的电场强度降至所有离子均无法进入第一迁移/分析区。先前进入的离子在电场强度下降沿区43碰撞冷却平衡。一段时间后,电场强度下降沿区41和平坦区44的电场强度从一个初始值E0,以一定的速度β缓慢的升高(电场强度如40~37递增)。如图中(3)Elute阶段所示,随着电场强度的升高,具有较高离子迁移率的离子将首先从第一迁移/分析区域经连接区域和第二迁移/分析区域到达检测器3,该过程中,第二迁移/分析区域(2nd region)的电场E2不变。图4C为该实施例离子轨迹仿真图。
图5A为本发明第二实施例示意图。在该实施例中,第一离子迁移/分析区域用来富集和传输离子,第二离子迁移/分析区域作为高分辨扫描迁移率分析器。在电极组8和9上包含与气流4U1方向相反的直流电场使离子在第一迁移/分析区域内富集并被传输至第三连接区域。在电极组10和11上包含与气流5U2方向相反的非线性直流电场使具有不同迁移率的离子32~36在第二迁移/分析区域内被分离。其中气流4U1和5U2的方向相同。电场强度分布如图5B所示。该实施例分析过程同样有三个步骤:富集、捕获和流出。第一迁移/分析区内的电场分布可以分为两个部分:离子注入区49和离子富集区50。第二迁移/分析区内的电场分布可以分为三部分:离子传输区53、电场强度上升区52、和平台区51。离子首先被连续的引入到第一迁移/分析区,在高电场的推动下,所有离子通过49,50和51区进入电场强度上升区52。在气流和电场的共同作用下,具有不同迁移率的离子在不同的电场强度位置达到平衡。经过一定的富集时间后,离子注入区49的电场强度降至所有离子均无法进入第一迁 移/分析区。先前进入的离子在电场强度上升沿区52碰撞冷却平衡。一段时间后,电场强度上升沿区52和平台区51的电场强度从一个初始值E0,以一定的速度β缓慢的下降(电场强度如45~48递减)。随着电场强度的下降,具有较低离子迁移率的离子将首先到达检测器。图5C为该实施例离子轨迹仿真图。
图6A为本发明第三实施例示意图。在该实施例中,第一迁移/分析区域用来传输离子,离子在靠近连接区域的位置被富集,第二迁移/分析区域作为高分辨扫描迁移率分析器。该实施例的不同在于该实施例分析只有两步:富集/流出和传输/捕获。富集和流出在两个不同的迁移/分析区域同时进行。传输和捕获同样是在两个不同的迁移/分析区域同时进行。电场强度分布如图6B所示。该实施例中,第二迁移/分析区域可以分成三个部分:离子传输区56,电场上升沿区55和平台区54。离子32~36首先在第一迁移/分析区域的末端被富集,富集一段时间之后离子经连接区域传输到第二迁移/分析区域,并在第二迁移/分析区域的电场上升沿区55被捕获达到平衡。一段时间后,电场强度上升沿区55和平台区54的电场强度从一个初始值E0,以一定的速度β缓慢的下降(电场强度如45~48递减)。随着电场强度的下降,具有较低离子迁移率的离子将首先到达检测器。于此同时,第一迁移/分析区域在富集离子。如上所述在该实施例中,富集和流出在两个不同的迁移/分析区域同时进行。传输和捕获同样是在两个不同的迁移/分析区域同时进行。该实施例具有接近100%的占空比。
图7A是本发明第四实施例示意图。在该实施例中,第一迁移/分析区域作为“高通”(即离子迁移率高于第一预设离子迁移率)迁移率过滤器,第二迁移/分析区域作为“低通”(即离子迁移率低于第二预设离子迁移率)迁移率过滤器,连接区域作为离子传输通道。该实施例用来进行目标迁移率分析。在电极组8和9上包含方向与气流4U1方向相反的电场E1使离子迁移率大于U1/E1的离子通过第一迁移/分析区域。在平行电极组10和11上包含方向与气流5U2方向相反的电场E2使迁移率小于U2/E2的离子通过第二迁移/分析区域到达检测器3。其中气流4U1和5U2的方向相同。电场强度分布如图7B所示。第一和第二迁移/分析区域的电场强度分别为57和58。第一迁移/分析区域的电场强度57使迁移率大于K2的离子34,35和36通过。第二迁移/分析区域的电场强度58使迁移率小于K4的离子34通过到达检测器。该实施例的结果是获得具有一定范围迁移率的连续离子束。图7C使本实施例的离子轨迹仿真图。
图8A是本发明第五实施例示意图。在该实施例中,所有离子经过三个区域从离子源2被传输到检测器3。在电极组8和9上包含方向与气流4U1方向相反的高电场E1使所有离子32~36通过第一迁移/分析区域。在电极组10和11上包含方向与气流5U2方向相反的低 电场E2使所有离子32~36通过第二迁移/分析区域到达检测器3。该实施例的电场强度分布如图8B所示。图8C是该实施例的离子轨迹仿真图。仿真结果显示离子传输效率接近100%。
图9A是本发明第六实施例示意图。在实施例中,所有离子经过三个区域从离子源2以垂直于气流U1和U2的方向传输到检测器3。在电极组8,9,10和11上包含方向与气流4、5即U1和U2方向相反的非线性直流电场E1和E2使离子以垂直于气流的方向从离子源传输到检测器。该实施例的电场强度分布如图9B所示。图9C使该实施例的离子轨迹仿真图。仿真结果显示离子传输效率接近100%,同时传输时间也非常短(大约100us)。
综上所述,本发明的离子迁移率分析器及分析方法,该分析器包括:设有离子入口的第一迁移/分析区域、设有离子出口的第二迁移/分析区域、连接第一迁移/分析区域和第二迁移/分析区域的第三连接区域、及连接所述离子出口的检测器,其中,所述第一迁移/分析区域和第二迁移/分析区域中直流电场和气流对离子的作用方向相反,并且所述第二气流与所述第一气流的气流方向一致;所述第三连接区域包含第三直流电场,所述第三直流电场使离子从所述第一迁移/分析区域传输到所述第二迁移/分析区域,由于第一和第二两个区域的气流方向相同,避免形成乱流,无论是作为高分辨率的离子迁移率分析器还是作为连续离子束离子迁移率过滤器,本发明在分辨率和灵敏度上都具有很好的稳定性。
本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (25)

  1. 一种离子迁移率分析器,其特征在于,包括:
    离子源;
    第一迁移/分析区域,设有连接所述离子源的离子入口;所述第一迁移/分析区域包含第一直流电场及第一气流,其中,所述第一直流电场及第一气流令离子沿第一迁移/分析区域的轴线运动,其中,第一直流电场及第一气流对离子的作用方向相反;
    第二迁移/分析区域,设有离子出口;所述第二迁移/分析区域包含第二直流电场及第二气流,其中,所述第二直流电场及第二气流令离子沿第二迁移/分析区域的轴线运动,其中,第二直流电场及第二气流对离子的作用方向相反;并且所述第二气流与所述第一气流的气流方向一致;
    第三连接区域,位于所述第一迁移/分析区域和第二迁移/分析区域之间,其中,所述第三连接区域包含第三直流电场,所述第三直流电场使离子从所述第一迁移/分析区域传输到所述第二迁移/分析区域;
    检测器,连接所述离子出口。
  2. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述第一气流和第二气流为层流。
  3. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述离子入口引入离子的方向垂直于所述气流方向;以及/或者,所述离子出口引出离子的方向垂直于所述气流方向。
  4. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述离子源位于气流的上游或下游。
  5. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述检测器位于气流的上游或下游。
  6. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述第二迁移/分析区域的轴线与所述第一迁移/分析区域的轴线不在同一直线上。
  7. 根据权利要求6所述的离子迁移率分析器,其特征在于,所述第二迁移/分析区域的轴线与所述第一迁移/分析区域的轴线平行。
  8. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述第一迁移/分析区域及第二迁移/分析区域间相互平行地堆叠放置或并排放置。
  9. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述第一迁移/分析区域及第二迁移/分析区域分别包含一系列沿轴线排列的电极对,所述电极对所在平面与所述气流方向垂直,在所述相邻电极对上分别施加相位不同的射频电压,在垂直于气流的方向上形成 束缚离子的四极场或多极场。
  10. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述第一迁移/分析区域及第二迁移/分析区域分别包含一系列沿垂直于轴线排列的电极对,所述电极对所在平面与所述气流方向平行,在所述相邻电极对上分别施加相位不同的射频电压,在平行于气流的方向上形成束缚离子的四极场或多极场。
  11. 根据权利要求1所述的离子迁移率分析器,其特征在于,在所述第二迁移/分析区域接近检测器的一段包含多个电极,各所述电极上施加电压以形成令离子在传输过程中被束缚并聚焦至检测器的电场。
  12. 根据权利要求1所述的离子迁移率分析器,其特征在于,在所述分析器的前级、后级、或前级和后级设有质量分析器,以组成离子迁移率和质荷比组合分析器。
  13. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述第一迁移/分析区域及第二迁移/分析区域中的一个用作为令高于第一预设迁移率的离子通过的第一离子迁移率过滤器;以及/或者,所述第一迁移/分析区域及第二迁移/分析区域中的另一个用作为令低于第二预设迁移率的离子通过的第二离子迁移率过滤器。
  14. 根据权利要求13所述的离子迁移率分析器,所述第一预设迁移率小于所述第二预设迁移率。
  15. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述第一迁移/分析区域及第二迁移/分析区域中的一个作为离子迁移率分析器,其包含的直流电场随时间变化以使具有不同离子迁移率的离子在不同时间通过所述分析区域;所述第一迁移/分析区域及第二迁移/分析区域中的另一个作为离子传输和/或富集通道。
  16. 根据权利要求15所述的离子迁移率分析器,其特征在于,所述第一迁移/分析区域的第一直流电场随时间扫描以使具有不同离子迁移率的离子在不同时间通过,并通过所述第三连接区域进入第二迁移/分析区域,所述第二迁移/分析区域的第二直流电场使所有离子通过该区域到达检测器。
  17. 根据权利要求15所述的离子迁移率分析器,其中所述第一迁移/分析区域的第一直流电场为一非线性直流电场以使离子在该第一迁移/分析区域的至少部分区域富集,所述第一直流电场随时间改变使离子通过该第一迁移/分析区域并经第三连接区域进入所述第二迁移/分析区域,所述第二迁移/分析区域的第二直流电场随时间扫描以使具有不同离子迁移率的离子在不同时间通过该区域到达检测器。
  18. 根据权利要求15所述的离子迁移率分析器,其特征在于,所述第一迁移/分析区域的第一 直流电场使所有离子通过所述第一迁移/分析区域并经所述第三连接区域进入所述第二迁移/分析区域,所述第二迁移/分析区域的第二直流电场随时间扫描以使具有不同离子迁移率的离子在不同时间通过该第二迁移/分析区域到达检测器。
  19. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述第一迁移/分析区域、第二迁移/分析区域、及第三迁移/分析区域的直流电场使离子沿垂直于所述气流方向从所述离子源经第一迁移/分析区域、第三连接区域及第二迁移/分析区域到达检测器。
  20. 根据权利要求1所述的离子迁移率分析器,其特征在于,所述第一迁移/分析区域、第二迁移/分析区域、及第三迁移/分析区域的直流电场使离子沿平行于所述气流方向通过所述第一迁移/分析区域进入第三连接区域,并经所述第三连接区域进入第二迁移/分析区域,沿平行于所述气流方向通过第二迁移/分析区域到达检测器。
  21. 一种分离和标识离子分析物的离子迁移率分析方法,包含:
    提供产生离子的离子源;
    提供设有连接所述离子源的离子入口的第一迁移/分析区域,所述第一迁移/分析区域包含第一直流电场及第一气流,其中,所述第一直流电场及第一气流令离子沿第一迁移/分析区域的轴线运动,其中,第一直流电场及第一气流对离子的作用方向相反;
    提供设有离子出口的所述第二迁移/分析区域,所述第二迁移/分析区域包含第二直流电场及第二气流,其中,所述第二直流电场及第二气流令离子沿第二迁移/分析区域的轴线运动,其中,第二直流电场及第二气流对离子的作用方向相反;并且所述第二气流与所述第一气流的气流方向一致;
    提供第三连接区域,位于所述第一迁移/分析区域和第二迁移/分析区域之间,其中,所述第三连接区域包含第三直流电场,所述第三直流电场使离子从所述第一迁移/分析区域传输到所述第二迁移/分析区域;
    提供连接所述离子出口的检测器。
  22. 根据权利要求21所述的离子迁移率分析方法,其特征在于,包括:令离子垂直于所述气流方向从所述离子入口引入;以及/或者,令离子垂直于所述气流方向从所述离子出口引出。
  23. 根据权利要求21所述的离子迁移率分析方法,其特征在于,包括:通过控制直流电场,将所述第一迁移/分析区域及第二迁移/分析区域中的一个用作为令高于第一预设迁移率的离子通过的第一离子迁移率过滤器;以及/或者,将所述第一迁移/分析区域及第二迁移/分析区域中的另一个用作为令低于第二预设迁移率的离子通过的第二离子迁移率过滤 器。
  24. 根据权利要求21所述的离子迁移率分析方法,其特征在于,包括:令所述第一迁移/分析区域及第二迁移/分析区域中的一个的直流电场随时间变化来作为离子迁移率分析器,使具有不同离子迁移率的离子在不同时间通过所述离子迁移率分析器,并令所述第一迁移/分析区域及第二迁移/分析区域中的另一个作为离子传输和/或富集通道。
  25. 根据权利要求21所述的离子迁移率分析方法,其特征在于,包括:通过控制所述第一迁移/分析区域、第二迁移/分析区域、及第三连接区域的直流电场,使离子沿垂直于所述气流方向从所述离子源经第一迁移/分析区域、第三连接区域及第二迁移/分析区域到达检测器。
PCT/CN2018/091594 2017-06-06 2018-06-15 离子迁移率分析器及分析方法 WO2018224049A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019527945A JP6783392B6 (ja) 2017-06-06 2018-06-15 イオン移動度分析器及び分析方法
US16/321,164 US10739308B2 (en) 2017-06-06 2018-06-15 Ion mobility analyzer and analysis method
EP18812992.8A EP3637455A4 (en) 2017-06-06 2018-06-15 ION MOBILITY ANALYZER AND ANALYSIS METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710419157.1 2017-06-06
CN201710419157.1A CN109003876B (zh) 2017-06-06 2017-06-06 离子迁移率分析器及分析方法

Publications (1)

Publication Number Publication Date
WO2018224049A1 true WO2018224049A1 (zh) 2018-12-13

Family

ID=64566440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091594 WO2018224049A1 (zh) 2017-06-06 2018-06-15 离子迁移率分析器及分析方法

Country Status (5)

Country Link
US (1) US10739308B2 (zh)
EP (1) EP3637455A4 (zh)
JP (1) JP6783392B6 (zh)
CN (1) CN109003876B (zh)
WO (1) WO2018224049A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201711795D0 (en) * 2017-07-21 2017-09-06 Micromass Ltd Mobility and mass measurement using time - varying electric fields
GB201913378D0 (en) * 2019-09-17 2019-10-30 Micromass Ltd Ion mobility separation device
CN113552204A (zh) 2020-04-02 2021-10-26 株式会社岛津制作所 质谱分析方法和质谱系统
CN113495112A (zh) * 2020-04-02 2021-10-12 株式会社岛津制作所 质谱分析方法和质谱系统
US11099153B1 (en) * 2020-04-03 2021-08-24 Thermo Finnigan Llc Counterflow uniform-field ion mobility spectrometer
US20220299473A1 (en) * 2021-03-22 2022-09-22 Bruker Scientific Llc Laterally-extended trapped ion mobility spectrometer
GB202105251D0 (en) * 2021-04-13 2021-05-26 Thermo Fisher Scient Bremen Gmbh Ion mobility spectrometry
CN115223844A (zh) * 2021-04-21 2022-10-21 株式会社岛津制作所 离子迁移率分析装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630662B1 (en) 2002-04-24 2003-10-07 Mds Inc. Setup for mobility separation of ions implementing an ion guide with an axial field and counterflow of gas
JP2005174619A (ja) * 2003-12-09 2005-06-30 Hitachi Ltd イオン移動度分光計及びイオン移動度分光法
CN1758057A (zh) * 2004-10-06 2006-04-12 株式会社日立制作所 离子迁移率分析装置及离子迁移率分析方法
US7718960B2 (en) 2007-05-08 2010-05-18 Hitachi, Ltd. Ion mobility spectrometer and ion-mobility-spectrometry/mass-spectrometry hybrid spectrometer
US7838826B1 (en) 2008-08-07 2010-11-23 Bruker Daltonics, Inc. Apparatus and method for parallel flow ion mobility spectrometry combined with mass spectrometry
CN103871820A (zh) * 2012-12-10 2014-06-18 株式会社岛津制作所 离子迁移率分析器和其组合设备以及离子迁移率分析方法
US9281170B2 (en) 2011-04-26 2016-03-08 Bruker Daltonik Gmbh Selective ion mobility spectrometer formed from two consecutive mass selective filters
CN105869980A (zh) * 2015-02-05 2016-08-17 布鲁克道尔顿有限公司 高占空比俘获离子迁移谱仪

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0426520D0 (en) * 2004-12-02 2005-01-05 Micromass Ltd Mass spectrometer
CA2635781C (en) * 2006-01-02 2018-10-30 Excellims Corporation Multi-dimensional ion mobility spectrometry apparatus and methods
US8884221B2 (en) * 2006-01-05 2014-11-11 Excellims Corporation High performance ion mobility spectrometer apparatus and methods
GB0817115D0 (en) * 2008-09-18 2008-10-29 Micromass Ltd Mass spectrometer
CN101738429B (zh) * 2008-11-26 2013-04-03 岛津分析技术研发(上海)有限公司 离子分离、富集与检测装置
CN101881752B (zh) * 2010-06-21 2012-09-05 中国科学院合肥物质科学研究院 微型二维离子迁移谱仪
US8507848B1 (en) * 2012-01-24 2013-08-13 Shimadzu Research Laboratory (Shanghai) Co. Ltd. Wire electrode based ion guide device
GB2499587B (en) * 2012-02-21 2016-06-01 Thermo Fisher Scient (Bremen) Gmbh Apparatus and methods for ion mobility spectrometry
CN103515183B (zh) * 2012-06-20 2017-06-23 株式会社岛津制作所 离子导引装置和离子导引方法
CN103811267A (zh) * 2012-11-14 2014-05-21 中国科学院大连化学物理研究所 一种可同时检测正、负离子的组合式平板差分式离子迁移谱
US9812311B2 (en) * 2013-04-08 2017-11-07 Battelle Memorial Institute Ion manipulation method and device
US10241079B2 (en) * 2017-05-24 2019-03-26 Bruker Daltonik Gmbh Mass spectrometer with tandem ion mobility analyzers
WO2019070324A1 (en) * 2017-10-04 2019-04-11 Battelle Memorial Institute METHODS AND SYSTEMS FOR INTEGRATING ION HANDLING DEVICES

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630662B1 (en) 2002-04-24 2003-10-07 Mds Inc. Setup for mobility separation of ions implementing an ion guide with an axial field and counterflow of gas
JP2005174619A (ja) * 2003-12-09 2005-06-30 Hitachi Ltd イオン移動度分光計及びイオン移動度分光法
CN1758057A (zh) * 2004-10-06 2006-04-12 株式会社日立制作所 离子迁移率分析装置及离子迁移率分析方法
US7718960B2 (en) 2007-05-08 2010-05-18 Hitachi, Ltd. Ion mobility spectrometer and ion-mobility-spectrometry/mass-spectrometry hybrid spectrometer
US7838826B1 (en) 2008-08-07 2010-11-23 Bruker Daltonics, Inc. Apparatus and method for parallel flow ion mobility spectrometry combined with mass spectrometry
US9281170B2 (en) 2011-04-26 2016-03-08 Bruker Daltonik Gmbh Selective ion mobility spectrometer formed from two consecutive mass selective filters
CN103871820A (zh) * 2012-12-10 2014-06-18 株式会社岛津制作所 离子迁移率分析器和其组合设备以及离子迁移率分析方法
CN105869980A (zh) * 2015-02-05 2016-08-17 布鲁克道尔顿有限公司 高占空比俘获离子迁移谱仪

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637455A4
ZELENY, J., PHILOS. MAG., vol. 46, pages 120

Also Published As

Publication number Publication date
CN109003876A (zh) 2018-12-14
EP3637455A1 (en) 2020-04-15
EP3637455A4 (en) 2021-03-10
JP6783392B6 (ja) 2020-12-09
US20190162698A1 (en) 2019-05-30
CN109003876B (zh) 2020-10-16
JP2019528461A (ja) 2019-10-10
JP6783392B2 (ja) 2020-11-11
US10739308B2 (en) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2018224049A1 (zh) 离子迁移率分析器及分析方法
WO2018224050A1 (zh) 离子迁移率分析装置及所应用的分析方法
CN101868843B (zh) 离子引导装置
US10600630B2 (en) Oversampled time of flight mass spectrometry
US8916820B2 (en) Mass spectrometer with beam expander
US20160225598A1 (en) Pulsed ion guides for mass spectrometers and related methods
US20050269503A1 (en) Ion enrichment aperture arrays
EP3142141B1 (en) Systems and methods for ion separation
WO2014089910A1 (zh) 离子迁移率分析器和其组合设备以及离子迁移率分析方法
US20170200597A1 (en) Ion Guide
DE102014222380B4 (de) Luftdruck-schnittstelle mit verbessertem ionentransfer für spektrometrie sowie verwandte systeme
US9638666B1 (en) Sequential differential mobility analyzer and method of using same
JP2018524775A (ja) 質量分析装置用イオン化及びイオン導入装置
US10763098B2 (en) Ion optical device with orthogonal ion barriers
DE112015001622B4 (de) Orthogonalbeschleunigungs-Koaxialzylinder-Massenanalysator
US10395914B2 (en) Efficient ion trapping
US20200278318A1 (en) Systems and methods for ion separation
GB2534431A (en) Mobility selective attenuation
DE102016109053B4 (de) Zusatzgaseinlass
JP7310965B2 (ja) イオン移動度分析装置
US11415547B2 (en) Ion filtering devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527945

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018812992

Country of ref document: EP

Effective date: 20200107