WO2018224031A1 - 用于光学模组的焊接结构及其应用 - Google Patents

用于光学模组的焊接结构及其应用 Download PDF

Info

Publication number
WO2018224031A1
WO2018224031A1 PCT/CN2018/090397 CN2018090397W WO2018224031A1 WO 2018224031 A1 WO2018224031 A1 WO 2018224031A1 CN 2018090397 W CN2018090397 W CN 2018090397W WO 2018224031 A1 WO2018224031 A1 WO 2018224031A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
weldment
group
disposed
optical module
Prior art date
Application number
PCT/CN2018/090397
Other languages
English (en)
French (fr)
Inventor
姚立锋
褚水佳
刘春梅
严春琦
张王振
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to JP2019567343A priority Critical patent/JP7061139B2/ja
Priority to KR1020207000234A priority patent/KR102431380B1/ko
Priority to CN201880033057.8A priority patent/CN110692231A/zh
Priority to US16/619,128 priority patent/US11714250B2/en
Priority to EP18814071.9A priority patent/EP3637754B1/en
Publication of WO2018224031A1 publication Critical patent/WO2018224031A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/026Mountings, adjusting means, or light-tight connections, for optical elements for lenses using retaining rings or springs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification

Definitions

  • the present invention relates to the field of optical modules, and more particularly to an optical module equipped with a multi-group lens fixed by soldering, wherein the plurality of groups of lenses are fixed to each other by the welded structure, thereby improving the The stability of the optical module.
  • the optical module is widely disposed in an electronic product such as an image capturing and monitoring device, wherein the optical module comprises a circuit board assembly, a filter and a lens, wherein the circuit board assembly comprises a circuit board main body and a photosensitive a chip, a plurality of electronic components, and a holder, wherein the photosensitive chip, the electronic component, and the bracket are respectively mounted on the circuit board body, wherein the filter and the lens are respectively mounted on The holder is also located on the photosensitive path of the photosensitive chip.
  • the brackets are all fixed by means of other medium such as glue.
  • the glue is fixed by a similar medium such as glue, the thermal expansion or contraction coefficient of the medium is different from the thermal expansion or contraction coefficient of the surface material to be fixed. Therefore, the structure in which the glue is relatively fixed is easily deformed after being cooled by heating, thereby affecting the performance of the optical module, and the deformation often occurs after the optical module is assembled.
  • the electronic product when the optical module is mounted on an electronic product, the electronic product is often switched between using and shutting down two use states, and when the electronic product is in use, it generates heat when the electronic product When the switch to the off state, a temperature difference is formed, and the structure in which the glue is fixed by the glue in the optical module will be deformed.
  • the lens is an important component of the optical module, which directly affects the imaging quality of the optical module.
  • optical modules With the continuous development of intelligence, the requirements for optical modules continue to increase, such as the increasing demand for high pixels in imaging, which also increases the number of lenses in the lens of optical modules, such as 5 to 6 six.
  • Ensuring the consistency of the optical axes that is, ensuring the uniformity of the central axes of the lenses, and consistent with the central axis of the photosensitive chip, is the basis for ensuring good image quality.
  • a conventional lens it is common to assemble a plurality of lenses one by one in a lens barrel. In the assembly process, inevitably, each lens and the lens barrel are assembled with a certain error. Finally, between the entire lens and the lens barrel. Assembly creates a cumulative error, which is the assembly error of a single lens. It can be easily seen that the larger the number of lenses, the larger the cumulative error, the lower the overall quality of the lens, and the lower the yield during lens production.
  • a conventional lens for a conventional lens, a plurality of lenses are assembled in the same lens barrel, and the relative positions between the lenses are substantially determined and cannot be adjusted. Once the lens is assembled in the lens barrel, the lens quality is determined, which also makes the mirror The processing accuracy of the barrel and lens is high.
  • the assembly error of the lens has less influence, so the overall lens may have a greater advantage for production and assembly of the module, but when the number of lenses increases The more the number of lenses, the more serious the problem caused by the lens, so the improvement of the lens is more urgent, so how to ensure good image quality and yield in the production process on the basis of providing high pixels through multiple lenses. It is an important aspect that needs to be studied.
  • the lens of the lens and the assembly relationship between the lens and the lens tube directly affect the quality of the lens, while the optical module, especially the optical module used in some smart devices, such as a smart phone, has a relatively large size. Small, so how to combine the existing equipment requirements, make full use of the lens structure, and study the lens suitable for practical production applications is also an aspect to be considered.
  • the present invention provides a soldering structure for an optical module and an application thereof, wherein the first module component and the second module component of the optical module are relatively fixed by the soldering structure.
  • the first module assembly and the second module assembly do not generate a large relative displacement due to thermal expansion, and when the first module assembly and the second module assembly and the welded structure are located When the environment is restored, the displacement between the first module assembly and the second module assembly due to thermal expansion is also eliminated, thereby enabling the multi-group lens to maintain stable optical performance.
  • the present invention provides a solder structure for an optical module and its use, wherein the optical module has a smaller volume.
  • the present invention provides a soldering structure for an optical module and an application thereof, wherein the first module component and the second module component in the optical module are relatively fixed before being fixed
  • the optical module is calibrated in a manner that the relative position between the first module assembly and the second module assembly.
  • the present invention provides a solder structure for an optical module, wherein the optical module includes at least a first module assembly and at least a second module assembly, wherein the solder structure includes At least one first welding member and at least one second welding member, wherein the first welding member is disposed on the first module assembly, wherein the second welding member is disposed on the second module assembly After the first weldment and the second weldment are welded, the first module assembly and the second module assembly are fixed relative to each other.
  • the present invention provides a multi-group lens comprising:
  • At least a first group unit wherein the first group unit includes a first carrier member, a first group lens, wherein the first group lens is mounted to the first carrier member;
  • At least one second group unit wherein the second group unit includes a second carrier member and a second group lens, wherein the second group lens is mounted to the second carrier member, wherein The first group unit is mounted to the second group unit, wherein the first carrier member is supported by the second carrier member;
  • a welded structure wherein the welded structure includes at least one first weldment and at least one second weldment welded to the first weldment, wherein the first weldment and the second weldment are respectively Provided to the first carrier member and the second carrier member.
  • the first carrier member includes a first body and an outer extension extending outward from the first body, wherein the outer extension has a first outer bottom surface, a first welding member is disposed on the first outer bottom surface, wherein the second bearing member includes a second body and a support platform extending from the second body, wherein the support table has an outer top surface, The outer extension for carrying the first carrier member, the second weld member being disposed on the outer top surface of the support table.
  • the first carrier member includes a first body and an outer extension extending outward from the first body, wherein the outer extension has a first outer side, a first weld member disposed on the first outer side of the outer extension, wherein the second weld is disposed on the first outer side of the outer extension, wherein the second carrier member A second body and a support table extending from the second body, wherein the support table has a second outer side for carrying the outer extension of the first carrier member, the second welding A piece is disposed on the second outer side of the support table.
  • the first weldment and the second weldment are respectively embedded in the first load bearing member and the second load bearing member.
  • At least one selected from the first weldment and the second weldment is embodied as a closed loop.
  • At least one selected from the group consisting of the first weldment and the second weldment is embodied as a plurality of parts that are separated.
  • the first weldment and the second weldment are embodied to have the same structure.
  • the first weldment includes a first insert portion and a first joint portion connected to the first insert portion, wherein the first weld member is embedded in the first load portion In the component, the first embedded portion is embedded in the first carrier member, and the first connecting portion forms a first exposed surface.
  • the second weldment includes a second insert portion and a second joint portion connected to the second insert portion, wherein the second weld member is embedded in the second load portion
  • the second embedding portion is embedded in the second bearing member
  • the second connecting portion forms a second exposed surface, wherein the first welding member and the second welding member are welded, The first exposed surface of the first connecting portion and the second exposed surface of the second connecting portion are coupled to each other.
  • the outer extension has an upper side opposite the outer bottom surface and a weld opening extending from the outer bottom surface of the outer extension to the outer extension The upper side of the table.
  • the support table has a third outer side opposite to the second outer side and a welded joint, wherein the welded joint extends from the second outer side to the third Outer side.
  • an optical module comprising:
  • an optical module comprising:
  • a lens carrying member wherein the lens carrying member is disposed on the circuit board assembly
  • the welded structure includes at least one first weldment and at least one second weldment, wherein the first weldment is disposed on the lens bearing member, and the second weldment is fixed by welding
  • the lens is disposed in the manner of the first welding member.
  • the lens includes a set of lenses and a mounting body, the lens is mounted to the mounting body, wherein the mounting body has an outer wall, and the first soldering member is disposed at the An outer wall of the mounting body, wherein the lens carrying member has an inner wall, and the second soldering member is disposed on the inner wall of the lens carrying member in a manner weldable to the first welding member.
  • an optical module comprising:
  • a lens carrying member wherein the lens carrying member is disposed on the circuit board assembly
  • the welded structure includes at least one first weldment and at least one second weldment, wherein the first weldment is disposed on the lens bearing member, wherein the second weldment is fixed by welding
  • the manner of the first soldering member is provided to the circuit board assembly.
  • an optical module comprising:
  • driving element is disposed on the circuit board assembly
  • the welded structure includes at least one first welded member and at least one second welded member, the first welded member being disposed on the driving member, the second welded member being fixed to the The manner of the first weldment is provided to the circuit board assembly.
  • the present invention provides an electronic device comprising:
  • optical module as described above, wherein the optical module is disposed on the device body.
  • the present invention provides an optical module manufacturing process, wherein the process comprises the following steps:
  • the first weldment and the second weldment are welded by laser welding to cause the first module assembly and the second module assembly to be relatively fixed.
  • the first module component and the second module component are respectively implemented as at least two group units selected from a multi-group lens, a lens and a lens bearing component, and a lens assembly A lens carrying member and a photosensitive member, a driving member and a photosensitive member.
  • the first module component and the second module component are respectively implemented as at least two group units of a multi-group lens, and before the step (2),
  • the optical module manufacturing process further includes the following steps:
  • the step (1) comprises:
  • FIG. 1 is a schematic view of a multi-group lens formed by welding and fixing in the present invention.
  • FIG. 2A is a schematic view of a first welding member for a welded structure of an optical module according to a first embodiment of the present invention.
  • FIG. 2B is a schematic view of a second welding member for a welded structure of an optical module according to a first embodiment of the present invention.
  • FIG. 2C is a schematic view of a welding structure for an optical module before being welded according to a first embodiment of the present invention.
  • FIG. 3A is a schematic view of a first weldment for a welded structure of an optical module according to a second embodiment of the present invention.
  • 3B is a schematic view showing a modified embodiment of a first welding member for an embodiment of a welding structure of an optical module according to a modified embodiment of the second embodiment of the present invention.
  • 3C is a schematic view of a welded structure before being welded according to a second embodiment of the present invention.
  • FIG. 4A is a schematic view of a first welding member for a welded structure of an optical module according to a third embodiment of the present invention.
  • 4B is a schematic view showing a modified embodiment of a first welding member for an embodiment of a welding structure of an optical module according to a modified embodiment of the third embodiment of the present invention.
  • 4C is a schematic view of a welding structure for an optical module before being welded according to the present invention.
  • 4C is a schematic view of a welded structure before being welded according to a third embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing a multi-group lens formed by welding and fixing in the first embodiment of the present invention when it is not welded.
  • 6A is a cross-sectional view of a multi-group lens formed by welding and fixing in the A-A direction after welding in the first embodiment of the present invention.
  • 6B is a cross-sectional view of a multi-group lens formed by welding and fixing in the B-B direction after welding in the first embodiment of the present invention.
  • FIG. 7 is a schematic structural view of an optical module according to a first embodiment of the present invention.
  • Fig. 8A is a cross-sectional view showing a multi-group lens formed by welding and fixing in a first modification of the first embodiment of the present invention when it is not welded.
  • Figure 8B is a cross-sectional view of a multi-group lens formed by soldering in a first modified embodiment of the first embodiment of the present invention after soldering.
  • FIG. 9 is a schematic structural view of an optical module according to a first modified embodiment of the first embodiment of the present invention.
  • Fig. 10A is a cross-sectional view showing a multi-group lens formed by welding and fixing in a second modified embodiment of the first embodiment of the present invention when it is not welded.
  • Figure 10B is a cross-sectional view of a multi-group lens formed by soldering in a second modified embodiment of the first embodiment of the present invention after soldering.
  • Figure 11 is a block diagram showing the structure of an optical module according to a second modified embodiment of the first embodiment of the present invention.
  • FIG. 12A is a schematic structural view of a first module assembly and a second module assembly unwelded for an optical module according to a second embodiment of the present invention
  • FIG. 12B is a schematic structural view of a first module assembly and a second module assembly for an optical module after being welded according to a second embodiment of the present invention.
  • 12C is a schematic structural view of an optical module according to a second embodiment of the present invention.
  • FIG. 13A is a schematic view showing a first module assembly and a second module assembly not being welded according to a third embodiment of the present invention.
  • FIG. 13B is a schematic diagram of a first module assembly and a second module assembly according to a third embodiment of the present invention.
  • FIG. 14A is a schematic structural view of a first module assembly and a second module assembly according to a modified embodiment of the third embodiment of the present invention.
  • 14B is a schematic structural view of a first module assembly and a second module assembly according to a modified embodiment of the third embodiment of the present invention.
  • Figure 15 is a flow chart showing a method of welding fixing in an optical module manufacturing process of the present invention.
  • 16 is a schematic view of an electronic device of an optical module formed by soldering and fixing according to the present invention.
  • the present invention provides an electronic device and an optical module, and a soldering structure for the optical module, wherein the optical module includes at least one first module component, at least one second module component, and at least one soldering structure, wherein
  • the welding structure includes at least one first weldment and at least one second weldment, wherein the first weldment is disposed on the first modular component, wherein the second weldment is disposed on the second
  • the module assembly preferably, the first weldment is embedded in the first module assembly, wherein the second weldment is embedded in the second module assembly.
  • first weldment and the second weldment can be respectively disposed on the first weldment and the second welder by adhesion or other means, the present invention Not limited by this aspect.
  • first soldering member and the second soldering member are respectively implemented to be embedded in the first module assembly and the second
  • the module components are described as an example.
  • the first module assembly and the second module assembly are stably connected by the welded structure by welding the first weldment and the second weldment.
  • the manner of welding the first weldment and the second weldment includes, but is not limited to, laser welding, ultrasonic welding, and the like.
  • first soldering member and the second soldering member may be integrally extended from the first module assembly and the second module assembly, respectively.
  • present invention is not limited by this aspect, and in order to enable the ordinary person skilled in the art to understand the present invention, in the embodiment of the present invention, only the first weldment and the second weldment are respectively disposed in the The first module component and the second module component are described as an example.
  • the soldering structure may include a third soldering structure and a fourth soldering structure, wherein the optical module may include a third module component.
  • a fourth module assembly wherein the third soldering member can be disposed on the second module assembly, wherein the fourth soldering member can be disposed on the third module assembly by soldering
  • the third weldment and the fourth weldment are described such that the third modular component is coupled to the second modular component.
  • the third soldering structure may also be disposed on the third module assembly, wherein the fourth soldering member is disposed on the fourth module assembly by soldering the third The weldment and the fourth weldment such that the third module assembly and the fourth joint result are relatively fixed.
  • the first module component and the second module component may be implemented as, but not limited to, a selection lens and a lens barrel, a lens barrel and a circuit board assembly, a motor and a photosensitive component, and two groups of units in a multi-group lens. Wait.
  • two groups of cells in a multi-group lens are first taken as an example, and those skilled in the art can understand that the solder structure can be
  • the invention is not limited to the two components that need to be fixed in the optical module, and the multi-group lens refers to the lens used in the optical module. Two or more sets of split lenses (referred to as group units in the following embodiments of the present invention) are combined.
  • a multi-group lens which is assembled from a plurality of group units to form an integral lens, so that the number of lenses in each group unit is small, and the assembly error of each unit is small, but
  • the multi-group lens composed of each of the group units has a large number of lenses, so that higher pixels can be provided and the cumulative error is small.
  • each of the group units may be assembled by using an Active Alignment (AA) in the process of assembling the multi-group lens, so that the relative error between the group units is reduced.
  • AA Active Alignment
  • each of the group units is assembled to each other by an assembly structure, so that each group unit is stably assembled to form the multi-group lens, and the manner of matching can block external stray light from entering the multi-group lens. To avoid interference with the optical system of the multi-group lens.
  • each of the group units passes through the welded structure 20, so that each of the group units is assembled and fixed quickly and stably, thereby improving production efficiency.
  • the multi-group lens 100 includes a plurality of group units 10 and at least one solder structure 20, the multi-group lens 100 being adapted to a multi-lens lens, 2, 3 or more.
  • the multi-group lens 100 is adapted to be assembled to form an optical module 300, and is particularly suitable for being assembled into an optical module 300 constituting a high pixel.
  • the multi-group lens 100 includes at least two group units 10, each of which together constitutes an overall optical system of the multi-group lens 100. That is to say, the optical system of the multi-lens is realized by a combination of at least two of the group units, instead of being implemented by a separate lens like a conventional integrated lens.
  • the lenses in the group units of the multi-group lens 100 can be allocated and combined according to different needs. In this embodiment of the invention, only one of them is selected for explanation, in the field. The skilled person will understand that the number and manner of dispensing of each of the lenses is not a limitation of the present invention.
  • the multi-group lens 100 includes two of the group units, which are a first group unit 11 and a second group unit 12, respectively.
  • the first group unit 11 and the second group unit 12 constitute an integral lens
  • the first group unit 11 is located above the second group unit 12, and the first group unit 11 and the optical axis of the second group unit 12 are identical. That is, in the embodiment of the present invention, the optical system of the multi-group lens 100 is composed of two optical systems corresponding to the first group unit 11 and the second group unit 12, respectively. .
  • the first group unit 11 and the second group unit 12 are each independently present, the function of one complete lens cannot be completed, and when the first group unit 11 When the second group units 12 cooperate with each other, they constitute a complete lens that can meet the imaging quality requirements.
  • the first group unit 11 includes a first carrier member 111 and at least one first group lens 112, and the first group lens 112 is mounted on the first carrier member 111 to facilitate formation.
  • a separate component is provided.
  • the second group unit 12 includes a second carrier member 121 and at least one second group lens 122.
  • the second group lens 122 is mounted on the second carrier member 121 to facilitate forming another independent component.
  • the first carrier member 111 is disposed above the second carrier member 121 such that the optical path directions of the first group unit 11 and the second group unit 12 are identical.
  • the first welding member 21 is disposed on the first bearing member 111, and preferably, the first welding member 21 is embedded in the first bearing member 111.
  • the second weldment 22 is disposed on the second load bearing member 121, and preferably the second weldment 22 is embedded in the second load bearing member 121.
  • the first carrier member 111 is supported by the second carrier member 121, and the first weld member 21 is Supported by the second weldment 22, further, after calibrating the first group unit 11 and the second group unit 12, laser welding the first weldment 21 and the second weld
  • the manner of the member 22 further enables the first carrier member 111 of the first group unit 11 and the second carrier member 121 of the second group unit 12 to be relatively fixed to each other.
  • first welding member 21 and the second welding member 22 are preferably made of a metal material
  • the optical module 300 is often in a harsh environment (such as but not limited to baking, high temperature and high humidity). The relative position between them does not cause a large displacement due to uneven thermal expansion, so that the multi-group lens 10000 can maintain stable optical performance.
  • the lenses are successively mounted in the lens barrel, the range in which the lens can be adjusted is small, and once the lens is fixed, the relative position of the lens and the lens barrel is fixed. When all the lenses are assembled, the cumulative error of the entire lens is determined and cannot be adjusted.
  • the first group unit 11 and the second group unit 12 are each independently configured without affecting each other, and the first group unit 11 and the second group are When the unit 12 is assembled into an integral lens, the first group unit 11 and the second group unit 12 can be relatively adjusted, so that the lens can be further calibrated to reduce the overall error, in particular, It is possible to adjust the different directions of the three-dimensional space, such as the six-axis direction adjustment.
  • the first carrier member 111 includes a first body 1111 and an outer extension 1112.
  • the outer extension 1112 extends outwardly from the first body 1111.
  • the outer extension table 1112 extends integrally horizontally outward from the first body 1111 to form an annular brim structure, such as formed by integrally forming a mold.
  • the outer extension table 1112 is disposed at a middle position outside the first body 1111, and the first body 1111 is divided into two parts, and a part is located at the outer extension table 1112. Above, a portion is located below the outer extension 1112. After the first group unit 11 and the second group unit 12 are assembled, the first body 1111 is located above the outer extension 1112.
  • the outer extensions 1112 can be set at different heights, such as in some embodiments, a relatively small height is provided such that the top surface of the outer extension 1112 is lower than the top end of the first body 1111. For example, in some embodiments, a relatively large height is set such that the top surface of the outer extension 1112 coincides with the top end of the first body 1111 such that the upper portion of the multi-group lens 100 has a different shape.
  • the first body 1111 has a first receiving cavity 11111, a first upper light passing hole 11112 and a first lower light passing hole 11113.
  • the first group lens 112 is housed in the first receiving cavity 11111.
  • the first upper light passing hole 11112 is located at an upper portion of the first body 1111 for communicating with the outside, so that light enters the first group unit 11, that is, the external light reaches the first receiving cavity 11111.
  • the first group of lenses 112 within.
  • the first lower light passing hole 11113 is located at a lower portion of the first body 1111 and communicates with the second group unit 12 such that light passing through the first group unit 11 reaches the second group Unit 12.
  • the second carrier member 121 includes a second body 1211 and a support table 1212 extending integrally from the second body 1211, wherein the first group unit 11 and the second group unit 12 are combined
  • the outer extension 1112 of the first carrier member 111 is supported by the support table 1212 of the second carrier member 121.
  • the first welding member 21 is disposed on the outer extension table 1112 , wherein the second welding member 22 is disposed on the support table 1212 .
  • the first group unit 11 and the second group unit 12 are calibrated, the first group unit can be simply obtained by welding the first weldment 21 and the second weldment 22 11 and the second group unit 12 are relatively fixed.
  • the second body 1211 has a second receiving cavity 12111, a second upper light passing hole 12112 and a second lower light passing hole 12113.
  • the second group lens 122 is housed in the second receiving cavity 12111.
  • the second upper light passing hole 12112 is located at an upper portion of the second body 1211 for communicating with the first group unit 11 such that light passing through the first group unit 11 reaches the second group Group unit 12.
  • the second lower light passing hole 12113 is located at a lower portion of the second body 1211 and communicates with the outside, so that the light passing through the second group unit 12 reaches the outside, such as a light reaching the optical module 300.
  • An element such that the first group unit 11 and the second group unit 12 form a complete optical system.
  • the first group unit 11 includes at least one first optical path component 113, the first optical path component 113 being disposed adjacent to the lens to facilitate forming a predetermined condition on the lens.
  • Light path
  • the first optical path component 113 can be a spacer that blocks the edge of the lens and forms a predetermined path of light at the center of the lens.
  • the first optical path component 113 can be a coating that optically covers the edge of the lens to form a predetermined path of light at a central location of the lens. In other words, the optical path component cooperates with the lens to facilitate formation of a predetermined light path in the lens.
  • the second group unit 12 includes at least one second light path element 123 disposed at a position adjacent to the lens to facilitate formation of a predetermined light path on the lens.
  • the second optical path component 123 can be a spacer that blocks the edge of the lens and forms a predetermined path of light at the center of the lens.
  • the second optical path component 123 can be a coating that blocks lightly over the edge of the lens to form a predetermined path of light at a central location of the lens.
  • the outer extension 1112 of the first carrier member 111 further has a first outer side surface 11121 and an outer bottom surface 11122.
  • the top of the support table 1212 forms a recess for receiving the outer extension of the first carrier member 111 when the first group unit 11 is mounted to the second group unit 12 1112.
  • the support table 1212 has a second outer side surface 12121 and an outer top surface 12122.
  • first outer side surface 11121 of the outer extension table 1112 is opposite to the second outer side surface 12121 of the support table 1212, the outer bottom surface 11122 of the outer extension table 1112 and the support The outer top surfaces 12122 of the table 1212 are opposite each other.
  • the first group unit 11 can be adjusted relative to the second group unit 12 before welding the first welding member 21 and the second welding member 22, thereby Before the first soldering member 21 and the second soldering member 22 are soldered, the optical module formed by the first group unit 11 and the second group unit 12 can be calibrated, that is, It is said that the first group unit 11 can be relatively adjusted within the groove of the support table 1212.
  • the first soldering member 21 is disposed on the outer bottom surface of the outer extension table 1112. 11122, at this time, the second weldment 22 is correspondingly disposed on the outer top surface 12122 of the support table 1212, wherein the first group unit 11 can be fixed relative to the second group unit 12
  • the first group unit 11 and the second group unit 12 may be relatively fixed by welding the first weld member 21 and the second weld member 22 up and down.
  • the outer extension 1112 of the first carrier member 111 further has at least one welding port 11123.
  • the first welding member 21 is disposed on the first bearing member 111, a portion of the first welding member 21 is exposed by the welding port 11123.
  • the weld head of the welding tool can work on the first weld member 21 through the weld port 11123.
  • the outer extension table 1112 further has an upper side surface 11124 opposite to the outer bottom surface 11122.
  • the welding port 11123 extends from the upper side surface 11124 to the outer bottom surface 11122, so that the first welding member 21 disposed on the outer extension table 1112 is partially exposed, and the welding head of the welding tool passes the welding.
  • the port 11123 performs a welding operation on the first weldment 21.
  • the number of the welding ports 11123 may be implemented as two or more, and the present invention is not limited by this aspect.
  • the optical module 300 includes a circuit board assembly 71, which is also referred to as a photosensitive assembly.
  • the photosensitive component 71 includes a photosensitive element 711 , a circuit board body 712 , a bracket 713 , a filter element 714 , and a plurality of electronic components 715 .
  • the photosensitive element 711 is disposed on the circuit board main body 712
  • the bracket 713 is disposed on the circuit board main body 712 and located outside the photosensitive element 711
  • the filter element 714 is disposed on the photosensitive element
  • the photosensitive path of the element 711 is supported by the bracket 713.
  • the multi-group optical lens 100 is disposed on the photosensitive member 71 and located in a photosensitive path of the photosensitive member 711 of the photosensitive member 71.
  • the optical module 300 further includes a lens carrying member 72.
  • the lens carrying member 72 integrally extends to the multi-group lens 100
  • the optical module 300 is a fixed focus module.
  • the optical module 300 is a moving focus module.
  • the multi-group lens 100 since the multi-group lens 100 is fixed by welding according to the welding structure 20 instead of being fixed by a glue, the multi-group lens 100 has a smaller volume.
  • the optical module 300 also has a correspondingly smaller volume.
  • the multi-group optical lens 100 does not cause irreversible deformation with changes in temperature, the optical module 300 has better stability.
  • the first welding member 21' is disposed on the first outer side surface 11121 of the outer extension table 1112, and the second portion The weldment 22' is correspondingly disposed on the second outer side surface 12121 of the support table 1212, wherein when the first group unit 11 can be fixed relative to the second group unit 12, it can be horizontally welded
  • the first welding element 21' and the second welding element 22' can fix the first group unit 11 and the second group unit 12 relatively.
  • the welding port 11123 is disposed on the support table 1212 of the second carrier member 121. After the second weldment 22' is disposed on the second outer side surface 12121 of the support table 1212, the second weldment 22' is exposed by the weld port 11123.
  • the support table 1212 further has a third outer side surface 12123.
  • the welding port 11123 extends from the third outer side surface 12123 to the second outer side surface 12121, thereby partially exposing the welding port 11123, and the welding head of the welding tool passes through the welding port. 11123 operates on the first weldment 21'.
  • the optical module 300 includes a circuit board assembly 71, which is also referred to as a photosensitive assembly.
  • the photosensitive component 71 includes a photosensitive element 711 , a circuit board body 712 , a bracket 713 , a filter element 714 , and a plurality of electronic components 715 .
  • the photosensitive element 711 is disposed on the circuit board main body 712
  • the bracket 713 is disposed on the circuit board main body 712 and located outside the photosensitive element 711
  • the filter element 714 is disposed on the photosensitive element
  • the photosensitive path of the element 711 is supported by the bracket 713.
  • the multi-group optical lens 100 is disposed on the photosensitive member 71 and located in a photosensitive path of the photosensitive member 711 of the photosensitive member 71.
  • the optical module 300 further includes a lens carrying member 72.
  • the lens carrying member 72 integrally extends to the multi-group lens 100
  • the optical module 300 is a fixed focus module.
  • the optical module 300 is a moving focus module.
  • the multi-group lens 100 since the multi-group lens 100 is welded and fixed by the solder structure 20' instead of being fixed by a glue, the multi-group lens 100 has a smaller volume.
  • the optical module 300 also has a correspondingly smaller volume.
  • the multi-group optical lens 100 does not cause irreversible deformation with changes in temperature, the optical module 300 has better stability.
  • FIG. 10A and FIG. 10B which is a second modified embodiment of the first embodiment, in the embodiment of the present invention, the first outer side surface 11121 of the outer extension table 1112 and The second outer side surface 12122 of the support table 1212 is at a predetermined angle with the vertical direction.
  • first weldment 21" can be disposed at other positions of the outer extension 1112, and correspondingly, the second weldment 22" can also be disposed on the After the other positions of the support table 1212 are such that the first weldment 21" and the second weldment 22" are welded, the first group unit 11 and the second group unit 12 are relatively fixed. .
  • the optical module 300 in accordance with an embodiment of the present invention is set forth in detail below.
  • the optical module 300 includes a circuit board assembly 71, which is also referred to as a photosensitive assembly.
  • the photosensitive component 71 includes a photosensitive element 711 , a circuit board body 712 , a bracket 713 , a filter element 714 , and a plurality of electronic components 715 .
  • the photosensitive element 711 is disposed on the circuit board main body 712
  • the bracket 713 is disposed on the circuit board main body 712 and located outside the photosensitive element 711
  • the filter element 714 is disposed on the photosensitive element
  • the photosensitive path of the element 711 is supported by the bracket 713.
  • the multi-group optical lens 100 is disposed on the photosensitive member 71 and located in a photosensitive path of the photosensitive member 711 of the photosensitive member 71.
  • the optical module 300 further includes a lens carrying member 72.
  • the lens carrying member 72 integrally extends to the multi-group lens 100
  • the optical module 300 is a fixed focus module.
  • the optical module 300 is a moving focus module.
  • the multi-group lens 100 has a smaller volume because the multi-group lens 100 is fixed by welding according to the welding structure 20" instead of being fixed by a glue.
  • the optical module 300 also has a correspondingly smaller volume. Furthermore, since the multi-group optical lens 100 does not cause irreversible deformation with changes in temperature, the optical mode Group 300 has better stability.
  • the first module component and the second module component are respectively implemented as a lens 31 and a lens bearing component 32.
  • the lens 31 can be implemented as the multi-group lens in the above embodiment of the present invention, and can also be implemented as an integrated lens.
  • the present invention is not limited in this respect.
  • the lens 31 described in the following examples is exemplified by an integral lens.
  • the lens 31 includes at least one set of lenses 311 and a mounting body 312, wherein the lens 311 is mounted to the mounting body 312.
  • the first weldment 21I of the welded structure 20I is disposed on an outer wall of the mounting body 312, wherein the second weldment 22I is disposed on an inner wall of the lens carrying member 32 to be
  • the lens 31 and the lens bearing member 32 can be relatively fixed by welding the first welding member 31 and the second welding member 32.
  • the lens carrying member 32 has a welding port 320, wherein the welding port 320 extends from the inner wall of the lens bearing member 32 to the outer wall of the lens bearing member 32 for the bonding tool.
  • the welding head performs a welding operation on the first welding piece 21I through the welding port 320.
  • the first soldering member 21I and the second soldering member 22I are respectively disposed on the mounting body 312 of the lens 31 and the lens bearing member. 32, and when the lens 31 and the lens carrying member 32 are relatively fixed, the first welding member 21I and the second welding member 22I are laser welded, and therefore, the lens 31 is described.
  • the gap between the mounting body 312 and the lens carrying member 32 is smaller than that of the prior art by other media such as glue, so that the lens 31 and the lens carrying member 32 as a whole When mounted on the optical module 300, the corresponding optical module 300 has a smaller volume.
  • the lens 31 and the lens bearing member are 32 is disposed in the optical module 300 and the optical module 300 is often in an environment where the temperature difference is increased, the relative position between the lens 31 and the lens carrying member 32 is not uneven due to thermal expansion. A large relative displacement occurs, thereby enabling the multi-group lens to maintain stable optical performance.
  • the optical module 300 includes the first module component and the second module component. Further, the optical module 300 further includes a photosensitive component 33.
  • the photosensitive component 33 includes a photosensitive element 331, a circuit board body 332, a bracket 333, a filter element 334, and a plurality of electronic components 335.
  • the photosensitive element 331 is disposed on the circuit board main body 332, the bracket 333 is disposed on the circuit board main body 332 and located outside the photosensitive element 331, and the filter element 334 is disposed on the photosensitive element
  • the photosensitive path of the element 331 is supported by the bracket 333.
  • the multi-group optical lens 100 is disposed on the photosensitive member 33 and located in a photosensitive path of the photosensitive member 331 of the photosensitive member 33.
  • the optical module 300 further includes a lens carrying component 32.
  • the lens carrying member 32 integrally extends to the multi-group lens 100
  • the optical module 300 is a fixed focus module.
  • the optical module 300 is a moving focus module.
  • the multi-group lens 100 since the multi-group lens 100 is welded and fixed by the solder structure 20' instead of being fixed by a glue, the multi-group lens 100 has a smaller volume.
  • the optical module 300 also has a correspondingly smaller volume.
  • the multi-group optical lens 100 does not cause irreversible deformation with changes in temperature, the optical module 300 has better stability.
  • the first module assembly is implemented as a lens carrying member 41, wherein at least one of the lens carrying members 41 is mounted.
  • the lens 43, wherein the second module assembly is implemented as a circuit board assembly 42, wherein the circuit board assembly 42 includes at least one photosensitive element 421, at least one bracket 422, and at least one circuit board body 423, preferably,
  • the circuit board assembly 42 further includes a filter element 424, wherein the photosensitive element 421 is disposed on the circuit board body 423, wherein the photosensitive element 421 is electrically connected to the circuit board body 423, wherein the bracket A 422 is mounted to the wiring board main body 423 to support the lens carrying member 41, wherein the filter element 424 is mounted on the bracket 422 and located on the photosensitive path of the photosensitive element 421.
  • the first weldment 21II and the second weldment 22II of the welded structure 20II are respectively disposed at the bottom of the lens carrying member 41 and the top of the bracket 422, and then The lens bearing member 41 to which the lens 43 is mounted may be interposed with the bracket 422 of the wiring board assembly 42 by laser welding the first welding member 21II and the second welding member 22II. Relatively fixed. From the above description, those skilled in the art can understand that a fixed focus optical module can be formed by the above fixed manner.
  • the lens carrying member 41 has a welding port 410, wherein the welding port 410 is disposed at the bottom of the lens carrying member 41 to be disposed at the first welding member 21II.
  • the first welding member 21II is partially exposed by the welding port 410, and the welding head of the welding tool passes the welding port 4120 to the first welding member. 21II works.
  • the solder joint 410 can be disposed on the top of the bracket 422 of the circuit board assembly 42 to be in the second soldering.
  • the piece 21 is disposed on the top of the bracket 422
  • the second welding piece 22II is partially exposed by the welding port 410, and then the welding head of the welding tool passes the welding port 410 to the first part.
  • the weldment 22 operates.
  • the lens bearing member 41 and the circuit board are both made of a metal material
  • the lens bearing member 41 and the circuit board are The component 42 is disposed on the optical module 300 and the optical module 300 is often in an environment with an increased temperature difference, the relative position between the lens carrying member 41 and the circuit board assembly 42 is not thermally expanded. A large relative displacement occurs unevenly, so that the multi-group lens can maintain stable optical performance.
  • the first module assembly is implemented as a drive member such as motor 51, wherein at least one lens is mounted on the motor 51.
  • the lens includes at least one set of lenses 53 and a lens barrel 54, wherein the lens 53 is mounted on the lens barrel 54, wherein the lens may be a multi-group lens in the above embodiment, or may be
  • the present invention is not limited by this aspect, and in order to enable the person skilled in the art to understand the present invention, the following embodiment is exemplified by an integrated lens in which the first welding member 21III is disposed. The bottom wall of the motor.
  • the second module assembly is implemented as a circuit board assembly 52, wherein the photosensitive assembly 52 is also referred to as a photosensitive assembly, wherein the photosensitive assembly 52 includes at least one photosensitive element 521, at least one The bracket 522 and the at least one circuit board main body 523, preferably, the photosensitive member 52 further includes a filter element 524, wherein the photosensitive element 521 is disposed on the circuit board main body 523, wherein the photosensitive element 521 is guided Passing through the circuit board main body 523, wherein the bracket 522 is mounted to the circuit board main body 523 to support the motor 51, wherein the filter element 524 is mounted on the bracket 522 and located at the The photosensitive path of the photosensitive element 521 is described.
  • the second soldering piece 22III of the soldering structure 20III is disposed on the top of the bracket 522 of the photosensitive component 52, wherein when the motor 51 is mounted on the photosensitive component 52
  • the first weldment 51 and the second weldment 22III are located between the motor 51 and the photosensitive component 52, wherein the motor 51 is laser welded by the need to be fixed to the photosensitive component 52.
  • the first welding member 21III and the second welding member 22III can fix the motor 51 and the photosensitive member 52 relatively.
  • the motor 51 has a welding port 510, wherein the welding port 510 is disposed at the bottom of the motor 51 to be in the first
  • the welding member 21III is disposed at the bottom of the motor 51
  • the first welding member 21III is partially exposed by the welding port 510, and the welding head of the welding tool passes the welding port 510 to the first portion.
  • the weldment 21III operates.
  • the weld 510 is provided on top of the bracket 522, and the invention is not limited in this respect.
  • the motor 51 and the photosensitive member 52 are welded by the first welding member 21III and the second welding member 22III, when the optical module is When the temperature difference is large, the relative position between the motor 51 and the photosensitive member 52 is not easily changed, so that the multi-group lens can maintain stable optical performance.
  • the lens can be held on the photosensitive path of the photosensitive chip of the photosensitive member 52.
  • the motor 51 and the bracket of the photosensitive member 52 are connected by the first welding member 21III and the second welding member 22III,
  • the first welding member 21III and the second welding member 22III are respectively disposed on the motor 51 and the photosensitive member 52, so that the motor 51 and the photosensitive member 52 are formed when they are relatively fixed. Smaller or even no gap, which reduces the overall volume of the optical module.
  • an optical module manufacturing process 2000 wherein the process includes:
  • Step 2001 (1) mounting a first module assembly provided with a first soldering member to a second module assembly provided with a second soldering member;
  • Step 2002 (2) welding the first weldment and the second weldment by laser welding to fix the first module assembly and the second module assembly relatively.
  • step (1) and the step (2) are respectively implemented as:
  • the method further comprises:
  • the calibration in the step (S0) may be a calibration selected from the horizontal direction, a calibration in the vertical direction, and a rotation of the optical axis of the first group unit 11 or the second group unit 12 The way to calibrate.
  • an electronic device 60 wherein the electronic device 60 includes an optical module 61, wherein the optical module 61 further includes a soldering and fixing method. a first module assembly, a second module assembly, and a welded structure, wherein the welded structure includes a first weldment and a second weldment, wherein the first weldment is disposed on the first die a set of components, wherein the second weldment is disposed on the second modular component, wherein the first modular component can be made by laser welding the first weldment and the second weldment And the second module assembly is relatively fixed.
  • the electronic device in the present invention may be implemented as, but not limited to, a mobile phone, a tablet computer, or the like.
  • the electronic device 60 includes a device body 62, wherein the optical module 61 is disposed on the device body 62.
  • a plurality of the first soldering members and the plurality of the second solderings may be respectively disposed in the first module component and the second module component.
  • the invention is not limited by this aspect.
  • first weldment 21 and the second weldment 22 may be embodied as a metal material, a non-metal material, a composite material or the like.
  • the first weld member 21 and the second weld member 22 are respectively disposed after the first mold assembly and the second mold assembly and are not welded to each other, Having a first exposed surface 210 and a second exposed surface 220, respectively, wherein the first bareness of the first weldment 21 when the first weldment 21 and the second weldment 22 are welded
  • the face 210 and the second exposed surface 220 of the second weldment 22 are fixed relative to each other.
  • first soldering member 21 and the second soldering member 22 are respectively fixed to the first module assembly and the second module by means of insert molding or mounting.
  • first weld member 21 and the second weld member 22 are respectively fixed to the first module assembly and the second mold in an insert molding manner. Group component.
  • the first soldering member 21 has at least one first embedded portion 211 and at least one first connecting portion 212, wherein the first connecting portion 212 integrally extends from the first embedded portion 211, wherein When the first soldering member 21 is disposed on the first module assembly, the first embedded portion 211 is embedded in the first mold assembly, wherein the first exposed surface 210 is located at the first connecting portion
  • the second soldering member 22 has at least one second embedding portion 221 and at least one second connecting portion 222, wherein the second connecting portion 222 integrally extends from the second embedding portion 221, wherein when When the second soldering member 22 is disposed on the second module assembly, the second embedding portion 221 is embedded in the second module assembly, wherein the second exposed surface 220 is located in the second connecting portion 222
  • the first exposed surface 210 of the first connecting portion 212 and the second connecting portion 222 are second exposed when the first soldering member 21 and the second soldering member 22 are soldered.
  • the surfaces 220 correspond to each other such
  • the first bare portion formed by the first connecting portion 212 of the first soldering member 21 is formed before the first soldering member 21 and the second soldering member 22 are soldered and fixed.
  • the surface 210 can be opposite to the second exposed surface 220 formed by the second connecting portion 222 of the second weldment 22, and then when the first weldment 21 and the second weldment 22 are welded
  • the first connecting portion 212 and the second connecting portion 222 are merged with each other through the first exposed surface 210 and the second exposed surface 220, thereby enabling the first module assembly and the
  • the second module assembly is fixed to each other by a connection between the first connecting portion 212 and the second connecting portion 222.
  • the first weld member 21 and the second weld member 22 have the same shape structure, and may have different shape structures.
  • structural diagrams of two different shapes of the first weldment 21 of the present invention are shown in FIGS. 2A and 2B, respectively, and FIG. 2C shows that the first weldment 21 is implemented as shown in FIG. 2A.
  • the first weldment 21 is carried on the schematic view of the second weldment 22. It can be understood by those skilled in the art that when the first soldering member 21 and the second soldering member 22 are respectively disposed in the first module assembly and the second module assembly in the above embodiments. Thereafter, by welding the first weld member 21 and the second weld member 22, the first module assembly can be relatively fixed to the second module assembly.
  • the first weldment 21 and the second weldment 22 may have various shapes.
  • the first embedding portion 211 and the first connecting portion 212 are both side portions of the first soldering member 21, and specifically may be the first soldering member 21
  • the upper and lower portions may also be the left and right portions of the first weldment 21.
  • the second embedding portion 212 and the second connecting portion 212 may be disposed to have the same shape or different shapes as the first embedding portion 211 of the first weldment 21, that is, the welding
  • the structure may be a combination of the first weldment 21 and the second weldment 22 of the same shape, or may be between the first weldment 21 and the second weldment 22 of different shapes. Combinations, the invention is not limited by this aspect.
  • the first welding member 21 and the second welding member 22 are adapted to be mounted on the one having a horizontal plane.
  • the first module assembly and the second module assembly are in the first module assembly as shown in FIGS. 5, 13A, 13B, 14B and 15B.
  • the first soldering member 21 has an annular structure, and the first embedded portion 211 and the first connecting portion 212 of the first soldering member 21 have different heights.
  • An embedded space 200 is formed between the first embedded portion 211 and the two adjacent first connecting portions 212 for being embedded in the first module assembly.
  • the second weldment 22 in the first embodiment of the present invention is adapted to be mounted to the first module assembly and the second module assembly having a horizontal plane.
  • the first fitting portion 211 and the second connecting portion 212 of the second welded member 22 in the first embodiment of the present invention have the same height.
  • the second welding member 22 is also formed as a ring shape, and the second connecting portion 222 of the second welding member 22 is a closed annular ring, and the second welding member 22 is The second embedding portion 221 is a protrusion extending radially from the second connecting portion 222.
  • the second connecting portion 222 of the second soldering member 22 forms the second exposed surface 220 when the second soldering member 22 is disposed on the first module assembly.
  • first weld member 21 and the second weld member 22 may be implemented to have the same shape structure, or may be implemented to have different shape structures, and the present invention is not affected by this aspect. limit.
  • the first weld member 21A and the second weld member 22A in the second embodiment of the present invention have different structures.
  • the first welding member 21A and the second welding member 22A are adapted to be disposed on the first module assembly and the second module assembly having a vertical plane, as shown in the figure. 8A, FIG. 8B, FIG. 10A, and FIG. 10B.
  • the first weld member 21A and the second weld member 22A are respectively implemented as an annular structure.
  • the first connecting portion 212A is formed by a portion of the first welding member 21A that is outward in the horizontal direction, and the portion of the first welding member 21A that is inward in the horizontal direction forms the first fitting portion 211A. After the first soldering member 21A is disposed on the first module assembly, the first connecting portion 212 forms the first exposed surface 210A.
  • the shape of the first weldment 21 and/or the second weldment 22 may be implemented as an integrally formed ring shape, or may be implemented as at least two parts of a split body.
  • the invention is not limited by this aspect.
  • first weld member 21B and the second welder member 22B are respectively configured to be composed of two parts of a split body.
  • Each portion of the first weldment 21B includes a first embedded portion 211B and a first joint portion 212B.
  • Each portion of the second weldment 22B includes a second embedded portion 221B and a second connecting portion 222B.
  • the first soldering member 21B and the second soldering member 22B are respectively mounted on the first module assembly and the second module assembly to form a first exposed surface 210B and a second exposed surface, respectively. 220B, wherein the first weldment 21B and the second weldment 22B are connected to each other after the first weldment 21B and the second weldment 22B are welded.
  • first weldment 21B and the second weldment 22B may also be implemented to comprise three or more parts including a split body.
  • the invention is not limited by this aspect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Studio Devices (AREA)

Abstract

一用于光学模组(300)的焊接结构(20)及其应用,其中光学模组(300)包括至少一第一模组组件和至少一第二模组组件,其中焊接结构(20)包括至少一第一焊接件(21)和至少一第二焊接件(22),其中第一焊接件(21)被设置于第一模组组件,其中第二焊接件(22)被设置于第二模组组件,其中第一焊接件(21)和第二焊接件(22)被焊接后,第一模组组件和第二模组组件被彼此相对固定。

Description

用于光学模组的焊接结构及其应用 技术领域
本发明涉及一光学模组领域,尤其涉及一装配有采用焊接固定方式固定的多群组镜头的光学模组,其中所述多群组镜头之间采用所述焊接结构彼此固定,进而提高所述光学模组的稳定性。
背景技术
光学模组被广泛地设置于摄像、监控等电子产品中,其中所述光学模组包括一线路板组件、一滤光片以及一镜头,其中所述线路板组件包括一线路板主体、一感光芯片、多个电子元器件以及一支架,其中所述感光芯片、所述电子元器件以及所述支架分别被安装于所述线路板主体,其中所述滤光片和所述镜头分别被安装于所述支架并且位于所述感光芯片的感光路径上。
传统地,无论是将所述感光芯片安装到所述线路板主体或者是将所述支架安装在所述线路板主体或者是将所述镜头安装于镜筒亦或者是将镜筒安装在所述支架,都是采用胶水等其他介质粘合固定的方式安装的,由于采用胶水等同类介质将其固定时,该类介质的热膨胀或收缩系数与需要被固定的结构表面材质热膨胀或收缩系数不同,从而使得通过所述胶水被相对固定的结构在受热冷却后容易发生变形,进而影响所述光学模组的性能,而该变形往往是发生在所述光学模组被组装后。尤其是当所述光学模组被安装于电子产品后,所述电子产品经常会在使用和关闭两种使用状态下转换,而当所述电子产品在使用状态时会发热,当所述电子产品转换至关闭状态时,会形成温度差,此时所述光学模组中采用胶水粘合固定的结构将会发生变形。
另外,由于采用胶水固定时,被胶水固定后的结构表面之间形成一定厚度的胶水,因此在设计的时候,需要在被胶水固定的两结构表面之间预设一定的空隙,这样不仅导致最终形成的光学模组体积变大,而且增加了设计的难度。
尤其是对于光学模组中的镜头而言,镜头是光学模组的一个重要部件,直接影响光学模组的成像品质。
随着智能化的不断发展,对光学模组的要求不断提高,比如在成像上越来越要求高像素,这也使得光学模组的镜头中镜片的数量不断增加,比如达到5至6六片。
保证光轴的一致,即保证各镜片的中心轴线的一致,并且和感光芯片的中心轴线一致,是保证良好的成像品质的基础。对于传统的镜头,通常是将多个镜片逐次组装于一个镜筒中,在组装过程中不可避免地,每一镜片和镜筒组装时都会存在一定的误差,最后,各镜片整体和镜筒之间组装形成一个累积误差,也就是单个镜头的组装误差。由此可以很容易了解到,镜片数量越多,累积误差越大,镜头整体的品质越低,且镜头生产过程中的良率也越低。
另一方面,对于传统的镜头,多个镜片组装于同一镜筒,各镜片之间的相对位置基本确定,不能进行调节,镜片一旦组装于镜筒内,镜头质量即确定,这也使得对于镜筒和镜片的加工精度要求较高。
值得一提的是,对于镜片数量较少的镜头,镜片的组装误差影响较小,因此整体的镜头对于生产以及模组的组装来说,可能存在更大的优势,但是当镜片的数量增多时,镜片数量越增多,由于镜头引起的问题越严重,因此对镜头的改进也更为急迫,因此如何在通过多镜片提供高像素的基础上,保证良好的成像品质以及生产过程中的良率,是需要去研究的一个重要方面。
还值得一提的是,镜头的镜片以及镜片和镜筒的组装关系直接影响镜头的质量,而对于光学模组,尤其是应用于一些智能设备的光学模组,如智能手机,其尺寸相对较小,因此如何结合现有的设备需求,充分利用镜头的结构,研究适宜实际生产应用的镜头也是需要考虑的方面。
发明内容
本发明提供一用于光学模组的焊接结构及其应用,其中所述光学模组的所述第一模组组件和所述第二模组组件藉由所述焊接结构被相对固定后,所述第一模组组件和所述第二模组组件不会因热膨胀而产生较大的相对位移,而且当所述第一模组组件和所述第二模组组件以及所述焊接结构所处的环境恢复时,所述第一模组组件和所述第二模组组件之间因热膨胀而产生的位移也随之消除,从而使得所述多群组镜头能够保持稳定的光学性能。
本发明提供一用于光学模组的焊接结构及其应用,其中所述光学模组具有更 小的体积。
本发明提供一用于光学模组的焊接结构及其应用,其中在将所述光学模组中的所述第一模组组件和所述第二模组组件相对固定之前,可以通过调整所述第一模组组件和所述第二模组组件之间的相对位置的方式校准所述光学模组。
为实现本发明至少一个目的,本发明提供一用于光学模组的焊接结构,其中所述光学模组包括至少一第一模组组件和至少一第二模组组件,其中所述焊接结构包括至少一第一焊接件和至少一第二焊接件,其中所述第一焊接件被设置于所述第一模组组件,其中所述第二焊接件被设置于所述第二模组组件,其中所述第一焊接件和所述第二焊接件被焊接后,所述第一模组组件和所述第二模组组件被彼此相对固定。
为实现本发明至少一个目的,本发明提供一多群组镜头,其包括:
至少一第一群组单元,其中所述第一群组单元包括一第一承载部件、一第一群组镜片,其中所述第一群组镜片被安装于所述第一承载部件;
至少一第二群组单元,其中所述第二群组单元包括一第二承载部件、一第二群组镜片,其中所述第二群组镜片被安装于所述第二承载部件,其中当所述第一群组单元被安装于所述第二群组单元时,其中所述第一承载部件被支撑于所述第二承载部件;以及
一焊接结构,其中所述焊接结构包括至少一第一焊接件和与所述第一焊接件焊接固定的至少一第二焊接件,其中所述第一焊接件和所述第二焊接件分别被设置于所述第一承载部件和所述第二承载部件。
根据本发明一实施例,其中所述第一承载部件包括一第一主体和自所述第一主体向外延伸的一外延伸台,其中所述外延伸台具有一第一外底面,所述第一焊接件被设置于所述第一外底面,其中所述第二承载部件包括一第二主体和自所述第二主体延伸的一支撑台,其中所述支撑台具有一外顶面,供承载所述第一承载部件的所述外延伸台,所述第二焊接件被设置于所述支撑台的所述外顶面。
根据本发明一实施例,其中所述第一承载部件包括一第一主体和自所述第一主体向外延伸的一外延伸台,其中所述外延伸台具有一第一外侧面,所述第一焊接件被设置于所述外延伸台的所述第一外侧面,其中所述第二焊接件被设置于所述外延伸台的所述第一外侧面,其中所述第二承载部件包括一第二主体和自所述第二主体延伸的一支撑台,其中所述支撑台具有一第二外侧面,供承载所述第一 承载部件的所述外延伸台,所述第二焊接件被设置于所述支撑台的所述第二外侧面。
根据本发明一实施例,其中所述第一焊接件和所述第二焊接件被分别嵌入所述第一承载部件和所述第二承载部件。
根据本发明一实施例,其中选自所述第一焊接件和所述第二焊接件中的至少一个被实施为封闭的环形。
根据本发明一实施例,其中选自所述第一焊接件和所述第二焊接件中的至少一个被实施为分体的多个部分组成。
根据本发明一实施例,其中所述第一焊接件和所述第二焊接件被实施为具有相同的结构。
根据本发明一实施例,其中所述第一焊接件包括一第一嵌入部和连接于所述第一嵌入部的一第一连接部,其中所述第一焊接件被嵌入所述第一承载部件时,所述第一嵌入部被嵌入所述第一承载部件,所述第一连接部形成一第一裸露表面。
根据本发明一实施例,其中所述第二焊接件包括一第二嵌入部和连接于所述第二嵌入部的一第二连接部,其中所述第二焊接件被嵌入所述第二承载部件时,所述第二嵌入部被嵌入所述第二承载部件,所述第二连接部形成一第二裸露表面,其中所述第一焊接件和所述第二焊接件被焊接后,所述第一连接部的所述第一裸露表面和所述第二连接部的所述第二裸露表面彼此结合。
根据本发明一实施例,其中所述外延伸台具有与所述外底面相对的一上侧面以及一焊接口,所述焊接口自所述外延伸台的所述外底面延伸至所述外延伸台的所述上侧面。
根据本发明一实施例,其中所述支撑台具有与所述第二外侧面相对的一第三外侧面以及一焊接口,其中所述焊接口自所述第二外侧面延伸至所述第三外侧面。
根据本发明的一个方面,为实现本发明以上至少一个目的,本发明提供一光学模组,其包括:
一线路板组件;和
如上述的一多群组镜头,其中所述多群组镜头被设置于所述线路板组件。
根据本发明的一个方面,为实现本发明以上至少一个目的,本发明提供一光学模组,其包括:
一线路板组件;
一镜头承载元件,其中所述镜头承载元件被设置于所述线路板组件;
一镜头,其中所述镜头被安装于所述镜头承载元件;以及
一焊接结构,其中所述焊接结构包括至少一第一焊接件和至少一第二焊接件,其中所述第一焊接件被设置于所述镜头承载元件,所述第二焊接件被以焊接固定于所述第一焊接件的方式设置于所述镜头。
根据本发明一实施例,其中所述镜头包括一组镜片和一安装主体,所述镜片被安装于所述安装主体,其中所述安装主体具有一外壁,所述第一焊接件被设置于所述安装主体的外壁,其中所述镜头承载元件具有一内壁,所述第二焊接件以可焊接固定于所述第一焊接件的方式被设置于所述镜头承载元件的所述内壁。
根据本发明的一个方面,为实现本发明以上至少一个目的,本发明提供一光学模组,其包括:
一线路板组件;
一镜头承载构件,其中所述镜头承载构件被设置于所述线路板组件;
一镜头,其中所述镜头被安装于所述镜头承载构件;以及
一焊接结构,其中所述焊接结构包括至少一第一焊接件和至少一第二焊接件,其中所述第一焊接件被设置于所述镜头承载构件,其中所述第二焊接件以焊接固定于所述第一焊接件的方式被设置于所述线路板组件。
根据本发明的一个方面,为实现本发明以上至少一个目的,本发明提供一光学模组,其包括:
一线路板组件;
一驱动元件其中所述驱动元件被设置于所述线路板组件;
一镜头,被可驱动地承载于所述驱动元件;以及
一焊接结构,其中所述焊接结构包括至少一第一焊接件和至少一第二焊接件,所述第一焊接件被设置于所述驱动元件,所述第二焊接件以焊接固定于所述第一焊接件的方式被设置于所述线路板组件。
根据本发明的一个方面,为实现本发明以上至少一个目的,本发明提供一电子设备,其包括:
一设备本体;和
如上述的光学模组,其中所述光学模组被设置于所述设备本体。
根据本发明的一个方面,为实现本发明以上至少一个目的,本发明提供一光 学模组制造工艺,其中所述工艺包括以下步骤:
安装设置有一第一焊接件的第一模组组件于设置有一第二焊接件的第二模组组件;和
通过激光焊接焊接所述第一焊接件和所述第二焊接件以使所述第一模组组件和所述第二模组组件被相对固定。
根据本发明一实施例,其中所述第一模组组件和所述第二模组组件被分别实施为选自一多群组镜头的至少两个群组单元、一镜头和镜头承载元件、一镜头承载构件和一感光组件、一驱动元件和一感光组件。
根据本发明一实施例,其中所述第一模组组件和所述第二模组组件被分别实施为一多群组镜头的至少两个群组单元,并在所述步骤(2)之前,其中所述光学模组制造工艺进一步包括以下步骤:
校准至少两个所述群组单元。
根据本发明一实施例,其中所述步骤(1)包括:
分别嵌入所述第一焊接件的一第一嵌入部和所述第二焊接件的一第二嵌入部于所述第一模组组件和所述第二模组组件;和
置载设有一第一焊接件的第一模组组件于设置有一第二焊接件的第二模组组件,以将所述第一焊接件的一第一连接部对应于所述第二焊接件的一第二连接部。
附图说明
图1为本发明采用焊接固定方式形成的一多群组镜头的示意图。
图2A为本发明第一个实施例的一用于光学模组的焊接结构的一第一焊接件的示意图。
图2B为本发明第一个实施例的一用于光学模组的焊接结构的一第二焊接件的示意图。
图2C为本发明第一个实施例的用于光学模组的焊接结构被焊接前的示意图。
图3A为本发明第二个实施例的一用于光学模组的焊接结构的一第一焊接件的示意图。
图3B为本发明第二个实施例的一变形实施例的一用于光学模组的焊接结构一个实施例的一第一焊接件的变形实施例的示意图。
图3C为本发明第二个实施例的一焊接结构被焊接前的示意图。
图4A为本发明第三个实施例的一用于光学模组的焊接结构的一第一焊接件的示意图。
图4B为本发明第三个实施例的一变形实施例的一用于光学模组的焊接结构一个实施例的一第一焊接件的变形实施例的示意图。图4C为本发明用于光学模组的一焊接结构被焊接前的示意图。
图4C为本发明第三个实施例的一焊接结构被焊接前的示意图。
图5为本发明第一个实施中一采用焊接固定方式形成的一多群组镜头在未焊接固定时的剖视图。
图6A为本发明第一个实施中一采用焊接固定方式形成的一多群组镜头在焊接后A-A方向的剖视图。
图6B为本发明第一个实施中一采用焊接固定方式形成的一多群组镜头在焊接后B-B方向的剖视图。
图7为本发明第一个实施例的一光学模组的结构示意图。
图8A为本发明第一个实施的第一个变形实施例中一采用焊接固定方式形成的一多群组镜头在未焊接固定时的剖视图。
图8B为本发明第一个实施的第一个变形实施例中一采用焊接固定方式形成的一多群组镜头在焊接后的剖视图。
图9为本发明第一个实施例的第一个变形实施例的一光学模组的结构示意图。
图10A为本发明第一个实施的第二个变形实施例中一采用焊接固定方式形成的一多群组镜头在未焊接固定时的剖视图。
图10B为本发明第一个实施的第二个变形实施例中一采用焊接固定方式形成的一多群组镜头在焊接后的剖视图。
图11为本发明的第一个实施例的第二个变形实施例的一光学模组的结构示意图。
图12A为本发明的第二个实施例的一用于光学模组的一第一模组组件和一第二模组组件未被焊接件的结构示意图。
图12B为本发明的第二个实施例的一用于光学模组的一第一模组组件和一第二模组组件被焊接件后的结构示意图。
图12C为本发明的第二个实施例的一光学模组的结构示意图。
图13A为本发明第三个实施例的一第一模组组件和一第二模组组件未被焊接时的示意图。
图13B为本发明第三个实施例的一第一模组组件和一第二模组组件的示意图。
图14A为本发明第三个实施例的一变形实施例的一第一模组组件和一第二模组组件的结构示意图。
图14B为本发明第三个实施例的一变形实施例的一第一模组组件和一第二模组组件的结构示意图。
图15为本发明一光学模组制造工艺中采用焊接固定的方法的流程图。
图16为本发明一采用焊接固定方式形成的光学模组的电子设备的示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
本发明提供一电子设备和光学模组以及用于光学模组的焊接结构,其中所述光学模组包括至少一第一模组组件、至少一第二模组组件以及至少一焊接结构,其中所述焊接结构包括至少一第一焊接件和至少一第二焊接件,其中所述第一焊接件被设置于所述第一模组组件,其中所述第二焊接件被设置于所述第二模组组件,优选地,所述第一焊接件被嵌入所述第一模组组件,其中所述第二焊接件被嵌入所述第二模组组件。本领域普通技术人员能够理解的是,所述第一焊接件和所述第二焊接件可以采用黏贴或者其它方式被分别设置于所述第一焊接件和所述第二焊接件,本发明不受此方面的限制。为使本领域技术人员能够理解本发明, 本发明以下实施例中,仅以所述第一焊接件和所述第二焊接件分别被实施为嵌入所述第一模组组件和所述第二模组组件为例进行说明。通过焊接所述第一焊接件和所述第二焊接件的方式使得所述第一模组组件和所述第二模组组件藉由所述焊接结构被稳定地连接。
值得一提的是,本发明中,焊接所述第一焊接件和所述第二焊接件的方式包括但不限于激光焊接、超声波焊接等。
更值得一提的是,在本发明另一实施例中,所述第一焊接件和所述第二焊接件可以是分别自所述第一模组组件和所述第二模组组件一体延伸而形成,本发明不受此方面的限制,为使本发明领域普通技术人员能够理解本发明,本发明实施例中仅以所述第一焊接件和所述第二焊接件被分别设置于所述第一模组组件和所述第二模组组件为例进行说明。
本领域普通技术人员能够理解的是,在本发明其他实施例中,所述焊接结构可以包括一第三焊接结构和一第四焊接结构,其中所述光学模组可以包括一第三模组组件或一第四模组组件,其中所述第三焊接件可以被设置于所述第二模组组件,其中所述第四焊接件可以被设置于所述第三模组组件,藉由焊接所述第三焊接件和所述第四焊接件,从而使得所述第三模组组件被连接于所述第二模组组件。
值得一提的是,所述第三焊接结构也可以被设置于所述第三模组组件,其中所述第四焊接件被设置于所述第四模组组件,藉由焊接所述第三焊接件和所述第四焊接件,从而使得所述第三模组组件和所述第四连接结果被相对固定。
所述第一模组组件和所述第二模组组件可以被实施为但不限于选择镜头与镜筒、镜筒与线路板组件、马达与感光组件、多群组镜头中的两群组单元等。为使本领域普通技术人员能够理解本发明,以下实施例中首先以多群组镜头中的两群组单元为例加以阐述,本领域普通技术人员能够理解,本发明中所述焊接结构可以被应用于连接所述光学模组中的任意两个需要被固定的两元件,本发明不受此方面限制,其中所述多群组镜头指的是,应用于所述光学模组中的镜头采用两组或两组以上的分体式镜头(在本发明以下实施例中称之为群组单元)组合而成。
传统的镜头,尤其是应用于光学模组的镜头,长期处于一种相对稳定且单一的结构方式,将多个镜片组装一个镜筒而构成,如前所述,当镜片数量较少,如两三片时,这种结构的组装误差影响相对较小,而随着对镜头以及光学模组高像素、高成像质量的要求,镜片数量增多,累积误差不断增大,传统的镜头结构严 重不适于对于镜头和光学模组的要求。而根据本发明,提供一多群组镜头,由多个群组单元组装形成一个整体的镜头,从而使得每个群组单元中的镜片数量较少,每个单元的组装误差较小,但是由各所述群组单元构成的所述多群组镜头的镜片总数较多,因此可以提供较高的像素,且累积误差较小。且各所述群组单元在组装形成所述多群组镜头的过程中,可以采用主动校准(Active Alignment,AA)的方式进行组装,使得各所述群组单元之间的相对误差减小,从而使得所述多群组镜头具有较好的光学一致性。且各所述群组单元通过一组装结构相互配合地组装,从而使得各群组单元稳定地组装形成所述多群组镜头,且配合的方式可以遮挡外部杂光进入所述多群组镜头内部,避免干扰所述多群组镜头的光学系统。且在一些实施方式中,各所述群组单元之间通过所述一焊接结构20,使得各所述群组单元快速、稳定地进行组装固定,从而提高生产效率。
参考图1至图12,所述多群组镜头100包括多个群组单元10和至少一焊接结构20,所述多群组镜头100适于多镜片的镜头,2片、3片或以上。
所述多群组镜头100适于被组装构成一光学模组300,特别适于被组装构成高像素的光学模组300。
所述多群组镜头100包括至少两群组单元10,各所述两群组单元共同构成所述多群组镜头100的整体光学系统。也就是说,所述多镜片的光学系统,由至少两个所述群组单元组合实现,而不是像传统的一体式镜头,通过一个独立的镜头实现。
值得一提的是,所述多群组镜头100的各群组单元中的镜片可以根据不同的需要进行分配组合,在本发明的这个实施例中,仅选择其中一种进行说明,本领域的技术人员应当理解的是,各所述镜片的数量以及分配方式并不是本发明的限制。
更具体地来说,所述多群组镜头100包括两所述群组单元,分别为一第一群组单元11和第二群组单元12。当所述第一群组单元11和所述第二群组单元12构成整体镜头时,所述第一群组单元11位于所述第二群组单元12的上方,所述第一群组单元11和所述第二群组单元12的光轴一致。也就是说,在本发明的=实施例中,所述多群组镜头100的光学系统由所述第一群组单元11和所述第二群组单元12各自对应的两个光学系统共同构成。也就是说,在一定程度上,所述第一群组单元11和所述第二群组单元12各自独立存在时,并不能完成一个完 整镜头的功能,而当所述第一群组单元11个所述第二群组单元12相互配合时,构成一个可以达到成像质量要求的完整镜头。
进一步,所述第一群组单元11包括一第一承载部件111和至少一第一群组镜片112,所述第一群组镜片112被安装于所述的第一承载部件111,以便于构成一独立的部件。
所述第二群组单元12包括一第二承载部件121和至少一第二群组镜片122,所述第二群组镜片122被安装于所述第二承载部件121,以便于构成另一独立部件。
所述第一承载部件111被设置于所述第二承载部件121上方,以使得所述第一群组单元11和所述第二群组单元12的光路方向一致。
在本发明实施例中,所述第一焊接件21被设置于所述第一承载部件111,优选地,所述第一焊接件21被嵌入所述第一承载部件111。所述第二焊接件22被设置于所述第二承载部件121,优选地,所述第二焊接件22被嵌入所述第二承载部件121。当所述第一群组单元11被相对固定于所述第二群组单元12时,所述第一承载部件111被支撑于所述第二承载部件121,并且所述第一焊接件21被支撑于所述第二焊接件22,进一步地,在校准所述第一群组单元11和所述第二群组单元12后,通过激光焊接所述第一焊接件21和所述第二焊接件22的方式,进而能够使所述第一群组单元11的所述第一承载部件111和所述第二群组单元12的所述第二承载部件121彼此相对固定。
值得一提的是,通过上述方式固定时,由于所述第一焊接件21和所述第二焊接件22优选地采用金属材料制成,从而当所述多群组镜头100被设置于所述光学模组300并且所述光学模组300经常处于严峻环境(例如但不限于烘烤、高温高湿)等)环境中时,所述第一群组单元11和所述第二群组单元12之间的相对位置不会因热膨胀不均而发生较大的位移,从而使得所述多群组镜头10000能够保持稳定的光学性能。
还值得一提的是,在传统的一体式镜头中,镜片被逐次地安装于镜筒中,镜片可以被调整的范围很小,且一旦镜片被固定,镜片和镜筒相对位置固定。当所有的镜片被组装完成时,整个镜头的累积误差确定,不可被调整。而在本发明中,所述第一群组单元11和所述第二群组单元12各自可以独立地构成,相互之间没有影响,所述第一群组单元11和所述第二群组单元12被组装为整体的镜头时, 所述第一群组单元11和所述第二群组单元12可以被相对调整,从而可以进一步校准所述镜头,使其整体误差减小,特别地,可以进行立体空间不同方向的调整,比如六轴方向调整。
所述第一承载部件111包括一第一主体1111和一外延伸台1112,所述外延伸台1112自所述第一主体1111向外延伸。特别地,所述外延伸台1112自所述第一主体1111一体地水平向外延伸,从而形成一环形的帽檐结构,比如通过模具一体形成的方式形成。
在本发明的这个实施例中,所述外延伸台1112被设置于所述第一主体1111外部的中部位置,将所述第一主体1111区分为两部分,一部分位于所述外延伸台1112的上方,一部分位于所述外延伸台1112的下方,在所述第一群组单元11和所述第二群组单元12组装后,所述第一主体1111位于所述外延伸台1112的上方。
所述外延伸台1112可以被设置不同高度,比如在一些实施例中,设置比较小的高度,使得所述外延伸台1112的顶面低于所述第一主体1111的顶端。比如在一些实施例中,设置比较大高度,使得所述外延伸台1112的顶面和所述第一主体1111的顶端一致,从而使得所述多群组镜头100上部分具有不同形状。
所述第一主体1111具有一第一容纳腔11111、一第一上通光孔11112和一第一下通光孔11113。所述第一群组镜片112被容纳于所述第一容纳腔11111。
所述第一上通光孔11112位于所述第一主体1111上部,用于连通于外部,使得光线进入所述第一群组单元11,即,使得外部光线到达位于所述第一容纳腔11111内的所述第一群组镜片112。
所述第一下通光孔11113位于所述第一主体1111的下部,连通于所述第二群组单元12,以使得通过所述第一群组单元11的光线到达所述第二群组单元12。
所述第二承载部件121包括一第二主体1211和自所述第二主体1211一体延伸的一支撑台1212,其中在将所述第一群组单元11和所述第二群组单元12组合时,所述第一承载部件111的所述外延伸台1112被支撑于第二承载部件121的所述支撑台1212。
参考图3至图11,在本发明一实施例中,所述第一焊接件21被设置于所述外延伸台1112,其中所述第二焊接件22被设置于所述支撑台1212,当所述第一群组单元11和所述第二群组单元12经过校准之后,只需通过焊接所述第一焊接 件21和所述第二焊接件22即可将所述第一群组单元11和所述第二群组单元12相对固定。
所述第二主体1211具有一第二容纳腔12111、一第二上通光孔12112和一第二下通光孔12113。所述第二群组镜片122被容纳于所述第二容纳腔12111。
所述第二上通光孔12112位于所述第二主体1211的上部,用于连通于所述第一群组单元11,使得通过所述第一群组单元11的光线到达所述第二群组单元12。
所述第二下通光孔12113位于所述第二主体1211的下部,连通于外部,以使得通过所述第二群组单元12的光线到达外部,比如到达所述光学模组300的一感光元件,从而使得所述第一群组单元11和所述第二群组单元12形成一完整的光学系统。
在本发明的这个实施例中,所述第一群组单元11包括至少一第一光路元件113,所述第一光路元件113被设置于比邻所述镜片的位置,以便于在镜片上形成预定的光线通路。举例地,所述第一光路元件113可以是一隔圈,从而遮挡镜片的边缘光线,在镜片中心位置形成预定的光线通路。所述第一光路元件113可以是的一涂层,挡光地覆盖于镜片的边缘,从而在镜片的中心位置形成预定的光线通路。换句话说,所述光路元件配合所述镜片设置,以便于在所述镜片形成预定的光线通路。
所述第二群组单元12包括至少一第二光路元件123,所述第二光路元件123被设置于比邻所述镜片的位置,以便于在镜片上形成预定的光线通路。举例地,所述第二光路元件123可以是一隔圈,从而遮挡镜片的边缘光线,在镜片中心位置形成预定的光线通路。所述第二光路元件123可以是的一涂层,挡光地覆盖于镜片的边缘,从而在镜片的中心位置形成预定的光线通路。
更具体,在本发明实施例中,所述第一承载部件111的所述外延伸台1112进一步具有一第一外侧面11121和一外底面11122。所述支撑台1212的顶部形成一凹槽,以在所述第一群组单元11被安装于所述第二群组单元12时,供容纳所述第一承载部件111的所述外延伸台1112。所述支撑台1212具有一第二外侧面12121和一外顶面12122。当所述第一承载部件111被安装于所述第二承载部件121时,所述第一承载部件111的所述外延伸台1112承载于所述第二承载部件121的所述支撑台1212上方,并且所述外延伸台1112的所述第一外侧面11121 被与所述支撑台1212的所述第二外侧面12121彼此相对,所述外延伸台1112的所述外底面11122与所述支撑台1212的所述外顶面12122彼此相对。
值得一提的是,在将所述第一焊接件21和所述第二焊接件22焊接前,所述第一群组单元11可以相对于所述第二群组单元12被调整,从而在所述第一焊接件21和所述第二焊接件22焊接前,能够使由所述第一群组单元11和所述第二群组单元12形成的所述光学模组被校准,也就是说,所述第一群组单元11能够在所述支撑台1212的所述凹槽内被相对调整。
参考图5、图6A以及图6B,在本发明的第一个实施例的所述多群组镜头100中,所述第一焊接件21被设置于所述外延伸台1112的所述外底面11122,此时所述第二焊接件22对应地被设置于所述支撑台1212的所述外顶面12122,其中当第一群组单元11可以相对于所述第二群组单元12被固定时,可以通过上下焊接所述第一焊接件21和所述第二焊接件22的方式便可以将所述第一群组单元11和所述第二群组单元12相对固定。
优选地,所述第一承载部件111的所述外延伸台1112进一步具有至少一焊接口11123。所述第一焊接件21被设置于所述第一承载部件111后,藉由所述焊接口11123,使得部分所述第一焊接件21裸露。当采用激光焊接的方式将所述第一焊接件21和所述第二焊接件22进行焊接固定时,焊接工具的焊头能够通过所述焊接口11123对所述第一焊接件21进行工作。
具体地,所述外延伸台1112进一步具有与所述外底面11122相对的一上侧面11124。所述焊接口11123自所述上侧面11124延伸至所述外底面11122,进而使得设置于所述外延伸台1112的所述第一焊接件21部分裸露,供焊接工具的焊头通过所述焊接口11123对所述第一焊接件21进行焊接工作。
值得一提的是,在本发明中,所述焊接口11123的数量可以被实施为两个或两个以上,本发明不受此方面的限制。
参考图7,根据本发明此实施例的所述光学模组300在以下被详细阐述。所述光学模组300包括一线路板组件71,其中所述线路板组件71又称之为一感光组件。所述感光组件71包括一感光元件711、一线路板主体712、一支架713、一滤光元件714以及多个电子元器件715。所述感光元件711被设置于所述线路板主体712,所述支架713被设置于所述线路板主体712并位于所述感光元件711的外侧,所述滤光元件714被设置于所述感光元件711的感光路径,并被支撑于 所述支架713。所述多群组光学镜头100被设置于所述感光组件71,并位于所述感光组件71的所述感光元件711的感光路径。
值得一提的是,所述光学模组300进一步包括一镜头承载元件72。当所述镜头承载元件72一体地延伸于所述多群组镜头100时,所述光学模组300为一定焦模组。当所述镜头承载元件72被实施为一马达时,所述光学模组300为一动焦模组。
本领域技术人员能够理解的是,由于本发明中所述多群组镜头100是通过所述焊接结构20焊接固定而非用胶体固定,因此,所述多群组镜头100具有更小的体积,相应地,所述光学模组300也相应地具有更小的体积。此外,由于所述多群组光学镜头100不会随着温度的变化而产生不可恢复的形变,因此,所述光学模组300具有更好的稳定性。
参考图5至图9。在本发明的第一个实施例的第一个变形实施例中,所述第一焊接件21’被设置于所述外延伸台1112的所述第一外侧面11121,此时所述第二焊接件22’对应地被设置于所述支撑台1212的所述第二外侧面12121,其中当第一群组单元11可以相对于所述第二群组单元12被固定时,可以通过水平焊接所述第一焊接件21’和所述第二焊接件22’的方式便可以将所述第一群组单元11和所述第二群组单元12相对固定。
优选地,所述焊接口11123被设置于所述第二承载部件121的所述支撑台1212。所述第二焊接件22’被设置于所述支撑台1212的所述第二外侧面12121后,藉由所述焊接口11123,所述第二焊接件22’被裸露。具体地,所述支撑台1212进一步具有一第三外侧面12123。在本实施例中,所述焊接口11123从所述第三外侧面12123延伸至所述第二外侧面12121,进而使所述焊接口11123部分裸露,供焊接工具的焊头通过所述焊接口11123对所述第一焊接件21’进行工作。
参考图9,根据本发明此实施例的所述光学模组300在以下被详细阐述。所述光学模组300包括一线路板组件71,其中所述线路板组件又称之为感光组件。所述感光组件71包括一感光元件711、一线路板主体712、一支架713、一滤光元件714以及多个电子元器件715。所述感光元件711被设置于所述线路板主体712,所述支架713被设置于所述线路板主体712并位于所述感光元件711的外侧,所述滤光元件714被设置于所述感光元件711的感光路径,并被支撑于所述 支架713。所述多群组光学镜头100被设置于所述感光组件71,并位于所述感光组件71的所述感光元件711的感光路径。
值得一提的是,所述光学模组300进一步包括一镜头承载元件72。当所述镜头承载元件72一体地延伸于所述多群组镜头100时,所述光学模组300为一定焦模组。当所述镜头承载元件72被实施为一马达时,所述光学模组300为一动焦模组。
本领域技术人员能够理解的是,由于本发明中所述多群组镜头100是通过所述焊接结构20’焊接固定而非用胶体固定,因此,所述多群组镜头100具有更小的体积,相应地,所述光学模组300也相应地具有更小的体积。此外,由于所述多群组光学镜头100不会随着温度的变化而产生不可恢复的形变,因此,所述光学模组300具有更好的稳定性。
参考图5至图9、图10A和图10B,为上述第一个实施例的第二个变形实施例,在本发明实施例中,所述外延伸台1112的所述第一外侧面11121和所述支撑台1212的所述第二外侧面12122与竖直方向成一预设夹角。
本领域普通技术人员能够理解的是,所述第一焊接件21”可以被设置于所述外延伸台1112的其他位置,对应地,所述第二焊接件22”也可以被设置于所述支撑台1212的其他位置,以使所述第一焊接件21”和所述第二焊接件22”被焊接后,所述第一群组单元11和所述第二群组单元12被相对固定。
参考图11,根据本发明实施例的所述光学模组300在以下被详细阐述。所述光学模组300包括一线路板组件71,其中所述线路板组件71又称之为感光组件。所述感光组件71包括一感光元件711、一线路板主体712、一支架713、一滤光元件714以及多个电子元器件715。所述感光元件711被设置于所述线路板主体712,所述支架713被设置于所述线路板主体712并位于所述感光元件711的外侧,所述滤光元件714被设置于所述感光元件711的感光路径,并被支撑于所述支架713。所述多群组光学镜头100被设置于所述感光组件71,并位于所述感光组件71的所述感光元件711的感光路径。
值得一提的是,所述光学模组300进一步包括一镜头承载元件72。当所述镜头承载元件72一体地延伸于所述多群组镜头100时,所述光学模组300为一定焦模组。当所述镜头承载元件72被实施为一马达时,所述光学模组300为一动焦模组。
本领域技术人员能够理解的是,由于本发明中所述多群组镜头100是通过所述焊接结构20”焊接固定而非用胶体固定,因此,所述多群组镜头100具有更小的体积,相应地,所述光学模组300也相应地具有更小的体积。此外,由于所述多群组光学镜头100不会随着温度的变化而产生不可恢复的形变,因此,所述光学模组300具有更好的稳定性。
参考图12A、图12B以及图12C,在本发明第二个实施例中,所述第一模组组件和所述第二模组组件分别被实施为一镜头31和一镜头承载元件32,在本发明实施例中,所述镜头31可以被实施为本发明上述实施例中的所述多群组镜头,也可以被实施为一体式的镜头,本发明不受此方面限制。为使本领域普通技术人员能够清楚地了解本发明,以下举例中所述镜头31被实施一体式的镜头为例。
在本发明实施例中,所述镜头31包括至少一组镜片311和一安装主体312,其中所述镜片311被安装于所述安装主体312。所述焊接结构20Ⅰ的所述第一焊接件21Ⅰ被设置于所述安装主体312的外壁,其中所述第二焊接件22Ⅰ被设置于所述镜头承载元件32的内壁以当所述镜头31被安装于所述镜头承载元件32时,通过焊接所述第一焊接件31和所述第二焊接件32的方式便可以使所述镜头31与所述镜头承载元件32之间被相对固定。
具体地,在本实施例中,所述镜头承载元件32具有一焊接口320,其中所述焊接口320自所述镜头承载元件32的内壁延伸至所述镜头承载元件32的外壁,供焊接工具的焊头通过所述焊接口320对所述第一焊接件21Ⅰ进行焊接工作。
值得一提的是,在本发明实施例中,由于所述第一焊接件21Ⅰ和所述第二焊接件22Ⅰ是分别被设置于所述镜头31的所述安装主体312和所述镜头承载元件32,而且在将所述镜头31与所述镜头承载元件32相对固定时是通过激光焊接所述第一焊接件21Ⅰ和所述第二焊接件22Ⅰ的方式实现的,因此,所述述镜头31的所述安装主体312和所述镜头承载元件32之间的间隙相比较于现有技术通过胶水等其他介质固定的方式来说更小,从而使所述镜头31和所述镜头承载元件32整体被安装于所述光学模组300时,相应的所述光学模组300具有更小的体积。
更值得一提的是,在本发明实施例中,由于所述第一焊接件21Ⅰ和所述第二焊接件22Ⅰ优选地采用金属材料制成,从而当所述镜头31和所述镜头承载元件32被设置于所述光学模组300并且所述光学模组300经常在温差加大的环境 中时,所述镜头31和所述镜头承载元件32之间的相对位置不会因热膨胀不均而发生较大的相对位移,从而使得所述多群组镜头能够保持稳定的光学性能。
进一步地,根据本发明此实施例的所述光学模组300在以下被详细阐述。所述光学模组300包括上述第一模组组件和上述第二模组组件,此外,所述光学模组300进一步包括一感光组件33。所述感光组件33包括一感光元件331、一线路板主体332、一支架333、一滤光元件334以及多个电子元器件335。所述感光元件331被设置于所述线路板主体332,所述支架333被设置于所述线路板主体332并位于所述感光元件331的外侧,所述滤光元件334被设置于所述感光元件331的感光路径,并被支撑于所述支架333。所述多群组光学镜头100被设置于所述感光组件33,并位于所述感光组件33的所述感光元件331的感光路径。
值得一提的是,所述光学模组300进一步包括一镜头承载元件32。当所述镜头承载元件32一体地延伸于所述多群组镜头100时,所述光学模组300为一定焦模组。当所述镜头承载元件32被实施为一马达时,所述光学模组300为一动焦模组。
本领域技术人员能够理解的是,由于本发明中所述多群组镜头100是通过所述焊接结构20’焊接固定而非用胶体固定,因此,所述多群组镜头100具有更小的体积,相应地,所述光学模组300也相应地具有更小的体积。此外,由于所述多群组光学镜头100不会随着温度的变化而产生不可恢复的形变,因此,所述光学模组300具有更好的稳定性。
参考图13A和图13B为本发明的第三个实施例,在此实施例中,所述第一模组组件被实施为一镜头承载构件41,其中所述镜头承载构件41中安装有至少一镜头43,其中所述第二模组组件被实施为一线路板组件42,其中所述线路板组件42包括至少一感光元件421、至少一支架422以及至少一线路板主体423,优选地,所述线路板组件42进一步包括一滤光元件424,其中所述感光元件421被设置于所述线路板主体423,其中所述感光元件421被导通于所述线路板主体423,其中所述支架422被安装于所述线路板主体423以被用以支撑所述镜头承载构件41,其中所述滤光元件424被安装在支架422并位于所述感光元件421的感光路径上。
在本发明实施例中,所述焊接结构20Ⅱ的所述第一焊接件21Ⅱ和所述第二焊接件22Ⅱ被分别设置于所述镜头承载构件41的底部和所述支架422的顶部, 进而当安装有所述镜头43的所述镜头承载构件41可以通过激光焊接所述第一焊接件21Ⅱ与所述第二焊接件22Ⅱ的方式被与所述线路板组件42的所述支架422之间被相对固定。通过以上描述,本领域普通技术人员能够理解的是,通过上述固定方式,可以形成一定焦光学模组。
优选地,在本实施例中,所述镜头承载构件41具有一焊接口410,其中所述焊接口410被设置于所述镜头承载构件41的底部,以在所述第一焊接件21Ⅱ被设置于所述镜头承载构件41的底部时,藉由所述焊接口410,使得所述第一焊接件21Ⅱ部分暴露,进而供焊接工具的焊头通过所述焊接口4120对所述第一焊接件21Ⅱ进行工作。
本领域技术人员能够理解的是,在本实施例的一变形实施例中,所述焊接口410可以被设置于所述线路板组件42的所述支架422的顶部,以在所述第二焊接件21被设置于所述支架422的顶部时,藉由所述焊接口410,使得所述第二焊接件22Ⅱ部分暴露,进而供焊接工具的焊头通过所述焊接口410对所述第一焊接件22进行工作。值得一提的是,在本发明实施例中,由于所述第一焊接件21Ⅱ和所述第二焊接件22Ⅱ都是采用金属材料制成,从而当所述镜头承载构件41和所述线路板组件42被设置于所述光学模组300并且所述光学模组300经常在温差加大的环境中时,所述镜头承载构件41和所述线路板组件42之间的相对位置不会因热膨胀不均而发生较大的相对位移,从而使得所述多群组镜头能够保持稳定的光学性能。
参考图14A和14B,在本发明的第三个实施的一变形实施例中,所述第一模组组件被实施为一驱动元件如马达51,其中所述马达51上安装有至少一镜头。具体的所述镜头包括至少一组镜片53和一镜筒54,其中所述镜片53被安装于所述镜筒54,其中所述镜头可以是上述实施例中的多群组镜头,也可以是现有的一体式镜头,本发明不受此方面的限制,为使本领域普通技术人员能够理解本发明,以下实施例中以一体式镜头为例,其中所述第一焊接件21Ⅲ被设置于所述马达的底壁。
在本实施例中,所述第二模组组件被实施为一线路板组件52,其中所述感光组件52又称之为感光组件,其中所述感光组件52包括至少一感光元件521、至少一支架522以及至少一线路板主体523,优选地,所述感光组件52进一步包括一滤光元件524,其中所述感光元件521被设置于所述线路板主体523,其 中所述感光元件521被导通于所述线路板主体523,其中所述支架522被安装于所述线路板主体523以被用以支撑所述马达51,其中所述滤光元件524被安装在所述支架522并位于所述感光元件521的感光路径上。
在本发明实施例中,所述焊接结构20Ⅲ的所述第二焊接件22Ⅲ被设置于所述感光组件52的所述支架522顶部,其中当所述马达51被安装于所述感光组件52时,所述第一焊接件51和所述第二焊接件22Ⅲ位于所述马达51和所述感光组件52之间,其中当所述马达51需要被固定于所述感光组件52时,通过激光焊接所述第一焊接件21Ⅲ和所述第二焊接件22Ⅲ的方式即可将所述马达51与所述感光组件52相对固定。
优选地,在本实施例中,优选地,在本实施例中,所述马达51具有一焊接口510,其中所述焊接口510被设置于所述马达51的底部,以在所述第一焊接件21Ⅲ被设置于所述马达51的底部时,藉由所述焊接口510,使得所述第一焊接件21Ⅲ部分暴露,供焊接工具的焊头通过所述焊接口510对所述第一焊接件21Ⅲ进行工作。在本实施例的一变形实施例中,所述焊接口510被设置于所述支架522的顶部,本发明不受此方面的限制。
在本发明实施例中,由于所述马达51和所述感光组件52之间是通过所述第一焊接件21Ⅲ和所述第二焊接件22Ⅲ焊接而成,因此,当所述光学模组处于温差较大的环境中时,所述马达51和所述感光组件52之间的相对位置也不易发生改变,从而使得所述多群组镜头能够保持稳定的光学性能。
值得一提的是,在上述实施例中,当所述马达51和所述感光组件52被相对固定时,所述镜头能够保持在所述感光组件52的所述感光芯片的感光路径上。
更值得一提的是,在本发明实施例中,由于所述马达51和所述感光组件52的所述支架之间通过所述第一焊接件21Ⅲ和所述第二焊接件22Ⅲ连接,而且所述第一焊接件21Ⅲ和所述第二焊接件22Ⅲ是分别被设置于所述马达51和所述感光组件52,因此所述马达51和所述感光组件52在被相对固定时,将形成较小甚至是不存在间隙,进而减小了所述光学模组整体的体积。
参考图15,根据本发明的另一个方面,本发明提供一光学模组制造工艺2000,其中所述工艺包括:
步骤2001,(1)安装设置有一第一焊接件的第一模组组件于设置有一第二焊接件的第二模组组件;和
步骤2002,(2)通过激光焊接焊接所述第一焊接件和所述第二焊接件以使所述第一模组组件和所述第二模组组件被相对固定。
在本发明一实施例中,所述步骤(1)和所述步骤(2)被分别实施为:
(S1)安装设置有所述第一焊接件21的一第一群组单元11于设置有所述第二焊接件22的一第二群组单元12,其中所述第一焊接件被设置于所述第一群组单元11的所述第一承载部件111,其中所述第二焊接件被设置于所述第二群组单元12的所述第二承载部件121,其中所述第一群组单元和所述第二群组单元之间组成以群组单元10,其中至少一个所述群组单元10形成一多群组镜头;和
(S2)通过焊接所述第一焊接件和所述第二焊接件使所述第一群组单元11和所述第二群组单元被相对固定。
值得一提的是,在所述步骤(S1)和所述步骤(S2)之间,所述方法进一步包括:
(S0)在立体空间的不同方向上AA(Active Alignment)校准所述第一群组单元11和所述第二群组单元12。
在所述步骤(S0)中的校准可以是选自水平方向的校准、竖直方向的校准以及以所述第一群组单元11或所述第二群组单元12的光轴为旋转轴转动的方式校准。
参考图16,根据本发明的另一个方面,本发明提供一电子设备60,其中所述电子设备60包括一光学模组61,其中所述光学模组61进一步包括一采用焊接固定方式形成的一第一模组组件、一第二模组组件以及一焊接结构,其中所述焊接结构包括一第一焊接件和一第二焊接件,其中所述第一焊接件被设置于所述第一模组组件,其中所述第二焊接件被设置于所述第二模组组件,其中通过激光焊接所述第一焊接件和所述第二焊接件的方式,能够使所述第一模组组件和所述第二模组组件被相对固定。
本发明中所述电子设备可以被实施为但不限于一手机、一平板电脑等。
具体地,所述电子设备60包括一设备本体62,其中所述光学模组61被设置于所述设备本体62。
值得一提的是,在本发明上述所有实施例中,所述第一模组组件和所述第二模组组件中可以分别设置多个所述第一焊接件和多个所述第二焊接件,本发明不受此方面的限制。
更值得一提的是,上述实施例中的实施方式可以被同时应用于同一光学模组中,本发明也不受此方面的限制。
同样值得一提的是,在本发明以上实施例中,所述第一焊接件21和所述第二焊接件22可以被实施为由金属材料、非金属材料、复合材料等制成。
值得一提的是,参考图2A、图2B以及图2C、图3A、图3B以及3C和图4A、图4B以及图4C。在本发明上述实施例中,所述第一焊接件21和所述第二焊接件22被分别设置于所述第一模组件和所述第二模组件后并且未被相互焊接之前,分别具有一第一裸露表面210和一第二裸露表面220,其中当所述第一焊接件21和所述第二焊接件22被焊接时,所述第一焊接件21的所述第一裸露便面210和所述第二焊接件22的所述第二裸露表面220被彼此相对固定。
更值得一提的是,所述第一焊接件21和所述第二焊接件22被分别以嵌入成型或者是贴装等方式被固定于所述第一模组组件和所述第二模组组件,优选地,在本发明实施例中,所述第一焊接件21和所述第二焊接件22被分别以嵌入成型的方式被固定于所述第一模组组件和所述第二模组组件。
具体地,所述第一焊接件21具有至少一第一嵌入部211和至少一第一连接部212,其中所述第一连接部212自所述第一嵌入部211一体地延伸,其中当所述第一焊接件21被设置于所述第一模组组件时,所述第一嵌入部211被嵌入所述第一模组件,其中所述第一裸露表面210位于所述第一连接部212;所述第二焊接件22具有至少一第二嵌入部221和至少一第二连接部222,其中所述第二连接部222自所述第二嵌入部221一体地延伸,其中当所述第二焊接件22被设置于所述第二模组组件时,所述第二嵌入部221被嵌入所述第二模组组件,其中所述第二裸露表面220位于所述第二连接部222,其中当所述第一焊接件21和所述第二焊接件22经过焊接后,所述第一连接部212的所述第一裸露表面210和所述第二连接部222所述第二裸露表面220相互对应,从而使所述第一焊接件21和所述第二焊接件22被彼此相互焊接,进而使所述第一模组组件和所述第二模组组件被彼此相互固定。
值得一提的是,当所述第一焊接件21和所述第二焊接件22被焊接固定之前,其中所述第一焊接件21的所述第一连接部212形成的所述第一裸露表面210能够与所述第二焊接件22的所述第二连接部222形成的所述第二裸露表面220相对,进而当对所述第一焊接件21和所述第二焊接件22被焊接时,所述第一连接 部212与所述第二连接部222之间通过所述第一裸露表面210和所述第二裸露表面220而相互融合,进而使所述第一模组组件和所述第二模组组件通过所述第一连接部212和所述第二连接部222之间的连接被相互固定。
更值得一提的是,在本发明中,所述第一焊接件21和所述第二焊接件22具有相同的形状结构,也可以具有不同的形状结构。比如在如图2A和图2B中分别示出了本发明所述第一焊接件21的两种不同形状的结构示意图,并且图2C示出了所述第一焊接件21被实施为如图2A所示的结构以及所述第二焊接件22被实施为如图2B所述的结构时,所述第一焊接件21承载于所述第二焊接件22的示意图。本领域技术人员可以理解的是,当所述第一焊接件21和所述第二焊接件22分别被设置于上述各实施例中的所述第一模组组件和所述第二模组组件后,并通过焊接所述第一焊接件21和所述第二焊接件22,从而能够使所述第一模组组件被相对固定于所述第二模组组件。
在本发明中,所述第一焊接件21和所述第二焊接件22可以具有多种形状。例如,在本发明一实施例中,所述第一嵌入部211和所述第一连接部212为所述第一焊接件21的两侧部,具体的可以是所述第一焊接件21的上部和下部,也可以是所述第一焊接件21的左部和右部。所述第二嵌入部212和所述第二连接部212可以被设置为与所述第一焊接件21的所述第一嵌入部211具有相同的形状或不同形状,也就是说,所述焊接结构可以是相同形状的所述第一焊接件21和所述第二焊接件22之间的组合,也可以是不同形状的所述第一焊接件21和所述第二焊接件22之间的组合,本发明不受此方面的限制。
比如参考图2A,在本发明第一个实施例中的所述第一焊接件21,所述第一焊接件21和所述第二焊接件22适于被安装于具有一水平平面的所述第一模组组件和所述第二模组组件,如图5、图13A、图13B、图14B以及图15B所示的所述第一模组组件中。在本实施例中,所述第一焊接件21具有一环形结构,并且所述第一焊接件21的所述第一嵌入部211和所述第一连接部212具有不同的高度,以在所述第一嵌入部211和相邻的两个所述第一连接部212之间形成一嵌入空间200,供嵌入所述第一模组组件。
再比如参考图2B,在本发明第一个实施例中的所述第二焊接件22适于被安装于具有一水平平面的所述第一模组组件和所述第二模组组件。在本发明第一个实施例中的所述第二焊接件22的所述第一嵌入部211和所述第二连接部212具 有相同的高度。在本实施例中,所述第二焊接件22也被实施为一环形,且所述第二焊接件22的所述第二连接部222为一闭合的环形圈,所述第二焊接件22的所述第二嵌入部221为自所述第二连接部222径向延伸的凸出部。当所述第二焊接件22被设置于所述第一模组组件后,所述第二焊接件22的所述第二连接部222形成所述第二裸露表面220。
另外,在本发明中,所述第一焊接件21和所述第二焊接件22可以被实施为具有相同的形状结构,也可以被实施为具有不同的形状结构,本发明不受此方面的限制。
比如如图3A、图3B以及图3C所示,在本发明的第二个实施例中的所述第一焊接件21A和所述第二焊接件22A具有不同的结构。在本实施例中,所述第一焊接件21A和所述第二焊接件22A适于被设置于具有一竖直平面的所述第一模组组件和所述第二模组组件,如图8A、图8B、图10A以及图10B。在本实施例中,所述第一焊接件21A和所述第二焊接件22A分别被实施为一环形结构。所述第一焊接件21A在水平方向上靠外的部分形成所述第一连接部212A,所述第一焊接件21A在水平方向上靠内的部分形成所述第一嵌入部211A,当所述第一焊接件21A被设置于所述第一模组组件后,所述第一连接部212形成所述第一裸露表面210A。
此外,在本发明一个实施例中,所述第一焊接件21和/或所述第二焊接件22的形状可以被实施为一体形成的环形,也可以被实施为分体的至少两部分组成,本发明不受此方面的限制。
如图4A、图4B以及图4C所示。在本实施例中,所述第一焊接件21B和所述第二焊机件22B分别被实施为由分体的两部分组成。所述第一焊接件21B的每个部分都包括一第一嵌入部211B和一第一连接部212B。所述第二焊接件22B的每个部分都包括一第二嵌入部221B和一第二连接部222B。所述第一焊接件21B和所述第二焊接件22B分别被安装于所述第一模组组件和所述第二模组组件后,分别形成一第一裸露表面210B和一第二裸露表面220B,其中当所述第一焊接件21B和所述第二焊接件22B被焊接后,所述第一焊接件21B和所述第二焊接件22B相互连接。
本领域技术人员能够理解的是,在本发明其它实施例中,所述第一焊接件21B和所述第二焊接件22B还可以被实施为包括分体的三个或三个以上部分组成, 本发明不受此方面的限制。
由此可以看到本发明目的可被充分有效完成。用于解释本发明功能和结构原理的该实施例已被充分说明和描述,且本发明不受基于这些实施例原理基础上的改变的限制。因此,本发明包括涵盖在附属权利要求书要求范围和精神之内的所有修改。

Claims (24)

  1. 一多群组镜头,其特征在于,其包括:
    至少一第一群组单元,其中所述第一群组单元包括一第一承载部件、一第一群组镜片,其中所述第一群组镜片被安装于所述第一承载部件;
    至少一第二群组单元,其中所述第二群组单元包括一第二承载部件、一第二群组镜片,其中所述第二群组镜片被安装于所述第二承载部件,其中当所述第一群组单元被安装于所述第二群组单元时,其中所述第一承载部件被支撑于所述第二承载部件;以及
    一焊接结构,其中所述焊接结构包括至少一第一焊接件和与所述第一焊接件焊接固定的至少一第二焊接件,其中所述第一焊接件和所述第二焊接件分别被设置于所述第一承载部件和所述第二承载部件。
  2. 根据权利要求1所述的多群组镜头,其中所述第一承载部件包括一第一主体和自所述第一主体向外延伸的一外延伸台,其中所述外延伸台具有一第一外底面,所述第一焊接件被设置于所述第一外底面,其中所述第二承载部件包括一第二主体和自所述第二主体延伸的一支撑台,其中所述支撑台具有一外顶面,供承载所述第一承载部件的所述外延伸台,所述第二焊接件被设置于所述支撑台的所述外顶面。
  3. 根据权利要求1所述的多群组镜头,其中所述第一承载部件包括一第一主体和自所述第一主体向外延伸的一外延伸台,其中所述外延伸台具有一第一外侧面,所述第一焊接件被设置于所述外延伸台的所述第一外侧面,其中所述第二焊接件被设置于所述外延伸台的所述第一外侧面,其中所述第二承载部件包括一第二主体和自所述第二主体延伸的一支撑台,其中所述支撑台具有一第二外侧面,供承载所述第一承载部件的所述外延伸台,所述第二焊接件被设置于所述支撑台的所述第二外侧面。
  4. 根据权利要求2或3所述的多群组镜头,其中所述第一焊接件和所述第二焊接件被分别嵌入所述第一承载部件和所述第二承载部件。
  5. 根据权利要求4所述的多群组镜头,其中选自所述第一焊接件和所述第二焊接件中的至少一个被实施为封闭的环形。
  6. 根据权利要求4所述的多群组镜头,其中选自所述第一焊接件和所述第 二焊接件中的至少一个被实施为分体的多个部分组成。
  7. 根据权利要求4所述的多群组镜头,其中所述第一焊接件和所述第二焊接件被实施为具有相同的结构。
  8. 根据权利要求4所述的多群组镜头,其中所述第一焊接件包括一第一嵌入部和连接于所述第一嵌入部的一第一连接部,其中所述第一焊接件被嵌入所述第一承载部件时,所述第一嵌入部被嵌入所述第一承载部件,所述第一连接部形成一第一裸露表面。
  9. 根据权利要求8所述的多群组镜头,其中所述第二焊接件包括一第二嵌入部和连接于所述第二嵌入部的一第二连接部,其中所述第二焊接件被嵌入所述第二承载部件时,所述第二嵌入部被嵌入所述第二承载部件,所述第二连接部形成一第二裸露表面,其中所述第一焊接件和所述第二焊接件被焊接后,所述第一连接部的所述第一裸露表面和所述第二连接部的所述第二裸露表面彼此结合。
  10. 根据权利要求2所述的多群组镜头,其中所述外延伸台具有与所述外底面相对的一上侧面以及一焊接口,所述焊接口自所述外延伸台的所述外底面延伸至所述外延伸台的所述上侧面。
  11. 根据权利要求3所述的多群组镜头,其中所述支撑台具有与所述第二外侧面相对的一第三外侧面以及一焊接口,其中所述焊接口自所述第二外侧面延伸至所述第三外侧面。
  12. 一光学模组,其特征在于,其包括:
    一感光组件;和
    如权利要求1至11中任一所述多群组镜头,其中所述多群组镜头被设置于所述感光组件。
  13. 一电子设备,其特征在于,其包括:
    一设备本体;以及
    如权利要求12所述的光学模组,其中所述光学模组被安装于所述设备本体。
  14. 一光学模组,其特征在于,其包括:
    一感光组件;
    一镜头承载元件,其中所述镜头承载元件被设置于所述感光组件;
    一镜头,其中所述镜头被安装于所述镜头承载元件;以及
    一焊接结构,其中所述焊接结构包括至少一第一焊接件和至少一第二焊接件, 其中所述第一焊接件被设置于所述镜头承载元件,所述第二焊接件被以焊接固定于所述第一焊接件的方式设置于所述镜头。
  15. 根据权利要求14所述的光学模组,其中所述镜头包括一组镜片和一安装主体,所述镜片被安装于所述安装主体,其中所述安装主体具有一外壁,所述第一焊接件被设置于所述安装主体的外壁,其中所述镜头承载元件具有一内壁,所述第二焊接件以可焊接固定于所述第一焊接件的方式被设置于所述镜头承载元件的所述内壁。
  16. 一电子设备,其特征在于,其包括
    一设备本体;和
    如权利要求14或15所述的光学模组,其中所述光学模组被设置于所述设备本体。
  17. 一光学模组,其特征在于,其包括:
    一感光组件;
    一镜头承载构件,其中所述镜头承载构件被设置于所述感光组件;
    一镜头,其中所述镜头被安装于所述镜头承载构件;以及
    一焊接结构,其中所述焊接结构包括至少一第一焊接件和至少一第二焊接件,其中所述第一焊接件被设置于所述镜头承载构件,其中所述第二焊接件以焊接固定于所述第一焊接件的方式被设置于所述感光组件。
  18. 一电子设备,其特征在于,其包括:
    一设备本体;和
    如权利要求17所述的光学模组,其中所述光学模组被设置于所述设备本体。
  19. 一光学模组,其特征在于,其包括:
    一感光组件;
    一驱动元件,其中所述驱动元件被设置于所述感光组件;
    一镜头,被可驱动地承载于所述驱动元件;以及
    一焊接结构,其中所述焊接结构包括至少一第一焊接件和至少一第二焊接件,所述第一焊接件被设置于所述驱动元件,所述第二焊接件以焊接固定于所述第一焊接件的方式被设置于所述感光组件。
  20. 一电子设备,其特征在于,其包括:
    一设备本体;和
    如权利要求19所述的光学模组,其中所述光学模组被设置于所述设备本体。
  21. 一用于光学模组的制造工艺,其特征在于,其中所述工艺包括以下步骤:
    (1)安装设置有一第一焊接件的第一模组组件于设置有一第二焊接件的第二模组组件;和
    (2)通过激光焊接焊接所述第一焊接件和所述第二焊接件以使所述第一模组组件和所述第二模组组件被相对固定。
  22. 根据权利要求21所述用于光学模组的制造工艺,其中所述第一模组组件和所述第二模组组件被分别实施为选自一多群组镜头的至少两个群组单元、一镜头和镜头承载元件、一镜头承载构件和一感光组件、一驱动元件和一感光组件。
  23. 根据权利要求21所述用于光学模组的制造工艺,其中所述第一模组组件和所述第二模组组件被分别实施为一多群组镜头的至少两个群组单元,并在所述步骤(2)之前,其中所述光学模组制造工艺进一步包括以下步骤:
    校准至少两个所述群组单元。
  24. 根据权利要求21所述用于光学模组的制造工艺,其中所述步骤(1)包括:
    分别嵌入所述第一焊接件的一第一嵌入部和所述第二焊接件的一第二嵌入部于所述第一模组组件和所述第二模组组件;和
    置载设有一第一焊接件的第一模组组件于设置有一第二焊接件的第二模组组件,以将所述第一焊接件的一第一连接部对应于所述第二焊接件的一第二连接部。
PCT/CN2018/090397 2017-06-08 2018-06-08 用于光学模组的焊接结构及其应用 WO2018224031A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019567343A JP7061139B2 (ja) 2017-06-08 2018-06-08 光学モジュール用の溶接構造及びその応用
KR1020207000234A KR102431380B1 (ko) 2017-06-08 2018-06-08 광학 모듈에 이용되는 용접 구조 및 이의 응용
CN201880033057.8A CN110692231A (zh) 2017-06-08 2018-06-08 用于光学模组的焊接结构及其应用
US16/619,128 US11714250B2 (en) 2017-06-08 2018-06-08 Welding structure for optical module and application thereof
EP18814071.9A EP3637754B1 (en) 2017-06-08 2018-06-08 Welding structure for optical module and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710427335.5 2017-06-08
CN201710427335 2017-06-08

Publications (1)

Publication Number Publication Date
WO2018224031A1 true WO2018224031A1 (zh) 2018-12-13

Family

ID=64566393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090397 WO2018224031A1 (zh) 2017-06-08 2018-06-08 用于光学模组的焊接结构及其应用

Country Status (6)

Country Link
US (1) US11714250B2 (zh)
EP (1) EP3637754B1 (zh)
JP (1) JP7061139B2 (zh)
KR (1) KR102431380B1 (zh)
CN (3) CN109031572B (zh)
WO (1) WO2018224031A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031572B (zh) * 2017-06-08 2023-07-14 宁波舜宇光电信息有限公司 用于光学模组的焊接结构及其应用
WO2021000130A1 (zh) * 2019-06-29 2021-01-07 瑞声光学解决方案私人有限公司 镜头模组
CN110320631A (zh) * 2019-07-02 2019-10-11 宁波为森智能传感技术有限公司 一种镜头模组
TWI728690B (zh) * 2020-02-10 2021-05-21 大立光電股份有限公司 成像鏡頭、相機模組及電子裝置
CN113938581A (zh) * 2020-06-29 2022-01-14 宁波舜宇光电信息有限公司 光学组件及其组装方法
KR102428594B1 (ko) * 2020-08-28 2022-08-03 삼성전기주식회사 카메라 모듈
CN112327444A (zh) * 2020-10-10 2021-02-05 昆山丘钛微电子科技有限公司 一种镜头组件、摄像模组及终端设备
CN117014713A (zh) * 2023-09-26 2023-11-07 荣耀终端有限公司 摄像模组以及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080952A1 (ja) * 2009-12-28 2011-07-07 三洋電機株式会社 素子搭載用基板、半導体モジュール、カメラモジュールおよび素子搭載用基板の製造方法
CN102331612A (zh) * 2010-07-13 2012-01-25 鸿富锦精密工业(深圳)有限公司 镜头模组及使用该镜头模组的便携式电子装置
US20140036146A1 (en) * 2012-08-06 2014-02-06 Lg Innotek Co., Ltd. Camera module and electronic device including the same
CN204697151U (zh) * 2015-05-14 2015-10-07 宁波舜宇光电信息有限公司 防止芯片倾斜的摄像模组
CN205407980U (zh) * 2016-03-07 2016-07-27 宁波舜宇光电信息有限公司 摄像模组
CN205610755U (zh) * 2016-03-07 2016-09-28 宁波舜宇光电信息有限公司 摄像模组

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3809047B2 (ja) * 2000-05-10 2006-08-16 シャープ株式会社 対物レンズ鏡筒駆動装置及び光情報記録再生装置
JP2004325595A (ja) * 2003-04-22 2004-11-18 Mitsumi Electric Co Ltd 光学素子の固定構造及び固定方法
JP2006039403A (ja) * 2004-07-29 2006-02-09 Kyocera Corp 撮像装置及び該撮像装置を備えた携帯端末
TWI359293B (en) * 2005-11-18 2012-03-01 Hon Hai Prec Ind Co Ltd Lens structure with zooming and focusing function
DE102006013164A1 (de) * 2006-03-22 2007-09-27 Robert Bosch Gmbh Verfahren zur Montage eines Kameramoduls und Kameramodul
JP2008090180A (ja) 2006-10-04 2008-04-17 Auto Network Gijutsu Kenkyusho:Kk 撮像装置
CN100517737C (zh) * 2006-10-25 2009-07-22 鸿富锦精密工业(深圳)有限公司 影像感测器封装结构
JP2008172724A (ja) * 2007-01-15 2008-07-24 Hitachi Maxell Ltd カメラモジュール、台座マウント、撮像装置及び撮像装置の製造方法
JP2010139625A (ja) * 2008-12-10 2010-06-24 Tamron Co Ltd 光学装置および撮像装置
JP2010139626A (ja) * 2008-12-10 2010-06-24 Tamron Co Ltd 光学装置、撮像装置および光学装置の製造方法
JP2010175674A (ja) * 2009-01-28 2010-08-12 Kyocera Corp 撮像モジュールとその製造方法
JP2010219696A (ja) * 2009-03-13 2010-09-30 Sharp Corp 固体撮像装置およびそれを備えた電子機器
JP2010243619A (ja) 2009-04-02 2010-10-28 Tamron Co Ltd 光学装置、撮像装置および光学装置の製造方法
KR101888961B1 (ko) * 2011-09-30 2018-08-16 엘지이노텍 주식회사 카메라 모듈의 조립 방법
JP2016051076A (ja) * 2014-08-29 2016-04-11 日本電産コパル株式会社 レンズ鏡筒及び撮像装置
CN104243786A (zh) * 2014-09-30 2014-12-24 苏州智华汽车电子有限公司 一种车载摄像头及其制作方法
CN105744127B (zh) * 2015-11-13 2020-04-28 宁波舜宇光电信息有限公司 摄像模组及其电气支架和组装方法
EP3376751B1 (en) * 2015-11-13 2021-04-21 Ningbo Sunny Opotech Co., Ltd. Camera module, electrical support thereof, and assembling method therefor
CN105450913B (zh) * 2015-12-01 2020-04-28 宁波舜宇光电信息有限公司 摄像模组和电气支架及其组装方法和应用
CN109709747B (zh) 2015-12-02 2021-08-10 宁波舜宇光电信息有限公司 采用分体式镜头的摄像模组及其组装方法
CN205208078U (zh) * 2015-12-26 2016-05-04 上海比路电子有限公司 一体化底座
CN205407986U (zh) * 2016-03-07 2016-07-27 宁波舜宇光电信息有限公司 摄像模组
CN106331455A (zh) * 2016-09-27 2017-01-11 华为技术有限公司 摄像头组件及终端
CN207731004U (zh) * 2016-12-10 2018-08-14 瑞声科技(新加坡)有限公司 镜头模组
CN109031572B (zh) * 2017-06-08 2023-07-14 宁波舜宇光电信息有限公司 用于光学模组的焊接结构及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011080952A1 (ja) * 2009-12-28 2011-07-07 三洋電機株式会社 素子搭載用基板、半導体モジュール、カメラモジュールおよび素子搭載用基板の製造方法
CN102331612A (zh) * 2010-07-13 2012-01-25 鸿富锦精密工业(深圳)有限公司 镜头模组及使用该镜头模组的便携式电子装置
US20140036146A1 (en) * 2012-08-06 2014-02-06 Lg Innotek Co., Ltd. Camera module and electronic device including the same
CN204697151U (zh) * 2015-05-14 2015-10-07 宁波舜宇光电信息有限公司 防止芯片倾斜的摄像模组
CN205407980U (zh) * 2016-03-07 2016-07-27 宁波舜宇光电信息有限公司 摄像模组
CN205610755U (zh) * 2016-03-07 2016-09-28 宁波舜宇光电信息有限公司 摄像模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637754A4 *

Also Published As

Publication number Publication date
US11714250B2 (en) 2023-08-01
CN110692231A (zh) 2020-01-14
EP3637754B1 (en) 2024-02-21
CN109031572A (zh) 2018-12-18
EP3637754A4 (en) 2020-06-10
CN109031572B (zh) 2023-07-14
US20200116970A1 (en) 2020-04-16
JP2020522754A (ja) 2020-07-30
KR20200027492A (ko) 2020-03-12
KR102431380B1 (ko) 2022-08-11
JP7061139B2 (ja) 2022-04-27
CN208621811U (zh) 2019-03-19
EP3637754A1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
WO2018224031A1 (zh) 用于光学模组的焊接结构及其应用
US11867965B2 (en) Adjustable optical lens and camera module and manufacturing method thereof
JP7419311B2 (ja) マルチレンズカメラモジュール結合スタンド、マルチレンズカメラモジュール、およびその利用
US11601576B2 (en) Array camera module having height difference, circuit board assembly and manufacturing method therefor, and electronic device
EP3410169B1 (en) Camera module and assembling method therefor
US11099353B2 (en) Adjustable optical lens and camera module, manufacturing method and applications thereof
TWI706211B (zh) 整合對焦機構的分體式鏡頭及其組裝方法和攝像模組
US11506857B2 (en) Camera module and assembly method therefor
TWI731060B (zh) 分體式陣列攝像模組及其組裝和應用方法
JP2019519001A (ja) 固定焦点カメラモジュール並びにその焦点調節装置および焦点調節方法
WO2020151481A1 (zh) 摄像模组、摄像模组的组装方法以及电子设备
WO2022022240A1 (zh) 投影模组及其组装方法和包括投影模组的近眼显示设备
TW200813511A (en) The small optics lens which don't must focusing and its method
US20230012466A9 (en) Adjustable Optical Lens and Camera Module and Manufacturing Method and Applications Thereof
WO2018171714A1 (zh) 分体式镜头和摄像模组
TWI403772B (zh) 鏡頭模組與鏡頭模組組裝方法
JP2004157338A (ja) 電子撮像装置
WO2014029252A1 (zh) 自定位自遮光式镜片
CN108267827A (zh) 镜头模块及镜头模块的组装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567343

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207000234

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018814071

Country of ref document: EP

Effective date: 20200108