WO2018223761A1 - 三维打印装置及三维打印方法 - Google Patents

三维打印装置及三维打印方法 Download PDF

Info

Publication number
WO2018223761A1
WO2018223761A1 PCT/CN2018/082280 CN2018082280W WO2018223761A1 WO 2018223761 A1 WO2018223761 A1 WO 2018223761A1 CN 2018082280 W CN2018082280 W CN 2018082280W WO 2018223761 A1 WO2018223761 A1 WO 2018223761A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional printing
film
printing apparatus
base
dimensional
Prior art date
Application number
PCT/CN2018/082280
Other languages
English (en)
French (fr)
Inventor
姚志锋
Original Assignee
北京清锋时代科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京清锋时代科技有限公司 filed Critical 北京清锋时代科技有限公司
Priority to US16/619,869 priority Critical patent/US11938675B2/en
Priority to EP18814243.4A priority patent/EP3590685B1/en
Priority to JP2020511850A priority patent/JP6894045B2/ja
Publication of WO2018223761A1 publication Critical patent/WO2018223761A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to the field of three-dimensional manufacturing technology and related equipment, and in particular to a three-dimensional printing apparatus.
  • the present invention also relates to a three-dimensional printing method using the three-dimensional printing apparatus.
  • 3D printing technology also known as 3D printing technology, usually includes mainstream technologies such as laser light curing, fused deposition modeling and 3D printing. Among them, laser light curing has become the mainstream development direction due to its high speed, high precision and miniaturization. However, laser light curing technology also has obvious shortcomings.
  • the photosensitive resin tray substrate is a transparent organic film, and the photosensitive resin has a large surface tension on its surface, so that the liquid resin or the molded cured resin has a small adhesion to it, although the adhesion is good. Small, when the cured layer of the molded resin is pulled vertically from the film substrate, the adhesion is sufficient to cause damage to the film and the cured layer itself, which impairs the thickness of the film and the mechanical strength of the cured model.
  • the solution in the industry is to design a complex mechanical structure.
  • the tray is tangentially rotated to the left and right, which is equivalent to letting the film slanted from the solidified layer, so that the adhesion is much smaller, for the film and the model. Damage is minimized.
  • this solution does not fundamentally solve the problem of solidified glass, and increases machine cost and printing time.
  • the present invention provides a three-dimensional printing apparatus comprising a chassis, a light source and a controller, the middle portion of the chassis has a liquid storage tank, and the inner wall of the liquid storage tank has a blocking element, the liquid storage The interior of the tank contains a polymerizable liquid;
  • a base is also provided that is aligned with the reservoir, and a drive is coupled to the base, the light source mating with the bottom of the base.
  • the outer surface of the blocking element has a plurality of microscopic three-dimensional modules, and the ratio of the length between the assembled end of the microscopic three-dimensional module and the free end thereof to the maximum lateral side length of the longitudinal section thereof is from 1 to 1000, and the microscopic The ratio between the length of the assembled end of the three-dimensional module and the free end thereof and the lateral distance of the assembled end of the two adjacent microscopic three-dimensional modules is 1 to 1000.
  • the viscous force between the same material construction member and the adhesive-blocking member is less than 50% of the viscous force between the same material construction member and the Teflon member having the flat surface.
  • each of the microscopic three-dimensional modules is any one of a cylindrical module, a conical module, a tower module, a boss module, a fiber module or a hole module.
  • the longitudinal cross section of the microscopic three-dimensional module has a maximum lateral side length of from 0.01 micrometer to 10 micrometers.
  • the blocking element is a polymeric film.
  • the blocking element is a fluoropolymer film.
  • the blocking element is a polychlorotrifluoroethylene film, a polytetrafluoroethylene film, a polyvinylidene fluoride film, a polyvinyl fluoride film, a polytrichloroethylene film, a vinylidene fluoride-chlorotrifluoroethylene copolymer film.
  • tetrafluoroethylene-perfluoroalkyl ether copolymer film tetrafluoroethylene-hexafluoropropylene copolymer film, vinylidene fluoride-hexafluoropropylene copolymer film, ethylene-tetrafluoroethylene copolymer film, ethylene-three Any one of a fluorovinyl chloride copolymer film, a fluorine-containing acrylate copolymer film, and a fluorinated ethylene propylene film.
  • the blocking component and the liquid storage tank are of a unitary structure.
  • the light source is any one of a full-band halogen lamp, an ultraviolet band light emitting diode, or a laser diode.
  • the present invention also provides a three-dimensional printing method using the three-dimensional printing apparatus according to any of the preceding claims, comprising the steps of:
  • the illumination is stopped after the forming part is formed, and then the controller controls the base to move a certain distance away from the light source by the driving device.
  • the adhesion between the structural member and the base is greater than that of the structural member due to the action of the blocking component. The adhesion between the blocking elements, so that the structural member and the blocking member are directly out of contact and interlocked with the base;
  • the pedestal drives the formed structural member to continue to rise to a certain height, so as to form a certain gap between the structural member and the blocking component, and then the light source re-lights the corresponding position of the polymerizable liquid to cure and form
  • the previously formed structural member is formed into a unitary structure and is again detached from the blocking member after molding;
  • the cycle processing is repeated, and the above-described continuous molding step is repeated until the shape of the structural member has conformed to the final processed product requirements, and the final molded structure is removed from the three-dimensional printing device.
  • the forming rate of the building member in the moving direction of the base is from 2 cm/hr to 200 cm/hr.
  • the three-dimensional printing device in the working process, uses a blocking component as a covering member of the liquid storage tank, so that the structural member solidified by the polymerizable liquid can be quickly and efficiently
  • the anti-adhesive element is disengaged for further molding processing, thereby making the whole three-dimensional printing process faster and more efficient, and effectively avoiding structural damage of the product or component caused by excessive adhesion during the process of disengaging between the molded product and the device component.
  • FIG. 1 is a schematic structural diagram of an initial working state of a three-dimensional printing apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a structural member of the three-dimensional printing apparatus of FIG. 1 in a preliminary molding state
  • FIG. 3 is a schematic structural view of the structure of the three-dimensional printing device of FIG. 1 after the pedestal is raised by a certain distance after the initial forming of the three-dimensional printing device;
  • FIG. 4 is a schematic structural view showing a state in which a structural member of the three-dimensional printing apparatus of FIG. 1 is continuously fixed;
  • FIG. 5 is a flow chart of a three-dimensional printing method according to an embodiment of the present invention.
  • the core of the present invention is to provide a three-dimensional printing apparatus capable of making the three-dimensional printing process simpler and more efficient, and avoiding damage to equipment and products. Meanwhile, a three-dimensional printing method using the above three-dimensional printing apparatus is provided.
  • FIG. 1 is a schematic structural diagram of an initial working state of a three-dimensional printing apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a three-dimensional printing apparatus of FIG.
  • FIG. 3 is a schematic structural view of the three-dimensional printing device of FIG. 1 after the initial forming of the three-dimensional printing device is raised by a certain distance
  • FIG. 4 is a structural schematic view of the three-dimensional printing device of FIG.
  • the three-dimensional printing apparatus comprises a chassis 11, a light source 21 and a controller (not shown).
  • the middle portion of the chassis 11 has a liquid storage tank 111, and the inner wall of the liquid storage tank 111 has The anti-adhesive element 12, the inside of the liquid storage tank 111 is filled with the polymerizable liquid 22, and further includes a base 13 adapted to the alignment of the liquid storage tank 111, and a driving device (not shown) is connected to the base 13
  • the light source 21 is mated with the bottom of the susceptor 13.
  • the anti-blocking member 12 is used as the covering member of the liquid storage tank 11
  • the structural member 23 which is solidified by the polymerizable liquid 22 can be quickly and efficiently disengaged from the blocking member 12, so as to implement further Molding and processing operations, which make the whole 3D printing process faster and more efficient, and effectively avoid damage to the product or component structure caused by excessive adhesion during the process of detachment between the molded product and the device component, ensuring the processing effect and equipment components of the product. Stable work runs.
  • the position of the pedestal 13 is not limited to the above-mentioned liquid storage tank 111, and may be located inside the liquid storage tank 111 or other capable of being connected to the liquid storage tank 111.
  • the position at which the inner polymerizable liquid is blended may, in principle, be sufficient as long as it satisfies the actual use requirements of the three-dimensional printing apparatus.
  • the outer surface of the anti-blocking element 12 has a plurality of microscopic three-dimensional modules, and the ratio of the length between the assembled end of the microscopic three-dimensional module and the free end thereof to the maximum lateral side length of the longitudinal section thereof is from 1 to 1000, and the assembly end of the microscopic three-dimensional module The ratio between the length of the free end and the lateral end of the adjacent two microscopic three-dimensional modules is 1 to 1000.
  • Each of the microscopic three-dimensional modules has a certain protruding structure, which can significantly reduce the effective contact area between the structural member 23 and the blocking member 12, thereby further reducing the adhesion between the blocking member 12 and the structural member 23, thereby further improving the structural member 23. The separation efficiency and molding effect.
  • the ratio of the viscous force between the material member 23 and the barrier member 12 to the viscous force between the material member 23 and the flat surface of the PTFE member is less than 50%. That is, the viscous force between the material material member 23 and the viscous element 12 is F, and the viscous force between the material member 23 and the PTFE member having the flat surface is f, then F/f ⁇ 0.5.
  • each of the microscopic three-dimensional modules is any one of a cylindrical module, a conical module, a tower module, a boss module, or a hole module.
  • the shape of the microscopic three-dimensional module can be flexibly adjusted according to the working conditions, and in principle, as long as it can meet the actual use requirements of the three-dimensional printing device.
  • the microscopic three-dimensional module has a side length of 0.01 micrometers to 10 micrometers.
  • the size specification is only a preferred solution, and the size parameter of each of the periscope microscopic three-dimensional modules in the actual application is not limited thereto, as long as it can meet the actual use requirements of the three-dimensional printing device.
  • the blocking member 12 is a polymer film, and further preferably a fluoropolymer film.
  • a polymer film particularly a fluoropolymer film, has a smaller surface adhesion, and the detachment work between the structural member 23 and the blocking member 12 can be further achieved without loss and high efficiency.
  • the blocking member 12 is a polychlorotrifluoroethylene film, a polytetrafluoroethylene film, a polyvinylidene fluoride film, a polyvinyl fluoride film, a polytrichloroethylene film, a vinylidene fluoride-chlorotrifluoroethylene copolymer film, and a fourth Fluoroethylene-perfluoroalkyl ether copolymer film, tetrafluoroethylene-hexafluoropropylene copolymer film, vinylidene fluoride-hexafluoropropylene copolymer film, ethylene-tetrafluoroethylene copolymer film, ethylene-chlorotrifluorochloride Any one of an ethylene copolymer film, a fluorine-containing acrylate copolymer film, and a fluorinated ethylene propylene film.
  • the above-mentioned various types of films are only preferred. In practical applications, the worker can be
  • the blocking member 12 and the reservoir 111 are of a unitary structure.
  • the one-piece structure helps to improve the structural strength of the structure of the liquid storage tank 111 and the assembly reliability of the relevant components of the anti-adhesive element 12, thereby ensuring stable and reliable operation of the relevant components during the operation of the equipment.
  • the light source 21 is any one of a full-band halogen lamp, an ultraviolet band light emitting diode, or a laser diode.
  • the above three light source forms can be replaced without difference, but in practical applications, due to the working conditions and actual cost considerations, the worker can flexibly select the light source form to meet the use requirements of the three-dimensional printing device under different conditions.
  • the susceptor 13 is preferably a rigid material such as a stainless steel member or an aluminum alloy member, so that the overall structure of the susceptor 13 can be made lighter while ensuring structural strength.
  • FIG. 5 is a flowchart of a three-dimensional printing method according to an embodiment of the present invention.
  • the three-dimensional printing method provided by the present invention for the three-dimensional printing apparatus as described above, includes:
  • the portion of the bottom of the susceptor 13 that is in contact with the polymerizable liquid 22 in the reservoir 111 is illuminated by the light source 21, and after a certain period of time, the polymerizable liquid 22 at the illumination is solidified into the structural member 23 and attached to the bottom of the susceptor.
  • the light source 21 The portion of the bottom of the susceptor 13 that is in contact with the polymerizable liquid 22 in the reservoir 111 is illuminated by the light source 21, and after a certain period of time, the polymerizable liquid 22 at the illumination is solidified into the structural member 23 and attached to the bottom of the susceptor.
  • Step 102 moving away:
  • the illumination is stopped, and then the controller controls the susceptor 13 to move away from the light source by a certain distance by the driving device.
  • the adhesion between the framing member 23 and the pedestal 13 is greater than the structuring due to the action of the blocking member 12.
  • the adhesion between the member 23 and the blocking member 12 causes the structural member 23 to be in direct contact with the blocking member 12 and interlocked with the base 13. Refer to FIG. 3 for the device status corresponding to this step 102.
  • the controller controls the pedestal through the driving device. 13 rises a certain distance, but the relative position between the pedestal 13 and the liquid storage tank 111 is not unique in practical applications, and the worker can flexibly adjust the relative position and the cooperation relationship between the pedestal 13 and the liquid storage tank 111 according to the working conditions. In principle, as long as it can meet the actual work requirements of the three-dimensional printing method.
  • the structural member 23 is directly out of contact with the anti-blocking member 12 and interlocked with the base 13 as a reference for comparison.
  • the fitting member 23 and the fitting portion at the reservoir 111 ( The position of the position in which the position of the anti-adhesive element 12 can be referred to in the present case is not a direct action, but the corresponding action component drives the mating piece to be twisted or displaced unidirectionally so as to partially localize the mating piece and the frame member 23.
  • the base 13 After the separation, the base 13 is moved, and the linkage between the frame member 13 and the frame member 23 is completely separated between the frame member 23 and the frame member 23, that is, the two steps are used in the prior art to realize the frame member 23 and the storage.
  • the corresponding fitting member is completely disengaged at the liquid tank 111.
  • the adhesive blocking original member 12 is used as a component for mating with the structural member 23, the structural member 23 can be directly realized by only a single single action of the base 13 Complete separation between the blocking adhesives 12 .
  • Step 103 continue molding:
  • the pedestal 13 drives the formed structural member 23 to continue to rise to a certain height to form a gap between the structural member 23 and the blocking member 12, and then the light source 21 re-lights the polymerizable liquid 22 at the corresponding position to cure it. Formed and formed into a unitary structure with the previously formed structural member 23, and again detached from the blocking member 12 after molding. Refer to FIG. 4 for the device status corresponding to this step 103.
  • the manner in which the pedestal 13 drives the formed structural member 23 is not limited to the vertical displacement such as the rising height described above, and The horizontal displacement of a certain distance can be performed according to the actual product processing requirements, and the forming effect of the displacement between the vertical direction and the horizontal direction can be referred to FIG. 4, but the actual forming effect of the structural member 23 is not limited to the one shown in the figure, and should be Product processing requirements and final product molding effects in actual operations are subject to change.
  • Step 104 cyclic processing:
  • step 103 is repeated to continue molding until the form of the structural member 23 has conformed to the final processed product requirements, and the final molded structure 23 is removed from the three-dimensional printing apparatus.
  • the device status corresponding to this step 104 can continue to refer to FIG.
  • the molding rate of the structural member 23 in the moving direction of the susceptor 13 is from 2 cm/hr to 200 cm/hr.
  • the molding rate of the structural member 23 can be flexibly adjusted according to the working conditions and the product processing specifications. In principle, as long as the actual operation requirements of the three-dimensional printing method can be satisfied.
  • the three-dimensional printing device comprises a chassis, a light source and a controller, wherein the middle portion of the chassis has a liquid storage tank, and the inner wall of the liquid storage tank has a blocking element, and the liquid storage tank has The interior contains a polymerizable liquid; and a base adapted to align with the liquid storage tank, to which a driving device is connected, the light source mating with the bottom of the base.
  • the anti-adhesive element is used as the covering member of the liquid storage tank, the structural member solidified by the polymerizable liquid can be quickly and efficiently disengaged from the anti-adhesive element, so as to carry out further molding processing work, thereby
  • the whole three-dimensional printing process is faster and more efficient, and the damage of the product or component structure caused by excessive adhesion during the process of detachment between the molded product and the device component is effectively avoided, thereby ensuring the processing effect of the product and the stable working operation of the device component.
  • the three-dimensional printing method of the above three-dimensional printing apparatus provided by the present invention can make the three-dimensional printing process simpler and more efficient, and avoid damage to equipment and products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

本发明公开了一种三维打印装置,包括底盘、光源和控制器,所述底盘的中部具有储液槽,所述储液槽的内壁上具有阻粘元件,所述储液槽的内部盛放有可聚合液体;还包括与所述储液槽对位适配的基座,所述基座上连接有驱动装置,所述光源与所述基座的底部相配合。由于采用了阻粘元件作为储液槽的包覆件,使得由可聚合液体固化成型后的构筑件能够快速高效地与阻粘元件脱离接触,以便实施进一步的成型加工作业,从而使得整个三维打印过程更加快捷高效,同时有效避免了成型产品与设备组件间脱离过程中因附着力过大而导致的产品或组件结构损伤,保证了产品的加工效果和设备组件的稳定工作运行。本发明还公开了一种应用上述三维打印装置的三维打印方法。

Description

三维打印装置及三维打印方法
本申请要求于2017年06月06日提交中国专利局、申请号为201710418091.4、发明名称为“三维打印装置及三维打印方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及三维制造技术及其配套设备技术领域,特别涉及一种三维打印装置。本发明还涉及一种应用该三维打印装置的三维打印方法。
背景技术
三维打印技术,又称3D打印技术,通常包括激光光固化、熔融沉积造型和三维打印成型等主流技术。其中,激光光固化以其速度快、精度高、小型化等特点成为目前主流发展方向。但激光光固化技术也存在明显缺点。
具体说来,向上拉出型光敏树脂激光光固化型技术存在以下主要问题。光敏树脂托盘基底是一层透明的有机物薄膜,光敏树脂在它的表面形成的表面张力很大,因此无论是液态树脂还是成型的固化树脂都与它的粘附力比较小,但是尽管粘附力小,当成型树脂固化层从薄膜基底垂直拉出时,这种粘附力还是足以对薄膜和固化层树脂本身造成毁坏,这样就有损薄膜的厚度和固化模型的机械强度。行业内的解决方案是设计一种复杂的机械结构,每一层成型后让托盘左右切向转动,相当于让薄膜斜着从固化层掀起来,这样附着力就小很多,对薄膜和模型的损伤降到最低。然而这种解决方法没有从根本上解决固化层玻璃的问题,而且增加了机器成本和打印时间。
因此,如何使三维打印过程更加简便高效,并避免设备和产品损伤是本领域技术人员目前需要解决的重要技术问题。
发明内容
本发明的目的是提供一种三维打印装置,该三维打印装置能够使三维打印过程更加简便高效,并避免设备和产品损伤。本发明的另一目的是提供一种应用上述三维打印装置的三维打印方法。
为解决上述技术问题,本发明提供一种三维打印装置,包括底盘、光源和控制器,所述底盘的中部具有储液槽,所述储液槽的内壁上具有阻粘元件,所述储液槽的内部盛放有可聚合液体;
还包括与所述储液槽对位适配的基座,所述基座上连接有驱动装置,所述光源与所述基座的底部相配合。
优选地,所述阻粘元件的外表面具有若干微观三维模块,所述微观三维模块的装配端与其自由端间的长度与其纵向截面的最大横向边长的比值为1~1000,且所述微观三维模块的装配端与其自由端间的长度与相邻两所述微观三维模块的装配端横向间距比值为1~1000。
优选地,同材质构筑件与所述阻粘原件间的粘滞力小于同材质构筑件与具备平整表面的聚四氟乙烯制件间的粘滞力的50%。
优选地,各所述微观三维模块为柱形模块、圆锥形模块、塔形模块、凸台模块、纤维模块或孔洞模块中的任一种。
优选地,所述微观三维模块的纵向截面的最大横向边长为0.01微米~10微米。
优选地,所述阻粘元件为聚合物薄膜。
优选地,所述阻粘元件为含氟聚合物薄膜。
优选地,所述阻粘元件为聚三氟氯乙烯薄膜、聚四氟乙烯薄膜、聚偏氟乙烯薄膜、聚氟乙烯薄膜、聚三氯乙烯薄膜、偏氟乙烯-三氟氯乙烯共聚物薄膜、四氟乙烯-全氟烷基醚共聚物薄膜、四氟乙烯-六氟丙稀共聚物薄膜、偏氟乙烯-六氟丙稀共聚物薄膜、乙烯-四氟乙烯共聚物薄膜、乙烯-三氟氯乙烯共聚物薄膜、含氟丙烯酸脂共聚物薄膜、氟化乙丙烯薄膜中的任一种。
优选地,所述阻粘原件与所述储液槽为一体式结构。
优选地,所述光源为全波段卤素灯、紫外波段发光二极管或激光二极管中的任一种。
本发明还提供一种三维打印方法,采用了如上述权利要求中任一项所述的三维打印装置,包括步骤:
初步成型,利用光源对基座底部与储液槽内可聚合液体接触的部分实施光照,一定时间后该光照处的可聚合液体固化成型为构筑件并附着于基座底部;
移动脱离,构筑件成型后停止光照,之后控制器通过驱动装置控制基座向远离光源的方向移动一定距离,此时由于阻粘元件的作用使得构筑件与基座间的附着力大于构筑件与阻粘元件间的附着力,从而使构筑件与阻粘元件直接脱 离接触并随基座联动;
继续成型,基座带动已成型的构筑件继续上升至一定高度,以使构筑件与阻粘元件间形成一定间隙,然后由光源重新对相应位置的可聚合液体实施光照以使其固化成型并与之前的已成型构筑件形成一体式结构,并在成型后再次与阻粘元件脱离;
循环加工,重复上述继续成型步骤,直至构筑件的形态已符合最终的加工产品要求,并将最终的成型构筑件由三维打印装置上取下。
优选地,所述构筑件沿基座移动方向上的成型速率为2厘米/小时~200厘米/小时。
相对上述背景技术,本发明所提供的三维打印装置,其工作过程中,由于采用了阻粘元件作为储液槽的包覆件,使得由可聚合液体固化成型后的构筑件能够快速高效地与阻粘元件脱离接触,以便实施进一步的成型加工作业,从而使得整个三维打印过程更加快捷高效,同时有效避免了成型产品与设备组件间脱离过程中因附着力过大而导致的产品或组件结构损伤,保证了产品的加工效果和设备组件的稳定工作运行。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种具体实施方式所提供的三维打印装置的初始工作状态结构示意图;
图2为图1中三维打印装置的构筑件初步成型状态下的结构示意图;
图3为图1中三维打印装置的构筑件初步成型后基座上升一定距离后的结构示意图;
图4为图1中三维打印装置的构筑件连续固话成型状态的结构示意图;
图5为本发明一种具体实施方式所提供的三维打印方法的流程图。
具体实施方式
本发明的核心是提供一种三维打印装置,该三维打印装置能够使三维打印 过程更加简便高效,并避免设备和产品损伤;同时,提供一种应用上述三维打印装置的三维打印方法。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请参考图1至图4,图1为本发明一种具体实施方式所提供的三维打印装置的初始工作状态结构示意图;图2为图1中三维打印装置的构筑件初步成型状态下的结构示意图;图3为图1中三维打印装置的构筑件初步成型后基座上升一定距离后的结构示意图;图4为图1中三维打印装置的构筑件连续固话成型状态的结构示意图。
在具体实施方式中,本发明所提供的三维打印装置,包括底盘11、光源21和控制器(图中未示出),底盘11的中部具有储液槽111,储液槽111的内壁上具有阻粘元件12,储液槽111的内部盛放有可聚合液体22,还包括与储液槽111对位适配的基座13,基座13上连接有驱动装置(图中未示出),光源21与基座13的底部相配合。
工作过程中,由于采用了阻粘元件12作为储液槽11的包覆件,使得由可聚合液体22固化成型后的构筑件23能够快速高效地与阻粘元件12脱离接触,以便实施进一步的成型加工作业,从而使得整个三维打印过程更加快捷高效,同时有效避免了成型产品与设备组件间脱离过程中因附着力过大而导致的产品或组件结构损伤,保证了产品的加工效果和设备组件的稳定工作运行。
应当说明的是,具体到实际应用中,上述基座13的位置并不局限于如图所示的储液槽111上方,其还可以位于储液槽111的内部或其他能够与储液槽111内可聚合液体配合的位置,原则上,只要是能够满足所述三维打印装置的实际使用需要均可。
进一步地,阻粘元件12的外表面具有若干微观三维模块,微观三维模块的装配端与其自由端间的长度与其纵向截面的最大横向边长的比值为1~1000,且微观三维模块的装配端与其自由端间的长度与相邻两微观三维模块的装配端横向间距比值为1~1000。各微观三维模块具备一定的凸出结构,能够显著降低构筑件23与阻粘原件12间的有效接触面积,从而进一步降低阻粘元件12与构筑件23间的附着力,以进一步提高构筑件23的脱离效率和成型效果。
具体地,同材质构筑件23和阻粘原件12间的粘滞力与同材质构筑件23和具备平整表面的聚四氟乙烯制件间的粘滞力的比值小于50%。即,设同材质构筑件23与阻粘原件12间的粘滞力为F,同材质构筑件23与具备平整表面的聚四氟乙烯制件间的粘滞力为f,则F/f<0.5。
更具体地,各微观三维模块为柱形模块、圆锥形模块、塔形模块、凸台模块或孔洞模块中的任一种。实际应用中,还可以根据工况需要灵活调整上述微观三维模块的形状,原则上,只要是能够满足所述三维打印装置的实际使用需要均可。
此外,微观三维模块的边长为0.01微米~10微米。该尺寸规格仅为优选方案,实际应用中各围观微观三维模块的尺寸参数并不局限于此,只要是能够满足所述三维打印装置的实际使用需要均可。
另一方面,阻粘元件12为聚合物薄膜,且进一步优选为含氟聚合物薄膜。该种聚合物薄膜,尤其是含氟聚合物薄膜的表面附着力更小,能够使构筑件23与阻粘元件12间的脱离作业进一步达到无损、高效。
另外,阻粘元件12为聚三氟氯乙烯薄膜、聚四氟乙烯薄膜、聚偏氟乙烯薄膜、聚氟乙烯薄膜、聚三氯乙烯薄膜、偏氟乙烯-三氟氯乙烯共聚物薄膜、四氟乙烯-全氟烷基醚共聚物薄膜、四氟乙烯-六氟丙稀共聚物薄膜、偏氟乙烯-六氟丙稀共聚物薄膜、乙烯-四氟乙烯共聚物薄膜、乙烯-三氟氯乙烯共聚物薄膜、含氟丙烯酸脂共聚物薄膜、氟化乙丙烯薄膜中的任一种。上述各类薄膜仅为优选方案,实际应用中工作人员可以根据工况需要灵活选取阻粘元件12的材质,原则上,只要是能够满足所述三维打印装置的实际使用需要均可。
进一步地,阻粘原件12与储液槽111为一体式结构。该种一体式结构有助于提高储液槽111总成结构的结构强度及阻粘原件12相关配合件的装配可靠性,从而保证相关组件在设备运行过程中能够平稳可靠工作。
此外,光源21为全波段卤素灯、紫外波段发光二极管或激光二极管中的任一种。上述三种光源形式原则上可以无差别替换,但实际应用中由于工况和实际成本的考虑,工作人员可以灵活选用光源形式,以满足不同条件下所述三维打印装置的使用需要。
应当说明的是,实际应用中,基座13优选为不锈钢制件或铝合金制件等 刚性材料件,从而能够在保证结构强度的同时,使基座13的整体结构更加轻巧。
请参考图5,图5为本发明一种具体实施方式所提供的三维打印方法的流程图。
在具体实施方式中,本发明所提供的三维打印方法,用于如上文所述的三维打印装置,包括:
步骤101,初步成型:
利用光源21对基座13底部与储液槽111内可聚合液体22接触的部分实施光照,一定时间后该光照处的可聚合液体22固化成型为构筑件23并附着于基座底部。此步骤101对应的设备状态可参考图1和图2。
步骤102,移动脱离:
构筑件23成型后停止光照,之后控制器通过驱动装置控制基座13向远离光源的方向移动一定距离,此时由于阻粘元件12的作用使得构筑件23与基座13间的附着力大于构筑件23与阻粘元件12间的附着力,从而使构筑件23与阻粘元件12直接脱离接触并随基座13联动。此步骤102对应的设备状态可参考图3。
应当指出,具体到本方案中,由于本案附图中所示的相对位置关系为基座13位于储液槽111的上方,因此具体到本案中,上述步骤102中控制器通过驱动装置控制基座13上升一定距离,但实际应用中该基座13与储液槽111间的相对位置并不唯一,工作人员可以根据工况需要灵活调整基座13与储液槽111间的相对位置及配合关系,原则上,只要是能够满足所述三维打印方法的实际作业需要均可。
此外需要说明的是,上述步骤102中,构筑件23与阻粘元件12直接脱离接触并随基座13联动,作为对比参考,现有技术中构筑件23与储液槽111处的配合件(其位置可参考本案中阻粘原件12的位置)间的脱离接触并非直接动作,而是先由相应的动作组件带动配合件单向扭转或移位,以便使该配合件与构筑件23间局部分离,之后再移动基座13,并通过基座13与构筑件23间的联动关系使构筑件23与配合件间彻底分离,即,现有技术中采用两步动作才能实现构筑件23与储液槽111处相应配合件的完全脱离,而本方案中由于 采用了阻粘原件12作为与构筑件23配合的部件,因此仅需基座13的单方单次动作即可直接实现构筑件23与阻粘原件12间的彻底分离。
步骤103,继续成型:
基座13带动已成型的构筑件23继续上升至一定高度,以使构筑件23与阻粘元件12间形成一定间隙,然后由光源21重新对相应位置的可聚合液体22实施光照以使其固化成型并与之前的已成型构筑件23形成一体式结构,并在成型后再次与阻粘元件12脱离。此步骤103对应的设备状态可参考图4。
应当说明的是,具体到实际操作中,上述步骤103继续成型中,基座13带动已成型的构筑件23的移动方式并不仅限于上文所述的上升一定高度等竖直方向的位移,还可以根据实际产品加工需要而进行一定距离的水平位移,竖直方向与水平方向均存在位移的成型效果可以参考图4,但构筑件23的实际成型效果并不局限于图中所示,应以实际作业中的产品加工需求和最终产品成型效果为准。
步骤104,循环加工:
重复上述步骤103继续成型,直至构筑件23的形态已符合最终的加工产品要求,并将最终的成型构筑件23由三维打印装置上取下。此步骤104对应的设备状态可以继续参考图4。
进一步地,上述工艺步骤中,构筑件23沿基座13移动方向上的成型速率为2厘米/小时~200厘米/小时。当然,实际操作中可以根据工况需要和产品加工规格灵活调整构筑件23的成型速率,原则上,只要是能够满足所述三维打印方法的实际操作需要均可。
综上可知,本发明中提供的三维打印装置,包括底盘、光源和控制器,所述底盘的中部具有储液槽,所述储液槽的内壁上具有阻粘元件,所述储液槽的内部盛放有可聚合液体;还包括与所述储液槽对位适配的基座,所述基座上连接有驱动装置,所述光源与所述基座的底部相配合。工作过程中,由于采用了阻粘元件作为储液槽的包覆件,使得由可聚合液体固化成型后的构筑件能够快速高效地与阻粘元件脱离接触,以便实施进一步的成型加工作业,从而使得整个三维打印过程更加快捷高效,同时有效避免了成型产品与设备组件间脱离过程中因附着力过大而导致的产品或组件结构损伤,保证了产品的加工效果和设 备组件的稳定工作运行。
此外,本发明所提供的应用上述三维打印装置的三维打印方法,其能够使三维打印过程更加简便高效,并避免设备和产品损伤。
以上对本发明所提供的三维打印装置以及应用该三维打印装置的三维打印方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (12)

  1. 一种三维打印装置,其特征在于:包括底盘、光源和控制器,所述底盘的中部具有储液槽,所述储液槽的内壁上具有阻粘元件,所述储液槽的内部盛放有可聚合液体;
    还包括与所述储液槽对位适配的基座,所述基座上连接有驱动装置,所述光源与所述基座的底部相配合。
  2. 如权利要求1所述的三维打印装置,其特征在于:所述阻粘元件的外表面具有若干微观三维模块,所述微观三维模块的装配端与其自由端间的长度与其纵向截面的最大横向边长的比值为1~1000,且所述微观三维模块的装配端与其自由端间的长度与相邻两所述微观三维模块的装配端横向间距比值为1~1000。
  3. 如权利要求2所述的三维打印装置,其特征在于:同材质构筑件与所述阻粘原件间的粘滞力小于同材质构筑件与具备平整表面的聚四氟乙烯制件间的粘滞力的50%。
  4. 如权利要求2所述的三维打印装置,其特征在于:各所述微观三维模块为柱形模块、圆锥形模块、塔形模块、凸台模块、纤维模块或孔洞模块中的任一种。
  5. 如权利要求2所述的三维打印装置,其特征在于:所述微观三维模块的纵向截面的最大横向边长为0.01微米~10微米。
  6. 如权利要求1所述的三维打印装置,其特征在于:所述阻粘元件为聚合物薄膜。
  7. 如权利要求6所述的三维打印装置,其特征在于:所述阻粘元件为含氟聚合物薄膜。
  8. 如权利要求7所述的三维打印装置,其特征在于:所述阻粘元件为聚三氟氯乙烯薄膜、聚四氟乙烯薄膜、聚偏氟乙烯薄膜、聚氟乙烯薄膜、聚三氯乙烯薄膜、偏氟乙烯-三氟氯乙烯共聚物薄膜、四氟乙烯-全氟烷基醚共聚物薄膜、四氟乙烯-六氟丙稀共聚物薄膜、偏氟乙烯-六氟丙稀共聚物薄膜、乙烯-四氟乙烯共聚物薄膜、乙烯-三氟氯乙烯共聚物薄膜、含氟丙烯酸脂共聚物薄 膜、氟化乙丙烯薄膜中的任一种。
  9. 如权利要求1所述的三维打印装置,其特征在于:所述阻粘原件与所述储液槽为一体式结构。
  10. 如权利要求1所述的三维打印装置,其特征在于:所述光源为全波段卤素灯、紫外波段发光二极管或激光二极管中的任一种。
  11. 一种三维打印方法,采用了如权利要求1至10中任一项所述的三维打印装置,其特征在于,包括步骤:
    初步成型,利用光源对基座底部与储液槽内可聚合液体接触的部分实施光照,一定时间后该光照处的可聚合液体固化成型为构筑件并附着于基座底部;
    移动脱离,构筑件成型后停止光照,之后控制器通过驱动装置控制基座向远离光源的方向移动一定距离,此时由于阻粘元件的作用使得构筑件与基座间的附着力大于构筑件与阻粘元件间的附着力,从而使构筑件与阻粘元件直接脱离接触并随基座联动;
    继续成型,基座带动已成型的构筑件继续上升至一定高度,以使构筑件与阻粘元件间形成一定间隙,然后由光源重新对相应位置的可聚合液体实施光照以使其固化成型并与之前的已成型构筑件形成一体式结构,并在成型后再次与阻粘元件脱离;
    循环加工,重复上述继续成型步骤,直至构筑件的形态已符合最终的加工产品要求,并将最终的成型构筑件由三维打印装置上取下。
  12. 如权利要求11所述的三维打印方法,其特征在于:所述构筑件沿基座移动方向上的成型速率为2厘米/小时~200厘米/小时。
PCT/CN2018/082280 2017-06-06 2018-04-09 三维打印装置及三维打印方法 WO2018223761A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/619,869 US11938675B2 (en) 2017-06-06 2018-04-09 3D printing device and 3D printing method
EP18814243.4A EP3590685B1 (en) 2017-06-06 2018-04-09 3d printing device and 3d printing method
JP2020511850A JP6894045B2 (ja) 2017-06-06 2018-04-09 3次元印刷装置および3次元印刷方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710418091.4A CN107031036B (zh) 2017-06-06 2017-06-06 三维打印装置及三维打印方法
CN201710418091.4 2017-06-06

Publications (1)

Publication Number Publication Date
WO2018223761A1 true WO2018223761A1 (zh) 2018-12-13

Family

ID=59540918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082280 WO2018223761A1 (zh) 2017-06-06 2018-04-09 三维打印装置及三维打印方法

Country Status (5)

Country Link
US (1) US11938675B2 (zh)
EP (1) EP3590685B1 (zh)
JP (1) JP6894045B2 (zh)
CN (1) CN107031036B (zh)
WO (1) WO2018223761A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107031036B (zh) * 2017-06-06 2022-03-11 清锋(北京)科技有限公司 三维打印装置及三维打印方法
CN107972265A (zh) * 2017-11-10 2018-05-01 中国科学院化学研究所 一种3d打印系统
WO2019214552A1 (zh) * 2018-05-05 2019-11-14 宁波市石生科技有限公司 阻粘元件、三维打印装置及三维打印方法
JP7469478B2 (ja) * 2020-01-07 2024-04-16 ラクスクレオ・(ベイジン)・インコーポレイテッド 複合型離型フィルムと付加製造分野で該離型フィルムを使用する装置及び方法
CN113059797A (zh) * 2021-03-12 2021-07-02 浙江大学 一种光固化3d打印装置及打印方法
CN115891148B (zh) * 2022-10-26 2024-10-08 佛山臻硅科技有限公司 一种用于液态热固化材料固化成型的3d打印设备及其打印方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204076846U (zh) * 2014-09-11 2015-01-07 东莞市竞技者数码科技有限公司 一种快速成型的sla 3d打印机
WO2015170890A1 (ko) * 2014-05-07 2015-11-12 이병극 3d 프린팅 장치
CN105365216A (zh) * 2014-09-01 2016-03-02 上海联泰科技有限公司 用于底部投影式快速成型的树脂槽及底部投影式快速成型装置
CN105799168A (zh) * 2016-04-06 2016-07-27 南京增材制造研究院发展有限公司 一种防粘减阻纳米结构槽底连续快速曝光光固化打印机
CN106079495A (zh) * 2016-06-22 2016-11-09 西安理工大学 面曝光3d打印约束基板防粘附增透功能膜及其制备方法
US20160368206A1 (en) * 2014-02-28 2016-12-22 Byung-keuk Lee A method for 3d printing using photo-polymer and an apparatus thereof
CN107031036A (zh) * 2017-06-06 2017-08-11 北京清锋时代科技有限公司 三维打印装置及三维打印方法
CN206765363U (zh) * 2017-06-06 2017-12-19 北京清锋时代科技有限公司 三维打印装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119817A1 (de) * 2001-04-23 2002-10-24 Envision Technologies Gmbh Vorrichtung und Verfahren für die zerstörungsfreie Trennung ausgehärteter Materialschichten von einer planen Bauebene
EP1880832A1 (en) * 2006-07-18 2008-01-23 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Method and system for layerwise production of a tangible object
JP5599355B2 (ja) * 2011-03-31 2014-10-01 富士フイルム株式会社 モールドの製造方法
EP3197969A1 (en) * 2014-09-22 2017-08-02 Dow Global Technologies LLC Foil wrap with cling properties
US9914292B2 (en) * 2015-04-02 2018-03-13 Massivit 3D Printing Technologies Ltd Additive manufacturing device
ITUB20154169A1 (it) * 2015-10-02 2017-04-02 Thelyn S R L Metodo e apparato di foto-indurimento a substrato auto-lubrificante per la formazione di oggetti tridimensionali.
US11079683B2 (en) * 2017-05-26 2021-08-03 Hrl Laboratories, Llc Aperture system for preceramic polymer stereolithography

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160368206A1 (en) * 2014-02-28 2016-12-22 Byung-keuk Lee A method for 3d printing using photo-polymer and an apparatus thereof
WO2015170890A1 (ko) * 2014-05-07 2015-11-12 이병극 3d 프린팅 장치
CN105365216A (zh) * 2014-09-01 2016-03-02 上海联泰科技有限公司 用于底部投影式快速成型的树脂槽及底部投影式快速成型装置
CN204076846U (zh) * 2014-09-11 2015-01-07 东莞市竞技者数码科技有限公司 一种快速成型的sla 3d打印机
CN105799168A (zh) * 2016-04-06 2016-07-27 南京增材制造研究院发展有限公司 一种防粘减阻纳米结构槽底连续快速曝光光固化打印机
CN106079495A (zh) * 2016-06-22 2016-11-09 西安理工大学 面曝光3d打印约束基板防粘附增透功能膜及其制备方法
CN107031036A (zh) * 2017-06-06 2017-08-11 北京清锋时代科技有限公司 三维打印装置及三维打印方法
CN206765363U (zh) * 2017-06-06 2017-12-19 北京清锋时代科技有限公司 三维打印装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3590685A4 *

Also Published As

Publication number Publication date
JP2020518491A (ja) 2020-06-25
US20200101658A1 (en) 2020-04-02
EP3590685C0 (en) 2023-12-27
EP3590685B1 (en) 2023-12-27
EP3590685A4 (en) 2020-04-01
US11938675B2 (en) 2024-03-26
CN107031036B (zh) 2022-03-11
CN107031036A (zh) 2017-08-11
EP3590685A1 (en) 2020-01-08
JP6894045B2 (ja) 2021-06-23

Similar Documents

Publication Publication Date Title
WO2018223761A1 (zh) 三维打印装置及三维打印方法
CN206765363U (zh) 三维打印装置
TWI566918B (zh) 立體列印系統
TWI541142B (zh) 立體列印裝置
US20160046071A1 (en) Apparatus for peeling in the production of three dimensional objects
EP3323615B1 (en) Three-dimensional printing apparatus
CN103935035B (zh) 一种光源移动式面成型三维打印成型系统
TWI728984B (zh) 液體容置槽及立體列印裝置
US20200298485A1 (en) Three dimensional printing apparatus
CN108943697A (zh) 用于光固化增材制造设备的离型膜
CN106696296A (zh) 一种快速提拉成型3d打印系统及其打印方法
CN105538726A (zh) 一种基于薄膜基底的三维成型装置及方法
WO2017193819A1 (zh) 激光3d打印机用万向载物台
JP5343420B2 (ja) 高光線透過性フッ素樹脂フィルム
CN105172146A (zh) 一种应用于高粘度树脂的面成型3d打印装置及方法
TWI695776B (zh) 立體列印裝置及其製造方法
CN108705771A (zh) 光固化3d制造设备
CN110014647A (zh) 一种内部立体光投影固化成型3d打印设备及其成型方法
TWI558572B (zh) 多段拉拔力的三維列印裝置
US20180236721A1 (en) Three dimensional printing apparatus
TWM484504U (zh) 立體成型機構及其置液槽
CN209274000U (zh) 一种高效光固化3d打印设备
CN206999641U (zh) 可批量打印的激光成型3d打印机
CN205044182U (zh) 一种应用于高粘度树脂的面成型3d打印装置
CN210190595U (zh) 光固化3d打印机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018814243

Country of ref document: EP

Effective date: 20191002

ENP Entry into the national phase

Ref document number: 2020511850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE