WO2018223499A1 - 具有光纤传感和通信功能的光纤光缆及其制造方法 - Google Patents
具有光纤传感和通信功能的光纤光缆及其制造方法 Download PDFInfo
- Publication number
- WO2018223499A1 WO2018223499A1 PCT/CN2017/093842 CN2017093842W WO2018223499A1 WO 2018223499 A1 WO2018223499 A1 WO 2018223499A1 CN 2017093842 W CN2017093842 W CN 2017093842W WO 2018223499 A1 WO2018223499 A1 WO 2018223499A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- sensing
- cable
- optical fiber
- sheath layer
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 73
- 238000004891 communication Methods 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 238000005520 cutting process Methods 0.000 claims abstract description 70
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000001816 cooling Methods 0.000 claims abstract description 3
- 239000000835 fiber Substances 0.000 claims description 97
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000001125 extrusion Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000004698 Polyethylene Substances 0.000 claims description 7
- -1 polyethylene Polymers 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- 230000002787 reinforcement Effects 0.000 claims description 7
- 239000012779 reinforcing material Substances 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 5
- 239000000779 smoke Substances 0.000 claims description 4
- 239000004760 aramid Substances 0.000 claims description 3
- 229920003235 aromatic polyamide Polymers 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 2
- 238000010276 construction Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 7
- 238000007493 shaping process Methods 0.000 abstract 1
- 230000006872 improvement Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/4434—Central member to take up tensile loads
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
- G01H9/004—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/443—Protective covering
- G02B6/4432—Protective covering with fibre reinforcements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/44384—Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/443—Protective covering
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4479—Manufacturing methods of optical cables
Definitions
- the present invention relates to a fiber optic sensing cable, and more particularly to a fiber optic cable having both fiber sensing and communication functions and a method of manufacturing the same.
- optical fiber sensors use optical light as a carrier for sensitive information, and use optical fiber as a medium for transmitting sensitive information. They have the characteristics of optical fiber and optical measurement, and have good electrical insulation performance and strong anti-electromagnetic interference capability.
- fiber optic sensors As sensors move toward sensitivity, accuracy, adaptability, compactness, and intelligence, they can be used where people can't reach them (such as high-temperature areas or areas that are harmful to people, such as nuclear radiation). The role of the ear, but also can transcend the physiological boundaries of human beings and receive outside information that is not felt by human senses. Therefore, fiber optic sensors have attracted more and more people's attention. From the beginning of the 20th century to the present, fiber optic sensors have a large number of applications, and thus various forms of fiber optic sensing cables, such as distributed fiber optic sensing cables, in optical cables, have also been proposed.
- the application manufacturer needs to slot the optical fiber sensing cable as required, so that the optical fiber sensor can directly contact the test object, thereby improving the precision of the optical fiber sensing.
- the optical fiber sensing cable is manually slotted, there is a defect that the slotting is difficult, the cost is high, and the performance of the fiber sensing cable is reduced to some extent. Therefore, there is an urgent need for the existing fiber sensing cable.
- the structure is improved to ensure easy slotting, reduce construction costs and improve its transmission. Sense of performance.
- the object of the present invention is to provide a fiber optic cable with optical fiber sensing and communication functions.
- the overall structure of the fiber optic cable is ingeniously designed to meet the optical transmission and ensure the accuracy of the optical fiber sensing, and the slotting operation is convenient and effectively reduced. Construction costs.
- a method for manufacturing such a fiber-optic sensing cable is also provided, which is simple in operation, high in production efficiency, and high in precision.
- the technical solution adopted by the present invention is a fiber optic cable with optical fiber sensing and communication functions, including an outer sheath layer, an inner sheath layer, a communication fiber and a sensing fiber, and the communication fiber is laid on Inside the inner sheath layer, the sensing fiber is laid between the inner sheath layer and the outer sheath layer, and the inner sheath layer is filled with an inner reinforcing member, the inner sheath layer and the outer sheath layer
- the outer reinforcing member is filled with an outer slit on the outer side wall of the outer sheath layer along the length direction of the outer sheath layer.
- the cut thickness of the slit is slightly less than 3/4-2/3 of the thickness of the outer sheath layer.
- the communication fiber adopts one or more of a split fiber, a tight fiber, a fiber ribbon, and a fiber bundle, and the number of the fiber includes 2-200 core; A set of optical fibers that contain 2-16 cores of fiber.
- the inner sheath layer is made of a low-smoke halogen-free material
- the outer sheath layer is made of polyethylene
- the inner reinforcing member is made of a water-blocking reinforcing material
- the outer reinforcing member is made of a non-metallic reinforcing material, the inner reinforcing member and the outer reinforcing member.
- the reinforcing member may specifically be one or more of aramid yarn, polyethylene yarn, glass fiber yarn or FRP belt.
- the invention also proposes a method for preparing the above optical fiber cable, wherein the production line comprises a pay-off device, an eye mold device, an extrusion device, a cutting device, a cold water tank, a wire take-up device and a meter, and the communication will be
- the optical fiber of the optical fiber is drawn to the eye-mould mold device by the pay-off device to prepare a formed communication optical fiber, and the gap of the communication optical fiber is filled by the inner reinforcing member, and then the inner sheath layer is extruded by the extrusion device to form a first-level cable core.
- the first-level cable core Passing the first-level cable core through the center hole of the splitter turntable of the pay-off device, and winding a plurality of pre-coated optical fibers constituting the sensing fiber through the distribution hole of the splitter turntable of the pay-off device to form a first-level cable core
- the secondary cable core, the secondary cable core is filled with the outer reinforcing member, and then the outer sheath layer is extruded by the extrusion device to form the optical cable, and the cutting device is arranged on the outer side wall of the outer sheath layer of the optical cable according to the set spacing. Cutting is performed to produce a slit, the cable with the slit is cooled by the cold water tank, and the cooled cable is wound by the take-up device while measuring the length of the cable through the meter.
- the cutting device comprises a cutting tool, a driving motor, a movable support arm, a support base, a cabinet and a cutting controller, the cutting tool being fixedly mounted at one end of the movable support arm and the movable support arm being further One end is connected to the output shaft of the driving motor through a coupling, and the movable supporting arm is rotatably mounted on the supporting base through a fulcrum, the driving motor and the supporting base are fixedly disposed on the cabinet, and the cutting controller is placed in the cabinet The drive motor and the meter are both electrically connected to the cutting controller.
- the cutting tool has a circular shape, and the cutting tool includes two semicircular cutting blades, and the inner and both ends of the cutting blade are provided with a cutting edge.
- the movable support arm includes an upper support arm and a lower support arm, and the cutting blades are fixedly mounted on the upper support arm and the lower support arm, respectively, and the cutting edges of the two cutting blades are oppositely disposed.
- the optical fiber sensing optical cable with the optical fiber sensing and communication function proposed by the invention has an integral structure design, has the functions of optical fiber sensing and communication, and has low cost; the optical fiber optical cable is on the one hand
- the all-dry structure ensures environmental protection in the post-processing of fiber optic cable.
- the double-sheath design ensures that it minimizes the performance of the communication fiber in the inner jacket layer when connecting the fiber sensor. Since the slit is directly provided on the outer sheath layer, the performance of the sensing fiber is not affected, and the later slotting construction is greatly facilitated, and the cost is also effectively reduced.
- the sensing fiber is ensured by the nylon tight-set fiber.
- the method for manufacturing the optical fiber cable has the advantages of simple process, simple operation, low cost and high production efficiency, and is also convenient for modifying the existing fiber optic cable production line, and has wide application range.
- FIG. 1 is a schematic cross-sectional view of a fiber optic cable of the present invention.
- FIG. 2 is a schematic view showing the appearance of a fiber optic cable of the present invention.
- FIG 3 is a schematic view showing the structure of a production line used in the manufacture of a fiber optic cable of the present invention.
- Figure 5 is a side view showing the structure of the cutting tool of the present invention.
- Fig. 6 is a cross-sectional view taken along the line E in Fig. 5;
- a fiber optic cable with optical fiber sensing and communication functions includes an outer sheath layer 1, an inner sheath layer 2, a communication fiber 3, and a sensing fiber 4, and the communication fiber 3 is laid on The inside of the inner sheath layer 2, the communication fiber 3 is used to realize the communication function of the fiber optic cable, and the inner sheath layer 2 is filled with the inner reinforcement member 5, and the inner reinforcement member 5 can carry the tensile force to the communication fiber 3.
- the sensing fiber 4 is disposed between the inner sheath layer 2 and the outer sheath layer 1.
- the sensing fiber 4 is used to implement the sensing function of the fiber optic cable, and the inner sheath layer 2 and the outer sheath
- the outer reinforcing member 6 is filled between the layers 1 , and the outer reinforcing member 6 can provide good protection and buffering effect on the sensing fiber 4 , and the outer side wall of the outer sheath layer 1 is along the length of the outer sheath layer 1 .
- a plurality of slits 7 for grooving are provided in the direction, and the interval length of the slits 7 can be controlled by the meter 14 on the fiber optic cable production line, thereby meeting the different needs of the customer.
- connection between the fiber sensor and the sensing fiber 4 can be realized by stripping the outer sheath layer 1 of the fiber optic cable along the slit of the slit 7, thereby effectively reducing the opening. Difficulty and cost of tank construction.
- the cut thickness of the slit 7 disposed outside the outer sheath layer 1 of the fiber optic cable is slightly smaller than 3/4-2/3 of the thickness of the outer sheath layer 1, so that the inside of the outer sheath layer 1 can be effectively ensured.
- the sensing fiber 4 is not exposed during the winding process, and also makes the gap of the slit 7 obvious, so that the outer sheath of the fiber optic cable can be easily stripped during the subsequent slotting process.
- the communication optical fiber 3 adopts one or more of a separation optical fiber, a tight-fitting optical fiber, an optical fiber ribbon, and a fiber bundle, and the number of the optical fibers is 2-200 cores.
- the communication fiber 3 does not require the arrangement of the fibers, and G652 fiber or G655 fiber is usually used.
- the sensing fiber 4 adopts a tight-fitting optical fiber, and the number of the optical fibers includes 2-16 cores, and the number of the optical fibers is selected according to the requirements of the optical fiber sensing.
- the sensing optical fiber 4 preferentially adopts a nylon tight-fitting optical fiber and a nylon tight-fitting optical fiber.
- the waterproof function can effectively ensure the sealing performance of the fiber optic cable after slotting and packaging, and the sensing performance of the sensing fiber 4 is not affected.
- the inner sheath layer 2 is made of a low-smoke halogen-free material, and specifically, a low-smoke halogen-free inner sheath can be used, and the outer sheath layer 1 is made of polyethylene, specifically a polyethylene sheath.
- the inner reinforcing member 5 is made of a water-blocking reinforcing material
- the outer reinforcing member 6 is made of a non-metallic reinforcing material, and is preferably made of a water-blocking non-metallic reinforcing material. Therefore, the inner reinforcing member 5 is
- the outer reinforcing member 6 may specifically be one or more of aramid yarn, polyethylene yarn, glass fiber yarn or FRP tape.
- the fiber optic cable proposed by the present invention adopts a full-dry structure on the one hand, which can ensure environmental protection in the post-processing of the optical fiber cable, and on the other hand, adopts a double-sheath design of the inner and outer sheath layer 1 to ensure its When the fiber optic sensor is connected, the performance of the communication fiber 3 in the inner sheath layer 2 is minimally damaged, and at the same time, since the slit 7 is formed directly on the outer sheath layer 1, the performance of the sensing fiber 4 is not affected. At the same time, it greatly facilitates the construction of the later slotting, and at the same time effectively reduces the cost.
- the present invention also proposes the above-mentioned optical fiber light having optical fiber sensing and communication functions.
- the manufacturing method of the cable as shown in FIG. 3, the production line used in the method includes a pay-off device 8, an eye mold device 9, an extrusion device 10, a cutting device 11, a cold water tank 12, a wire take-up device 13, and a meter 14.
- the number of the pay-off device 8, the eye mold device 9 and the extrusion device 10 is two, and the number of the cutting device 11, the cold water tank 12, the wire take-up device 13, and the rice meter 14 is one. set.
- the manufacturing method includes a process of paying off, molding, extruding a sheath layer, making a slit 7 , cooling and winding, and the like, specifically: pulling the optical fiber of the communication fiber 3 through the payout device 8 to the eye mold device 9
- the formed communication fiber 3 is prepared, and the gap of the communication fiber 3 is filled by the inner reinforcement member 5, and then the inner sheath layer 2 is extruded through the extrusion device 10 to form a first-level cable core, and the first-level cable core is passed through the branch line.
- an outer sheath layer 1 is extruded by the extrusion device 10 to form a fiber optic cable, and the cutting device 11 cuts the outer side wall of the outer sheath layer 1 of the optical cable by a cutting device 11 to produce a slit 7 which will be cut.
- the cable of the slit 7 is cooled by the cold water tank 12, and the cooled cable is wound by the take-up device 13 while the length of the cable is measured by the meter 14.
- the cutting device 11 employed in the production line includes a cutting tool 15, a drive motor 16, a movable support arm 17, a support base 18, a cabinet 19, and a cutting controller, the cutting tool 15 being fixedly mounted at the event.
- One end of the support arm 17, the other end of the movable support arm 17 is connected to the output shaft of the drive motor 16 through a coupling, and the movable support arm 17 is rotatably mounted on the support base 18 through a fulcrum, the drive motor 16 and the support
- the seats 18 are each fixedly disposed on the cabinet 19, and the cutting controller is placed in the cabinet 19, and the drive motor 16 and the meter 14 are electrically connected to the cutting controller.
- the shape of the cutting tool 15 is circular, so as to better contact and cut with the fiber optic cable, the cutting tool 15 comprises two semi-circular cutting blades, and the inner and both ends of the cutting blade are provided There is a blade.
- the cutting tool 15 is matched by two semi-circular cutting blades, which can effectively improve the adaptability of the cutting tool 15 to different sizes of fiber optic cables, and can also improve the cutting precision and cutting efficiency of the cutting tool 15 for the fiber optic cable.
- the movable support arm 17 includes an upper support arm and a lower support arm, and the cutting blades are fixedly mounted on the upper support arm and the lower support arm, respectively, and the cutting edges of the two cutting blades are oppositely disposed.
- the method for manufacturing the above-mentioned optical fiber cable with optical fiber sensing and communication function disclosed in the invention has the advantages of simple process, simple operation, low cost and high production efficiency, and is also convenient for modifying the existing fiber optic cable production line. wide range.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
一种具有光纤传感和通信功能的光纤光缆及其制造方法,光线光缆包括外护套层(1)、内护套层(2)、通信光纤(3)和传感光纤(4),通信光纤(3)敷设在内护套层(2)的内部,传感光纤(4)敷设在内护套层(2)和外护套层(1)之间,并在内护套层(2)内填充有内加强件(5),在内护套层(2)和外护套层(1)之间填充有外加强件(6),外护套层(1)的外侧壁上沿着外护套层(1)的长度方向开设有若干个用于开槽的切缝(7);其制造方法包括放线、出模成型、挤制护套层、切缝制作、冷却及收线等工序,操作简单且生产成本低,所制造的光纤光缆具备良好的光纤传感及通信性能,也便于开槽,有效降低了开槽施工难度及成本。
Description
本发明涉及一种光纤传感光缆,具体地说是涉及一种同时具有光纤传感和通信功能的光纤光缆及其制造方法。
光纤传感器与传统的各类传感器相比,光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,具有光纤及光学测量的特点,具有电绝缘性能好、抗电磁干扰能力强、非侵入性、高灵敏、容易实现对被测信号的远距离监控、耐腐蚀、防爆、光路有可挠曲性以及便于与计算机联接等一系列独特的优点。
随着传感器朝着灵敏、精确、适应性强、小巧及智能化的方向发展,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区)起到人的耳目的作用,而且还能超越人的生理界限并接收人的感官所感受不到的外界信息。因此,光纤传感器越来越受到人们的关注,从20世纪开始到现在,光纤传感器有着大量的应用,由此也提出了各种形式的光纤传感光缆,如分布式光纤传感光缆,在光缆做成后,应用厂家需要按要求对光纤传感光缆进行间隔开槽,使得光纤传感器能够直接与测试物接触,提高光纤传感的精度。然而在对光纤传感光缆进行人工开槽时存在着开槽难度大、成本高且在一定程度上降低了光纤传感光缆的性能的缺陷,因此,迫切的需要对现有的光纤传感光缆的结构进行改进以保证开槽方便、降低施工成本并提高其传
感性能。
发明内容
本发明的目的在于提供一种具有光纤传感和通信功能的光纤光缆,该光纤光缆整体结构设计巧妙,既能满足光学传输,也能保证光纤传感的精度,同时开槽操作方便,有效降低了施工成本。另外,还提供了一种操作简便、生产效率高且精度高的制造该种光纤传感光缆的方法。
为了实现上述目的,本发明采用的技术方案为,一种具有光纤传感和通信功能的光纤光缆,包括外护套层、内护套层、通信光纤和传感光纤,所述通信光纤敷设在内护套层的内部,所述传感光纤敷设在内护套层和外护套层之间,并在内护套层内填充有内加强件,在内护套层和外护套层之间填充有外加强件,所述外护套层的外侧壁上沿着外护套层的长度方向开设有若干个用于开槽的切缝。
作为本发明的一种改进,所述切缝的切割厚度稍微小于外护套层厚度的3/4-2/3。
作为本发明的一种改进,所述通信光纤采用分离光纤、紧套光纤、光纤带、光纤束的一种或几种,其包含光纤的数量为2-200芯;所述传感光纤采用紧套光纤,其包含光纤的数量为2-16芯。
作为本发明的一种改进,所述内护套层采用低烟无卤材料制作而成,所述外护套层采用聚乙烯制作而成。
作为本发明的一种改进,所述内加强件采用阻水型加强材料制作而成,所述外加强件采用非金属加强材料制作而成,内加强件和外
加强件具体可采用芳纶纱、聚乙烯纱、玻璃纤维纱或FRP带中的一种或几种。
本发明还提出了一种制备上述光纤光缆的方法,该方法所采用的生产线包括放线装置、眼模模具装置、挤塑装置、切割装置、冷水槽、收线装置和计米器,将通信光纤的光纤通过放线装置牵引至眼模模具装置中制备成型的通信光纤,将通信光纤的间隙采用内加强件进行填充后通过挤塑装置挤制一层内护套层形成一级缆芯,将一级缆芯通过放线装置的分线转盘的中心孔,并将组成传感光纤的多根预涂覆光纤穿过放线装置的分线转盘的分配孔缠绕在一级缆芯上形成二级缆芯,将二级缆芯采用外加强件进行填充后通过挤塑装置挤制一层外护套层形成光缆,通过切割装置按照设定的间距在光缆的外护套层外侧壁上进行切割产生切缝,将带有切缝的光缆通过冷水槽进行冷却,对冷却后的光缆通过收线装置进行收卷同时通过计米器计量光缆的长度。
作为本发明的一种改进,所述切割装置包括切割刀具、驱动电机、活动支撑臂、支撑座、机柜和切割控制器,所述切割刀具固定安装在活动支撑臂的一端,活动支撑臂的另一端与驱动电机的输出轴通过联轴器相连,所述活动支撑臂通过支点可转动安装在支撑座上,所述驱动电机和支撑座均固定设置在机柜上,所述切割控制器放置在机柜内,所述驱动电机和计米器均与切割控制器电连接。
作为本发明的一种改进,所述切割刀具的形状为圆形,切割刀具包括两个半圆形的切割刀片,所述切割刀片的内侧及两端部均设有刀刃。
作为本发明的一种改进,所述活动支撑臂包括上支撑臂和下支撑臂,所述切割刀片分别固定安装在上支撑臂和下支撑臂上,并且两个切割刀片的刀刃相对设置。
相对于现有技术,本发明所提出的同时具有光纤传感和通信功能的光纤传感光缆的整体结构设计巧妙,同时具有光纤传感和通信的功能,且成本较低;该光纤光缆一方面采用全干式结构可保证光纤光缆后期加工中的环境保护,另一方面采用双护套设计,保证了其在连接光纤传感器的时候,最小程度的损害内护套层内通信光纤的性能,同时由于直接在外护套层上设有切缝,在不影响传感光纤使用性能的同时大大方便了后期开槽施工,同时也有效降低了成本,另外,传感光纤采用尼龙紧套光纤可有效保证了光纤传感光缆的使用寿命。制造该光纤光缆的方法具有工序简单、操作简便、成本低且生产效率高等优点,同时也便于对现有的光纤光缆的生产线进行改造,适用范围广。
图1为本发明的光纤光缆的截面结构示意图。
图2为本发明的光纤光缆的外观结构示意图。
图3为本发明的制造光纤光缆所采用的生产线结构示意图。
图4为本发明的切割装置结构示意图。
图5为本发明的切割刀具的侧面结构示意图。
图6为图5的E方向剖视图。
图中:1-外护套层,2-内护套层,3-通信光纤,4-传感光纤,5-内加强件,6-外加强件,7-切缝,8-放线装置,9-眼模模具装置,10-
挤塑装置,11-切割装置,12-冷水槽,13-收线装置,14-计米器,15-切割刀具,16-驱动电机,17-活动支撑臂,18-支撑座,19-机柜。
为了加深对本发明的理解和认识,下面结合附图对本发明作进一步描述和介绍。
如图1-2所示,一种具有光纤传感和通信功能的光纤光缆,包括外护套层1、内护套层2、通信光纤3和传感光纤4,所述通信光纤3敷设在内护套层2的内部,通信光纤3用于实现本光纤光缆的通信功能,并在内护套层2内填充有内加强件5,内加强件5可对通信光纤3起到承载拉力的作用,所述传感光纤4敷设在内护套层2和外护套层1之间,传感光纤4用于实现本光纤光缆的传感功能,并在内护套层2和外护套层1之间填充有外加强件6,外加强件6能够对传感光纤4起到良好的保护及缓冲作用,所述外护套层1的外侧壁上沿着外护套层1的长度方向开设有若干个用于开槽的切缝7,切缝7的间隔长度可通过光纤光缆生产线上的计米器14进行控制,从而可满足客户的不同需求。在后续开槽的施工过程中,只要沿着该切缝7的缝隙将光纤光缆的外护套层1进行剥离即可实现光纤传感器与传感光纤4之间的连接,这样就有效降低了开槽施工的难度及成本。
具体的,设置在光纤光缆外护套层1外侧的切缝7的切割厚度稍微要小于外护套层1厚度的3/4-2/3,这样既能有效保证位于外护套层1内部的传感光纤4在收卷过程中不会外露,同时也使得该切缝7的缝隙明显,便于后续开槽施工过程中能轻松剥离光纤光缆的外护套
层1。
所述通信光纤3采用分离光纤、紧套光纤、光纤带、光纤束的一种或几种,其包含光纤的数量为2-200芯。另外,通信光纤3对光纤的排列没有要求,通常采用G652光纤或G655光纤。
所述传感光纤4采用紧套光纤,其包含光纤的数量为2-16芯,具体根据光纤传感的要求选择光纤的数量,本传感光纤4优先采用尼龙紧套光纤,尼龙紧套光纤具有防水功能,可有效保证光纤光缆后期开槽封装后的密封性能以及传感光纤4的传感性能不受影响。
所述内护套层2采用低烟无卤材料制作而成,具体可采用低烟无卤内护套,所述外护套层1采用聚乙烯制作而成,具体采用聚乙烯护套。
所述内加强件5采用阻水型加强材料制作而成,所述外加强件6采用非金属加强材料制作而成,优选可采用阻水型非金属加强材料进行制作,因此,内加强件5和外加强件6具体可采用芳纶纱、聚乙烯纱、玻璃纤维纱或FRP带中的一种或几种。
综上所述,本发明所提出的光纤光缆一方面采用全干式结构,可保证光纤光缆后期加工中的环境保护,另一方面采用内外护套层1的双护套设计,保证了其在连接光纤传感器的时候,最小程度的损害内护套层2内通信光纤3的性能,同时由于直接在外护套层1上设有缝隙明显的切缝7,在不影响传感光纤4使用性能的同时大大方便了后期开槽施工,同时也有效降低了成本。
另外,本发明还提出了上述的具有光纤传感和通信功能的光纤光
缆的制造方法,如图3所示,该方法所采用的生产线包括放线装置8、眼模模具装置9、挤塑装置10、切割装置11、冷水槽12、收线装置13和计米器14,其中,所述放线装置8、眼模模具装置9和挤塑装置10的数量为2套,所述切割装置11、冷水槽12、收线装置13和计米器14的数量为一套。该制造方法包括放线、出模成型、挤制护套层、切缝7制作、冷却及收线等工序,具体为:将通信光纤3的光纤通过放线装置8牵引至眼模模具装置9中制备成型的通信光纤3,将通信光纤3的间隙采用内加强件5进行填充后通过挤塑装置10挤制一层内护套层2形成一级缆芯,将一级缆芯通过分线转盘的中心孔,并将组成传感光纤4的多根预涂覆光纤穿过分线转盘的分配孔缠绕在一级缆芯上形成二级缆芯,将二级缆芯采用外加强件6进行填充后通过挤塑装置10挤制一层外护套层1形成光缆,通过切割装置11按照设定的间距在光缆的外护套层1外侧壁上进行切割产生切缝7,将带有切缝7的光缆通过冷水槽12进行冷却,对冷却后的光缆通过收线装置13进行收卷同时通过计米器14计量光缆的长度。
如图4-6所示,生产线中所采用的切割装置11包括切割刀具15、驱动电机16、活动支撑臂17、支撑座18、机柜19和切割控制器,所述切割刀具15固定安装在活动支撑臂17的一端,活动支撑臂17的另一端与驱动电机16的输出轴通过联轴器相连,所述活动支撑臂17通过支点可转动安装在支撑座18上,所述驱动电机16和支撑座18均固定设置在机柜19上,所述切割控制器放置在机柜19内,所述驱动电机16和计米器14均与切割控制器电连接。使用时,通过切
割控制器控制驱动电机16带动活动支撑臂17来控制切割刀具15上下移动,从而对穿过切割刀具15的光纤光缆进行切缝7的切割操作,其中的切缝7的切割深度通过控制切割刀具15的上下移动幅度来控制,而切缝7在光纤光缆的长度方向的切割长度通过计米器14反馈给切割控制器的数据进行控制。
其中,所述切割刀具15的形状为圆形,从而更好地与光纤光缆进行接触并切割,切割刀具15包括两个半圆形的切割刀片,所述切割刀片的内侧及两端部均设有刀刃。将切割刀具15采用两个半圆形的切割刀片进行配合,可有效提高切割刀具15对不同尺寸的光纤光缆的适应性,同时也能够提高切割刀具15对光纤光缆的切割精度及切割效率。所述活动支撑臂17包括上支撑臂和下支撑臂,所述切割刀片分别固定安装在上支撑臂和下支撑臂上,并且两个切割刀片的刀刃相对设置。
本发明所公开的制造上述具有光纤传感和通信功能的光纤光缆的方法,具有工序简单、操作简便、成本低且生产效率高等优点,同时也便于对现有的光纤光缆的生产线进行改造,适用范围广。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
Claims (10)
- 一种具有光纤传感和通信功能的光纤光缆,其特征在于:包括外护套层、内护套层、通信光纤和传感光纤,所述通信光纤敷设在内护套层的内部,所述传感光纤敷设在内护套层和外护套层之间,并在内护套层内填充有内加强件,在内护套层和外护套层之间填充有外加强件,所述外护套层的外侧壁上沿着外护套层的长度方向开设有若干个用于开槽的切缝。
- 如权利要求1所述的具有光纤传感和通信功能的光纤光缆,其特征在于,所述切缝的切割厚度小于外护套层厚度的3/4-2/3。
- 如权利要求2所述的具有光纤传感和通信功能的光纤光缆,其特征在于,所述通信光纤采用分离光纤、紧套光纤、光纤带、光纤束的一种或几种,其包含光纤的数量为2-200芯;所述传感光纤采用紧套光纤,其包含光纤的数量为2-16芯。
- 如权利要求3所述的具有光纤传感和通信功能的光纤光缆,其特征在于,所述内护套层采用低烟无卤材料制作而成,所述外护套层采用聚乙烯制作而成。
- 如权利要求4所述的具有光纤传感和通信功能的光纤光缆,其特征在于,所述内加强件采用阻水型加强材料制作而成,所述外加强件采用非金属加强材料制作而成。
- 如权利要求5所述的具有光纤传感和通信功能的光纤光缆,其特征在于,所述内加强件和外加强件可采用芳纶纱、聚乙烯纱、玻璃纤维纱或FRP带中的一种或几种。
- 一种如权利要求1-6任一项所述的具有光纤传感和通信功能的光纤光缆的制造方法,其特征在于,该方法所采用的生产线包括放线装置、眼模模具装置、挤塑装置、切割装置、冷水槽、收线装置和计米器,将通信光纤的光纤通过放线装置牵引至眼模模具装置中制备成型的通信光纤,将通信光纤的间隙采用内加强件进行填充后通过挤塑装置挤制一层内护套层形成一级缆芯,将一级缆芯通过分线转盘的中心孔,并将组成传感光纤的多根预涂覆光纤穿过分线转盘的分配孔缠绕在一级缆芯上形成二级缆芯,将二级缆芯采用外加强件进行填充后通过挤塑装置挤制一层外护套层形成光缆,通过切割装置按照设定的间距在光缆的外护套层外侧壁上进行切割产生切缝,将带有切缝的光缆通过冷水槽进行冷却,对冷却后的光缆通过收线装置进行收卷同时通过计米器计量光缆的长度。
- 如权利要求7所述的具有光纤传感和通信功能的光纤光缆的制造方法,其特征在于,所述切割装置包括切割刀具、驱动电机、活动支撑臂、支撑座、机柜和切割控制器,所述切割刀具固定安装在活动支撑臂的一端,活动支撑臂的另一端与驱动电机的输出轴通过联轴器相连,所述活动支撑臂通过支点可转动安装在支撑座上,所述驱动电机和支撑座均固定设置在机柜上,所述切割控制器放置在机柜内,所述驱动电机和计米器均与切割控制器电连接。
- 如权利要求8所述的具有光纤传感和通信功能的光纤光缆的制造方法,其特征在于,所述切割刀具的形状为圆形,切割刀具包括两个半圆形的切割刀片,所述切割刀片的内侧及两端部均设有刀刃。
- 如权利要求9所述的具有光纤传感和通信功能的光纤光缆的制造方法,其特征在于,所述活动支撑臂包括上支撑臂和下支撑臂,所述切割刀片分别固定安装在上支撑臂和下支撑臂上,并且两个切割刀片的刀刃相对设置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/613,120 US10838160B2 (en) | 2017-06-09 | 2017-07-21 | Optical fiber cable with optical fiber sensing and communication functions and manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710434145.6A CN107132629A (zh) | 2017-06-09 | 2017-06-09 | 具有光纤传感和通信功能的光纤光缆及其制造方法 |
CN201710434145.6 | 2017-06-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018223499A1 true WO2018223499A1 (zh) | 2018-12-13 |
Family
ID=59735025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/093842 WO2018223499A1 (zh) | 2017-06-09 | 2017-07-21 | 具有光纤传感和通信功能的光纤光缆及其制造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10838160B2 (zh) |
CN (1) | CN107132629A (zh) |
WO (1) | WO2018223499A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110780410A (zh) * | 2019-10-09 | 2020-02-11 | 江苏中天科技股份有限公司 | 一种灵敏度增强的柔软轻型分布式声波传感光缆 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107728270B (zh) * | 2017-10-23 | 2024-02-02 | 武汉锐科光纤激光技术股份有限公司 | 一种新型高效铠装光缆 |
CN111443444A (zh) * | 2020-03-19 | 2020-07-24 | 烽火通信科技股份有限公司 | 一种传感通信复合光缆及制造方法 |
FR3118205A1 (fr) * | 2020-12-22 | 2022-06-24 | Centre National De La Recherche Scientifique | Câble de télécommunication hybride |
CN112882172B (zh) * | 2021-03-18 | 2023-05-05 | 烽火通信科技股份有限公司 | 一种铠装光缆及其生产设备和方法 |
CN114185141B (zh) * | 2022-02-15 | 2022-06-10 | 长飞光纤光缆股份有限公司 | 一种骨架槽式光缆骨架加工方法、装置及骨架槽式光缆 |
CN115542485B (zh) * | 2022-09-30 | 2023-06-02 | 长飞光纤光缆股份有限公司 | 一种s型骨架式光缆及其制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08222042A (ja) * | 1995-02-09 | 1996-08-30 | Kansai Electric Power Co Inc:The | 光複合電力ケーブル |
CN1609645A (zh) * | 2004-11-25 | 2005-04-27 | 长飞光纤光缆有限公司 | 一种具有传感和通信功能的混合光缆及其制作方法 |
CN2800301Y (zh) * | 2005-06-17 | 2006-07-26 | 江苏广新天虹通信集团有限公司 | 非平行形分支光缆 |
US20080122617A1 (en) * | 2005-04-21 | 2008-05-29 | Browning Thomas E | Secure transmission cable |
CN101943782A (zh) * | 2010-09-10 | 2011-01-12 | 深圳市特发信息光网科技股份有限公司 | 一种易开剥光缆 |
CN102012285A (zh) * | 2010-11-16 | 2011-04-13 | 江苏通光光电子有限公司 | 微形传感光单元及其嵌入式应用 |
CN104503056A (zh) * | 2014-12-26 | 2015-04-08 | 南京烽火藤仓光通信有限公司 | 大芯数重铠光缆 |
CN105044864A (zh) * | 2015-07-21 | 2015-11-11 | 江苏通光海洋光电科技有限公司 | 一种在缆芯绝缘层中隐形植入传感光纤的智能海底光缆 |
CN105093450A (zh) * | 2015-07-21 | 2015-11-25 | 江苏通光海洋光电科技有限公司 | 一种在缆芯绝缘层嵌入传感部件的智能海底光缆 |
CN106683305A (zh) * | 2017-01-22 | 2017-05-17 | 唐山市镜圆科技有限公司 | 防窃听光纤报警系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9188754B1 (en) * | 2013-03-15 | 2015-11-17 | Draka Comteq, B.V. | Method for manufacturing an optical-fiber buffer tube |
EP3430631A4 (en) * | 2016-03-14 | 2019-09-18 | Corning Research & Development Corporation | Cable arrangement with removable installation device |
-
2017
- 2017-06-09 CN CN201710434145.6A patent/CN107132629A/zh active Pending
- 2017-07-21 WO PCT/CN2017/093842 patent/WO2018223499A1/zh active Application Filing
- 2017-07-21 US US16/613,120 patent/US10838160B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08222042A (ja) * | 1995-02-09 | 1996-08-30 | Kansai Electric Power Co Inc:The | 光複合電力ケーブル |
CN1609645A (zh) * | 2004-11-25 | 2005-04-27 | 长飞光纤光缆有限公司 | 一种具有传感和通信功能的混合光缆及其制作方法 |
US20080122617A1 (en) * | 2005-04-21 | 2008-05-29 | Browning Thomas E | Secure transmission cable |
CN2800301Y (zh) * | 2005-06-17 | 2006-07-26 | 江苏广新天虹通信集团有限公司 | 非平行形分支光缆 |
CN101943782A (zh) * | 2010-09-10 | 2011-01-12 | 深圳市特发信息光网科技股份有限公司 | 一种易开剥光缆 |
CN102012285A (zh) * | 2010-11-16 | 2011-04-13 | 江苏通光光电子有限公司 | 微形传感光单元及其嵌入式应用 |
CN104503056A (zh) * | 2014-12-26 | 2015-04-08 | 南京烽火藤仓光通信有限公司 | 大芯数重铠光缆 |
CN105044864A (zh) * | 2015-07-21 | 2015-11-11 | 江苏通光海洋光电科技有限公司 | 一种在缆芯绝缘层中隐形植入传感光纤的智能海底光缆 |
CN105093450A (zh) * | 2015-07-21 | 2015-11-25 | 江苏通光海洋光电科技有限公司 | 一种在缆芯绝缘层嵌入传感部件的智能海底光缆 |
CN106683305A (zh) * | 2017-01-22 | 2017-05-17 | 唐山市镜圆科技有限公司 | 防窃听光纤报警系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110780410A (zh) * | 2019-10-09 | 2020-02-11 | 江苏中天科技股份有限公司 | 一种灵敏度增强的柔软轻型分布式声波传感光缆 |
Also Published As
Publication number | Publication date |
---|---|
US10838160B2 (en) | 2020-11-17 |
CN107132629A (zh) | 2017-09-05 |
US20200096718A1 (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018223499A1 (zh) | 具有光纤传感和通信功能的光纤光缆及其制造方法 | |
US10330877B2 (en) | Binder film system | |
RU2222821C2 (ru) | Оптический кабель (варианты), устройство для изготовления оптического кабеля и способ его изготовления (варианты) | |
JP2006505006A (ja) | 優先引裂き部分を有する剥離可能なバッファ層及びその製造方法 | |
CN105427948A (zh) | 骨架式光电复合缆及其制造方法 | |
CN105759383A (zh) | 多层骨架槽式光缆及其制造方法 | |
AU2009322446A1 (en) | Optical fiber array cables and associated fiber optic cables and systems | |
CN212127096U (zh) | 一种光纤缠绕放线模具 | |
CN213123841U (zh) | 一种骨架型光电复合缆 | |
JP2015052692A (ja) | 光ケーブル | |
CN113711320A (zh) | 一种室内外两用通信光缆及电缆 | |
WO2005043208A1 (en) | Fiber optic assemblies, cables, and manufacturing methods therefor | |
CN108152902A (zh) | 多芯成束自承式光缆及其制造方法 | |
EP3798704A1 (en) | Method of preparing a bundled cable, and a bundled optical fiber cable | |
CN116027505A (zh) | 一种光缆及其制造设备 | |
JP2012220506A (ja) | 光ファイバケーブル | |
CN211604734U (zh) | 一种室内外两用通信光缆及电缆 | |
CN111856669A (zh) | 一种新型基站用光缆 | |
US20190229513A1 (en) | Installation of pre-ducted optical fiber cable assembly | |
CN219302731U (zh) | 一种光缆及其制造设备 | |
CN217060591U (zh) | 带状光缆 | |
CN211603645U (zh) | 一种易于成型的高密度光缆及电缆 | |
CN216849350U (zh) | 一种光电混合低压电缆 | |
CN219891924U (zh) | 一种具有阻燃结构层的电缆 | |
CN209895039U (zh) | 一种全介质非金属双护套光缆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17912805 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17912805 Country of ref document: EP Kind code of ref document: A1 |