WO2018223296A1 - 一种管式混合器 - Google Patents

一种管式混合器 Download PDF

Info

Publication number
WO2018223296A1
WO2018223296A1 PCT/CN2017/087364 CN2017087364W WO2018223296A1 WO 2018223296 A1 WO2018223296 A1 WO 2018223296A1 CN 2017087364 W CN2017087364 W CN 2017087364W WO 2018223296 A1 WO2018223296 A1 WO 2018223296A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat exchange
inner sleeve
twisted
exchange medium
Prior art date
Application number
PCT/CN2017/087364
Other languages
English (en)
French (fr)
Inventor
王昌松
刘耀倩
陈晶晶
陆小华
吴佳军
宋健
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to CN201780088617.5A priority Critical patent/CN110431371B/zh
Priority to PCT/CN2017/087364 priority patent/WO2018223296A1/zh
Priority to EP17912567.9A priority patent/EP3587987B1/en
Publication of WO2018223296A1 publication Critical patent/WO2018223296A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4331Mixers with bended, curved, coiled, wounded mixing tubes or comprising elements for bending the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4333Mixers with scallop-shaped tubes or surfaces facing each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0052Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/06Heat exchange conduits having walls comprising obliquely extending corrugations, e.g. in the form of threads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • the invention belongs to a fluid mixing device, in particular to a tubular mixer having a heat exchange function.
  • Mixing is a unit operation in which a mechanical or hydrodynamic method is used to disperse two or more materials to each other to achieve a certain degree of uniformity.
  • mechanical agitation, gas circulation agitation and hydraulic agitation are used to achieve mixing purposes.
  • engineering or engineering processes require heating or temperature control of the feedstock, discharge, and reaction processes; temperature affects both system energy consumption and is a key factor in ensuring normal and efficient reaction processes. Therefore, combining heat transfer technology with hybrid technology, the development of efficient and energy-saving mixers is of great significance for reducing production costs and saving energy.
  • the mixing equipment commonly used in the industry includes a stirred mixing tank, a static mixer and a circulating mixer.
  • the commonly used heat exchange equipments include tubular heat exchangers, plate heat exchangers and finned heat exchangers, but these devices.
  • process raw materials have high solid content, high apparent viscosity and complex rheology, such as fermentation raw materials (straw and poultry manure systems, etc.), which cause blockage and scaling of the equipment, which greatly reduces the process transfer efficiency.
  • the continuous and stable operation of the system is affected.
  • Chinese patent CN201510185307.8 invents a tubular mixer with a spiral passage, which is provided with a spiral groove on the outer wall of the inner tube, and the spiral groove is connected with the inner wall of the outer tube to form a spiral passage.
  • the mixer of this structure can be in a short axial direction. Provides a long mixing length within the distance to provide better mixing during the same mixing time.
  • the passage is a spiral passage
  • this configuration is only suitable for a low solid content system, and for a high solid content system, especially a fiber-containing straw, it is easily clogged in such a passage, thereby reducing the mixing effect, and the patent Only for intensive mixing, it is not possible to enhance heat transfer at the same time.
  • Chinese patent CN201510305639.5 invented a casing type heat exchanger suitable for high solid content sewage, which is suitable for high solid content sewage, and dirt impurities in sewage are not easily scaled or formed on the walls of the sewage passage. Clogged, The heat exchange efficiency and continuous stable operation of the heat exchanger are ensured, and the heat transfer efficiency of the tube and shell side of the heat exchanger is high, so that it has high heat transfer enhancement performance, but the twisted tube in the heat exchanger The cross-section is triangular. For high-solids and high-viscosity complex fluids containing fibers, this configuration has a dead angle and does not achieve the effect of intensive mixing.
  • the twisted tube heat exchanger with a twisted tube section is elliptical. Although it has certain advantages in enhancing heat transfer performance, it is limited to single-phase fluids without solid particles, such as sulfuric acid cooling, ammonia preheating, and lubricating oil. Cool down and so on.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art and to provide a tubular mixer for high solid content, high viscosity or fiber-containing complex fluid, which simultaneously achieves enhanced mass transfer and heat transfer, and has anti-fouling , anti-blocking and replace the role of mechanical agitation.
  • the invention has important application background in the fields of petrochemical industry, food processing, biological fermentation and the like.
  • a tubular mixer comprising a mixing inner sleeve and a heat exchange outer sleeve, the inner sleeve being located in an outer sleeve, the inner sleeve having a hexagonal cross section and being along the tube
  • the center clockwise twisted inner tube is combined with the counterclockwise twisted inner tube.
  • the tubular mixer is suitable for a high solid content, high viscosity material system, and has the advantages of simple structure, anti-blocking and anti-fouling, heat exchange and mixing.
  • the inner sleeve has an equilateral hexagonal cross section.
  • the central axis of the inner casing is a straight line or a curve, and a linear central axis is used under preferred conditions.
  • the inner sleeve is formed by an inner tube which is uniformly twisted clockwise along the center of the tube and an inner tube which is uniformly twisted counterclockwise.
  • the inner sleeve torque that is, the inner wall of the tube is helically deformed by 360° around the central axis of the tube.
  • the tube length is 300-800 mm, preferably 500-800 mm.
  • the inscribed circle diameter of the hexagonal section of the inner sleeve is 20-150 mm, preferably 80-150 mm. It is found that the diameter of the inscribed circle is too large or too small, which affects the heat exchange efficiency and the mixing effect, and is easy. Causes dirt or blockage on the inner casing wall.
  • the cross-sectional shape of the outer sleeve of the present invention is not limited and may be circular, square, hexagonal, etc., in order to facilitate production and better heat exchange efficiency, it is preferred that the outer sleeve has a circular interface shape.
  • the inscribed circle diameter of the inner sleeve and the inner cut of the outer sleeve The diameter of the circle is 5-15mm, preferably 10-15mm. It is found that the excessive or too small spacing will reduce the heat transfer effect, especially if the spacing is too large, it will result in higher energy consumption and cost.
  • the inscribed circle diameter of the inner sleeve and the outer sleeve of the present invention can be adjusted within the scope of the present invention according to actual needs, in order to achieve better anti-fouling and anti-clogging effect, higher mixing effect and better.
  • the inner sleeve of the present invention may comprise one or more such constituent units;
  • the tubular mixer of the present invention comprises a material mixing passage and a heat exchange medium passage, wherein the material mixing passage is composed of an inner casing, and two ends of the material mixing passage are respectively provided with a material feeding port and a material. a discharge port; the heat exchange medium passage is formed by an annular gap between the outer sleeve and the inner sleeve, and both ends of the heat exchange medium passage formed by the gap between the outer sleeve and the inner sleeve can be closed, An inlet pipe of the heat exchange medium and an outlet pipe of the heat exchange medium are disposed on the heat medium passage or the total passage of the heat exchange medium.
  • the material feed port corresponds to the outlet pipe of the heat exchange medium
  • the material discharge port corresponds to the inlet pipe of the heat exchange medium.
  • the dead zone of the mixer is relatively small, which can significantly enhance the mixing effect.
  • the mixing channel is formed by the coaxial tube and the twisted tube which are nested with each other, and can be conveniently manufactured by using conventional machining technology, and the cost is low.
  • the material can be fully mixed and exchanged in the mixing channel to improve the efficiency of the later system reaction and reduce energy consumption.
  • Figure 1 is a general view of a mixer having a heat exchange function
  • FIG. 3 is a schematic diagram of the mixer section
  • the invention relates to a tubular mixer with high solid content, high viscosity or fiber-containing complex fluid, and at the same time realizes enhanced mass transfer and heat transfer, including an inner sleeve and an outer sleeve, the inner sleeve is located in the outer sleeve, and the inner sleeve is The cross section is hexagonal and is composed of an inner tube that is twisted clockwise along the center of the tube and an inner tube that is twisted counterclockwise.
  • the tubular mixer is suitable for a high solid content, high viscosity material system, and has the advantages of simple structure, anti-blocking and anti-fouling, heat exchange and mixing.
  • the inner sleeve of the present invention may be a hexagonal twisted tube which is hexagonal in cross section and which is composed of an inner tube which is uniformly twisted clockwise along the center of the tube and an inner tube which is uniformly twisted counterclockwise.
  • the cross-section of the hexagonal twisted tube is a regular hexagon, the central axis of which is a straight line or a curve, and a linear central axis as shown in FIG. 2 is used under preferred conditions.
  • the torque that is, the length of the tube corresponding to the distortion of the tube wall around the central axis of the tube by 360°
  • the torque of the hexagonal twisted tube is 300-800 mm.
  • the inscribed circle diameter of the hexagonal section of the hexagonal twisted tube is 20-150 mm, as shown in FIG.
  • the material and the heat exchange medium directly exchange heat through the tube wall of the hexagonal twisted tube.
  • a common circular casing can be used, the outer casing has a circular cross section, and the pipe diameter is larger than the inner casing, and the outer casing wall and the inner casing are spaced 5-15 mm apart.
  • the cross-sectional structure of the inner and outer casings in this example is shown in Fig. 3.
  • Figure 1 shows a relatively complete tubular mixer consisting of outer casing 1, inner casing 2, material A inlet 3, material B inlet 4, material outlet 5, heat exchange medium inlet 6, heat exchange medium outlet 7
  • the outer sleeve is a heat exchange medium passage
  • the inner sleeve is a material mixing passage
  • the inner sleeve is located in the outer sleeve, wherein the inner sleeve has a hexagonal cross section and is uniformly twisted clockwise along the center of the tube.
  • the tube is combined with a counter-clockwise uniformly twisted inner tube.
  • the inner tube ends are respectively connected with a feed nozzle A and a feed nozzle B and a material outlet 5.
  • the heat exchange medium flows from the heat exchange medium inlet 6 into the annular gap of the circular section casing and the hexagonal section twisted tube, and flows out from the heat exchange medium outlet 7, and the outer sleeve is provided with the heat insulating material.
  • the outer casing is a circular casing
  • the material A is straw
  • the material B is a CMC (Carboxy Methylated Cellulose) solution (mass fraction is 1%)
  • the heat exchange medium is water.
  • the material inlet temperature is 10 ° C
  • the heat exchange medium inlet temperature is 55 ° C.
  • the tracer method was used to characterize the mixing effect. 0.7 mol/L KCl solution was injected into the inlet, and the voltage was measured at the outlet with a conductivity meter (DDSJ-308A). The dimensionless variance of the residence time was calculated by the voltage.
  • the inlet speeds of the materials in the examples and the comparative examples in Table 1 are the same, the inlet speeds of the heat exchange medium are also the same, D 1 is the diameter of the hexagonal inscribed circle, D 2 is the diameter of the outer tube, and n 1 and n 2 are respectively two twists.
  • the torque of the tubes, L 1 and L 2 are the lengths of the two twisted tubes, respectively (see Figure 2).
  • Example 4 and Example 5 respectively changed the torque and length of the two-stage twisted tube
  • Example 7 changed the structural dimensions of the inner tube and the outer tube. According to the characterization results, the mixing and heat exchange effects were compared with the example 1 Similar, so in the actual operation, the above various combinations can be flexibly selected according to the specific situation.
  • Example 6 and Comparative Example 5 it can be seen from Example 6 and Comparative Example 5 that for a high solid content, high viscosity fiber-containing material, the diameter of the hexagonal inscribed circle is too small to cause clogging; from Example 1 and Comparative Example 6-7, the same inner tube is known. In the case of reducing or enlarging the annular gap between the inner tube and the outer tube, the mixing effect is not greatly affected, but the small gap will cause the temperature difference to be insufficient, which is insufficient to heat the material in the inner tube, thereby reducing the heat exchange effect.
  • the hexagonal inscribed circle has an excessively large diameter, which causes slight scaling, destroys the swirling flow pattern, and increases the heat transfer resistance, thereby reducing the mixing effect and heat transfer performance.
  • D 1 20 ⁇ 80mm of the inner tube
  • D of the outer tube 2 30 ⁇ 95mm preferred, for 10-15% TS of the material selection
  • tubular mixer having a heat exchange function according to the present invention can be converted into a plurality of specific structural forms according to its structural features, such as in an outer casing.
  • the inner sleeve of the present invention may further comprise one or more constituent units; neither of the above various transformations and combinations thereof constitute a tubular mixer It is out of the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Dispersion Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种管式混合器,其包括起混合作用的内套管(2)和起换热作用的外套管(1),内套管(2)位于外套管(1)内,内套管(2)的截面为六边形且由一段沿管中心顺时针扭曲的内管与逆时针扭曲的内管组合而成。该管式混合器,是一种针对高固含量、高粘度或含纤维的复杂流体,同时实现强化传质和传热的管式混合器,并具有防结垢、防堵塞和代替机械搅拌的作用。

Description

一种管式混合器 技术领域
本发明属于流体混合设备,特别涉及一种具有换热功能的管式混合器。
背景技术
混合是用机械的或流体动力的方法,使两种或多种物料相互分散而达到一定均匀程度的单元操作。随着科学研究的逐步深入,在化工、石油、动力、轻工等方面越来越重视混合效果,许多领域采用机械搅拌、气体循环搅拌以及水力搅拌来达到混合目的。此外,许多工程或工程配套工艺,都需要对原料、排料和反应过程进行加热或温度控制;温度既影响到系统能耗,又是保证反应过程的正常和高效进行的关键因素。因此将换热技术与混合技术相结合,研发高效、节能的混合器对于降低生产成本和节约能源均具有重要意义。
目前,工业上常用的混合设备有搅拌混合釜、静态混合器和环流混合器等,常用的换热设备有管式换热器、板式换热器和翅片式换热器等,但是这些设备无法同时强化混合和换热,从而限制了工艺方案和条件的选择,已成为流体过程强化传递的主要瓶颈。另一方面,许多工艺原料的固含量高,表观粘度高,流变性复杂,如发酵原料(秸秆和禽类粪便体系等),这些因素都会造成设备的堵塞、结垢,使得过程传递效率大幅下降,系统连续稳定操作受到影响。随着混合技术与换热技术的提升,许多换热器内部插入了混合器,如管内插入Kenics静态混合器的水平液固流化床换热器,这种构型能够有效地改善颗粒的分布情况,但这一类结构换热器只适合固含量在2wt%到4wt%的低固体含量体系,这是由于管内件的存在使得高固体含量体系换热时具有很大的流动阻力,过程的功耗增大。近年来,管式混合器发展迅速,如多极涡流管式混合器、S-K型混合器、管束列管式静态混合器,它们主要适用于过滤水质中的絮凝物,这类管式混合器只适合污水一类的低固含量、低粘度的简单流体。中国专利CN201510185307.8发明了一种具有螺旋通道的管式混合器,其在内管外壁设置螺旋槽,螺旋槽与外管内壁连接构成螺旋通道,这种结构的混合器可以在短的轴向距离内提供长的混合长度,在同样的混合时间内提供更好的混合效果。但由于其通道为螺旋通道,这种构型只适用于低固含量体系,对于高固含量体系,尤其是含有纤维的秸秆,在这种通道内容易堵塞,从而会降低混合效果,此外该专利只限强化混合,不能同时强化换热。
另一方面,中国专利CN201510305639.5发明了一种适用于高固体含量污水的套管式换热器,它适用于高固体含量污水,污水中污物杂质不易在污水通道四壁结垢或形成堵塞, 保证了换热器的换热效率和连续稳定操作,而且换热器的管程和壳程对流传热效率很高,使其具有较高的强化换热性能,但是该换热器内的扭曲管截面为三角形,对于含有纤维的高固含量高粘度复杂流体,这种构型存在死角,达不到强化混合的效果。此外,扭曲管截面为椭圆形的扭曲管换热器,虽然在强化换热性能上具有一定优势,但是其仅局限于不含固体颗粒的单相流体,例如硫酸降温、氨预热、润滑油降温等。
综上所述,针对高固含量、高粘度或含纤维的复杂流体,开发同时具有强化传质和传热功能的新型流体混合设备具有重要意义,可以降低系统混合和换热能耗,提高反应效率。
发明内容
本发明的目的在于,克服上述现有技术的不足,提供一种针对高固含量、高粘度或含纤维的复杂流体,同时实现强化传质和传热的管式混合器,并具有防结垢、防堵塞和代替机械搅拌的作用。本发明在石油化工、食品加工、生物发酵等领域都有重要应用背景。
通过以下技术方案来实现:
一种管式混合器,其包括起混合作用的内套管和起换热作用的外套管,所述内套管位于外套管内,所述的内套管的截面为六边形且由沿管中心顺时针扭曲的内管与逆时针扭曲的内管组合而成。
所述的管式混合器适用于高固含量、高粘度的物料体系,具有结构简单,防堵塞防结垢,换热与混合一体的优点。
较佳的,所述内套管的截面为等边六边形。内套管中心轴为直线或曲线,在优选条件下采用直线中心轴。
本内套管由沿管中心顺时针均匀扭曲的内管与逆时针均匀扭曲的内管组合而成,较佳的,内套管扭矩,即管壁绕管中心轴线螺旋变形360°所对应的管长,为300-800mm,优选500-800mm。实验发现,过大使得介质通道空间过小,混合器无法正常工作、易结垢,而过小的扭矩会降低混合和换热效果。另外,由顺时针扭曲和逆时针扭曲组成的内管,其两段扭矩可相同或不同,对混合和换热效果影响不明显。
较佳的,本内套管的六边形截面的内切圆直径为20-150mm,优选80-150mm,实验发现内切圆直径过大或过小都会影响换热效率和混合效果,且易造成内套管壁面污垢或堵塞。
本发明外套管的截面形状没有限制,可以为圆形、正方形、六边形等,为了便于生产和较佳的换热效率,优选外套管的界面形状为圆形。内套管的内切圆直径与外套管的内切 圆直径的间距为5-15mm,优选10-15mm,实验发现:间距过大或过小均会降低换热效果,特别间距过大还会造成更高的能耗和成本。
进一步的,本发明内套管、外套管的内切圆直径可根据实际需要在本发明所述范围内调整,为了实现更好的防结垢防堵塞的作用、更高的混合效果和更好的换热性能,优选,当总固含量TS为4-10%的物料选用内切圆直径D1=20~80mm的内套管、内切圆直径D2=30~95mm的外套管较佳,对于总固含量TS为10-15%的物料选用内切圆直径D1=80~150mm的内套管、内切圆直径D2=95~165mm的外套管较佳。
进一步的,以一段沿管中心顺时针扭曲的内管与一段逆时针扭曲的内管的组合作为一个构成单元,本发明所述的内套管可以包含一个或多个这样的构成单元;本发明所述的内套管,其中沿管中心顺时针均匀扭曲的内管(L1)与逆时针均匀扭曲的内管(L2)的长度比可以优选为L1:L2=(0.5~2):1,在此范围内的长度比对混合效果无显著影响,低于或高于此范围,均会造成混合效果明显降低。
在一种技术方案中,本发明所述的管式混合器包括物料混合通道和换热介质通道,物料混合通道由内套管构成,物料混合通道的两端分别设有物料进料口和物料出料口;所述换热介质通道由外套管与内套管之间的环隙构成,可以将外套管和内套管之间间隙形成的换热介质通道的两端封闭,在所述换热介质通道或换热介质总通道上设有换热介质的进口管和换热介质的出口管。为了获得更好的换热效果,优选物料进料口与换热介质的出口管相对应,物料出料口与换热介质的进口管相对应。
本发明的有益效果:
1、它适用于高固体含量TS为4-15wt%的含有固体或纤维的物料体系,无死角,不易积垢,不易堵塞。
2、与三角形扭曲管混合器相比,该混合器的死区占比较小,能够显著地强化混合效果。
3、它的管程和壳程对流传热效率很高,使其具有较高的强化换热性能,且过程泵功耗较小。
4、混合通道由相互嵌套的同轴圆管和扭曲管拼合而成,使用常规的机加工技术即可方便地制造,成本低。
5、物料可在混合通道内充分混合和换热,提高后期系统反应效率并减少能耗。
附图说明
图1具有换热功能的混合器整体图;
图2内通道六边形扭曲管;
图3混合器截面简图
图中,1-外套管,2-内套管,3-A进口管,4-B进口管,5-出口管,6-换热介质进口管,7-换热介质出口管,8-六边形内切圆O1截面,9-六边形截面,10-外套圆管O2截面。
具体实施方法
以下结合附图和实施例对本发明做进一步描述。但以下描述并不理解为对本发明涉及范围的限制。
本发明的针对高固含量、高粘度或含纤维的复杂流体,同时实现强化传质和传热的管式混合器,包括内套管和外套管,内套管位于外套管内,内套管的截面为六边形且由沿管中心顺时针扭曲的内管与逆时针扭曲的内管组合而成。所述的管式混合器适用于高固含量、高粘度的物料体系,具有结构简单,防堵塞防结垢,换热与混合一体的优点。
如图2所示,本发明的内套管可以是截面为六边形,且由一段沿管中心顺时针均匀扭曲的内管与逆时针均匀扭曲的内管组合而成的六边形扭曲管。该六边形扭曲管的截面为正六边形,其中心轴为直线或曲线,在优选条件下采用如图2所示的直线中心轴。
本六边形扭曲管的重要参数之一为扭矩,即管壁绕管中心轴线扭曲变形360°所对应的管长,本六边形扭曲管的扭矩为300-800mm。本六边形扭曲管的六边形截面的内切圆直径为20-150mm,如图3所示。本发明内套管中沿管中心顺时针均匀扭曲的内管(L1)与逆时针均匀扭曲的内管(L2)的长度比为L1:L2=(0.5~2):1。物料与换热介质通过六边形扭曲管的管壁直接换热。
本例中的外套管可以采用常见的圆形套管,外套管截面为圆形,且管径大于内套管,外套管壁与内套管间距5-15mm。本例中内外套管的截面结构如图3所示。
图1显示了一种比较完善的管式混合器,由外套管1、内套管2、物料A进口3、物料B进口4,物料出口5、换热介质进口6、换热介质出口7组成,所述外套管为换热介质通道,内套管为物料混合通道,内套管位于外套管内,其中所述内套管截面为六边形,且由一段沿管中心顺时针均匀扭曲的内管与逆时针均匀扭曲的内管组合而成,如图2-3所示,内套管两端分别连接进料管口A和进料管口B和一根物料出口5。换热介质从换热介质进口6流入圆形截面套管与六边形截面扭曲管的环隙,从换热介质出口7流出,外套管设保温材料。
性能测试
以下采用图1所示的结构,外套管为圆形套管,物料A为秸秆,物料B为CMC(Carboxy Methylated Cellulose)溶液(质量分数为1%),换热介质为水。物料进口温度为10℃,换热介质进口温度为55℃。采用示踪剂法表征混合效果,在进口处注入0.7mol/L的KCl溶液,在出口处用电导率仪(DDSJ-308A)测其电压,通过电压计算出停留时间分步的无因次方差
Figure PCTCN2017087364-appb-000001
和贝克莱数(Pe),
Figure PCTCN2017087364-appb-000002
越接近于1,混合效果越好,Pe越接近于0,轴向返混越大,流态接近于全混流。表1中实施例与对比例的物料进口速度相同,换热介质进口速度也相同,D1为六边形内切圆直径,D2为外管直径,n1和n2分别是两段扭曲管的扭矩,L1和L2分别是两段扭曲管的长度(如图2)。
实施例1-7和对比例1-8的操作条件和混合换热表征结果如表1所示。
表1实施例操作条件及表征结果
Figure PCTCN2017087364-appb-000003
由上表可以看出,对比例1的混合器有较好的换热性能,但是同向扭曲的六边形结构对流体的扰动不如实例1混合器;对比例3三角形扭曲管混合器虽然换热效果较好,但是混合效果不如六边形扭曲管。六边形直管和椭圆形扭曲管堵塞,无法测量。通过以上分析可知,截面为六边形的扭曲管管式混合器效果较佳。
实施例1-3对比,由于物料通道的六边形扭曲管扭矩过大,使得介质通道空间过小, 混合器无法正常工作,所以扭矩超过800mm的扭曲管易结垢,过小的扭矩会降低混合和换热效果,所以实施例2-3混合器的混合和换热效果不如实施例1混合器。所以扭矩管的扭矩在300-800mm范围内,混合和换热效果较佳,超过这个范围,易结垢或易堵塞,降低传质传热效果。
对于固含量较高的物料体系,可以通过改变两段扭曲管的扭矩、长度或六边形内切圆直径和外管直径防止堵塞、结垢和强化混合和换热。实施例4和实施例5分别改变了两段扭曲管的扭矩和长度,实例7而是改变了内管和外管的结构尺寸,根据表征结果可看出,混合和换热效果与实施例1相近,所以实际操作中可根据具体情况,灵活的选择上述的各种组合。
由实施例6与对比例5可知,对于高固含量、高粘度含有纤维的物料,六边形内切圆直径过小容易造成堵塞;由实施例1和对比例6-7可知,相同内管的情况下,缩小或放大内管与外管的环隙,对混合效果影响不大,但是环隙过小会导致温差不够,不足以加热内管内的物料,从而换热效果下降,相反,环隙过大,已被冷却的换热介质不能及时流出,也会导致温差不够,从而会使换热效果下降,同时也会造成更高的能耗和成本;由实施例7与对比例8可知,六边形内切圆直径过大,会造成轻微结垢,破坏了旋流流型,增大了换热热阻,从而降低了混合效果和换热性能。综上所述,对于TS为4-10%的物料选用D1=20~80mm的内管、D2=30~95mm的外管较佳,对于TS为10-15%的物料选用D1=80~150mm、D2=95~165mm的外管较佳。在上述TS-管径的条件下可以实现高防结垢防堵塞的作用和较高的混合效果和换热性能,而有较大偏差时则会严重影响前述效果。
以上仅以一种设计相对简单的管式混合器为例,结合专业领域普遍接受的混合性能表征方法,说明了本发明管式混合器的具体实施方法和实施效果。但是本发明的保护范围并不限制于此,实际上,本发明提出的一种具有换热功能的管式混合器,根据其结构特征,可以变换出多种具体的结构形式,比如在外套管内设置多根内套管,根据不同的物料体系改变扭矩和管径,排列和组合多根顺时针均匀扭曲的内管与逆时针均匀扭曲的内管;如果以一段沿管中心顺时针扭曲的内管与一段逆时针扭曲的内管的组合作为一个构成单元,本发明所述的内套管还可以包含一个或多个构成单元;以上各种变换及其组合而构成的管式混合器都不脱离本发明的保护范围。

Claims (10)

  1. 一种管式混合器,其特征在于,包括起混合作用的内套管和起换热作用的外套管,所述内套管位于外套管内,所述的内套管的截面为六边形且由沿管中心顺时针扭曲的内管与逆时针扭曲的内管组合而成。
  2. 根据权利要求1所述的管式混合器,其特征在于,所述内套管的截面为等边六边形。
  3. 根据权利要求1所述的管式混合器,其特征在于,所述内套管中心轴为直线或曲线,内套管由沿管中心顺时针均匀扭曲的内管与逆时针均匀扭曲的内管组合而成。
  4. 根据权利要求1所述的管式混合器,其特征在于,所述内套管扭矩,即管壁绕管中心轴线螺旋变形360°所对应的管长,为300-800mm,优选500-800mm。
  5. 根据权利要求1所述的管式混合器,其特征在于,内套管的六边形截面的内切圆直径为20-150mm,优选80-150mm。
  6. 根据权利要求1所述的管式混合器,其特征在于,内套管的内切圆直径与外套管的内切圆直径的间距为5-15mm,优选10-15mm。
  7. 根据权利要求1所述的管式混合器,其特征在于,所述的内套管,其中沿管中心顺时针均匀扭曲的内管与逆时针均匀扭曲的内管的长度比为(0.5~2):1。
  8. 根据权利要求1所述的管式混合器,其特征在于,以一段沿管中心顺时针扭曲的内管与一段逆时针扭曲的内管的组合作为一个构成单元,本发明所述的内套管可以包含一个或多个构成单元。
  9. 根据权利要求1所述的管式混合器,其特征在于,该管式混合器包括物料混合通道和换热介质通道,所述物料混合通道由内套管构成,物料混合通道的两端分别设有物料进料口和物料出料口;所述换热介质通道由外套管与内套管之间的环隙构成,在所述换热介质通道或换热介质总通道上设有换热介质的进口管和换热介质的出口管。
  10. 根据权利要求9所述的管式混合器,其特征在于,物料进料口与换热介质的出口管相对应,物料出料口与换热介质的进口管相对应。
PCT/CN2017/087364 2017-06-07 2017-06-07 一种管式混合器 WO2018223296A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780088617.5A CN110431371B (zh) 2017-06-07 2017-06-07 一种管式混合器
PCT/CN2017/087364 WO2018223296A1 (zh) 2017-06-07 2017-06-07 一种管式混合器
EP17912567.9A EP3587987B1 (en) 2017-06-07 2017-06-07 Pipe-type mixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087364 WO2018223296A1 (zh) 2017-06-07 2017-06-07 一种管式混合器

Publications (1)

Publication Number Publication Date
WO2018223296A1 true WO2018223296A1 (zh) 2018-12-13

Family

ID=64566798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087364 WO2018223296A1 (zh) 2017-06-07 2017-06-07 一种管式混合器

Country Status (3)

Country Link
EP (1) EP3587987B1 (zh)
CN (1) CN110431371B (zh)
WO (1) WO2018223296A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960971B (zh) * 2020-09-19 2023-04-11 寿光市荣晟新材料有限公司 一种2-丙烯酰胺基-2-甲基丙磺酸的生产工艺及生产设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241290A (ja) * 1990-02-19 1991-10-28 Noritake Co Ltd 熱交換用管体及び熱交換器
CN101112252A (zh) * 2006-07-24 2008-01-30 坎贝尔法国简易股份公司 具有通过蛇形管循环的欧姆加热系统
CN204268942U (zh) * 2014-11-20 2015-04-15 常州常宝精特能源管材有限公司 一种具有螺旋混流功能的热交换u形管
CN205279802U (zh) * 2015-12-17 2016-06-01 英特换热设备(浙江)有限公司 一种加强型螺旋管高效换热器
JP2016161250A (ja) * 2015-03-04 2016-09-05 日野自動車株式会社 熱交換器用チューブ
CN205860827U (zh) * 2016-08-10 2017-01-04 佛山科学技术学院 螺旋椭圆管套管式换热器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772793A (en) * 1996-08-28 1998-06-30 The United States Of America As Represented By The United States Department Of Energy Tube-in-tube thermophotovoltaic generator
JP2001353431A (ja) * 2000-06-12 2001-12-25 Noritake Co Ltd スタティックミキサーエレメント、これを用いた混合装置と方法、及び熱交換装置と方法
JP2002364997A (ja) * 2001-06-11 2002-12-18 Fuji Enterprise:Kk 燃焼ガスの熱交換システム
US20040134557A1 (en) * 2002-06-28 2004-07-15 Cymbalisty Lubomyr M. Hydrodynamic static mixing apparatus and method for use thereof in transporting, conditioning and separating oil sands and the like
DE10333477A1 (de) * 2003-07-22 2005-02-24 Aloys Wobben Strömungskanal für Flüssigkeiten
JP2007218486A (ja) * 2006-02-15 2007-08-30 Hitachi Cable Ltd 熱交換器用伝熱管及びこれを用いた熱交換器
CN202860426U (zh) * 2012-08-27 2013-04-10 安徽华艺生物装备技术有限公司 反向sh型静态混合器
CN203772065U (zh) * 2014-03-04 2014-08-13 北京奥太华制冷设备有限公司 套管式换热器
CN203837550U (zh) * 2014-05-05 2014-09-17 无锡蓝海工程设计有限公司 一种间断双向扭曲换热管
CN106288873A (zh) * 2015-06-05 2017-01-04 南京工业大学 一种适用于高固体含量污水的套管式换热器
DE102015010639B4 (de) * 2015-08-13 2019-01-31 Sandy Schöbbel Verwendung einer Röhre

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241290A (ja) * 1990-02-19 1991-10-28 Noritake Co Ltd 熱交換用管体及び熱交換器
CN101112252A (zh) * 2006-07-24 2008-01-30 坎贝尔法国简易股份公司 具有通过蛇形管循环的欧姆加热系统
CN204268942U (zh) * 2014-11-20 2015-04-15 常州常宝精特能源管材有限公司 一种具有螺旋混流功能的热交换u形管
JP2016161250A (ja) * 2015-03-04 2016-09-05 日野自動車株式会社 熱交換器用チューブ
CN205279802U (zh) * 2015-12-17 2016-06-01 英特换热设备(浙江)有限公司 一种加强型螺旋管高效换热器
CN205860827U (zh) * 2016-08-10 2017-01-04 佛山科学技术学院 螺旋椭圆管套管式换热器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3587987A4

Also Published As

Publication number Publication date
CN110431371B (zh) 2024-05-07
EP3587987A1 (en) 2020-01-01
CN110431371A (zh) 2019-11-08
EP3587987B1 (en) 2023-02-15
EP3587987A4 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
CN102538562B (zh) 一种组合式单壳程连续螺旋折流板管壳式换热器
WO2016192130A1 (zh) 一种适用于高固体含量污水的套管式换热器
CN201181172Y (zh) 内管螺旋加强型套管式换热器
CN103212362B (zh) 锥形螺旋管式射流反应器
CN209926928U (zh) 一种套管式换热器
CN109579573A (zh) 一种螺旋花格板管壳式换热器
WO2018223296A1 (zh) 一种管式混合器
CN205860827U (zh) 螺旋椭圆管套管式换热器
CN105258533A (zh) 具有分形结构的管壳式换热器
CN102698630A (zh) 高固形物含量、高粘度流体静态混合器
CN206560803U (zh) 一种管道混合器
CN204380586U (zh) 一种高效搅拌式合成罐
CN203893704U (zh) 一种非等距双螺旋折流板管壳式换热器
CN208975562U (zh) 一种天然色素混合液冷却搅拌桨
CN2329665Y (zh) 带有缠绕管型换热器的气升式发酵罐
CN211677738U (zh) 一种易散热的搅拌反应釜
CN208476043U (zh) 一种螺旋冷却机
CN205156699U (zh) 一种双螺旋折流板换热器
CN206454631U (zh) 一种生产聚葡萄糖的反应器
CN101054473B (zh) 一种耦合生产设备及生产工艺
CN204987964U (zh) 脱敏剂生产用换热器
KR200218059Y1 (ko) 스태틱 믹서의 엘러먼트를 이용한 다중관 열교환기
CN203264327U (zh) 结晶釜多功能换热装置
CN103836840A (zh) 管壳式除污除垢换热一体化原生污水热泵能量提升装置
CN214261561U (zh) 一种用于多物料加热或冷却的搅拌装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017912567

Country of ref document: EP

Effective date: 20190927

NENP Non-entry into the national phase

Ref country code: DE