WO2018221784A1 - 유체 분석용 마이크로 칩 - Google Patents

유체 분석용 마이크로 칩 Download PDF

Info

Publication number
WO2018221784A1
WO2018221784A1 PCT/KR2017/007650 KR2017007650W WO2018221784A1 WO 2018221784 A1 WO2018221784 A1 WO 2018221784A1 KR 2017007650 W KR2017007650 W KR 2017007650W WO 2018221784 A1 WO2018221784 A1 WO 2018221784A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
magnetic
microchip
channel
antigen
Prior art date
Application number
PCT/KR2017/007650
Other languages
English (en)
French (fr)
Inventor
최준규
강경우
송나현
Original Assignee
주식회사 스몰머신즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스몰머신즈 filed Critical 주식회사 스몰머신즈
Priority to US16/618,266 priority Critical patent/US20200147611A1/en
Priority to CN201790001726.4U priority patent/CN211905388U/zh
Publication of WO2018221784A1 publication Critical patent/WO2018221784A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1484Optical investigation techniques, e.g. flow cytometry microstructural devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/54333Modification of conditions of immunological binding reaction, e.g. use of more than one type of particle, use of chemical agents to improve binding, choice of incubation time or application of magnetic field during binding reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Definitions

  • the present invention relates to a microchip for fluid analysis, and more particularly, to a fluid analysis microchip including a plurality of channels functionally configured to easily detect a detection target substance present in a fluid and a detection target using the same.
  • a method for detecting a substance is a method for detecting a substance.
  • Lab-on-a-chip technology enables a variety of laboratory processes, such as sample separation, purification, mixing, labeling, analysis, and cleaning, to be performed on small size chips. It is a technology that can.
  • microfluidics In the design of lab-on-a-chip, microfluidics, microfluidic control system related technology, and microelectromechanical system (MEMS) technology are used.
  • MEMS microelectromechanical system
  • Microchips (or structures) with microchannels that embody microfluidics can be used by capillary phenomena by using small motors or by limiting the width and height of the channels to allow fluid to move into the space formed by the microchannels inside the chip.
  • a method of causing the fluid to move can be used.
  • the microchip whose capillary force is the main driving force that causes the movement of the fluid may have a different action force due to interaction between the upper and lower inner walls of the microchannel and the fluid, and an action force due to the interaction between the left and right inner walls of the microchannel and the fluid. have.
  • the fluid flowing through the space defined by the channel may have an irregular and nonuniform movement pattern.
  • such a non-uniform fluid movement pattern may be a significant obstacle to the detection and analysis of the detection target substance present in trace amounts in the fluid sample.
  • the prior art has proposed a method to secure the required flow rate by forcibly flowing the fluid by the pumping action by the external pump. have.
  • this approach can generate bubbles in the fluid sample and cause errors in the analysis. Further problems may arise, which complicate the configuration of the chip, which increases manufacturing time and cost and complicates the inspection process.
  • a protein such as an antibody labeled with a fluorescent substance, which is immobilized on a microchip, may be used.
  • a fluorescent substance such as an antibody labeled with a fluorescent substance, which is immobilized on a microchip.
  • a fluorophore that is not bound to a target in the channel or a fluorophore-detector complex that is bound to an analyte but is not fixed in the chip is suspended. Errors in detection can occur.
  • the inspection process may be complicated.
  • the inventors of the present invention have realized that the above problems can be solved by using magnetic particles having no fluorescent material or optical label, and as a result, the inventors of the present invention have found that the fluid can be removed by capillary force without the optical label. It has been invented a microchip for fluid analysis that flows and can detect a target substance more accurately.
  • the inventors of the present invention have recognized that extremely small amounts of the detection target can be detected from a small amount of fluid sample by increasing the efficiency of the immune response between the magnetic particles to which the antibody is attached and the detection target.
  • the inventors of the present invention were able to find the size of the optically countable magnetic particles without self-assembly caused by a nonspecific immune response.
  • an object of the present invention is to provide a fluid analysis microchip capable of improving the efficiency of an immune reaction with a detection target material and quantitatively analyzing the detection target optically without using a fluorescent material.
  • Another object of the present invention is to provide a method for quantitative analysis of antigens using the microchip for fluid analysis of the present invention.
  • the fluid analysis microchip includes a body having an upper surface and a lower surface, and flows fluid into an inner channel formed between the upper surface and the lower surface.
  • a microchip for fluid analysis for detecting a specific antigen in a fluid the flow channel being configured to be in fluid communication with an input channel, an input channel configured to inject an analytical sample through a hole through the top surface, and flow from the input channel
  • a reaction configured to include magnetic particles to which the first antibody that reacts with the sample and the first antigen-antibody are immobilized, and wherein the magnetic particles have a height higher than the lower surface that forms the immune complex by the first antigen-antibody reaction and forms an input channel
  • a second antigen-antibody reaction with an immune complex flown from the reaction channel and configured to be in fluid communication with the channel and the reaction channel Is fixed to the second antibody, having a longer length than the input channel or reaction channel comprises a detection channel with a narrow width.
  • the reaction channel may be configured to have a lower surface which becomes lower in height from the reaction channel starting point to the detection channel.
  • the particle diameter of the magnetic particles may be 0.1 to 6 ⁇ m.
  • the first antibody and the second antibody may be different from the fluorescence-labeled antibody.
  • the magnetic particles may be attached to the top surface forming the reaction channel.
  • the first antibody may be a monoclonal antibody
  • the second antibody may be a polyclonal antibody
  • the input channel may comprise a filter.
  • the detection channel comprises a plurality of wells and the second antibody can be immobilized in the well by a linker molecule.
  • the diameter and depth of the well may have a size of 1.2 to 2.0 times the particle diameter of the magnetic particles.
  • the detection channel further comprises a plurality of capture pillars, and the second antibody can be immobilized between the pillars.
  • Each of the plurality of fillers may be disposed to have a spacing of 1.2 to 2.0 times the particle diameter of the magnetic particles.
  • the second antibody when the microchip for fluid analysis is introduced into a detector comprising a magnetic material capable of attracting or pushing magnetic particles, the second antibody may have a position corresponding to the magnetic material.
  • the strength of the magnetic field of the magnetic material corresponding to the side to which the second antibody is attached may be weaker than the strength of the magnetic field of the magnetic material corresponding to the side to which the second antibody is not attached.
  • the fluid analysis microchip further comprises a flow control filler for controlling the flow of the analyte sample, the flow control filler to be attached to the upper surface forming the input channel, the reaction channel or the detection channel Can be.
  • the magnetic particles may be attached to the first antibody in the number of 10 5 with respect to the square of the radius of the magnetic particle diameter.
  • the method for quantitative analysis of antigens comprises the steps of preparing an assay sample, placing the assay sample on a microchip for fluid analysis according to an embodiment of the present invention.
  • Introducing a microchip for fluid analysis into a detector including a step, a magnetic force applying unit and a CMOS image sensor, applying an electromagnetic force to the magnetic force applying unit, and counting the number of antigens to be detected in the analyte using the CMOS image sensor It includes a step.
  • the magnetic force applying unit includes a first magnetic force applying unit composed of a plurality of magnetic material pairs in the detector, and applying the electromagnetic force to the magnetic force applying unit corresponds to a reaction channel of the microchip for fluid analysis. Applying an electromagnetic force to a pair of magnetic materials of the plurality of magnetic material pairs disposed at a location, and applying an electromagnetic force to another pair of magnetic materials closest to the pair of magnetic materials.
  • the magnetic force applying unit further comprises a second magnetic force applying unit different from the first magnetic force applying unit, and disposed at a position corresponding to the detection channel of the fluid analysis microchip, and applying the electromagnetic force to the magnetic force applying unit.
  • the applying may further include applying an electromagnetic force to the second magnetic force applying unit to capture the immune complex, which is a complex of the magnetic particles in the antigen to be detected and the fluid analysis microchip.
  • a plurality of second magnetic force applying unit is present in the detector, disposed to correspond to at least one of the upper surface and the lower surface of the detection channel of the fluid analysis microchip, the electromagnetic force
  • the step of applying, applying the electromagnetic force only to the second magnetic force applying unit disposed corresponding to at least one side to capture the immune complex on at least one of the upper surface and the lower surface and the magnetic particles suspended in the detection channel may further include applying an electromagnetic force only to the second magnetic force applying unit corresponding to the other side to move to the other side.
  • the step of applying the electromagnetic force to the magnetic force applying unit applying the electromagnetic force only to the second magnetic force application unit corresponding to the other side so that the floating magnetic particles in the detection exits the detection channel.
  • the method may further include blocking all electromagnetic forces of the plurality of second magnetic force applying units.
  • the present invention is effective in detecting an extremely small amount of a detection target substance from a small amount of a fluid sample by using an immune reaction between a magnetic particle to which an antibody is attached and a detection target substance.
  • the present invention provides the size of the optically countable magnetic particles without self-assembly caused by a nonspecific immune response, and thus enables the quantitative analysis of the optically detectable substance without the use of fluorescent materials. There is an effect that can provide a microchip for.
  • the present invention by providing a method for quantitative analysis of a specific antigen using a microchip for fluid analysis according to an embodiment of the present invention, there is an effect that can detect a very small amount of detection target material with high sensitivity.
  • FIG. 1A is a schematic perspective view of a microchip for fluid analysis according to an embodiment of the present invention.
  • FIGS. 1B to 1D are schematic side views and enlarged views for explaining a process of detecting an antigen to be detected, according to an embodiment of the present invention.
  • FIGS. 1E and 1F illustrate detection channels in a microchip for fluid analysis according to an embodiment of the present invention.
  • Figure 2 shows a quantitative analysis of the antigen, using a microchip for fluid analysis according to an embodiment of the present invention and a method for quantitating the antigen according to another embodiment of the present invention.
  • Figure 3a is a schematic exploded perspective view showing the configuration of the antigen quantitative analysis system, using a microchip for fluid analysis according to an embodiment of the present invention and a method for quantitating antigens according to another embodiment of the present invention.
  • 3B is a plan view illustrating a reaction channel of a microchip for fluid analysis and a first magnetic force applying unit of a detector disposed therein according to an embodiment of the present invention.
  • 3C to 3G are plan views of reaction channels of the microchip for fluid analysis according to an embodiment of the present invention, and enlarged main parts for explaining a process of detecting a target substance in the reaction channel.
  • 3H is a plan view illustrating a detection channel of a microchip for fluid analysis and a second magnetic force applying unit of a detector disposed therein according to an embodiment of the present invention.
  • 3I to 3K are enlarged side views for explaining a side view of a detection channel of the microchip for fluid analysis and a process of detecting a target material within the detection channel according to an embodiment of the present invention.
  • Figure 4 shows the experimental results for setting the flow rate of the analysis sample to maximize the accuracy of the immune response in the fluid analysis microchip according to an embodiment of the present invention and the antigen quantitative analysis method according to another embodiment of the present invention It is.
  • 5A and 5B show evaluation results of a microchip for fluid analysis according to an embodiment of the present invention and a method for quantitating an antigen according to another embodiment of the present invention.
  • Shapes, sizes, ratios, angles, numbers, and the like disclosed in the drawings for describing the embodiments of the present invention are exemplary, and the present invention is not limited to the illustrated items.
  • the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
  • 'comprises', 'haves', 'consists of' and the like mentioned in the present specification are used, other parts may be added unless 'only' is used.
  • the plural number includes the plural unless specifically stated otherwise.
  • each of the features of the various embodiments of the present invention may be combined or combined with each other in part or in whole, various technically interlocking and driving as can be understood by those skilled in the art, each of the embodiments may be implemented independently of each other It may be possible to carry out together in an association.
  • a channel through which the fluid communicates may be formed by a body part having an upper surface and a lower surface.
  • channel may refer to a microchannel formed between an upper surface and a lower surface.
  • the microchip for fluid analysis includes a plurality of channels, and each channel may be divided into an input channel, a reaction channel, and a detection channel according to its function, but each channel may be fluid. It may also appear as a channel that communicates with.
  • the bottom surface may be configured to have a different height for each channel so that the flow of fluid is advantageous. Accordingly, each channel may have a different capacity (or volume) from each other.
  • the term "analytical sample” may refer to a sample including a detection target.
  • the analytical sample may be a fluid sample.
  • the detection subject may be an antigen or a nucleoprotein acting as an antigen.
  • the detection target material can be easily selected by the user according to the purpose of using the fluid analysis microchip according to an embodiment of the present invention.
  • the detection target material may be influenza A, influenza B, or respiratory syncytial virus (RSV). ), Parainfluenza Virus-1, parainfluenzavirus-2, parainfluenzavirus-3, adenovirus, human metapneumovirus (hMPV) or rhinovirus (1, 2) ) An antibody.
  • the detection target material is IL-1 beta, IL-10, IL-2, IL-4, IL- 5, IL-6, IL-71, IFN gamma, TNF- ⁇ or GM-CSF.
  • the detection target material is troponin I, BNP, high sensitivity (hs, high- sensitivity) can be CRP, CK-MB, D-dimer or myoglobin.
  • the detection target material is HIV (human immunodeficiency virus), Chlamydia bacteria, treponema pala It can be Dom (Treponema pallidum), gonococcus (Neisseria gonorrhoeae) or human papilloma virus (HPV).
  • the detection target material may be a prostate specific antigen (PSA).
  • PSA prostate specific antigen
  • the detection target material may be a BK virus or cytomegalovirus (CMV) antigen.
  • CMV cytomegalovirus
  • the detection target may be targeted to a variety of antigens.
  • the analyte sample may be dissolved before being introduced into the fluid analysis microchip according to an embodiment of the present invention.
  • fluid may mean a liquid or a gas or an intermediate state thereof. Such fluids may have free flowing properties.
  • the analysis sample of the fluid may flow in the direction of the detection channel from the input channel of the fluid analysis microchip according to an embodiment of the present invention.
  • the term "penetrating hole” means a hole, which is formed to penetrate through the upper surface of the microchip for fluid analysis according to the exemplary embodiment of the present invention.
  • an analytical sample may be injected through the through hole formed in the microchip for fluid analysis according to an embodiment of the present invention.
  • the term "antigen" refers to a substance that responds to an antibody that elicits an immune response.
  • the antigen may be a detection target antigen to be detected in a microchip for fluid analysis according to an embodiment of the present invention, or a quantitative analysis method of an antigen according to another embodiment of the present invention.
  • the antigen may be a nucleoprotein of the virus, but is not limited thereto. It can be any substance in the analytical sample.
  • the term "antibody” refers to a substance that specifically induces an immune response to an antigen, in order to inactivate antigens such as viruses and bacteria and to fight microorganisms that enter the body.
  • monoclonal antibodies are antibodies produced by a single antibody-forming cell, meaning antibodies having a uniform primary structure (amino acid sequence), and polyclonal antibodies mean a population of antibodies having a heterogeneous primary structure. do.
  • the first antibody immobilized on the magnetic particles present in the microchip for fluid analysis according to an embodiment of the present invention may be a monoclonal antibody that recognizes only one determinant of the antigen to be detected.
  • the detection antigen and the first antigen-antibody reaction efficiency present in a very small amount can be increased.
  • the second antibody immobilized on the detection channel in the microchip for fluid analysis according to an embodiment of the present invention is a polyclonal antibody capable of recognizing a plurality of determinants of an antigen to be detected that have formed an immune complex with magnetic particles. Can be. Accordingly, the efficiency of the second antigen-antibody reaction between the immune complex and the second antibody can be increased.
  • the first antibody and the second antibody may be different from the fluorescent label antibody.
  • fluorescent label antibody refers to a label antibody bound to a fluorochrome that generates fluorescence by light stimulation.
  • Fluorescent dyes can be pigment proteins of fluorescent dyes isothiocyanates (FITCs), rhodamineisothiocyanates (RITCs) that emit red fluorescence, and phycoerythrins.
  • FITCs fluorescent dyes isothiocyanates
  • RITCs rhodamineisothiocyanates
  • the fluorescently labeled antibody and the antigen to be detected can be antigen-antibody reacted.
  • the detection target antigen is identified by confirming a signal for a fluorescently labeled antibody having an antigen-antibody reaction using fluorescence antibody method, flow cytometry, and immunofluorescence method. It can be confirmed indirectly.
  • the microchip for fluid analysis according to an embodiment of the present invention may detect and identify an antigen to be detected by using a first antibody and a second antibody different from the fluorescently labeled antibody.
  • a first antibody and a second antibody different from the fluorescently labeled antibody For example, in the microchip for fluid analysis according to the exemplary embodiment of the present invention, magnetic particles to which the first antibody is attached are included, and fluorescent labels are not attached to the magnetic particles.
  • the magnetic particles to which the antigen to be detected and the corresponding first antibody are attached form an immune complex through an antigen-antibody reaction, and the immune complex is captured in the chip.
  • the magnetic particles in the captured immune complex can be optically counted through a detector, and as a result, detection and quantitation of the antigen to be detected can be performed.
  • immune complex means a complex in which a first antibody attached to a magnetic particle and an antigen to be detected are bound by a first antigen-antibody reaction.
  • first antigen-antibody response refers to the immune response of an antigen to be detected and a first antibody immobilized on a magnetic particle.
  • second antigen-antibody response refers to the immune response of the antigen to be detected and the second antibody in the immune complex.
  • the term "linker molecule” refers to a molecule that connects a plurality of components present.
  • the second antibody can be immobilized in a well of a detection channel by a linker molecule.
  • the second antibody immobilized in the well by the linker molecule may be more fluid than the second antibody otherwise.
  • the high precision of the second antibody in the well can also be controlled by the linker molecule.
  • the linker molecule may be preferably protein A / G, dextran or polyethylene glycol (PEG), but is not limited thereto.
  • magnetic particles refers to particles having magnetic properties. Magnetic particles may be detachably disposed in the microchip for fluid analysis according to an embodiment of the present invention. For example, the magnetic particles may be attached to the reaction initiation channel of the fluid analysis microchip according to an embodiment of the present invention in a lyophilized state, and may be detached according to the flow of the analytical sample of the fluid.
  • the magnetic particles can be optically countable and have a size where nonspecific self assembly does not occur.
  • the particle diameter of the magnetic particles is 0.1 to 6.0 ⁇ m, even if the first antibody or the second antibody is not a fluorescently labeled antibody, it may be optically counted through a detector.
  • magnetic particles having a particle size of 0.1 to 6.0 ⁇ m may have a lower probability of non-specific self-assembly than magnetic particles having a particle size of 0.1 ⁇ m or less.
  • the shape of the magnetic particles is not limited as long as it is a structure capable of rolling in the microchip for fluid analysis according to an embodiment of the present invention.
  • the term “flow control filler” may be used to refer to any structure that induces a uniform flow of analyte sample of a fluid in a fluid analysis microchip according to one embodiment of the present invention.
  • the plurality of flow control fillers may be disposed inside the fluid analysis microchip according to an embodiment of the present invention, so that the analyte sample of the fluid may have a uniform movement pattern.
  • the flow control filler may have a particle diameter of 45 to 70 ⁇ m and may be disposed on the upper surface, but is not limited thereto.
  • the term "well” refers to a hole formed in the upper or lower surface of the microchip for fluid analysis according to an embodiment of the present invention.
  • the plurality of wells may be formed in the detection channel of the microchip for fluid analysis according to an embodiment of the present invention.
  • the well may include a second antibody, and may have a particle size 1.2 times to 2 times larger than that of the magnetic particles so that only one immune complex is captured.
  • the term "capture filler” is a filler formed on the upper or lower surface of the fluid analysis microchip according to an embodiment of the present invention, it may be used for a similar purpose as the well described above.
  • the plurality of capture fillers may be formed in the detection channel of the microchip for fluid analysis according to an embodiment of the present invention.
  • a second antibody may be immobilized between each capture filler, and each capture filler may be disposed at an interval of 1.2 to 2 times the size of the magnetic particles so that only one immune complex is captured.
  • the capture filler may have a different function from the flow control filler in the fluid analysis microchip according to an embodiment of the present invention.
  • the term "magnetic material” may refer to any material capable of forming magnetism with magnetic particles in a chip outside the microchip for fluid analysis according to an embodiment of the present invention.
  • the magnetic material may be applied to a detector used to promote a first antigen-antibody reaction of a reaction channel in a microchip for fluid analysis according to an embodiment of the present invention, or to identify an immune complex trapped in a detection channel. May be included.
  • the magnetic material may be an electromagnet in which magnetization is adjusted according to the flow of current, and the microchip for fluid analysis according to an embodiment of the present invention may be introduced between two electromagnets disposed in the detector. As the magnetic force of the two electromagnets is adjusted, the magnetic particles that do not react with the nonspecific immune complex or the antigen to be detected may be washed in the microchip for fluid analysis according to an embodiment of the present invention. Highly accurate detection may be possible.
  • the detector may also include a magnetic force application.
  • the magnetic force applying unit is different from the first magnetic force applying unit and the first magnetic force applying unit, which is composed of a plurality of pairs of magnetic substances and is disposed at a position corresponding to the reaction channel of the microchip for fluid analysis, and is applied to the detection channel of the microchip for fluid analysis. It may include a second magnetic force applying unit disposed in the corresponding position.
  • the magnetic force applying units may have various forms as long as the electromagnetic force is applied to the reaction channel or the detection channel.
  • the term "quantitative analysis” refers to an assay that clarifies the quantitative relationship that constitutes a substance.
  • a method for quantitating an antigen is provided.
  • using the microchip for fluid analysis according to an embodiment of the present invention as the magnetic particles trapped in the detection channel are counted, Antigen detection and quantitation may be possible.
  • CMOS image sensor refers to a low power consumption type imaging device having a structure of a complementary metal oxide semiconductor.
  • the CMOS image sensor may be used in a detector, which is used with a microchip for fluid analysis according to an embodiment of the present invention.
  • a microchip for fluid analysis according to an embodiment of the present invention is introduced into a CMOS image sensor-based detector, an immune complex captured by the CMOS image sensor may be recognized.
  • FIGS. 1A to 1F a microanalysis fluid microchip according to an embodiment of the present invention will be described in detail with reference to FIGS. 1A to 1F.
  • FIG. 1A is a schematic plan view of a microchip for fluid analysis according to an embodiment of the present invention.
  • the microchip 100 for fluid analysis may form a plurality of channels 110, 120, 130, and 140 formed between an upper surface and a lower surface.
  • a plurality of through holes 141 may be formed in the side of the fluid analysis microchip 100 such that the fluid moves in one direction by osmotic pressure in the fluid analysis microchip 100.
  • the through hole 141 maintains the capillary force by maintaining the air pressure so that the flow of the analysis sample to the flow retention channel 140 sufficiently occurs.
  • the plurality of channels includes an input channel 110, a reaction channel 120 and a detection channel 130.
  • the input channel 110 is configured such that the analyte sample is introduced through the hole 112 penetrating the upper surface.
  • Reaction channel 120 is configured to be in fluid communication with input channel 110.
  • the reaction channel 120 includes a magnetic particle-first antibody complex 122 that reacts with the analyte sample flowing from the input channel 110 and a first antigen-antibody.
  • the reaction channel 120 is configured to have a height higher than the bottom surface forming the input channel 110.
  • Detection channel 130 is configured to be in fluid communication with reaction channel 120.
  • the detection channel 130 is immobilized with a second antibody that reacts with a second antigen-antibody with the immune complex flown from the reaction channel 120.
  • the detection channel 130 has a longer length than the input channel 110 or the reaction channel 120 and has a narrow width.
  • Input channel 110 may further include a filter 114.
  • a filter 114 When the analysis sample 116 passes through the filter 114, components larger in size than the filter 114 among the components present in the analysis sample 116 may be removed.
  • the assay sample is blood, blood cells may be removed through filter 114.
  • filter 114 may be a filter that has been treated with 1M EDTA for effective filtering.
  • the input channel 110 may have a length of 15 to 25% with respect to the length of the entire fluid analysis microchip 100, and may have a higher capacity than other channels.
  • the input channel 110 can be configured to accommodate substantially more than the capacity of the analyte sample 116 reacting in the reaction channel 120.
  • the magnetic particle-first antibody complex 122 in the reaction channel 120 may be attached to the top surface.
  • the width of the reaction channel 120 may have a narrower width than the input channel 110, so that the analyte sample can smoothly move from the input channel 110 to the reaction channel 120, from the input channel 110 It may have a width that gradually decreases to the detection channel 130. In addition, it may have a lower surface that is lower in height toward the detection channel 130 from the reaction channel 120 starting point.
  • the detection channel 130 may include a plurality of detection units 132 including a plurality of wells 134. Each detector 132 may have a series of intervals within the detection channel 130. However, the present invention is not limited thereto, and the detection unit 132 may have various shapes to have different intervals, areas, and numbers of the wells 134 in the detection unit 132 depending on the type of analyte sample or the purpose of using the microchip 100 for fluid analysis. Can temper.
  • the second antibody is immobilized in the well 134, so that the immune complex can be captured by the second antigen-antibody reaction with the immune complex flown from the reaction channel 120. Meanwhile, the detection channel 130 may have a length of 40 to 60% with respect to the length of the entire fluid analysis microchip 100, and thus may have a longer length than other channels.
  • the analyte sample 116 passing through the detection channel 130 is maintained in flow. May move to channel 140.
  • the air pressure formed by the through holes 141 formed in the flow retention channel 140 can maintain the flow of the analysis sample 116.
  • the analytical sample 116 can maintain sufficient flow until all reactions are completed in the microchip 100 for fluid analysis.
  • the immune complexes formed in the reaction channel 120 can effectively migrate to the detection channel 130.
  • non-specific immune response complexes or magnetic particles that do not form an immune complex formed in the detection channel 130 may be washed and moved out of the detection channel 130.
  • 1B to 1D are schematic side views and enlarged views for explaining a process of detecting an antigen to be detected, according to an embodiment of the present invention.
  • 1E and 1F illustrate detection channels in a microchip for fluid analysis according to an embodiment of the present invention.
  • the analyte sample 116 may be injected into the input channel 110 through the inlet 112. At this time, the analytical sample 116 may optionally be injected into the input channel 110 after the dissolution treatment.
  • the analyte sample 116 may also include a blood cell 117, an antigen to be detected 118, which is larger than the filter 114 by the filter 114 in the input channel 110. Are filtered out, and the antigen to be detected 118 in serum or plasma can flow into the reaction channel 120.
  • the antigen-detecting antigen 118 in the assay sample 116 and the magnetic particle-first antibody complex 122 attached to the upper surface 160 are bound by an antigen-antibody immune response.
  • the first antibody complex may be detached by the fluid components before and after binding.
  • the body portion including the upper surface 160 may be preferably a hydrophobic material, but is not limited thereto.
  • BSA bovine serum albumin
  • FBS fetal bovine serum
  • the magnetic particle-first antibody complex 122 is specifically composed of the first antibody 122 (a) and the magnetic particle 122 (b).
  • the first antibody 122 (a) may be a monoclonal antibody in order to increase the accuracy of the immune response with a trace amount of the antigen to be detected 118.
  • the magnetic particle-first antibody complex 122 may be attached to the upper surface 160 in a lyophilized state, but is not limited thereto.
  • a first antigen-antibody reaction of the desorbed magnetic particle-first antibody complex 122 and the antigen to be detected 118 may occur.
  • the particle diameter of the magnetic particles 122 (b) may be 0.1 to 6.0 mu m. More preferably, the particle diameter of the magnetic particles 122 (b) may be 1.0 to 4 m.
  • the detector is optically detected even if the first antibody 122 (a) is not a fluorescently labeled antibody, that is, a fluorescently labeled antibody. Can be counted through.
  • magnetic particles 122 (b) having a particle size of 1.0 to 4 ⁇ m may have a lower probability of non-specific self-assembly than magnetic particles 122 (b) having a particle size of 1.0 ⁇ m or less.
  • the antigen-antibody reaction efficiency of the magnetic particles 122 (b) having a particle size of 4 ⁇ m or more may be lower than that of the magnetic particles 122 (b) having a particle size of 1.0 to 4 ⁇ m.
  • the magnetic body to which the first antibody 122 (a) is attached in a number of 1 * 10 5 to 4 * 10 5 multiples with respect to the surface area of the magnetic particles 122 (b).
  • the particle-first antibody complex 122 may be preferred, but is not limited to such.
  • the reaction channel 120 in the fluid analysis microchip 100 is introduced into a detector including a magnetic substance, the first antigen-antibody reaction efficiency can be increased.
  • the dispersing force of the magnetic particle-first antibody complex 122 may be controlled by the magnetic material in the detector, and as a result, the phenomenon in which the magnetic particle-first antibody complex 122 self-aggregates may be reduced. .
  • the flow control filler 150 may be formed on the upper surface 160 forming the plurality of channels.
  • the flow control filler 150 formed in the reaction channel 120 can physically regulate the flow of the flowing magnetic particle-first antibody complex 122. Accordingly, within the reaction channel 120, sufficient time is allowed for the first antibody 122 (a) and the antigen to be detected 118 to react with each other, so that the first antigen-antibody reaction efficiency can be increased.
  • This flow control filler 150 may be attached to the bottom surface 170 as desired. Further, the diameter of the flow control filler 150 may be 50 to 70 ⁇ m.
  • the immune complex 124 formed by the first antigen-antibody reaction in the reaction channel 120 may flow from the reaction channel 120 to the detection channel 130.
  • the second antibody 136 may be fixed to the detection channel 130.
  • the second antibody 136 may be immobilized via a linker in the plurality of wells 134 formed in the detection channel 130.
  • the plurality of wells 134 may comprise an immune complex 124 captured by a second antigen-antibody reaction with a second antibody 136 (see FIG. 1E).
  • the diameter and depth of the well 134 may have a particle size of the magnetic particles 122 (b), preferably 1.2 to 2 times the size of the magnetic particles-first antibody complex 122.
  • each of the wells 134 may be disposed on the lower surface 170 at intervals of 5 to 8 ⁇ m, but is not limited thereto.
  • the number of wells 134 in the detection channel 130 may depend on the capacity of the reaction channel 110, the concentration of the assay sample 116, or the dissociation constant of the assay sample 116.
  • the dissociation constant may be associated with the binding affinity of the antigen 118 to be detected in the assay sample 116 with the first antibody 122 (a) or the second antibody 136, thus allowing the second antibody ( It may also be associated with the number of wells 136 that may include 136.
  • the number of wells 134 may be calculated by Equation 1 depending on the capacity of the reaction channel 110 and the concentration or dissociation constant of the analyte sample 116.
  • the capacity of the reaction channel 110 is the capacity of the analysis sample 116
  • the capacity of the reaction sample 116 may also correspond.
  • 6.23 X 10 23 of Avogadro's number is a formula set in consideration of the number of particles in one mole of analytical sample 116.
  • the well 134 in the detection channel 130 is 134.
  • the well 134 in the detection channel 130 is 134.
  • the number of wells 134 in the fluid analysis microchip 100 may be set according to the concentration of the analyte sample 116 or its dissociation constant and the capacity of the reaction channel 110. Can be.
  • a plurality of capture pillars 135 may be formed on the bottom surface 170 of the detection channel 130 (see FIG. 1F).
  • a second antibody may be immobilized between each capture filler 135.
  • each capture filler 135 is arranged at an interval 1.2 to 2 times larger than the magnetic particles 122 (b), preferably larger than the immune complex 124 so that only one immune complex 124 is captured. Can be.
  • the second antibody 136 may be a polyclonal antibody, including antibodies 136 (a), 136 (b) and 136 (c), each having a different antigen-specific structure, to increase the accuracy of the detection.
  • the second antibody in the detection channel 130 corresponds to the magnetic material when the 164 is introduced into a detector that includes a magnetic material capable of attracting or pushing the magnetic particles to the fluidic microchip 100. It may have a position to.
  • the immune complex 124 that flowed into the detection channel 130 can be captured in the well 134 via a second antigen-antibody reaction with the second antibody 136.
  • the detection channel 130 binds the antigen 118 to be detected in the immune complex 124 with the second antibody 136 having a structure specific to the antigen 118 to be detected. ) Can be captured.
  • the immune complex 124 including the antigen to be detected 118 may be more precisely equipped with a well ( 134), and as a result, the antigen to be detected 118 can be detected.
  • the intensity of the magnetic field of the magnetic material in the detector corresponding to the lower surface 170 to which the second antibody 136 is attached corresponds to the upper surface 160. It may be less than the strength of the magnetic field of the magnetic material.
  • FIGS. 1A to 1D are used to refer to components.
  • Figure 2 shows a quantitative analysis of the antigen, using a microchip for fluid analysis according to an embodiment of the present invention and a method for quantitating the antigen according to another embodiment of the present invention.
  • an analysis sample 116 is prepared for the thorough analysis of a specific antigen (S210).
  • the analysis sample 116 may be a fluid sample, preferably a sample containing a nuclear protein.
  • dissolution treatment may be performed, depending on the type of analysis sample 116.
  • the preferred assay sample 116 may be, but is not limited to, cell lysate, whole blood, plasma, serum, saliva, ocular fluid, cerebrospinal fluid, sweat, urine, milk, ascites fluid, synovial fluid, and peritoneal fluid.
  • the analysis sample 116 prepared in the fluid analysis microchip 100 may be placed according to an embodiment of the present invention (S220). For example, by dropping the analyte sample 116 into the inlet 112 of the microchip 100 for fluid analysis, the analyte sample 116 may be injected into the inlet channel 110.
  • the fluid analysis microchip 110 is introduced into a detector including a magnetic force applying unit such as a magnetic material and a CMOS image sensor, and an electromagnetic force is applied to the magnetic force applying unit (S230).
  • a magnetic force applying unit such as a magnetic material and a CMOS image sensor
  • an electromagnetic force is applied to the magnetic force applying unit (S230).
  • specific reactions occur, such as a first antigen-antibody reaction, a second antigen-antibody reaction. That is, in the step (S230) of applying the specific electron force, the first antigen-antibody reaction in the reaction channel 120 and the second antigen-antibody reaction in the detection channel 130 occur as described above with reference to FIGS. 1A to 1D. Accordingly, the immune complex 124 can be captured in the detection channel 130 in the fluid analysis microchip 100.
  • the immune complex 124 captured by the detection channel 130 in the step of applying the electromagnetic force (S230) is counted (S240).
  • the number of counted immune complexes 124 may be proportional to the number of antigens 118 to be detected.
  • the antigen to be detected 118 can be quantitatively analyzed.
  • the counting method of the immune complex 124 may be implemented by detecting the magnetic particles in the obtained image, and if a method of distinguishing the magnetic particles of the above-described size to which the fluorescent material is not attached is employed, The manner is not limited.
  • Figure 3a is a schematic exploded perspective view showing the configuration of the antigen quantitative analysis system, using a microchip for fluid analysis according to an embodiment of the present invention and a method for quantitating antigens according to another embodiment of the present invention.
  • 3B is a plan view illustrating a reaction channel of a microchip for fluid analysis and a first magnetic force applying unit of a detector disposed therein according to an embodiment of the present invention.
  • 3C to 3G are plan views of reaction channels of the microchip for fluid analysis according to an embodiment of the present invention, and enlarged main parts for explaining a process of detecting a target substance in the reaction channel.
  • 3H is a plan view illustrating a detection channel of a microchip for fluid analysis and a second magnetic force applying unit of a detector disposed therein according to an embodiment of the present invention.
  • 3I to 3K are enlarged side views for explaining a side view of a detection channel of the microchip for fluid analysis and a process of detecting a target material within the detection channel according to an embodiment of the present invention.
  • the antigen quantitative analysis system 300 includes a pinhole aperture 320, a wavelength filter 340, a first magnetic force applying unit 362, a second magnetic force applying unit 364, and a CMOS image sensor 370. ).
  • the fluid analysis microchip 100 may be introduced between the plurality of first magnetic force applying units 362 and the second magnetic force applying unit 364.
  • the CMOS image sensor 370 may be disposed between the fluid analysis microchip 100 and the first magnetic force applying unit 362 and the second magnetic force applying unit 364 disposed below. More specifically, the first magnetic force applying unit 362 may be disposed to correspond to the reaction channel 120 in the fluid analysis microchip 100, and the second magnetic force applying unit 364 may be a microchip for fluid analysis ( It may be arranged to correspond to the detection channel 130 in the 100.
  • the first magnetic force applying unit 362 and the second magnetic force applying unit 364 may be an electromagnet in which the magnetic force is easily adjusted according to the flow of the current, but is not limited thereto.
  • the first magnetic force applying unit 362 disposed in the reaction channel 120 includes a projection magnetic material 362 surrounding the core magnetic material 362 (g) and the core magnetic material 362 (g). (a) to 362 (f)).
  • the structure of the first magnetic force applying unit 362 is not limited to the illustrated form, and may have various forms to which an electromagnetic force can be selectively applied.
  • An electromagnetic force may be applied to one of the projection magnetic material pairs of)), and an electromagnetic force may be applied to the other projection magnetic material pairs adjacent to the applied projection magnetic material pair.
  • an electromagnetic force can be applied only to the pair of protruding magnetic materials 362 (a) and 362 (d).
  • the magnetic particle-first antibody complex 122 corresponds to the core magnetic material 136 (g) between the pair of protruding magnetic material 362 (a) and 362 (d) in the reaction channel 120. May be located in line at the location (FIG. 3C).
  • the electromagnetic force is applied only to the pair of protruding magnetic materials 362 (b) and 362 (e) or 362 (c) and 362 (f) adjacent to the pair of protruding magnetic materials 362 (a) and 362 (d).
  • the magnetic particle-first antibody complex 122 has a core magnetism between the pair of protruding magnetic material 362 (b) and 362 (e) or 362 (c) and 362 (f) in the reaction channel 120. May be positioned in line with the material 136 (g) (FIGS. 3D and 3E).
  • the magnetic particle-first antibody complex 122 may rotate in the reaction channel 120.
  • dispersion of the magnetic particle-first antibody complex 122 occurs, and the efficiency of the first antigen-antibody reaction between the antigen to be detected 118 and the magnetic particle-first antibody complex 122 can also be increased.
  • a plurality of core magnetic materials 362 (g) located on the upper surface 160 and the lower surface 170 of the reaction channel 120 are subjected to the flow of current, as described above.
  • the electromagnet may be adjusted according to the electromagnetic force.
  • the magnetic particle-first antibody complex 122 may aggregate in the reaction channel 120 (FIG. 3F).
  • an electromagnetic force may be applied to both the plurality of core magnetic materials 362 (g) positioned on the upper surface 160 and the lower surface 170 (electromagnets on), so that the electromagnetic force is applied to the upper surface 160 and It can act vertically from the bottom surface 170.
  • the aggregated magnetic particle-first antibody complex 122 can be redispersed (FIG. 3G).
  • the flow of the magnetic particle-first antibody complex 122 can be controlled, and the efficiency of the first antigen-antibody reaction between the antigen to be detected 118 and the magnetic particle-first antibody complex 122 can be increased. .
  • the second magnetic force applying unit 164 disposed in the detection channel 130 may use an electromagnet having a single structure in which an electromagnetic force is applied to all surfaces of the detection channel 130.
  • the structure of the second magnetic force applying unit 364 is not limited to the illustrated form, and may have various forms in which an electromagnetic force may be selectively applied.
  • a magnetic control circular gradient may be formed to prevent a phenomenon in which magnetic force is concentrated at each corner. Formation of this circular gradient in the second magnetic force application 364 can induce a uniform flow of the magnetic particle-first antibody complex 122 in the detection channel 130.
  • the magnetic particles 122 (b) are removed.
  • the magnetic particle-comprising first antibody complex 122 and the immune complex 124 can move in the direction of the lower surface 170.
  • the magnetic field strength of the second magnetic force applying unit 364 corresponding to the lower surface 170 may be 20 to 32 mT.
  • the second antigen-antibody reaction efficiency of the immune complex 124 and the second antibody 136 becomes high, and the immune complex 124 ) May be captured within the well 134.
  • the application of the electromagnetic force to the second magnetic force application portion 364 corresponding to the lower surface 170, the non-specific antigen of the magnetic particle-first antibody complex 122 and the antigen to be detected 118 in the well 134- may also result in the nonspecific-immune complex 126 formed by the antibody reaction being captured.
  • the second magnetic force applying unit 364 corresponding to the lower surface 170 to which the magnetic force was applied in FIG. 3I loses the electromagnetic force (electromagnet off), and the second magnetic force corresponding to the upper surface 160. Only the applying portion 364 can be applied with a magnetic force (electromagnet on). In this case, the magnetic field strength of the second magnetic force applying unit 364 corresponding to the upper surface 160 may be 32 to 39 mT.
  • the magnetic particle-first antibody complex 122 and the first antigen-antibody reaction with the detection target antigen 118 do not occur;
  • Nonspecific-immune complex 126 may move in the direction of upper surface 160.
  • only the immune complex 124 captured by the second antigen-antibody reaction with the second antibody 136 may remain in the well 134. That is, under the condition that the electromagnetic force is applied to the second magnetic force applying unit 364 corresponding to the upper surface 160, the magnetic particle-first antibody complex 122, the non-specific-immune complex 126 in the detection channel 130 ) And immune complex 124 can be detected.
  • the second magnetic force applying unit 364 corresponding to the upper surface 160 to which the magnetic force was applied in FIG. 3J loses the electromagnetic force (electromagnet off), the upper surface 160, and the lower surface 170. ), All of the plurality of second magnetic force applying units 364 lose magnetic force (electromagnet off).
  • the magnetic particle-first antibody complex 122 and the nonspecific-immune complex 126 which have moved in the direction of the upper surface 160 and have not detected the first antigen-antibody reaction with the antigen to be detected are detected. May exit channel 130.
  • the immune complex 124 can be detected in the detection channel 130.
  • the first antibody 122 (a) and the second antibody 136 are not fluorescently labeled antibodies, an image is obtained at a corresponding height within the well 134 and within the acquired image. It can be counted by detecting the immune complex 124, thereby enabling quantitative analysis of the antigen to be detected 118.
  • the number of the immune complexes 124 may be counted.
  • the non-isotopic light source 310 is transmitted to the pinhole aperture 320.
  • the pinhole aperture 320 may include a plurality of pinholes 322.
  • the non-isochronous light source 310 may pass through the pinhole 322 and then be converted to a spatially isotropic light source 330.
  • Spatial isotope light source 330 may pass through wavelength filter 340 and then be converted to isotope light source 350.
  • the isotope light source 350 may be irradiated to the detection channel 130 including the captured immune complex 134.
  • the well 134 may be divided into a well 134 (a) in which the immune complex 124 is not captured and a well 134 (b) in which the immune complex 124 is captured, and such a well 134 ) May be recognized by the CMOS image sensor 370. That is, the number of wells 134 (b) in which the immune complex 124 is captured, which can be discriminated by the CMOS image sensor 370, may correspond to the number of immune complexes 124. As a result, as the number of immune complexes 124 is counted, quantitative analysis of the antigen to be detected 118 can be performed indirectly.
  • Example 1 Setting the Flow Rate of an Analytical Sample to Maximize the Accuracy of the Immune Response
  • the flow rate of the analysis sample is maximized the accuracy of the immune response Explain the results of the evaluation.
  • Figure 4 shows the experimental results for the flow rate of the analysis sample to maximize the accuracy of the immune response in the fluid analysis microchip according to an embodiment of the present invention and the antigen quantitative analysis method according to another embodiment of the present invention It is.
  • a plurality of non-specifically bound magnetic particles are detected in a detection channel of a microchip for fluid analysis according to an embodiment of the present invention.
  • the flow rate of the analytical sample is increased to 75 nL / s or more, the number of non-specifically bound magnetic particles appears to decrease.
  • the assay sample may have a drag that can break the antigen-antibody binding of the immune complex. Accordingly, at 280 nL / s or more, there appears to be little number of nonspecifically bound magnetic particles captured in the detection channel of the fluid analysis microchip.
  • the analysis sample has a flow rate of 280 nL / s to 400 nL / s interval
  • the immune complex trapped in the plurality of wells or capture filler of the detection channel of the microchip for fluid analysis according to an embodiment of the present invention
  • the drag due to the flow of the analyte sample may be reduced and fixed between the wells or the capture fillers.
  • nonspecifically bound magnetic particles or nonspecific immune complexes can be removed according to the flow of analytical sample.
  • the fluid analysis microchip according to an embodiment of the present invention has a flow rate of 100 nL / s to 500 nL / s, preferably 200, depending on the difference in the immune reaction force of the analytical sample.
  • Each of the configurations can be arranged to have a flow rate of nL / s to 400 nL / s.
  • the microchip for fluid analysis according to an embodiment of the present invention may include a flow control filler in the channel such that the analyte has a flow rate of 280 nL / s to 400 nL / s.
  • the lower layer constituting the body portion of the fluid analysis microchip according to the embodiment of the present invention may have a different height for each channel such that the analyte sample has a flow rate of 280 nL / s to 400 nL / s. have.
  • Example 2 one of the present invention
  • the evaluation results of the microchip for fluid analysis according to an embodiment of the present invention and the quantitative analysis method of the antigen according to another embodiment of the present invention are 0 pM, 0.1 pM, 1 pM, 10 pM and 100 pM.
  • 5A and 5B illustrate an evaluation of a microchip for fluid analysis according to an embodiment of the present invention and a method for quantitating an antigen according to another embodiment of the present invention.
  • FIG. 5A images of a portion of the detection channel 130 of the microanalysis 100 for fluid analysis in accordance with one embodiment of the present invention are shown.
  • FIG. 5B there is shown a graph of the number of magnetic particles with increasing concentration of nucleoprotein of injected influenza A virus. As a result, as the concentration of the nucleoprotein of the influenza A virus increases, the number of magnetic particles detected appears to increase proportionally.
  • the microchip for fluid analysis according to an embodiment of the present invention and the method for quantitative analysis of antigens according to another embodiment of the present invention the detection target is present in the trace sample at a trace concentration of pM unit Antigen can be detected with high sensitivity.
  • the microchip for fluid analysis according to an embodiment of the present invention is introduced into a detector including a magnetic material, as the magnetic particles that do not react with the nonspecific immune complex or the antigen to be detected are washed, the antigen to be detected is detected. Highly accurate detection may be possible.
  • the capillary force and the electromagnetic force which are the main driving forces of the fluid sample, may provide a uniform fluid movement pattern of the microchip for fluid analysis according to an embodiment of the present invention.
  • the present invention provides a barrier to detection and analysis due to the nonuniform fluid movement pattern of the conventional fluid analysis microchip. There is an effect to overcome them.
  • microchip for fluid analysis according to an embodiment of the present invention and the method for quantitative analysis of antigens according to another embodiment of the present invention by counting the number of magnetic particles without using a fluorescent labeling antibody, It is effective to provide indirect quantitative analysis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

본 발명은, 상부면과 하부면을 가진 바디부로 이루어지고, 상부면과 하부면 사이에 형성된 내부 채널로 유체를 유동시킴으로써 유체 내에서 특정 항원을 검출하기 위한 유체 분석용 마이크로 칩으로서, 상부면을 관통하는 홀을 통해 분석 시료가 주입되도록 구성된 투입 채널, 투입 채널과 유체로 연통하도록 구성되고, 투입 채널로부터 유동한 분석 시료와 제1 항원-항체 반응하는 제1 항체가 고정된 자성 입자를 포함하고, 자성 입자가 제1 항원-항체 반응하여 면역 복합체를 형성하고, 투입 채널을 형성하는 하부면보다 높은 높이를 갖도록 구성된 반응 채널 및 반응 채널과 유체로 연통하도록 구성되고, 반응 채널로부터 유동된 면역 복합체와 제2 항원-항체 반응하는 제2 항체가 고정되고, 투입 채널 또는 반응 채널 보다 긴 길이를 갖고, 좁은 폭을 갖는, 검출 채널을 포함하는, 유체 분석용 마이크로 칩을 제공한다.

Description

유체 분석용 마이크로 칩
본 발명은 유체 분석용 마이크로 칩에 관한 것으로, 보다 구체적으로 유체 중에 존재하는 검출 대상물질의 검출을 용이하게 수행할 수 있도록 기능적으로 구성된 복수의 채널을 포함하는 유체 분석용 마이크로 칩 및 이를 이용한 검출 대상물질의 검출 방법에 관한 것이다.
유체 시료의 분석을 보다 더 효율적으로 수행할 수 있는, 보다 소형화된 분석 방법과 진단 장비를 제공하기 위해, 다양한 종류의 칩 구조물이 개발되어 이용되고 있다. 이와 같이, 다양한 기능을 하나의 칩에서 수행하여 분석하거나 질병의 진단 효율을 높이고, 신속한 진단키트의 제조를 가능하게 하는 것이 랩온어칩 기술이다.
랩온어칩 (lab-on-a-chip) 기술은 실험실에서 수행되는 다양한 실험과정 예를 들어, 시료의 분리, 정제, 혼합, 표지화 (labeling), 분석, 및 세척 등을 작은 크기의 칩 상에서 구현할 수 있는 기술이다. 랩온어칩의 설계에는, 미세유체역학, 미세유체조작시스템 관련 기술 그리고 MEMS(microelectromechanical system) 기술이 이용된다.
미세유체역학을 구현하는 미세채널을 갖는 마이크로 칩 (또는 구조물) 은, 칩 내부의 미세채널에 의해 형성된 공간으로 유체가 이동하도록, 소형 모터를 사용하거나 채널의 폭과 높이를 제한하여 모세관 현상에 의해 유체가 이동하도록 하는 방법이 이용될 수 있다.
그러나, 유체의 이동을 유발하는 주요 구동력이 모세관력인 마이크로 칩은 미세채널의 상하 내벽과 유체와의 상호작용에 의한 작용력, 미세채널의 좌우 내벽과 유체와의 상호작용에 의한 작용력이 상이할 수 있다. 그 결과, 채널에 의해 형성된 공간을 흐르는 유체는 불규칙적이고 불균일한 이동 패턴을 가질 수 있다. 나아가, 이러한 불균일한 유체이동 패턴은 유체 시료에 미량으로 존재하는 검출 대상물질의 검출 및 분석에 커다란 장애 요인이 될 수 있다.
이에 따라, 유체의 이동을 유발하는 새로운 기술이 적용되고, 균일한 유체이동 패턴을 갖도록 하며, 검출 대상물질의 검출에 대한 민감도가 향상된 새로운 유체 분석용 마이크로 칩에 대한 개발이 요구되고 있는 실정이다.
발명의 배경이 되는 기술은 본 발명에 대한 이해를 보다 용이하게 하기 위해 작성되었다. 발명의 배경이 되는 기술에 기재된 사항들이 선행기술로 존재한다고 인정하는 것으로 이해되어서는 안 된다.
모세관력에 의해 구현되는 유체 분석용 마이크로 칩에서 나타나는 문제점들을 해결하기 위해, 종래 기술에서는 외부 펌프에 의한 펌핑작용으로 유체를 강제적으로 유동시켜 필요 유속을 확보 하고자 하는 방안이 제시되었다. 있다. 그러나, 이러한 방안은 유체 시료의 기포를 발생시켜 분석의 오류를 야기시킬 수 있다. 나아가 칩의 구성을 복잡하게 하여 제조 시간 및 비용을 증가시키고 검사 과정을 복잡하게 하는, 또 다른 문제점이 야기될 수 있다.
한편, 혈액 또는 체액 등의 유체 시료로부터 이에 함유된 미량의 검출 대상물질을 분석하기 위해, 마이크로 칩에 미리 고정화시킨, 형광물질이 표지된 항체 등의 단백질이 이용될 수 있다. 구체적으로, 유체 시료를 투입한 유체 분석용 마이크로 칩에 광을 조사함에 따라 검출되는 빛의 세기를 측정함으로써, 유체 시료 내에 존재하는 검출 대상물질을 간접적으로 확인할 수 있다. 그러나 형광물질 기반의 유체 분석용 마이크로 칩을 이용한 검출에서는, 채널 내에서 검출 대상물질과 결합되지 않은 형광물질, 또는 분석 대상물과 결합되었으나 칩 내에 고정되지 않고 부유하는 형광물질-검출 대상물질 복합체에 의한 검출의 오류가 발생할 수 있다. 형광물질 기반의 유체 분석용 마이크로 칩에서는 이를 해결하기 위한, 워싱 과정이 필수적으로 수행됨에 따라, 검사 과정 또한 복잡해질 수 있다.
이에, 본 발명의 발명자들은 형광물질 또는 광학적 표지가 없는 자성을 띈 입자를 이용함으로써, 이상의 문제점들을 해결할 수 있음을 인식하였고, 그 결과, 본 발명의 발명자들은 광학적 표지가 없이 모세관력에 의해 유체가 유동하며, 보다 정확하게 대상 물질을 검출할 수 있는, 유체 분석용 마이크로 칩을 발명하는데 이르렀다.
나아가, 본 발명의 발명자들은 항체가 부착된 자성 입자와 검출 대상 물질의 면역 반응의 효율을 자성을 이용하여 높임으로써, 소량의 유체 시료로부터 극미량의 검출 대상물질을 검출할 수 있음을 인식하였다. 또한, 본 발명의 발명자들은 비특이적 면역 반응에 의해 자가 조립이 일어나지 않고, 광학적으로 계수 가능한 자성 입자의 크기를 발견할 수 있었다.
이에, 본 발명이 해결하고자 하는 과제는, 검출 대상물질과의 면역 반응 효율을 높이고, 형광물질의 이용 없이도 광학적으로 검출 대상물질의 정량분석이 가능한, 유체 분석용 마이크로 칩을 제공하는 것이다.
나아가, 본 발명이 해결하고자 하는 다른 과제는, 본 발명의 유체 분석용 마이크로 칩을 이용한, 항원의 정량분석 방법을 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
전술한 바와 같은 과제를 해결하기 위하여 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩은, 상부면과 하부면을 가진 바디부로 이루어지고, 상부면과 하부면 사이에 형성된 내부 채널로 유체를 유동시킴으로써 유체 내에서 특정 항원을 검출하기 위한 유체 분석용 마이크로 칩으로서, 상부면을 관통하는 홀을 통해 분석 시료가 주입되도록 구성된 투입 채널, 투입 채널과 유체로 연통하도록 구성되고, 투입 채널로부터 유동한 분석 시료와 제1 항원-항체 반응하는 제1 항체가 고정된 자성 입자를 포함하고, 자성 입자가 제1 항원-항체 반응하여 면역 복합체를 형성하고, 투입 채널을 형성하는 하부면보다 높은 높이를 갖도록 구성된 반응 채널 및 반응 채널과 유체로 연통하도록 구성되고, 반응 채널로부터 유동된 면역 복합체와 제2 항원-항체 반응하는 제2 항체가 고정되고, 투입 채널 또는 반응 채널 보다 긴 길이를 갖고, 좁은 폭을 갖는, 검출 채널을 포함한다.
본 발명의 다른 특징에 따르면, 반응 채널은 반응 채널 시작점에서 검출 채널로 갈 수록 높이가 낮아지는 하부면을 갖도록 구성될 수있다.
본 발명의 또 다른 특징에 따르면, 자성 입자의 입경은 0.1 내지 6 ㎛ 일 수 있다.
본 발명의 또 다른 특징에 따르면, 제1 항체 및 제2 항체는 형광표지 항체 (fluorescence-labeled antibody) 와 상이할 수 있다.
본 발명의 또 다른 특징에 따르면, 자성 입자는 반응 채널을 형성하는 상부면에 부착될 수 있다.
본 발명의 또 다른 특징에 따르면, 제1 항체는 단클론 (monoclonal) 항체이고, 제2 항체는 다클론 (polyclonal) 항체일 수 있다.
본 발명의 또 다른 특징에 따르면, 투입 채널은 필터를 포함할 수 있다.
본 발명의 또 다른 특징에 따르면, 검출 채널은 복수의 웰 (well) 을 포함하고, 제2 항체는 링커 분자에 의해 웰 내에 고정될 수 있다.
본 발명의 또 다른 특징에 따르면, 웰의 직경 및 깊이는 자성 입자의 입경에 대하여 1.2 내지 2.0 배의 크기를 가질 수 있다.
본 발명의 또 다른 특징에 따르면, 검출 채널은 복수의 포획 필러 (pillar) 를 더 포함하고, 제2 항체는 필러 사이에 고정될 수 있다.
복수의 필러 각각은 자성 입자의 입경에 대하여 1.2 내지 2.0 배의 간격을 갖도록 배치될 수 있다.
본 발명의 또 다른 특징에 따르면, 유체 분석용 마이크로 칩이 자성 입자를 끌어당기거나 밀어낼 수 있는 자성 물질을 포함하는 검출기에 도입되는 경우, 제2 항체는 자성 물질에 대응하는 위치를 가질 수 있다.
본 발명의 또 다른 특징에 따르면, 제2 항체가 부착된 면에 대응하는 자성 물질의 자기장의 세기는, 제2 항체가 부착되지 않은 면에 대응하는 자성 물질의 자기장의 세기보다 약할 수 있다.
본 발명의 또 다른 특징에 따르면, 유체 분석용 마이크로 칩은 분석 시료의 흐름을 조절하는 흐름 조절 필러를 더 포함하고, 흐름 조절 필러는 투입 채널, 반응 채널 또는 검출 채널을 형성하는 상부면에 부착될 수 있다.
본 발명의 또 다른 특징에 따르면, 자성 입자는 제1 항체가 자성 입자 입경의 반지름의 제곱에 대하여 105배수의 개수로 부착될 수 있다.
전술한 바와 같은 과제를 해결하기 위하여 본 발명의 다른 실시예에 따른 항원의 정량분석 방법은, 분석 시료를 준비하는 단계, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩에 분석 시료를 위치시키는 단계, 자력 인가부 및 CMOS 이미지 센서를 포함하는 검출기에 유체 분석용 마이크로 칩을 도입하여, 자력 인가부에 전자력을 인가하는 단계 및 CMOS 이미지 센서를 이용하여, 분석 시료 내의 검출 대상항원의 수를 계수하는 단계를 포함한다.
본 발명의 특징에 따르면, 자력 인가부는 검출기 내에서 복수의 자성 물질쌍으로 구성된 제1 자력 인가부를 포함하고, 자력 인가부에 전자력을 인가하는 단계는, 유체 분석용 마이크로 칩의 반응 채널에 대응하는 위치에 배치된, 복수의 자성 물질쌍 중 한 쌍의 자성 물질에 전자력을 인가하는 단계 및 한 쌍의 자성 물질과 가장 인접한 다른 한 쌍의 자성 물질에 전자력을 인가하는 단계를 포함할 수 있다.
본 발명의 다른 특징에 따르면, 자력 인가부는 제1 자력 인가부와 상이하고, 유체 분석용 마이크로 칩의 검출 채널에 대응하는 위치에 배치된 제2 자력 인가부를 더 포함하고, 자력 인가부에 전자력을 인가하는 단계는, 검출 대상항원 및 유체 분석용 마이크로 칩 내의 자성 입자의 복합체인, 면역 복합체를 포획하도록, 제2 자력 인가부에 전자력을 인가하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 특징에 따르면, 제2 자력 인가부는 검출기 내에 복수개로 존재하고, 유체 분석용 마이크로 칩의 검출 채널의 상부면 및 하부면 중 적어도 한 면에 대응하도록 배치되고, 자력 인가부에 전자력을 인가하는 단계는, 상부면 및 하부면 중 적어도 한 면에 면역 복합체를 포획하도록, 적어도 한 면에 대응하여 배치되는 제2 자력 인가부에만 전자력을 인가하는 단계 및 검출 채널에서 부유하는 자성 입자가 다른 한면으로 이동하도록, 다른 한 면에 대응하는 제2 자력 인가부에만 전자력을 인가하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 특징에 따르면, 자력 인가부에 전자력을 인가하는 단계는, 검출에서 부유하는 자성 입자가 검출 채널을 빠져나가도록, 다른 한 면에 대응하는 제2 자력 인가부에만 전자력을 인가하는 단계 이후에, 복수의 제2 자력 인가부의 전자력을 모두 차단하는 단계를 더 포함할 수 있다.
본 발명은, 항체가 부착된 자성 입자와 검출 대상물질의 면역 반응을 이용하여, 적은 양의 유체 시료로부터 극미량의 검출 대상물질을 검출할 수 있는 효과가 있다.
보다 구체적으로, 본 발명은 비특이적 면역 반응에 의해 자가 조립이 일어나지 않고, 광학적으로 계수 가능한 자성 입자의 크기를 제공함에 따라, 형광물질의 이용 없이도, 광학적으로 검출 대상물질의 정량분석이 가능한, 유체 분석용 마이크로 칩을 제공할 수 있는 효과가 있다.
또한, 본 발명은, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩을 이용한 특정 항원의 정량분석 방법을 제공함으로써, 극미량의 검출 대상물질을 민감도 높게 검출할 수 있는 효과가 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1a는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 개략적인 평시도이다.
도 1b 내지 1d는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 개략적인 측면도 및 검출 대상항원의 검출 과정을 설명하기 위한 요부 확대도이다.
도 1e 및 도 1f는 본 발명의 일 실시예에 따른 유체 분석용 마이크로칩 내의 검출 채널을 예시적으로 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법을 이용한, 항원의 정량분석 절차를 도시한 것이다.
도 3a는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법을 이용한, 항원 정량분석 시스템의 구성을 도시한 개략적인 분해 사시도이다.
도 3b는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 반응 채널 및 이에 배치된 검출기의 제1 자력 인가부를 도시한 평면도이다.
도3c 내지 3g는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 반응 채널에 대한 평면도 및 반응 채널 내에서의 검출 대상물질의 검출 과정을 설명하기 위한 요부 확대도이다.
도 3h는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 검출 채널 및 이에 배치된 검출기의 제2 자력 인가부를 도시한 평면도이다.
도3i 내지 3k는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 검출 채널에 대한 측면 시사도 및 검출 채널 내에서의 검출 대상물질의 검출 과정을 설명하기 위한 요부 확대도들이다.
도 4는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법에서, 면역 반응의 정확도를 극대화하는 분석 시료의 유속설정을 위한 실험 결과를 도시한 것이다.
도 5a 및 5b는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법에 대한 평가 결과를 도시한 것이다.
발명의 이점, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 본 명세서 상에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우, '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.
구성요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하며, 당업자가 충분히 이해할 수 있듯이 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시 가능할 수도 있다.
본 명세서의 해석의 명확함을 위해, 이하에서는 본 명세서에서 사용되는 용어들을 정의하기로 한다.
본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내부에는, 상부면 및 하부면으로 구성된 바디부에 의해 유체가 연통하는 채널이 형성될 수 있다.
본 명세서에서 사용되는 용어, "채널"은 상부면 및 하부면 사이에 형성된 미세채널을 의미할 수 있다. 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩은 복수의 채널을 포함하며 각각의 채널들은 그 기능에 따라, 투입 채널, 반응 채널, 검출 채널로 분리되어 명명될 수 있지만, 각각의 채널들은 유체로 연통되는 하나의 채널로 나타날 수도 있다.
하부면은, 유체의 흐름이 유리하도록 각각의 채널마다 상이한 높이를 갖도록 구성될 수 있다. 이에 따라, 각각의 채널들은 서로 상이한 수용량 (또는, 체적) 을 가질 수 있다.
본 명세서에서 사용되는 용어, "분석 시료"는 검출 대상물질을 포함하는 시료를 의미할 수 있다. 바람직하게, 분석 시료는 유체 시료일 수 있다. 예를 들어, 세포 용해물, 전혈, 혈장, 혈청, 침, 안구액, 뇌척수액, 땀, 뇨, 젖, 복수액, 활액 및 복막액일 수 있으나, 이에 제한되는 것은 아니다. 나아가, 검출 대상물질은 항원 또는 항원으로서 작용하는 핵단백질일 수 있다. 그러나, 검출 대상물질은 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 이용 목적에 따라 사용자에 의해 용이하게 선택될 수 있다.
예를 들어, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩을 이용하여, 호흡기 감염성 질환 검사를 하고자 하는 경우, 검출 대상물질은 인플루엔자 A, 인플루엔자 B, 호흡기세포융합바이러스 (RSV, respiratory syncytial virus), 파라인플루엔자바이러스(parainfluenza Virus)-1, 파라인플루엔자바이러스-2, 파라인플루엔자바이러스-3, 아데노바이러스 (adenovirus), 인간 메타뉴모바이러스 (hMPV, human metapneumovirus) 또는 리노바이러스 (rhinovirus) (1, 2) 항체일 수 있다. 또한, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩을 이용하여, 알러지 질환 검사를 하고자 하는 경우, 검출 대상물질은 IL-1 베타, IL-10, IL-2, IL-4, IL-5, IL-6, IL-71, IFN 감마, TNF-α 또는 GM-CSF일 수 있다. 나아가, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩을 이용하여, 급성심근경색증 진단 검사를 하고자 하는 경우, 검출 대상물질은 트로포닌 Ⅰ (troponin I), BNP, 고민감도 (hs, high-sensitivity) CRP, CK-MB, D-다이머 또는 미오글로빈일 수 있다. 더 나아가, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩을 이용하여, 성감염 질환 검사를 하고자 하는 경우, 검출 대상물질은 HIV (human immunodeficiency virus), 클라미디아 (Chlamydia) 세균, 트레포네마 팔라둠 (Treponema pallidum), 임균 (Neisseria gonorrhoeae) 또는 HPV (human papilloma virus) 일 수 있다. 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩을 이용하여, 전립선 암 검사를 하고자 하는 경우, 검출 대상물질은 전립선특이항원 (PSA, prostate specific antigen) 일 수 있다. 또한, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩을 이용하여, 이식환자의 면역력 검사를 하고자 하는 경우, 검출 대상물질은 BK 바이러스 또는 거대세포바이러스 (CMV, cytomegalovirus) 항원일 수 있다. 그러나 위에 열거된 바에 제한되지 않고, 검출 대상물질은 다양한 항원이 목표될 수 있다.
선택적으로, 분석 시료는, 그 종류에 따라 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩에 투입되기 전에 용해 (lysis) 될 수 있다.
본 명세서에서 사용되는 용어, "유체"는 액체 또는 기체 또는 그들의 중간 상태를 의미할 수 있다. 이러한 유체는 자유로이 흐르는 특성을 가질 수 있다. 예를 들어, 유체의 분석 시료는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 투입 채널로부터 검출 채널의 방향으로 유동할 수 있다.
본 명세서에서 사용되는 용어, "관통하는 홀"은 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 상부면에 외부로부터 관통되도록 형성된, 홀을 의미한다. 예를 들어, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내에 형성된 관통홀을 통해, 분석 시료가 주입될 수 있다.
본 명세서에서 사용되는 용어, "항원"은, 면역 반응을 유발하는 항체에 반응하는 물질을 의미한다. 예를 들어, 항원은 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩, 또는 발명의 다른 실시예에 따른 항원의 정량분석 방법에서, 검출하고자 하는 검출 대상항원일 수 있다. 나아가, 특정 바이러스의 감염 여부를 확인을 목적으로 하는 경우, 항원은 바이러스의 핵단백질일 수 있지만 이에 제한되지 않고, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내의 항체와 면역 반응할 수 있는 분석 시료 내의 모든 물질이 될 수 있다.
본 명세서에서 사용되는 용어, "항체"는 바이러스, 세균과 같은 항원을 비활성화시키고 신체에 침입한 미생물에 대항하기 위해, 항원에 특이적으로 면역 반응을 일으키는 물질을 의미한다. 나아가, 단클론 (monoclonal) 항체는 단일 항체 형성세포가 생성한 항체로서, 1차 구조 (아미노산 배열) 가 균일한 항체를 의미하고, 다클론 (polyclonal) 항체는 1차 구조가 불균일한 항체 집단을 의미한다. 예를 들어, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내에 존재하는, 자성 입자에 고정된 제1 항체는 검출 대상항원의 하나의 결정기만을 인식하는, 단클론 항체일 수 있다. 이에 따라, 극미량으로 존재하는 검출 대상항원과 제1 항원-항체 반응 효율이 높아질 수 있다. 나아가, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내의 검출 채널에 고정된 제2 항체는, 자성 입자와 면역 복합체를 형성한 검출 대상항원의 복수의 결정기를 인식할 수 있는, 다클론 항체일 수 있다. 이에 따라, 면역 복합체와 제2 항체의 제2 항원-항체 반응 효율이 높아질 수 있다. 이때, 제1 항체 및 제2 항체는 형광표지 항체와 상이할 수 있다.
본 명세서에서 사용되는 용어, "형광표지 항체"는 광 자극에 의한 형광을 발생하는 색소 (fluorochrome) 가 결합된 표지항체를 의미한다. 형광색소는 통상 형광색 소이소티오시아네이트 (FITC), 적등색 형광을 발광하는 로다민이소티오시아네이트 (RITC), 피코에리트린 (phycoerythrin) 의 색소 단백질일 수 있다. 종래의 유체 분석용 마이크로 칩은 검출 대상항원을 확인하기 위해 형광표지 항체의 이용이 필수일 수 있다. 예를 들어, 종래의 유체 분석용 마이크로 칩 내에서는 형광표지 항체와 검출 대상항원이 항원-항체 반응할 수 있다. 이에 따라, 종래의 유체 분석용 마이크로 칩에서는 형광항체법, 유동세포계수법 (flow cytometry), 면역형광측정법을 이용하여, 항원-항체 반응이 일어난 형광 표지항체에 대한 신호를 확인함으로써, 검출 대상항원이 간접적으로 확인될 수 있다.
한편, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩은 형광표지 항체와 상이한 제1 항체 및 제2 항체를 이용하여, 검출 대상항원을 검출하고, 확인할 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내에서는, 제1 항체가 부착된 자성 입자가 포함되며, 자성 입자에는 형광표지가 부착되지 않는다. 검출 대상항원와 이에 대응하는 제1 항체가 부착된 자성 입자가 항원-항체 반응을 통해 면역 복합체를 이루며, 칩 내에서 면역 복합체가 포획된다. 이렇게 포획된 면역 복합체 내의 자성 입자들은 검출기를 통해 광학적으로 계수 가능 하고, 그 결과 검출 대상항원의 검출 및 정량분석이 수행될 수 있다.
본 명세서에서 사용되는 용어, "면역 복합체"는 자성 입자에 부착된 제1 항체와 검출 대상항원이 제1 항원-항체 반응에 의해 결합된, 복합체를 의미한다.
본 명세서에서 사용되는 용어, "제1 항원-항체 반응"은 검출 대상항원과 자성 입자에 고정된 제1 항체의 면역 반응을 의미한다. 나아가, "제2 항원-항체 반응"은 면역 복합체 내의 검출 대상항원과 제2 항체의 면역 반응을 의미한다.
본 명세서에서 사용되는 용어, "링커 분자"는 복수로 존재하는 구성들을 연결해주는 분자를 의미한다. 예를 들어, 링커 분자에 의해 제2 항체는 검출 채널의 웰(well) 내에 고정될 수 있다. 링커 분자에 의해 웰 내에 고정된 제2 항체는 그렇지 않은 제2 항체보다 유동성이 높을 수 있다. 또한, 웰 내의 제2 항체의 고정 밀도 또한, 링커 분자에 의해 조절될 수 있다. 이때, 링커 분자는 단백질 A/G, 덱스트란 (dextran) 또는 PEG (polyethylene glycol) 가 바람직할 수 있으나, 이에 제한되는 것은 아니다.
본 명세서에서 사용되는 용어, "자성 입자"는 자성을 띠는 입자를 의미한다. 자성 입자는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내에서 탈부착 가능하게 배치될 수 있다. 예를 들어, 자성 입자는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 반응 개시 채널에, 동결 건조된 상태로 부착되어 있을 수 있고, 유체의 분석 시료의 유동에 따라 탈착될 수 있다.
나아가, 자성 입자는 광학적으로 계수 가능하며, 비특이적 자가 조립이 일어나지 않는 크기를 가질 수 있다. 예를 들어, 자성 입자의 입경이 0.1 내지 6.0 ㎛인 경우, 제1 항체 또는 제2 항체가 형광 표지 항체가 아니더라도, 광학적으로 검출기를 통해 계수될 수 있다. 나아가, 0.1 내지 6.0 ㎛의 입경을 갖는 자성 입자는 0.1 ㎛ 이하의 입경을 갖는 자성 입자보다, 비특이적 자가 조립이 일어날 확률이 낮을 수 있다.
자성 입자의 형상은 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내에서 롤링 (rolling) 이 가능한 구조라면, 제한되지 않는다.
본 명세서에서 사용되는 용어, "흐름 조절 필러"는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내에서 유체의 분석 시료의 균일한 흐름을 유도하는 모든 구조물을 지칭하는데 이용될 수 있다. 예를 들어, 복수의 흐름 조절 필러는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내부에 배치되어, 유체의 분석 시료가 균일한 이동 패턴을 갖도록 기능할 수 있다. 이때, 흐름 조절 필러는 45 내지 70 ㎛의 입경을 가질 수 있고 상부면에 배치될 수 있으나, 이에 제한되는 것은 아니다.
본 명세서에서 사용되는 용어, "웰"은 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 상부면 또는 하부면에 형성된 구멍을 의미한다. 예를 들어, 복수의 웰은 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 검출 채널에 형성될 수 있다. 이때, 웰은 제2 항체를 포함하고, 하나의 면역 복합체만이 포획되도록, 자성입자보다 1.2 배 내지 2 배 크기의 입경을 가질 수 있다.
한편, 본 명세서에서 사용되는 용어, "포획 필러"는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 상부면 또는 하부면에 형성된 필러로서, 전술한 웰과 유사한 목적으로 이용될 수 있다. 예를 들어, 복수의 포획 필러는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 검출 채널에 형성될 수 있다. 이때, 각각의 포획 필러 사이에는 제2 항체가 고정되어 있을 수 있고, 각각의 포획 필러는 하나의 면역 복합체만이 포획되도록, 자성입자보다 1.2 배 내지 2 배 크기의 간격으로 배치될 수 있다.
포획 필러는, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩내에 흐름 조절 필러와 그 기능이 상이할 수 있으나,
본 명세서에서 사용되는 용어, "자성 물질"은 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 외부에서 칩 내의 자성 입자와 자성을 형성할 수 있는 모든 물질을 의미할 수 있다. 예를 들어, 자성 물질은, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내의 반응 채널의 제1 항원-항체반응을 촉진하거나, 검출 채널에 포획된 면역 복합체를 확인하기 위해 이용되는 검출기에 포함될 수 있다. 구체적으로, 자성 물질은 전류의 흐름에 따라 자기화가 조절되는 전자석 일 수 있고, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩은, 검출기 내에 배치된 두 개의 전자석 사이에 도입될 수 있다. 두 개의 전자석의 자기력이 조절됨에 따라, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 내에서는 비특이적 면역 복합체 또는 검출 대상항원과 반응하지 않은 자성 입자들이 워싱될 수 있고, 그 결과, 검출 대상항원에 대한 정확도 높은 검출이 가능할 수 있다.
한편, 본 명세서에서 사용되는 용어, "자력 인가부"는 전술한 "자성 물질"과 동일한 의미로서 이용될 수 있다. 예를 들어, 검출기는 또한, 자력 인가부를 포함할 수 있다. 자력 인가부는, 복수의 자성 물질쌍으로 구성되고 유체 분석용 마이크로 칩의 반응 채널에 대응하는 위치에 배치되는 제1 자력 인가부 및 제1 자력 인가부와 상이하고 유체 분석용 마이크로 칩의 검출 채널에 대응하는 위치에 배치되는 제2 자력 인가부를 포함할 수 있다. 이때, 자력 인가부들은 반응 채널 또는 검출 채널에 전자력을 인가하는한, 다양한 형태를 가질 수 있다.
본 명세서에서 사용되는 용어, "정량분석"은 물질을 구성하는 양적 관계를 명확하게 하는 분석법을 의미한다. 본 발명의 다른 실시예에 따르면, 항원의 정량분석 방법이 제공된다. 예를 들어, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩을 이용한, 본 발명의 다른 실시예에 따른 항원의 정량분석 방법에 따르면, 검출 채널에 포획된 자성 입자를 계수함에 따라, 검출 대상항원 검출 및 정량분석이 가능할 수 있다.
본 명세서에서 사용되는 용어, "CMOS 이미지 센서"는 상보성 금속 산화물 반도체 (Complementary Metal Oxide Semiconductor) 의 구조를 가지는 저소비 전력형의 촬상 소자를 의미한다. CMOS 이미지 센서는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩과 함께 이용되는, 검출기에 이용될 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩이 CMOS 이미지 센서 기반의 검출기에 도입되는 경우, CMOS 이미지 센서에 의해 포획된 면역 복합체가 인식될 수 있다.
이하에서는, 도 1a 내지 1f를 참조하여, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩에 대하여 구체적으로 설명한다.
도 1a은 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 개략적인 평면도이다. 도 1a를 참조하면, 유체 분석용 마이크로 칩 (100) 은 상부면과 하부면 사이에 형성된 복수의 채널들 (110, 120, 130, 140) 을 형성할 수 있다. 나아가, 유체 분석용 마이크로 칩 (100) 내에는 삼투압에 의해 유체가 일 방향으로 이동하도록, 유체 분석용 마이크로 칩 (100) 측면에 복수의 관통홀 (141) 이 형성될 수 있다. 또한, 관통홀 (141) 은 흐름 유지 채널 (140) 로 분석 시료의 흐름이 충분히 일어날 수 있도록 공기압을 유지시켜 모세관력을 유지한다.
복수의 채널들은 투입채널 (110), 반응 채널 (120) 및 검출 채널 (130) 을 포함한다. 구체적으로, 투입 채널 (110) 은 상부면을 관통하는 홀 (112) 를 통해 분석 시료가 투입되도록 구성된다. 반응 채널 (120) 은 투입 채널 (110) 과 유체로 연통하도록 구성된다. 반응 채널 (120) 은 투입 채널 (110) 로부터 유동한 상기 분석 시료와 제1 항원-항체 반응하는 자성 입자-제1 항체 복합체 (122) 를 포함한다. 또한, 반응 채널 (120) 은 투입 채널 (110) 을 형성하는 하부면보다 높은 높이를 갖도록 구성된다. 검출 채널 (130) 은 반응 채널 (120) 과 유체로 연통하도록 구성된다. 검출 채널 (130) 에는 반응 채널 (120) 로부터 유동된 면역 복합체와 제2 항원-항체 반응하는 제2 항체가 고정된다. 또한, 검출 채널 (130) 은 투입 채널 (110) 또는 반응 채널 (120) 보다 긴 길이를 갖고, 좁은 폭을 갖는다.
투입 채널 (110) 은 필터 (114) 를 더 포함할 수 있다. 분석 시료 (116) 는 필터 (114) 를 통과하게 되면, 분석 시료 (116) 내에 존재하는 성분들 중, 필터 (114) 보다 크기가 큰 성분들이 제거될 수 있다. 예를 들어, 분석 시료가 혈액인 경우, 혈구는 필터 (114) 를 통해 제거될 수 있다. 그 결과, 항원의 역할을 하는 핵 단백질을 포함하는 혈청 또는 혈장이 투입 채널 (110) 로 이동할 수 있다. 나아가 필터 (114) 는 효과적인 필터링을 위해 1M의 EDTA가 처리된 필터일 수 있다. 한편, 투입 채널 (110) 은 전체 유체 분석용 마이크로 칩 (100) 의 길이 대하여 15 내지 25 % 길이를 가질 수 있고, 다른 채널들 보다 높은 수용력을 가질 수 있다. 예를 들어, 투입 채널 (110) 은 실질적으로 반응 채널 (120) 에서 반응하는 분석 시료 (116) 의 용량보다 많은 용량을 수용할 수 있도록 구성될 수 있다.
반응 채널 (120) 내의 자성 입자-제1 항체 복합체 (122) 는 상부면에 부착되어 있을 수 있다. 한편, 반응 채널 (120) 의 폭은 분석 시료가 투입 채널 (110) 로부터 반응 채널 (120) 로 원활이 이동할 수 있도록, 투입 채널 (110) 보다 좁은 폭을 가질 수 있고, 투입 채널 (110) 에서부터 검출 채널 (130) 까지 점차 감소하는 폭을 가질 수 있다. 또한, 반응 채널 (120) 시작점에서 검출 채널 (130) 로 갈수록 높이가 낮아지는 하부면을 가질 수 있다.
검출 채널 (130) 은 복수의 웰 (well) (134) 을 포함하는 복수의 검출부 (132) 포함할 수 있다. 각각의 검출부 (132) 는 검출 채널 (130) 내에서 일련의 간격을 가질 수 있다. 그러나, 이에 제한되지 않고, 검출부 (132) 는 분석 시료의 종류 또는 유체 분석용 마이크로 칩 (100) 의 이용 목적에 따라 상이한 간격, 영역, 검출부 (132) 내의 웰 (134) 의 수를 갖도록 다양한 형태를 기질 수 있다. 한편, 웰 (134) 내에는 제2 항체가 고정되어 있어, 반응 채널 (120) 로부터 유동된 면역 복합체와 제2 항원-항체반응을 함으로써, 면역 복합체를 포획할 수 있다. 한편, 검출 채널 (130) 은 전체 유체 분석용 마이크로 칩 (100) 의 길이 대하여 40 내지 60 % 길이를 가질 수 있어, 다른 채널들 보다 긴 길이를 가질 수 있다.
한편, 반응 채널 (120) 및 검출 채널 (130) 에서 실질적으로 반응하는, 반응 용량이외의 추가적인 분석 시료 (116) 가 투입될 경우, 검출 채널 (130) 을 통과한 분석 시료 (116) 는 흐름 유지 채널 (140) 로 이동할 수 있다. 그 결과, 흐름 유지 채널 (140) 내에 형성된 관통홀 (141) 에 의해 형성된 공기압은 분석 시료 (116) 의 흐름을 유지시킬 수 있다. 이에 따라, 분석 시료 (116) 는 유체 분석용 마이크로 칩 (100) 내에서 모든 반응이 끝날 때 가지, 충분한 흐름을 유지할 수 있다. 나아가, 흐름 유지 채널 (140) 내의 분석 시료 (116) 의 지속적인 흐름에 따라, 반응 채널 (120) 에서 형성된 면역 복합체는 검출 채널 (130) 로 효과적으로 이동할 수 있다. 또한, 이러한 흐름에 따라, 검출 채널 (130) 내에 형성된 비특이적 면역반응 복합체 또는 면역 복합체를 형성하지 않은 자성 입자들은 워싱되어 검출 채널 (130) 밖으로 이동할 수 있다.
도 1b 내지 1d는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 개략적인 측면도 및 검출 대상항원의 검출 과정을 설명하기 위한 요부 확대도이다. 도 1e 및 도 1f는 본 발명의 일 실시예에 따른 유체 분석용 마이크로칩 내의 검출 채널을 예시적으로 도시한 것이다.
도 1b를 참조하면, 분석 시료 (116) 는 투입구 (112) 를 통과해 투입 채널 (110) 로 주입될 수 있다. 이때, 분석 시료 (116) 는 선택적으로 용해 처리 후에 투입 채널 (110) 로 주입될 수 있다. 분석 시료 (116) 는 또한, 혈구 (117), 검출 대상항원 (118) 을 포함할 수 있는데, 투입 채널 (110) 내의 필터 (114) 에 의해, 필터 (114) 보다 크기가 큰 혈구 (117) 는 걸러지고, 혈청 또는 혈장 내의 검출 대상항원 (118) 이 반응 채널 (120) 로 유동할 수 있다.
도 1c를 참조하면, 분석 시료 (116) 내의 검출 대상항원 (118) 과 상부면 (160) 에 부착되어 있던 자성 입자-제1 항체 복합체 (122) 가 항원-항체 면역 반응하여 결합된다. 또한, 결합 전후로 제1 항체 복합체는 유체 성분들에 의해 탈착할 수 있다. 자성 입자-제1 항체 복합체 (122) 의 탈착에 있어서, 상부면 (160) 을 포함하는 바디부는 소수성 재질인 것이 바람직할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상부면 (160) 이 BSA (bovine serum albumin) 또는 FBS (fetal bovine serum) 의 소수성 재질을 갖는 경우, 자성 입자-제1 항체 복합체 (122) 와 상부면 (160) 의 접촉면적이 작아져, 용이하게 탈착될 수 있다.
한편, 자성 입자-제1 항체 복합체 (122) 는 구체적으로, 제1 항체 (122 (a)) 와 자성 입자 (122 (b)) 로 구성되어 있다. 이때, 제1 항체 (122 (a)) 는 극미량의 검출 대상항원 (118) 과의 면역 반응의 정확도를 높이기 위해, 단클론 항체일 수 있다. 나아가, 자성 입자-제1 항체 복합체 (122) 는 동결 건조된 상태로 상부면 (160) 에 부착되어 있을 수 있지만, 이에 제한되는 것은 아니다. 반응 채널 (120) 에서는 탈착된 자성 입자-제1 항체 복합체 (122) 와 검출 대상항원 (118) 의 제1 항원-항체 반응이 일어 날 수 있다.
바람직하게, 자성 입자 (122 (b)) 의 입경은 0.1 내지 6.0 ㎛일 수 있다. 더욱 바람직하게, 자성 입자 (122 (b)) 의 입경은 1.0 내지 4 ㎛일 수 있다. 예를 들어, 자성 입자 (122 (b)) 의 입경이 1.0 내지 4 ㎛인 경우, 제1 항체 (122 (a)) 가 형광물질이 표지된 항체, 즉 형광 표지 항체가 아니더라도, 광학적으로 검출기를 통해 계수될 수 있다. 나아가 1.0 내지 4 ㎛의 입경을 갖는 자성 입자 (122 (b)) 는 1.0 ㎛ 이하의 입경을 갖는 자성 입자 (122 (b)) 보다, 비특이적 자가 조립이 일어날 확률이 낮을 수 있다. 또한, 4 ㎛ 이상의 입경을 갖는 자성 입자 (122 (b)) 의 항원-항체 반응 효율은 1.0 내지 4 ㎛의 입경을 갖는 자성 입자 (122 (b)) 보다 낮을 수 있다.
한편, 제1 항원-항체 반응에 있어서, 자성 입자 (122 (b)) 의 표면적에 대하여 1*105배수 내지 4*105배수의 개수로 제1 항체 (122 (a)) 가 부착된 자성 입자-제1 항체 복합체 (122) 를 이용하는 것이, 바람직할 수 있으나 이에 제한되는 것은 아니다. 나아가, 유체 분석용 마이크로 칩 (100) 내의 반응 채널 (120) 이, 자성 물질을 포함하는 검출기에 도입되는 경우, 제1 항원-항체 반응 효율이 높아질 수 있다. 예를 들어, 검출기 내의 자성 물질에 의해 자성 입자-제1 항체 복합체 (122) 의 분산력이 조절될 수 있고, 그 결과 자성 입자-제1 항체 복합체 (122) 가 스스로 뭉치는 현상이 감소할 수 있다.
나아가, 복수의 채널을 형성하는 상부면 (160) 에는 흐름 조절 필러 (150) 가 형성될 수 있다. 특히 반응 채널 (120) 내에 형성된 흐름 조절 필러 (150) 는 유동하는 자성 입자-제1 항체 복합체 (122) 의 흐름을 물리적으로 조절할 수 있다. 이에 따라, 반응 채널 (120) 내에서는, 제1 항체 (122 (a)) 와 검출 대상항원 (118) 이 면역 반응할 수 있는 충분한 시간이 제공되어, 제1 항원-항체 반응 효율이 높아질 수 있다. 이러한 흐름 조절 필러 (150) 는, 목적에 따라 하부면 (170) 에 부착될 수도 있다. 나아가, 흐름 조절 필러 (150) 의 직경은 50 내지 70 ㎛일 수 있다.
도 1d를 참조하면, 반응 채널 (120) 에서 제1 항원-항체 반응에 의해 형성된 면역 복합체 (124) 는 반응 채널 (120) 로부터 검출 채널 (130) 로 유동할 수 있다. 이때, 검출 채널 (130) 에는 제2 항체 (136) 가 고정될 수 있다. 한편, 제2 항체 (136) 는 검출 채널 (130) 내에 형성된 복수의 웰 (134) 내에서 링커를 통해 고정될 수 있다. 구체적으로, 복수의 웰 (134) 은 제2 항체 (136) 와의 제2 항원-항체 반응에 의해 포획된 면역 복합체 (124) 를 포함할 수 있다 (도 1e 참조). 이때, 웰 (134) 의 직경 및 깊이는 자성 입자 (122 (b)) 의 입경, 바람직하게는 자성 입자-제1 항체 복합체 (122) 에 대하여 1.2 내지 2 배의 크기를 가질 수 있다. 예를 들어, 자성 입자-제1 항체 복합체 (122) 에 대하여, 1.2 배 이하의 크기를 갖는 웰 (134) 은 자성 입자-제1 항체 복합체 (122) 를 포획하기에 바람직하지 않을 수 있고, 2 배 이상의 크기를 갖는 웰 (134) 은 2 개의 자성 입자-제1 항체 복합체 (122) 가 들어갈 수 있어, 바람직하지 않을 수 있다. 나아가, 웰 (134) 각각은 5 내지 8 ㎛의 간격으로 하부면 (170) 에 배치될 수 있으나, 이에 제한되는 것은 아니다.
한편, 검출 채널 (130) 내의 웰 (134) 의 개수는 반응 채널 (110) 의 용량, 분석 시료 (116) 의 농도 또는 분석 시료 (116) 의 해리 상수에 의존적일 수 있다. 구체적으로, 해리 상수는 분석 시료 (116) 내의 검출 대상항원 (118) 과 제1 항체 (122 (a)) 또는 제2 항체 (136) 의 결합 친화도와 연관있을 수 있고, 이에 따라 제2 항체 (136) 를 포함할 수 있는 웰 (136) 의 개수와도 연관있을 수 있다.
예를 들어, 웰 (134) 의 개수는 반응 채널 (110) 의 용량 및 분석 시료 (116) 의 농도 또는 해리 상수에 비례함에 따라, 수학식1 로 산출될 수 있다.
[수학식 1]
웰의 개수 = 반응 채널의 용량 X 분석 시료의 농도 (또는, 분석 시료의 해리 상수) X 6.23 X 1023
이때, 반응 채널 (110) 의 용량은 분석 시료 (116) 의 수용량임에 따라, 투입되는 분석 시료 (116) 의 용량과도 대응할 수 있다. 또한, 아보가드로수의 6.23 X 1023는 1몰의 분석 시료 (116) 내의 입자의 수를 고려하여 설정된 수식이다.
구체적인 예를 들어, 표 1을 참조했을때 분석 시료 (116) 의 농도가 100 fM (또는 0.1 pM) 이고, 반응 채널 (110) 의 용량이 1 ㎕일 경우, 검출 채널 (130) 내의 웰 (134) 의 개수는 [수식 1] 에 따라, 60000개가 바람직할 수 있다. 이와 동일한 100 fM의 분석 시료 (116) 를 이용하고, 반응 채널 (110) 의 용량이 2.5 ㎕일 경우, 웰 (134) 의 개수는 150000개가 바람직할 수 있다. 즉, 웰 (134) 의 개수는 반응 채널 (110) 의 용량에 비례할 수 있다.
[규칙 제26조에 의한 보정 01.08.2017] 
Figure WO-DOC-TABLE-1
이에 따라, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 (100) 내의 웰 (134) 의 개수는 분석 시료 (116) 의 농도 또는 이의 해리 상수, 반응 채널 (110) 의 용량에 따라 설정될 수 있다.
선택적으로, 검출 채널 (130) 의 하부면 (170) 에는 복수의 웰 (134) 대신에, 복수의 포획 필러 (135) 가 형성될 수 있다 (도 1f 참조). 구체적으로, 복수의 포획 필러 (135) 가 면역 복합체 (124) 의 포획을 위해 검출 채널 (130) 내에 형성되는 경우, 각각의 포획 필러 (135) 사이에는 제2 항체가 고정되어 있을 수 있다. 나아가, 각각의 포획 필러 (135) 는 하나의 면역 복합체 (124) 만이 포획되도록, 자성 입자 (122 (b)) 보다, 바람직하게는 면역 복합체 (124) 보다 1.2 배 내지 2 배 크기의 간격으로 배치될 수 있다.
제2 항체 (136) 는 검출의 정확도를 높이기 위해, 각각 상이한 항원-특이적 구조를 갖는 항체 (136 (a), 136 (b) 및 136 (c)) 를 포함하는, 다 클론 항체일 수 있다. 나아가, 검출 채널 (130) 내의 제2 항체는 (164) 는 유체 분석용 마이크로 칩 (100) 이 자성 입자를 끌어당기거나 밀어낼 수 있는 자성 물질을 포함하는 검출기에 도입되는 경우, 자성 물질에 대응하는 위치를 가질 수 있다.
검출 채널 (130) 로 유동한 면역 복합체 (124) 는 제2 항체 (136) 와의 제2 항원-항체 반응을 통해, 웰 (134) 내에 포획될 수 있다. 구체적으로, 검출 채널 (130) 에서는 면역 복합체 (124) 내의 검출 대상항원 (118) 과, 검출 대상항원 (118) 에 대하여 특이적인 구조를 갖는 제2 항체 (136) 가 결합함으로써, 면역 복합체 (124) 가 포획될 수 있다. 예를 들어, 유체 분석용 마이크로 칩 (100) 내의 검출 채널 (130) 이, 자성 물질을 포함하는 검출기에 도입되는 경우, 검출 대상항원 (118) 을 포함하는 면역 복합체 (124) 는 보다 정확하게 웰 (134) 내에 포획될 수 있고, 그 결과 검출 대상항원 (118) 이 검출될 수 있다. 이때, 면역 복합체 (124) 의 검출의 정확도를 높이기 위해서, 제2 항체 (136) 가 부착된 하부면 (170) 에 대응하는, 검출기 내의 자성 물질의 자기장의 세기는, 상부면 (160) 에 대응하는 자성 물질의 자기장의 세기보다 작을 수 있다.
이하에서는, 도 2를 참조하여, 본 발명의 다른 실시예에 따른 항원의 정량분석 방법의 절차를 구체적으로 설명한다. 이때, 설명의 편의를 위해, 도 1a 내지 1d에서 사용된 도면 부호가 구성 요소들을 지칭하기 위해 사용된다.
도 2는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법을 이용한, 항원의 정량분석 절차를 도시한 것이다.
도 2를 참조하면, 먼저, 특정 항원의 정략 분석을 위한 분석 시료 (116) 가 준비 된다 (S210). 이때, 분석 시료 (116) 는 유체 시료 일 수 있으며, 바람직하게는 핵 단백질을 포함하는 시료일 수 있다. 선택적으로, 준비 단계 (S210) 에서는 분석 시료 (116) 의 종류에 따라, 용해 처리가 수행될 수 있다. 나아가, 바람직한 분석 시료 (116) 는 세포 용해물, 전혈, 혈장, 혈청, 침, 안구액, 뇌척수액, 땀, 뇨, 젖, 복수액, 활액 및 복막액일 수 있으나, 이에 제한되는 것은 아니다.
다음으로, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 (100) 에 준비된 분석 시료 (116) 를 위치 시킨다 (S220). 예를 들어, 유체 분석용 마이크로 칩 (100) 의 투입구 (112) 에 분석 시료 (116) 를 적가함로써, 분석 시료 (116) 가 투입 채널 (110) 로 주입될 수 있다.
다음으로, 자성 물질과 같은 자력 인가부 및 CMOS 이미지 센서를 포함하는 검출기에 유체 분석용 마이크로 칩 (110) 을 도입하여, 자력 인가부에 전자력을 인가한다 (S230). 이에 따라, 제1 항원-항체 반응, 제2 항원-항체 반응과 같은, 특이 반응이 일어 난다. 즉, 특이 전자력을 인가하는 단계 (S230) 에서는 도 1a 내지 1d에서 전술한, 반응 채널 (120) 에서의 제1 항원-항체 반응, 검출 채널 (130) 에서의 제2 항원-항체 반응이 일어남에 따라, 유체 분석용 마이크로 칩 (100) 내의 검출 채널 (130) 에 면역 복합체 (124) 가 포획될 수 있다.
마지막으로, 검출기 내의 CMOS 이미지 센서를 이용하여, 전자력을 인가하는 단계 (S230) 에서 검출 채널 (130) 로 포획된 면역 복합체 (124) 를 계수한다 (S240). 이때, 계수된 면역 복합체 (124) 의 수는, 검출 대상항원 (118) 의 수와 비례할 수 있다. 계수 단계 (S240) 의 결과로, 검출 대상항원 (118) 이 정량분석될 수 있다. 면역 복합체 (124) 의 계수 방식은 획득된 이미지에서 자성 입자를 검출하는 방식으로 구현될 수 있으며, 형광 물질이 부착되지 않은 전술한 크기의 자성 입자를 구분할 수 있는 방식이 채용된다면, 구현을 위한 구체적인 방식은 제한되지 않는다.
이하에서는, 도 3a와 도 3b 내지 도 3g, 도 3h 내지 도 3k를 참조하여, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법에 서 이용된, 항원 정량분석 시스템 및 도 2의 전자력을 인가하는 단계 (S230) 와 계수하는 단계 (S240) 를 구체적으로 설명한다. 이때, 설명의 편의를 위해, 도 1a 내지 도 1d 및 도 2에서 사용된 도면 부호가 구성 요소들을 지칭하기 위해 사용된다.
도 3a는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법을 이용한, 항원 정량분석 시스템의 구성을 도시한 개략적인 분해 사시도이다. 도 3b는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 반응 채널 및 이에 배치된 검출기의 제1 자력 인가부를 도시한 평면도이다. 도 3c 내지 3g는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 반응 채널에 대한 평면도 및 반응 채널 내에서의 검출 대상물질의 검출 과정을 설명하기 위한 요부 확대도이다. 도 3h는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 검출 채널 및 이에 배치된 검출기의 제2 자력 인가부를 도시한 평면도이다. 도3i 내지 3k는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 검출 채널에 대한 측면 시사도 및 검출 채널 내에서의 검출 대상물질의 검출 과정을 설명하기 위한 요부 확대도들이다.
도 3a를 참조하면, 항원 정량분석 시스템 (300) 은 핀홀 어퍼처 (320), 파장 필터 (340), 제1 자력 인가부 (362), 제2 자력 인가부 (364) 및 CMOS 이미지 센서 (370) 를 포함한다.
전자력을 인가하는 단계 (S230) 에서는 유체 분석용 마이크로 칩 (100) 이 복수의 제1 자력 인가부 (362), 제2 자력 인가부 (364) 사이에 도입될 수 있다. CMOS 이미지 센서 (370) 는 유체 분석용 마이크로 칩 (100) 과 아래 배치되는 제1 자력 인가부 (362), 제2 자력 인가부 (364) 사이에 배치될 수 있다. 보다 구체적으로, 제1 자력 인가부 (362) 는 유체 분석용 마이크로 칩 (100) 내의 반응 채널 (120) 에 대응하도록 배치될 수 있고, 제2 자력 인가부 (364) 는 유체 분석용 마이크로 칩 (100) 내의 검출 채널 (130) 에 대응하도록 배치될 수 있다. 이때, 제1 자력 인가부 (362) 및 제2 자력 인가부 (364) 는 전류의 흐름에 따라 자기력이 용이하게 조절되는 전자석일 수 있으나, 이에 제한되는 것은 아니다.
도 3b를 참조하면, 반응 채널 (120) 에 배치된 제1 자력 인가부 (362) 는 코어 자성 물질 (362 (g)) 및 코어 자성 물질 (362 (g)) 을 둘러 싸는 돌기 자성 물질 (362 (a) 내지 362 (f)) 를 포함한다. 그러나, 제1 자력 인가부 (362) 의 구조는 도시된 형태에 제한되는 것은 아니며, 전자력이 선택적으로 인가될 수 있는 다양한 형태를 가질 수 있다.
도 3c 내지 도 3e를 참조하면, 복수의 돌기 자성 물질 쌍 ((362 (a)) 및 362 (d), (362 (b)) 및 362 (e), (362 (c)) 및 362 (f)) 중 하나의 돌기 자성 물질 쌍에 전자력이 인가될 수 있고, 인가된 돌기 자성 물질 쌍과 인접한, 다른 돌기 자성 물질 쌍에 전자력이 인가될 수 있다. 예를 들어, 돌기 자성 물질 쌍 (362 (a) 및 362 (d)) 에만 전자력이 인가될 수 있다. 그 결과, 자성 입자-제1 항체 복합체 (122) 는 반응 채널 (120) 내에서 돌기 자성 물질 쌍 (362 (a) 및 362 (d)) 사이의 코어 자성 물질 (136 (g)) 과 대응하는 위치에 일렬로 위치할 수 있다 (도 3c). 그 다음, 돌기 자성 물질 쌍 (362 (a) 및 362 (d)) 과 인접한 돌기 자성 물질 쌍 (362 (b) 및 362 (e) 또는 362 (c) 및 362 (f)) 에만 전자력이 인가될 수 있다. 그 결과, 자성 입자-제1 항체 복합체 (122) 는 반응 채널 (120) 내에서 돌기 자성 물질 쌍 (362 (b) 및 362 (e) 또는 362 (c) 및 362 (f)) 사이의 코어 자성 물질 (136 (g)) 과 대응하는 위치에 일렬로 위치할 수 있다 (도 3d 및 도 3e). 위와 같이 돌기 자성 물질 쌍의 전자력이 순차적으로 조절됨에 따라, 자성 입자-제1 항체 복합체 (122) 는 반응 채널 (120) 내에서 회전할 수 있다. 그 결과, 자성 입자-제1 항체 복합체 (122) 의 분산이 일어나게 되고, 검출 대상항원 (118) 과 자성 입자-제1 항체 복합체 (122) 의 제1 항원-항체 반응 효율 또한 높아질 수 있다.
도 3f 및 도 3g를 참조하면, 반응 채널 (120) 의 상부면 (160) 및 하부면 (170) 에 위치하는 복수의 코어 자성 물질 (362 (g)) 은 전술한 바와 같이, 전류의 흐름에 따라 전자력이 조절되는 전자석일 수 있다. 한편, 반응 채널 (120) 내에서는 자성 입자-제1 항체 복합체 (122) 가 응집될 수 있다 (도 3f). 이때, 상부면 (160) 및 하부면 (170) 에 위치하는 복수의 코어 자성 물질 (362 (g)) 모두에 전자력이 인가될 수 있고 (전자석 on), 그 결과 전자력이 상부면 (160) 및 하부면 (170) 으로부터 수직하게 작용할 수 있다. 이에 따라, 응집된 자성 입자-제1 항체 복합체 (122) 가 재분산될 수 있다 (도 3g). 그 결과, 자성 입자-제1 항체 복합체 (122) 의 유동이 조절될 수 있고, 검출 대상항원 (118) 과 자성 입자-제1 항체 복합체 (122) 의 제1 항원-항체 반응 효율이 높아질 수 있다.
도 3h를 참조하면, 검출 채널 (130) 에 배치된 제2 자력 인가부 (164) 는, 전자력이 검출 채널 (130) 의 모든 면에 인가되도록 구성된, 단일 구조의 전자석이 이용될 수 있다. 그러나, 제2 자력 인가부 (364) 의 구조는 도시된 형태에 제한되는 것은 아니며, 전자력이 선택적으로 인가될 수 있는 다양한 형태를 가질 수 있다. 예를 들어, 제2 자력 인가부 (364) 가 다면체인 경우, 각 모서리에 자력이 집중되는 현상을 방지하기 위한, 자력 조절 원형 구배가 형성될 수도 있다. 이러한 원형 구배가 제2 자력 인가부 (364) 에 형성은, 검출 채널 (130) 내에서 자성 입자-제1 항체 복합체 (122) 의 균일한 흐름을 유도할 수 있다.
도 3i를 참조하면, 제2 항체 (136) 가 고정된 하부면 (170) 에 대응하는 제2 자력 인가부 (364) 에 전자력이 인가 되면 (전자석 on), 자성 입자 (122 (b)) 를 포함하는 자성 입자-제1 항체 복합체 (122) 와 면역 복합체 (124) 는 하부면 (170) 의 방향으로 이동할 수 있다. 이때, 하부면 (170) 에 대응하는 제2 자력 인가부 (364) 의 자기장 세기는 20 내지 32 mT일 수 있다. 하부면 (170) 에 대응하는 제2 자력 인가부 (364) 의 전자력 인가의 결과로, 면역 복합체 (124) 와 제2 항체 (136) 의 제2 항원-항체 반응 효율이 높아져, 면역 복합체 (124) 는 웰 (134) 내에 포획될 수 있다. 한편, 하부면 (170) 에 대응하는 제2 자력 인가부 (364) 에 대한 전자력 인가는, 웰 (134) 내에 자성 입자-제1 항체 복합체 (122) 및 검출 대상항원 (118) 의 비특이적 항원-항체 반응에 의해 형성된 비특이적-면역 복합체 (126) 가 포획되는 결과를 야기할 수도 있다.
도 3j를 참조하면, 도 3i에서 자기력이 인가되었던 하부면 (170) 에 대응하는 제2 자력 인가부 (364) 는 전자력을 잃게 되고 (전자석 off), 상부면 (160) 에 대응하는 제2 자력 인가부 (364) 만이 자기력이 인가될 수 있다 (전자석 on). 이때, 상부면 (160) 에 대응하는 제2 자력 인가부 (364) 의 자기장 세기는 32 내지 39 mT일 수 있다. 상부면 (160) 에 대응하는 제2 자력 인가부 (364) 의 전자력 인가의 결과로, 검출 대상항원 (118) 과 제1 항원-항체 반응이 일어나지 않은 자성 입자-제1 항체 복합체 (122) 와 비특이적-면역 복합체 (126) 는 상부면 (160) 의 방향으로 이동할 수 있다. 이에 따라, 웰 (134) 내에는 제2 항체 (136) 와의 제2 항원-항체 반응에 의해 포획된 면역 복합체 (124) 만이 남게 될 수 있다. 즉, 상부면 (160) 에 대응하는 제2 자력 인가부 (364) 에 전자력이 인가된 조건에서는, 검출 채널 (130) 내에서 자성 입자-제1 항체 복합체 (122), 비특이적-면역 복합체 (126) 및 면역 복합체 (124) 가 검출될 수 있다.
도 3k를 참조하면, 도 3j에서 자기력이 인가되었던 상부면 (160) 에 대응하는 제2 자력 인가부 (364) 는 전자력을 잃게 됨에 따라 (전자석 off), 상부면 (160) 및 하부면 (170) 에 대응하는 복수의 제2 자력 인가부 (364) 모두 자기력을 잃게 된다 (전자석 off). 그 결과, 상부면 (160) 의 방향으로 이동한, 검출 대상항원 (118) 과 제1 항원-항체 반응이 일어나지 않은 자성 입자-제1 항체 복합체 (122) 및 비특이적-면역 복합체 (126) 는 검출 채널 (130) 을 빠져 나갈 수 있다. 즉, 상부면 (160) 및 하부면 (170) 에 대응하는 제2 자력 인가부 (364) 모두 자기력을 잃게 된 조건에서는, 검출 채널 (130) 내에서 면역 복합체 (124) 만이 검출될 수 있다. 또한, 전술한 바와 같이, 제1 항체 (122 (a)) 및 제2 항체 (136) 가 형광 표지 항체가 아니더라도, 웰 (134) 내에 대응하는 높이에서의 이미지를 획득하고 획득된 이미지 내에서의 면역 복합체 (124) 를 검출함으로써 계수될 수 있고, 이에 의해 검출 대상항원 (118) 의 정량분석이 가능할 수 있다.
다음으로, 계수하는 단계 (S240) 에서는 CMOS 이미지 센서 (370) 가 작동함에 따라, 면역 복합체 (124) 의 수가 계수될 수 있다. 구체적으로, 항원 정량분석 시스템 (300) 외부에서 투과된 빛에 따라, 비 동위성 광원 (310) 이 핀홀 어퍼처 (320) 로 투과하게 된다. 이때, 핀홀 어퍼처 (320) 는 복수의 핀홀 (322) 을 포함할 수 있다. 비 동위성 광원 (310) 은 핀홀 (322) 을 통과한 후, 공간적 (spatially) 동위성 광원 (330) 으로 전환될 수 있다. 공간적 동위성 광원 (330) 은 파장 필터 (340) 를 통과한 후, 동위성 광원 (350) 으로 전환될 수 있다. 즉, 전자력을 인가하는 단계 (S230) 의 결과로, 포획된 면역 복합체 (134) 를 포함하고 있는 검출 채널 (130) 에 동위성 광원 (350) 이 조사될 수 있다. 이때, 웰 (134) 은, 면역 복합체 (124) 가 포획되지 않은 웰 (134 (a)) 과 면역 복합체 (124) 가 포획된 웰 (134 (b)) 로 구분될 수 있고, 이러한 웰 (134) 들은 CMOS 이미지 센서 (370) 에 의해, 인식될 수 있다. 즉, CMOS 이미지 센서 (370) 에 의해 판별될 수 있는 면역 복합체 (124) 가 포획된 웰 (134 (b)) 의 수는, 면역 복합체 (124) 의 수와 대응할 수 있다. 그 결과, 면역 복합체 (124) 의 수가 계수됨에 따라, 간접적으로 검출 대상항원 (118) 의 정량분석이 수행될 수 있다.
실시예 1: 면역 반응의 정확도가 극대화되는 분석 시료의 유속설정
이하에서는, 도 4를 참조하여, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법에서, 면역 반응의 정확도가 극대화되는 분석 시료의 유속설정을 위한 평가의 결과를 설명한다.
도 4는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법에서, 면역 반응의 정확도가 극대화되는 분석 시료의 유속설정을 위한 실험 결과를 도시한 것이다. 도 4를 참조하면, 75 nL/s 이하의 유속을 갖는 유체의 분석 시료는, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 검출 채널 내에서, 다수의 비특이적으로 결합한 자성 입자가 검출된다. 한편, 분석 시료의 유속이 75 nL/s 이상으로 증가함에 따라, 비특이적으로 결합한 자성 입자의 수가 감소하는 것으로 나타난다. 나아가, 280 nL/s 이상의 유속을 갖는 경우, 분석 시료는 면역 복합체의 항원-항체 결합을 끊을 수 있는 항력을 가질 수 있다. 이에 따라, 280 nL/s 이상에서는 유체 분석용 마이크로 칩의 검출 채널 내에서 포획된 비특이적으로 결합한 자성 입자의 수가 거의 없는 것으로 나타난다.
또한, 분석 시료가 280 nL/s 내지 400 nL/s 구간의 유속을 갖는 경우, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 검출 채널의 복수의 웰 또는 포획 필러 내에 포획된 면역 복합체는, 분석 시료의 흐름에 따른 항력을 적게 받아 웰 또는 포획 필러들 사이에서 고정될 수 있다. 한편, 비특이적으로 결합한 자성 입자들 또는 비특이적 면역 복합체들은, 분석 시료의 흐름에 따라 제거될 수 있다.
이상의 실시예 1의 결과로, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩은 분석 시료가 가지는 면역 반응력의 차이에 따라, 100 nL/s 내지 500 nL/s 의 유속을 갖도록, 바람직하게 200 nL/s 내지 400 nL/s의 유속을 갖도록, 각각의 구성들이 배치될 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩은, 분석 시료가 280 nL/s 내지 400 nL/s의 유속을 갖도록, 채널 내부에 흐름 조절 필러를 포함할 수 있다. 나아가, 분석 시료가 280 nL/s 내지 400 nL/s의 유속을 갖도록, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 바디부를 구성하는 하층면은, 각 채널마다 상이한 높이로 형성될 수 있다.
실시예 2: 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법에 대한 평가
이하에서는, 도 5a 및 5b를 참조하여, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법에 대한 평가 결과를 설명한다. 본 평가에서는, 검출 대상항원으로 인플루엔자 A 바이러스의 핵단백질이 설정되었고, 5 가지의 농도로, 5 반복의 실험이 수행되었다. 구체적으로, 평가에 이용된 인플루엔자 A 바이러스의 핵단백질의 5 가지의 농도는, 0 pM, 0.1 pM, 1 pM, 10 pM 및 100 pM 이다.
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법에 대한 평가를 도시한 것이다.
도 5a를 참조하면, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 (100) 의 검출 채널 (130) 의 일부에 대한 이미지들이 도시된다.
인플루엔자 A 바이러스의 핵단백질이 투입되지 않은 검출 채널에서는, 반복실험 별로 각각 9 개, 2 개, 3 개, 2개 및 15 개의 자성 입자가 관찰되었다. 이의 결과는, 전자석의 자성 조절에 따라 검출 채널을 빠져나가지 못한 자성 입자의 수를 의미할 수 있다.
인플루엔자 A 바이러스의 핵단백질이 0.1 pM의 농도로 투입된 검출 채널 에서는, 반복실험 별로 각각 65 개, 39 개, 74 개, 62 개 및 63 개의 자성 입자가 관찰된다. 또한, 인플루엔자 A 바이러스의 핵단백질이 1 pM의 농도로 투입된 검출 채널에서는, 반복실험 별로 각각 85 개, 123 개, 47 개, 78 개 및 98 개의 자성 입자가 관찰되고, 인플루엔자 A 바이러스의 핵단백질이 10 pM의 농도로 투입된 검출 채널에서는, 반복실험 별로 각각 172 개, 207 개, 258 개, 206 개 및 187 개의 자성 입자가 관찰된다. 마지막으로, 인플루엔자 A 바이러스의 핵단백질이 100 pM의 농도로 투입된 검출 채널에서는, 반복실험 별로 각각 1172 개, 1148 개, 1216 개, 1064 개 및 1087 개의 자성 입자가 관찰된다. 이때, 인플루엔자 A 바이러스의 핵단백질이 0.1 pM, 1 pM, 10 pM 및 100 pM의 농도로 투입된 검출 채널에서 관찰된 면역 복합체를 구성하는 자성 입자 대부분은, 웰 내에 포획된 것으로 나타난다.
도 5b를 참조하면, 투입된 인플루엔자 A 바이러스의 핵단백질의 농도 증가에 따른 자성 입자의 수에 대한 그래프가 도시된다. 그 결과, 인플루엔자 A 바이러스의 핵단백질의 농도가 증가함에 따라, 검출된 자성 입자의 수가 비례하여 증가하는 것으로 나타난다.
이상의 실시예 2의 결과로, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법은, 분석 시료 내에 pM 단위의 극미량 농도로 존재하는 검출 대상항원을 민감도 높게 검출할 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩은 자성 물질을 포함하는 검출기에 도입되는 경우, 비특이적 면역 복합체 또는 검출 대상항원과 반응하지 않은 자성 입자들이 워싱됨에 따라, 검출 대상항원에 대한 정확도 높은 검출이 가능할 수 있다.
특히, 유체 시료의 주요 구동력인 모세관력과 전자기력은, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩의 균일한 유체이동 패턴을 제공할 수 있다. 그 결과, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩을 제공함으로써, 본 발명은 기존의 유체 분석용 마이크로칩이 가지고 있던, 불균일한 유체이동 패턴에 의에 따른 검출 및 분석에서의 장애 요인들을 극복할 수 있는 효과가 있다.
나아가, 본 발명의 일 실시예에 따른 유체 분석용 마이크로 칩 및 본 발명의 다른 실시예에 따른 항원의 정량분석 방법은 형광표지 항체를 이용하지 않아도, 자성 입자의 수를 계수함으로써, 검출 대상항원에 대한 간접적 정량분석을 제공할 수 있는 효과가 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시 예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시 예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (21)

  1. 상부면과 하부면을 가진 바디부로 이루어지고, 상기 상부면과 하부면 사이에 형성된 내부 채널로 유체를 유동시킴으로써 상기 유체 내에서 특정 항원을 검출하기 위한 유체 분석용 마이크로 칩으로서,
    상기 상부면을 관통하는 홀을 통해 분석 시료가 주입되도록 구성된 투입 채널;
    상기 투입 채널과 유체로 연통하도록 구성되고,
    상기 투입 채널로부터 유동한 상기 분석 시료와 제1 항원-항체 반응하는 제1 항체가 고정된 자성 입자를 포함하고,
    상기 자성 입자가 제1 항원-항체 반응하여 면역 복합체를 형성하고,
    상기 투입 채널을 형성하는 하부면보다 높은 높이를 갖도록 구성된 반응 채널; 및
    상기 반응 채널과 유체로 연통하도록 구성되고,
    상기 반응 채널로부터 유동된 상기 면역 복합체와 제2 항원-항체 반응하는 제2 항체가 고정되고,
    상기 투입 채널 또는 상기 반응 채널 보다 긴 길이를 갖고, 좁은 폭을 갖는, 검출 채널을 포함하는, 유체 분석용 마이크로 칩.
  2. 제1항에 있어서,
    상기 반응 채널은,
    상기 반응 채널 시작점에서 상기 검출 채널로 갈수록 높이가 낮아지는 하부면을 갖도록 구성된, 유체 분석용 마이크로 칩.
  3. 제1항에 있어서,
    상기 자성 입자의 입경은 0.1 내지 6.0 ㎛인, 유체 분석용 마이크로 칩.
  4. 제1항에 있어서,
    상기 제1 항체 및 상기 제2 항체는 형광표지 항체 (fluorescence-labeled antibody) 와 상이한, 유체 분석용 마이크로 칩.
  5. 제1항에 있어서,
    상기 자성 입자는,
    상기 반응 채널을 형성하는 상부면에 부착되는, 유체 분석용 마이크로 칩.
  6. 제1항에 있어서,
    상기 제1 항체는 단클론 (monoclonal) 항체이고,
    상기 제2 항체는 다클론 (polyclonal) 항체인, 유체 분석용 마이크로 칩.
  7. 제1항에 있어서,
    상기 투입 채널은 필터를 포함하는, 유체 분석용 마이크로 칩.
  8. 제1항에 있어서,
    상기 검출 채널은 복수의 웰 (well) 을 포함하고,
    상기 제2 항체는 링커 분자에 의해 상기 웰 내에 고정되는, 유체 분석용 마이크로 칩.
  9. 제8항에 있어서,
    상기 웰의 직경 및 깊이는 상기 자성 입자의 입경에 대하여 1.2 내지 2.0 배의 크기를 갖는, 유체 분석용 마이크로 칩.
  10. 제1항에 있어서,
    상기 검출 채널은 복수의 포획 필러 (pillar) 를 더 포함하고,
    상기 제2 항체는 상기 필러 사이에 고정되는, 유체 분석용 마이크로 칩.
  11. 제10항에 있어서,
    상기 복수의 필러 각각은 상기 자성 입자의 입경에 대하여 1.2 내지 2.0 배의 간격을 갖도록 배치되는, 유체 분석용 마이크로 칩.
  12. 제1항에 있어서,
    상기 유체 분석용 마이크로 칩이 상기 자성 입자를 끌어당기거나 밀어낼 수 있는 자성 물질을 포함하는 검출기에 도입되는 경우,
    상기 제2 항체는 상기 자성 물질에 대응하는 위치를 갖는, 유체 분석용 마이크로 칩.
  13. 제12항에 있어서,
    상기 제2 항체가 부착된 면에 대응하는 자성 물질의 자기장의 세기는,
    상기 제2 항체가 부착되지 않은 면에 대응하는 자성 물질의 자기장의 세기보다 큰, 유체 분석용 마이크로 칩.
  14. 제1항에 있어서,
    상기 유체 분석용 마이크로 칩은, 상기 분석 시료의 흐름을 조절하는 흐름 조절 필러를 더 포함하고,
    상기 흐름 조절 필러는 상기 투입 채널, 반응 채널 또는 검출 채널을 형성하는 상부면에 부착되는, 유체 분석용 마이크로 칩.
  15. 제1항에 있어서,
    상기 자성 입자는,
    상기 제1 항체가 상기 자성 입자 입경의 반지름의 제곱에 대하여 105배수의 개수로 부착된, 유체 분석용 마이크로 칩.
  16. 제1항에 있어서,
    상기 분석 시료의 유속은 100 내지 500 nL/s인, 유체 분석용 마이크로 칩.
  17. 분석 시료를 준비하는 단계;
    제1항 내지 제15항 중 한 항에 기재된 유체 분석용 마이크로 칩에 상기 분석 시료를 위치시키는 단계;
    자력 인가부 및 CMOS 이미지 센서를 포함하는 검출기에 상기 유체 분석용 마이크로 칩을 도입하여, 상기 자력 인가부에 전자력을 인가하는 단계; 및
    상기 CMOS 이미지 센서를 이용하여, 상기 분석 시료 내의 검출 대상항원의 수를 계수하는 단계를 포함하는, 항원의 정량분석 방법.
  18. 제17항에 있어서,
    상기 자력 인가부는,
    상기 검출기 내에서 복수의 자성 물질쌍으로 구성된 제1 자력 인가부를 포함하고,
    상기 자력 인가부에 전자력을 인가하는 단계는,
    유체 분석용 마이크로 칩의 반응 채널에 대응하는 위치에 배치된, 상기 복수의 자성 물질쌍 중 한 쌍의 자성 물질에 전자력을 인가하는 단계; 및
    상기 한 쌍의 자성 물질과 가장 인접한 다른 한 쌍의 자성 물질에 전자력을 인가하는 단계를 포함하는, 항원의 정량분석 방법.
  19. 제17항에 있어서,
    상기 자력 인가부는,
    상기 제1 자력 인가부와 상이하고, 상기 유체 분석용 마이크로 칩의 검출 채널에 대응하는 위치에 배치된 제2 자력 인가부를 더 포함하고,
    상기 자력 인가부에 전자력을 인가하는 단계는,
    상기 검출 대상항원 및 상기 유체 분석용 마이크로 칩 내의 자성 입자의 복합체인, 면역 복합체를 포획하도록, 상기 제2 자력 인가부에 전자력을 인가하는 단계를 포함하는, 항원의 정량분석 방법.
  20. 제 19항에 있어서,
    상기 제2 자력 인가부는,
    상기 검출기 내에 복수개로 존재하고, 상기 유체 분석용 마이크로 칩의 검출 채널의 상부면 및 하부면 중 적어도 한 면에 대응하도록 배치되고,
    상기 자력 인가부에 전자력을 인가하는 단계는,
    상기 상부면 및 하부면 중 적어도 한 면에 상기 면역 복합체를 포획하도록, 상기 적어도 한 면에 대응하여 배치되는 제2 자력 인가부에만 전자력을 인가하는 단계; 및
    상기 검출 채널에서 부유하는 상기 자성 입자가 다른 한면으로 이동하도록, 상기 다른 한 면에 대응하는 제2 자력 인가부에만 전자력을 인가하는 단계를 더 포함하는, 항원의 정량분석 방법.
  21. 제20항에 있어서,
    상기 자력 인가부에 전자력을 인가하는 단계는,
    부유하는 상기 자성 입자가 상기 검출 채널을 빠져나가도록,
    상기 다른 한 면에 대응하는 제2 자력 인가부에만 전자력을 인가하는 단계 이후에, 복수의 상기 제2 자력 인가부의 전자력을 모두 차단하는 단계를 더 포함하는, 항원의 정량분석 방법.
PCT/KR2017/007650 2017-06-01 2017-07-17 유체 분석용 마이크로 칩 WO2018221784A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/618,266 US20200147611A1 (en) 2017-06-01 2017-07-17 Microchip for analyzing fluids
CN201790001726.4U CN211905388U (zh) 2017-06-01 2017-07-17 流体分析用微芯片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170068512A KR101993305B1 (ko) 2017-06-01 2017-06-01 유체 분석용 마이크로 칩
KR10-2017-0068512 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018221784A1 true WO2018221784A1 (ko) 2018-12-06

Family

ID=64455835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007650 WO2018221784A1 (ko) 2017-06-01 2017-07-17 유체 분석용 마이크로 칩

Country Status (4)

Country Link
US (1) US20200147611A1 (ko)
KR (1) KR101993305B1 (ko)
CN (1) CN211905388U (ko)
WO (1) WO2018221784A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102260007B1 (ko) * 2019-03-14 2021-06-03 연세대학교 산학협력단 광산란을 이용한 면역 분석 장치 및 방법
WO2021241283A1 (ja) * 2020-05-25 2021-12-02 東京応化工業株式会社 ターゲット粒子の分離方法およびシステム
CN111537708A (zh) * 2020-06-11 2020-08-14 烟台芥子生物技术有限公司 微流控检测结构及其应用
KR102656008B1 (ko) * 2020-09-08 2024-04-11 경북대학교 산학협력단 질병 진단용 키트, 질병 진단용 키트를 이용한 질병 진단 방법 및 질병 진단용 키트의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961874B1 (ko) * 2010-04-05 2010-06-09 주식회사 나노엔텍 외부동력 없이 유체가 이동하는 유체분석용 칩
KR20110024846A (ko) * 2009-09-03 2011-03-09 전자부품연구원 자성 나노 입자를 이용한 생체분자의 정량적 분석장치 및 방법
KR20120056442A (ko) * 2010-11-25 2012-06-04 한국전자통신연구원 생체 시료 분석용 미세유체제어 칩
KR20150050110A (ko) * 2013-10-31 2015-05-08 (주)타스컴 바이오 측정 시스템

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130063775A (ko) * 2011-12-07 2013-06-17 한국전자통신연구원 랩온어칩
JP6217936B2 (ja) 2012-07-06 2017-10-25 凸版印刷株式会社 被検物質の検出システム
WO2014145330A2 (en) * 2013-03-15 2014-09-18 Theranos, Inc. Methods and devices for sample collection and sample separation
KR102435668B1 (ko) * 2015-10-20 2022-08-24 주식회사 퀀타매트릭스 다중 분석 칩 및 이를 이용한 분석 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110024846A (ko) * 2009-09-03 2011-03-09 전자부품연구원 자성 나노 입자를 이용한 생체분자의 정량적 분석장치 및 방법
KR100961874B1 (ko) * 2010-04-05 2010-06-09 주식회사 나노엔텍 외부동력 없이 유체가 이동하는 유체분석용 칩
KR20120056442A (ko) * 2010-11-25 2012-06-04 한국전자통신연구원 생체 시료 분석용 미세유체제어 칩
KR20150050110A (ko) * 2013-10-31 2015-05-08 (주)타스컴 바이오 측정 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VAN DORTST, B. ET AL.: "Integration of an optical CMOS sensor with a microfluidic channel allows a sensitive readout for biological assays in point-of-care tests", BIOSENSORS AND BIOELECTRONICS, vol. 78, 11 November 2015 (2015-11-11), pages 126 - 131, XP055607689, DOI: 10.1016/j.bios.2015.11.027 *

Also Published As

Publication number Publication date
KR101993305B1 (ko) 2019-06-26
US20200147611A1 (en) 2020-05-14
KR20180131868A (ko) 2018-12-11
CN211905388U (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2018221784A1 (ko) 유체 분석용 마이크로 칩
US6432630B1 (en) Micro-flow system for particle separation and analysis
Sato et al. Microchip‐based immunoassay system with branching multichannels for simultaneous determination of interferon‐γ
SE532644C2 (sv) Förfarande för att analysera cirkulerande antikroppar
US20150346201A1 (en) System and method for picoliter volume microfluidic diagnostics
WO2008122241A1 (en) Rapid protein analyses and the device thereof
EP3985391A1 (en) Magnetic particle light-emitting double-layer micro-fluidic chip and detection system
WO2008036083A1 (en) Microfluidic flow cytometer and applications of same
TW594007B (en) Biochemical detection device and method of magnetic fluid bead control combining digital fluid and electromagnetic field
WO2005036167A1 (en) Method and apparatus for detecting analyte with filter
WO2016182402A1 (ko) 복수개의 금속 나노 태그를 이용한 복수개의 타겟의 동시 분석 방법
US9784733B1 (en) Rapid diagnostic test device by driven flow technology
CN110208521A (zh) 一种磁微粒发光微流控芯片及反应方法
CN211402400U (zh) 一种外泌体鉴定装置
WO2019093542A1 (ko) 항원의 정량 분석용 마이크로 칩 및 항원의 정량 분석용 디바이스, 및 이를 이용한 항원의 정량 분석 방법
Delshadi et al. Magnetically localized and wash-free fluorescence immunoassay (MLFIA): proof of concept and clinical applications
EP3074533B1 (en) Method and device for accelerated surface-based reactions
CN100480702C (zh) 以磁性微球介导的微流体分析系统及其检测方法
CN107462735B (zh) 基于微流控技术的两次加样检测方法
WO2019017501A1 (ko) 표적물질의 정량 분석 방법 및 이를 이용한 표적물질의 정량 분석 디바이스
US12044679B2 (en) Diagnostic assay methods using assay device having microreactor
Jain et al. All-in-one optofluidic platform for differential diagnostics of multiple biomarkers with single molecule sensitivity
WO2017039324A1 (ko) 비특이적 결합이 최소화된 나노입자 기반 체외진단 방법 및 반응용기
Dunning et al. Method for Characterization of Passive Mechanical Filtration of Particles in Digital Microfluidic Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17911706

Country of ref document: EP

Kind code of ref document: A1