WO2018221619A1 - 漏電検出方法 - Google Patents

漏電検出方法 Download PDF

Info

Publication number
WO2018221619A1
WO2018221619A1 PCT/JP2018/020833 JP2018020833W WO2018221619A1 WO 2018221619 A1 WO2018221619 A1 WO 2018221619A1 JP 2018020833 W JP2018020833 W JP 2018020833W WO 2018221619 A1 WO2018221619 A1 WO 2018221619A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
leakage
phase
current vector
vector
Prior art date
Application number
PCT/JP2018/020833
Other languages
English (en)
French (fr)
Inventor
古屋 一彦
龍三 野田
一則 長友
和顕 松尾
Original Assignee
株式会社 シーディエヌ
古屋 一彦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 シーディエヌ, 古屋 一彦 filed Critical 株式会社 シーディエヌ
Priority to JP2019521281A priority Critical patent/JP6709338B2/ja
Publication of WO2018221619A1 publication Critical patent/WO2018221619A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/34Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system
    • H02H3/347Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system using summation current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/38Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to both voltage and current; responsive to phase angle between voltage and current

Definitions

  • the present invention relates to a method and system for detecting a leakage current.
  • Patent Documents 1 to 4 have been proposed as methods for measuring the leakage current in the operating state without being affected by the capacitance between the ground and the ground.
  • Japanese Patent No. 6056556 JP 2001-215247 A Japanese Patent No. 4159590 Japanese Patent No. 3405407
  • Patent Document 1 and Patent Document 2 relate to the stray capacitance of a power line by injecting a specific frequency (for example, 20 Hz) different from a commercial frequency (50 Hz, 60 Hz) as a signal for insulation monitoring into a ground line.
  • a specific frequency for example, 20 Hz
  • a commercial frequency 50 Hz, 60 Hz
  • a configuration for measuring a leakage current component without a leakage current is shown.
  • the injection of the specific frequency component requires the “injection core 2052”, “injection core winding 2053”, and “injection signal source 2051” shown in FIG.
  • a circuit for extracting the injection signal component is also required, resulting in a complicated configuration.
  • Patent Document 1 shows that the leakage current can be measured by the ground line current phase based on the ground line current and the TR phase voltage without injection, but the capacitance value to ground is patented.
  • FIG. 8 of Reference 3 only the case where the same value is connected to the R phase and the T phase is shown, and the calculation formula is not satisfied when the wiring capacitances between the wirings are not balanced. Is guessed. In the actual site, the wiring capacitance between the wirings is not balanced even if there is a large or small difference. Therefore, a disadvantage that a measurement error occurs without matching with the actual situation in the site is estimated. In addition, there is a drawback that it is limited to three phases of delta connection.
  • Patent Document 4 it is not necessary to inject a signal into the ground line, but it is necessary to generate a phase angle determination signal current id for internal processing. Also, the solution formula is different between single phase and three phase. Moreover, there is no description about the means for determining the power phase in which the electric leakage has occurred.
  • the present invention has been made to solve the above-described problems, does not require signal generation or injection, does not have a condition that the ground capacitance is balanced, and has three-phase or single-phase power supply types or Leakage detection method and leakage that can determine the detailed status of the leakage current value and the power line phase in which the leakage occurred, whether the leakage is due to an increase in capacitance component or leakage resistance, in a single method regardless of the configuration
  • An object is to provide a current detection system.
  • the invention of claim 1 is characterized in that a leakage current is determined by measuring a current vector from a current flowing through a ground line of a power supply and a current phase angle of a current flowing through the ground line with reference to the power supply voltage.
  • a leakage current detection method for detecting wherein the measured current vector is a first current vector, the current vector measured at a timing different from the first current vector is a second current vector, and the first current vector is the first current vector.
  • the difference between the current vector and the second current vector is calculated as a third current vector, and the third current vector is detected as a leakage current value.
  • the invention according to claim 2 is the leakage current detection method according to claim 1, wherein the first current vector is a value at a normal time.
  • the invention of claim 3 is the leakage current detection method according to claim 1 or 2, wherein the leakage current phase or the element type is determined based on the third current vector. To do.
  • the invention of claim 4 is the leakage current detection method according to claim 3, wherein the current magnitude of the third current vector or the resistance when the element type is determined to be resistance.
  • the resistance value exceeds a reference value, it is determined as abnormal, and when the element type is determined as electrostatic capacity, it is determined as normal.
  • the invention of claim 5 includes: current measuring means for measuring the current flowing through the ground line of the power supply; and current phase angle measuring means for measuring the current phase angle of the current flowing through the ground line with reference to the power supply voltage.
  • a leakage current detection system for detecting a leakage current by measuring a current vector, wherein a difference between a measured first current vector and a second current vector measured at a timing different from the first current vector. Detection means for detecting a third current vector as a leakage current value is provided.
  • the invention according to claim 6 is the leakage current detection system according to claim 5, wherein the first current vector is data measured either internally or externally. To do.
  • the invention of claim 7 is the leakage current detection system according to claim 5 or claim 6, wherein the first current vector is a value at a normal time.
  • the invention according to claim 8 is the leakage current detection system according to claim 7, further comprising a determination means for determining a leakage wiring phase or an element type based on the third current vector.
  • the invention of claim 9 is the leakage current detection system according to claim 8, wherein the magnitude of the current of the third current vector or the resistance when the element type is determined to be resistance. If the resistance value exceeds a reference value, it is determined to be abnormal, and if the element type is determined to be electrostatic capacity, determination means is provided to determine normal.
  • the leakage detection method and the leakage detection system there is no need to generate or inject a signal, there is no condition that the ground capacitance is balanced, and depending on the power supply type and configuration of three-phase or single-phase.
  • the leakage current value and the power supply line phase in which the leakage has occurred can be obtained in a single method, and the detailed status of whether the leakage is due to an increase in capacitance component or leakage resistance can be obtained.
  • FIG. 5 is a circuit diagram when the ground capacitance increases from the state of FIG. 4. It is a figure which shows the structural example of a stationary type leakage current detection system. It is a figure which shows the structural example of a mobile type leakage current system. It is a figure which shows another structural example of a mobile leakage current system.
  • phase angle has the same technical meaning as “current phase angle”.
  • FIG. 1 shows a normal state of the three-phase star wiring circuit. Although there is no leakage resistance, a capacitor that strays the floating electrostatic capacitance of the wiring and the noise of the electronic equipment to the ground is synthesized, and there is a ground capacitance as CR in the R phase, CS in the S phase, and CT in the T phase. is doing. The current other than the load is only the leakage current through the CR, CS, and CT capacitances.
  • the capacitance between the grounds generated in the R phase is CR
  • the capacitance between the grounds generated in the S phase is CS
  • CT the capacitance between the grounds generated in the T phase
  • the leakage currents flowing due to CR, CS, and CT are ir, is, and it.
  • ir is, and it are difficult to measure individually because they are distributed and flow depending on the capacitance between the ground and the ground.
  • What can be easily measured in the field is the current i and the power supply voltage that flow through the ground line in which ir, is, and it are combined.
  • a first current vector i ⁇ 1 is obtained from the current i of the ground line and the phase angle ⁇ 1 of the current i measured with the reference power supply voltage as a phase reference.
  • i is the magnitude of the current flowing through the ground line.
  • ⁇ 1 is the phase angle of the current i with reference to the voltage of the three-phase star power supply.
  • the voltage used as a reference for the phase angle of the current includes the R-phase voltage that is the R-phase voltage, the S-N voltage that is the S-phase voltage, the TN voltage that is the T-phase voltage, and the R-S phase voltage.
  • Any voltage that can be used as a voltage phase reference of a power source such as a voltage between S and T phases or a voltage between T and R phases, may be used.
  • a current transformer is often used, but a voltage drop due to a minute resistance or other magnetic field type current sensor may be used.
  • the measurement of the phase angle is obtained by comparing the voltage waveform of the reference power supply with the waveform obtained by converting i depending on the current sensor into the voltage value of the same phase angle.
  • FIG. 2 shows a circuit diagram at the time of abnormality when a leakage resistance is generated from the state of FIG. Since it is a resistance component that causes a problem with electric leakage, a resistance is added between the ground as a ground element component generated at the time of abnormality.
  • the earth leakage resistance when the earth leakage resistance occurs in the R phase is RR
  • the earth leakage resistance when the earth leakage occurs in the S phase is RS
  • the earth leakage resistance when the earth leakage occurs in the T phase is RT.
  • the earth leakage resistance can occur in three phases, if multiple earth leakages occur simultaneously at the timing when the problem occurs, the phase is short-circuited without going through the ground wire, so only one point of R, S, T phase It is a method to calculate the electric leakage.
  • the current generated in these leakage resistances RR, RS, and RT and the current generated in capacitances CR, CS, and CT are combined in each phase to become Ir in the R phase, Is in the S phase, and Is in the T phase. It. It is impossible to predict where the leakage occurs in the wiring due to an abnormal state, and it is impossible to prepare an ammeter in advance at the leakage position.
  • Ir, Is, It it is difficult to measure Ir, Is, It, and it is possible to measure the second current vector I ⁇ consisting of the current flowing through the ground line and the phase angle by combining Ir, Is, It indicating the leakage state. ⁇ 2.
  • I is the magnitude of the current flowing through the ground line
  • ⁇ 2 is the phase angle of the current I with reference to the same power supply voltage as when the first current vector i ⁇ 1 is measured.
  • the present invention is a leakage component due to resistance by obtaining a vector difference from the second current vector I ⁇ 2 at the time of abnormality with the first current vector i ⁇ 1 measured and held at a normal time as a reference.
  • a third current vector Ior ⁇ 3 of the leakage current is obtained.
  • the first current vector and the second current vector are values obtained by measuring the ground line current of the same power source at different timings such as normal and abnormal.
  • the second current vector I ⁇ 2 I ⁇ (cos ( ⁇ 2) + j ⁇ sin ( ⁇ 2))
  • the current phase value ⁇ 3 of Ior and Ior which are the magnitudes of the leakage current values, and the leakage resistance value can be obtained by the following equations.
  • V is a voltage value between the power supply phase and the ground.
  • “II” has two I's arranged side by side, but is different from I of the second current vector and is one variable.
  • the first current vector and the second current vector are expressed by complex numbers, whereby a third current vector Ior ⁇ 3 that is a leakage current component is obtained as a complex number II.
  • the leakage current value Ior is obtained as a scalar value having a magnitude by the complex absolute value function abs of the equation (2).
  • the magnitude Ior of the current flowing through the leakage resistance may be compared with the reference value of the abnormality determination current.
  • the leakage resistance value Rx can be obtained by dividing the voltage V from the ground by the leakage current value Ior as shown in the equation (4). In this case, the leakage resistance value Rx may be compared with the reference value of the abnormality determination leakage resistance value in order to determine the leakage abnormality.
  • the phase angle of the leakage current is obtained by the arg function of equation (3), which converts the leakage current vector obtained as a complex number into a phase angle in the Gaussian plane.
  • the voltage between R and N which is the R phase voltage
  • the phase angle ⁇ 3 is 0 degree
  • the wiring in which the leakage resistance is generated is the R phase
  • the phase angle when ⁇ 3 is ⁇ 120 degrees, the wiring with leakage resistance is the S phase
  • the phase angle ⁇ 3 is 120 degrees
  • the wiring with the leakage resistance is the T phase. If the TN voltage, which is the T phase voltage, is based on the phase angle reference of the current vector, a leakage resistance occurs in the T phase at 0 degrees.
  • the calculations of formulas (1) to (4) may be performed by complex number calculation as shown here, but may be obtained graphically by a vector diagram on a plane as shown in FIG. Alternatively, the vector state may be decomposed into an X axis and a Y axis and solved as a trigonometric function.
  • the second current vector I ⁇ 2 is expressed as an abnormal time, but the measured values of the ground line current and the phase angle when the first current value vector is not overlapped with the measurement timing are the second current vector I. Even in a normal range in which the wiring state does not lead to a leakage alarm from the third current vector obtained as ⁇ 2, it can be used as a leakage current value change that captures a sign phenomenon of a ground fault.
  • Table 2, Table 3, and Table 4 show the second current vector I ⁇ 2 when the leakage resistance is individually generated in the R phase, the S phase, and the T phase.
  • ir is, and it shown in Tables 1 to 4 are calculated values because measurement is difficult.
  • Equation (2) is the magnitude of the third current vector that is the leakage current component
  • Equation (3) indicates the phase angle (direction).
  • the leakage resistance value obtained by the equation (4) agrees with the leakage resistance values set in Tables 2 to 4.
  • the wiring phase in which the electric leakage is determined from the phase angle of the expression (3) is also coincident.
  • the third current vector obtained by the difference between the normal first current vector and the second current vector measured at a different timing from the first current vector is analyzed as a leakage current.
  • the leakage current, the leakage resistance value, and the leakage wiring phase of the three-phase star wiring circuit can be obtained.
  • FIG. 4 shows a normal state of the three-phase delta wiring circuit.
  • a capacitor that radiates the floating capacitance to the ground of the wiring and the noise of the electronic equipment to the ground is synthesized and exists as CR in the R phase and CT in the T phase.
  • Currents other than the load are only leakage currents through the CR and CT capacitances.
  • the ground capacitance generated in the R phase is CR
  • the ground capacitance generated in the T phase is CT.
  • the leakage current that flows due to CR and CT is ir and it. However, ir and it are difficult to measure individually because they are distributed and flow depending on the capacitance between the ground and the ground.
  • a first current vector i ⁇ 1 is obtained from the current i of the ground line and the phase angle ⁇ 1 of the current i measured with the reference power supply voltage as a phase reference.
  • i is the magnitude of the current flowing through the ground line.
  • ⁇ 1 is the phase angle of the current i with reference to the voltage of the three-phase delta power supply.
  • the voltage used as a reference for the phase angle of the current may be any voltage that can be used as a voltage phase reference of the power source, such as a voltage between TR, a voltage between RS, and a voltage between TS.
  • a current transformer is used to measure the current magnitude i.
  • a voltage drop due to a minute resistance or other magnetic field type current sensors may be used.
  • the measurement of the phase angle is obtained by comparing the voltage waveform of the reference power supply with the waveform obtained by converting i depending on the current sensor into the voltage value of the same phase angle.
  • FIG. 5 shows a circuit diagram at the time of abnormality when a leakage resistance is generated from the state of FIG.
  • a problem caused by electric leakage is a resistance component, and therefore a resistance is added between the ground as a ground element component generated in the event of an abnormality.
  • RR is the leakage resistance when leakage occurs in the R phase.
  • RT is the leakage resistance when leakage occurs in the T phase.
  • the earth leakage resistance can occur in the two phases of R phase and T phase, if multiple earth leakages occur at the same time when the problem occurs, it will cause an interphase ground fault, so only one point of R phase or T phase It is a method to calculate the electric leakage.
  • the current generated in the leakage resistances RR and RT and the current generated in the electrostatic capacitances CR and CT are combined in each phase to become Ir in the R phase and It in the T phase.
  • Ir and It are the magnitude of the current flowing through the ground line
  • ⁇ 2 is the phase angle of the current I based on the same power supply voltage as when the first current vector i ⁇ ⁇ ⁇ ⁇ ⁇ 1 is measured.
  • the present invention is a leakage component due to resistance by obtaining a vector difference from the second current vector I ⁇ 2 at the time of abnormality with the first current vector i ⁇ 1 measured and held at a normal time as a reference.
  • a third current vector Ior ⁇ 3 of the leakage current is obtained.
  • the first current vector and the second current vector are values obtained by measuring the ground line current of the same power source at different timings such as normal and abnormal.
  • the same formulas (1) to (4) as the three-phase star shown above can be used as the calculation formula for obtaining the state of electric leakage.
  • the first current vector and the second current vector are expressed by complex numbers, whereby the third current vector Ior ⁇ 3 that is the leakage current component is obtained as the complex number II.
  • the leakage current value Ior is obtained as a scalar value having a magnitude by the complex absolute value function abs of the equation (2).
  • the leakage current value Ior flowing through the leakage resistance or the leakage resistance value Rx may be compared with the respective reference values as in the three-phase star.
  • the phase angle of the leakage current is obtained by the arg function of equation (3) that converts the leakage current obtained as a complex number into a phase angle in the Gaussian plane.
  • the wiring in which the leakage resistance is generated is the T phase.
  • the wiring phase in which the leakage resistance is generated can be known from the leakage current phase angle ⁇ 3.
  • These calculations may be performed by complex number calculation, but may be performed by a vector diagram on a plane as shown in FIG.
  • the vector state may be decomposed into a trigonometric function by decomposing it into an X axis and a Y axis.
  • the second current vector I ⁇ 2 is expressed as an abnormal time, but the measured values of the ground line current and the phase angle when the first vector current value is not overlapped with the measurement timing are the second current vector I.
  • Table 7 and Table 8 show I2 ⁇ 2 when leakage occurs individually in the R and T phases. Ir and it shown in Tables 6 to 8 are calculated values because measurement is difficult.
  • Equation (1) is the current magnitude of the third current vector, which is the leakage current component, and Equation (3) indicates the phase angle (direction).
  • the leakage resistance value obtained by the equation (4) in Table 9 is consistent with the leakage resistance values set in Tables 7 and 8.
  • the wiring phase in which the electric leakage is determined from the phase angle of the expression (3) is also coincident.
  • the third current vector obtained by the difference between the normal first current vector and the second current vector measured at a different timing from the first current vector is analyzed as a leakage current.
  • the leakage current, the leakage resistance value, and the leakage wiring phase of the three-phase delta wiring circuit can be obtained.
  • FIG. 6 shows a normal state of the single-phase three-wire power supply wiring circuit.
  • a capacitor that releases ground floating capacitance and noise of electronic equipment to the ground is synthesized and exists as CR in the R phase and CT in the T phase.
  • the current other than the load is only the leakage current through the ground capacitance of CR and CT.
  • the capacitance between the grounds generated in the R phase is CR
  • the capacitance between the grounds generated in the T phase is CT.
  • the leakage current that flows depending on CR and CT is ir and it. However, ir and it are difficult to measure individually because they are distributed and flow according to the electrostatic capacitance between the ground and the ground.
  • a first current vector i ⁇ 1 is obtained from the current i of the ground line and the phase angle ⁇ 1 of the current i measured with the reference power supply voltage as a phase reference.
  • i is the magnitude of the current flowing through the ground line.
  • ⁇ 1 is the phase angle of the current i with reference to the voltage of the single-phase three-wire power source.
  • the reference voltage may be any voltage that can be used as a voltage phase reference for a power source, such as an R-phase voltage that is an R-phase voltage, a TN voltage that is a T-phase voltage, or an R-T voltage.
  • FIG. 7 shows a circuit diagram at the time of abnormality when a leakage resistance is generated from the state of FIG. Since the resistance component causes a problem in the electric leakage, the resistance generated between the ground is added as a ground element component generated at the time of abnormality.
  • the leakage resistance when the leakage occurs in the R phase is RR
  • the leakage resistance when the leakage occurs in the T phase is RT.
  • the earth leakage resistance can occur in two phases, if a plurality of earth leakages occur simultaneously at the timing when the problem occurs, the phase is short-circuited without going through the ground wire, so only one point of R phase and T phase It is a method to obtain by electric leakage.
  • the current generated by these leakage resistances and the current generated by the capacitances CR and CT are combined in each phase to become Ir in the R phase and It in the T phase. It is impossible to predict where the leakage will occur in the wiring due to an abnormal state, and it is impossible to prepare an ammeter at the leakage position in advance.
  • I is the magnitude of the current flowing through the ground line
  • ⁇ 2 is the phase angle of the current I based on the same power supply voltage as when the first current vector i ⁇ ⁇ ⁇ ⁇ ⁇ 1 is measured.
  • the first current vector i ⁇ 1 measured and held in the normal state is used as a reference, and the difference between the vectors is obtained from the second current vector I ⁇ 2 in the abnormal state.
  • Three current vectors Ior ⁇ 3 are obtained.
  • the calculation formula may be the same as the three-phase star shown above.
  • the third current vector Ior ⁇ 3 of the leakage current is obtained as a complex number II.
  • the leakage current value Ior is obtained as a scalar value by the complex absolute value function abs of the equation (2).
  • the leakage current value Ior flowing in the leakage resistance value or the leakage resistance value Rx may be compared with the respective reference values as in the three-phase star.
  • the phase angle of the leakage current is determined by an arg function that converts the leakage current obtained as a complex number into a phase angle in a Gaussian plane.
  • the wiring in which the leakage resistance is generated is the R phase
  • ⁇ 3 is 180 degrees
  • the wiring in which the leakage resistance is generated Is the T phase.
  • the polarity of II is positive, it is the R phase, and if it is negative, it is the T phase.
  • the second current vector I ⁇ 2 is expressed as an abnormal time, but the measured values of the ground line current and the phase angle when the first current vector is not overlapped with the measurement timing are the second current vector I ⁇ . Even in a normal range where the wiring state does not lead to a leakage alarm from the third current vector obtained as ⁇ 2, it can be used as a leakage current value change that captures a sign of a ground fault from a state based on the first current vector.
  • the power supply voltage and the frequency are 100 Vrms and 60 Hz as an example of 60 Hz because the equations (1) to (4) are common to 50 Hz and 60 Hz.
  • Table 11 and Table 12 show I ⁇ 2 when leakage occurs individually in the R and T phases. Ir and it shown in Tables 10 to 12 are calculated values because measurement is difficult.
  • Equation (1) is the current magnitude of the third current vector, which is the leakage current component, and Equation (3) shows the phase angle (direction).
  • the leakage resistance value obtained by the equation (4) in Table 13 matches the leakage resistance values set in Tables 11 and 12 within the calculation error.
  • the wiring phase in which the electric leakage is determined from the phase angle of the expression (3) is also coincident.
  • the third current vector obtained by the difference between the normal first current vector and the second current vector measured at a timing different from the first current vector is analyzed as a leakage current.
  • the leakage current, the leakage resistance value, and the leakage wiring phase of the single-phase three-wire wiring circuit can be obtained.
  • FIG. 8 shows a normal state of the single-phase two-wire power source.
  • a capacitor that releases the floating electrostatic capacitance to the ground and the noise of the electronic device to the ground is synthesized and exists as CR between the ground.
  • the only current other than the load is the leakage current through the capacitance CR.
  • the leakage current flowing through CR is ir.
  • ir is difficult to measure individually because of the current distributed and flowing due to the capacitance between the ground. What can be easily measured in the field is the current i flowing through the ground line and the power supply voltage.
  • a first current vector i ⁇ 1 is obtained from the current i of the ground line and the phase angle ⁇ 1 of the current i measured with the reference power supply voltage as a phase reference.
  • ⁇ 1 is based on the voltage phase angle of the power source.
  • FIG. 9 shows a circuit diagram at the time of abnormality when leakage resistance occurs.
  • the problem caused by leakage is the resistance component, so the resistance generated between the ground is added as RR as a ground current component generated at the time of abnormality.
  • the current generated by these leakage resistance and the electrostatic capacity of CR becomes Ir. It is impossible to predict where the leakage will occur in the wiring due to the abnormal state, and it is impossible to prepare an ammeter at the leakage position in advance.
  • I is the magnitude of the current flowing through the ground line
  • ⁇ 2 is the phase angle of the current I based on the same power supply voltage as when the first current vector i ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 1 is measured.
  • the first current vector i ⁇ 1 measured and held in the normal state is used as a reference
  • the third current vector Ior ⁇ 3, which is the leakage current due to the resistance is obtained by obtaining the vector difference from I ⁇ 2 in the abnormal state. Seeking.
  • the calculation formula may be the same as the three-phase star shown above.
  • the third current vector Ior ⁇ 3 of the leakage current is obtained as a complex number as II.
  • the leakage current value Ior is obtained as a scalar value by the complex absolute value function abs of the equation (2).
  • the leakage current value Ior flowing in the leakage resistance value or the leakage resistance value Rx may be compared with the respective reference values as in the three-phase star.
  • the phase angle of the leakage current is determined by an arg function that converts the leakage current obtained as a complex number into a phase angle in a Gaussian plane.
  • the vector state may be decomposed into a trigonometric function by decomposing it into an X axis and a Y axis.
  • the second current vector I ⁇ 2 is expressed as an abnormal time, but the measured values of the ground line current and the phase angle when the first vector current value is not overlapped with the measurement timing are the second current vector I ⁇ .
  • the wiring state does not lead to a leakage alarm from the third current vector obtained as ⁇ 2
  • it can be used as a leakage current value change that captures a sign of a ground fault from a state based on the first current vector.
  • the RN voltage which is the R phase voltage
  • the power supply voltage and frequency are 100 Vrms and 60 Hz.
  • Table 15 shows I ⁇ 2 when leakage occurs. Since ir shown in Table 15 is difficult to measure, it is a calculated value.
  • Table 16 summarizes i ⁇ ⁇ 1 and I ⁇ 2 and shows the results of calculations of equations (1) to (4). Equation (2) is the current magnitude of the third current vector, which is a leakage current component, and Equation (3) indicates the phase angle (direction).
  • Equation (3) indicates the phase angle (direction).
  • the leakage resistance value obtained by the equation (4) in Table 16 matches the leakage resistance value set in Table 15. Further, the phase angle ⁇ 3 determined from the phase angle of the equation (3) is 0 degree, and it can be confirmed that it matches the leakage current phase angle due to the resistance.
  • the third current vector obtained by the difference between the normal first current vector and the second current vector measured at a different timing from the first current vector is analyzed as a leakage current.
  • the leakage current, leakage resistance value, and leakage wiring phase of the single-phase two-wire wiring circuit can be obtained.
  • the current flowing through the grounding wire is measured and held at the normal time and the phase angle.
  • a current value of the same grounding portion that is a measurement value different from the timing at which the first current vector is measured and held and a second current vector I ⁇ 2 that is a phase angle It was confirmed that the leakage current, the leakage resistance, and the line phase in which the leakage occurred can be obtained from the difference third current vector Ior ⁇ 3.
  • a single model can be used for three-phase star wiring circuits, three-phase delta wiring circuits, single-phase three-wire wiring circuits, and single-phase two-wire wiring circuits. Since the calculation formula is the same for the power supply type, there is an advantage that bugs are not easily generated in the calculation program. Note that if the ground potential becomes so large that it can be ignored due to the leakage current, an error will occur in this calculation formula, but in such a case, a fire accident will occur, which is suitable for preventive monitoring in the previous state. Yes. Furthermore, in the present invention, not only the resistance but also a change state of the power supply line impedance such as a change in the capacitance to the wiring can be captured.
  • the impedance is obtained by replacing the left side Rx of the equation (4) for obtaining the resistance value with Zx and dividing by the current magnitude Ior of the third current value vector causing the impedance change.
  • Zx V / Ior (5)
  • Cx 1 / ( ⁇ ⁇ Zx) (6)
  • 2 ⁇ ⁇ ⁇ f
  • the additional capacitance value can be obtained with If Zx is a combination of L, C, and R components, a Zx value corresponding to the combination can be obtained. Therefore, even when the L component is connected between the ground, the solution is possible.
  • the electrostatic capacitance C exists in the power source and the ground at the normal time, and the leakage resistance R is generated in the abnormal time. Therefore, an example of the L component is omitted.
  • the voltage value V in the equations (4) and (5) is the power supply voltage value from the ground.
  • the power supply voltage value is determined for a three-phase star wiring circuit, a three-phase delta wiring circuit, a single-phase three-wire wiring circuit, and a single-phase two-wire wiring circuit, but some fluctuations may occur in the field. You can use a fixed power supply voltage value that is fixed, but if you measure the power supply voltage that is captured to measure the phase of the current vector and use that voltage value, the leakage resistance will not be affected by fluctuations in the power supply voltage. And the value of the earth leakage element can be obtained. If the power supply voltage taken in is not between ground, convert between ground and use.
  • FIG. 4 shows an example of a normal three-phase delta wiring circuit.
  • FIG. 10 shows a circuit when the ground capacitance increases from the state of FIG. The increased capacitance value is indicated by Cr, Ct.
  • Table 18 shows the case where Cr increases.
  • Table 19 shows the case where Ct increases.
  • Table 20 shows an example in which the additional capacitance is obtained by solving the equations (1) to (6) when the capacitances shown in Table 18 and Table 19 increase from the normal state of Table 17, respectively.
  • Table 20 shows that the R-phase additional capacitance 5.4 uF shown in Table 18 is obtained in the 150 degree phase angle state, and the T-phase additional capacitance 2 uF shown in Table 19 is obtained in the -150 degree phase angle state. It has been.
  • the current due to the capacitance value flows at a phase angle of 150 degrees in the R phase, based on the TR phase voltage. In the T phase, it flows as a -150 degree phase angle.
  • the change current component obtained on the basis of the normal time is 150 degrees or ⁇ 150 degrees
  • the third current vector is a capacitance component, and unlike the case where the leakage resistance occurs, the determination of the normal state is made. Can do.
  • the reference phase voltage is changed, the relationship is based on the reference phase voltage.
  • FIG. 4 to FIG. 10 show changes in the state of the three-phase delta power supply circuit as an example of the change in capacitance to ground.
  • the three-phase star in FIG. 2, the single-phase three-wire in FIG. 6, and the single-phase two-wire in FIG. The same calculation can be made even when a capacitance change occurs.
  • the reference power supply voltage is the power supply condition shown so far
  • the R-phase capacitance changes, the 90-degree phase angle component changes, and the S-phase capacitance changes. Is expressed as a ⁇ 30 degree phase angle component, and when the T-phase capacitance is changed, it appears as a ⁇ 150 degree phase angle component.
  • Table 21 shows the relationship between the third current vector phase angle ⁇ 3 obtained when the power supply voltage used as the reference for the current vector phase measurement is the voltage shown in the second column of the table and the wiring phase in the third column of the table. Show.
  • the third current vector phase angle ⁇ 3 is the phase angle value of the fourth column
  • the capacitance is capacitance
  • the third current vector phase angle ⁇ 3 is the phase angle value of the fifth column.
  • the changed capacitance value can be obtained by assigning to the equation (6).
  • standard of electric current vector phase angle is changed, it becomes a phase angle relationship according to the power supply voltage.
  • phase angle value calculated here is the value for the power supply voltage capture voltage that is the reference for the current vector phase angle shown this time, and if the reference voltage capture point is changed, the phase angle value at the voltage capture point is changed. Will change accordingly.
  • the current flowing through the ground line can be measured by using a magnetic field type current sensor in a state in which the power lines to the load are put together, in addition to the method of directly measuring the current line attached to the ground line. This is because the load current component cancels out between the lines, while the current component flowing through the ground line to the ground line remains without being canceled.
  • FIG. 11 shows a leakage current detection system 50 in the embodiment of the present invention.
  • the leakage current detection system 50 is a stationary configuration example.
  • Various power sources 51 indicate a three-phase star wiring circuit, a three-phase delta wiring circuit, a single-phase three-wire wiring circuit, and a single-phase two-wire wiring circuit.
  • the current sensor for measuring the current of the ground wire is an example using the through-type current sensor 52, but may be a clamp type.
  • the power supply voltage that is the reference for the phase angle of the current vector is obtained from the reference power supply voltage.
  • the current vector measuring unit 53 measures the current value of the feedthrough current sensor 52 and the phase angle of the current of the feedthrough current sensor 52 with the reference power supply voltage as a reference phase to obtain a current vector.
  • the current vector measured by the current vector measurement unit 53 is measured by the calculation / determination unit 54 as a first current vector i ⁇ 1 with a normal measurement value having no leakage current, and the first current value vector is measured.
  • the measured value when it does not overlap with the timing is treated as the second current vector I ⁇ 2.
  • the third current vector II obtained from the equation (1) which is the difference between the two vectors, as a leakage current, it is possible to detect a sign of a ground fault or a leakage at the time of abnormality.
  • the vector of the first current vector storage unit 57 may be used for the calculation as the first current vector.
  • the third current vector II is converted into the third current vector Ior ⁇ 3 using the equations (2) and (3), and the type of the leakage element and the leakage wiring phase are determined from the phase angle ⁇ 3. If the value of the element is necessary according to the type of the element, the value of the element is obtained using the expressions (4), (5), and (6). If the element type is resistance, it is determined that there is an abnormality when the current magnitude Ior or the resistance value of the third current vector exceeds the reference value, and an alarm lamp or alarm LED of the leakage warning unit 56 Warning with such as. In order to ensure safety, a power circuit breaker 59 may be added when it is necessary to turn off the power.
  • the calculation / determination unit 54 instructs the power circuit breaker 59 to shut off the power. If it is determined that the element type is capacitance, it is processed as a normal state.
  • the leakage information display unit 55 displays the type of element obtained by calculation, the wiring phase where the leakage occurred, the leakage current value Ior, the leakage current phase angle ⁇ 3, the value of the element, and the like.
  • the first current vector, the second current vector, and the third current vector may be displayed. If there is no need for display or there is a means to send data separately, there is no display section. It doesn't matter.
  • the calculation / determination unit 54 uses the current vector of the current vector measurement unit 53 obtained at that time as the first current vector holding switch.
  • the current vector storage unit 57 holds and stores the current vector.
  • the first current vector storage unit 57 may be any one having a storage function such as a flash ROM or RAM, a calculation memory in the CPU, or a USB memory.
  • the first current vector information of the external measuring device may be stored in the first current vector storage unit 57 of FIG. This is because the work to confirm that there is no electric leakage occurs at the site where the electric power supply is introduced, and when the normal value for each power supply position is measured with the measuring instrument in FIG. 12 in the normal state after the confirmation work. If the work efficiency is good and it is only necessary to be able to alarm only when there is an abnormality in the configuration of FIG. 11, even if there is no unnecessary value display function, the measurement content of the measurement can be confirmed by the measuring device of FIG.
  • a first current vector can be obtained.
  • the apparatus of FIG. 11 itself can save the trouble of performing the first current vector capturing operation for each position.
  • data reliability can be secured. It is also possible to manage multiple channels by connecting a plurality of through current sensors 52 and reference power supply voltages to the current vector measuring unit 53. In this case, the first current vector storage unit 57 also has multiple channels.
  • FIG. 12 shows a leakage current detection system 60 according to another embodiment of the present invention.
  • the leakage current detection system 60 is a mobile configuration example.
  • a leakage measurement position selection switch 62 for specifying the measurement position is provided.
  • the current sensor for measuring the current of the ground line at the position selected by the leakage measurement position selection switch 62 is an example using the clamp type current sensor 61.
  • the through-type current sensor is attached to the measurement target position and the sensor for each site is used. May be incorporated.
  • the power supply voltage that is the reference for the phase angle of the current vector at the position selected by the earth leakage measurement position selection switch 62 is removed from the worm clip so that the voltage input terminal of the reference power supply voltage obtained from the reference power supply voltage can be measured. Easy voltage measurement specifications.
  • the current vector measuring unit 53 measures the current value of the clamp type current sensor 61 and the phase angle of the current of the clamp type current sensor 61 with the reference power supply voltage as a reference phase to obtain a current vector.
  • the current vector measured by the current vector measurement unit 53 is measured by the calculation / determination unit 54 as a first current vector i ⁇ 1 with a normal measurement value having no leakage current, and the first current value vector is measured.
  • the measured value when it does not overlap with the timing is treated as the second current vector I ⁇ 2.
  • the vector of the first current vector storage unit 63 corresponding to the leakage measurement position selection switch May be used in the calculation as the first current vector.
  • the third current vector II is converted into the third current vector Ior ⁇ 3 using the equations (2) and (3), and the type of the leakage element and the leakage wiring phase are determined from the phase angle ⁇ 3. If the value of the element is necessary according to the type of the element, the value of the element is obtained using the expressions (4), (5), and (6). If the element type is resistance, it is determined that there is an abnormality when the current magnitude Ior or the resistance value of the third current vector exceeds the reference value, and an alarm lamp or alarm LED of the leakage warning unit 56 Warning with such as. If it is determined that the element type is capacitance, it is processed as a normal state.
  • the leakage information display unit 55 displays the measurement position, the element type obtained by calculation, the wiring phase where the leakage occurred, the leakage current value Ior, the leakage current phase angle ⁇ 3, the element value, and the like.
  • the first current vector, the second current vector, and the third current vector may be displayed. If there is no need for display or there is a means to send data separately, there is no display section. It doesn't matter.
  • the calculation / determination unit 54 selects the current vector of the current vector measurement unit 53 obtained at that time as a leakage measurement position selection.
  • the first current vector storage unit 63 corresponding to the switch is held and stored.
  • the first current vector storage unit 63 corresponding to the leakage measurement position selection switch may be any one having a storage function such as a flash ROM, a RAM, a calculation memory in the CPU, and a USB memory.
  • the first current vector of the external measuring device may be stored in the first current vector storage unit 63 corresponding to the leakage measurement position selection switch.
  • the first current vector of the external measuring device may be stored in the first current vector storage unit 63 corresponding to the leakage measurement position selection switch.
  • a plurality of devices shown in FIG. 12 are used, and a plurality of devices shown in FIG. 12 are used by copying and sharing the value of the first current vector storage unit 63 corresponding to the leakage measurement position selection switch. If the measurement work is performed by a plurality of people, there is an advantage that the measurement work is completed quickly. Further, if the system of FIG. 12 in which the value of the first current vector storage unit 63 corresponding to another earth leakage measurement position selection switch of FIG. 12 is set, the management operation is maintained even if one of them fails. You can continue.
  • FIG. 13 shows a leakage current detection system 70 which is another form of the configuration example of FIG.
  • the measurement position is selected by the leakage measurement position selection switch 62, but in the leakage current detection system 70 of FIG. 13, the position of the ground line or power supply voltage line at the position to be measured is determined.
  • An IC tag 72 is installed nearby. By using this IC tag 72 as an external storage device for the first current vector, the number of management points can be increased regardless of the memory capacity of the measuring instrument itself.
  • the IC tag 72 may contain management information capable of grasping the position.
  • the clamp type current sensor 61 is used as the current sensor for measuring the current of the ground line, the through current sensor may be attached to the measurement target position and the output current portion of the sensor for each site may be taken in.
  • the power supply voltage that is the reference for the phase angle of the current vector is obtained from the reference power supply voltage.
  • the voltage input terminal of the reference power supply voltage shall be a voltage measurement specification that can be easily removed such as a worm clip so that movement measurement can be performed.
  • the current vector measuring unit 53 measures the current value of the clamp type current sensor 61 and the phase angle of the current of the clamp type current sensor 61 with the reference power supply voltage as a reference phase to obtain a current vector.
  • the current vector measured by the current vector measuring unit 53 is treated as a first current vector i ⁇ 1 by the calculation / determination unit 54 with a normal measurement value with no leakage current, and the first current value vector is measured and held.
  • the measured value when it does not overlap with the timing to perform is handled as the second current vector I ⁇ 2.
  • the third current vector II obtained from the equation (1) which is the difference between the two vectors, as a leakage current, it is possible to detect a sign of a ground fault or a leakage at the time of abnormality.
  • the vector of the IC tag 72 read out through the IC tag R / W 71 may be used for the calculation as the first current vector.
  • the third current vector II is converted into the third current vector Ior ⁇ 3 using the equations (2) and (3), and the type of the leakage element and the leakage wiring phase are determined from the phase angle ⁇ 3. If the value of the element is necessary according to the type of the element, the value of the element is obtained using the expressions (4), (5), and (6). If the element type is resistance, it is determined that there is an abnormality when the current magnitude Ior or the resistance value of the third current vector exceeds the reference value, and an alarm lamp or alarm LED of the leakage warning unit 56 Warning with such as. If it is determined that the element type is capacitance, it is processed as a normal state.
  • the leakage information display unit 55 displays the measurement position, the element type obtained by calculation, the wiring phase where the leakage occurred, the leakage current value Ior, the leakage current phase angle ⁇ 3, the element value, and the like.
  • the first current vector, the second current vector, and the third current vector may be displayed. If there is no need for display or there is a means to send data separately, there is no display section. It doesn't matter.
  • the calculation / determination unit 54 uses the current vector of the current vector measurement unit 53 obtained at that time as the IC tag R / Write to the IC tag 72 through W71.
  • the barcode reader reads it.
  • the first current vector corresponding to the management position may be obtained from the ID through the Internet or the like.
  • the calculation / determination unit 54 manages the current vector of the current vector measurement unit 53 obtained at that time and the management.
  • An ID for identifying the position is stored on a server on the Internet.
  • calculation / determination unit 54 does not perform all or a part of the calculations related to the equations (1) to (6), and the management number ID and current vector information that can identify the leakage management position and the first if necessary.
  • the host system on the Internet may perform computation / determination necessary for leakage management.
  • the instruction input can be automatically generated when it can be determined that the normal state.
  • the phase of the current vector obtained from the current vector measuring unit 53 is ⁇ 90 degrees or 90 degrees when there is no leakage, so that the phase is within a range that allows for measurement errors and measurement allowable leakage components. If there is, the current vector from the current vector measuring unit 53 at that time can be held and stored and used as the first current vector without the instruction of the holding instruction input switch 58 being automatically determined to be normal. . Further, when the determination result of the element type based on the third current vector is determined to be capacitance, the current vector from the current vector measuring unit 53 at that time is used as a new first current vector corresponding to the leakage management position. Updates can be stored.
  • the leakage current detection method and the leakage current detection system of the present invention there is no need to generate or inject signals, there is no condition that the ground capacitance is balanced, three-phase or single-phase Regardless of the type of power supply or configuration of the phase, it is possible to obtain the detailed status of the leakage current value and the power line phase in which the leakage occurred, whether the leakage is due to an increase in capacitance component or leakage resistance, in a single method There is a remarkable effect.
  • Leakage current detection system 50, 60, 70 Leakage current detection system 51 Various power sources 52 Penetration type current sensor 53 Current vector measurement unit 54 Calculation / determination unit 55 Leakage information display unit 56 Leakage warning unit 57 First current vector storage unit 58 Push button switch 59 Power supply Circuit breaker 61 Clamp-type current sensor 62 Earth leakage measurement position selection switch 63 First current vector storage unit 71 IC tag R / W corresponding to earth leakage measurement position selection switch 72 IC tag

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

【課題】信号の発生や注入の必要がなく、対地静電容量がバランスしている条件がなく、三相や単相の電源種別や構成によらずに単一の方式にて漏電電流値と漏電が生じた電源線相、漏電が容量成分の増加か漏電抵抗によるものなのかの詳細状況を求めることができる漏電検出の方式を提供することを目的とする。 【解決手段】電源の接地線を流れる電流と、電源電圧を基準とした接地線を流れる電流の電流位相角度とから電流ベクトルを測定して漏電電流を検出する漏電電流検出方法であって、測定した前記電流ベクトルを第一の電流ベクトルとし、該第一の電流ベクトルとは異なるタイミングで測定した前記電流ベクトルを第二の電流ベクトルとして、前記第一の電流ベクトルと前記第二電流ベクトルとの差を第三電流ベクトルとして算出し、該第三電流ベクトルを漏電電流値として検出すことを特徴とする。

Description

漏電検出方法
 本発明は、漏電電流を検出する方法及びシステムに関する。
 周知のように電気エネルギーは産業や生活において不可欠のものとなっている。しかし目的機器以外へのエネルギー供給が行われる漏電状態になると電気火災や感電事故等の重大な事故を引き起こす可能性もある。このため、漏電状態を知ることは電気エネルギー利用では重要な管理事項であるが、冷蔵庫やサーバーのように連続稼働が求められる機器が増えているため、稼働状態での漏電管理が要望されている。
 また、サーバーなどの電子機器はノイズ対策のため電源入力と接地との間に接続されて配設された静電容量(例えば、バイパスコンデンサ等がある。)を持つものが多く、配線の対地間静電容量と合わせて対地への静電容量漏洩電流が増えている。静電容量による漏洩電流成分は熱には変換されないため、漏電事故には繋がらないが電流の絶対値が大きくなるため漏洩電流の絶対値で漏電を判断するシステムでは不要な漏電警報が出されて管理が難しくなっている。
 このため、対地間静電容量の影響を受けずに稼働状態で漏電電流を測定する方法として、特許文献1~特許文献4に記載の発明が提案されている。
特許第6056556号公報 特開2001-215247号公報 特許第4159590号公報 特許第3405407号公報
 特許文献1や特許文献2には、接地線に絶縁監視用の信号として、商用周波数(50Hz、60Hz)とは異なる特定周波数(例えば、20Hz)を注入することにより、電源線の浮遊容量など関係なく漏電電流成分を測定する構成が示されている。特定周波数成分の注入は特許文献1の図2に示す「注入コア2052」、「注入コア用巻線2053」、「注入信号源2051」が必要になる。また、注入信号成分を取り出す為の回路も必要になり、複雑な構成となる。さらに近年増加しているインバータ機器の動作によって、発生する周波数と注入する特定周波数が同程度になると測定が困難になるという欠点がある。
 この欠点を改善するため、注入を必要としない方式として上記特許文献3に記載の発明、特許文献4に記載の発明などが提案されている。特許文献1には、注入せずに接地線電流とT-R相間電圧を基準とした接地線電流位相により漏電電流を測れることが示されているが、対地間への静電容量値は特許文献3の図8に示されているようにR相とT相に同じ値を接続した場合しか示されておらず、配線間の配線容量がバランスしていない場合は計算式が成立しないという条件が推量される。実際の現場においては配線間の配線静電容量が大小の差こそあるにせよバランスしてないので、現場の実態と合わずに測定誤差が出る欠点が推量される。また、デルタ結線の三相に限定されるという欠点もある。
 特許文献4では、接地線への信号注入は不要であるが、内部処理用の位相角度判定信号電流idの発生が必要である。また、単相と三相で解法式が違っている。また、漏電が生じた電源相の判定手段については明記がない。
 そこで、本発明は、上記課題を解決するためになされたもので、信号の発生や注入の必要がなく、対地静電容量がバランスしている条件がなく、三相や単相の電源種別や構成によらずに単一の方式にて漏電電流値と漏電が生じた電源線相、漏電が容量成分の増加か漏電抵抗に依るものなのかの詳細状況を求めることができる漏電検出方法及び漏電電流検出システムを提供することを目的とする。
 上記の目的を達成するため、請求項1の発明は、電源の接地線を流れる電流と、電源電圧を基準とした接地線を流れる電流の電流位相角度とから電流ベクトルを測定して漏電電流を検出する漏電電流検出方法であって、測定した前記電流ベクトルを第一の電流ベクトルとし、該第一の電流ベクトルとは異なるタイミングで測定した前記電流ベクトルを第二の電流ベクトルとして、前記第一の電流ベクトルと前記第二電流ベクトルとの差を第三電流ベクトルとして算出し、該第三電流ベクトルを漏電電流値として検出することを特徴とする。
 また、請求項2の発明は、請求項1に記載の漏電電流検出方法であって、前記第一の電流ベクトルは、正常時の値であることを特徴とする。
 また、請求項3の発明は、請求項1又は請求項2に記載の漏電電流検出方法であって、前記第三の電流ベクトルに基づいて、漏電配線相又は素子種別を判定することを特徴とする。
 また、請求項4の発明は、請求項3に記載の漏電電流検出方法であって、前記素子種別が抵抗と判定された場合の前記第三の電流ベクトルの電流の大きさ、又は、前記抵抗の抵抗値が、基準値を超えた場合には異常と判定し、前記素子種別が静電容量と判定された場合には正常と判定することを特徴とする。
 また、請求項5の発明は、電源の接地線を流れる電流を測定する電流測定手段と、電源電圧を基準とした接地線を流れる電流の電流位相角度を測定する電流位相角度測定手段とから、電流ベクトルを測定して漏電電流を検出する漏電電流検出システムであって、測定した第一の電流ベクトルと、該第一の電流ベクトルとは異なるタイミングで測定した第二の電流ベクトルとの差である第三電流ベクトルを漏電電流値として検出する検出手段を備えたことを特徴とする。
 また、請求項6の発明は、請求項5に記載の漏電電流検出システムであって、前記第一の電流ベクトルは、内部、又は、外部のいずれかで測定されたデータであることを特徴とする。
 また、請求項7の発明は、請求項5又は請求項6に記載の漏電電流検出システムであって、前記第一の電流ベクトルは、正常時の値であることを特徴とする。
 また、請求項8の発明は、請求項7に記載の漏電電流検出システムであって、前記第三の電流ベクトルに基づいて、漏電配線相又は素子種別を判定する判定手段を備えたことを特徴とする。
 また、請求項9の発明は、請求項8に記載の漏電電流検出システムであって、前記素子種別が抵抗と判定された場合の前記第三の電流ベクトルの電流の大きさ、又は、前記抵抗の抵抗値が、基準値を超えた場合には異常と判定し、前記素子種別が静電容量と判定された場合には正常と判定する判定手段を備えたことを特徴とする。
 本発明によれば、漏電検出方法及び漏電検出システムにおいて、信号の発生や注入の必要がなく、対地静電容量がバランスしている条件がなく、三相や単相の電源種別や構成によらずに単一の方式にて漏電電流値と漏電が生じた電源線相、漏電が容量成分の増加か漏電抵抗に依るものなのかの詳細状況を求めることができるという顕著な効果を奏する。
三相スター配線回路の正常時の状態を示す回路図である。 三相スター配線回路にて漏電抵抗が生じた場合の異常時の状態を示す回路図である。 平面上のベクトル図である。 三相デルタ配線回路の正常時の状態を示す回路図である。 三相デルタ配線回路にて漏電抵抗が生じた場合の異常時の状態を示す回路図である。 単相3線配線回路の正常時の状態を示す回路図である。 単相3線配線回路にて漏電抵抗が生じた場合の異常時の状態を示す回路図である。 単相2線配線回路の正常時の状態を示す回路図である。 単相2線配線回路にて漏電抵抗が生じた場合の異常時の回路図である。 図4の状態から対地静電容量が増えた場合の回路図である。 据え置き型の漏電電流検出システムの構成例を示す図である。 移動式の漏電電流システムの構成例を示す図である。 移動式の漏電電流システムの別の構成例を示す図である。
 以下、好適な実施形態を用いて本発明をさらに具体的に説明する。但し、下記の実施形態は本発明を具現化した例に過ぎず、本発明はこれに限定されるものではない。なお、以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略又は簡略化する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。また、特にことわりがない限り、「位相角度」は、「電流位相角度」と技術的意味が同じであるものとする。
 図1に三相スター配線回路の正常時の状態を示す。漏電抵抗は生じていないが配線の対地浮遊静電容量や電子機器のノイズを対地に逃がすコンデンサが合成されて、R相ではCR、S相ではCS、T相ではCTとして対地静電容量が存在している。負荷以外の電流は、CR、CS、CTの静電容量を通しての漏洩電流のみである。図1ではR相に生じる対地間静電容量をCRとし、S相に生じる対地間静電容量をCSとし、T相に生じる対地間静電容量をCTとしている。そしてCR、CS、CTに依って流れる漏洩電流をir、is、itとしている。しかし、ir、is、itは対地間静電容量に依って分布して流れる電流のため個別に測定することは困難である。現場で容易に測ることが可能なのは、irとisとitが合成された接地線を流れる電流iと電源電圧である。この接地線の電流iと、基準となる電源電圧を位相の基準として測られる電流iの位相角度θ1より、第一の電流ベクトルi∠θ1が得られる。ここでiは接地線を流れる電流の大きさである。θ1は三相スター電源の電圧を基準とした場合の電流iの位相角度である。電流の位相角度の基準となる電圧としては、R相電圧であるR-N間電圧、S相電圧であるS-N間電圧、T相電圧であるT-N間電圧やR-S相間電圧やS-T相間電圧やT-R相間電圧など、電源の電圧位相基準として使える電圧であれば良い。
 電流の大きさiの測定には、電流トランスが用いられる場合が多いが微小抵抗による電圧降下や他の磁界型電流センサを用いても構わない。位相角度の測定は、基準の電源の電圧波形と電流センサに依るiを同位相角度の電圧値に変換した波形を比較するなどにより求まる。
 図2には、図1の状態から漏電抵抗が生じた場合の異常時の回路図を示す。漏電で問題なるのは抵抗成分であるので、異常時に生じる対地素子成分として対地間に抵抗を追加している。図2において、R相に漏電抵抗が生じた場合の漏電抵抗をRRとし、S相に漏電が生じた場合の漏電抵抗をRSとし、T相に漏電が生じた場合の漏電抵抗をRTとしている。なお、漏電抵抗は三相で生じ得るが、問題が生じるタイミングにおいて複数の対地間漏電が同時に生じた場合は接地線を介さずに相間短絡となるので、R、S、T相の1点のみの漏電を求める方法とする。
 これらの漏電抵抗RR,RS,RTで生じた電流と、静電容量CR,CS,CTで生じた電流は、各相で合成されてR相ではIrとなり、S相ではIsとなり、T相ではItとなる。漏電は、異常状態のため配線中の何処で生じるかは予測できず、予め漏電位置に電流計を準備しておくことは不可能である。このため、Ir、Is、Itを測定することは困難で、測定可能なのは漏電状態を示したIr、Is、Itが合成されて接地線に流れる電流と位相角度からなる第二の電流ベクトルI∠θ2となる。ここで、Iは接地線に流れる電流の大きさであり、θ2は第一の電流ベクトルi∠θ1を測定した場合と同一の電源電圧を基準とした電流Iの位相角度である。
 本発明では、正常時に測定して保持された第一の電流ベクトルi∠θ1を基準として異常時の第二の電流ベクトルI∠θ2からベクトルの差を求めることにより、抵抗に依る漏電成分である漏電電流の第三の電流ベクトルIor∠θ3を求めている。
 ここで、第一の電流ベクトルと第二の電流ベクトルは、同一電源の接地線電流を正常時と異常時のように違ったタイミングで測定した値である。
 2つの電流ベクトルをガウス平面で示すと、
第一の電流ベクトルi∠θ1は、
i∠θ1=i・(cos(θ1)+j・sin(θ1))、
第二の電流ベクトルI∠θ2は、
I∠θ2=I・(cos(θ2)+j・sin(θ2))、
で表される。
 上式のjは複素数の虚数を表している。
 このため、正常状態からの漏電変化電流ベクトルである第三の電流ベクトルIor∠θ3は、
II=I・(cos(θ2)+j・sin(θ2))-i・(cos(θ1)+j・sin(θ1))…(1)式、
で表される。
 そして第三の電流ベクトルより、漏電電流値の大きさであるIorとIorの電流位相値θ3と漏電抵抗値とを以下の式により求めることができる。
Ior=abs(II) …(2)式 漏電電流大きさ、
θ3 =arg(II) …(3)式 漏電電流位相角度、
Rx =V/Ior   …(4)式 漏電抵抗値、
 ここでVは電源相と対地間の電圧値である。「II」はIが2個並んでいるが、第二の電流ベクトルのIとは違ったIIで一つの変数である。
 (1)式では第一の電流ベクトルと第二の電流ベクトルを複素数で表現することにより漏電電流成分である第三の電流ベクトルIor∠θ3が複素数IIとして得られる。そして、漏電電流値Iorは(2)式の複素数絶対値関数absにより大きさであるスカラー値として求まる。
 漏電の異常を判定するには、漏電抵抗を流れる電流の大きさIorを異常判定電流の基準値と比較すれば良いが、場合に依っては漏電抵抗値Rxから異常を判定したい場合もある。漏電抵抗値Rxは(4)式に示すように対地からの電圧Vを漏電電流値Iorで割れば求まる。この場合は漏電の異常を判定するのに、漏電抵抗値Rxを、異常判定漏電抵抗値の基準値と比較すれば良い。
 漏電電流の位相角度は、複素数として得られた漏電電流ベクトルをガウス平面で位相角度に変換する(3)式のarg関数により求まる。ここで、R相電圧であるR-N間電圧を電流ベクトル測定の位相角度基準とした場合において、位相角度θ3が0度の場合は、漏電抵抗が生じた配線はR相であり、位相角度θ3が-120度の場合は漏電抵抗が生じた配線はS相であり、位相角度θ3が120度の場合は漏電抵抗が生じた配線はT相である。もしT相電圧であるT-N間電圧が電流ベクトルの位相角度基準の場合は0度時にT相に漏電抵抗が生じている。S相電圧であるS-N間電圧が位相角度基準の場合は0度時にS相に漏電抵抗が生じている。このように電流ベクトルの位相角度測定の基準となる電源電圧の位相関係に依存して決まった値になるので、漏電電流位相角度θ3から漏電抵抗が生じた配線相を知ることができる。
 (1)式から(4)式の計算は、ここで示したように複素数計算で行っても良いが図3のように平面上のベクトル図にて図的求めても良い。また、ベクトル状態をX軸とY軸に分解して三角関数として解いても良い。
 ここで第二の電流ベクトルI∠θ2を異常時として表したが、第一の電流値ベクトルを測定するタイミングと重なっていない場合の接地線電流と位相角度の測定値を第二の電流ベクトルI∠θ2として求めた第三電流ベクトルから配線状態が漏電警報に至らない正常範囲でも、地絡事故の予兆現象を捉える漏電電流値変化として利用できる。
 以下に、R相電圧であるR-N間電圧を、電流ベクトル測定の位相角度基準とした場合の具体的な例を示す。表1から表5の電源電圧と周波数は、200Vrms 50Hzで計算されている。
 表1に対地配線容量値がCR=10uF、CS=5uF、CT=2uFで漏電がない場合の正常状態の漏洩電流の例を示す。この条件での接地電流第一の電流ベクトルは、i∠θ1=0.44A∠68.21度となっている。
 ここで表2,表3,表4に、R相,S相,T相に個別に漏電抵抗が生じた場合の第二の電流ベクトルI∠θ2 を示している。ここで表1~表4に示したir、is、itは、測定が困難なので計算値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表5には、i∠θ1とI∠θ2 から表2~表4のR相,S相,T相ごとの漏電状態に対して、(1)式~(4)式の計算を行った結果を示す。(2)式が漏電電流成分である第三の電流ベクトルの大きさで(3)式が位相角度(向き)を示している。
 (4)式で求めた漏電抵抗値は、表2~表4に設定した漏電抵抗値と一致している。また、(3)式の位相角度から判定した漏電が生じた配線相についても一致していることが確認できる。
 このように、正常時の第一の電流ベクトルと、第一の電流ベクトルとは別のタイミングで測定した第二の電流ベクトルとの差で得られた第三の電流ベクトルを、漏電電流として解析することにより三相スター配線回路の漏電電流、漏電抵抗値、漏電配線相を求めることができる。
 次に、図4に、三相デルタ配線回路の正常時の状態を示す。漏電抵抗は生じていないが、配線の対地浮遊静電容量や電子機器のノイズを対地に逃がすコンデンサが合成されて、R相ではCR、T相ではCTとして存在している。負荷以外の電流は、CR、CT 静電容量を通しての漏洩電流のみである。図4ではR相に生じる対地間静電容量をCRとし、T相に生じる対地間静電容量をCTとしている。そして、CR、CTに依って流れる漏洩電流を ir、itとしている。しかし ir、itは対地間静電容量に依って分布して流れる電流のため個別に測定することは困難である。現場で容易に測ることが可能なのは、irとitが合成された接地線を流れる電流iと、電源電圧である。この接地線の電流iと、基準となる電源電圧を位相の基準として測られる電流iの位相角度θ1より、第一の電流ベクトルi∠θ1が得られる。ここでiは接地線を流れる電流の大きさである。θ1は三相デルタ電源の電圧を基準とした場合の電流iの位相角度である。電流の位相角度の基準となる電圧としては、T-R間電圧、R-S間電圧やT-S間電圧など、電源の電圧位相基準として使える電圧であれば良い。
 電流の大きさiの測定には電流トランスが用いられる場合が多いが、微小抵抗による電圧降下や他の磁界型電流センサを用いても構わない。位相角度の測定は、基準の電源の電圧波形と電流センサに依るiを同位相角度の電圧値に変換した波形を比較するなどにより求まる。
 図5には、図4の状態から漏電抵抗が生じた場合の異常時の回路図を示す。漏電で問題となるのは、抵抗成分であるので異常時に生じる対地素子成分として対地間に抵抗を追加している。図5において、R相に漏電が生じた場合の漏電抵抗をRRとしている。T相に漏電が生じた場合の漏電抵抗をRTとしている。
 なお、漏電抵抗はR相とT相の二相で生じ得るが、問題が生じるタイミングにおいて複数の対地間漏電が同時に生じた場合は相間地絡となるので、R相またはT相の1点のみの漏電を求める方法とする。
 これらの漏電抵抗RR,RTで生じた電流と、静電容量CR,CTで生じた電流は、各相で合成されてR相ではIrとなり、T相ではItとなる。
 漏電は異常状態のため配線中の何処で生じるかは予測できず、予め漏電位置に電流計を準備しておくことは不可能である。
 このためIr、Itを測定することは困難で、測定可能なのは漏電状態を示したIr、Itが合成されて接地線に流れる第二の電流ベクトルI∠θ2のみとなる。ここで、Iは接地線に流れる電流の大きさであり、θ2は第一の電流ベクトルi∠θ1を測定した場合と同一の電源電圧を基準とした電流Iの位相角度である。
 本発明では、正常時に測定して保持された第一の電流ベクトルi∠θ1を基準として異常時の第二の電流ベクトルI∠θ2からベクトルの差を求めることにより、抵抗に依る漏電成分である漏電電流の第三の電流ベクトルIor∠θ3を求めている。
 ここで、第一の電流ベクトルと第二の電流ベクトルは、同一電源の接地線電流を正常時と異常時のように違ったタイミングで測定した値である。
 漏電の状態を求める計算式は、先に示した三相スターと同じ(1)式から(4)式を用いることができる。
 (1)式では、第一の電流ベクトルと第二の電流ベクトルを複素数で表現することにより漏電電流成分である第三の電流ベクトルIor∠θ3が複素数IIとして得られる。そして、漏電電流値Iorは(2)式の複素数絶対値関数absにより大きさであるスカラー値として求まる。漏電の判定をするには、三相スター時と同様に漏電抵抗に流れる漏電電流値Ior、または漏電抵抗値Rxをそれぞれの基準値と比較すれば良い。
 漏電電流の位相角度は、複素数として得られた漏電電流をガウス平面で位相角度に変換する(3)式のarg関数により求まる。T-R相間の電圧を電流ベクトル測定の位相角度基準とした場合において、(3)式の位相角度θ3が60度の場合は漏電抵抗が生じた配線はR相であり、位相角度θ3が120度の場合は漏電抵抗が生じた配線はT相である。このように、基準となる電源電圧の位相関係に依存して決まった値になるので、漏電電流位相角度θ3から漏電抵抗が生じた配線相を知ることができる。
 これらの計算は複素数計算で行っても良いが、図3のように平面上のベクトル図で行っても良い。また、ベクトル状態をX軸とY軸に分解して三角関数的に解いても良い。
 ここで第二の電流ベクトルI∠θ2を異常時として表したが、第一のベクトル電流値を測定するタイミングと重なっていない場合の接地線電流と位相角度の測定値を第二の電流ベクトルI∠θ2として求めた第三電流ベクトルから配線状態が漏電警報に至らない正常範囲でも第一電流ベクトルを基準とした状態からの地絡事故の予兆現象を捉える漏電電流値変化として利用できる。
 以下に、T-R相間の電圧を電流ベクトル測定の位相角度基準とした場合の具体的な例を示す。
 表6に、対地配線静電容量値がCR=2uF、CT=1uFで漏電がない場合の正常時回路例の漏洩電流を示す。表6~表9の電源電圧と周波数は、200Vrms、50Hzで計算されている。
 この条件での表6の接地電流ベクトルは、i∠θ1=0.166A∠169.1度となっている。ここで表7、表8に R、T相に個別に漏電が生じた場合のI∠θ2を示している。表6~表8に示したir、itは、測定が困難なので計算値である。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表9には、i∠θ1とI∠θ2をまとめて、(1)式~(4)式の計算を行った結果を示す。(1)式が漏電電流成分である第三電流ベクトルの電流の大きさで、(3)式が位相角度(向き)を示している。表9の(4)式で求めた漏電抵抗値は表7、表8に設定した漏電抵抗値と一致している。また、(3)式の位相角度から判定した漏電が生じた配線相についても一致していることが確認できる。
 このように、正常時の第一の電流ベクトルと第一の電流ベクトルとは別のタイミングで測定した第二の電流ベクトルとの差で得られた第三の電流ベクトルを、漏電電流として解析することにより、三相デルタ配線回路の漏電電流、漏電抵抗値、漏電配線相を求めることができる。
Figure JPOXMLDOC01-appb-T000009
 次に、図6に単相3線電源配線回路の正常時の状態を示す。漏電は生じていないが、対地浮遊静電容量や電子機器のノイズを対地に逃がすコンデンサが合成されて、R相ではCR、T相ではCTとして存在している。
 負荷以外の電流はCR、CTの対地静電容量を通しての漏洩電流のみである。図6ではR相に生じる対地間静電容量をCRとし、T相に生じる対地間静電容量をCTとしている。そして、CR、CTに依って流れる漏洩電流をir、itとしている。しかし、ir、itは対地間静電遊容量に依って分布して流れる電流のため個別に測定することは困難である。
 現場で容易に測ることが可能なのは、irとitが合成された接地線を流れる電流iと電源電圧である。この接地線の電流iと、基準となる電源電圧を位相の基準として測られる電流iの位相角度θ1より、第一の電流ベクトルi∠θ1が得られる。ここで、iは接地線を流れる電流の大きさである。θ1は単相3線電源の電圧を基準とした場合の電流iの位相角度である。基準となる電圧としては、R相電圧であるR-N間電圧、T相電圧であるT-N間電圧、R-T間電圧など電源の電圧位相基準として使える電圧であれば良い。
 図7には、図6の状態から漏電抵抗が生じた場合の異常時の回路図を示す。漏電で問題となるのは抵抗成分であるので、異常時に生じる対地素子成分として対地間に生じた抵抗を追加している。
 図7において、R相に漏電が生じた場合の漏電抵抗をRRとし、T相に漏電が生じた場合の漏電抵抗をRTとしている。なお、漏電抵抗は2相で生じ得るが、問題が生じるタイミングにおいて複数の対地間漏電が同時に生じた場合は接地線を介さずに相間短絡となるので、R相、T相の1点のみの漏電で求める方法とする。
 これらの漏電抵抗で生じた電流と、静電容量CR,CTで生じた電流は、各相で合成されてR相ではIrとなり、T相ではItとなる。漏電は異常状態のため配線中の何処で生じるかは予測できず、予め漏電位置に電流計を準備しておくことは不可能である。このため、Ir、Itを測定することは困難で、測定可能なのは漏電状態を示したIr、Itが合成されて接地線に流れる第二の電流ベクトルI∠θ2のみとなる。ここで、Iは接地線に流れる電流の大きさであり、θ2は第一の電流ベクトルi∠θ1を測定した場合と同一の電源電圧を基準とした電流Iの位相角度である。
 本発明では、正常時に測定保持された第一の電流ベクトルi∠θ1を基準として、異常時の第二の電流ベクトルI∠θ2からベクトルの差を求めることにより、抵抗に依る漏電電流である第三の電流ベクトルIor∠θ3を求めている。
計算式は先に示した三相スターと同じで良い。
 ここでは漏電電流の第三の電流ベクトルIor∠θ3は複素数IIとして得られる。そして漏電電流値Iorは、(2)式の複素絶対値関数absによりスカラー値として求まる。漏電の判定をするには、三相スター時と同様に漏電抵抗値に流れる漏電電流値Ior、または漏電抵抗値Rxをそれぞれの基準値と比較すれば良い。
 漏電電流の位相角度は、複素数として得られた漏電電流をガウス平面で位相角度に変換するarg関数により求まる。R-N相の電圧位相角度を基準とした場合において、この位相角度θ3が0度の場合は漏電抵抗が生じた配線はR相であり、θ3が180度の場合は漏電抵抗が生じた配線はT相である。または、IIの極性が正ならR相であり、負ならT相である。これらの計算は複素数計算で行っても良いが、図3のように平面上の図でベクトル計算を行っても良い。また、ベクトル状態をX軸とY軸に分解して三角関数的に解いても良い。
 ここで第二の電流ベクトルI∠θ2を異常時として表したが、第一の電流ベクトルを測定するタイミングと重なっていない場合の接地線電流と位相角度の測定値を第二の電流ベクトルI∠θ2として求めた第三電流ベクトルから配線状態が漏電警報に至らない正常範囲でも第一の電流ベクトルを基準とした状態からの地絡事故の予兆現象を捉える漏電電流値変化として利用できる。
 以下に、R相電圧であるR-N間電圧を電流ベクトル測定の位相角度基準とした場合の具体的な例を示す。表10に、対地配線静電容量値がCR=1uF、CT=4.7uFで漏電抵抗がない場合の正常時回路例の漏洩電流を示す。電源電圧と周波数は、(1)式から(4)式が50Hz、60Hzで共通であることから60Hzの例として100Vrms、60Hzとする。この条件での接地電流ベクトルは、i∠θ1=0.139A∠-90度となっている。ここで表11、表12に、R、T相に個別に漏電が生じた場合のI∠θ2を示している。表10~表12に示した ir、itは、測定が困難なので計算値である。
 表13には、i∠θ1とI∠θ2をまとめて(1)式~(4)式の計算を行った結果を示す。(1)式が漏電電流成分である第三の電流ベクトルの電流の大きさで、(3)式が位相角度(向き)を示している。表13の(4)式で求めた漏電抵抗値は、表11、表12に設定した漏電抵抗値と計算誤差内で一致している。また、(3)式の位相角度から判定した漏電が生じた配線相についても一致していることが確認できる。
 このように、正常時の第一の電流ベクトルと、第一の電流ベクトルとは別のタイミングで測定した第二の電流ベクトルとの差で得られた第三の電流ベクトルを漏電電流として解析することにより、単相3線配線回路の漏電電流、漏電抵抗値、漏電配線相を求めることができる。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 次に、図8に、単相2線電源の正常時の状態を示す。漏電は生じていないが対地浮遊静電容量や電子機器のノイズを対地に逃がすコンデンサが合成されて、対地間にCRとして存在している。負荷以外の電流は静電容量CRを通しての漏洩電流のみである。CRによって流れる漏洩電流をirとしている。しかし、irは対地間静電容量によって分布して流れる電流のため個別に測定することは困難である。現場で容易に測ることが可能なのは、接地線を流れる電流iと電源電圧である。この接地線の電流iと、基準となる電源電圧を位相の基準として測られる電流iの位相角度θ1より、第一の電流ベクトルi∠θ1が得られる。ここでθ1は電源の電圧位相角度を基準とする。
 図9には、漏電抵抗が生じた場合の異常時の回路図を示す。漏電で問題となるのは、抵抗成分であるので異常時に生じる大地電流成分として対地間に生じた抵抗をRRとして追加している。これらの漏電抵抗と、CRの静電容量で生じた電流はIrとなる。
漏電は異常状態のため配線中の何処で生じるかは予測できず、予め漏電位置に電流計を準備しておくことは不可能である
 このためIrを測定することは困難で、可能なのは接地線に流れる第二の電流ベクトルI∠θ2のみとなる。ここで、Iは接地線に流れる電流の大きさであり、θ2は第一の電流ベクトルi∠θ1を測定した場合と同一の電源電圧を基準とした電流Iの位相角度である。
 本発明では、正常時に測定保持された第一の電流ベクトルi∠θ1を基準として、異常時のI∠θ2からベクトルの差を求めることにより抵抗による漏電電流である第三の電流ベクトルIor∠θ3を求めている。計算式は先に示した三相スターと同じで良い。
 ここでは漏電電流の第三の電流ベクトルIor∠θ3はIIとして複素数で得られる。そして漏電電流値Iorは(2)式の複素絶対値関数absによりスカラー値として求まる。漏電の判定をするには、三相スター時と同様に漏電抵抗値に流れる漏電電流値Ior、または漏電抵抗値 Rxをそれぞれの基準値と比較すれば良い。漏電電流の位相角度は、複素数として得られた漏電電流をガウス平面で位相角度に変換するarg関数により求まる。
 これらの計算は複素数計算で行っても良いが、図3のように平面上で図的にベクトル計算を行っても良い。また、ベクトル状態をX軸とY軸に分解して三角関数的に解いても良い。ここで第二の電流ベクトルI∠θ2を異常時として表したが、第一ベクトル電流値を測定するタイミングと重なっていない場合の接地線電流と位相角度の測定値を第二の電流ベクトルI∠θ2として求めた第三電流ベクトルから配線状態が漏電警報に至らない正常範囲でも第一電流ベクトルを基準とした状態からの地絡事故の予兆現象を捉える漏電電流値変化として利用できる。
 以下に、R相電圧であるR-N間電圧を電流ベクトル測定の位相角度基準とした場合の具体的な例を示す。表14に、対地配線静電容量値がCR=2uFで、漏電がない場合の正常時回路例の漏洩電流を示す。電源電圧と周波数は、100Vrms、60Hzとしている。この条件での接地電流ベクトルは、i∠θ1=0.075A∠90度となっている。
 ここで、表15に漏電が生じた場合のI∠θ2を示している。表15に示したirは、測定が困難なので計算値である。表16には、i∠θ1とI∠θ2をまとめて、(1)式~(4)式の計算を行った結果を示す。(2)式が漏電電流成分である第三電流ベクトルの電流の大きさで、(3)式が位相角度(向き)を示している。表16の(4)式で求めた漏電抵抗値は、表15に設定した漏電抵抗値と一致している。また、(3)式の位相角度から判定した位相角度θ3は0度であり、抵抗による漏電電流位相角度と一致していることが確認できる。
 このように、正常時の第一の電流ベクトルと第一の電流ベクトルとは別のタイミングで測定した第二の電流ベクトルとの差で得られた第三の電流ベクトルを、漏電電流として解析することにより単相2線配線回路の漏電電流、漏電抵抗値、漏電配線相を求めることができる。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 以上、三相スター配線回路、三相デルタ配線回路、単相3線配線回路、単相2線配線回路のすべてにおいて、接地線を流れる電流において、正常時に測定して保持した電流と位相角度である第一の電流ベクトルi∠θ1を基準にして、第一の電流ベクトルを測定保持するタイミングと違う測定値である同一接地部の電流と位相角度である第二の電流ベクトルI∠θ2との差の第三電流ベクトルIor∠θ3により漏電電流、漏電抵抗と漏電が生じた線相を求めることができることが確認できた。
 このように、単一の機種にて三相スター配線回路、三相デルタ配線回路、単相3線配線回路、単相2線配線回路に対応できるため量産効果により機器価格を下げることができるとともに、電源種別に対して同一の計算式なので計算プログラムにバグが出にくいというメリットがある。
 なお、漏電電流により対地電位が無視できなるほど大きくなる場合は、本計算式には誤差が生じるが、そのような場合は発火事故に至る状態であり、それ以前の状態での予防監視に適している。さらに本発明では、抵抗に限らず配線対地静電容量の変化など電源線インピーダンスの変化状態を捉えることができる。この場合は抵抗値を求めている(4)式の左辺RxをZxと置き換えて、インピーダンス変化を生じさせた第三の電流値ベクトルの電流の大きさIorで割ることによりインピーダンスが求まる。
Zx=V/Ior    …(5)式、
 このインピーダンスZxより、インピーダンスが静電容量であれば、
Cx=1/(ω・Zx) …(6)式、  ω=2・Π・f、
で追加静電容量値を求めることができる。
 もし、Zxが、L,C,R成分の組み合わせの場合は、その組み合わせに応じたZx値を求めることができる。この為、L成分が対地間に接続される場合でも解法は可能である。しかし一般的には電源と対地には正常時は静電容量Cだけが存在して、異常時に漏電抵抗Rが生じる為、L成分についての実例は省略している。
 なお、(4)式(5)式の電圧値Vは対地からの電源電圧値である。電源電圧値は三相スター配線回路、三相デルタ配線回路、単相3線配線回路、単相2線配線回路で決まっているが、現場では多少の変動が生じ得る。決まっている固定的な電源電圧値を用いても良いが、電流ベクトルの位相を測定するために取り込んでいる電源電圧を測定してその電圧値を用いれば電源電圧の変動を受けずに漏電抵抗や漏電素子の値を得ることができる。もし取り込んでいる電源電圧が対地間でない場合は、対地間に換算して使用する。
 正常な三相デルタ配線回路の例とした図4で、CR=3uF、CT=0.33uFの場合の電流状態を表17に示す。図10に図4の状態から対地静電容量が増えた場合の回路を示す。増えた静電容量値は Cr、Ctで示されている。Crが増えた場合を表18に示す。Ctが増えた場合を表19に示す。
 表20には表17の正常状態から、それぞれ表18と表19に示す静電容量が増えた場合を(1)式~(6)式で解いて追加静電容量を求めた例を示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 表20には表18で示したR相追加静電容量5.4uFが150度位相角度状態で得られて、表19で示したT相追加静電容量2uFが-150度位相角度状態で得られている。静電容量値による電流はT-R相電圧を基準とすれば、R相では150度位相角度に流れる。そしてT相では-150度位相角度として流れる。つまり、正常時を基準として得られた変化電流成分が150度か-150度であれば第三の電流ベクトルは静電容量成分であり、漏電抵抗が生じた場合とは違い、正常状態という判断ができる。なお、基準相電圧を変えた場合は、その基準相電圧による関係となる。
 対地静電容量変化の例として図4から図10に三相デルタ電源回路の状態の変化を示したが、図2の三相スター、図6の単相3線、図8の単相2線に容量変化が生じる場合でも同様に計算できる。この場合、基準となる電源電圧が今までに示した電源条件であれば三相スターではR相の静電容量が変化した場合は90度位相角度成分、S相の静電容量が変化した場合は-30度位相角度成分、T相の静電容量が変化した場合は-150度位相角度成分として表れる。
 単相3線ではR相の静電容量が変化した場合は90度位相角度成分、T相の静電容量が変化した場合は-90度位相角度成分として表れる。単相2線では静電容量が変化した場合は90度位相角度成分として表れる。
 また、先に示してきたように抵抗成分による漏電電流値の位相も、電源種別とその配線相により決まっているので漏電電流が生じた配線相を知ることができる。表21に電流ベクトル位相測定の基準となる電源電圧を表の二列目に示した電圧にした場合に得られた第三の電流ベクトル位相角度θ3と表の三列目の配線相の関係を示す。漏電素子の種別が抵抗時には第三の電流ベクトル位相角度θ3は四列目の位相角度値になり、静電容量時には五列目の位相角度値になる。このため、第三電流ベクトルの電流位相角度θ3から漏電素子の種別の区別がつくので、静電容量の場合は(6)式に割り当てて変化した静電容量値を求めることもできる。なお、電流ベクトル位相角度の基準となる電源電圧を変えた場合は、その電源電圧に依る位相角度関係となる。
Figure JPOXMLDOC01-appb-T000021
 実際の回路では位相角度の測定誤差や、漏電としては影響のない高い抵抗値成分が入ったりするため、得られた位相角度には計算値位相角度と誤差が生じるが、計算値に対して許容誤差を設けて判断することにより、漏電状態を実用的に判断できる。
 なお、ここで示した計算による位相角度値は、今回示した電流ベクトル位相角度の基準となる電源電圧の取り込み電圧の場合の値であり、基準電圧取り込み点を変更すると電圧取り込み点の位相角度に応じて変化する。
 また、接地線を流れる電流の測定は接地線に電流センサを取り付けて直接測定する方法以外にも、負荷への電源線をまとめた状態にして磁界型の電流センサにより測定することもできる。これは、負荷電流成分は線間で打ち消しているのに対して、接地線への接地線を流れる電流成分は打ち消さずに残るためである。
 図11に、本発明の実施形態における漏電電流検出システム50を示す。漏電電流検出システム50は、据え置き型の構成例である。各種電源51は三相スター配線回路、三相デルタ配線回路、単相3線配線回路、単相2線配線回路を示す。接地線の電流を測るための電流センサは貫通型電流センサ52を用いた例としているがクランプ型でも構わない。
 電流ベクトルの位相角度の基準となる電源電圧は基準電源電圧より得ている。電流ベクトル測定部53は貫通型電流センサ52の電流値と、基準電源電圧を基準位相とした貫通型電流センサ52の電流の位相角度を測定して電流ベクトルとしている。
 電流ベクトル測定部53で測定された電流ベクトルは演算・判定部54にて漏電が問題無い正常時の測定値を第一の電流のベクトルi∠θ1として扱い、第一の電流値ベクトルを測定するタイミングと重なっていない場合の測定値を第二の電流ベクトルI∠θ2として扱う。この2つのベクトルの差である(1)式より得られた第三の電流ベクトルIIを漏電電流として扱う事により地絡事故の予兆現象や異常時の漏電であることを捉える。なお、第一の電流ベクトルが第一の電流ベクトル記憶部57に保持されている場合は第一の電流ベクトル記憶部57のベクトルを第一の電流ベクトルとして演算に用いても良い。
 実際には第三の電流ベクトルIIを(2)式や(3)式を用いて第三の電流ベクトルIor∠θ3に変換して位相角度θ3から漏電素子種別や漏電配線相を判定し、素子の種別に応じて素子の値が必要な場合は素子の値を(4)式や(5)式や(6)式を使って求める。そして素子の種別が抵抗の場合は、第三の電流ベクトルの電流の大きさIorまたは抵抗値が基準値を超えて出力された場合に異常と判定し、漏電警告部56の警報ランプや警報LEDなどにて警告する。
 さらに安全確保のため、電源の遮断が必要な場合は電源遮断器59を付け加えても良い。この場合は異常と判定した場合には演算・判定部54は電源遮断器59に指示を出し電源を遮断する。
 素子の種別が静電容量と判断された場合は、正常状態として処理する。
 漏電情報表示部55には、演算して得られた素子の種別、漏電のあった配線相、漏電電流値Ior、漏電電流位相角度θ3、素子の値などを表示する。第一の電流ベクトルや第二の電流ベクトル、第三の電流ベクトルを表示しても構わないし、表示の必要が無い場合やデータを別に送付するなどの手段がある場合は、表示部は無くても構わない。
 また第一の電流ベクトルの保持指示入力スイッチである押しボタンスイッチ58が押された場合には、演算・判定部54はその時に得られている電流ベクトル測定部53の電流ベクトルを、第一の電流ベクトル記憶部57に保持記憶する。第一の電流ベクトル記憶部57はフラッシュROMやRAM、CPU内の演算メモリ、USBメモリなど記憶機能を持つものであれば良い。
 ここで押しボタンスイッチ58にて第一の電流ベクトルを第一の電流ベクトル記憶部57に記憶する例を示したが、図12のようなシステムにより第一の電流ベクトルが得られている場合は、その外部の測定器の第一の電流ベクトル情報を図11の第一の電流ベクトル記憶部57に記憶させても良い。
 これは、電気工事電源導入現場では、漏電が無い事を確認する作業が生じるので、その確認作業後の正常状態にて図12の測定器により、電源位置ごとの正常値を測定して行くと作業効率が良いし、図11の構成で異常時のみ警報できれば良い場合には不要な値の表示機能が無くとも、図12の測定器により測定内容の確認が出来た信頼性の有る正常時の第一の電流ベクトルを得る事ができる。
 ここで測定した第一の電流ベクトルの値を第一の電流ベクトル記憶部57に設定する事により図11の装置自身にて、個々の位置ごとの第一の電流ベクトル取り込み作業を行う手間を省ける上、データの信頼性も確保できる。
 なお、電流ベクトル測定部53に複数箇所の貫通電流センサ52と基準電源電圧を接続して多チャンネルの管理を行うこともできる。この場合は第一の電流ベクトル記憶部57も多チャンネル持たせる。
 図12に、本発明の別の実施形態における漏電電流検出システム60を示す。漏電電流検出システム60は、移動式の構成例である。移動して複数箇所の漏電状態を測定するため、測定位置を特定するための漏電測定位置選択スイッチ62を持っている。接地線の電流を測定する電流センサにクランプ型電流センサ61を用いることにより、1個の電流センサで多数の電源システムの管理を行うことができる。
 漏電測定位置選択スイッチ62で選択した位置の接地線の電流を測るための電流センサはクランプ型電流センサ61用いた例としているが貫通型電流センサを測定対象位置に取り付けておいて現場ごとのセンサの出力電流部分を取り入れても良い。
 漏電測定位置選択スイッチ62で選択した位置の電流ベクトルの位相角度の基準となる電源電圧は基準電源電圧より得ている基準電源電圧の電圧入力端子は移動測定ができるように、みの虫クリップなどの取り外しが容易な電圧測定仕様とする。
 電流ベクトル測定部53はクランプ型電流センサ61の電流値と、基準電源電圧を基準位相としたクランプ型電流センサ61の電流の位相角度を測定して電流ベクトルとしている。
 電流ベクトル測定部53で測定された電流ベクトルは演算・判定部54にて漏電が問題無い正常時の測定値を第一の電流のベクトルi∠θ1として扱い、第一の電流値ベクトルを測定するタイミングと重なっていない場合の測定値を第二の電流ベクトルI∠θ2として扱う。この2つのベクトルの差である(1)式より得られた第三の電流ベクトルIIを漏電電流として扱う事により地絡事故の予兆現象や異常時の漏電であることを捉える。なお、第一の電流のベクトルが漏電測定位置選択スイッチに対応した第一の電流ベクトル記憶部63に保持されている場合は漏電測定位置選択スイッチに対応した第一の電流ベクトル記憶部63のベクトルを第一の電流ベクトルとして演算に用いても良い。
 実際には第三の電流ベクトルIIを(2)式や(3)式を用いて第三の電流ベクトルIor∠θ3に変換して位相角度θ3から漏電素子種別や漏電配線相を判定し、素子の種別に応じて素子の値が必要な場合は素子の値を(4)式や(5)式や(6)式を使って求める。そして素子の種別が抵抗の場合は、第三の電流ベクトルの電流の大きさIorまたは抵抗値が基準値を超えて出力された場合に異常と判定し、漏電警告部56の警報ランプや警報LEDなどにて警告する。素子の種別が静電容量と判断された場合は、正常状態として処理する。
 漏電情報表示部55には、測定位置や演算して得られた素子の種別、漏電のあった配線相、漏電電流値Ior、漏電電流位相角度θ3、素子の値などを表示する。第一の電流ベクトルや第二の電流ベクトル、第三の電流ベクトルを表示しても構わないし、表示の必要が無い場合やデータを別に送付するなどの手段がある場合は、表示部は無くても構わない。
 第一の電流ベクトルの保持指示入力スイッチである押しボタンスイッチ58が押された場合には、演算・判定部54はその時に得られている電流ベクトル測定部53の電流ベクトルを、漏電測定位置選択スイッチに対応した第一の電流ベクトル記憶部63に保持記憶する。漏電測定位置選択スイッチに対応した第一の電流ベクトル記憶部63はフラッシュROMやRAM、CPU内の演算メモリ、USBメモリなど記憶機能を持つものであれば良い。
 ここで押しボタンスイッチ58にて第一の電流ベクトルを漏電測定位置選択スイッチに対応した第一の電流ベクトル記憶部63に記憶する例を示したが、別な図12のようなシステムにより第一の電流ベクトルが得られている場合は、その外部の測定器の第一の電流ベクトルを漏電測定位置選択スイッチに対応した第一の電流ベクトル記憶部63に記憶させても良い。
 これは、複数の図12の構成の装置で、漏電測定位置選択スイッチに対応した第一の電流ベクトル記憶部63の値をコピーして共有化しておく事により、複数の図12の装置を使って複数人で測定作業を行えば、迅速に測定作業が終わるというメリットがある。また、別な図12の漏電測定位置選択スイッチに対応した第一の電流ベクトル記憶部63の値を設定した図12のシステムを持っていれば、どちらかが故障しても管理運用を維持し続ける事ができる。
 図13には、図12の構成例の別形態である漏電電流検出システム70を示す。
 図12の漏電電流検出システム60では測定位置を漏電測定位置選択スイッチ62により選択していたが、図13の漏電電流検出システム70では、測定対象となる位置にある接地線や電源電圧線位置の近くにICタグ72を設置しておく。このICタグ72を第一の電流ベクトルの外部の記憶装置として利用することにより、測定器自身のメモリ容量に関わりなく管理箇所を増やすことができるという特徴が有る。ICタグ72には位置を把握出来る管理情報を入れていても良い。
 接地線の電流を測るための電流センサはクランプ型電流センサ61用いた例としているが貫通型電流センサを測定対象位置に取り付けておいて現場ごとのセンサの出力電流部分を取り入れても良い。
 電流ベクトルの位相角度の基準となる電源電圧は基準電源電圧より得ている。基準電源電圧の電圧入力端子は移動測定ができるように、みの虫クリップなどの取り外しが容易な電圧測定仕様とする。
 電流ベクトル測定部53はクランプ型電流センサ61の電流値と、基準電源電圧を基準位相としたクランプ型電流センサ61の電流の位相角度を測定して電流ベクトルとしている。
 電流ベクトル測定部53で測定された電流ベクトルは演算・判定部54にて漏電が問題無い正常時の測定値を第一の電流のベクトルi∠θ1として扱い、第一の電流値ベクトルを測定保持するタイミングと重なっていない場合の測定値を第二の電流ベクトルI∠θ2として扱う。この2つのベクトルの差である(1)式より得られた第三の電流ベクトルIIを漏電電流として扱う事により地絡事故の予兆現象や異常時の漏電であることを捉える。第一の電流のベクトルがICタグ72に保持されている場合はICタグR/W71を通して読み出したICタグ72のベクトルを第一の電流ベクトルとして演算に用いても良い。
 実際には第三の電流ベクトルIIを(2)式や(3)式を用いて第三の電流ベクトルIor∠θ3に変換して位相角度θ3から漏電素子種別や漏電配線相を判定し、素子の種別に応じて素子の値が必要な場合は素子の値を(4)式や(5)式や(6)式を使って求める。そして素子の種別が抵抗の場合は、第三の電流ベクトルの電流の大きさIorまたは抵抗値が基準値を超えて出力された場合に異常と判定し、漏電警告部56の警報ランプや警報LEDなどにて警告する。素子の種別が静電容量と判断された場合は、正常状態として処理する。
 漏電情報表示部55には、測定位置や演算して得られた素子の種別、漏電のあった配線相、漏電電流値Ior、漏電電流位相角度θ3、素子の値などを表示する。第一の電流ベクトルや第二の電流ベクトル、第三の電流ベクトルを表示しても構わないし、表示の必要が無い場合やデータを別に送付するなどの手段がある場合は、表示部は無くても構わない。
 第一の電流ベクトルの保持指示入力スイッチである押しボタンスイッチ58が押された場合には、演算・判定部54はその時に得られている電流ベクトル測定部53の電流ベクトルを、ICタグ R/W71を通してICタグ72に書き込む。ICタグを対象となる漏電管理位置に設置しておくことで、測定器自身のメモリ容量に関わりなく管理箇所を増やすことができる。
 さらに、漏電管理位置にICタグ72の代わりに漏電管理位置を識別できるIDを持ったバーコードを置き、ICタグR/W71の代わりにバーコードリーダをもたせたシステムにおいて、バーコードリーダで読み取ったIDよりインターネットなどを通じて管理位置に対応した第一の電流ベクトルを得ても良い。この場合は、第一の電流ベクトルの保持指示入力としての押しボタンスイッチ58が押された場合には、演算・判定部54は、その時に得られている電流ベクトル測定部53の電流ベクトルと管理位置を識別できるIDをインターネットのサーバー上に記憶させる。
 さらに、演算・判定部54では(1)式から(6)式に関わる計算のすべてや一部を行わず、漏電管理位置を識別できる管理番号IDと電流ベクトル情報とまた必要な場合は第一の電流ベクトルの保持指示入力スイッチ58状態をインターネット上に上げることにより、インターネット上の上位システムにて漏電管理に必要な演算・判定を行っても良い。
 なお、第一の電流ベクトルの保持タイミングは第一の電流ベクトルの保持指示入力スイッチ58で行う例を示してきたが、正常状態と判断できる場合は自動で指示入力を生成することもできる。特に、単相の場合は電流ベクトル測定部53から得られる電流ベクトルの位相は、漏電がない場合には-90度か90度になるので、測定誤差や測定許容漏電成分を見込んだ範囲に位相がある場合は、自動的に正常状態と判断して保持指示入力スイッチ58の指示がなくとも、その時の電流ベクトル測定部53からの電流ベクトルを第一電流ベクトルとして保持記憶、利用することができる。
 また、第三の電流ベクトルによる素子の種別の判定結果が静電容量と判断された場合も、その時の電流ベクトル測定部53からの電流ベクトルを漏電管理位置に対応した新たな第一電流ベクトルとして更新保持記憶することができる。
 以上、説明したように、本発明の漏電電流検出方法及び漏電電流検出システムによれば、信号の発生や注入の必要がなく、対地静電容量がバランスしている条件がなく、三相や単相の電源種別や構成によらずに単一の方式にて漏電電流値と漏電が生じた電源線相、漏電が容量成分の増加か漏電抵抗に依るものなのかの詳細状況を求めることができるという顕著な効果を奏する。
50,60,70  漏電電流検出システム
51  各種電源
52  貫通型電流センサ
53  電流ベクトル測定部
54  演算・判定部
55  漏電情報表示部
56  漏電警告部
57  第一の電流ベクトル記憶部
58  押しボタンスイッチ
59  電源遮断器
61  クランプ型電流センサ
62  漏電測定位置選択スイッチ
63  漏電測定位置選択スイッチに対応した第一の電流ベクトル記憶部
71  ICタグR/W 
72  ICタグ

Claims (9)

  1.  電源の接地線を流れる電流と、電源電圧を基準とした接地線を流れる電流の電流位相角度とから電流ベクトルを測定して漏電電流を検出する漏電電流検出方法であって、
     測定した前記電流ベクトルを第一の電流ベクトルとし、該第一の電流ベクトルとは異なるタイミングで測定した前記電流ベクトルを第二の電流ベクトルとして、前記第一の電流ベクトルと前記第二電流ベクトルとの差を第三電流ベクトルとして算出し、
     該第三電流ベクトルを漏電電流値として検出する
    ことを特徴とする漏電電流検出方法。
  2.  前記第一の電流ベクトルは、正常時の値である
    ことを特徴とする請求項1に記載の漏電電流検出方法。
  3.  前記第三の電流ベクトルに基づいて、漏電配線相又は素子種別を判定すること
    を特徴とする請求項1又は請求項2に記載の漏電電流検出方法。
  4.  前記素子種別が抵抗と判定された場合の前記第三の電流ベクトルの電流の大きさ、又は、前記抵抗の抵抗値が、基準値を超えた場合には異常と判定し、前記素子種別が静電容量と判定された場合には正常と判定する
    ことを特徴とする請求項3に記載の漏電電流検出方法。
  5.  電源の接地線を流れる電流を測定する電流測定手段と、電源電圧を基準とした接地線を流れる電流の電流位相角度を測定する電流位相角度測定手段とから、電流ベクトルを測定して漏電電流を検出する漏電電流検出システムであって、
     測定した第一の電流ベクトルと、該第一の電流ベクトルとは異なるタイミングで測定した第二の電流ベクトルとの差である第三電流ベクトルを漏電電流値として検出する検出手段を備えた
    ことを特徴とする漏電電流検出システム。
  6.  前記第一の電流ベクトルは、内部、又は、外部のいずれかで測定されたデータである
    ことを特徴とする請求項5に記載の漏電電流検出システム。
  7.  前記第一の電流ベクトルは、正常時の値である
    ことを特徴とする請求項5又は請求項6に記載の漏電電流検出システム。
  8.  前記第三の電流ベクトルに基づいて、漏電配線相又は素子種別を判定する判定手段を備えたこと
    を特徴とする請求項7に記載の漏電電流検出システム。
  9.  前記素子種別が抵抗と判定された場合の前記第三の電流ベクトルの電流の大きさ、又は、前記抵抗の抵抗値が、基準値を超えた場合には異常と判定し、前記素子種別が静電容量と判定された場合には正常と判定する判定手段を備えた
    ことを特徴とする請求項8に記載の漏電電流検出システム。
PCT/JP2018/020833 2017-05-30 2018-05-30 漏電検出方法 WO2018221619A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019521281A JP6709338B2 (ja) 2017-05-30 2018-05-30 漏電検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017107240 2017-05-30
JP2017-107240 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018221619A1 true WO2018221619A1 (ja) 2018-12-06

Family

ID=64456552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020833 WO2018221619A1 (ja) 2017-05-30 2018-05-30 漏電検出方法

Country Status (2)

Country Link
JP (1) JP6709338B2 (ja)
WO (1) WO2018221619A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782122A (zh) * 2018-12-17 2019-05-21 济南大学 一种s注入信号的检测方法
CN113903165A (zh) * 2021-08-18 2022-01-07 珠海派诺科技股份有限公司 一种漏电预警方法、系统、装置和火灾预警系统
WO2022131086A1 (ja) * 2020-12-14 2022-06-23 株式会社SoBrain 検査装置、検査方法および検査プログラム
WO2022131087A1 (ja) * 2020-12-14 2022-06-23 株式会社SoBrain 検査装置、検査方法および検査プログラム
JP7353002B1 (ja) 2023-05-08 2023-09-29 株式会社SoBrain 計測装置、計測方法および計測プログラム
JP7473403B2 (ja) 2020-06-05 2024-04-23 東芝プラントシステム株式会社 敷設ルート特定システム、および信号受信装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039758B1 (ja) * 2021-08-26 2022-03-22 一般財団法人中部電気保安協会 抵抗性零相電流検出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602016A (ja) * 1983-06-15 1985-01-08 株式会社日立製作所 直流送電線の保護方式
JP2005140532A (ja) * 2003-11-04 2005-06-02 Toyoji Ahei 位相角度算出装置及び方法、漏洩電流検出装置及び方法
JP2009081925A (ja) * 2007-09-26 2009-04-16 Tempearl Ind Co Ltd 抵抗分地絡電流を検出する装置
JP2016114437A (ja) * 2014-12-14 2016-06-23 修 板本 漏電箇所探査方法及びその装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009069B2 (ja) * 1991-04-25 2000-02-14 株式会社安川電機 地絡事故検出装置
JP3371675B2 (ja) * 1996-03-12 2003-01-27 株式会社ノーリツ 可燃ガス検知装置
JP3407133B2 (ja) * 2000-05-26 2003-05-19 株式会社トーエネック 低圧電路用地絡方向継電器
JP2004201356A (ja) * 2002-12-13 2004-07-15 Toenec Corp 地絡方向継電器
JP4378749B2 (ja) * 2003-12-12 2009-12-09 有限会社タカ電アキタ 工事用絶縁監視装置
KR101517159B1 (ko) * 2013-11-13 2015-05-04 주식회사 에렐 감전보호 3상 누전차단기
JP2017093069A (ja) * 2015-11-05 2017-05-25 関西電力株式会社 地絡検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602016A (ja) * 1983-06-15 1985-01-08 株式会社日立製作所 直流送電線の保護方式
JP2005140532A (ja) * 2003-11-04 2005-06-02 Toyoji Ahei 位相角度算出装置及び方法、漏洩電流検出装置及び方法
JP2009081925A (ja) * 2007-09-26 2009-04-16 Tempearl Ind Co Ltd 抵抗分地絡電流を検出する装置
JP2016114437A (ja) * 2014-12-14 2016-06-23 修 板本 漏電箇所探査方法及びその装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782122A (zh) * 2018-12-17 2019-05-21 济南大学 一种s注入信号的检测方法
JP7473403B2 (ja) 2020-06-05 2024-04-23 東芝プラントシステム株式会社 敷設ルート特定システム、および信号受信装置
WO2022131086A1 (ja) * 2020-12-14 2022-06-23 株式会社SoBrain 検査装置、検査方法および検査プログラム
WO2022131087A1 (ja) * 2020-12-14 2022-06-23 株式会社SoBrain 検査装置、検査方法および検査プログラム
EP4249932A4 (en) * 2020-12-14 2024-05-01 So Brain Co Ltd INSPECTION DEVICE, INSPECTION PROCEDURE AND INSPECTION PROGRAM
CN113903165A (zh) * 2021-08-18 2022-01-07 珠海派诺科技股份有限公司 一种漏电预警方法、系统、装置和火灾预警系统
CN113903165B (zh) * 2021-08-18 2023-10-27 珠海派诺科技股份有限公司 一种漏电预警方法、系统、装置和火灾预警系统
JP7353002B1 (ja) 2023-05-08 2023-09-29 株式会社SoBrain 計測装置、計測方法および計測プログラム

Also Published As

Publication number Publication date
JPWO2018221619A1 (ja) 2019-11-07
JP6709338B2 (ja) 2020-06-10

Similar Documents

Publication Publication Date Title
WO2018221619A1 (ja) 漏電検出方法
US8575941B2 (en) Apparatus and method for identifying a faulted phase in a shunt capacitor bank
CN103328991B (zh) 用于y-y连接电容器组中内部故障检测的方法和装置
JP5021341B2 (ja) 地絡バンク特定方法および地絡バンク特定装置
US9568535B2 (en) Methods for detecting an open current transformer
Olszowiec Insulation Measurement and Supervision in Live AC and DC Unearthed Systems
CN107710008A (zh) 调试用于支路监测系统的电压传感器和支路电流传感器的方法和设备
EP3598153A1 (en) Leakage current detection device, method, and program for detecting leakage current
JP5743296B1 (ja) 漏電箇所探査方法及びその装置
Rathnayaka et al. On-line impedance monitoring of transformer based on inductive coupling approach
JP4738244B2 (ja) 電力量計検査装置
CN107636481A (zh) 调试用于支路监测系统的电压传感器和支路电流传感器的方法和设备
JP5889992B2 (ja) 高圧絶縁監視方法および高圧絶縁監視装置
EP3206041A1 (en) A system and a method for monitoring transformer bushings
Hati et al. Axial leakage flux based on line condition monitoring instrumentation system for minewinder motor.
CN104198873A (zh) 一种电压互感器二次回路接地检测方法
CN208172234U (zh) 一种电流互感器的变比、极性检测试验装置
CN106772192A (zh) 电压互感器二次回路多点接地检测装置
Bengtsson et al. Innovative injection-based 100% stator earth-fault protection
JP6969079B2 (ja) 強制設置装置、それを用いた地絡故障探査装置及び方法
JP5354568B2 (ja) 系統判別装置
JP7013770B2 (ja) 強制接地装置及び地絡故障探査装置
Yildirim et al. An online electric power quality disturbance detection system
JP2014211400A (ja) 間接交流メガー測定器および絶縁抵抗測定方法
Kaufmann et al. Sensitive ground fault detection in compensated systems (arc suppression coil). What is influencing the sensitivity?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809520

Country of ref document: EP

Kind code of ref document: A1