WO2018221577A1 - 翼振動監視装置、翼振動監視システム、動翼、及び回転機械 - Google Patents

翼振動監視装置、翼振動監視システム、動翼、及び回転機械 Download PDF

Info

Publication number
WO2018221577A1
WO2018221577A1 PCT/JP2018/020747 JP2018020747W WO2018221577A1 WO 2018221577 A1 WO2018221577 A1 WO 2018221577A1 JP 2018020747 W JP2018020747 W JP 2018020747W WO 2018221577 A1 WO2018221577 A1 WO 2018221577A1
Authority
WO
WIPO (PCT)
Prior art keywords
shroud
blade
circumferential direction
sensor
vibration monitoring
Prior art date
Application number
PCT/JP2018/020747
Other languages
English (en)
French (fr)
Inventor
山下 洋行
和浩 田村
慶一郎 宮島
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to US16/617,268 priority Critical patent/US20210131861A1/en
Priority to KR1020197034354A priority patent/KR20200002952A/ko
Priority to JP2019521265A priority patent/JP7065844B2/ja
Priority to DE112018002812.7T priority patent/DE112018002812T5/de
Priority to CN201880034060.1A priority patent/CN110662948B/zh
Publication of WO2018221577A1 publication Critical patent/WO2018221577A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/14Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to other specific conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/182Two-dimensional patterned crenellated, notched
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/323Arrangement of components according to their shape convergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/324Arrangement of components according to their shape divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/304Spool rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/334Vibration measurements

Definitions

  • the present invention relates to a blade vibration monitoring device, a blade vibration monitoring system, a moving blade, and a rotating machine.
  • a manager of a rotating machine such as a turbine uses a blade vibration monitoring device to monitor vibration generated in the moving blade during turbine operation.
  • the administrator verifies whether or not the vibration characteristics of the moving blades are as designed according to such monitoring.
  • the manager performs such monitoring, confirms changes in the vibration characteristics of the moving blades due to changes in operating conditions, and improves the reliability of the turbine.
  • the non-contact blade vibration measurement technique described above may be applied to a blade having a shroud (tip shroud) at the radially outer end.
  • tip shroud a shroud
  • the passage of the gap between the shrouds adjacent to the sensor in the circumferential direction (reference numeral G in FIG. 3) is detected. It is necessary to let However, since the gap between the shrouds is very small, there is a problem that it is difficult for the sensor to clearly obtain a detection signal representing the passage of the gap.
  • An object of the present invention is to provide a blade vibration monitoring device, a blade vibration monitoring system, a moving blade, and a rotating machine capable of stably measuring vibration of a moving blade having a shroud.
  • a blade vibration monitoring device includes a rotating shaft extending along an axis, a plurality of moving blades, a moving blade body extending radially outward from the rotating shaft, and A rotating machine having a plurality of blades having shrouds provided at the tip of the blade main body and contacting each other in the circumferential direction; and the shroud provided on the radially outer side of the shroud facing the shroud.
  • a sensor for detecting a change in the outer circumferential surface of the shroud wherein the outer surface of the shroud is disposed so as to be sandwiched between the first surface and the first surface from both sides in the circumferential direction, and a detection signal from the sensor is A second surface different from the first surface.
  • the motion having the shroud is compared with the method of detecting the gap between the shrouds. Measurement of blade vibration can be performed stably.
  • the second surface may be formed such that the width in the circumferential direction gradually increases toward at least one of the upstream side and the downstream side in the axial direction.
  • the position of the shroud in the axial direction can be specified based on the length of time that the second surface passes inside the sensor in the radial direction.
  • the second surface may be formed such that the circumferential width increases stepwise toward at least one of the upstream side and the downstream side in the axial direction.
  • the position of the shroud in the axial direction can be specified based on the length of time that the second surface passes inside the sensor in the radial direction.
  • the length of time that the second surface passes through the radially inner side of the sensor can be changed discretely.
  • the second surface may be formed to have a radial height different from that of the first surface.
  • the second surface may be formed of a metal different from the first surface.
  • the outer peripheral surface of the shroud can be flattened. Thereby, disturbance of the working fluid can be suppressed. Further, the second surface can be detected using a sensor that can detect an object in the electric field by generating an electric field.
  • the blade vibration monitoring system includes a rotating shaft extending along an axis and a plurality of moving blades, the plurality of moving blade bodies extending radially outward from the rotating shaft. And a rotating machine comprising a plurality of blades having shrouds provided at the tip of the blade main body and contacting each other in the circumferential direction, and provided on the radially outer side of the shroud facing the shroud.
  • a sensor that detects a change in the outer peripheral surface of the shroud; and a calculation unit that calculates a vibration amount of the shroud based on a detection signal of the sensor, wherein the outer surface of the shroud is a first surface; A second surface that is different from the first surface, and the arithmetic unit is arranged on a radially inner side of the sensor.
  • First table There calculates the circumferential direction of the vibration of the shroud on the basis of the length of time to pass.
  • the second surface is formed so that a width in a circumferential direction gradually increases toward one side in an axial direction
  • the calculation unit is configured so that a radially inner side of the sensor is positioned on the second surface.
  • the amount of vibration in the axial direction of the shroud may be calculated on the basis of the length of time that passes.
  • the moving blade is a rotating blade of a rotary machine including a rotating shaft extending along an axis and a plurality of moving blades, and is radially outward from the rotating shaft. And a shroud provided at the tip of the rotor blade body and in contact with each other in the circumferential direction.
  • the outer surface of the shroud is a first surface, and both sides of the first surface in the circumferential direction.
  • the boundary with the first surface has a second surface inclined to at least one of the upstream side and the downstream side in the axial direction.
  • the second surface may be formed such that the width in the circumferential direction gradually increases toward at least one of the upstream side and the downstream side in the axial direction.
  • the second surface may be formed such that the circumferential width increases stepwise toward at least one of the upstream side and the downstream side in the axial direction.
  • the second surface may be formed so as to have a radial height different from that of the first surface.
  • the second surface may be formed of a metal different from the first surface.
  • the rotating machine includes a rotating shaft extending along an axis, a plurality of moving blades, the moving blade main body extending radially outward from the rotating shaft, and the A plurality of rotor blades having shrouds provided at the tip of the rotor blade body and contacting each other in the circumferential direction, and provided on the radially outer side of the shroud so as to face the shroud to detect a change in the outer peripheral surface of the shroud A sensor, and an outer peripheral surface of the shroud is disposed so as to be sandwiched between the first surface and the first surface from both sides in the circumferential direction, and a detection signal from the sensor is different from the first surface.
  • a blade vibration monitoring device having a surface.
  • the rotor blade having the shroud is compared with the method of detecting the gap between the shrouds. Vibration measurement can be performed stably.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG. 4 and is a cross-sectional view of the shroud of the first embodiment of the present invention. It is a figure which made the horizontal axis the time and made the vertical axis
  • the blade vibration monitoring device is, for example, a device including a rotating machine such as a turbine and a sensor necessary for monitoring the vibration of the moving blade, and the blade vibration monitoring system has an analysis device added to the blade vibration monitoring device 100.
  • the blade vibration monitoring device 100 of the present embodiment includes a turbine 1 that is a rotating machine and a plurality of displacement sensors 14.
  • the turbine 1 includes a rotating shaft 2, a casing 3, a stationary blade stage 4 including a plurality of stationary blades 5, and a moving blade stage 6 including a plurality of moving blades 7.
  • the blade vibration monitoring system 101 of this embodiment includes an analysis device 11 in addition to the blade vibration monitoring device 100.
  • the rotating shaft 2 has a cylindrical shape extending along the axis A.
  • the rotating shaft 2 is supported at both ends in the axial direction Da along the axis A by the bearing device 8 so as to be rotatable around the axis.
  • the direction in which the axis A of the rotating shaft 2 extends is defined as the axial direction Da.
  • a direction perpendicular to the axis A is a radial direction, a side away from the axis A in the radial direction is referred to as a radially outer side, and a side closer to the axis A in the radial direction is referred to as a radially inner side.
  • the bearing device 8 has a journal bearing 8A provided on each side of the axial direction Da of the rotary shaft 2 and a thrust bearing 8B provided only on one side in the axial direction Da.
  • the journal bearing 8A supports a load in the radial direction by the rotating shaft 2.
  • the thrust bearing 8B supports a load in the axial direction Da by the rotary shaft 2.
  • the casing 3 has a cylindrical shape extending in the axial direction Da.
  • the casing 3 covers the rotating shaft 2 from the outer peripheral side.
  • the casing 3 includes an intake port 9 and an exhaust port 10.
  • the intake port 9 is formed on the upstream side (right side in FIG. 1) of the casing 3 in the axial direction Da, and takes in steam (working fluid) into the casing 3 from the outside.
  • the exhaust port 10 is formed on the downstream side of the casing 3 in the axial direction Da, and exhausts the steam that has passed through the casing 3 to the outside.
  • a side where the intake port 9 is located when viewed from the exhaust port 10 is referred to as an upstream side, and a side where the exhaust port 10 is viewed when viewed from the intake port 9 is referred to as a downstream side.
  • the stationary blade stage 4 is provided with a plurality of stages on the inner peripheral surface 3 a of the casing 3 at intervals along the axial direction Da. Each stationary blade stage 4 is disposed upstream of each moving blade stage 6. Each stationary blade stage 4 has a plurality of stationary blades 5 that are arranged at intervals in the circumferential direction of the axis A and extend radially outward from the rotating shaft 2 in the radial direction. The stationary blade 5 is provided so as to extend radially inward from the inner peripheral surface 3 a of the casing 3. The stationary blade 5 has an airfoil-shaped cross section when viewed from the radial direction.
  • the moving blade stage 6 is provided with a plurality of stages on the outer peripheral surface 2 a of the rotating shaft 2 with an interval in the axial direction Da.
  • Each moving blade stage 6 has a plurality of moving blades 7 arranged on the outer peripheral surface 2 a of the rotating shaft 2 at intervals in the circumferential direction of the axis.
  • each of the plurality of moving blades 7 constituting at least one moving blade stage 6 is fixed to the moving blade body 12 and the blade tip of the moving blade body 12.
  • Shroud 13 chip shroud.
  • the rotor blade body 12 is formed to extend radially outward from the rotating shaft 2.
  • the rotor blade body 12 has an airfoil-shaped cross section when viewed from the radial direction.
  • the shroud 13 is provided at the radially outer end of the rotor blade body 12.
  • the shroud 13 has a plate shape having a predetermined thickness in the radial direction.
  • the shroud 13 is integrally fixed to the blade main body 12 so as to project in the circumferential direction on the radially outer side of the blade main body 12.
  • a surface of the shroud 13 facing outward in the radial direction is an outer peripheral surface 13 a of the shroud 13.
  • each shroud 13 is disposed so as to be adjacent to and partly abutted in the circumferential direction Dc of the axis A (see FIG. 2). That is, the shroud 13 is pressed against the shroud 13 of another moving blade 7 adjacent in the circumferential direction Dc.
  • a surface that faces the upstream side and extends along the circumferential direction Dc is an upstream end surface 19 and a surface that faces the downstream side and extends along the circumferential direction Dc is a downstream end surface 20.
  • the surface of the shroud 13 on one side in the circumferential direction Dc and facing the front side in the rotational direction R is the first circumferential direction end surface 21, and the surface on the other side in the circumferential direction Dc and facing the rear side in the rotational direction R A second circumferential end face 22 is provided.
  • a convex portion 23 is formed on the first circumferential end surface 21.
  • the second circumferential end surface 22 has a recess 24 corresponding to the projection 23 formed on the first circumferential end surface 21.
  • a gap G is provided between the adjacent shrouds 13 in consideration of deformation of the shroud 13 during operation.
  • the displacement sensor 14 is provided on the radially outer side of the shroud 13 so as to face the shroud 13.
  • the displacement sensor 14 is fixed to the casing 3 (see FIG. 1) on the stationary side.
  • the number of displacement sensors 14 is the same as the number of moving blades 7, but is not limited thereto.
  • the displacement sensor 14 is an eddy current displacement sensor that measures a distance from the shroud 13 that is a measurement object.
  • the displacement sensor 14 is not limited to an eddy current type, but may be a sensor that can measure displacement without contact, such as a laser type or an ultrasonic type.
  • FIG. 2 shows the displacement sensor 14 arranged for one moving blade stage 6, the displacement sensor 14 may be similarly arranged for the other moving blade stage 6.
  • the displacement sensor 14 is connected to the analysis device 11 of the blade vibration monitoring system 101 via an electric signal cable.
  • the blade vibration monitoring device 100 includes a rotation sensor 17 that detects one rotation of the rotary shaft 2.
  • the rotation sensor 17 detects one rotation of the rotating shaft 2 and outputs a predetermined pulse wave indicating the detection time.
  • the outer peripheral surface 13 a of the shroud 13 has a first surface 25 and a second surface 26 arranged so as to be sandwiched by the first surface 25 from both sides in the circumferential direction Dc.
  • the second surface 26 has a strip shape extending in the axial direction Da near the center of the shroud 13 in the circumferential direction Dc.
  • the second surface 26 extends from the upstream end surface 19 of the shroud 13 to the downstream end surface 20.
  • the second surface 26 is formed such that the width in the circumferential direction Dc gradually increases toward one side (downstream side) in the axial direction Da.
  • the pair of boundary lines 27 between the first surface 25 and the second surface 26 is a straight line, and the pair of boundary lines 27 are inclined so as to be separated from each other toward one side in the axial direction Da. ing.
  • the second surface 26 is formed such that the distance in the circumferential direction Dc between the pair of boundary lines 27 (hereinafter referred to as a second surface width W) is a predetermined length or more.
  • the second surface 26 is formed so as to have a height different from that of the first surface 25 in the radial direction Dr.
  • the second surface 26 of the present embodiment has a height in the radial direction Dr that is lower than that of the first surface 25.
  • the thickness of the second surface 26 is thinner than the thickness of the first surface 25. That is, the second surface 26 is formed so that the detection signal from the displacement sensor 14 is different from the first surface 25.
  • the first surface 25 and the second surface 26 of all the shrouds 13 constituting one blade stage 6 have the same shape.
  • the analysis device 11 includes a storage unit 11 a and a calculation unit 11 b that calculates a vibration amount of the shroud 13 based on a detection signal from the displacement sensor 14, that is, a distance between the displacement sensor 14 and the shroud 13. .
  • the length in the circumferential direction Dc (second surface width W) of the second surface 26 that passes through the radially inner side of the displacement sensor 14 and the position of the shroud 13 in the axial direction Da is remembered.
  • FIG. 6 is a diagram in which the horizontal axis represents time and the vertical axis represents the signal intensity of the detection signal of the displacement sensor 14.
  • the distance between the displacement sensor 14, which is a detection signal detected by the displacement sensor 14, and the outer peripheral surface of the shroud 13 is large when the second surface 26 passes through the radially inner side of the displacement sensor 14.
  • the detection signal of the second surface 26 has a waveform that periodically appears. Since the second surface 26 and the first surface 25 have different radial heights, the detection signal changes clearly.
  • the time width T1 of the second surface 26 (the length of time that the second surface 26 passes through the radially inner side of the displacement sensor 14).
  • the time width T2 of the first surface 25 (the length of time that the first surface 25 passes through the radially inner side of the displacement sensor 14) is constant.
  • the administrator can monitor the vibration generated in the moving blade 7 based on the change of the time width T1 and the time width T2.
  • the time width T2 changes.
  • the calculation unit of the analysis device 11 calculates the vibration amount of the shroud 13 based on the time width T2.
  • the calculation unit calculates the vibration amount of the shroud 13 from the peripheral speed Vr of the shroud 13 and the time width T2.
  • the time width T1 changes. That is, by forming the second surface width W so as to gradually increase toward one side in the axial direction Da, the time width T1 varies depending on the position of the shroud 13 in the axial direction Da.
  • the calculation unit of the analysis device 11 calculates the second surface width W based on the time width T1.
  • the second surface width W can be calculated by Vr ⁇ T1.
  • the position of the shroud 13 in the axial direction Da is specified using the relationship between the second surface width W stored in the storage unit 11a and the position of the shroud 13 in the axial direction Da. be able to.
  • the storage unit 11a of the analysis device 11 can store calibration data acquired in advance by a factory test or the like.
  • the data for calibration is, for example, the relationship between the measured time width T1 at a predetermined peripheral speed and the length in the circumferential direction Dc of the second surface 26 that has passed through the radially inner side of the displacement sensor 14. In this way, by storing the calibration data in the storage unit, even if the detection signal becomes unclear due to the low frequency characteristics of the sensor, the vibration amount is compared with the calibration data. Can be predicted.
  • FIG. 7 is a view of the moving blade stage 6 as viewed from the outside in the radial direction, and is a view for explaining the signal width when the shroud 13 vibrates in the axial direction Da.
  • the shroud F2 indicated by the alternate long and short dash line does not vibrate in the axial direction Da with respect to the reference shroud F1.
  • the shroud F3 indicated by the solid line vibrates in the axial direction Da with respect to the reference shroud F1.
  • the shape of the second surface 26 and the vibration amount of the shroud are exaggerated in order to clarify the effect.
  • the actual amplitude of the shroud is the distance of the line segment ab, but the sensor measurement amplitude measured by the displacement sensor 14 is the distance of the line segment aa ′.
  • the line segment aa ′ can be calculated by the following mathematical formula (1).
  • is an angle of the boundary line 27 between the first surface 25 and the second surface 26 with respect to the axis A.
  • X and Y are components of the actual amplitude of the shroud 13.
  • aa ′ Y + X tan ⁇ (1)
  • the sensor measurement amplitude aa ′ measured by the displacement sensor 14 can be made larger than the actual amplitude ab. Thereby, the sensitivity of the blade vibration monitoring apparatus 100 can be improved.
  • the detection signal detected by the displacement sensor 14 is different between the first surface 25 and the second surface 26 of the shroud 13, it is compared with a method of detecting the gap G between the shrouds 13.
  • the vibration of the moving blade 7 having the shroud 13 can be stably measured.
  • the shroud 13 of this embodiment makes the detection signal by the displacement sensor 14 differ by the 1st surface 25 and the 2nd surface 26 by making the height of the radial direction of the 1st surface 25 and the 2nd surface 26 differ. I tried to make them different. Thereby, the structure where the detection signal by the displacement sensor 14 differs in the 1st surface 25 and the 2nd surface 26 can be formed more easily.
  • the amount of vibration in the circumferential direction Dc of the shroud 13 can be calculated based on the length of time that the first surface 25 passes through the radially inner side of the displacement sensor 14.
  • the second surface 26 is formed so that the width in the circumferential direction Dc gradually increases toward one side of the axial direction Da, the time required for the second surface 26 to pass through the radially inner side of the displacement sensor 14.
  • the amount of vibration of the shroud 13 in the axial direction Da can be calculated on the basis of the length of.
  • the measurement position of the shroud 13 by the displacement sensor 14 can be grasped based on the second surface width W, it can be reflected in the review of the limit value and safety factor in blade vibration monitoring.
  • the shroud 13 ⁇ / b> B of the present embodiment includes a shroud main body 30 and a dissimilar metal portion 31 embedded in the shroud main body 30.
  • the shape of the dissimilar metal portion 31 viewed from the outside in the radial direction is the same as the shape of the second surface 26 of the first embodiment.
  • the second surface 26 of the present embodiment is a surface of the dissimilar metal part 31 embedded in the shroud main body 30.
  • the outer peripheral surface of the shroud 13B is formed such that the first surface 25 and the second surface 26 are on the same plane (on the same curved surface).
  • the sensor according to the present embodiment is an electric field sensor that can detect an object in an electric field in a non-contact manner by generating an electric field. As a result, the detection signal from the sensor differs between the first surface 25 and the second surface 26.
  • the outer peripheral surface 13a of the shroud 13B can be flattened. Thereby, disturbance of the working fluid can be suppressed. Further, the second surface 26 can be detected using a sensor that can detect an object in the electric field by generating an electric field.
  • the dissimilar metal portion 31 having a predetermined thickness is embedded.
  • the present invention is not limited to this, and a tape formed of a metal material different from the material of the shroud main body 30 may be attached. .
  • the second surface 26 ⁇ / b> C of the present embodiment is formed so that the width in the circumferential direction Dc increases stepwise as it goes to one side in the axial direction Da.
  • the boundary line 27C between the first surface 25 and the second surface 26C is formed in a step shape.
  • the position of the shroud 13C in the axial direction Da can be specified based on the length of time that the second surface 26 passes through the inner side in the radial direction of the sensor.
  • the length of time that the second surface 26C passes through the inner side in the radial direction of the sensor can be changed discretely.
  • the blade vibration monitoring device 100D of the present embodiment includes a laser sensor 15 disposed at the same axial position as the displacement sensor 14, a purge air supply device 16 that cleans the tip of the laser sensor 15, have.
  • the laser sensor 15 is an optical sensor that irradiates laser light and detects reflected light that is reflected from the outer peripheral surface of the shroud 13.
  • the laser sensor 15 Since the laser sensor 15 has high frequency characteristics, it is possible to accurately measure the second surface width W (see FIG. 4) of the shroud 13 that passes at a higher speed than an eddy current displacement sensor or the like.
  • the laser sensor 15 may be affected by steam in the environment of the steam turbine, resulting in a signal failure.
  • the laser sensor 15 since the laser sensor 15 is intended to detect the second surface width W, it is always measured stably. What you can do is not so important. That is, it is only necessary to be able to measure for a short time, and it is possible to perform a certain evaluation if it is possible to obtain well with only several detection signals instead of all the moving blades 7 (shroud 13).
  • the second surface 26 is formed so that the width in the circumferential direction gradually increases toward the downstream side in the axial direction.
  • the present invention is not limited to this, and as it goes toward the downstream side in the axial direction. You may form so that the width
  • the blade vibration monitoring apparatus and blade vibration monitoring system of the above embodiment are technologies that can be used without distinction for rotating machines such as steam turbines and gas turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

軸線に沿って延びる回転軸と、複数の動翼であって、回転軸から径方向外側に放射状に延びる動翼本体、及び、動翼本体の先端に設けられて互いに周方向に接触するシュラウドを有する複数の動翼と、を備える回転機械と、シュラウドの径方向外側にシュラウドに対向して設けられてシュラウドの外周面の変化を検出するセンサと、を備え、シュラウドの外周面が、第一表面と、第一表面に周方向両側から挟まれるように配置されて、センサによる検出信号が第一表面とは異なる第二表面と、を有する翼振動監視装置。

Description

翼振動監視装置、翼振動監視システム、動翼、及び回転機械
 本発明は、翼振動監視装置、翼振動監視システム、動翼、及び回転機械に関する。
 本願は、2017年5月31日に出願された特願2017-107663号について優先権を主張し、その内容をここに援用する。
 例えば、タービンなどの回転機械の管理者は、翼振動監視装置を用いてタービン運転中に動翼に発生する振動の監視を行う。管理者は、このような監視を行うことにより動翼の振動特性が設計計画通りであるか否かを検証する。また、管理者はこのような監視を行い、運転条件の変化による動翼の振動特性の変化を確認し、タービンの信頼性の向上を図る。
日本国特許第3038382号公報
 ところで、上記した非接触翼振動計測技術を径方向外側の端部にシュラウド(チップシュラウド)を有する動翼に適用する場合がある。このように、シュラウドを介して動翼の振動を分析する場合、シュラウドの外周面が平坦であることから、センサに周方向に隣り合うシュラウド間の隙間(図3における符号G)の通過を検出させる必要がある。しかしながら、シュラウド間の隙間は非常に小さいため、この隙間の通過を表す検出信号をセンサが明瞭に取得することが困難であるという課題がある。
 この発明は、シュラウドを有する動翼の振動の計測を安定して行うことができる翼振動監視装置、翼振動監視システム、動翼、及び回転機械を提供することを目的とする。
 本発明の第一の態様によれば、翼振動監視装置は、軸線に沿って延びる回転軸と、複数の動翼であって、前記回転軸から径方向外側に放射状に延びる動翼本体、及び、前記動翼本体の先端に設けられて互いに周方向に接触するシュラウドを有する複数の動翼と、を備える回転機械と、前記シュラウドの径方向外側に前記シュラウドに対向して設けられて前記シュラウドの外周面の変化を検出するセンサと、を備え、前記シュラウドの外周面が、第一表面と、前記第一表面に周方向両側から挟まれるように配置されて、前記センサによる検出信号が前記第一表面とは異なる第二表面と、を有する。
 このような構成によれば、センサによって検出される検出信号がシュラウドの第一表面と第二表面とで異なるものとなるため、シュラウド間の隙間を検出する方法と比較して、シュラウドを有する動翼の振動の計測を安定して行うことができる。
 上記翼振動監視装置において、前記第二表面は、軸線方向の上流側及び下流側の少なくとも一方に向かうに従って漸次周方向の幅が増加するように形成されてよい。
 このような構成によれば、センサの径方向内側を第二表面が通過する時間の長さに基づいて、シュラウドの軸線方向の位置を特定することができる。
 上記翼振動監視装置において、前記第二表面は、軸線方向の上流側及び下流側の少なくとも一方に向かうに従って段階的に周方向の幅が増加するように形成されてよい。
 このような構成によれば、センサの径方向内側を第二表面が通過する時間の長さに基づいて、シュラウドの軸線方向の位置を特定することができる。また、センサの径方向内側を第二表面が通過する時間の長さを離散的に変化させることができる。
 上記翼振動監視装置において、前記第二表面は、前記第一表面と径方向の高さが異なるように形成されてよい。
 このような構成によれば、センサによる検出信号が第一表面と異なる第二表面とで異なる構造を、より容易に形成することができる。
 上記翼振動監視装置において、前記第二表面は、前記第一表面と異なる金属によって形成されてよい。
 このような構成によれば、シュラウドの外周面を平坦にすることができる。これにより、作動流体の乱れを抑制することができる。また、電界を発生させることによって、電界内の物体を検出することができるセンサを用いて第二表面を検出することができる。
 本発明の第二の態様によれば、翼振動監視システムは、軸線に沿って延びる回転軸と、複数の動翼であって、前記回転軸から径方向外側に放射状に延びる複数の動翼本体、及び、前記動翼本体の先端に設けられて互いに周方向に接触するシュラウドを有する複数の動翼と、を備える回転機械と、前記シュラウドの径方向外側に前記シュラウドに対向して設けられて前記シュラウドの外周面の変化を検出するセンサと、前記センサの検出信号に基づいて、前記シュラウドの振動量を演算する演算部と、を備え、前記シュラウドの外周面が、第一表面と、前記第一表面に周方向両側から挟まれるように配置されて、前記センサによる検出信号が前記第一表面とは異なる第二表面と、を有し、前記演算部は、前記センサの径方向内側を前記第一表面が通過する時間の長さに基づいて前記シュラウドの周方向の振動量を演算する。
 上記翼振動監視システムにおいて、前記第二表面は、軸線方向の一方側に向かうに従って漸次周方向の幅が増加するように形成され、前記演算部は、前記センサの径方向内側を前記第二表面が通過する時間の長さに基づいて前記シュラウドの軸線方向の振動量を演算してよい。
 本発明の第三の態様によれば、動翼は、軸線に沿って延びる回転軸と、複数の動翼と、を備える回転機械の動翼であって、前記回転軸から径方向外側に放射状に延びる動翼本体と、前記動翼本体の先端に設けられて互いに周方向に接触するシュラウドと、を有し、前記シュラウドの外周面が、第一表面と、前記第一表面に周方向両側から挟まれるように配置されて、前記第一表面との境界は軸線方向の上流側及び下流側の少なくともいずれかに傾斜している第二表面と、を有する。
 上記動翼において、前記第二表面は、軸線方向の上流側及び下流側の少なくとも一方に向かうに従って漸次周方向の幅が増加するように形成されてよい。
 上記動翼において、前記第二表面は、軸線方向の上流側及び下流側の少なくとも一方に向かうに従って段階的に周方向の幅が増加するように形成されてよい。
 上記動翼において、前記第二表面は、前記第一表面と径方向の高さが異なるように形成されてよい。
 上記動翼において、前記第二表面は、前記第一表面と異なる金属によって形成されてよい。
 本発明の第四の態様によれば、回転機械は、軸線に沿って延びる回転軸と、複数の動翼であって、前記回転軸から径方向外側に放射状に延びる動翼本体、及び、前記動翼本体の先端に設けられて互いに周方向に接触するシュラウドを有する複数の動翼と、前記シュラウドの径方向外側に前記シュラウドに対向して設けられて前記シュラウドの外周面の変化を検出するセンサと、を備え、前記シュラウドの外周面が、第一表面と、前記第一表面に周方向両側から挟まれるように配置されて、前記センサによる検出信号が前記第一表面とは異なる第二表面と、を有する翼振動監視装置を備える。
 本発明によれば、センサによって検出される検出信号がシュラウドの第一表面と第二表面とで異なるものとなるため、シュラウド間の隙間を検出する方法と比較して、シュラウドを有する動翼の振動の計測を安定して行うことができる。
本発明の第一実施形態のタービンの構成を示す図である。 本発明の第一実施形態の翼振動監視システムを示す図である。 本発明の第一実施形態の動翼段を径方向外側から見た図である。 本発明の第一実施形態のシュラウドを、径方向外側から見た図である。 図4のV-V断面図であり、本発明の第一実施形態のシュラウドの断面図である。 横軸を時間、縦軸を変位センサの検出信号とした図である。 動翼段を径方向外側から見た図であり、シュラウドが軸線方向に振動した場合の信号幅について説明する図である。 シュラウドが軸線方向に振動した場合の信号幅について説明する図である。 本発明の第二実施形態のシュラウドの断面図である。 本発明の第三実施形態のシュラウドを、径方向外側から見た図である。 本発明の第四実施形態の翼振動監視システムを軸線方向から見た図である。
〔第一実施形態〕
 以下、本発明の第一実施形態の翼振動監視装置及び翼振動監視システムを図面を参照して説明する。翼振動監視装置は、例えば、タービンなどの回転機械と、動翼の振動を監視するのに必要なセンサを含む装置であり、翼振動監視システムは、翼振動監視装置100に解析装置を加えたシステムである。
 図1に示すように、本実施形態の翼振動監視装置100は、回転機械であるタービン1と、複数の変位センサ14と、を備えている。
 タービン1は、回転軸2と、ケーシング3と、複数の静翼5を備える静翼段4と、複数の動翼7を備える動翼段6と、を備えている。
 図2に示すように、本実施形態の翼振動監視システム101は、翼振動監視装置100に加えて、解析装置11を備えている。
 回転軸2は、軸線Aに沿って延びる円柱状をなしている。回転軸2は、軸線Aに沿った軸線方向Daの両端部が、軸受装置8によって軸線回りに回転自在に支持されている。
 なお、以下の説明において、回転軸2の軸線Aが延びている方向を軸線方向Daとする。また、軸線Aに直交する方向を径方向とし、この径方向で軸線Aから遠ざかる側を径方向外側と言い、この径方向で軸線Aに近づく側を径方向内側と言う。
 軸受装置8は、回転軸2の軸線方向Daの両側に一つずつ設けられたジャーナル軸受8Aと、軸線方向Daの片側のみに設けられたスラスト軸受8Bと、を有している。ジャーナル軸受8Aは、回転軸2による径方向への荷重を支持する。スラスト軸受8Bは、回転軸2による軸線方向Daへの荷重を支持する。
 ケーシング3は、軸線方向Daに延びる筒状をなしている。ケーシング3は、回転軸2を外周側から覆う。
 ケーシング3は、吸気口9と、排気口10と、を備えている。吸気口9は、ケーシング3の軸線方向Daの上流側(図1の右側)に形成され、外部からケーシング3内に蒸気(作動流体)を取り入れる。排気口10は、ケーシング3の軸線方向Daの下流側に形成され、ケーシング3内を通過した蒸気を外部に排気する。
 以下の説明では、軸線方向Daにおいて、排気口10から見て吸気口9が位置する側を上流側と言い、吸気口9から見て排気口10が位置する側を下流側と言う。
 静翼段4は、ケーシング3の内周面3aに、軸線方向Daに沿って間隔をあけて、複数段が設けられている。各々の静翼段4は、各々の動翼段6の上流側に配置されている。各々の静翼段4は、軸線Aの周方向に間隔をあけて配列され、回転軸2から径方向外側に放射状に延びる複数の静翼5を有している。
 静翼5は、ケーシング3の内周面3aから径方向内側に向かって延びるよう設けられている。静翼5は、径方向から見て翼型の断面を有している。
 動翼段6は、回転軸2の外周面2aに、軸線方向Daに間隔をあけて、複数段が設けられている。各々の動翼段6は、回転軸2の外周面2a上で、軸線の周方向に間隔をあけて配列された複数の動翼7を有している。
 図2に示すように、複数の動翼段6のうち、少なくとも一段の動翼段6を構成する複数の動翼7の各々は、動翼本体12と、動翼本体12の翼端に固定されたシュラウド13(チップシュラウド)と、を有している。
 動翼本体12は、回転軸2から径方向外側に向かって延びるよう形成されている。動翼本体12は、径方向から見て翼型の断面を有している。
 シュラウド13は、動翼本体12の径方向外側の端部に設けられている。シュラウド13は、径方向に所定の厚みを有する板状をなしている。シュラウド13は、動翼本体12の径方向外側において周方向に張り出すように動翼本体12に対して一体に固定されている。シュラウド13における径方向外側を向く面は、シュラウド13の外周面13aとされている。
 図3に示すように、各々のシュラウド13は、軸線A(図2参照)の周方向Dcに隣接するとともに一部が当接するように配置されている。即ち、シュラウド13は、周方向Dcに隣接する他の動翼7のシュラウド13と互いに押圧しあっている。
 シュラウド13においては、上流側を向き周方向Dcに沿って延びる面が上流側端面19とされ、下流側を向き周方向Dcに沿って延びる面が下流側端面20とされている。
 また、シュラウド13における周方向Dcの一方側であって回転方向R前方側を向く面が第一周方向端面21とされ、周方向Dcの他方側であって回転方向R後方側を向く面が第二周方向端面22とされている。
 第一周方向端面21には、凸部23が形成されている。第二周方向端面22には、第一周方向端面21に形成されている凸部23に対応する凹部24が形成されている。
 隣接するシュラウド13同士の間には、運転時におけるシュラウド13の変形を考慮して設けられた隙間Gが設けられている。
 図2に示すように、変位センサ14は、シュラウド13の径方向外側に、シュラウド13に対向して設けられている。変位センサ14は、静止側であるケーシング3(図1参照)に固定されている。変位センサ14の数は、動翼7の数と同じであるが、これに限ることはない。
 変位センサ14は、測定対象物であるシュラウド13との距離を測定する渦電流式変位センサである。変位センサ14としては、渦電流式に限らず、レーザー式、超音波式など、非接触で変位を測定することができるセンサを採用することができる。
 図2には、一の動翼段6に対して配置されている変位センサ14を示すが、他の動翼段6に対しても同様に変位センサ14が配置されてよい。変位センサ14は翼振動監視システム101の解析装置11と電気信号ケーブルを介して接続されている。
 翼振動監視装置100は、回転軸2の一回転を検出する回転センサ17を備えている。回転センサ17は、回転軸2の一回転を検出して、その検出時を示す所定のパルス波を出力する。
 次に、本実施形態のシュラウド13の詳細形状について説明する。
 図4に示すように、シュラウド13の外周面13aは、第一表面25と、第一表面25に周方向Dc両側から挟まれるように配置されている第二表面26とを有している。第二表面26は、シュラウド13における周方向Dcの中央近傍にて、軸線方向Daに延在する帯状をなしている。第二表面26は、シュラウド13の上流側端面19から下流側端面20まで延在している。
 第二表面26は、軸線方向Daの一方側(下流側)に向かうに従って漸次周方向Dcの幅が増加するように形成されている。換言すれば、第一表面25と第二表面26との間の一対の境界線27は直線であり、一対の境界線27は、軸線方向Daの一方側に向かうに従って互いに離間するように傾斜している。第二表面26は、一対の境界線27同士の周方向Dcの間隔(以下、第二表面幅Wと呼ぶ。)が所定の長さ以上となるように形成されている。
 図5に示すように、第二表面26は、第一表面25と径方向Drの高さが異なるように形成されている。本実施形態の第二表面26は、径方向Drの高さが第一表面25よりも低い。換言すれば、第二表面26の厚さは、第一表面25の厚さよりも薄い。即ち、第二表面26は、変位センサ14による検出信号が第一表面25とは異なるように形成されている。
 一の動翼段6を構成する全てのシュラウド13の第一表面25及び第二表面26は、同形状をなしている。
 解析装置11は、記憶部11aと、変位センサ14による検出信号、即ち、変位センサ14とシュラウド13との距離に基づいて、シュラウド13の振動量を演算する演算部11bと、を有している。
 解析装置11の記憶部11aには、変位センサ14の径方向内側を通過する第二表面26の周方向Dcの長さ(第二表面幅W)と、シュラウド13の軸線方向Daの位置との関係が記憶されている。
 以上のように構成されたタービン1の動作について説明する。
 タービン1を運転するに当たっては、まずボイラ等の蒸気供給源(図示省略)から供給された高温高圧の蒸気が、吸気口9を通じてケーシング3の内部に導入される。ケーシング3内に導入された蒸気は、動翼7(動翼段6)、及び静翼5(静翼段4)に順次衝突する。
 各々の静翼段4においては、上流側から流れてきた蒸気が静翼5に当たることで、この蒸気の流れに回転軸2周りの旋回成分が付与される。これにより、各々の静翼段4の下流側では、蒸気の流れは回転軸2周りに旋回している。各々の動翼段6は、上流側の静翼段4を経て回転軸2周りに旋回した蒸気の流れが到達する。この旋回した蒸気の流れが各々の動翼7に当たることで、回転軸2は回転エネルギーを得て、軸線回りに回転する。この回転軸2の回転運動は、軸端に連結された発電機等(図示省略)によって取り出される。
 以上のサイクルが連続的に繰り返される。
 タービン1の運転中に、変位センサ14によって検出される検出信号は、解析装置11に連続的に送信される。
 図6は、横軸を時間、縦軸を変位センサ14の検出信号の信号強度とした図である。図6に示すように、変位センサ14によって検出された検出信号である変位センサ14とシュラウド13の外周面との距離は、変位センサ14の径方向内側を第二表面26が通過した際に大きくなる。動翼7が回転軸2の周方向Dcに等間隔に設けられている場合には、第二表面26の検出信号が定期的に現れる波形となる。第二表面26と第一表面25とは径方向の高さが異なるため、検出信号は明瞭に変化する。
 動翼7(シュラウド13)が周方向Dc及び軸線方向Daに振動していない場合、第二表面26の時間幅T1(変位センサ14の径方向内側を第二表面26が通過する時間の長さ)と、第一表面25の時間幅T2(変位センサ14の径方向内側を第一表面25が通過する時間の長さ)とはそれぞれ一定である。
 管理者は、時間幅T1、時間幅T2の変化に基づいて動翼7に発生する振動の監視を行うことができる。
 動翼7が周方向Dcに振動する場合、時間幅T2が変化する。
 解析装置11の演算部は、時間幅T2に基づいて、シュラウド13の振動量を演算する。演算部は、シュラウド13の周速Vrと時間幅T2とからシュラウド13の振動量を演算する。
 動翼7が軸線方向Daに振動する場合、時間幅T1が変化する。即ち、第二表面幅Wが軸線方向Daの一方側に向かうに従って漸次増加するように形成されていることによって、シュラウド13の軸線方向Daの位置によって、時間幅T1が変化する。
 解析装置11の演算部は、時間幅T1に基づいて第二表面幅Wを演算する。シュラウド13の周速をVrとすると、第二表面幅Wは、Vr×T1で算出することができる。次いで、記憶部11aに記憶されている第二表面幅Wとシュラウド13の軸線方向Daの位置との関係を用いて、シュラウド13の軸線方向Daの位置(軸線方向Daの振動量)を特定することができる。
 また、解析装置11の記憶部11aには、事前に工場試験などによって取得されたキャリブレーション用のデータを記憶することができる。キャリブレーション用のデータは、例えば、所定の周速における測定された時間幅T1と変位センサ14の径方向内側を通過した第二表面26の周方向Dcの長さとの関係である。
 このように、キャリブレーション用のデータを記憶部に記憶することによって、センサの周波数特性が低いことにより、検出信号が不明瞭になった場合においても、キャリブレーション用のデータとの対比により振動量を予測することができる。
 また、第一表面25と第二表面26との間の境界線27を傾斜させることによって、シュラウド13が軸線方向Daに移動した際に変位センサ14によって計測される時間幅を大きくして、感度の向上を図ることができる。
 図7は、動翼段6を径方向外側から見た図であり、シュラウド13が軸線方向Daに振動した場合の信号幅について説明する図である。
 図7において、一点鎖線で示すシュラウドF2は、基準となるシュラウドF1に対して軸線方向Daに振動していない。実線で示すシュラウドF3は、基準となるシュラウドF1に対して軸線方向Daに振動している。場合のシュラウドの位置である。なお、図7においては、効果を明瞭にするために、第二表面26の形状及びシュラウドの振動量を誇張している。
 ここで、シュラウドの実振幅は、線分abの距離であるが、変位センサ14によって計測されるセンサ計測振幅は、線分aa’の距離である。図8に示すように、線分aa’は、以下の数式(1)によって算出することができる。θは、第一表面25と第二表面26との間の境界線27の軸線Aに対する角度である。X,Yはシュラウド13の実振幅の成分である。
 aa’ = Y + Xtanθ ・・・(1)
 このように、境界線27を軸線Aに対して傾斜させることにより、変位センサ14によって計測されるセンサ計測振幅aa’を実振幅abよりも大きくすることができる。これにより、翼振動監視装置100の感度の向上を図ることができる。
 上記実施形態によれば、変位センサ14によって検出される検出信号がシュラウド13の第一表面25と第二表面26とで異なるものとなるため、シュラウド13間の隙間Gを検出する方法と比較して、シュラウド13を有する動翼7の振動の計測を安定して行うことができる。
 また、本実施形態のシュラウド13は、第一表面25と第二表面26との径方向の高さを異ならせることで、変位センサ14による検出信号を第一表面25と第二表面26とで異ならせるようにした。これにより、変位センサ14による検出信号が第一表面25と第二表面26とで異なる構造を、より容易に形成することができる。
 また、変位センサ14の径方向内側を第一表面25が通過する時間の長さに基づいて、シュラウド13の周方向Dcの振動量を演算することができる。
 また、第二表面26が軸線方向Daの一方側に向かうに従って漸次周方向Dcの幅が増加するように形成されていることによって、変位センサ14の径方向内側を第二表面26が通過する時間の長さに基づいて、シュラウド13の軸線方向Daの振動量を演算することができる。
 また、第二表面幅Wに基づいて、変位センサ14によるシュラウド13の測定位置が把握できるため、翼振動監視における制限値や安全率の見直しにも反映させることができる。
〔第二実施形態〕
 以下、本発明の第二実施形態の翼振動監視装置について図面を参照して詳細に説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図9に示すように、本実施形態のシュラウド13Bは、シュラウド本体30と、シュラウド本体30に埋め込まれている異種金属部31と、を有している。径方向外側から見た異種金属部31の形状は、第一実施形態の第二表面26の形状と同一である。本実施形態の第二表面26は、シュラウド本体30に埋め込まれている異種金属部31の表面である。シュラウド13Bの外周面は、第一表面25と第二表面26とが同一平面上(同一曲面上)となるように形成されている。
 本実施形態のセンサは、電界を発生させることによって、非接触で、電界内の物体を検出することができる電界センサである。これにより、センサによる検出信号が第一表面25と第二表面26とで異なるものとなる。
 上記実施形態によれば、シュラウド13Bの外周面13aを平坦にすることができる。これにより、作動流体の乱れを抑制することができる。また、電界を発生させることによって電界内の物体を検出することができるセンサを用いて第二表面26を検出することができる。
 なお、上記実施形態では、所定の厚さを有する異種金属部31を埋め込む構成としたがこれに限ることはなく、シュラウド本体30の材料とは異なる金属材料によって形成されたテープを貼ってもよい。
〔第三実施形態〕
 以下、本発明の第三実施形態の翼振動監視装置について図面を参照して詳細に説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図10に示すように、本実施形態の第二表面26Cは、軸線方向Daの一方側に向かうに従って段階的に周方向Dcの幅が増加するように形成されている。換言すれば、第一表面25と第二表面26Cとの間の境界線27Cは階段状に形成されている。
 このような構成によれば、センサの径方向内側を第二表面26が通過する時間の長さに基づいて、シュラウド13Cの軸線方向Daの位置を特定することができる。また、センサの径方向内側を第二表面26Cが通過する時間の長さを離散的に変化させることができる。
〔第四実施形態〕
 以下、本発明の第四実施形態の翼振動監視装置について図面を参照して詳細に説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図11に示すように、本実施形態の翼振動監視装置100Dは、変位センサ14と同じ軸線方向の位置に配置されたレーザーセンサ15と、レーザーセンサ15の先端を洗浄するパージエア供給装置16と、を有している。レーザーセンサ15は、レーザー光を照射して、レーザー光がシュラウド13の外周面において反射した反射光を検出する光学式センサである。
 レーザーセンサ15は、周波数特性が高いため、渦電流式変位センサなどと比較して高速で通過するシュラウド13の第二表面幅W(図4参照)を正確に計測することが可能となる。
 レーザーセンサ15は蒸気タービンの環境では蒸気の影響を受けてしまい信号不良となる可能性があるが、レーザーセンサ15は第二表面幅Wを検出することが目的であるため、常時安定して計測できることはそれほど重要とはならない。即ち、短時間計測できればよく、全ての動翼7(シュラウド13)ではなく、数枚の検出信号だけでも良好に取得出来れば一定の評価が可能となる。よって、レーザーセンサ15の信号が不調になった時のみ、センサ先端にパージエアを吹き込みセンサ先端を洗浄し、短期間だけでも信号が取得できる構造を持ち合わせることが理想である。パージエアは短時間のみの吹き込みであるためタービン1への影響は最小限に留めることができる。
 以上、本発明の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記実施形態では、第二表面26が軸線方向の下流側に向かうに従って漸次周方向の幅が増加するように形成されているがこれに限ることはなく、軸線方向の下流側に向かうに従って漸次周方向の幅が減少するように形成してもよい。
 上記実施形態の翼振動監視装置及び翼振動監視システムは、蒸気タービンやガスタービンなどの回転機械に区別なく使用できる技術である。
 1 タービン
 2 回転軸
 3 ケーシング
 4 静翼段
 5 静翼
 6 動翼段
 7 動翼
 8 軸受装置
 9 吸気口
 10 排気口
 11 解析装置
 12 動翼本体
 13 シュラウド
 13a 外周面
 14 変位センサ
 15 レーザーセンサ
 16 パージエア供給装置
 17 回転センサ
 19 上流側端面
 20 下流側端面
 21 第一周方向端面
 22 第二周方向端面
 23 凸部
 24 凹部
 25 第一表面
 26 第二表面
 27 境界線
 30 シュラウド本体
 31 異種金属部
 100 翼振動監視装置
 101 翼振動監視システム
 A 軸線
 Da 軸方向
 Dc 周方向
 Dr 径方向
 G 隙間

Claims (13)

  1.  軸線に沿って延びる回転軸と、複数の動翼であって、前記回転軸から径方向外側に放射状に延びる動翼本体、及び、前記動翼本体の先端に設けられて互いに周方向に接触するシュラウドを有する複数の動翼と、を備える回転機械と、
     前記シュラウドの径方向外側に前記シュラウドに対向して設けられて前記シュラウドの外周面の変化を検出するセンサと、を備え、
     前記シュラウドの外周面が、
     第一表面と、
     前記第一表面に周方向両側から挟まれるように配置されて、前記センサによる検出信号が前記第一表面とは異なる第二表面と、を有する翼振動監視装置。
  2.  前記第二表面は、軸線方向の上流側及び下流側の少なくとも一方に向かうに従って漸次周方向の幅が増加するように形成されている請求項1に記載の翼振動監視装置。
  3.  前記第二表面は、軸線方向の上流側及び下流側の少なくとも一方に向かうに従って段階的に周方向の幅が増加するように形成されている請求項1に記載の翼振動監視装置。
  4.  前記第二表面は、前記第一表面と径方向の高さが異なるように形成されている請求項1から請求項3のいずれか一項に記載の翼振動監視装置。
  5.  前記第二表面は、前記第一表面と異なる金属によって形成されている請求項1から請求項4のいずれか一項に記載の翼振動監視装置。
  6.  軸線に沿って延びる回転軸と、複数の動翼であって、前記回転軸から径方向外側に放射状に延びる複数の動翼本体、及び、前記動翼本体の先端に設けられて互いに周方向に接触するシュラウドを有する複数の動翼と、を備える回転機械と、
     前記シュラウドの径方向外側に前記シュラウドに対向して設けられて前記シュラウドの外周面の変化を検出するセンサと、
     前記センサの検出信号に基づいて、前記シュラウドの振動量を演算する演算部と、を備え、
     前記シュラウドの外周面が、
     第一表面と、
     前記第一表面に周方向両側から挟まれるように配置されて、前記センサによる検出信号が前記第一表面とは異なる第二表面と、を有し、
     前記演算部は、前記センサの径方向内側を前記第一表面が通過する時間の長さに基づいて前記シュラウドの周方向の振動量を演算する翼振動監視システム。
  7.  前記第二表面は、軸線方向の一方側に向かうに従って漸次周方向の幅が増加するように形成され、
     前記演算部は、前記センサの径方向内側を前記第二表面が通過する時間の長さに基づいて前記シュラウドの軸線方向の振動量を演算する請求項6に記載の翼振動監視システム。
  8.  軸線に沿って延びる回転軸と、複数の動翼と、を備える回転機械の動翼であって、
     前記回転軸から径方向外側に放射状に延びる動翼本体と、
     前記動翼本体の先端に設けられて互いに周方向に接触するシュラウドと、を有し、
     前記シュラウドの外周面が、
     第一表面と、
     前記第一表面に周方向両側から挟まれるように配置されて、前記第一表面との境界は軸線方向の上流側及び下流側の少なくともいずれかに傾斜している第二表面と、を有する動翼。
  9.  前記第二表面は、軸線方向の上流側及び下流側の少なくとも一方に向かうに従って漸次周方向の幅が増加するように形成されている請求項8に記載の動翼。
  10.  前記第二表面は、軸線方向の上流側及び下流側の少なくとも一方に向かうに従って段階的に周方向の幅が増加するように形成されている請求項9に記載の動翼。
  11.  前記第二表面は、前記第一表面と径方向の高さが異なるように形成されている請求項8から請求項10のいずれか一項に記載の動翼。
  12.  前記第二表面は、前記第一表面と異なる金属によって形成されている請求項8から請求項11のいずれか一項に記載の動翼。
  13.  軸線に沿って延びる回転軸と、
     複数の動翼であって、前記回転軸から径方向外側に放射状に延びる動翼本体、及び、前記動翼本体の先端に設けられて互いに周方向に接触するシュラウドを有する複数の動翼と、
     前記シュラウドの径方向外側に前記シュラウドに対向して設けられて前記シュラウドの外周面の変化を検出するセンサと、を備え、
     前記シュラウドの外周面が、第一表面と、前記第一表面に周方向両側から挟まれるように配置されて、前記センサによる検出信号が前記第一表面とは異なる第二表面と、を有する翼振動監視装置を備える回転機械。
PCT/JP2018/020747 2017-05-31 2018-05-30 翼振動監視装置、翼振動監視システム、動翼、及び回転機械 WO2018221577A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/617,268 US20210131861A1 (en) 2017-05-31 2018-05-30 Blade vibration monitoring device, blade vibration monitoring system, moving blade, and rotary machine
KR1020197034354A KR20200002952A (ko) 2017-05-31 2018-05-30 블레이드 진동 감시 장치, 블레이드 진동 감시 시스템, 동익, 및 회전 기계
JP2019521265A JP7065844B2 (ja) 2017-05-31 2018-05-30 翼振動監視装置、翼振動監視システム、及び動翼
DE112018002812.7T DE112018002812T5 (de) 2017-05-31 2018-05-30 Schaufelschwingungsüberwachungsvorrichtung, Schaufelschwingungsüberwachungssystem, Laufschaufel und Rotationsmaschine
CN201880034060.1A CN110662948B (zh) 2017-05-31 2018-05-30 叶片振动监视装置、叶片振动监视系统、动叶及旋转机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-107663 2017-05-31
JP2017107663 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221577A1 true WO2018221577A1 (ja) 2018-12-06

Family

ID=64456047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020747 WO2018221577A1 (ja) 2017-05-31 2018-05-30 翼振動監視装置、翼振動監視システム、動翼、及び回転機械

Country Status (6)

Country Link
US (1) US20210131861A1 (ja)
JP (1) JP7065844B2 (ja)
KR (1) KR20200002952A (ja)
CN (1) CN110662948B (ja)
DE (1) DE112018002812T5 (ja)
WO (1) WO2018221577A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210060841A1 (en) * 2019-08-30 2021-03-04 Fanuc Corporation Injection molding machine
US11768087B2 (en) 2019-10-28 2023-09-26 Mitsubishi Heavy Industries, Ltd. Detection device, rotary machine, and detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323190B (zh) * 2020-04-13 2021-01-12 北京化工大学 一种旋转叶片五维度振动的测量方法和测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339107A (ja) * 1990-10-29 1992-11-26 Westinghouse Electric Corp <We> シュラウド付きタービン翼の振動の監視装置
JPH0610612A (ja) * 1992-04-28 1994-01-18 Westinghouse Electric Corp <We> 蒸気タービンおよびターゲットの取付方法
JPH10104055A (ja) * 1996-10-01 1998-04-24 Mitsubishi Heavy Ind Ltd 翼振動計測装置
EP1126254A1 (de) * 2000-02-14 2001-08-22 Siemens Aktiengesellschaft Rotationsmaschine und Verfahren zur Erfassung von Schwingungen
US20060000283A1 (en) * 2004-06-30 2006-01-05 Siemens Westinghouse Power Corporation Turbine blade for monitoring blade vibration
US20060171806A1 (en) * 2005-02-02 2006-08-03 Siemens Westinghouse Power Corporation Turbine blade for monitoring torsional blade vibration
US20080206057A1 (en) * 2007-02-27 2008-08-28 Siemens Power Generation, Inc. Blade shroud vibration monitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434634U (ja) * 1990-07-16 1992-03-23
JP3038382U (ja) 1995-06-12 1997-06-20 芳昭 半明 タンク内部かく拌ホース
JP3775626B2 (ja) * 1997-12-26 2006-05-17 石川島播磨重工業株式会社 タービン動翼振動計測装置の光学プローブ
FR2947049B1 (fr) * 2009-06-19 2019-07-12 Thales Systeme et procede d'interferometrie statique
CN105425683B (zh) * 2015-12-28 2018-01-09 北京四方继保自动化股份有限公司 一种基于阶梯式动态死区的模拟量采集方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339107A (ja) * 1990-10-29 1992-11-26 Westinghouse Electric Corp <We> シュラウド付きタービン翼の振動の監視装置
JPH0610612A (ja) * 1992-04-28 1994-01-18 Westinghouse Electric Corp <We> 蒸気タービンおよびターゲットの取付方法
JPH10104055A (ja) * 1996-10-01 1998-04-24 Mitsubishi Heavy Ind Ltd 翼振動計測装置
EP1126254A1 (de) * 2000-02-14 2001-08-22 Siemens Aktiengesellschaft Rotationsmaschine und Verfahren zur Erfassung von Schwingungen
US20060000283A1 (en) * 2004-06-30 2006-01-05 Siemens Westinghouse Power Corporation Turbine blade for monitoring blade vibration
US20060171806A1 (en) * 2005-02-02 2006-08-03 Siemens Westinghouse Power Corporation Turbine blade for monitoring torsional blade vibration
US20080206057A1 (en) * 2007-02-27 2008-08-28 Siemens Power Generation, Inc. Blade shroud vibration monitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210060841A1 (en) * 2019-08-30 2021-03-04 Fanuc Corporation Injection molding machine
US11840004B2 (en) * 2019-08-30 2023-12-12 Fanuc Corporation Injection molding machine
US11768087B2 (en) 2019-10-28 2023-09-26 Mitsubishi Heavy Industries, Ltd. Detection device, rotary machine, and detection method

Also Published As

Publication number Publication date
CN110662948A (zh) 2020-01-07
CN110662948B (zh) 2022-11-11
DE112018002812T5 (de) 2020-02-20
KR20200002952A (ko) 2020-01-08
US20210131861A1 (en) 2021-05-06
JP7065844B2 (ja) 2022-05-12
JPWO2018221577A1 (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2018221577A1 (ja) 翼振動監視装置、翼振動監視システム、動翼、及び回転機械
Zielinski et al. Noncontact vibration measurements on compressor rotor blades
US8164761B2 (en) Differential focus blade clearance probe and methods for using same
US8683866B2 (en) Method of matching sensors in a multi-probe turbine blade vibration monitor
JP5190464B2 (ja) 非接触ブレード振動測定方法
US20110213569A1 (en) Method and device for detecting cracks in compressor blades
RU2593427C2 (ru) Устройство и способ измерения времени прохождения вершин лопаток в турбомашине
JP6736511B2 (ja) 翼異常検出装置、翼異常検出システム、回転機械システム及び翼異常検出方法
JP5940743B2 (ja) タービン翼の損傷検知のための測定法およびタービン
US20100242293A1 (en) Time-indicating rub pin for transient clearance measurement and related method
JPH01267436A (ja) 振動部材の疲れ測定方法および装置
JP6086736B2 (ja) 振動応答監視装置、回転機械および振動応答監視方法
US20080240902A1 (en) Method and system for rub detection in a steam turbine
KR20140007817A (ko) 로터를 모니터링하기 위한 장치 및 방법
JP6978911B2 (ja) 動翼監視システム、動翼監視装置、動翼監視方法、プログラム
JP7406382B2 (ja) 予兆検知装置及び予兆検知方法
JP6594240B2 (ja) 回転機械の振動計測装置、回転機械の振動計測方法及びプログラム
Lawson et al. Compressor blade tip timing using capacitance tip clearance probes
JP2016045060A (ja) 回転体の振動計測方法と装置
Liu et al. Tip timing based non-contact vibration measurement of aero-engine turbine blades
CN103017885B (zh) 用于模态形状识别的系统和方法
Jakl et al. On-line compensation of axial fan blade angle in blade tip timing measurement
Lawson et al. The use of commercially available capacitance tip-clearance probes for tip-timing of aero-engine compressor blades
Rokicki et al. Analysis of middle bearing failure in rotor jet engine using tip-timing and tip-clearance technique
Pfister et al. Dynamic Rotor Deformation and Vibration Monitoring Using a Non‐Incremental Laser Doppler Distance Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197034354

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019521265

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18809399

Country of ref document: EP

Kind code of ref document: A1