WO2018221345A1 - 真空ポンプとその加熱装置 - Google Patents

真空ポンプとその加熱装置 Download PDF

Info

Publication number
WO2018221345A1
WO2018221345A1 PCT/JP2018/019824 JP2018019824W WO2018221345A1 WO 2018221345 A1 WO2018221345 A1 WO 2018221345A1 JP 2018019824 W JP2018019824 W JP 2018019824W WO 2018221345 A1 WO2018221345 A1 WO 2018221345A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
resistance heating
pump
exhaust
heating elements
Prior art date
Application number
PCT/JP2018/019824
Other languages
English (en)
French (fr)
Inventor
好伸 大立
靖 前島
勉 高阿田
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to US16/616,293 priority Critical patent/US11889595B2/en
Priority to EP18810257.8A priority patent/EP3633203A4/en
Priority to KR1020197033435A priority patent/KR102589087B1/ko
Priority to CN201880034241.4A priority patent/CN110621885A/zh
Publication of WO2018221345A1 publication Critical patent/WO2018221345A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0244Heating of fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/006Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by influencing fluid temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K49/00Means in or on valves for heating or cooling
    • F16K49/002Electric heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems
    • F16L53/30Heating of pipes or pipe systems
    • F16L53/35Ohmic-resistance heating
    • F16L53/37Ohmic-resistance heating the heating current flowing directly through the pipe to be heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems
    • F16L53/30Heating of pipes or pipe systems
    • F16L53/35Ohmic-resistance heating
    • F16L53/38Ohmic-resistance heating using elongate electric heating elements, e.g. wires or ribbons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material

Definitions

  • the present invention relates to a vacuum pump used as a gas exhaust means for a process chamber in a semiconductor manufacturing apparatus, a flat panel display manufacturing apparatus, a solar panel manufacturing apparatus, and other vacuum chambers, and a heating apparatus for the vacuum pump. This is suitable for prolonging the life of the heating means used as a product accumulation prevention measure.
  • a vacuum pump described in Patent Document 1 includes a rotating body composed of a rotor (4) and a rotating blade (6), and the interaction with a fixed member due to the rotation of the rotating body, specifically, the rotating blade (6 ) And the stationary blade (7) and the interaction between the outer peripheral surface of the rotor (4) and the thread groove stator (8), gas molecules are transferred from the intake port to the exhaust port (2), The process gas used in the semiconductor manufacturing apparatus is exhausted.
  • the sublimable gas contained in the process gas becomes a gas or a solid in relation to the temperature and its partial pressure, and is easily solidified in a low temperature environment or a high partial pressure environment.
  • a part of the entire exhaust flow path for exhausting gas in particular, an environment where the sublimable gas is easily solidified, specifically, the outer peripheral surface of the rotor (4) and the screw
  • the vicinity of the outlet of the exhaust passage (R2) formed by the groove stator (8) is intensively heated by a plurality of resistance heating elements (13).
  • the sublimation gas is likely to be solidified near the outlet of the exhaust passage (R2), and the exhaust efficiency is increased by the accumulation of the solidified product (sublimation gas). It becomes difficult to maintain the exhaust performance of the vacuum pump, such as lowering. For this reason, there is a possibility that the operation of a target device to be evacuated by a vacuum pump, for example, a process device in a semiconductor manufacturing device, must be stopped immediately.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vacuum pump suitable for prolonging the life of a heating means used as a product deposition preventing measure in a vacuum pump, and a heating apparatus therefor. Is to provide.
  • the present invention provides a vacuum pump that exhausts gas by rotation of a rotating body, and includes an exhaust passage for exhausting the gas and a heating unit that heats the exhaust passage.
  • the heating means is configured by connecting a plurality of resistance heating elements in parallel to a pair of wiring lines.
  • current measuring means for measuring the sum of the current values flowing through the plurality of resistance heating elements, and determination means for determining a failure condition of the plurality of resistance heating elements based on the measurement values obtained by the current measurement means; , May be provided.
  • output means for outputting the failure status determined by the determination means may be provided.
  • the failure condition may be the number of failures among the plurality of resistance heating elements.
  • the pair of wiring lines and the plurality of resistance heating elements may be connected by a connector.
  • both ends of at least one of the pair of wiring lines may be connected by a connecting means.
  • the present invention is a heating device for a vacuum pump, characterized in that the heating means constituting the vacuum pump is provided.
  • the heating means has a configuration in which a plurality of resistance heating elements are connected in parallel to a pair of wiring lines. Adopted. For this reason, even if, for example, any one of the plurality of resistance heating elements breaks down, the other resistance heating elements can operate normally. Suitable for prolonging the life of heating means used as a measure for preventing product accumulation in vacuum pumps in that heating can be continued and product accumulation in the exhaust flow path can be prevented by continuous heating.
  • the present invention even if any one of the resistance heating elements fails, for example, the heating of the exhaust passage can be continued, and product accumulation in the exhaust passage can be prevented.
  • the operation of the target apparatus for vacuuming by the vacuum pump of the present invention for example, the process apparatus in the semiconductor manufacturing apparatus can be continued.
  • FIG. 3 is a component arrangement diagram of the electric circuit configuration shown in FIG. 2.
  • FIG. 3 is a component arrangement diagram of the electric circuit configuration shown in FIG. 2.
  • the flowchart figure which showed the operation control action of the vacuum pump by a pump control means.
  • Explanatory drawing of the electric circuit structure of the heating means employ
  • FIG. 1 is a cross-sectional view of a vacuum pump to which the present invention is applied
  • FIG. 2 is a block diagram including an electric circuit configuration of a heating means of the present invention
  • FIGS. 3 and 4 are electric circuit configurations shown in FIG. FIG.
  • a vacuum pump P1 in FIG. 1 includes an outer casing 1 having a cylindrical cross section, a rotating body RB disposed in the outer case 1, a supporting means for rotatably supporting the rotating body RB, Drive means for rotationally driving the body RB is provided.
  • the outer case 1 has a bottomed cylindrical shape in which a cylindrical pump case 1A and a bottomed cylindrical pump base 1B are integrally connected with a fastening bolt in the cylinder axis direction, and the upper end side of the pump case 1A Is opened as an intake port 2 for inhaling gas, and an exhaust port 3 for exhausting gas out of the outer case 1 is provided on the side surface of the lower end of the pump base 1B.
  • the intake port 2 is connected to a vacuum chamber (not shown) that is in a high vacuum, such as a process chamber constituting a process apparatus of a semiconductor manufacturing apparatus, via a pressure adjustment valve (not shown).
  • the exhaust port 3 is connected in communication with an auxiliary pump (not shown).
  • a cylindrical stator column 4 containing various electrical components is provided in the center of the pump case 1A.
  • the stator column 4 is formed as a separate component from the pump base 1B and fixed to the inner bottom of the pump base 1B by screws, so that the stator column 4 is erected on the pump base 1B.
  • the stator column 4 may be erected integrally with the inner bottom of the pump base 1B.
  • a pair of wiring lines WL1 and WL2 (see FIG. 2) and a plurality of resistance heating elements RE (see FIG. 2) are provided as components constituting the heating means HM (see FIG. 2). Yes.
  • the detailed configuration of the heating means HM will be described later.
  • the installation place of the components which comprise the heating means HM is not limited to the pump base 1B, It can change suitably as needed.
  • a rotor 6 constituting a rotating body RB is provided outside the stator column 4.
  • the rotor 6 is enclosed in the pump case 1 ⁇ / b> A and the pump base 1 ⁇ / b> B and has a cylindrical shape surrounding the outer periphery of the stator column 4.
  • a rotor shaft 5 is provided inside the stator column 4 as a rotation center axis of the rotating body RB.
  • the rotor shaft 5 is arranged such that its upper end portion faces the intake port 2 and its lower end portion faces the pump base 1B.
  • the rotor shaft 5 is rotatably supported by magnetic bearings (specifically, two known radial magnetic bearings MB1 and one set of axial magnetic bearings MB2).
  • a drive motor MO is provided inside the stator column 4, and the rotor shaft 5 is rotationally driven around the axis by the drive motor MO.
  • the upper end portion of the rotor shaft 5 protrudes upward from the cylindrical upper end surface of the stator column 4, and the upper end side of the rotor 6 is integrally fixed to the protruding upper end portion of the rotor shaft 5 by fastening means such as bolts. Therefore, the rotor 6 is rotatably supported by the magnetic bearings (radial magnetic bearing MB1, axial magnetic bearing MB2) via the rotor shaft 5, and when the drive motor MO is started in this supported state, the rotor 6 can rotate around the rotor axis integrally with the rotor shaft 5.
  • the magnetic bearings radial magnetic bearing MB1, axial magnetic bearing MB2
  • the magnetic bearing functions as a support unit that rotatably supports the rotor shaft 5 and the rotor 6, and the drive motor MO functions as a drive unit that rotationally drives the rotor 6.
  • the vacuum pump P1 in FIG. 1 includes a plurality of exhaust stages PT that function as means for exhausting gas molecules between the intake port 2 and the exhaust port 3.
  • a screw is not provided between the downstream portion of the plurality of exhaust stages PT, specifically between the lowest exhaust stage PT (PTn) of the plurality of exhaust stages PT to the exhaust port 3.
  • a groove pump stage PS is provided.
  • the vacuum pump P ⁇ b> 1 in FIG. 1 functions as a plurality of exhaust stages PT upstream from substantially the middle of the rotor 6.
  • the plurality of exhaust stages PT will be described in detail.
  • a plurality of rotating blades 7 that rotate integrally with the rotor 6 are provided on the outer peripheral surface of the rotor 6 that is substantially upstream from the middle of the rotor 6, and these rotating blades 7 are arranged in the exhaust stage PT (PT 1, PT 2,. ) Are arranged radially at predetermined intervals around the rotation center axis of the rotor 6 (specifically, the axis of the rotor shaft 5) or the axis of the outer case 1 (hereinafter referred to as “vacuum pump axis”). Yes.
  • a plurality of fixed blades 8 are provided on the inner peripheral side of the pump case 1A. These fixed blades 8 are also provided for each exhaust stage PT (PT1, PT2,.
  • the vacuum pump shafts are arranged radially at predetermined intervals around the axis.
  • each exhaust stage PT (PT1, PT2,... PTn) in the vacuum pump P1 of FIG. 1 is provided in multiple stages between the intake port 2 and the exhaust port 3, and the exhaust stage PT (PT1, PT2,... PTn).
  • Each has a plurality of rotating blades 7 and fixed blades 8 arranged radially at predetermined intervals, and has a structure for exhausting gas molecules by these.
  • Each of the rotating blades 7 is a blade-like cut product that is cut and formed integrally with the outer diameter machining portion of the rotor 6 and is inclined at an angle that is optimal for exhausting gas molecules.
  • Each fixed blade 8 is also inclined at an angle optimum for exhausting gas molecules.
  • the rotating blade 7 rotates in the same manner as the uppermost exhaust stage PT (PT1), and the above-described rotating blade 7 applies gas molecules to the gas molecules.
  • the gas molecules near the intake port 2 are exhausted so as to sequentially move downstream of the rotor 6.
  • the vacuum pump P1 of FIG. 1 is configured so that the downstream of the middle of the rotor 6 functions as a thread groove pump stage PS.
  • the thread groove pump stage PS will be described in detail.
  • the thread groove pump stage PS is a thread groove as a means for forming a thread groove-shaped exhaust flow path R on the outer peripheral side of the rotor 6 (specifically, the outer peripheral side of the rotor 6 portion downstream from the substantially middle of the rotor 6).
  • the threaded groove stator 9 is attached to the inner peripheral side of the outer case 1 as a fixing member.
  • the thread groove stator 9 is a cylindrical fixing member arranged so that the inner peripheral surface thereof faces the outer peripheral surface of the rotor 6, and is arranged so as to surround a portion of the rotor 6 downstream from the substantially middle of the rotor 6. It is.
  • the portion of the rotor 6 downstream from the substantially middle of the rotor 6 is a portion that rotates as a rotating member of the thread groove pump stage PS, and is inserted and accommodated inside the thread groove stator 9 via a predetermined gap. Yes.
  • a thread groove 91 is formed in the inner peripheral portion of the thread groove stator 9 to change into a tapered cone shape whose depth is reduced in diameter downward.
  • the thread groove 91 is spirally engraved from the upper end to the lower end of the thread groove stator 9.
  • An exhaust passage R for exhausting gas is formed on the outer peripheral side of the rotor 6 by the thread groove stator 9 provided with the thread groove 91 as described above.
  • illustration is abbreviate
  • the inlet (upstream opening end) of the exhaust flow path R opens toward the gap (hereinafter referred to as “final gap GE”) between the fixed blade 8n and the thread groove stator 9 constituting the lowermost exhaust stage PTn, Further, the outlet (downstream opening end) of the groove exhaust flow path R communicates with the exhaust port 3 through the in-pump exhaust port side flow path PR.
  • the pump exhaust side flow path PR has a predetermined gap between the lower end of the rotor 6 and the thread groove stator 9 and the inner bottom of the pump base 1B (in the vacuum pump P1 of FIG. By providing a gap in the form of one round, the exhaust passage R is formed so as to reach the exhaust port 3.
  • the heating means HM has an electric circuit configuration in which a plurality (specifically six) resistance heating elements RE are connected in parallel to a pair of wiring lines WL1 and WL2. . Further, in this electric circuit configuration, a thermostat is incorporated as the overheat preventing means 104, but the assembling position can be changed as necessary.
  • the pair of wiring lines WL1 and WL2 are arranged so as to surround the outer periphery of the rotating body RB inside the pump base 1B.
  • One wiring line WL1 is connected to a power supply (ACC) (not shown), and the other wiring line WL2 is connected to the ground (GND).
  • ACC power supply
  • GND ground
  • the plurality of resistance heating elements RE are arranged radially at equal intervals around the rotating body RB inside the pump base 1B, and generate heat when energized, thereby exhausting the screw groove pump stage PS via the pump base 1B.
  • the vicinity of the outlet of the flow path R can be heated intensively.
  • the pressure is high near the outlet of the exhaust passage R, the product is most likely to accumulate, and the pump base 1B is located near the outlet of the exhaust passage R.
  • a plurality of resistance heating elements RE are installed inside 1B, the present invention is not limited to such an installation example.
  • a plurality of resistance heating elements RE may be installed inside the thread groove stator 9, or a plurality of resistance heating elements RE may be installed on a vacuum pump fixing member other than the pump base 1B and the thread groove stator 9. .
  • the number of resistance heating elements RE is not limited to six, and the number can be increased or decreased as needed.
  • a pair of wiring lines WL1, WL2 and a plurality of resistance heating elements RE are connected by a connector CT (hereinafter referred to as “connector connection”) so that each can be attached and detached.
  • the connector connection described above is excellent in maintainability of the heating means HM in that only the defective resistance heating element RE can be removed from the pair of wiring lines WL1 and WL2 by releasing the connection of the connector CT. .
  • both ends of the pair of wiring lines WL1 and WL2 are not connected to each other.
  • at least one of the pair of wiring lines WL1 and WL2 is used. Both ends of the wiring line (WL1 or WL2) may be connected by the connecting means CP as in the example shown in FIG.
  • connection means CP may be in a state where both ends of the wiring line WL1 (or WL2) are electrically connected by adopting, for example, a known connector used for connecting the electrical wiring.
  • a connecting component other than the connector for example, a hook and a ring engageable with the hook as the connecting means CP, both ends of the wiring line WL1 (or WL2) may not be electrically connected.
  • the ends of the wiring lines WL1 and WL2 are fixed by the connecting means CP. Therefore, the wiring line WL1 surrounds the outer periphery of the rotating body RB inside the pump base 1B.
  • the wiring arrangement when WL2 is arranged becomes clear, and there is an advantage that the wiring arrangement workability is improved.
  • the heating means HM is composed of a plurality of resistance heating elements RE, and measures a total sum of flowing current values, and a plurality of resistance heating elements based on the measurement values of the current measurement means 101.
  • Discriminating means 102 (hereinafter referred to as “failure condition discriminating means 102”) for determining the failure condition of the RE and output means 103 (hereinafter referred to as “failure condition output means 103”) for outputting the fault condition discriminated by the fault condition discriminating means 102. And may be provided.
  • a known current measuring device can be used as the current measuring means 101.
  • current measuring means current measuring device
  • the current measuring unit 101 may be installed on the wiring line WL1.
  • normal operation of the vacuum pump P1 the operation of the vacuum pump P1 in a state where all of the plurality of resistance heating elements RE are operating normally (state without failure) is referred to as “normal operation of the vacuum pump P1”.
  • the current value Ip measured by the current measuring means during the normal operation of P1 is referred to as “normal total current value Ip”.
  • the failure condition determination unit 102 determines “the number of failures of the resistance heating element RE” as an example of the failure condition.
  • the process for obtaining the number of failures of the resistance heating element RE will be described in “Process for obtaining current reduction rate X and number of failures S” described later.
  • the failure condition output means 103 outputs the failure condition (number of failures of the resistance heating element RE) determined by the failure condition determination means 102 to, for example, the control means CM of the vacuum pump P1.
  • Control means of vacuum pump P1 The control means CM (hereinafter referred to as “pump control means CM”) of the vacuum pump P1 controls the operation of the vacuum pump P1 in an integrated manner.
  • Various drive circuits DR for driving pump electrical components such as a CPU, a CPU for outputting operation start and stop commands to the various drive circuits DR, and a data storage unit ME including a ROM, a RAM, a hard disk, etc. Prepare.
  • the pump control means CM determines whether or not maintenance of the resistance heating element RE is necessary based on the degree of failure (number of failures of the resistance heating element RE) output from the failure condition output means 103. In addition to performing the determination process, the operation of the vacuum pump P1 is controlled such that the operation of the vacuum pump P1 is immediately stopped when it is determined that the resistance heating element RE needs to be maintained. In order to perform this control, the normal total current value Ip described above is stored and recorded in advance in the data storage unit ME of the pump control means CM.
  • the normal total current value Ip may be recorded before shipment, or the normal total actual current value of the heating means HM immediately after the start of operation of the vacuum pump P1 is recorded as the normal total current value Ip. You may do it.
  • FIG. 5 is a flowchart showing the operation control operation of the vacuum pump by the pump control means CM.
  • the series of operation control operations shown in the flowchart of FIG. 5 is started, for example, triggered by the operation start of the vacuum pump P1, and first, the normal current value Ip is read from the data storage unit ME of the pump control means CM. (ST1) Next, after the total of current values actually flowing through the plurality of resistance heating elements RE (hereinafter referred to as “actual total current value Ip ′”) is measured by the current detection means 101 (ST2), The total current value Ip and the actual total current value Ip ′ are compared (ST3).
  • the process returns to the process of ST2 (No in ST5), while it is determined that the maintenance of the vacuum pump P1 is necessary. If so, the operation of the vacuum pump P1 is stopped (ST6).
  • the state of the resistance heating element RE of the heating means HM (the number of failures of the resistance heating element RE) is determined. Processing (hereinafter referred to as “heater state determination processing”) is performed (ST7).
  • a determination process for determining whether or not the resistance heating element RE needs to be maintained based on the state of the resistance heating element RE determined in ST7 (the number of failures of the resistance heating element RE) (hereinafter referred to as “heater maintenance determination process”). (ST8).
  • the failure number S of the resistance heating element RE satisfies the conditions of the above formulas (3) and (4), that is, the conditions of the following formula (5). N ⁇ X ⁇ S ⁇ N ⁇ X + 1 (5)
  • the equation (5) becomes the following equation (6). From the following equation (6), it can be determined that the number of failures S (integer) of the resistance heating element RE is two. 1.8 ⁇ S ⁇ 2.8 Formula (6)
  • Stopping of vacuum pump P1 at ST6 operates, for example, on various drive circuits for driving pump electrical components such as the radial magnetic bearing MB1, the axial magnetic bearing MB2, and the drive motor MO from the CPU of the pump control means CM. Processing necessary for stopping the operation of the vacuum pump P1, such as outputting a stop command, is performed by the pump control means CM (ST6).
  • the heating unit HM has an electric circuit configuration in which a plurality of resistance heating elements RE are connected in parallel to the pair of wiring lines WL1 and WL2.
  • the configuration is adopted. For this reason, even if, for example, any one of the plurality of resistance heating elements RE breaks down, the other resistance heating elements can operate normally.
  • the heating of the heating means HM used as a product accumulation preventing measure in the vacuum pump P1 is possible in that the heating of the path R can be continued and the accumulation of the products in the exhaust flow path R can be prevented by the continuous heating. It is suitable for achieving.
  • the vacuum pump P1 of the present embodiment even if any one of the resistance heating elements fails, for example, the heating of the exhaust flow path R can be continued, and the exhaust flow path R In addition, it is possible to prevent the deposition of the product in the inside, and there is also an advantage that the operation of the apparatus to be evacuated by the vacuum pump P1, for example, the process apparatus in the semiconductor manufacturing apparatus can be continued.
  • the heating means HM constituting the vacuum pump P1 of the present embodiment described above may be configured as a heating device separate from the vacuum pump P1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

真空ポンプにおける生成物堆積防止対策として用いられる加熱手段の延命化を図るのに好適な真空ポンプとその加熱装置を提供する。回転体の回転によりガスを排気する真空ポンプは、ガスを排気するための排気流路と、排気流路を加熱する加熱手段(HM)と、を有し、加熱手段(HM)は、一対の配線ライン(WL1)、(WL2)に対して複数の抵抗発熱体(RE)を並列に接続して構成されている。また、加熱手段(HM)は、複数の抵抗発熱体(RE)に流れる電流値の総和を測定する電流測定手段(101)と、電流測定手段(101)での測定値に基づき複数の抵抗発熱体(RE)の故障具合を判別する判別手段(102)や、判別手段(102)で判別した故障具合を出力する出力手段(103)を備えている。

Description

真空ポンプとその加熱装置
 本発明は、半導体製造装置、フラット・パネル・ディスプレイ製造装置、ソーラー・パネル製造装置におけるプロセスチャンバ、その他の真空チャンバのガス排気手段として利用される真空ポンプとその加熱装置に関し、特に、真空ポンプにおける生成物堆積防止対策として用いられる加熱手段の延命化を図るのに好適なものである。
 従来、この種の真空ポンプとしては、例えば、特許文献1に記載された真空ポンプが知られている。同文献1に記載された真空ポンプは、ロータ(4)と回転ブレード(6)からなる回転体を備えるとともに、この回転体の回転による固定部材との相互作用、具体的には回転ブレード(6)と固定ブレード(7)との相互作用、および、ロータ(4)の外周面とネジ溝ステータ(8)との相互作用で、気体分子を吸気口から排気口(2)側に移送し、半導体製造装置で使用されたプロセスガスを排気するように構成されている。
 ところで、前記プロセスガスに含まれる昇華性ガスは、温度とその分圧との関係で気体または固体になり、温度の低い環境または分圧の高い環境では、固化しやすくなる。このため、特許文献1の真空ポンプでは、ガスを排気するための排気流路全体のうち、特に昇華性ガスが固化しやすい環境となる部位、具体的にはロータ(4)の外周面とネジ溝ステータ(8)とで形成される排気流路(R2)の出口付近を集中的に複数の抵抗発熱体(13)で加熱している。
 しかしながら、従来の真空ポンプでは、前記のような加熱に用いられる抵抗発熱体(13)の具体的な構成として、図6のように複数の抵抗発熱体REを直列に接続した電気回路構成を採用している。このため、例えばいずれか一つの抵抗発熱体REにおいて断線等の故障が生じると、全ての抵抗発熱体REに電流が流れず、複数の抵抗発熱体REを備えた加熱手段の動作(抵抗発熱体REによる排気流路出口付近の加熱動作)が完全に停止・ダウンしてしまい、加熱手段の寿命が短いという問題点を有している。
 前記のように加熱手段の動作が完全に停止・ダウンした場合は、排気流路(R2)の出口付近で昇華ガスの固化が生じやすくなり、固化した生成物(昇華ガス)の堆積により排気効率が低下する等、真空ポンプの排気性能を維持することが困難になる。このため、真空ポンプによる真空引きの対象装置、例えば半導体製造装置におけるプロセス装置の運転を直ちに停止しなければならない虞があった。
 以上の説明におけるカッコ内の符号は、特許文献1で用いられている符号である。
特開2015-31153号公報
 本発明は、前記問題点を解決するためになされたものであり、その目的は、真空ポンプにおける生成物堆積防止対策として用いられる加熱手段の延命化を図るのに好適な真空ポンプとその加熱装置を提供することである。
 前記目的を達成するために、本発明は、回転体の回転によりガスを排気する真空ポンプにおいて、前記ガスを排気するための排気流路と、前記排気流路を加熱する加熱手段と、を有し、前記加熱手段は、一対の配線ラインに対して複数の抵抗発熱体を並列に接続して構成されていることを特徴とする。
 前記本発明において、前記複数の抵抗発熱体に流れる電流値の総和を測定する電流測定手段と、前記電流測定手段での測定値に基づき前記複数の抵抗発熱体の故障具合を判別する判別手段と、を備えたことを特徴としてもよい。
 前記本発明において、前記判別手段で判別した前記故障具合を出力する出力手段を備えたことを特徴としてもよい。
 前記本発明において、前記故障具合は、前記複数の抵抗発熱体のうち故障した数であることを特徴としてもよい。
 前記本発明において、前記一対の配線ラインと前記複数の抵抗発熱体とがコネクタによって連結されていることを特徴としてもよい。
 前記本発明において、前記一対の配線ラインのうち少なくともいずれか一方の配線ラインの両端部が連結手段によって連結されていることを特徴としてもよい。
 また、本発明は、前記真空ポンプを構成する前記加熱手段を備えたことを特徴とする真空ポンプの加熱装置である。
 本発明にあっては、真空ポンプとその加熱装置の具体的な構成として、前記の通り、加熱手段は、一対の配線ラインに対して複数の抵抗発熱体を並列に接続しているという構成を採用した。このため、複数の抵抗発熱体のうち例えばいずれか一つの抵抗発熱体が故障しても、他の抵抗発熱体は正常に動作することができ、正常に動作する抵抗発熱体によって排気流路の加熱を継続することができ、継続的な加熱によって排気流路内での生成物の堆積を防止できる点で、真空ポンプにおける生成物堆積防止対策として用いられる加熱手段の延命化を図るのに好適な真空ポンプとその加熱装置を提供し得る。
 本発明によると、前述のように、例えばいずれか一つの抵抗発熱体が故障しても、排気流路の加熱を継続することができ、排気流路内での生成物の堆積を防止できるので、本発明の真空ポンプによる真空引きの対象装置、例えば半導体製造装置におけるプロセス装置の運転を継続することができるという利点もある。
本発明を適用した真空ポンプの断面図。 本発明の加熱手段の電気回路構成を含むブロック図。 図2に示した電気回路構成の部品配置図。 図2に示した電気回路構成の部品配置図。 ポンプ制御手段による真空ポンプの運転制御動作を示したフローチャート図。 従来の真空ポンプで採用していた加熱手段の電気回路構成の説明図。
 以下、本発明を実施するための最良の形態について、添付した図面を参照しながら詳細に説明する。
 図1は、本発明を適用した真空ポンプの断面図であり、図2は、本発明の加熱手段の電気回路構成を含むブロック図、図3および図4は、図2に示した電気回路構成の部品配置図である。
 図1を参照すると、同図の真空ポンプP1は、断面筒状の外装ケース1と、外装ケース1内に配置された回転体RBと、回転体RBを回転可能に支持する支持手段と、回転体RBを回転駆動する駆動手段を備えている。
 外装ケース1は、筒状のポンプケース1Aと有底筒状のポンプベース1Bとをその筒軸方向に締結ボルトで一体に連結した有底円筒形になっており、ポンプケース1Aの上端部側は、ガスを吸気するための吸気口2として開口し、また、ポンプベース1Bの下端部側面には、外装ケース1外へガスを排気するための排気口3を設けてある。
 吸気口2は、図示しない圧力調整バルブを介して、例えば半導体製造装置のプロセス装置を構成するプロセスチャンバなどのように高真空となる真空チャンバ(図示省略)に接続される。排気口3は、図示しない補助ポンプに連通接続される。
 ポンプケース1A内の中央部には各種電装品を内蔵する円筒状のステータコラム4が設けられている。図1の真空ポンプP1では、ポンプベース1Bとは別部品としてステータコラム4を形成してポンプベース1Bの内底にネジ止め固定することで、ステータコラム4をポンプベース1B上に立設しているが、これとは別の実施形態として、このステータコラム4をポンプベース1Bの内底に一体に立設してもよい。
 ポンプベース1Bの内部には、加熱手段HM(図2参照)を構成する部品として、一対の配線ラインWL1、WL2(図2参照)や複数の抵抗発熱体RE(図2参照)が設けられている。この加熱手段HMの詳細構成は後述する。なお、加熱手段HMを構成する部品の設置場所はポンプベース1Bに限定されることはなく、必要に応じて適宜変更することができる。
 ステータコラム4の外側には回転体RBを構成するロータ6が設けられている。ロータ6は、ポンプケース1A及びポンプベース1Bに内包され、かつ、ステータコラム4の外周を囲む円筒形状になっている。
 ステータコラム4の内側には回転体RBの回転中心軸としてロータ軸5が設けられている。ロータ軸5は、その上端部が吸気口2の方向を向き、その下端部がポンプベース1Bの方向を向くように配置してある。また、ロータ軸5は、磁気軸受(具体的には、公知の2組のラジアル磁気軸受MB1と1組のアキシャル磁気軸受MB2)により回転可能に支持されている。さらに、ステータコラム4の内側には駆動モータMOが設けられており、この駆動モータMOによりロータ軸5はその軸心周りに回転駆動される。
 ロータ軸5の上端部はステータコラム4の円筒上端面から上方に突出し、その突出したロータ軸5の上端部に対してロータ6の上端側がボルト等の締結手段で一体に固定されている。したがって、ロータ6は、ロータ軸5を介して、磁気軸受(ラジアル磁気軸受MB1、アキシャル磁気軸受MB2)で回転可能に支持されており、また、この支持状態において、駆動モータMOを起動すると、ロータ6は、ロータ軸5と一体にそのロータ軸心周りに回転することができる。
 要するに、図1の真空ポンプP1では、磁気軸受がロータ軸5とロータ6を回転可能に支持する支持手段として機能し、また、駆動モータMOがロータ6を回転駆動する駆動手段として機能する。
 そして、図1の真空ポンプP1は、吸気口2から排気口3までの間に、ガス分子を排気する手段として機能する複数の排気段PTを備えている。
 また、図1の真空ポンプP1において、複数の排気段PTの下流部、具体的には複数の排気段PTのうち最下段の排気段PT(PTn)から排気口3までの間には、ネジ溝ポンプ段PSが設けられている。
《複数の排気段PTの詳細構成》
 図1の真空ポンプP1は、ロータ6の略中間より上流が複数の排気段PTとして機能する。以下、複数の排気段PTを詳細に説明する。
 ロータ6の略中間より上流のロータ6外周面には、ロータ6と一体に回転する複数の回転ブレード7が設けられており、これらの回転ブレード7は、排気段PT(PT1、PT2、…PTn)ごとに、ロータ6の回転中心軸(具体的にはロータ軸5の軸心)若しくは外装ケース1の軸心(以下「真空ポンプ軸心」という)を中心として放射状に所定間隔で配置されている。
 一方、ポンプケース1Aの内周側には複数の固定ブレード8が設けられており、これらの固定ブレード8もまた、回転ブレード7と同じく、排気段PT(PT1、PT2、…PTn)ごとに、真空ポンプ軸心を中心として放射状に所定間隔で配置されている。
 つまり、図1の真空ポンプP1における各排気段PT(PT1、PT2、…PTn)は吸気口2から排気口3までの間に多段に設けられるとともに、排気段PT(PT1、PT2、…PTn)ごとに、放射状に所定間隔で配置された複数の回転ブレード7と固定ブレード8とを備え、これらによりガス分子を排気する構造になっている。
 いずれの回転ブレード7も、ロータ6の外径加工部と一体的に切削加工で切り出し形成したブレード状の切削加工品であって、ガス分子の排気に最適な角度で傾斜している。いずれの固定ブレード8もまた、ガス分子の排気に最適な角度で傾斜している。
《複数の排気段PTによる排気動作説明》
 以上の構成からなる複数の排気段PTにおいて、最上段の排気段PT(PT1)では駆動モータMOの起動により、ロータ軸5およびロータ6と一体に複数の回転ブレード7が高速で回転し、回転ブレード7の回転方向前面かつ下向き(吸気口2から排気口3に向かう方向、以降下向きと略する)の傾斜面により吸気口2から入射したガス分子に下向きかつ接線方向の運動量を付与する。この下向きの運動量を有するガス分子が固定ブレード8に設けられた、回転ブレード7と回転方向に逆向きの下向きの傾斜面によって次の排気段PT(PT2)へ送り込まれる。また、次の排気段PT(PT2)およびそれ以降の排気段PTでも、最上段の排気段PT(PT1)と同じく、回転ブレード7が回転し、前記のような回転ブレード7によるガス分子への運動量の付与と固定ブレード8によるガス分子の送り込み動作とが行われることで、吸気口2付近のガス分子は、ロータ6の下流に向かって順次移行するように排気される。
《ネジ溝ポンプ段PSの詳細構成》
 図1の真空ポンプP1では、ロータ6の略中間より下流がネジ溝ポンプ段PSとして機能するように構成してある。以下、ネジ溝ポンプ段PSを詳細に説明する。
 ネジ溝ポンプ段PSは、ロータ6の外周側(具体的には、ロータ6の略中間より下流のロータ6部分の外周側)にネジ溝形状の排気流路Rを形成する手段として、ネジ溝ステータ9を有しており、このネジ溝ステータ9は、固定部材として、外装ケース1の内周側に取付けてある。
 ネジ溝ステータ9は、その内周面がロータ6の外周面に対向するように配置された円筒形の固定部材であって、ロータ6の略中間より下流のロータ6部分を囲むように配置してある。
 そして、ロータ6の略中間より下流のロータ6部分は、ネジ溝ポンプ段PSの回転部材として回転する部分であって、ネジ溝ステータ9の内側に、所定のギャップを介して挿入・収容されている。
 ネジ溝ステータ9の内周部には、深さが下方に向けて小径化したテーパコーン形状に変化するネジ溝91を形成してある。このネジ溝91はネジ溝ステータ9の上端から下端にかけて螺旋状に刻設してある。
 前記のようなネジ溝91を備えたネジ溝ステータ9により、ロータ6の外周側には、ガスを排気するための排気流路Rが形成される。なお、図示は省略するが、先に説明したネジ溝91をロータ6の外周面に形成することで、前記のような排気流路Rが設けられるように構成してもよい。
 ネジ溝ポンプ段PSでは、ネジ溝91とロータ6の外周面でのドラック効果により、気体を圧縮しながら移送するため、ネジ溝91の深さは、排気流路Rの上流入口側(吸気口2に近い方の流路開口端)で最も深く、その下流出口側(排気口3に近い方の流路開口端)で最も浅くなるように設定してある。
 排気流路Rの入口(上流開口端)は、最下段の排気段PTnを構成する固定ブレード8nとネジ溝ステータ9との間の隙間(以下「最終隙間GE」という)に向って開口し、また、同溝排気流路Rの出口(下流開口端)は、ポンプ内排気口側流路PRを通じて排気口3に連通している。
 ポンプ内排気口側流路PRは、ロータ6やネジ溝ステータ9の下端部とポンプベース1Bの内底部との間に所定の隙間(図1の真空ポンプP1では、ステータコラム4の下部外周を一周する形態の隙間)を設けることによって、排気流路Rの出口から排気口3に至るように形成してある。
《ネジ溝ポンプ段PSにおける排気動作説明》
 先に説明した複数の排気段PTの排気動作による移送によって前述の最終隙間GEに到達したガス分子は、ネジ溝ポンプ段PSの排気流路Rに移行する。移行したガス分子は、ロータ6の回転によって生じるドラッグ効果によって、遷移流から粘性流に圧縮されながらポンプ内排気口側流路PRに向かって移行する。そして、ポンプ内排気口側流路PRに到達したガス分子は排気口3に流入し、図示しない補助ポンプを通じて外装ケース1の外へ排気される。
《加熱手段HMの詳細構成》
 図2および図3を参照すると、加熱手段HMは、一対の配線ラインWL1、WL2に対して複数(具体的には6個)の抵抗発熱体REを並列に接続した電気回路構成になっている。また、この電気回路構成中には、過熱防止手段104として、サーモスタットを組み込んでいるが、その組み込み位置は、必要に応じて適宜変更することができる。
 一対の配線ラインWL1、WL2は、ポンプベース1Bの内部において回転体RBの外周を囲むように配置されている。また、一方の配線ラインWL1は図示しない電源(ACC)に接続され、他方の配線ラインWL2はグランド(GND)に接続されている。
 複数の抵抗発熱体REは、ポンプベース1Bの内部において回転体RBを中心として放射状に等間隔で配置されるとともに、通電により発熱することで、ポンプベース1Bを介してネジ溝ポンプ段PSにおける排気流路Rの出口付近を集中的に加熱できるように構成してある。
 図1の真空ポンプP1では、排気流路Rの出口付近で圧力が高く、生成物が最も堆積し易いこと、および、排気流路Rの出口付近にポンプベース1Bが位置することから、ポンプベース1Bの内部に複数の抵抗発熱体REを設置しているが、このような設置例に限定されることはない。
 例えば、ネジ溝ステータ9の内部に複数の抵抗発熱体REを設置してもよいし、ポンプベース1Bやネジ溝ステータ9以外の真空ポンプ固定部材に複数の抵抗発熱体REを設置してもよい。
 また、抵抗発熱体REの個数も6個に限定されることはなく、その個数は必要に応じて適宜増減することができる。
 図1の真空ポンプP1では、故障した抵抗発熱体REを新品のものと交換する等、加熱手段HMのメンテナンス性の向上を図るため、一対の配線ラインWL1、WL2と複数の抵抗発熱体REとが各々脱着可能となるようにコネクタCTによって連結される構造(以下「コネクタ連結」という)を採用している。
 コネクタCTを使わずに、一対の配線ラインWL1、WL2と複数の抵抗発熱体REとを直接結線する構造(以下「直結構造」という)を採用することもできる。しかし、このような直結構造によると、例えば別途準備した電流検出手段などを用いて、故障した一つの抵抗発熱体REを見つけ、新品のものと交換する場合に、全ての抵抗発熱体REと一対の配線ラインWL1、WL2とからなる加熱回路全体を取り外さなければならい点で、加熱手段HMのメンテナンス性が良いとは言えない。
 この一方、先に説明したコネクタ連結は、コネクタCTの連結解除によって一対の配線ラインWL1、WL2から故障した抵抗発熱体REのみを単体で取り外すことができる点で、加熱手段HMのメンテナンス性に優れる。
 図1の真空ポンプP1では、一対の配線ラインWL1、WL2それぞれの両端部は互いに連結していないが、これとは別の実施形態として、一対の配線ラインWL1、WL2のうち少なくともいずれか一方の配線ライン(WL1またはWL2)の両端部は、図4に示した例のように連結手段CPによって連結してもよい。
 この場合、連結手段CPとして、例えば電気配線の接続に用いられる公知のコネクタを採用することにより、配線ラインWL1(またはWL2)の両端部が電気的に導通する状態となってもよいし、公知のコネクタ以外の連結部品、例えばフックとこれに係合可能なリングを連結手段CPとして採用することにより、配線ラインWL1(またはWL2)の両端部が電気的に導通しない状態となってもよい。
 前記のような連結手段CPを採用した構成によると、連結手段CPによって配線ラインWL1、WL2の端部が固定されるため、ポンプベース1Bの内部において回転体RBの外周を囲むように配線ラインWL1、WL2を配置したときの配線の取り回しがすっきりしたものとなり、配線の配置作業性が向上する等の利点がある。
 図2を参照すると、加熱手段HMは、複数の抵抗発熱体REによって構成され、流れる電流値の総和を測定する電流測定手段101と、電流測定手段101での測定値に基づき複数の抵抗発熱体REの故障具合を判別する判別手段102(以下「故障具合判別手段102」という)と、故障具合判別手段102で判別した故障具合を出力する出力手段103(以下「故障具合出力手段103」という)と、を備えても良い。
 電流測定手段101としては公知の電流測定器を用いることができる。図2の例では複数の抵抗発熱体REに流れる電流値の総和を測定するために、配線ラインWL2に電流測定手段(電流測定器)を設置しているが、このような設置例に限定されることはなく、電流測定手段101は配線ラインWL1に設置してもよい。
 なお、本実施形態では、複数の抵抗発熱体REが全て正常に動作している状態(故障なしの状態)での真空ポンプP1の運転を“真空ポンプP1の正常運転”といい、この真空ポンプP1の正常運転時において電流測定手段で測定した電流値Ipのことを“正常時総電流値Ip”という。
 故障具合判別手段102では、故障具合の一例として“抵抗発熱体REの故障数”を判別する。この抵抗発熱体REの故障数を求める処理は、後述の《電流減少率X、故障数Sを求める処理》で説明する。
 故障具合出力手段103は、故障具合判別手段102で判別した故障具合(抵抗発熱体REの故障数)を例えば真空ポンプP1の制御手段CMに出力する。
《真空ポンプP1の制御手段》
 真空ポンプP1の制御手段CM(以下「ポンプ制御手段CM」という)は、真空ポンプP1の運転を統括制御するものであって、先に説明したラジアル磁気軸受MB1、アキシャル磁気軸受MB2、駆動モータMOなどのポンプ電装部品を駆動するための各種駆動回路DRや、その各種駆動回路DRに対して動作開始や動作停止の指令を出力するCPU、およびROM、RAM、ハードディスクなどからなるデータ記憶部MEを備える。
 また、ポンプ制御手段CMでは、故障具合出力手段103から出力された故障具合(抵抗発熱体REの故障数)に基づいて抵抗発熱体REのメンテナンスが必要であるか否かを判定するなど、各種判定処理を行うほか、抵抗発熱体REのメンテナンスが必要であると判定された場合に真空ポンプP1の運転を直ちに停止するなど、真空ポンプP1の運転を制御する。この制御を行うために、ポンプ制御手段CMのデータ記憶部MEには、予め前述の正常時総電流値Ipが格納・記録されている。
 正常時総電流値Ipは、出荷前に記録させておいても良いし、真空ポンプP1の運転開始時直後の加熱手段HMの正常時の実総電流値を、正常時総電流値Ipとして記録しても良い。
《真空ポンプP1の制御動作の説明》
 図5は、ポンプ制御手段CMによる真空ポンプの運転制御動作を示したフローチャート図である。
 図5のフローチャート図に示した一連の運転制御動作は、例えば、真空ポンプP1の運転開始をトリガとして開始され、最初に、ポンプ制御手段CMのデータ記憶部MEから正常時総電流値Ipを読込み(ST1)、次に、複数の抵抗発熱体REに実際に流れている電流値の総和(以下「実総電流値Ip′」という)を電流検出手段101で測定した後(ST2)、正常時総電流値Ipと実総電流値Ip′とを比較する(ST3)。
 前記ST3での比較の結果、正常時総電流値Ipと実総電流値Ip′とが等しい場合には、複数の抵抗発熱体REへの通電を維持し、複数の抵抗発熱体REを発熱させることにより、加熱手段HMによる排気流路Rの加熱を継続する(ST3のYeS、ST4)。
 その後、真空ポンプP1の内部温度の低下や回転体RBのアンバランスによる振れ量の増加など、真空ポンプP1の正常運転動作を妨げる要因となる情報を真空ポンプP1の図示しない各種付属センサで収集し、収集した情報に基づいて真空ポンプP1をメンテナンスする必要があるか否かの判定(以下「ポンプメンテナンス判定」という)を行う(ST5)。
 前記ST5のポンプメンテナンス判定において“真空ポンプP1のメンテナンスは不要である”と判定した場合は、前記ST2の処理に戻る一方(ST5のNo)、“真空ポンプP1のメンテナンスは必要である”と判定した場合は、真空ポンプP1の運転を停止する(ST6)。
 前記ST3での比較の結果、正常時総電流値Ipと実総電流値Ip′とが等しくない場合には、加熱手段HMの抵抗発熱体REの状態(抵抗発熱体REの故障数)を判定する処理(以下「ヒータ状態判定処理」という)を行う(ST7)。
 その後、ST7で判定した抵抗発熱体REの状態(抵抗発熱体REの故障数)に基づいて抵抗発熱体REのメンテナンスが必要であるか否かの判定処理(以下「ヒータメンテナンス判定処理」という)を行う(ST8)。
 そして、前記ST8において“ヒータメンテナンスは不要である”と判定した場合は前記ST4の処理に移行する一方(ST8のNo)、“ヒータメンテナンスは必要である”と判定した場合は、真空ポンプP1の運転を停止する(ST6)。
《ST7におけるヒータ状態判定処理の詳細》
 ST7におけるヒータ状態判定処理では、電流減少率Xを算出し(ST71)、算出した電流減少率Xに基づいて抵抗発熱体REの故障数S(整数)を求める(ST72)。この電流減少率Xを算出する処理や、抵抗発熱体REの故障数Sを求める処理は、下記《電流減少率X、故障数Sを求める処理》に記載した通りである。
《電流減少率X、故障数Sを求める処理》
 電流減少率をXとすると、電流減少率Xは、下記式(1)で求めることができる。
     X =(Ip-Ip′)/Ip   …式(1)
 また、抵抗発熱体REの故障数をS(整数)、抵抗発熱体REの全数をNとすると、電流減少率Xに基づき故障数S(整数)を求める式は、下記式(2)で示される。
     (S-1)/N < X ≦ S/N   …式(2)
 前記式(2)の右辺を変形すると、下記式(3)のようになる。
     N・X ≦ S   …式(3)
 前記式(2)の左辺を変形すると、下記式(4)のようになる。
     S < N・X+1   …式(4)
 抵抗発熱体REの故障数Sは、前記式(3)と前記式(4)の条件を満たすもの、つまり、下記式(5)の条件を満たすものである。
     N・X ≦ S < N・X+1   …式(5)
 ここで、例えば、抵抗発熱体REの全数Nを10個、正常時総電流値Ipを10アンペア、実総電流値Ip′を8.2アンペアとした場合において、電流減少率X(=(Ip-Ip′)/Ip)は0.18(=(10-8.2)/10=0.18)となる。この電流減少率X(=0.18)と抵抗発熱体REの全数N(=10)を前記式(5)に代入すると、前記式(5)は下記式(6)のようになる。下記式(6)から抵抗発熱体REの故障数S(整数)は2個であると求めることができる。
     1.8 ≦ S < 2.8   …式(6)
《ST8におけるヒータメンテナンス判定処理の詳細》
 ST8におけるヒータメンテナンス判定処理では、抵抗発熱体REの故障率(=抵抗発熱体の故障数S/抵抗発熱体の全数N)を算出し、算出した故障率が予め設定された基準の故障率(以下「基準故障率」という)より大きい場合は“ヒータメンテナンスは必要である”と判定し、それ以外は“ヒータメンテナンスは不要である”と判定する(ST8)。
 例えば、抵抗発熱体REの全数のうち80%以上が正常に稼動しているなら真空ポンプP1の運転に支障は生じないものと仮定した場合、前述の基準故障率は0.2とし、これを前提として下記式(7)の条件を満たす場合は“ヒータメンテナンスは必要である”と判定して、メンテナンスを促すアラームを出力する等、メンテナンス要求警告を発するように構成してもよい(ST8)。
     0.2<S/N   …式(7)
      但し S:抵抗発熱体の故障数
         N:抵抗発熱体の全数
《ST6での真空ポンプP1の停止について》
 前記ST6での真空ポンプP1の停止は、例えば、ポンプ制御手段CMのCPUからラジアル磁気軸受MB1、アキシャル磁気軸受MB2、駆動モータMOなどのポンプ電装部品を駆動するための各種駆動回路に対して動作停止指令を出力するなど、真空ポンプP1の運転停止に必要な処理をポンプ制御手段CMで行なう(ST6)。
 以上説明した本実施形態の真空ポンプP1によると、その具体的な構成として、加熱手段HMは、一対の配線ラインWL1、WL2に対して複数の抵抗発熱体REを並列に接続した電気回路構成になっているという構成を採用した。このため、複数の抵抗発熱体REのうち例えばいずれか一つの抵抗発熱体が故障しても、他の抵抗発熱体は正常に動作することができ、その正常に動作する抵抗発熱体によって排気流路Rの加熱を継続することができ、継続的な加熱によって排気流路R内での生成物の堆積を防止できる点で、真空ポンプP1における生成物堆積防止対策として用いられる加熱手段HMの延命化を図るのに好適である。
 また、本実施形態の真空ポンプP1にあっては、前述のように、例えばいずれか一つの抵抗発熱体が故障しても、排気流路Rの加熱を継続することができ、排気流路R内での生成物の堆積を防止できるので、本真空ポンプP1による真空引きの対象装置、例えば半導体製造装置におけるプロセス装置の運転を継続することができるという利点もある。
 以上説明した本実施形態の真空ポンプP1を構成する加熱手段HMは、真空ポンプP1とは別体の加熱装置として構成してもよい。
 本発明は、以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で当分野において通常の知識を有する者により多くの変形が可能である。
1 外装ケース
1A ポンプケース
1B ポンプベース
2 吸気口
3 排気口
4 ステータコラム
5 ロータ軸
6 ロータ
7 回転ブレード
8 固定ブレード
9 ネジ溝ステータ
91 ネジ溝
101 電流測定手段
102 判別手段(故障具合判別手段)
103 出力手段(故障具合出力手段)
104 過熱防止手段
CM 制御手段(ポンプ制御手段)
CP 連結手段
CT コネクタ
DR 各種駆動回路
GE 最終隙間
HM 加熱手段
MB1 ラジアル磁気軸受
MB2 アキシャル磁気軸受
ME データ記憶部
MO 駆動モータ
P1 真空ポンプ
PS ネジ溝ポンプ段
RB 回転体
PT 排気段
PT1 最上段の排気段
PTn 最下段の排気段
PR ポンプ内排気口側流路
R 排気流路
RE 抵抗発熱体
WL1、WL2 配線ライン

Claims (7)

  1.  回転体の回転によりガスを排気する真空ポンプにおいて、
     前記ガスを排気するための排気流路と、
     前記排気流路を加熱する加熱手段と、を有し、
     前記加熱手段は、一対の配線ラインに対して複数の抵抗発熱体を並列に接続して構成されていること
     を特徴とする真空ポンプ。
  2.  前記複数の抵抗発熱体に流れる電流値の総和を測定する電流測定手段と、
     前記電流測定手段での測定値に基づき前記複数の抵抗発熱体の故障具合を判別する判別手段と、を備えたこと
     を特徴とする請求項1に記載の真空ポンプ。
  3.  前記判別手段で判別した前記故障具合を出力する出力手段を備えたこと
     を特徴とする請求項2に記載の真空ポンプ。
  4.  前記故障具合は、前記複数の抵抗発熱体のうち故障した数であること
    を特徴とする請求項2または3に記載の真空ポンプ。
  5.  前記一対の配線ラインと前記複数の抵抗発熱体とがコネクタによって連結されていること
     を特徴とする請求項1ないし4のいずれか1項に記載の真空ポンプ。
  6.  前記一対の配線ラインのうち少なくともいずれか一方の配線ラインの両端部が連結手段によって連結されていること
     を特徴とする請求項1ないし5のいずれか1項に記載の真空ポンプ。
  7.  請求項1ないし6のいずれか1項に記載の真空ポンプを構成する前記加熱手段を備えたことを特徴とする真空ポンプの加熱装置。
PCT/JP2018/019824 2017-05-30 2018-05-23 真空ポンプとその加熱装置 WO2018221345A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/616,293 US11889595B2 (en) 2017-05-30 2018-05-23 Vacuum pump and heating device therefor
EP18810257.8A EP3633203A4 (en) 2017-05-30 2018-05-23 VACUUM PUMP AND HEATING DEVICE FOR IT
KR1020197033435A KR102589087B1 (ko) 2017-05-30 2018-05-23 진공 펌프와 그 가열 장치
CN201880034241.4A CN110621885A (zh) 2017-05-30 2018-05-23 真空泵和其加热装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017106108A JP6943629B2 (ja) 2017-05-30 2017-05-30 真空ポンプとその加熱装置
JP2017-106108 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018221345A1 true WO2018221345A1 (ja) 2018-12-06

Family

ID=64454692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019824 WO2018221345A1 (ja) 2017-05-30 2018-05-23 真空ポンプとその加熱装置

Country Status (6)

Country Link
US (1) US11889595B2 (ja)
EP (1) EP3633203A4 (ja)
JP (1) JP6943629B2 (ja)
KR (1) KR102589087B1 (ja)
CN (1) CN110621885A (ja)
WO (1) WO2018221345A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371852B2 (ja) * 2019-07-17 2023-10-31 エドワーズ株式会社 真空ポンプ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438611Y2 (ja) * 1974-12-11 1979-11-16
JPS6345755Y2 (ja) * 1980-01-18 1988-11-28
JPH04201358A (ja) * 1990-11-30 1992-07-22 Toshiba Corp サーマルヘッドの断線検知装置
JPH08310030A (ja) * 1995-05-16 1996-11-26 Ishida Co Ltd サーマルヘッドの断線検出装置
JP2015031153A (ja) 2013-07-31 2015-02-16 エドワーズ株式会社 真空ポンプ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1936391A (en) * 1930-02-19 1933-11-21 Harrower Archibald Fr Thompson Thawing appliance
JPS5438611A (en) 1977-09-02 1979-03-23 Komatsu Mfg Co Ltd Device of laying underground buried pipe
US4372279A (en) * 1980-11-24 1983-02-08 Paccar Inc. Heated fuel line
JPS6345755A (ja) 1986-08-13 1988-02-26 Toshiba Battery Co Ltd 積層乾電池
JPS6419198A (en) * 1987-07-15 1989-01-23 Hitachi Ltd Vacuum pump
US4926648A (en) * 1988-03-07 1990-05-22 Toshiba Corp. Turbomolecular pump and method of operating the same
JP2998903B2 (ja) * 1990-11-14 2000-01-17 東京エレクトロン株式会社 熱処理装置
US6902378B2 (en) * 1993-07-16 2005-06-07 Helix Technology Corporation Electronically controlled vacuum pump
JP3204866B2 (ja) 1994-08-31 2001-09-04 東京エレクトロン株式会社 真空処理装置及び真空処理方法
JP2002155891A (ja) * 2000-11-22 2002-05-31 Seiko Instruments Inc 真空ポンプ
JP4821308B2 (ja) * 2005-12-21 2011-11-24 株式会社島津製作所 真空ポンプ
JP4958440B2 (ja) 2006-01-12 2012-06-20 パナソニック株式会社 高周波加熱装置
FR2919456B1 (fr) 2007-07-26 2009-11-27 Inergy Automotive Systems Res Methode pour le chauffage d'au moins un composant d'un systeme scr a l'aide d'elements chauffants resistifs.
GB0801936D0 (en) 2008-02-01 2008-03-12 Isis Innovation Electricity generator
KR101345228B1 (ko) * 2012-04-12 2013-12-27 주식회사 청석 히터 일체형 펌프
JP6147988B2 (ja) 2012-11-08 2017-06-14 エドワーズ株式会社 真空ポンプ
US10584709B2 (en) * 2015-03-27 2020-03-10 Dresser-Rand Company Electrically heated balance piston seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438611Y2 (ja) * 1974-12-11 1979-11-16
JPS6345755Y2 (ja) * 1980-01-18 1988-11-28
JPH04201358A (ja) * 1990-11-30 1992-07-22 Toshiba Corp サーマルヘッドの断線検知装置
JPH08310030A (ja) * 1995-05-16 1996-11-26 Ishida Co Ltd サーマルヘッドの断線検出装置
JP2015031153A (ja) 2013-07-31 2015-02-16 エドワーズ株式会社 真空ポンプ

Also Published As

Publication number Publication date
EP3633203A1 (en) 2020-04-08
JP2018200041A (ja) 2018-12-20
US11889595B2 (en) 2024-01-30
EP3633203A4 (en) 2021-02-24
JP6943629B2 (ja) 2021-10-06
CN110621885A (zh) 2019-12-27
KR102589087B1 (ko) 2023-10-13
KR20200014747A (ko) 2020-02-11
US20200092952A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US20030161732A1 (en) Overheat protection for fluid pump
JP6386737B2 (ja) 真空ポンプ
CN110735805B (zh) 真空泵
US6814549B2 (en) Liner for fluid pump motor
JP4222747B2 (ja) 真空ポンプ
JP6331491B2 (ja) 真空ポンプ
WO2018221345A1 (ja) 真空ポンプとその加熱装置
KR20160119758A (ko) 진공 펌프, 및 이 진공 펌프에 이용되는 단열 스페이서
JP2005083316A (ja) モータ制御システム及び該モータ制御システムを搭載した真空ポンプ
JP6407905B2 (ja) 主軸軸受保護装置及びそれを備えた工作機械
JP6390478B2 (ja) 真空ポンプ
CN201650763U (zh) 前置平衡盘式单级屏蔽泵
JP4899598B2 (ja) ターボ分子ポンプ
GB2570503A (en) Turbomolecular pump and method of operation
WO2020195943A1 (ja) 真空ポンプ、及び、真空ポンプ構成部品
JP7240911B2 (ja) モータ、及び、モータの状態判定装置
JPH116774A (ja) ロータ温度検出装置及び温度検出方法
JP2000291586A (ja) 真空ポンプ
WO2022131035A1 (ja) 真空ポンプ
JP2019183831A (ja) 真空ポンプおよびこれを作動させるための方法
JP7388280B2 (ja) 温調機能付きターボ分子ポンプ
WO2023171566A1 (ja) 真空ポンプ
JP6469174B2 (ja) 電動機の制御装置、電動機システム、及び電動機の制御方法
JPH10288190A (ja) 磁気軸受装置
CN116783391A (zh) 真空泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197033435

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018810257

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018810257

Country of ref document: EP

Effective date: 20200102