WO2018220669A1 - 高周波ミクサ - Google Patents
高周波ミクサ Download PDFInfo
- Publication number
- WO2018220669A1 WO2018220669A1 PCT/JP2017/019893 JP2017019893W WO2018220669A1 WO 2018220669 A1 WO2018220669 A1 WO 2018220669A1 JP 2017019893 W JP2017019893 W JP 2017019893W WO 2018220669 A1 WO2018220669 A1 WO 2018220669A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- circuit
- output
- input
- wave
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
- H01P1/185—Phase-shifters using a diode or a gas filled discharge tube
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/02—Transference of modulation from one carrier to another, e.g. frequency-changing by means of diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/213—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
Definitions
- the present invention relates to a high-frequency mixer having a 90-degree hybrid circuit.
- Patent Document 1 discloses a high-frequency mixer that includes a 90-degree hybrid circuit and first and second diodes.
- the 90-degree hybrid circuit has first to fourth terminals, an LO wave that is a local oscillation wave is input from the first terminal, and an RF signal that is a high-frequency signal is input from the second terminal.
- the 90-degree hybrid circuit outputs an LO wave with a phase of 0 degree and an RF signal with a phase of -90 degrees from the third terminal, and an LO wave with a phase of -90 degrees from the fourth terminal.
- An RF signal having a phase of 0 degree is output.
- the anode of the first diode is connected to the third terminal of the 90-degree hybrid circuit via a transmission line having a length of a quarter wavelength at the LO wave frequency.
- the frequency of the LO wave and the frequency of the RF signal are substantially equal.
- the transmission line shifts the phase of the LO wave output from the third terminal of the 90-degree hybrid circuit by -90 degrees, and changes the phase of the RF signal output from the third terminal of the 90-degree hybrid circuit.
- an LO wave having a phase of ⁇ 90 degrees and an RF signal having a phase of approximately 180 degrees are given to the anode of the first diode.
- the cathode of the first diode is short-circuited at an LO wave frequency by an open stub at one end, and the first diode performs a switching operation according to the amplitude of the LO wave, thereby mixing the LO wave and the RF signal. Is generated.
- the mixed wave of the LO wave and the RF signal is a signal having a difference frequency between the frequency of the LO wave and the frequency of the RF signal.
- the signal having the difference frequency is referred to as a first IF signal.
- the phase of the first IF signal output from the cathode of the first diode is approximately -90 degrees.
- the cathode of the second diode is connected to the fourth terminal of the 90-degree hybrid circuit.
- an LO wave having a phase of ⁇ 90 degrees and an RF signal having a phase of 0 degrees are given to the cathode of the second diode.
- the anode of the second diode is short-circuited at the LO wave frequency by an open stub at one end, and the second diode performs a switching operation in accordance with the amplitude of the LO wave, thereby mixing the LO wave and the RF signal. Is generated.
- the mixed wave of the LO wave and the RF signal is a signal having a difference frequency between the frequency of the LO wave and the frequency of the RF signal.
- the signal having the difference frequency is referred to as a second IF signal. Since the first diode and the second diode have opposite directions, the phase of the second IF signal output from the anode of the second diode is ⁇ 90 degrees.
- the first IF signal output from the cathode of the first diode and the second IF signal output from the anode of the second diode have substantially the same frequency
- the first IF signal is substantially in-phase synthesized and output. Since the RF signal output from the cathode of the first diode and the RF signal output from the anode of the second diode are substantially in opposite phase, they are substantially canceled out.
- a conventional high-frequency mixer includes a 90-degree hybrid circuit and first and second diodes, and the input impedances of the first and second diodes are the third and fourth terminals in the 90-degree hybrid circuit. Higher than the output impedance. This increases the impedance mismatch between the 90-degree hybrid circuit and the first and second diodes.
- the present invention has been made to solve the above-described problems, and an object thereof is to obtain a high-frequency mixer capable of reducing radio wave conversion loss.
- the high frequency mixer according to the present invention has a first terminal to a fourth terminal.
- the first terminal is a radio wave input terminal
- the second terminal is an isolation terminal and the third terminal is 0.
- the first phase-shift circuit that converts the phase of the radio wave so that the phase of the radio wave is 180 degrees
- a second phase shift circuit that converts the phase of the radio wave by 90 degrees.
- the first phase shift circuit converts the impedance so as to achieve impedance matching between the third terminal of the 90-degree hybrid circuit and the first terminal of the first nonlinear element, and
- the phase of the radio wave is shifted by 180 degrees
- the second phase shift circuit has an impedance so as to achieve impedance matching between the fourth terminal of the 90-degree hybrid circuit and the second terminal of the second nonlinear element.
- the phase of the radio wave is shifted by 90 degrees, so that there is an effect that the conversion loss of the radio wave can be reduced.
- FIG. 3 is a configuration diagram showing impedance conversion by a first phase shift circuit 2.
- 2 is a configuration diagram showing a first phase shift circuit 2 and a second phase shift circuit 3.
- FIG. 4A is an explanatory diagram showing impedance conversion by the first transmission line 11 and the second transmission line 12 in the first phase shift circuit 2
- FIG. 4B is a third transmission line in the second phase shift circuit 3.
- 13 is an explanatory diagram showing impedance conversion by 13;
- FIG. FIG. 5A is a configuration diagram showing an example in which the first radio short circuit 7 and the second radio short circuit 8 are formed by the capacitor 21, and FIG. 5B shows the first radio short circuit 7 and the second radio short circuit.
- FIG. 8 It is a block diagram which shows the example in which the circuit 8 is formed with the one end open stub 22.
- FIG. It is a block diagram which shows the high frequency mixer by Embodiment 2 of this invention. It is a block diagram which shows the high frequency mixer by Embodiment 3 of this invention.
- FIG. 1 is a block diagram showing a high-frequency mixer according to Embodiment 1 of the present invention.
- the 90-degree hybrid circuit 1 has a first terminal 1a, a second terminal 1b, a third terminal 1c, and a fourth terminal 1d, and the first terminal 1a is a radio wave input terminal.
- the second terminal 1b is an isolation terminal
- the third terminal 1c is a 0 degree output terminal
- the fourth terminal 1d is a -90 degree output terminal.
- FIG. 1 is a block diagram showing a high-frequency mixer according to Embodiment 1 of the present invention.
- the 90-degree hybrid circuit 1 has a first terminal 1a, a second terminal 1b, a third terminal 1c, and a fourth terminal 1d, and the first terminal 1a is a radio wave input terminal.
- the second terminal 1b is an isolation terminal
- the third terminal 1c is a 0 degree output terminal
- the fourth terminal 1d is a -90 degree output terminal.
- an RF signal (radio wave) that is a high-frequency signal is input from the first terminal 1a of the 90-degree hybrid circuit 1
- the LO wave that is a local oscillation wave is input from the second terminal 1b of the 90-degree hybrid circuit 1. (Radio wave) is input.
- the RF signal input from the first terminal 1a of the 90-degree hybrid circuit 1 is not output to the second terminal 1b, but is equally distributed to the third terminal 1c and the fourth terminal 1d. Further, the first RF signal (first radio wave) distributed to the third terminal 1c and the second RF signal (second radio wave) distributed to the fourth terminal 1d are 90 degrees from each other. There is a phase difference of.
- the LO wave input from the second terminal 1b of the 90-degree hybrid circuit 1 is not output to the first terminal 1a but is equally distributed to the third terminal 1c and the fourth terminal 1d. Also, the first LO wave (third radio wave) distributed to the third terminal 1c and the second LO wave (fourth radio wave) distributed to the fourth terminal 1d are 90 degrees from each other.
- phase difference of In FIG. 1, the phase of the first RF signal output from the third terminal 1c is 0 degrees, the phase of the first LO wave output from the third terminal 1c is -90 degrees, and the fourth terminal 1d.
- the phase of the second RF signal output from the first terminal is ⁇ 90 degrees and the phase of the second LO wave output from the fourth terminal 1d is 0 degrees.
- the first phase shift circuit 2 shifts the phase of the first RF signal output from the third terminal 1c of the 90-degree hybrid circuit 1 by 180 degrees, thereby setting the phase of the first RF signal to 0 degrees.
- the first RF signal after the phase shift is output to the first nonlinear element 4.
- the first phase shift circuit 2 shifts the phase of the first LO wave by 180 degrees from the phase of the first LO wave output from the third terminal 1 c of the 90-degree hybrid circuit 1.
- the phase is shifted from ⁇ 90 degrees to 90 degrees, and the first LO wave after the phase shift is output to the first nonlinear element 4.
- First phase shift circuit 2 has a function of taking the output impedance Z s1 in a third terminal 1c of quadrature hybrid circuit 1, the matching between the input impedance Z d1 at the input terminal 4a of the first non-linear element 4 have.
- the second phase shift circuit 3 shifts the phase of the second RF signal output from the fourth terminal 1d of the 90-degree hybrid circuit 1 by ⁇ 90 degrees, thereby changing the phase of the second RF signal ⁇
- the phase is shifted from 90 degrees to 180 degrees, and the second RF signal after the phase shift is output to the second nonlinear element 5.
- the phase of the second RF signal after the phase shift by the second phase shift circuit 3 is in phase with the phase of the first RF signal after the phase shift by the first phase shift circuit 2.
- the second phase shift circuit 3 shifts the phase of the second LO wave output from the fourth terminal 1d of the 90-degree hybrid circuit 1 by -90 degrees, so that the phase of the second LO wave is shifted.
- the second phase shift circuit 3 has a function of matching between the output impedance Z s2 at the fourth terminal of the 90-degree hybrid circuit 1 and the input impedance Z d2 at the input terminal 5a of the second nonlinear element 5.
- the first nonlinear element 4 is realized by, for example, a diode, and an input terminal 4a that is a first terminal of the first nonlinear element 4 corresponds to an anode that is an anode of the diode.
- the output terminal 4b that is the second terminal corresponds to a cathode that is a cathode of the diode.
- the first nonlinear element 4 mixes the first RF signal output from the first phase shift circuit 2 and the first LO wave output from the first phase shift circuit 2, and An IF signal (first mixed wave) is generated, and the first IF signal is output to the synthesis circuit 6.
- the second nonlinear element 5 is realized by a diode, for example, and the input terminal 5a that is the second terminal of the second nonlinear element 5 corresponds to the cathode that is the cathode of the diode.
- the output terminal 5b which is one terminal, corresponds to the anode that is the anode of the diode.
- the second nonlinear element 5 mixes the second RF signal output from the second phase shift circuit 3 and the second LO wave output from the second phase shift circuit 3, A second IF signal (second mixed wave) having the same phase as the IF signal is generated, and the second IF signal is output to the synthesis circuit 6.
- a Schottky barrier diode etc. other than the diode of a PN junction can be used, for example.
- the synthesis circuit 6 includes a first radio short circuit 7 and a second radio short circuit 8.
- the synthesis circuit 6 performs in-phase synthesis of the first IF signal output from the first nonlinear element 4 and the second IF signal output from the second nonlinear element 5, and the in-phase synthesis result from the input / output terminal 6a.
- the IF signal is output to the outside.
- the first radio wave short circuit 7 is the first nonlinear element 4 at the frequency of the RF signal input from the first terminal 1a of the 90-degree hybrid circuit 1 or the frequency of the LO wave input from the second terminal 1b. This is a circuit for short-circuiting the output terminal 4b.
- the second radio wave short circuit 8 is the second nonlinear element 5 at the frequency of the RF signal input from the first terminal 1a of the 90-degree hybrid circuit 1 or the frequency of the LO wave input from the second terminal 1b. This is a circuit for short-circuiting the output terminal 5b.
- the 90-degree hybrid circuit 1 When an RF signal is input from the first terminal 1a, the 90-degree hybrid circuit 1 equally distributes the input RF signal to the first RF signal and the second RF signal, and from the third terminal 1c. The first RF signal is output, and the second RF signal is output from the fourth terminal 1d.
- the 90-degree hybrid circuit 1 When the 90-degree hybrid circuit 1 equally distributes the RF signal input from the first terminal 1a to the first RF signal and the second RF signal, for example, the 90-degree hybrid circuit 1 receives the RF signal input from the first terminal 1a. If the phase is 0 degree, the phase of the first RF signal is shifted by ⁇ degrees, and the phase of the second RF signal is shifted by ( ⁇ 90) degrees.
- the 90-degree hybrid circuit 1 When the LO wave is input from the second terminal 1b, the 90-degree hybrid circuit 1 equally distributes the input LO wave to the first LO wave and the second LO wave, and from the third terminal 1c. The first LO wave is output, and the second LO wave is output from the fourth terminal 1d.
- the 90-degree hybrid circuit 1 equally distributes the LO wave input from the second terminal 1b to the first LO wave and the second LO wave, for example, the LO wave input from the second terminal 1b If the phase is 0 degree, the phase of the first LO wave is shifted by ( ⁇ 90) degrees, and the phase of the second LO wave signal is shifted by ⁇ degrees.
- the first phase shift circuit 2 shifts the phase of the first RF signal output from the third terminal 1c of the 90-degree hybrid circuit 1 by 180 degrees, thereby setting the phase of the first RF signal to 0 degrees.
- the first RF signal after the phase shift is output to the first nonlinear element 4.
- the first phase shift circuit 2 shifts the phase of the first LO wave by 180 degrees from the phase of the first LO wave output from the third terminal 1 c of the 90-degree hybrid circuit 1.
- the phase is shifted from ⁇ 90 degrees to 90 degrees, and the first LO wave after the phase shift is output to the first nonlinear element 4.
- the first phase shift circuit 2 has a function of shifting the phase of the first RF signal and the phase of the first LO wave, as shown in FIG. Has a function of matching between the output impedance Z s1 at the third terminal 1c of the 90-degree hybrid circuit 1 and the input impedance Z d1 at the input terminal 4a of the first nonlinear element 4 at the frequency of the LO wave. is doing.
- FIG. 2 is an explanatory diagram showing impedance conversion by the first phase shift circuit 2.
- the first phase shift circuit 2 takes a match between the output impedance Z s1 at the third terminal 1c and the input impedance Z d1 at the input terminal 4a of the first nonlinear element 4, whereby a 90-degree hybrid circuit The mismatch between 1 and the first nonlinear element 4 is eliminated. As a result, the first RF signal power and the first LO wave power output from the third terminal 1 c of the 90-degree hybrid circuit 1 are reflected to the input terminal 4 a of the first nonlinear element 4. Power is reduced. It is a design matter to adjust the frequency at which the best matching is achieved to a frequency between the frequency of the first RF signal and the frequency of the first LO wave.
- the second phase shift circuit 3 shifts the phase of the second RF signal output from the fourth terminal 1d of the 90-degree hybrid circuit 1 by ⁇ 90 degrees, thereby changing the phase of the second RF signal ⁇
- the phase is shifted from 90 degrees to 180 degrees, and the second RF signal after the phase shift is output to the second nonlinear element 5.
- the phase of the second RF signal after the phase shift by the second phase shift circuit 3 is in phase with the phase of the first RF signal after the phase shift by the first phase shift circuit 2.
- the second phase shift circuit 3 shifts the phase of the second LO wave output from the fourth terminal 1d of the 90-degree hybrid circuit 1 by -90 degrees, so that the phase of the second LO wave is shifted.
- phase of the second LO wave after the phase shift is output to the second nonlinear element 5.
- the phase of the second LO wave after the phase shift by the second phase shift circuit 3 is opposite to the phase of the first LO wave after the phase shift by the first phase shift circuit 2.
- the second phase shift circuit 3 has a function of shifting the phase of the second RF signal and the phase of the second LO wave, and at the frequency of the second RF signal or the frequency of the second LO wave
- the 90-degree hybrid circuit 1 has a function of matching between the output impedance Z s2 at the fourth terminal 1d of the 90 ° hybrid circuit 1 and the input impedance Z d2 at the input terminal 5a of the second nonlinear element 5.
- the second phase shift circuit 3 matches between the output impedance Z s2 at the fourth terminal 1d and the input impedance Z d2 at the input terminal 5a of the second nonlinear element 5, whereby a 90-degree hybrid circuit The mismatch between 1 and the second nonlinear element 5 is eliminated.
- the second RF signal power and the second LO wave power output from the fourth terminal 1 d of the 90-degree hybrid circuit 1 are reflected to the input terminal 5 a of the second nonlinear element 5. Power is reduced. It is a design matter to adjust the frequency at which the best matching is achieved to a frequency between the frequency of the second RF signal and the frequency of the second LO wave.
- the first phase shift circuit 2 and the second phase shift circuit 3 are configured by a circuit including a transmission line having a length of a quarter wavelength, for example, the frequency of the RF signal or the frequency of the LO wave. can do.
- FIG. 3 is a configuration diagram showing the first phase shift circuit 2 and the second phase shift circuit 3.
- the first transmission line 11 has a length of a quarter wavelength at the frequency of the RF signal input from the first terminal 1a or the frequency of the LO wave input from the second terminal 1b. And has one end connected to the input terminal 4 a of the first nonlinear element 4.
- Characteristic impedance of the first transmission line 11 is Z 1.
- the second transmission line 12 has a length of a quarter wavelength at the frequency of the RF signal input from the first terminal 1a or the frequency of the LO wave input from the second terminal 1b. One end is connected to the other end of the first transmission line 11, and the other end is connected to the third terminal 1c of the 90-degree hybrid circuit 1.
- the characteristic impedance of the second transmission line 12 is Z 2.
- the third transmission line 13 has a length of a quarter wavelength at the frequency of the RF signal input from the first terminal 1a or the frequency of the LO wave input from the second terminal 1b. One end is connected to the input terminal 5a of the second nonlinear element 5, and the other end is connected to the fourth terminal 1d of the 90-degree hybrid circuit 1.
- the characteristic impedance of the third transmission line 13 is Z 3.
- the first phase shift circuit 2 is a series circuit of the first transmission line 11 and the second transmission line 12, and the line length of the first transmission line 11 and the line length of the second transmission line 12 are respectively For example, if the frequency of the RF signal input from the first terminal 1a is a quarter wavelength, the first RF signal output from the third terminal 1c of the 90-degree hybrid circuit 1 Can be shifted by 180 degrees. Since the frequency of the LO wave input from the second terminal 1b is substantially equal to the frequency of the RF signal input from the first terminal 1a, the first phase shift circuit 2 is the third of the 90-degree hybrid circuit 1. The phase of the first LO wave output from the terminal 1c can be shifted by approximately 180 degrees. FIG. 3 shows an example in which the phase of the first LO wave is shifted from ⁇ 90 degrees to 90 degrees on the assumption that the phase shift amount with respect to the first LO wave is 180 degrees.
- the first phase shift circuit 2 is a series circuit of the first transmission line 11 and the second transmission line 12, and the characteristic impedance Z1 of the first transmission line 11 is expressed by the following equation (1). Impedance characteristic conversion is performed on the real axis having no reactance component. Further, if the characteristic impedance Z2 of the second transmission line 12 is set to the characteristic impedance represented by the following equation (2), impedance conversion is performed on the real axis having no reactance component.
- FIG. 4A is an explanatory diagram illustrating impedance conversion by the first transmission line 11 and the second transmission line 12 in the first phase shift circuit 2.
- a trajectory as shown in FIG. 4A is obtained by making Z 1 and Z 2 different from each other.
- the input impedance Z d1 at the input terminal 4 a of the first nonlinear element 4 is changed to the output impedance Z s1 at the third terminal 1 c by the first transmission line 11 and the second transmission line 12. Converted.
- matching is achieved between the output impedance Z s1 at the third terminal 1c and the input impedance Z d1 at the input terminal 4a of the first nonlinear element 4.
- the characteristic impedance Z 1 of the first transmission line 11 and the characteristic impedance Z of the second transmission line 12 will be described.
- 2 is an impedance higher than the output impedance Z s1 at the third terminal 1c.
- the line length of the third transmission line 13 in the second phase shift circuit 3 is, for example, the frequency of the RF signal input from the first terminal 1a and a length of a quarter wavelength, 90 degrees.
- the phase of the second RF signal output from the fourth terminal 1d of the hybrid circuit 1 can be shifted by -90 degrees. Since the frequency of the LO wave input from the second terminal 1b is substantially equal to the frequency of the RF signal input from the first terminal 1a, the second phase shift circuit 3 is the fourth of the 90-degree hybrid circuit 1.
- the phase of the second LO wave output from the terminal 1d can be shifted by approximately ⁇ 90 degrees.
- FIG. 3 shows an example in which the phase of the second LO wave is shifted from 0 degree to ⁇ 90 degrees, assuming that the amount of phase shift with respect to the second LO wave is ⁇ 90 degrees.
- FIG. 4B is an explanatory diagram showing impedance conversion by the third transmission line 13 in the second phase shift circuit 3.
- matching between the output impedance Z s2 at the fourth terminal 1d and the input impedance Z d2 at the input terminal 5a of the second nonlinear element 5 is achieved.
- the output terminal 4 b of the first nonlinear element 4 is short-circuited by the first radio wave short circuit 7 at the frequency of the LO wave input from the second terminal 1 b of the 90-degree hybrid circuit 1.
- the first nonlinear element 4 performs a switching operation according to the amplitude of the first LO wave, so that the first RF signal output from the first phase shift circuit 2 and the first phase shift circuit 2
- the output first LO wave is mixed to generate a first IF signal, and the first IF signal is output to the synthesis circuit 6.
- the switching operation of the nonlinear element realized by the diode and the mixing operation itself of the RF signal and the LO wave are well-known techniques, and thus detailed description thereof is omitted.
- the first IF signal is a mixed wave of a difference frequency between the first RF signal output from the first phase shift circuit 2 and the first LO wave output from the first phase shift circuit 2; If the phase of the first RF signal is 180 degrees and the phase of the first LO wave is 90 degrees, the phase of the first IF signal is 90 degrees.
- the output terminal 5 b of the second non-linear element 5 is short-circuited by the second radio wave short circuit 8 at the frequency of the LO wave input from the second terminal 1 b of the 90-degree hybrid circuit 1.
- the second nonlinear element 5 performs a switching operation according to the amplitude of the second LO wave, so that the second RF signal output from the second phase shift circuit 3 and the second phase shift circuit 3
- the output second LO wave is mixed to generate a second IF signal, and the second IF signal is output to the synthesis circuit 6.
- the second IF signal is a mixed wave of a difference frequency between the second RF signal output from the second phase shift circuit 3 and the second LO wave output from the second phase shift circuit 3.
- the direction of the second nonlinear element 5 is opposite to that of the first nonlinear element 4. Therefore, if the phase of the second RF signal is 180 degrees and the phase of the second LO wave is ⁇ 90 degrees, the phase of the second IF signal is 90 degrees.
- the synthesis circuit 6 performs in-phase synthesis of the first IF signal output from the first nonlinear element 4 and the second IF signal output from the second nonlinear element 5, and the in-phase synthesis result from the input / output terminal 6a.
- the IF signal is output to the outside.
- the output terminal 4b of the first nonlinear element 4 is Similarly to the frequency of the LO wave, the frequency of the RF signal is also short-circuited by the first radio wave short circuit 7.
- the output terminal 5b of the second nonlinear element 5 is short-circuited by the second radio wave short circuit 8 with respect to the frequency of the RF signal as well as the frequency of the LO wave.
- the first RF signal and the first LO wave that pass through the first nonlinear element 4 are not output from the input / output terminal 6a.
- the second RF signal and the second LO wave that pass through the second nonlinear element 5 are not output from the input / output terminal 6a.
- the phase of the first LO wave passing through the first nonlinear element 4 and the phase of the second LO wave passing through the second nonlinear element 5 are opposite in phase. For this reason, since the first LO wave passing through the first nonlinear element 4 and the second LO wave passing through the second nonlinear element 5 are synthesized in opposite phases, the LO wave is converted into the first nonlinear element.
- the output terminal 4b of 4 and the output terminal 5b of the second nonlinear element 5 are not short-circuited by the first radio short circuit 7 and the second radio short circuit 8, they are not output from the input / output terminal 6a.
- the LO wave has a large input power and leaks due to a phase imbalance in reality, it is better to have the first radio short circuit 7 and the second radio short circuit 8. Since the IF signal output from the input / output terminal 6a is a difference frequency signal between the RF signal and the LO wave, and the frequency of the IF signal is low, the first radio short circuit 7 and the second radio short circuit 8 is not short-circuited.
- the phase shift amount of the LO wave in the second phase shift circuit 3 is approximately 90 degrees
- the deviation from 90 degrees is ⁇
- the phase shift amount of the LO wave in the first phase shift circuit 2 is approximately 180 degrees
- the phase difference between the second IF signal generated by the second nonlinear element 5 and the first IF signal generated by the first nonlinear element 4 is ⁇ . Therefore, ⁇ becomes a factor of the synthesis loss in the in-phase synthesis of the first IF signal and the second IF signal.
- ⁇ since the frequency of the RF signal and the LO wave are substantially equal, ⁇ is small and the influence on the loss is small.
- ⁇ is small, it is possible to adjust the line length to the synthesis point of the first IF signal and the second IF signal so as to cancel this, which is a design matter.
- FIG. 5 is a configuration diagram showing an example of the first radio short circuit 7 and the second radio short circuit 8.
- FIG. 5A is a configuration diagram showing an example in which the first radio short circuit 7 and the second radio short circuit 8 are formed by the capacitor 21, and
- FIG. 5B shows the first radio short circuit 7 and the second radio short circuit.
- It is a block diagram which shows the example in which the circuit 8 is formed with the one end open stub 22.
- a capacitor 21 is a capacitor that is short-circuited in the vicinity of the frequency of the RF signal input from the first terminal 1a of the 90-degree hybrid circuit 1 or in the vicinity of the frequency of the LO wave input from the second terminal 1b. It is.
- the one-end open stub 22 has a length of a quarter wavelength at the frequency of the RF signal input from the first terminal 1a of the 90-degree hybrid circuit 1 or the frequency of the LO wave input from the second terminal 1b.
- One end open stub having.
- the first phase shift circuit 2 has an impedance between the third terminal of the 90-degree hybrid circuit and the first terminal of the first nonlinear element.
- the impedance is converted so as to match, and the phase of the radio wave is shifted by 180 degrees.
- the second phase shift circuit 3 is connected to the fourth terminal of the 90-degree hybrid circuit and the second terminal of the second nonlinear element. Since the impedance is converted so as to achieve impedance matching with the terminal and the phase of the radio wave is shifted by 90 degrees, there is an effect that the conversion loss of the radio wave can be reduced.
- an example in which an RF signal is input from the first terminal 1a of the 90-degree hybrid circuit 1 and an LO wave is input from the second terminal 1b of the 90-degree hybrid circuit 1 is shown.
- the LO wave may be input from the first terminal 1a of the 90-degree hybrid circuit 1 and the RF signal may be input from the second terminal 1b of the 90-degree hybrid circuit 1.
- the high-frequency mixer includes the 90-degree hybrid circuit 1
- a Lange coupler may be used as the 90-degree hybrid circuit 1.
- the synthesis circuit 6 shows an example in which the first IF signal and the second IF signal are synthesized and output to the outside. However, each IF signal is independently output to the outside. You may do it.
- the input terminal 4a of the first nonlinear element 4 is an anode
- the output terminal 4b of the first nonlinear element 4 is a cathode
- the input terminal 5a of the second nonlinear element 5 is a cathode
- An example in which the output terminal 5b of the second nonlinear element 5 is an anode is shown. Since the first nonlinear element 4 and the second nonlinear element 5 only need to have opposite directions, the input terminal 4a of the first nonlinear element 4 is a cathode and the output terminal 4b of the first nonlinear element 4 is an anode.
- the input terminal 5a of the second nonlinear element 5 may be an anode, and the output terminal 5b of the second nonlinear element 5 may be a cathode.
- each of the first nonlinear element 4 and the second nonlinear element 5 is realized by a diode.
- any element capable of performing a switching operation may be used.
- it may be realized by a transistor.
- FIG. 6 is a block diagram showing a high-frequency mixer according to Embodiment 2 of the present invention.
- the configuration of the high-frequency mixer shown in FIG. 6 is basically the same as that of the high-frequency mixer shown in FIG. 1, but the terminal on the first phase shift circuit 2 side of the first nonlinear element 4 is an input / output terminal.
- the terminal on the synthesis circuit 6 side of the first nonlinear element 4 is used as an input terminal.
- the terminal on the second phase shift circuit 3 side of the second nonlinear element 5 is used as an input / output terminal, and the terminal on the synthesis circuit 6 side of the second nonlinear element 5 is used as an input terminal.
- the input / output terminal 4c of the first nonlinear element 4 corresponds to an anode that is an anode of a diode
- the input terminal 4d of the first nonlinear element 4 corresponds to a cathode that is a cathode of a diode.
- the input / output terminal 5c of the second nonlinear element 5 corresponds to a cathode that is a cathode of a diode
- the input terminal 5d of the second nonlinear element 5 corresponds to an anode that is an anode of the diode.
- the 90-degree hybrid circuit 1 equally distributes the input LO wave into the first LO wave and the second LO wave, and the first LO wave is distributed.
- the signal is output to the third terminal 1c, and the second LO wave is output to the fourth terminal 1d.
- the 90-degree hybrid circuit 1 equally distributes the LO wave input from the second terminal 1b to the first LO wave and the second LO wave, for example, the LO wave input from the second terminal 1b If the phase is 0 degree, the phase of the first LO wave is shifted by ( ⁇ 90) degrees, and the phase of the second LO wave signal is shifted by ⁇ degrees.
- the first phase shift circuit 2 shifts the phase of the first LO wave by -180 degrees by shifting the phase of the first LO wave output from the third terminal 1c of the 90-degree hybrid circuit 1 to -90. Phase shift from 90 degrees to 90 degrees.
- the first phase shift circuit 2 has a function of shifting the phase of the first LO wave, and, as shown in FIG. 2, the first phase shift circuit 2 has the frequency of the first RF signal or the frequency of the first LO wave. It has a function of matching between the output impedance Z s1 at the third terminal 1 c of the hybrid circuit 1 and the input impedance Z d1 at the input / output terminal 4 c of the first nonlinear element 4.
- the first phase shift circuit 2 takes a match between the output impedance Z s1 at the third terminal 1 c and the input impedance Z d1 at the input / output terminal 4 c of the first nonlinear element 4, thereby achieving a 90-degree hybrid.
- the mismatch between the circuit 1 and the first nonlinear element 4 is eliminated. It is a design matter to adjust the frequency at which the best matching is achieved to a frequency between the frequency of the first RF signal and the frequency of the first LO wave.
- the second phase shift circuit 3 shifts the phase of the second LO wave output from the fourth terminal 1d of the 90-degree hybrid circuit 1 by -90 degrees, thereby reducing the phase of the second LO wave to 0. Phase shift from 90 degrees to -90 degrees.
- the second phase shift circuit 3 has a function of shifting the phase of the second LO wave, and the fourth phase of the 90-degree hybrid circuit 1 at the frequency of the second RF signal or the frequency of the second LO wave.
- the output impedance Z s2 at the terminal 1d and the input impedance Z d2 at the input / output terminal 5c of the second nonlinear element 5 have a function of matching.
- the second phase shift circuit 3 matches between the output impedance Z s2 at the fourth terminal 1d and the input impedance Z d2 at the input / output terminal 5c of the second nonlinear element 5, whereby a 90-degree hybrid is obtained.
- the mismatch between the circuit 1 and the second nonlinear element 5 is eliminated. It is a design matter to adjust the frequency at which the best matching is achieved to a frequency between the frequency of the second RF signal and the frequency of the second LO wave.
- the synthesis circuit 6 When the IF signal is input from the input / output terminal 6a, the synthesis circuit 6 operates as a distribution circuit that equally distributes the input IF signal to the first IF signal and the second IF signal. The synthesis circuit 6 outputs the first IF signal to the first nonlinear element 4 and outputs the second IF signal to the second nonlinear element 5.
- the phase of the input IF signal is 0 degree
- the phase of the first IF signal and the phase of the second IF signal are each 0 degree.
- the input terminal 4 d of the first nonlinear element 4 is short-circuited by the first radio wave short circuit 7 at the frequency of the LO wave input from the second terminal 1 b of the 90-degree hybrid circuit 1.
- the first nonlinear element 4 performs a switching operation in accordance with the amplitude of the first LO wave, whereby the first LO wave output from the first phase shift circuit 2 and the first LO wave output from the synthesis circuit 6. 1 IF signal is mixed to generate a first RF signal, and the first RF signal is output from the input / output terminal 4 c to the first phase shift circuit 2.
- the first RF signal is a mixed wave of the sum frequency of the first LO wave output from the first phase shift circuit 2 and the first IF signal output from the synthesis circuit 6.
- the phase of the signal is 90 degrees.
- the input terminal 5 d of the second nonlinear element 5 is short-circuited by the second radio wave short circuit 8 at the frequency of the LO wave input from the second terminal 1 b of the 90-degree hybrid circuit 1.
- the second nonlinear element 5 performs a switching operation in accordance with the amplitude of the second LO wave, whereby the second LO wave output from the second phase shift circuit 3 and the second LO wave output from the synthesis circuit 6 are obtained.
- 2 IF signals are mixed to generate a second RF signal, and the second RF signal is output from the input / output terminal 5 c to the second phase shift circuit 3.
- the input / output terminal 5c of the second nonlinear element 5 is a cathode, and the input terminal 5d of the second nonlinear element 5 is an anode. For this reason, the phase of the second RF signal is 90 degrees.
- the first phase shifting circuit 2 shifts the phase of the first RF signal by 90 degrees by shifting the phase of the first RF signal output from the input / output terminal 4c of the first nonlinear element 4 by 90 degrees.
- the first RF signal after the phase shift is output to the third terminal 1 c of the 90-degree hybrid circuit 1.
- the first phase shift circuit 2 matches between the input impedance Z s1 at the third terminal 1 c of the 90-degree hybrid circuit 1 and the output impedance Z d1 at the input / output terminal 4 c of the first nonlinear element 4. It has a function.
- the first phase shift circuit 2 matches between the input impedance Z s1 at the third terminal 1c and the output impedance Z d1 at the input / output terminal 4c of the first nonlinear element 4, so that a 90-degree hybrid is obtained.
- the mismatch between the circuit 1 and the first nonlinear element 4 is eliminated.
- the second phase shift circuit 3 shifts the phase of the second RF signal by 90 degrees by shifting the phase of the second RF signal output from the input / output terminal 5c of the second nonlinear element 5 by 90 degrees.
- the phase is shifted from 0 degree to 0 degree, and the second RF signal after the phase shift is output to the fourth terminal 1 d of the 90 degree hybrid circuit 1.
- Second phase shift circuit 3 has a function of taking the input impedance s2 in the fourth terminal 1d of the quadrature hybrid circuit 1, the matching between the output impedance Z d2 in the second input-output terminal 5c of the non-linear element 5 have.
- the second phase shift circuit 3 matches between the input impedance Z s2 at the fourth terminal 1d and the output impedance Z d2 at the input / output terminal 5c of the second nonlinear element 5, whereby a 90-degree hybrid is obtained.
- the mismatch between the circuit 1 and the second nonlinear element 5 is eliminated.
- the first RF signal output from the first phase shift circuit 2 is input from the third terminal 1c, and the second RF signal output from the second phase shift circuit 3 is When inputted from the fourth terminal 1d, the first RF signal and the second RF signal are synthesized, and an RF signal synthesized in phase is outputted from the first terminal 1a.
- the phase of the RF signal output from the first terminal 1a is ⁇ 90 degrees.
- the radio wave conversion loss can be reduced. That is, since the power reflected by the third terminal 1c of the 90-degree hybrid circuit 1 is reduced in the power of the first RF signal output from the input / output terminal 4c of the first nonlinear element 4, the radio wave Conversion loss can be reduced. In addition, since the power reflected by the fourth terminal 1d of the 90-degree hybrid circuit 1 among the power of the second RF signal output from the input / output terminal 5c of the second nonlinear element 5 is reduced, the radio wave Conversion loss can be reduced.
- FIG. 7 is a block diagram showing a high-frequency mixer according to Embodiment 3 of the present invention.
- the parallel resonant circuit 31 includes a first capacitor 32 and a first short-circuit stub 33, and the frequency of the RF signal input from the first terminal 1 a of the 90-degree hybrid circuit 1 or the 90-degree hybrid circuit 1. This circuit resonates in parallel at the frequency of the LO wave input from the second terminal 1b.
- the first capacitor 32 is connected in parallel with the first nonlinear element 4.
- One end of the first short-circuit stub 33 is connected between the first phase shift circuit 2 and the first nonlinear element 4.
- the parallel resonance circuit 34 includes a second capacitor 35 and a second short-circuit stub 36, and the frequency of the RF signal input from the first terminal 1 a of the 90-degree hybrid circuit 1 or the 90-degree hybrid circuit 1. This circuit resonates in parallel at the frequency of the LO wave input from the second terminal 1b.
- the second capacitor 35 is connected in parallel with the second nonlinear element 5.
- One end of the second short-circuit stub 36 is connected between the second phase shift circuit 3 and the second nonlinear element 5.
- FIG. 7 shows an example in which the parallel resonant circuits 31 and 34 are applied to the high frequency mixer of FIG. 1, but the parallel resonant circuits 31 and 34 may be applied to the high frequency mixer of FIG. Good.
- the parallel resonant circuit 31 includes a first capacitor 32, and the parallel resonant circuit 34 includes a second capacitor 35.
- the first capacitor 32 is a parasitic capacitance of the first nonlinear element 4. It may be an external element.
- the second capacitor 35 may be a parasitic capacitance of the second nonlinear element 5 or an external element.
- Each of the first short-circuit stub 33 and the second short-circuit stub 36 has a line length shorter than the length of a quarter wavelength at the resonance frequency of the parallel resonance circuits 31 and 34, and can be regarded as an inductive element or an inductor. .
- the parallel resonance circuits 31 and 34 are circuits that resonate in parallel at the frequency of the RF signal or the LO wave, and the parallel resonance circuit 31 has a first line length that is shorter than the length of a quarter wavelength at the resonance frequency.
- the short-circuit stub 33 is provided.
- the parallel resonant circuit 34 has a second short-circuit stub 36 having a line length shorter than the length of the quarter wavelength at the resonant frequency. Therefore, even if the first IF signal leaks from the input terminal 4a of the first nonlinear element 4 to the first phase shift circuit 2 side, the connection point of the first short-circuit stub 33 is the first IF signal.
- the parallel resonance circuits 31 and 34 since the parallel resonance circuits 31 and 34 resonate in parallel at the frequency of the RF signal or the frequency of the LO wave, the parallel resonance circuits 31 and 34 are opened at the frequency of the RF signal or the frequency of the LO wave. small. Therefore, conversion loss from the RF signal to the IF signal is reduced.
- the parallel resonant circuit 31 includes a first capacitor 32, and the parallel resonant circuit 34 includes a second capacitor 35. Therefore, even when each of the first nonlinear element 4 and the second nonlinear element 5 has a parasitic capacitance, the first short-circuit stub 33 and the second short-circuit stub 36 are not connected to the first nonlinear element 4.
- the present invention is suitable for a high-frequency mixer having a 90-degree hybrid circuit.
- 1 90 degree hybrid circuit 1a 1st terminal, 1b 2nd terminal, 1c 3rd terminal, 1d 4th terminal, 2nd 1st phase shift circuit, 3rd 2nd phase shift circuit, 4th 1st Nonlinear element, 4a input terminal, 4b output terminal, 4c input / output terminal, 4d input terminal, 5th nonlinear element, 5a input terminal, 5b output terminal, 5c input / output terminal, 5d input terminal, 6 composite circuit, 6a input Output terminal, 7 1st radio short circuit, 8 2nd radio short circuit, 11 1st transmission line, 12 2nd transmission line, 13 3rd transmission line, 21 capacitor, 22 one end open stub, 31 parallel Resonant circuit, 32 first capacitor, 33 first short stub, 34 parallel resonant circuit, 35 second capacitor, 36 second short stub.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Superheterodyne Receivers (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
Abstract
第1の移相回路(2)が、90度ハイブリッド回路(1)の第3の端子(1c)と第1の非線形素子(4)の第1の端子(4a)との間のインピーダンス整合をとるようにインピーダンスを変換し、かつ、電波の位相を180度移相し、第2の移相回路(3)が、90度ハイブリッド回路(1)の第4の端子(1d)と第2の非線形素子(5)の第1の端子(5a)との間のインピーダンス整合をとるようにインピーダンスを変換し、かつ、電波の位相を90度移相する。これにより、電波の変換損失を低減することができる。
Description
この発明は、90度ハイブリッド回路を備える高周波ミクサに関するものである。
以下の特許文献1には、90度ハイブリッド回路と、第1及び第2のダイオードとを備えている高周波ミクサが開示されている。
以下、この高周波ミクサが受信ミクサとして動作する場合を説明する。
90度ハイブリッド回路は、第1から第4の端子を有しており、第1の端子から局部発振波であるLO波が入力され、第2の端子から高周波信号であるRF信号が入力される。
これにより、90度ハイブリッド回路は、第3の端子から、位相が0度のLO波及び位相が-90度のRF信号を出力し、第4の端子から、位相が-90度のLO波及び位相が0度のRF信号を出力する。
以下、この高周波ミクサが受信ミクサとして動作する場合を説明する。
90度ハイブリッド回路は、第1から第4の端子を有しており、第1の端子から局部発振波であるLO波が入力され、第2の端子から高周波信号であるRF信号が入力される。
これにより、90度ハイブリッド回路は、第3の端子から、位相が0度のLO波及び位相が-90度のRF信号を出力し、第4の端子から、位相が-90度のLO波及び位相が0度のRF信号を出力する。
第1のダイオードの陽極は、LO波の周波数で4分の1波長の長さを有する伝送線路を介して、90度ハイブリッド回路の第3の端子と接続されている。LO波の周波数と、RF信号の周波数とは、概略等しい周波数である。
このため、伝送線路は、90度ハイブリッド回路の第3の端子から出力されたLO波の位相を-90度移相し、90度ハイブリッド回路の第3の端子から出力されたRF信号の位相を概ね-90度移相する。
これにより、第1のダイオードの陽極には、位相が-90度のLO波と、位相が概ね180度のRF信号が与えられる。
第1のダイオードの陰極は、一端開放スタブによってLO波の周波数で短絡されており、第1のダイオードは、LO波の振幅に応じたスイッチング動作を行うことで、LO波とRF信号の混合波を生成する。
LO波とRF信号の混合波は、LO波の周波数とRF信号の周波数との差周波の信号であり、以下、差周波の信号を第1のIF信号と称する。第1のダイオードの陰極から出力される第1のIF信号の位相は、概ね-90度である。
このため、伝送線路は、90度ハイブリッド回路の第3の端子から出力されたLO波の位相を-90度移相し、90度ハイブリッド回路の第3の端子から出力されたRF信号の位相を概ね-90度移相する。
これにより、第1のダイオードの陽極には、位相が-90度のLO波と、位相が概ね180度のRF信号が与えられる。
第1のダイオードの陰極は、一端開放スタブによってLO波の周波数で短絡されており、第1のダイオードは、LO波の振幅に応じたスイッチング動作を行うことで、LO波とRF信号の混合波を生成する。
LO波とRF信号の混合波は、LO波の周波数とRF信号の周波数との差周波の信号であり、以下、差周波の信号を第1のIF信号と称する。第1のダイオードの陰極から出力される第1のIF信号の位相は、概ね-90度である。
第2のダイオードの陰極は、90度ハイブリッド回路の第4の端子と接続されている。
これにより、第2のダイオードの陰極には、位相が-90度のLO波と、位相が0度のRF信号が与えられる。
第2のダイオードの陽極は、一端開放スタブによってLO波の周波数で短絡されており、第2のダイオードは、LO波の振幅に応じたスイッチング動作を行うことで、LO波とRF信号の混合波を生成する。
LO波とRF信号の混合波は、LO波の周波数とRF信号の周波数との差周波の信号であり、以下、差周波の信号を第2のIF信号と称する。
第1のダイオードと第2のダイオードは、向きが逆であるため、第2のダイオードの陽極から出力される第2のIF信号の位相は、-90度である。
これにより、第2のダイオードの陰極には、位相が-90度のLO波と、位相が0度のRF信号が与えられる。
第2のダイオードの陽極は、一端開放スタブによってLO波の周波数で短絡されており、第2のダイオードは、LO波の振幅に応じたスイッチング動作を行うことで、LO波とRF信号の混合波を生成する。
LO波とRF信号の混合波は、LO波の周波数とRF信号の周波数との差周波の信号であり、以下、差周波の信号を第2のIF信号と称する。
第1のダイオードと第2のダイオードは、向きが逆であるため、第2のダイオードの陽極から出力される第2のIF信号の位相は、-90度である。
第1のダイオードの陰極から出力される第1のIF信号と、第2のダイオードの陽極から出力される第2のIF信号とは、周波数が概ね等しいため、概ね同相合成されて出力される。
第1のダイオードの陰極から出力されるRF信号と、第2のダイオードの陽極から出力されるRF信号とは、概ね逆相の関係にあるため概ね相殺される。
第1のダイオードの陰極から出力されるRF信号と、第2のダイオードの陽極から出力されるRF信号とは、概ね逆相の関係にあるため概ね相殺される。
従来の高周波ミクサは、90度ハイブリッド回路と、第1及び第2のダイオードとを備えているが、第1及び第2のダイオードの入力インピーダンスが、90度ハイブリッド回路における第3及び第4の端子の出力インピーダンスよりも高い。このため、90度ハイブリッド回路と第1及び第2のダイオードとの間のインピーダンス不整合が大きくなる。これにより、高周波ミクサが受信ミクサとして動作する場合、RF信号からIF信号への変換損失が大きくなり、高周波ミクサが送信ミクサとして動作する場合、IF信号からRF信号への変換損失が大きくなってしまうという課題があった。
この発明は上記のような課題を解決するためになされたもので、電波の変換損失を低減することができる高周波ミクサを得ることを目的とする。
この発明に係る高周波ミクサは、第1の端子から第4の端子を有し、第1の端子が電波の入力端子であるときは、第2の端子がアイソレーション端子、第3の端子が0度の出力端子、第4の端子が-90度の出力端子となる90度ハイブリッド回路と、90度ハイブリッド回路の第3の端子と第1の非線形素子の第1の端子との間のインピーダンス整合をとるようにインピーダンスを変換し、かつ、電波の位相を180度移相する第1の移相回路と、90度ハイブリッド回路の第4の端子と第2の非線形素子の第2の端子との間のインピーダンス整合をとるようにインピーダンスを変換し、かつ、電波の位相を90度移相する第2の移相回路とを備えるようにしたものである。
この発明によれば、第1の移相回路が、90度ハイブリッド回路の第3の端子と第1の非線形素子の第1の端子との間のインピーダンス整合をとるようにインピーダンスを変換し、かつ、電波の位相を180度移相し、第2の移相回路が、90度ハイブリッド回路の第4の端子と第2の非線形素子の第2の端子との間のインピーダンス整合をとるようにインピーダンスを変換し、かつ、電波の位相を90度移相するように構成したので、電波の変換損失を低減することができる効果がある。
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
この実施の形態1は、高周波ミクサが受信ミクサとして動作する例を説明する。
図1は、この発明の実施の形態1による高周波ミクサを示す構成図である。
図1において、90度ハイブリッド回路1は、第1の端子1a、第2の端子1b、第3の端子1c及び第4の端子1dを有しており、第1の端子1aが電波の入力端子であるときは、第2の端子1bがアイソレーション端子、第3の端子1cが0度の出力端子、第4の端子1dが-90度の出力端子となる回路である。
図1の例では、90度ハイブリッド回路1の第1の端子1aから高周波信号であるRF信号(電波)が入力され、90度ハイブリッド回路1の第2の端子1bから局部発振波であるLO波(電波)が入力される。
この実施の形態1は、高周波ミクサが受信ミクサとして動作する例を説明する。
図1は、この発明の実施の形態1による高周波ミクサを示す構成図である。
図1において、90度ハイブリッド回路1は、第1の端子1a、第2の端子1b、第3の端子1c及び第4の端子1dを有しており、第1の端子1aが電波の入力端子であるときは、第2の端子1bがアイソレーション端子、第3の端子1cが0度の出力端子、第4の端子1dが-90度の出力端子となる回路である。
図1の例では、90度ハイブリッド回路1の第1の端子1aから高周波信号であるRF信号(電波)が入力され、90度ハイブリッド回路1の第2の端子1bから局部発振波であるLO波(電波)が入力される。
90度ハイブリッド回路1の第1の端子1aから入力されたRF信号は、第2の端子1bに出力されず、第3の端子1c及び第4の端子1dに等分配される。また、第3の端子1cに分配される第1のRF信号(第1の電波)と、第4の端子1dに分配される第2のRF信号(第2の電波)とは、互いに90度の位相差がある。
90度ハイブリッド回路1の第2の端子1bから入力されたLO波は、第1の端子1aに出力されず、第3の端子1c及び第4の端子1dに等分配される。また、第3の端子1cに分配される第1のLO波(第3の電波)と、第4の端子1dに分配される第2のLO波(第4の電波)とは、互いに90度の位相差がある。
図1では、第3の端子1cから出力される第1のRF信号の位相が0度、第3の端子1cから出力される第1のLO波の位相が-90度、第4の端子1dから出力される第2のRF信号の位相が-90度、第4の端子1dから出力される第2のLO波の位相が0度である例を示している。
90度ハイブリッド回路1の第2の端子1bから入力されたLO波は、第1の端子1aに出力されず、第3の端子1c及び第4の端子1dに等分配される。また、第3の端子1cに分配される第1のLO波(第3の電波)と、第4の端子1dに分配される第2のLO波(第4の電波)とは、互いに90度の位相差がある。
図1では、第3の端子1cから出力される第1のRF信号の位相が0度、第3の端子1cから出力される第1のLO波の位相が-90度、第4の端子1dから出力される第2のRF信号の位相が-90度、第4の端子1dから出力される第2のLO波の位相が0度である例を示している。
第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cから出力された第1のRF信号の位相を180度移相することで、第1のRF信号の位相を0度から180度に移相し、移相後の第1のRF信号を第1の非線形素子4に出力する。
また、第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cから出力された第1のLO波の位相を180度移相することで、第1のLO波の位相を-90度から90度に移相し、移相後の第1のLO波を第1の非線形素子4に出力する。
第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cにおける出力インピーダンスZs1と、第1の非線形素子4の入力端子4aにおける入力インピーダンスZd1との間の整合をとる機能を有している。
また、第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cから出力された第1のLO波の位相を180度移相することで、第1のLO波の位相を-90度から90度に移相し、移相後の第1のLO波を第1の非線形素子4に出力する。
第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cにおける出力インピーダンスZs1と、第1の非線形素子4の入力端子4aにおける入力インピーダンスZd1との間の整合をとる機能を有している。
第2の移相回路3は、90度ハイブリッド回路1の第4の端子1dから出力された第2のRF信号の位相を-90度移相することで、第2のRF信号の位相を-90度から180度に移相し、移相後の第2のRF信号を第2の非線形素子5に出力する。第2の移相回路3による移相後の第2のRF信号の位相は、第1の移相回路2による移相後の第1のRF信号の位相と同相である。
また、第2の移相回路3は、90度ハイブリッド回路1の第4の端子1dから出力された第2のLO波の位相を-90度移相することで、第2のLO波の位相を0度から-90度に移相し、移相後の第2のLO波を第2の非線形素子5に出力する。第2の移相回路3による移相後の第2のLO波の位相は、第1の移相回路2による移相後の第1のLO波の位相と逆相である。
第2の移相回路3は、90度ハイブリッド回路1の第4の端子における出力インピーダンスZs2と、第2の非線形素子5の入力端子5aにおける入力インピーダンスZd2との間の整合をとる機能を有している。
また、第2の移相回路3は、90度ハイブリッド回路1の第4の端子1dから出力された第2のLO波の位相を-90度移相することで、第2のLO波の位相を0度から-90度に移相し、移相後の第2のLO波を第2の非線形素子5に出力する。第2の移相回路3による移相後の第2のLO波の位相は、第1の移相回路2による移相後の第1のLO波の位相と逆相である。
第2の移相回路3は、90度ハイブリッド回路1の第4の端子における出力インピーダンスZs2と、第2の非線形素子5の入力端子5aにおける入力インピーダンスZd2との間の整合をとる機能を有している。
第1の非線形素子4は、例えばダイオードで実現され、第1の非線形素子4の第1の端子である入力端子4aは、ダイオードの陽極であるアノードに相当し、第1の非線形素子4の第2の端子である出力端子4bは、ダイオードの陰極であるカソードに相当する。
第1の非線形素子4は、第1の移相回路2から出力された第1のRF信号と第1の移相回路2から出力された第1のLO波とを混合して、第1のIF信号(第1の混合波)を生成し、第1のIF信号を合成回路6に出力する。
第1の非線形素子4は、第1の移相回路2から出力された第1のRF信号と第1の移相回路2から出力された第1のLO波とを混合して、第1のIF信号(第1の混合波)を生成し、第1のIF信号を合成回路6に出力する。
第2の非線形素子5は、例えばダイオードで実現され、第2の非線形素子5の第2の端子である入力端子5aは、ダイオードの陰極であるカソードに相当し、第2の非線形素子5の第1の端子である出力端子5bは、ダイオードの陽極であるアノードに相当する。
第2の非線形素子5は、第2の移相回路3から出力された第2のRF信号と第2の移相回路3から出力された第2のLO波とを混合して、第1のIF信号と同相の第2のIF信号(第2の混合波)を生成し、第2のIF信号を合成回路6に出力する。
なお、第1の非線形素子4及び第2の非線形素子5のそれぞれを実現するダイオードとしては、例えば、PN接合のダイオードのほか、ショットキーバリアダイオードなどを用いることができる。
第2の非線形素子5は、第2の移相回路3から出力された第2のRF信号と第2の移相回路3から出力された第2のLO波とを混合して、第1のIF信号と同相の第2のIF信号(第2の混合波)を生成し、第2のIF信号を合成回路6に出力する。
なお、第1の非線形素子4及び第2の非線形素子5のそれぞれを実現するダイオードとしては、例えば、PN接合のダイオードのほか、ショットキーバリアダイオードなどを用いることができる。
合成回路6は、第1の電波短絡回路7及び第2の電波短絡回路8を備えている。
合成回路6は、第1の非線形素子4から出力された第1のIF信号と第2の非線形素子5から出力された第2のIF信号とを同相合成し、入出力端子6aから同相合成結果であるIF信号を外部に出力する。
第1の電波短絡回路7は、90度ハイブリッド回路1の第1の端子1aから入力されたRF信号の周波数又は第2の端子1bから入力されたLO波の周波数で、第1の非線形素子4の出力端子4bを短絡する回路である。
第2の電波短絡回路8は、90度ハイブリッド回路1の第1の端子1aから入力されたRF信号の周波数又は第2の端子1bから入力されたLO波の周波数で、第2の非線形素子5の出力端子5bを短絡する回路である。
合成回路6は、第1の非線形素子4から出力された第1のIF信号と第2の非線形素子5から出力された第2のIF信号とを同相合成し、入出力端子6aから同相合成結果であるIF信号を外部に出力する。
第1の電波短絡回路7は、90度ハイブリッド回路1の第1の端子1aから入力されたRF信号の周波数又は第2の端子1bから入力されたLO波の周波数で、第1の非線形素子4の出力端子4bを短絡する回路である。
第2の電波短絡回路8は、90度ハイブリッド回路1の第1の端子1aから入力されたRF信号の周波数又は第2の端子1bから入力されたLO波の周波数で、第2の非線形素子5の出力端子5bを短絡する回路である。
次に動作について説明する。
90度ハイブリッド回路1は、第1の端子1aからRF信号が入力されると、入力されたRF信号を第1のRF信号と第2のRF信号に等分配して、第3の端子1cから第1のRF信号を出力し、第4の端子1dから第2のRF信号を出力する。
90度ハイブリッド回路1は、第1の端子1aから入力されたRF信号を第1のRF信号と第2のRF信号に等分配する際、例えば、第1の端子1aから入力されたRF信号の位相が0度であれば、第1のRF信号の位相をθ度移相し、第2のRF信号の位相を(θ-90)度移相する。
90度ハイブリッド回路1は、第1の端子1aからRF信号が入力されると、入力されたRF信号を第1のRF信号と第2のRF信号に等分配して、第3の端子1cから第1のRF信号を出力し、第4の端子1dから第2のRF信号を出力する。
90度ハイブリッド回路1は、第1の端子1aから入力されたRF信号を第1のRF信号と第2のRF信号に等分配する際、例えば、第1の端子1aから入力されたRF信号の位相が0度であれば、第1のRF信号の位相をθ度移相し、第2のRF信号の位相を(θ-90)度移相する。
90度ハイブリッド回路1は、第2の端子1bからLO波が入力されると、入力されたLO波を第1のLO波と第2のLO波に等分配して、第3の端子1cから第1のLO波を出力し、第4の端子1dから第2のLO波を出力する。
90度ハイブリッド回路1は、第2の端子1bから入力されたLO波を第1のLO波と第2のLO波に等分配する際、例えば、第2の端子1bから入力されたLO波の位相が0度であれば、第1のLO波の位相を(θ-90)度移相し、第2のLO波信号の位相をθ度移相する。
90度ハイブリッド回路1は、第2の端子1bから入力されたLO波を第1のLO波と第2のLO波に等分配する際、例えば、第2の端子1bから入力されたLO波の位相が0度であれば、第1のLO波の位相を(θ-90)度移相し、第2のLO波信号の位相をθ度移相する。
90度ハイブリッド回路1における上記のθ度は、どのような値でもよいが、この実施の形態1では、説明の簡単化のために、θ=0の例を説明する。
このため、図1では、90度ハイブリッド回路1の第3の端子1cにおける第1のRF信号の位相及び第1のLO波の位相を、以下のように表している。
(第1のRF,第1のLO)=(0°,-90°)
また、90度ハイブリッド回路1の第4の端子1dにおける第2のRF信号の位相及び第2のLO波の位相を、以下のように表している。
(第2のRF,第2のLO)=(-90°,0°)
このため、図1では、90度ハイブリッド回路1の第3の端子1cにおける第1のRF信号の位相及び第1のLO波の位相を、以下のように表している。
(第1のRF,第1のLO)=(0°,-90°)
また、90度ハイブリッド回路1の第4の端子1dにおける第2のRF信号の位相及び第2のLO波の位相を、以下のように表している。
(第2のRF,第2のLO)=(-90°,0°)
第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cから出力された第1のRF信号の位相を180度移相することで、第1のRF信号の位相を0度から180度に移相し、移相後の第1のRF信号を第1の非線形素子4に出力する。
また、第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cから出力された第1のLO波の位相を180度移相することで、第1のLO波の位相を-90度から90度に移相し、移相後の第1のLO波を第1の非線形素子4に出力する。
これにより、第1の移相回路2から出力された第1のRF信号の位相及び第1のLO波の位相は、以下のように表される。
(第1のRF,第1のLO)=(180°,90°)
また、第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cから出力された第1のLO波の位相を180度移相することで、第1のLO波の位相を-90度から90度に移相し、移相後の第1のLO波を第1の非線形素子4に出力する。
これにより、第1の移相回路2から出力された第1のRF信号の位相及び第1のLO波の位相は、以下のように表される。
(第1のRF,第1のLO)=(180°,90°)
第1の移相回路2は、第1のRF信号の位相及び第1のLO波の位相を移相する機能を有するほか、図2に示すように、第1のRF信号の周波数または第1のLO波の周波数で、90度ハイブリッド回路1の第3の端子1cにおける出力インピーダンスZs1と、第1の非線形素子4の入力端子4aにおける入力インピーダンスZd1との間の整合をとる機能を有している。
図2は、第1の移相回路2によるインピーダンス変換を示す説明図である。
第1の移相回路2が、第3の端子1cにおける出力インピーダンスZs1と、第1の非線形素子4の入力端子4aにおける入力インピーダンスZd1との間の整合をとることで、90度ハイブリッド回路1と第1の非線形素子4との間の不整合が解消される。
これにより、90度ハイブリッド回路1の第3の端子1cから出力された第1のRF信号の電力及び第1のLO波の電力のうち、第1の非線形素子4の入力端子4aに反射される電力が低減される。
なお、整合が最もよくとれる周波数を第1のRF信号の周波数と第1のLO波の周波数の間の周波数などに調整することは、設計事項である。
図2は、第1の移相回路2によるインピーダンス変換を示す説明図である。
第1の移相回路2が、第3の端子1cにおける出力インピーダンスZs1と、第1の非線形素子4の入力端子4aにおける入力インピーダンスZd1との間の整合をとることで、90度ハイブリッド回路1と第1の非線形素子4との間の不整合が解消される。
これにより、90度ハイブリッド回路1の第3の端子1cから出力された第1のRF信号の電力及び第1のLO波の電力のうち、第1の非線形素子4の入力端子4aに反射される電力が低減される。
なお、整合が最もよくとれる周波数を第1のRF信号の周波数と第1のLO波の周波数の間の周波数などに調整することは、設計事項である。
第2の移相回路3は、90度ハイブリッド回路1の第4の端子1dから出力された第2のRF信号の位相を-90度移相することで、第2のRF信号の位相を-90度から180度に移相し、移相後の第2のRF信号を第2の非線形素子5に出力する。
第2の移相回路3による移相後の第2のRF信号の位相は、第1の移相回路2による移相後の第1のRF信号の位相と同相である。
また、第2の移相回路3は、90度ハイブリッド回路1の第4の端子1dから出力された第2のLO波の位相を-90度移相することで、第2のLO波の位相を0度から-90度に移相し、移相後の第2のLO波を第2の非線形素子5に出力する。
第2の移相回路3による移相後の第2のLO波の位相は、第1の移相回路2による移相後の第1のLO波の位相と逆相である。
これにより、第2の移相回路3から出力された第2のRF信号の位相及び第2のLO波の位相は、以下のように表される。
(第2のRF,第2のLO)=(180°,-90°)
第2の移相回路3による移相後の第2のRF信号の位相は、第1の移相回路2による移相後の第1のRF信号の位相と同相である。
また、第2の移相回路3は、90度ハイブリッド回路1の第4の端子1dから出力された第2のLO波の位相を-90度移相することで、第2のLO波の位相を0度から-90度に移相し、移相後の第2のLO波を第2の非線形素子5に出力する。
第2の移相回路3による移相後の第2のLO波の位相は、第1の移相回路2による移相後の第1のLO波の位相と逆相である。
これにより、第2の移相回路3から出力された第2のRF信号の位相及び第2のLO波の位相は、以下のように表される。
(第2のRF,第2のLO)=(180°,-90°)
第2の移相回路3は、第2のRF信号の位相及び第2のLO波の位相を移相する機能を有するほか、第2のRF信号の周波数または第2のLO波の周波数で、90度ハイブリッド回路1の第4の端子1dにおける出力インピーダンスZs2と、第2の非線形素子5の入力端子5aにおける入力インピーダンスZd2との間の整合をとる機能を有している。
第2の移相回路3が、第4の端子1dにおける出力インピーダンスZs2と、第2の非線形素子5の入力端子5aにおける入力インピーダンスZd2との間の整合をとることで、90度ハイブリッド回路1と第2の非線形素子5との間の不整合が解消される。
これにより、90度ハイブリッド回路1の第4の端子1dから出力された第2のRF信号の電力及び第2のLO波の電力のうち、第2の非線形素子5の入力端子5aに反射される電力が低減される。
なお、整合が最もよくとれる周波数を第2のRF信号の周波数と第2のLO波の周波数の間の周波数などに調整することは、設計事項である。
第2の移相回路3が、第4の端子1dにおける出力インピーダンスZs2と、第2の非線形素子5の入力端子5aにおける入力インピーダンスZd2との間の整合をとることで、90度ハイブリッド回路1と第2の非線形素子5との間の不整合が解消される。
これにより、90度ハイブリッド回路1の第4の端子1dから出力された第2のRF信号の電力及び第2のLO波の電力のうち、第2の非線形素子5の入力端子5aに反射される電力が低減される。
なお、整合が最もよくとれる周波数を第2のRF信号の周波数と第2のLO波の周波数の間の周波数などに調整することは、設計事項である。
ここで、第1の移相回路2及び第2の移相回路3は、例えば、RF信号の周波数又はLO波の周波数で、4分の1波長の長さを有する伝送線路を含む回路で構成することができる。
図3は、第1の移相回路2及び第2の移相回路3を示す構成図である。
図3において、第1の伝送線路11は、第1の端子1aから入力されたRF信号の周波数又は第2の端子1bから入力されたLO波の周波数で、4分の1波長の長さを有しており、一端が第1の非線形素子4の入力端子4aと接続されている。第1の伝送線路11の特性インピーダンスはZ1である。
第2の伝送線路12は、第1の端子1aから入力されたRF信号の周波数又は第2の端子1bから入力されたLO波の周波数で、4分の1波長の長さを有しており、一端が第1の伝送線路11の他端と接続され、他端が90度ハイブリッド回路1の第3の端子1cと接続されている。第2の伝送線路12の特性インピーダンスはZ2である。
図3は、第1の移相回路2及び第2の移相回路3を示す構成図である。
図3において、第1の伝送線路11は、第1の端子1aから入力されたRF信号の周波数又は第2の端子1bから入力されたLO波の周波数で、4分の1波長の長さを有しており、一端が第1の非線形素子4の入力端子4aと接続されている。第1の伝送線路11の特性インピーダンスはZ1である。
第2の伝送線路12は、第1の端子1aから入力されたRF信号の周波数又は第2の端子1bから入力されたLO波の周波数で、4分の1波長の長さを有しており、一端が第1の伝送線路11の他端と接続され、他端が90度ハイブリッド回路1の第3の端子1cと接続されている。第2の伝送線路12の特性インピーダンスはZ2である。
第3の伝送線路13は、第1の端子1aから入力されたRF信号の周波数又は第2の端子1bから入力されたLO波の周波数で、4分の1波長の長さを有しており、一端が第2の非線形素子5の入力端子5aと接続され、他端が90度ハイブリッド回路1の第4の端子1dと接続されている。第3の伝送線路13の特性インピーダンスはZ3である。
第1の移相回路2が、第1の伝送線路11と第2の伝送線路12の直列回路であり、第1の伝送線路11の線路長及び第2の伝送線路12の線路長のそれぞれが、例えば、第1の端子1aから入力されたRF信号の周波数で、4分の1波長の長さであれば、90度ハイブリッド回路1の第3の端子1cから出力された第1のRF信号の位相を180度移相することができる。
第2の端子1bから入力されたLO波の周波数は、第1の端子1aから入力されるRF信号の周波数と概略等しいため、第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cから出力される第1のLO波の位相を概略180度移相することができる。
図3では、第1のLO波に対する移相量が180度であるとして、第1のLO波の位相が-90度から90度に移相されている例を示している。
第2の端子1bから入力されたLO波の周波数は、第1の端子1aから入力されるRF信号の周波数と概略等しいため、第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cから出力される第1のLO波の位相を概略180度移相することができる。
図3では、第1のLO波に対する移相量が180度であるとして、第1のLO波の位相が-90度から90度に移相されている例を示している。
第1の移相回路2は、第1の伝送線路11と第2の伝送線路12の直列回路であり、第1の伝送線路11の特性インピーダンスZ1が、以下の式(1)で表される特性インピーダンスに設定されていれば、リアクタンス成分がない実軸上でインピーダンス変換が行われる。
また、第2の伝送線路12の特性インピーダンスZ2が、以下の式(2)で表される特性インピーダンスに設定されていれば、リアクタンス成分がない実軸上でインピーダンス変換が行われる。
また、第2の伝送線路12の特性インピーダンスZ2が、以下の式(2)で表される特性インピーダンスに設定されていれば、リアクタンス成分がない実軸上でインピーダンス変換が行われる。
式(1)及び式(2)において、Ziは、第1の伝送線路11における入力インピーダンスであり、任意の値である。
図4Aは、第1の移相回路2における第1の伝送線路11及び第2の伝送線路12によるインピーダンス変換を示す説明図である。Z1とZ2を互いに異なる値とすることで図4Aのような軌跡が得られる。
第1の非線形素子4の入力端子4aにおける入力インピーダンスZd1は、図4Aに示すように、第1の伝送線路11及び第2の伝送線路12によって、第3の端子1cにおける出力インピーダンスZs1に変換される。
これにより、第3の端子1cにおける出力インピーダンスZs1と、第1の非線形素子4の入力端子4aにおける入力インピーダンスZd1との間の整合がとられる。
図4Aは、第1の移相回路2における第1の伝送線路11及び第2の伝送線路12によるインピーダンス変換を示す説明図である。Z1とZ2を互いに異なる値とすることで図4Aのような軌跡が得られる。
第1の非線形素子4の入力端子4aにおける入力インピーダンスZd1は、図4Aに示すように、第1の伝送線路11及び第2の伝送線路12によって、第3の端子1cにおける出力インピーダンスZs1に変換される。
これにより、第3の端子1cにおける出力インピーダンスZs1と、第1の非線形素子4の入力端子4aにおける入力インピーダンスZd1との間の整合がとられる。
第1の伝送線路11の入力インピーダンスZiが、第3の端子1cにおける出力インピーダンスZs1よりも高ければ、第1の伝送線路11の特性インピーダンスZ1及び第2の伝送線路12の特性インピーダンスZ2が、第3の端子1cおける出力インピーダンスZs1よりも高いインピーダンスとなる。
これにより、第1の伝送線路11の線路幅及び第2の伝送線路12の線路幅を細くできるため、第1の伝送線路11の引き回し及び第2の伝送線路12の引き回しが容易となり、第1の伝送線路11のレイアウト及び第2の伝送線路12のレイアウトが容易になる。
これにより、第1の伝送線路11の線路幅及び第2の伝送線路12の線路幅を細くできるため、第1の伝送線路11の引き回し及び第2の伝送線路12の引き回しが容易となり、第1の伝送線路11のレイアウト及び第2の伝送線路12のレイアウトが容易になる。
第2の移相回路3における第3の伝送線路13の線路長が、例えば、第1の端子1aから入力されたRF信号の周波数で、4分の1波長の長さであれば、90度ハイブリッド回路1の第4の端子1dから出力された第2のRF信号の位相を-90度移相することができる。
第2の端子1bから入力されるLO波の周波数は、第1の端子1aから入力されるRF信号の周波数と概略等しいため、第2の移相回路3は、90度ハイブリッド回路1の第4の端子1dから出力される第2のLO波の位相を概略-90度移相することができる。
図3では、第2のLO波に対する移相量が-90度であるとして、第2のLO波の位相が0度から-90度に移相されている例を示している。
第2の端子1bから入力されるLO波の周波数は、第1の端子1aから入力されるRF信号の周波数と概略等しいため、第2の移相回路3は、90度ハイブリッド回路1の第4の端子1dから出力される第2のLO波の位相を概略-90度移相することができる。
図3では、第2のLO波に対する移相量が-90度であるとして、第2のLO波の位相が0度から-90度に移相されている例を示している。
第2の移相回路3における第3の伝送線路13の特性インピーダンスZ3が、以下の式(3)で表される特性インピーダンスに設定されていれば、リアクタンス成分がない実軸上でインピーダンス変換が行われる。
図4Bは、第2の移相回路3における第3の伝送線路13によるインピーダンス変換を示す説明図である。
第2の非線形素子5の入力端子5aにおける入力インピーダンスZd2は、図4Bに示すように、第3の伝送線路13によって、第4の端子1dにおける出力インピーダンスZs2に変換される。
これにより、第4の端子1dにおける出力インピーダンスZs2と、第2の非線形素子5の入力端子5aにおける入力インピーダンスZd2との間の整合がとられる。
図4Bは、第2の移相回路3における第3の伝送線路13によるインピーダンス変換を示す説明図である。
第2の非線形素子5の入力端子5aにおける入力インピーダンスZd2は、図4Bに示すように、第3の伝送線路13によって、第4の端子1dにおける出力インピーダンスZs2に変換される。
これにより、第4の端子1dにおける出力インピーダンスZs2と、第2の非線形素子5の入力端子5aにおける入力インピーダンスZd2との間の整合がとられる。
第1の非線形素子4の出力端子4bは、第1の電波短絡回路7によって、90度ハイブリッド回路1の第2の端子1bから入力されたLO波の周波数で短絡されている。
第1の非線形素子4は、第1のLO波の振幅に応じたスイッチング動作を行うことで、第1の移相回路2から出力された第1のRF信号と第1の移相回路2から出力された第1のLO波とを混合して、第1のIF信号を生成し、第1のIF信号を合成回路6に出力する。
例えば、ダイオードで実現される非線形素子のスイッチング動作及びRF信号とLO波の混合動作自体は、公知の技術であるため詳細な説明を省略する。
第1のIF信号は、第1の移相回路2から出力された第1のRF信号と第1の移相回路2から出力された第1のLO波との差周波の混合波であり、第1のRF信号の位相が180度で、第1のLO波の位相が90度であれば、第1のIF信号の位相は、90度になる。
第1の非線形素子4は、第1のLO波の振幅に応じたスイッチング動作を行うことで、第1の移相回路2から出力された第1のRF信号と第1の移相回路2から出力された第1のLO波とを混合して、第1のIF信号を生成し、第1のIF信号を合成回路6に出力する。
例えば、ダイオードで実現される非線形素子のスイッチング動作及びRF信号とLO波の混合動作自体は、公知の技術であるため詳細な説明を省略する。
第1のIF信号は、第1の移相回路2から出力された第1のRF信号と第1の移相回路2から出力された第1のLO波との差周波の混合波であり、第1のRF信号の位相が180度で、第1のLO波の位相が90度であれば、第1のIF信号の位相は、90度になる。
第2の非線形素子5の出力端子5bは、第2の電波短絡回路8によって、90度ハイブリッド回路1の第2の端子1bから入力されたLO波の周波数で短絡されている。
第2の非線形素子5は、第2のLO波の振幅に応じたスイッチング動作を行うことで、第2の移相回路3から出力された第2のRF信号と第2の移相回路3から出力された第2のLO波とを混合して、第2のIF信号を生成し、第2のIF信号を合成回路6に出力する。
第2のIF信号は、第2の移相回路3から出力された第2のRF信号と第2の移相回路3から出力された第2のLO波との差周波の混合波である。また、第2の非線形素子5は、第1の非線形素子4と向きが逆である。このため、第2のRF信号の位相が180度で、第2のLO波の位相が-90度であれば、第2のIF信号の位相は、90度になる。
第2の非線形素子5は、第2のLO波の振幅に応じたスイッチング動作を行うことで、第2の移相回路3から出力された第2のRF信号と第2の移相回路3から出力された第2のLO波とを混合して、第2のIF信号を生成し、第2のIF信号を合成回路6に出力する。
第2のIF信号は、第2の移相回路3から出力された第2のRF信号と第2の移相回路3から出力された第2のLO波との差周波の混合波である。また、第2の非線形素子5は、第1の非線形素子4と向きが逆である。このため、第2のRF信号の位相が180度で、第2のLO波の位相が-90度であれば、第2のIF信号の位相は、90度になる。
合成回路6は、第1の非線形素子4から出力された第1のIF信号と第2の非線形素子5から出力された第2のIF信号とを同相合成し、入出力端子6aから同相合成結果であるIF信号を外部に出力する。
ここで、第1の端子1aから入力されたRF信号の周波数は、第2の端子1bから入力されたLO波の周波数と概ね等しい周波数であるため、第1の非線形素子4の出力端子4bは、LO波の周波数と同様に、RF信号の周波数についても、第1の電波短絡回路7によって短絡されている。
同様に、第2の非線形素子5の出力端子5bは、LO波の周波数と同様に、RF信号の周波数についても、第2の電波短絡回路8によって短絡されている。
ここで、第1の端子1aから入力されたRF信号の周波数は、第2の端子1bから入力されたLO波の周波数と概ね等しい周波数であるため、第1の非線形素子4の出力端子4bは、LO波の周波数と同様に、RF信号の周波数についても、第1の電波短絡回路7によって短絡されている。
同様に、第2の非線形素子5の出力端子5bは、LO波の周波数と同様に、RF信号の周波数についても、第2の電波短絡回路8によって短絡されている。
このため、第1の非線形素子4を通過する第1のRF信号及び第1のLO波は、入出力端子6aから出力されない。
また、第2の非線形素子5を通過する第2のRF信号及び第2のLO波は、入出力端子6aから出力されない。
なお、第1の非線形素子4を通過する第1のLO波の位相と、第2の非線形素子5を通過する第2のLO波の位相は逆相である。このため、第1の非線形素子4を通過する第1のLO波と、第2の非線形素子5を通過する第2のLO波は逆相合成されるため、LO波は、第1の非線形素子4の出力端子4b及び第2の非線形素子5の出力端子5bが、第1の電波短絡回路7及び第2の電波短絡回路8で短絡されていなくても、入出力端子6aから出力されない。ただし、LO波は入力電力が大きいため、現実的には位相のアンバランスなどによって漏えいが生じるため、第1の電波短絡回路7及び第2の電波短絡回路8を備えている方がよい。
入出力端子6aから出力されるIF信号は、RF信号とLO波の差周波の信号であり、IF信号の周波数は低周波数であるため、第1の電波短絡回路7及び第2の電波短絡回路8では短絡されない。
また、第2の非線形素子5を通過する第2のRF信号及び第2のLO波は、入出力端子6aから出力されない。
なお、第1の非線形素子4を通過する第1のLO波の位相と、第2の非線形素子5を通過する第2のLO波の位相は逆相である。このため、第1の非線形素子4を通過する第1のLO波と、第2の非線形素子5を通過する第2のLO波は逆相合成されるため、LO波は、第1の非線形素子4の出力端子4b及び第2の非線形素子5の出力端子5bが、第1の電波短絡回路7及び第2の電波短絡回路8で短絡されていなくても、入出力端子6aから出力されない。ただし、LO波は入力電力が大きいため、現実的には位相のアンバランスなどによって漏えいが生じるため、第1の電波短絡回路7及び第2の電波短絡回路8を備えている方がよい。
入出力端子6aから出力されるIF信号は、RF信号とLO波の差周波の信号であり、IF信号の周波数は低周波数であるため、第1の電波短絡回路7及び第2の電波短絡回路8では短絡されない。
第2の移相回路3におけるLO波の移相量は概略90度であり、90度からのずれをΔθ、第1の移相回路2におけるLO波の移相量は概略180度であり、180度からのずれを2Δθとすると、第2の非線形素子5で生成される第2のIF信号と第1の非線形素子4で生成される第1のIF信号の位相差はΔθとなる。したがって、Δθは第1のIF信号と第2のIF信号の同相合成における合成損失の要因となる。ただし、RF信号とLO波の周波数は概略等しいため、Δθは小さく、損失への影響は小さい。また、Δθは小さいため、これを打ち消すように第1のIF信号と第2のIF信号との合成点までの線路長を調整することは可能であり、設計事項である。
ここで、図5は、第1の電波短絡回路7及び第2の電波短絡回路8の一例を示す構成図である。
図5Aは、第1の電波短絡回路7及び第2の電波短絡回路8がキャパシタ21で形成されている例を示す構成図、図5Bは、第1の電波短絡回路7及び第2の電波短絡回路8が一端開放スタブ22で形成されている例を示す構成図である。
図5において、キャパシタ21は、90度ハイブリッド回路1の第1の端子1aから入力されたRF信号の周波数の近傍又は第2の端子1bから入力されたLO波の周波数の近傍で短絡となるキャパシタである。
一端開放スタブ22は、90度ハイブリッド回路1の第1の端子1aから入力されたRF信号の周波数又は第2の端子1bから入力されたLO波の周波数で、4分の1波長の長さを有する一端開放スタブである。
図5Aは、第1の電波短絡回路7及び第2の電波短絡回路8がキャパシタ21で形成されている例を示す構成図、図5Bは、第1の電波短絡回路7及び第2の電波短絡回路8が一端開放スタブ22で形成されている例を示す構成図である。
図5において、キャパシタ21は、90度ハイブリッド回路1の第1の端子1aから入力されたRF信号の周波数の近傍又は第2の端子1bから入力されたLO波の周波数の近傍で短絡となるキャパシタである。
一端開放スタブ22は、90度ハイブリッド回路1の第1の端子1aから入力されたRF信号の周波数又は第2の端子1bから入力されたLO波の周波数で、4分の1波長の長さを有する一端開放スタブである。
以上で明らかなように、この実施の形態1によれば、第1の移相回路2が、90度ハイブリッド回路の第3の端子と第1の非線形素子の第1の端子との間のインピーダンス整合をとるようにインピーダンスを変換し、かつ、電波の位相を180度移相し、第2の移相回路3が、90度ハイブリッド回路の第4の端子と第2の非線形素子の第2の端子との間のインピーダンス整合をとるようにインピーダンスを変換し、かつ、電波の位相を90度移相するように構成したので、電波の変換損失を低減することができる効果を奏する。
即ち、90度ハイブリッド回路1の第3の端子1cから出力された第1のRF信号の電力及び第1のLO波の電力のうち、第1の非線形素子4の入力端子4aに反射される電力が低減されるため、電波の変換損失を低減することができる。
また、90度ハイブリッド回路1の第4の端子1dから出力された第2のRF信号の電力及び第2のLO波の電力のうち、第2の非線形素子5の入力端子5aに反射される電力が低減されるため、電波の変換損失を低減することができる。
即ち、90度ハイブリッド回路1の第3の端子1cから出力された第1のRF信号の電力及び第1のLO波の電力のうち、第1の非線形素子4の入力端子4aに反射される電力が低減されるため、電波の変換損失を低減することができる。
また、90度ハイブリッド回路1の第4の端子1dから出力された第2のRF信号の電力及び第2のLO波の電力のうち、第2の非線形素子5の入力端子5aに反射される電力が低減されるため、電波の変換損失を低減することができる。
この実施の形態1では、90度ハイブリッド回路1の第1の端子1aからRF信号が入力され、90度ハイブリッド回路1の第2の端子1bからLO波が入力される例を示しているが、これに限るものではない。
例えば、90度ハイブリッド回路1の第1の端子1aからLO波が入力され、90度ハイブリッド回路1の第2の端子1bからRF信号が入力されるものであってもよい。
例えば、90度ハイブリッド回路1の第1の端子1aからLO波が入力され、90度ハイブリッド回路1の第2の端子1bからRF信号が入力されるものであってもよい。
この実施の形態1では、高周波ミクサが、90度ハイブリッド回路1を備えている例を示しているが、90度ハイブリッド回路1として、ランゲカプラを用いるようにしてもよい。
この実施の形態1では、合成回路6が、第1のIF信号と第2のIF信号を合成して外部に出力している例を示しているが、それぞれのIF信号を独立に外部出力するようにしてもよい。
この実施の形態1では、第1の非線形素子4の入力端子4aが陽極で、第1の非線形素子4の出力端子4bが陰極であり、第2の非線形素子5の入力端子5aが陰極で、第2の非線形素子5の出力端子5bが陽極である例を示している。
第1の非線形素子4と第2の非線形素子5との向きが逆であればよいため、第1の非線形素子4の入力端子4aが陰極で、第1の非線形素子4の出力端子4bが陽極であり、第2の非線形素子5の入力端子5aが陽極で、第2の非線形素子5の出力端子5bが陰極であってもよい。
また、この実施の形態1では、第1の非線形素子4及び第2の非線形素子5のそれぞれがダイオードで実現される例を想定しているが、スイッチング動作を行うことが可能な素子であればよく、例えば、トランジスタで実現されるようにしてもよい。
第1の非線形素子4と第2の非線形素子5との向きが逆であればよいため、第1の非線形素子4の入力端子4aが陰極で、第1の非線形素子4の出力端子4bが陽極であり、第2の非線形素子5の入力端子5aが陽極で、第2の非線形素子5の出力端子5bが陰極であってもよい。
また、この実施の形態1では、第1の非線形素子4及び第2の非線形素子5のそれぞれがダイオードで実現される例を想定しているが、スイッチング動作を行うことが可能な素子であればよく、例えば、トランジスタで実現されるようにしてもよい。
実施の形態2.
この実施の形態2は、高周波ミクサが送信ミクサとして動作する例を説明する。
図6は、この発明の実施の形態2による高周波ミクサを示す構成図である。
図6に示す高周波ミクサの構成は、図1に示す高周波ミクサの構成と基本的に同様であるが、第1の非線形素子4の第1の移相回路2側の端子は、入出力端子として用いられ、第1の非線形素子4の合成回路6側の端子は、入力端子として用いられる。
また、第2の非線形素子5の第2の移相回路3側の端子は、入出力端子として用いられ、第2の非線形素子5の合成回路6側の端子は、入力端子として用いられる。
第1の非線形素子4の入出力端子4cは、ダイオードの陽極であるアノードに相当し、第1の非線形素子4の入力端子4dは、ダイオードの陰極であるカソードに相当する。
第2の非線形素子5の入出力端子5cは、ダイオードの陰極であるカソードに相当し、第2の非線形素子5の入力端子5dは、ダイオードの陽極であるアノードに相当する。
この実施の形態2は、高周波ミクサが送信ミクサとして動作する例を説明する。
図6は、この発明の実施の形態2による高周波ミクサを示す構成図である。
図6に示す高周波ミクサの構成は、図1に示す高周波ミクサの構成と基本的に同様であるが、第1の非線形素子4の第1の移相回路2側の端子は、入出力端子として用いられ、第1の非線形素子4の合成回路6側の端子は、入力端子として用いられる。
また、第2の非線形素子5の第2の移相回路3側の端子は、入出力端子として用いられ、第2の非線形素子5の合成回路6側の端子は、入力端子として用いられる。
第1の非線形素子4の入出力端子4cは、ダイオードの陽極であるアノードに相当し、第1の非線形素子4の入力端子4dは、ダイオードの陰極であるカソードに相当する。
第2の非線形素子5の入出力端子5cは、ダイオードの陰極であるカソードに相当し、第2の非線形素子5の入力端子5dは、ダイオードの陽極であるアノードに相当する。
次に動作について説明する。
90度ハイブリッド回路1は、第2の端子1bからLO波が入力されると、入力されたLO波を第1のLO波と第2のLO波に等分配して、第1のLO波を第3の端子1cに出力し、第2のLO波を第4の端子1dに出力する。
90度ハイブリッド回路1は、第2の端子1bから入力されたLO波を第1のLO波と第2のLO波に等分配する際、例えば、第2の端子1bから入力されたLO波の位相が0度であれば、第1のLO波の位相を(θ-90)度移相し、第2のLO波信号の位相をθ度移相する。
90度ハイブリッド回路1は、第2の端子1bからLO波が入力されると、入力されたLO波を第1のLO波と第2のLO波に等分配して、第1のLO波を第3の端子1cに出力し、第2のLO波を第4の端子1dに出力する。
90度ハイブリッド回路1は、第2の端子1bから入力されたLO波を第1のLO波と第2のLO波に等分配する際、例えば、第2の端子1bから入力されたLO波の位相が0度であれば、第1のLO波の位相を(θ-90)度移相し、第2のLO波信号の位相をθ度移相する。
90度ハイブリッド回路1における上記のθ度は、どのような値でもよいが、この実施の形態2では、説明の簡単化のために、θ=0の例を説明する。
このため、90度ハイブリッド回路1の第3の端子1cにおける第1のLO波の位相は、-90度であり、90度ハイブリッド回路1の第4の端子1dにおける第2のLO波の位相は、0度である。
このため、90度ハイブリッド回路1の第3の端子1cにおける第1のLO波の位相は、-90度であり、90度ハイブリッド回路1の第4の端子1dにおける第2のLO波の位相は、0度である。
第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cから出力された第1のLO波の位相を180度移相することで、第1のLO波の位相を-90度から90度に移相する。
第1の移相回路2は、第1のLO波の位相を移相する機能を有するほか、図2に示すように、第1のRF信号の周波数または第1のLO波の周波数で、90度ハイブリッド回路1の第3の端子1cにおける出力インピーダンスZs1と、第1の非線形素子4の入出力端子4cにおける入力インピーダンスZd1との間の整合をとる機能を有している。
第1の移相回路2が、第3の端子1cにおける出力インピーダンスZs1と、第1の非線形素子4の入出力端子4cにおける入力インピーダンスZd1との間の整合をとることで、90度ハイブリッド回路1と第1の非線形素子4との間の不整合が解消される。
なお、整合が最もよくとれる周波数を第1のRF信号の周波数と第1のLO波の周波数の間の周波数などに調整することは、設計事項である。
第1の移相回路2は、第1のLO波の位相を移相する機能を有するほか、図2に示すように、第1のRF信号の周波数または第1のLO波の周波数で、90度ハイブリッド回路1の第3の端子1cにおける出力インピーダンスZs1と、第1の非線形素子4の入出力端子4cにおける入力インピーダンスZd1との間の整合をとる機能を有している。
第1の移相回路2が、第3の端子1cにおける出力インピーダンスZs1と、第1の非線形素子4の入出力端子4cにおける入力インピーダンスZd1との間の整合をとることで、90度ハイブリッド回路1と第1の非線形素子4との間の不整合が解消される。
なお、整合が最もよくとれる周波数を第1のRF信号の周波数と第1のLO波の周波数の間の周波数などに調整することは、設計事項である。
第2の移相回路3は、90度ハイブリッド回路1の第4の端子1dから出力された第2のLO波の位相を-90度移相することで、第2のLO波の位相を0度から-90度に移相する。
第2の移相回路3は、第2のLO波の位相を移相する機能を有するほか、第2のRF信号の周波数または第2のLO波の周波数で、90度ハイブリッド回路1の第4の端子1dにおける出力インピーダンスZs2と、第2の非線形素子5の入出力端子5cにおける入力インピーダンスZd2との間の整合をとる機能を有している。
第2の移相回路3が、第4の端子1dにおける出力インピーダンスZs2と、第2の非線形素子5の入出力端子5cにおける入力インピーダンスZd2との間の整合をとることで、90度ハイブリッド回路1と第2の非線形素子5との間の不整合が解消される。
なお、整合が最もよくとれる周波数を第2のRF信号の周波数と第2のLO波の周波数の間の周波数などに調整することは、設計事項である。
第2の移相回路3は、第2のLO波の位相を移相する機能を有するほか、第2のRF信号の周波数または第2のLO波の周波数で、90度ハイブリッド回路1の第4の端子1dにおける出力インピーダンスZs2と、第2の非線形素子5の入出力端子5cにおける入力インピーダンスZd2との間の整合をとる機能を有している。
第2の移相回路3が、第4の端子1dにおける出力インピーダンスZs2と、第2の非線形素子5の入出力端子5cにおける入力インピーダンスZd2との間の整合をとることで、90度ハイブリッド回路1と第2の非線形素子5との間の不整合が解消される。
なお、整合が最もよくとれる周波数を第2のRF信号の周波数と第2のLO波の周波数の間の周波数などに調整することは、設計事項である。
合成回路6は、入出力端子6aからIF信号が入力されると、入力されたIF信号を第1のIF信号と第2のIF信号に等分配する分配回路として動作する。
合成回路6は、第1のIF信号を第1の非線形素子4に出力し、第2のIF信号を第2の非線形素子5に出力する。
図6の例では、入力されたIF信号の位相が0度であり、第1のIF信号の位相及び第2のIF信号の位相のそれぞれが0度である。
合成回路6は、第1のIF信号を第1の非線形素子4に出力し、第2のIF信号を第2の非線形素子5に出力する。
図6の例では、入力されたIF信号の位相が0度であり、第1のIF信号の位相及び第2のIF信号の位相のそれぞれが0度である。
第1の非線形素子4の入力端子4dは、第1の電波短絡回路7によって、90度ハイブリッド回路1の第2の端子1bから入力されたLO波の周波数で短絡されている。
第1の非線形素子4は、第1のLO波の振幅に応じたスイッチング動作を行うことで、第1の移相回路2から出力された第1のLO波と合成回路6から出力された第1のIF信号とを混合して、第1のRF信号を生成し、入出力端子4cから第1のRF信号を第1の移相回路2に出力する。
第1のRF信号は、第1の移相回路2から出力された第1のLO波と合成回路6から出力された第1のIF信号との和周波の混合波であり、第1のRF信号の位相は、90度になる。
第1の非線形素子4は、第1のLO波の振幅に応じたスイッチング動作を行うことで、第1の移相回路2から出力された第1のLO波と合成回路6から出力された第1のIF信号とを混合して、第1のRF信号を生成し、入出力端子4cから第1のRF信号を第1の移相回路2に出力する。
第1のRF信号は、第1の移相回路2から出力された第1のLO波と合成回路6から出力された第1のIF信号との和周波の混合波であり、第1のRF信号の位相は、90度になる。
第2の非線形素子5の入力端子5dは、第2の電波短絡回路8によって、90度ハイブリッド回路1の第2の端子1bから入力されたLO波の周波数で短絡されている。
第2の非線形素子5は、第2のLO波の振幅に応じたスイッチング動作を行うことで、第2の移相回路3から出力された第2のLO波と合成回路6から出力された第2のIF信号とを混合して、第2のRF信号を生成し、入出力端子5cから第2のRF信号を第2の移相回路3に出力する。
この実施の形態2では、第2の非線形素子5の入出力端子5cが陰極であり、第2の非線形素子5の入力端子5dが陽極である。このため、第2のRF信号の位相は、90度になる。
第2の非線形素子5は、第2のLO波の振幅に応じたスイッチング動作を行うことで、第2の移相回路3から出力された第2のLO波と合成回路6から出力された第2のIF信号とを混合して、第2のRF信号を生成し、入出力端子5cから第2のRF信号を第2の移相回路3に出力する。
この実施の形態2では、第2の非線形素子5の入出力端子5cが陰極であり、第2の非線形素子5の入力端子5dが陽極である。このため、第2のRF信号の位相は、90度になる。
第1の移相回路2は、第1の非線形素子4の入出力端子4cから出力された第1のRF信号の位相を180度移相することで、第1のRF信号の位相を90度から-90度に移相し、移相後の第1のRF信号を90度ハイブリッド回路1の第3の端子1cに出力する。
第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cにおける入力インピーダンスZs1と、第1の非線形素子4の入出力端子4cにおける出力インピーダンスZd1との間の整合をとる機能を有している。
第1の移相回路2が、第3の端子1cにおける入力インピーダンスZs1と、第1の非線形素子4の入出力端子4cにおける出力インピーダンスZd1との間の整合をとることで、90度ハイブリッド回路1と第1の非線形素子4との間の不整合が解消される。
第1の移相回路2は、90度ハイブリッド回路1の第3の端子1cにおける入力インピーダンスZs1と、第1の非線形素子4の入出力端子4cにおける出力インピーダンスZd1との間の整合をとる機能を有している。
第1の移相回路2が、第3の端子1cにおける入力インピーダンスZs1と、第1の非線形素子4の入出力端子4cにおける出力インピーダンスZd1との間の整合をとることで、90度ハイブリッド回路1と第1の非線形素子4との間の不整合が解消される。
第2の移相回路3は、第2の非線形素子5の入出力端子5cから出力された第2のRF信号の位相を-90度移相することで、第2のRF信号の位相を90度から0度に移相し、移相後の第2のRF信号を90度ハイブリッド回路1の第4の端子1dに出力する。
第2の移相回路3は、90度ハイブリッド回路1の第4の端子1dにおける入力インピーダンスs2と、第2の非線形素子5の入出力端子5cにおける出力インピーダンスZd2との間の整合をとる機能を有している。
第2の移相回路3が、第4の端子1dにおける入力インピーダンスZs2と、第2の非線形素子5の入出力端子5cにおける出力インピーダンスZd2との間の整合をとることで、90度ハイブリッド回路1と第2の非線形素子5との間の不整合が解消される。
第2の移相回路3は、90度ハイブリッド回路1の第4の端子1dにおける入力インピーダンスs2と、第2の非線形素子5の入出力端子5cにおける出力インピーダンスZd2との間の整合をとる機能を有している。
第2の移相回路3が、第4の端子1dにおける入力インピーダンスZs2と、第2の非線形素子5の入出力端子5cにおける出力インピーダンスZd2との間の整合をとることで、90度ハイブリッド回路1と第2の非線形素子5との間の不整合が解消される。
90度ハイブリッド回路1は、第1の移相回路2から出力された第1のRF信号が第3の端子1cより入力され、第2の移相回路3から出力された第2のRF信号が第4の端子1dより入力されると、第1のRF信号と第2のRF信号とを合成し、第1の端子1aから同相合成したRF信号を出力する。
図6の例では、第1の端子1aから出力されるRF信号の位相は、-90度である。
図6の例では、第1の端子1aから出力されるRF信号の位相は、-90度である。
以上で明らかなように、この実施の形態2によれば、上記実施の形態1と同様に、電波の変換損失を低減することができる効果を奏する。
即ち、第1の非線形素子4の入出力端子4cから出力された第1のRF信号の電力のうち、90度ハイブリッド回路1の第3の端子1cに反射される電力が低減されるため、電波の変換損失を低減することができる。
また、第2の非線形素子5の入出力端子5cから出力された第2のRF信号の電力のうち、90度ハイブリッド回路1の第4の端子1dに反射される電力が低減されるため、電波の変換損失を低減することができる。
即ち、第1の非線形素子4の入出力端子4cから出力された第1のRF信号の電力のうち、90度ハイブリッド回路1の第3の端子1cに反射される電力が低減されるため、電波の変換損失を低減することができる。
また、第2の非線形素子5の入出力端子5cから出力された第2のRF信号の電力のうち、90度ハイブリッド回路1の第4の端子1dに反射される電力が低減されるため、電波の変換損失を低減することができる。
実施の形態3.
この実施の形態3では、並列共振回路31,34を備えている高周波ミクサを説明する。
図7は、この発明の実施の形態3による高周波ミクサを示す構成図である。図7において、図1と同一符号は同一または相当部分を示すので説明を省略する。
並列共振回路31は、第1のコンデンサ32と第1の短絡スタブ33とを備えており、90度ハイブリッド回路1の第1の端子1aから入力されたRF信号の周波数又は90度ハイブリッド回路1の第2の端子1bから入力されたLO波の周波数で並列共振する回路である。
第1のコンデンサ32は、第1の非線形素子4と並列に接続されている。
第1の短絡スタブ33は、一端が第1の移相回路2と第1の非線形素子4との間に接続されている。
この実施の形態3では、並列共振回路31,34を備えている高周波ミクサを説明する。
図7は、この発明の実施の形態3による高周波ミクサを示す構成図である。図7において、図1と同一符号は同一または相当部分を示すので説明を省略する。
並列共振回路31は、第1のコンデンサ32と第1の短絡スタブ33とを備えており、90度ハイブリッド回路1の第1の端子1aから入力されたRF信号の周波数又は90度ハイブリッド回路1の第2の端子1bから入力されたLO波の周波数で並列共振する回路である。
第1のコンデンサ32は、第1の非線形素子4と並列に接続されている。
第1の短絡スタブ33は、一端が第1の移相回路2と第1の非線形素子4との間に接続されている。
並列共振回路34は、第2のコンデンサ35と第2の短絡スタブ36とを備えており、90度ハイブリッド回路1の第1の端子1aから入力されたRF信号の周波数又は90度ハイブリッド回路1の第2の端子1bから入力されたLO波の周波数で並列共振する回路である。
第2のコンデンサ35は、第2の非線形素子5と並列に接続されている。
第2の短絡スタブ36は、一端が第2の移相回路3と第2の非線形素子5との間に接続されている。
第2のコンデンサ35は、第2の非線形素子5と並列に接続されている。
第2の短絡スタブ36は、一端が第2の移相回路3と第2の非線形素子5との間に接続されている。
図7は、並列共振回路31,34が図1の高周波ミクサに適用されている例を示しているが、並列共振回路31,34が図6の高周波ミクサに適用されているものであってもよい。
並列共振回路31は、第1のコンデンサ32を備え、並列共振回路34は、第2のコンデンサ35を備えているが、第1のコンデンサ32は、第1の非線形素子4の寄生容量であってもよいし、外部素子であってもよい。また、第2のコンデンサ35は、第2の非線形素子5の寄生容量であってもよいし、外部素子であってもよい。
第1の短絡スタブ33及び第2の短絡スタブ36のそれぞれは、並列共振回路31,34の共振周波数で4分の1波長の長さよりも、線路長が短く、誘導性の素子又はインダクタとみなせる。
並列共振回路31は、第1のコンデンサ32を備え、並列共振回路34は、第2のコンデンサ35を備えているが、第1のコンデンサ32は、第1の非線形素子4の寄生容量であってもよいし、外部素子であってもよい。また、第2のコンデンサ35は、第2の非線形素子5の寄生容量であってもよいし、外部素子であってもよい。
第1の短絡スタブ33及び第2の短絡スタブ36のそれぞれは、並列共振回路31,34の共振周波数で4分の1波長の長さよりも、線路長が短く、誘導性の素子又はインダクタとみなせる。
次に動作について説明する。
並列共振回路31,34は、RF信号の周波数又はLO波の周波数で並列共振する回路であり、並列共振回路31は、共振周波数で4分の1波長の長さよりも、線路長が短い第1の短絡スタブ33を有している。また、並列共振回路34は、共振周波数で4分の1波長の長さよりも、線路長が短い第2の短絡スタブ36を有している。
このため、第1の非線形素子4の入力端子4aから第1のIF信号が第1の移相回路2側に漏れても、第1のIF信号は、第1の短絡スタブ33の接続点が短絡点とみなせるため、第1の非線形素子4の入力端子4aに反射する。
これにより、第1の非線形素子4の出力端子4bから合成回路6に出力される第1のIF信号の電力が増加する。
また、第2の非線形素子5の入力端子5aから第2のIF信号が第2の移相回路3側に漏れても、第2のIF信号は、第2の短絡スタブ36の接続点が短絡点とみなせるため、第2の非線形素子5の入力端子5aに反射する。
これにより、第2の非線形素子5の出力端子5bから合成回路6に出力される第2のIF信号の電力が増加する。
並列共振回路31,34は、RF信号の周波数又はLO波の周波数で並列共振する回路であり、並列共振回路31は、共振周波数で4分の1波長の長さよりも、線路長が短い第1の短絡スタブ33を有している。また、並列共振回路34は、共振周波数で4分の1波長の長さよりも、線路長が短い第2の短絡スタブ36を有している。
このため、第1の非線形素子4の入力端子4aから第1のIF信号が第1の移相回路2側に漏れても、第1のIF信号は、第1の短絡スタブ33の接続点が短絡点とみなせるため、第1の非線形素子4の入力端子4aに反射する。
これにより、第1の非線形素子4の出力端子4bから合成回路6に出力される第1のIF信号の電力が増加する。
また、第2の非線形素子5の入力端子5aから第2のIF信号が第2の移相回路3側に漏れても、第2のIF信号は、第2の短絡スタブ36の接続点が短絡点とみなせるため、第2の非線形素子5の入力端子5aに反射する。
これにより、第2の非線形素子5の出力端子5bから合成回路6に出力される第2のIF信号の電力が増加する。
また、並列共振回路31,34は、RF信号の周波数又はLO波の周波数で並列共振するため、RF信号の周波数又はLO波の周波数で開放となり、RF信号及びLO波の損失増加などの影響は小さい。したがって、RF信号からIF信号への変換損失が低減される。
また、並列共振回路31は、第1のコンデンサ32を備え、並列共振回路34は、第2のコンデンサ35を備えている。このため、第1の非線形素子4及び第2の非線形素子5のそれぞれが寄生容量を有している場合でも、第1の短絡スタブ33及び第2の短絡スタブ36は、第1の非線形素子4の寄生容量及び第2の非線形素子5の寄生容量による容量成分を打ち消すことが可能である。
よって、第1の非線形素子4の入力インピーダンスZd1及び第2の非線形素子5の入力インピーダンスZd2のそれぞれを実軸上でインピーダンス変換することが可能となり、第1の移相回路2及び第2の移相回路3での整合が容易になる。
以上で明らかなように、この実施の形態3によれば、RF信号の損失の増加を抑えながら、IF信号の出力電力を増加させることができる。
また、並列共振回路31は、第1のコンデンサ32を備え、並列共振回路34は、第2のコンデンサ35を備えている。このため、第1の非線形素子4及び第2の非線形素子5のそれぞれが寄生容量を有している場合でも、第1の短絡スタブ33及び第2の短絡スタブ36は、第1の非線形素子4の寄生容量及び第2の非線形素子5の寄生容量による容量成分を打ち消すことが可能である。
よって、第1の非線形素子4の入力インピーダンスZd1及び第2の非線形素子5の入力インピーダンスZd2のそれぞれを実軸上でインピーダンス変換することが可能となり、第1の移相回路2及び第2の移相回路3での整合が容易になる。
以上で明らかなように、この実施の形態3によれば、RF信号の損失の増加を抑えながら、IF信号の出力電力を増加させることができる。
なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
この発明は、90度ハイブリッド回路を備える高周波ミクサに適している。
1 90度ハイブリッド回路、1a 第1の端子、1b 第2の端子、1c 第3の端子、1d 第4の端子、2 第1の移相回路、3 第2の移相回路、4 第1の非線形素子、4a 入力端子、4b 出力端子、4c 入出力端子、4d 入力端子、5 第2の非線形素子、5a 入力端子、5b 出力端子、5c 入出力端子、5d 入力端子、6 合成回路、6a 入出力端子、7 第1の電波短絡回路、8 第2の電波短絡回路、11 第1の伝送線路、12 第2の伝送線路、13 第3の伝送線路、21 キャパシタ、22 一端開放スタブ、31 並列共振回路、32 第1のコンデンサ、33 第1の短絡スタブ、34 並列共振回路、35 第2のコンデンサ、36 第2の短絡スタブ。
Claims (10)
- 第1の端子から第4の端子を有し、前記第1の端子が電波の入力端子であるときは、前記第2の端子がアイソレーション端子、前記第3の端子が0度の出力端子、前記第4の端子が-90度の出力端子となる90度ハイブリッド回路と、
前記90度ハイブリッド回路の第3の端子と第1の非線形素子の第1の端子との間のインピーダンス整合をとるようにインピーダンスを変換し、かつ、電波の位相を180度移相する第1の移相回路と、
前記90度ハイブリッド回路の第4の端子と第2の非線形素子の第2の端子との間のインピーダンス整合をとるようにインピーダンスを変換し、かつ、電波の位相を90度移相する第2の移相回路と
を備えた高周波ミクサ。 - 前記第1の移相回路は、前記90度ハイブリッド回路の第1の端子へ入出力される電波の周波数、または、前記90度ハイブリッド回路の第2の端子へ入出力される電波の周波数で、電波の位相を180度移相し、
前記第2の移相回路は、前記90度ハイブリッド回路の第1の端子へ入出力される電波の周波数、または、前記90度ハイブリッド回路の第2の端子へ入出力される電波の周波数で、電波の位相を90度移相することを特徴とする請求項1記載の高周波ミクサ。 - 前記第1の移相回路は、第1の伝送線路と、前記第1の伝送線路と直列に接続され、前記第1の伝送線路と特性インピーダンスが異なる第2の伝送線路とを備え、
前記第1及び第2の伝送線路は、前記第1の端子へ入出力される電波の周波数、または、前記第2の端子へ入出力される電波の周波数で、4分の1波長の長さを有している線路であることを特徴とする請求項2記載の高周波ミクサ。 - 前記90度ハイブリッド回路の第1の端子に第1の電波が入力され、
前記90度ハイブリッド回路の第2の端子に第2の電波が入力され、
前記第1の非線形素子の第2の端子から出力される第1の電波と第2の電波との混合波と、前記第2の非線形素子の第1の端子から出力される第1の電波と第2の電波との混合波とを合成する合成回路を備えたことを特徴とする請求項1記載の高周波ミクサ。 - 入力された電波を前記第1の非線形素子の第2の端子及び前記第2の非線形素子の第1の端子に等分配する分配回路を備えたことを特徴とする請求項1記載の高周波ミクサ。
- 前記第1の非線形素子の第2の端子を高周波的に短絡する第1の電波短絡回路と、
前記第2の非線形素子の第1の端子を高周波的に短絡する第2の電波短絡回路とを備えたことを特徴とする請求項1記載の高周波ミクサ。 - 前記第2の伝送線路が有する特性インピーダンスZ2は、前記90度ハイブリッド回路の第3の端子における出力インピーダンスZs1よりも高いインピーダンスであることを特徴とする請求項7記載の高周波ミクサ。
- 前記第1の非線形素子と並列に接続されている第1のコンデンサと、
一端が前記第1の移相回路と前記第1の非線形素子との間に接続されている第1の短絡スタブとを備え、
前記第1のコンデンサと前記第1の短絡スタブが、前記90度ハイブリッド回路の第1の端子から入力された電波の周波数又は前記90度ハイブリッド回路の第2の端子から入力された電波の周波数で並列共振することを特徴とする請求項1記載の高周波ミクサ。 - 前記第2の非線形素子と並列に接続されている第2のコンデンサと、
一端が前記第2の移相回路と前記第2の非線形素子との間に接続されている第2の短絡スタブとを備え、
前記第2のコンデンサと前記第2の短絡スタブが、前記90度ハイブリッド回路の第1の端子から入力された電波の周波数又は前記90度ハイブリッド回路の第2の端子から入力された電波の周波数で並列共振することを特徴とする請求項1記載の高周波ミクサ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019521535A JP6661056B2 (ja) | 2017-05-29 | 2017-05-29 | 高周波ミクサ |
EP17912094.4A EP3618270A4 (en) | 2017-05-29 | 2017-05-29 | HIGH FREQUENCY MIXER |
PCT/JP2017/019893 WO2018220669A1 (ja) | 2017-05-29 | 2017-05-29 | 高周波ミクサ |
CN201780091061.5A CN110651429B (zh) | 2017-05-29 | 2017-05-29 | 高频混频器 |
US16/608,764 US11245166B2 (en) | 2017-05-29 | 2017-05-29 | High frequency mixer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/019893 WO2018220669A1 (ja) | 2017-05-29 | 2017-05-29 | 高周波ミクサ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018220669A1 true WO2018220669A1 (ja) | 2018-12-06 |
Family
ID=64454574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019893 WO2018220669A1 (ja) | 2017-05-29 | 2017-05-29 | 高周波ミクサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US11245166B2 (ja) |
EP (1) | EP3618270A4 (ja) |
JP (1) | JP6661056B2 (ja) |
CN (1) | CN110651429B (ja) |
WO (1) | WO2018220669A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01231508A (ja) * | 1988-03-11 | 1989-09-14 | Fujitsu Ltd | 周波数変換器 |
JPH0327604A (ja) | 1989-06-23 | 1991-02-06 | Fujitsu Ltd | 送信用ミキサ |
JPH0918238A (ja) * | 1995-07-03 | 1997-01-17 | Mitsubishi Electric Corp | 周波数混合器、送信装置、受信装置及び送受信装置 |
JP2009021944A (ja) * | 2007-07-13 | 2009-01-29 | Mitsubishi Electric Corp | イメージリジェクションミクサ、直交ミクサ及び受信機 |
JP2011254228A (ja) * | 2010-06-01 | 2011-12-15 | New Japan Radio Co Ltd | ダイオードミキサ回路 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3659206A (en) * | 1970-07-16 | 1972-04-25 | Collins Radio Co | Microwave balanced mixer circuit |
JPS604317A (ja) * | 1983-06-23 | 1985-01-10 | Fujitsu Ltd | 周波数変換器 |
JPS60224312A (ja) * | 1984-04-23 | 1985-11-08 | Nec Corp | 周波数変換器 |
JPH09326640A (ja) | 1996-06-04 | 1997-12-16 | Fujitsu Ltd | スロットライン平衡変調器 |
JPH11127034A (ja) | 1997-10-21 | 1999-05-11 | Japan Radio Co Ltd | シングルバランスドミクサ |
KR100564306B1 (ko) | 2004-07-01 | 2006-03-29 | 주식회사 에이스테크놀로지 | N경로 전력 분배기/합성기 |
GB2442773A (en) * | 2006-10-11 | 2008-04-16 | Tandberg Television Asa | Canceling distortion |
EP2146428B1 (en) * | 2008-07-17 | 2011-06-22 | Bea S.A. | Mixer structure for Doppler radar applications |
JP2010148006A (ja) * | 2008-12-22 | 2010-07-01 | Mitsubishi Electric Corp | ミクサ |
-
2017
- 2017-05-29 WO PCT/JP2017/019893 patent/WO2018220669A1/ja unknown
- 2017-05-29 JP JP2019521535A patent/JP6661056B2/ja active Active
- 2017-05-29 EP EP17912094.4A patent/EP3618270A4/en not_active Withdrawn
- 2017-05-29 US US16/608,764 patent/US11245166B2/en active Active
- 2017-05-29 CN CN201780091061.5A patent/CN110651429B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01231508A (ja) * | 1988-03-11 | 1989-09-14 | Fujitsu Ltd | 周波数変換器 |
JPH0327604A (ja) | 1989-06-23 | 1991-02-06 | Fujitsu Ltd | 送信用ミキサ |
JPH0918238A (ja) * | 1995-07-03 | 1997-01-17 | Mitsubishi Electric Corp | 周波数混合器、送信装置、受信装置及び送受信装置 |
JP2009021944A (ja) * | 2007-07-13 | 2009-01-29 | Mitsubishi Electric Corp | イメージリジェクションミクサ、直交ミクサ及び受信機 |
JP2011254228A (ja) * | 2010-06-01 | 2011-12-15 | New Japan Radio Co Ltd | ダイオードミキサ回路 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3618270A4 |
Also Published As
Publication number | Publication date |
---|---|
JP6661056B2 (ja) | 2020-03-11 |
EP3618270A1 (en) | 2020-03-04 |
US11245166B2 (en) | 2022-02-08 |
CN110651429B (zh) | 2023-06-06 |
US20210119312A1 (en) | 2021-04-22 |
EP3618270A4 (en) | 2020-09-16 |
CN110651429A (zh) | 2020-01-03 |
JPWO2018220669A1 (ja) | 2019-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5428839A (en) | Planar magic-tee double balanced mixer | |
US9831550B2 (en) | Phase shifter, predistorter, and phased array antenna | |
JP2009260444A (ja) | 合成器、増幅器、送信機 | |
US20180006352A1 (en) | Differential Directional Coupler, Signal Conversion System and Method for Converting a Differential Input Signal | |
US20090261901A1 (en) | Decade bandwidth planar mmic four port transformer | |
US10637450B2 (en) | Broadband frequency tripler | |
CN103354442A (zh) | 一种多功能倍频器 | |
CN112204882B (zh) | 用于rf通信的使用右手和左手传输线开关的宽带360度移相器 | |
JPH05243853A (ja) | 周波数逓倍器 | |
JP4501711B2 (ja) | 偶高調波ミクサ | |
WO2018220669A1 (ja) | 高周波ミクサ | |
US10483940B2 (en) | High-performance conversion between single-ended and differential/common-mode signals | |
CN107888149B (zh) | 一种谐波混频倍频电路 | |
US20110304391A1 (en) | Decade bandwidth planar mmic four port transformer | |
CN203368401U (zh) | 一种多功能倍频器 | |
Bose et al. | Design of a wideband down-conversion mixer in X-band | |
JP4864758B2 (ja) | 直交ミクサおよびイメージリジェクションミクサ | |
JP2016127452A (ja) | 位相変換装置 | |
KR102675358B1 (ko) | I/q 신호 발생 장치 및 이를 이용한 위상 천이 장치 | |
WO2023175696A1 (ja) | 高調波ミクサ | |
KR20190071972A (ko) | 위상천이기 | |
JP3220895B2 (ja) | 注入同期発振器 | |
Ma et al. | A Novel Compact LC-Based Balun Combiner with 2nd and 3rd Harmonic Suppression | |
Xu et al. | Low Cost Frequency Doubler Using a Modified Dual-Mode Hybrid Ring Coupler | |
CN117118361A (zh) | 一种倍频电路、倍频器及射频系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17912094 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019521535 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017912094 Country of ref document: EP Effective date: 20191125 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |