WO2018218715A1 - 平板显示装置及其Top-OLED - Google Patents

平板显示装置及其Top-OLED Download PDF

Info

Publication number
WO2018218715A1
WO2018218715A1 PCT/CN2017/089675 CN2017089675W WO2018218715A1 WO 2018218715 A1 WO2018218715 A1 WO 2018218715A1 CN 2017089675 W CN2017089675 W CN 2017089675W WO 2018218715 A1 WO2018218715 A1 WO 2018218715A1
Authority
WO
WIPO (PCT)
Prior art keywords
light output
output coupling
coupling layer
layer
refractive index
Prior art date
Application number
PCT/CN2017/089675
Other languages
English (en)
French (fr)
Inventor
袁伟
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/543,992 priority Critical patent/US10461279B2/en
Publication of WO2018218715A1 publication Critical patent/WO2018218715A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a flat panel display device and a Top-OLED thereof.
  • OLED is used in the field of flat panel display (FDP). Compared with the current mainstream display technology and liquid crystal display (LCD), it has many incomparable advantages. Therefore, it has been favored by the industry. .
  • the quantum efficiency of OLED devices can reach nearly 100% with the development of phosphorescent materials, while the external quantum efficiency is only 20-50% due to the structure of the device itself and its materials. Most photons are dissipated due to absorption and total reflection effects of materials. Inside the device, this not only makes the luminous efficiency of the device not greatly improved, but the presence of photons inside the device also makes the organic material easy to age and shorten the life. Therefore, it is very important to reduce the optical loss inside the device and improve the external quantum efficiency of the OLED device.
  • the microcavity structure can increase the external quantum efficiency of the device by 1.6 times compared with the conventional structure; using the scattering layer design theory to increase the dielectric layer of high refractive index, the device light extraction rate can be increased by about 40%; it can also be arranged on the back of the ITO glass.
  • the microlens array can theoretically increase the light extraction coupling efficiency of the device by about 50%.
  • the microcavity effect tends to make the viewing angle of the device worse.
  • the stronger the microcavity the stronger the light coupling efficiency, but the worse the viewing angle performance.
  • the medium layer with different refractive index is selected for the medium layer with high refractive index, and the surface flatness is poor, so that the far field distribution of the emitted light is uneven, which affects the viewing angle of the device.
  • the microlens array can theoretically increase the light-emitting coupling efficiency of the device by about 50%, but the manufacturing process is cumbersome and the cost is high.
  • Embodiments of the present invention provide a flat panel display device and a Top-OLED thereof to solve the problem of low quantum efficiency of an OLED device in the prior art.
  • the Top-OLED includes a light emitting unit and a light output coupling unit disposed on a light output surface of the light emitting unit,
  • the light output coupling unit includes a first light output coupling layer and a second light output coupling layer which are sequentially stacked from the light output surface of the light emitting unit, wherein a refractive index of the first light output coupling layer is greater than the second light output Coupling layer refractive index;
  • the light output coupling unit further includes a third light output coupling layer laminated on the second light output coupling layer, the second light output coupling layer having a refractive index greater than the third light output coupling layer refractive index
  • the first light output coupling layer is made of an organic or inorganic material having a refractive index of 1.75 or more.
  • a Top-OLED which includes a light emitting unit and a light output coupling unit disposed on a light output surface of the light emitting unit.
  • the light output coupling unit includes a first light output coupling layer and a second light output coupling layer which are sequentially stacked from the light output surface of the light emitting unit, wherein a refractive index of the first light output coupling layer is greater than the second light Output coupling layer refractive index.
  • another technical solution adopted by the embodiment of the present invention is to provide a flat panel display device including the above-mentioned Top-OLED.
  • the invention has the beneficial effects that the flat panel display device and the Top-OLED provided by the invention have an optical output coupling layer with a decreasing refractive index on the light-emitting surface, thereby improving the external quantum of the OLED device. Efficiency is beneficial to increase light output.
  • FIG. 1 is a schematic structural diagram of a Top-OLED according to an embodiment of the present invention.
  • FIG. 2 is a simplified schematic diagram of a Top-OLED having a single-layer light output coupling structure
  • FIG. 3 is a simplified schematic diagram of another Top-OLED having a single-layer light output coupling structure
  • FIG. 4 is a simplified schematic diagram of a Top-OLED having a multilayer light output coupling structure according to an embodiment of the present invention
  • FIG. 5 is a simplified schematic diagram of a flat panel display device according to an embodiment of the invention.
  • an embodiment of the present invention provides a Top-OLED 100 including a light emitting unit 110 and a light output coupling unit 120 disposed on a light output surface of the light emitting unit 110.
  • the light output coupling unit 120 includes a self-luminous light.
  • the first light output coupling layer 121 and the second light output coupling layer 122 are sequentially stacked on the light output surface of the unit 110, wherein the refractive index of the first light output coupling layer 121 is greater than the refractive index of the second light output coupling layer 122.
  • the light output coupling unit 120 further includes a third light output coupling layer 123 disposed on the second light output coupling layer 122.
  • the second light output coupling layer 122 has a refractive index greater than the third light output.
  • the refractive index of the coupling layer 123 is not limited to the third light output.
  • the third light output coupling layer 123 may be an organic or inorganic material having a transmittance of 1.1 to 1.4, wherein the third light output coupling layer 123 may be MgF, LiF, NaF, KF or BaF2.
  • the light emitting unit 110 includes a TFT substrate 101, an ITO anode 102, a hole injection layer 103, a hole transport layer 104, an R/G/B/Y light emitting layer 105, and an electron transport layer which are sequentially stacked. 106. An electron injection layer 107 and a metal cathode 108.
  • the light output coupling unit 120 is disposed on the metal cathode 108.
  • the R/G/B/Y luminescent layer 105 can be a single stack, two stacks of light emitting structures or a triple stack of light emitting structures;
  • the metal cathode 108 is made of a low work function metal material, including but not limited to Li, Mg, Ca, Sr, La , Ce, Eu, Yb, Al, Cs, Rb, Ag or an alloy of these metals, the cathode materials may be used singly or in combination of two or more.
  • the ITO anode 102 is made of Ag and has a thickness of 1000 A; the hole injection layer 103 is made of MoO 3 and has a thickness of 50 A; and the hole transport layer 104 is made of NPB and has a thickness of 300 A;
  • the G/B/Y light-emitting layer 105 is TCTA: (ppy) 2Ir (acac) and has a thickness of 150 A; the electron transport layer 106 is TmPyPb and has a thickness of 300 a; the electron injection layer 107 is made of LiF and has a thickness of 10 A; and the metal cathode 108 is used.
  • the thickness is Mg:Ag (1:9), the thickness is 200A; the first light output coupling layer 121 is NPB, the thickness is 200A; the second light output coupling layer 122 is NPB:LiF (1:1), and the thickness is 200A;
  • the third light output coupling layer 123 is made of LiF and has a thickness of 200A.
  • the portion of the light emitting unit 110 is the same as that of FIG. 4, except that FIG. 2 and FIG. 3 adopt a single layer coupling structure, and in the embodiment shown in FIG. 2, the light output coupling layer 201 employs NPB and has a thickness of 600 A. In the embodiment shown in FIG. 3, the light output coupling layer 202 is made of LiF and has a thickness of 600 ⁇ .
  • the external quantum efficiency of the device based on the three-layer coupling structure disclosed in FIG. 4 is improved by 28.6% and 16.8%, respectively, compared to the devices disclosed in FIGS. 2 and 3.
  • the increase in its external quantum efficiency can be attributed to an increase in the coupling output efficiency of the light output coupling layer 120.
  • the refractive indices of NPB and LiF at 520 nm were 1.81 and 1.39.
  • the refractive index of the doped layer having a refractive index of NPB:LiF doped layer at 520 nm is 1.64. By doping, the refractive index of the film is between the refractive indices of both NPB and LiF.
  • the coupling layer NPB(200A)/LiF:NPB(1:1,200A)/LiF(200A) combination of the device shown in FIG. 4 has a refractive index of 1.8/1.64/1.39 at 520 nm, and the refractive index value is decreased.
  • the coupling layer material is a combination of gradually decreasing refractive index, which is more favorable for the improvement of the coupling output efficiency of the device, so that the device C has higher efficiency.
  • an embodiment of the present invention further provides a flat panel display device 10 including the above-described Top-OLED 100 .
  • the flat panel display device and the Top-OLED 100 provided by the present invention have improved light-emitting coupling efficiency of the OLED device due to the light output coupling layer having a decreasing refractive index on the light-emitting surface. Helps increase the light output.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种平板显示装置(10)及其Top-OLED(100),Top-OLED(100)包括发光单元(110)和设于发光单元(110)光输出面的光输出耦合单元(120),光输出耦合单元(120)包括自发光单元(110)光输出面依次层叠设置的第一光输出耦合层(121)和第二光输出耦合层(122),其中第一光输出耦合层(121)的折射率大于第二光输出耦合层(122)折射率。平板显示装置(10)及其Top-OLED(100)由于在出光面设有折射率渐小的光输出耦合层,提高了OLED器件外量子效率,有利于增加光输出效果。

Description

平板显示装置及其Top-OLED 【技术领域】
本发明涉及显示器技术领域,特别涉及一种平板显示装置及其Top-OLED。
【背景技术】
OLED应用于平板显示(Flat Panel Display,FDP)领域,与目前主流的显示技术,液晶显示(Liquid Crystal Display,LCD)相比,具备了许多不可比拟的优势,因此它也一直被业内人士所看好。OLED器件内量子效率随着磷光材料的发展,可达到近乎100%,而外量子效率却由于器件结构本身及其材料只有20~50%,大部分光子都由于材料的吸收和全反射效应耗散于器件内部,这不仅使得器件的发光效率无法大幅提高,而且光子在器件内部的存在也会使得有机材料容易老化而缩短寿命。因此,减少器件内部的光损耗、提高OLED器件外量子效率是非常重要的。
提高OLED出光耦合效率常用的方法有微腔结构、增加介质层、改变表面结构等。
采用微腔结构可以使得器件的外量子效率相比于传统结构提高1.6倍;利用散射层设计理论,增加高折射率的介质层,器件出光率可增加约40%;还可以在ITO玻璃背面布置了微透镜阵列,理论上可使得器件的出光耦合效率提高约50%。
但是利用微腔效应容易使得器件的视角表现变差,微腔越强,出光耦合效率越强,但视角表现越差。增加高折射率的介质层所选用的一般为不同粒径范围的纳米颗粒,其表面平整度较差,使得出射光远场分布不均匀,影响器件视角表现。微透镜阵列,理论上可使得器件的出光耦合效率提高约50%,但制作工艺繁琐,成本较高。
【发明内容】
本发明实施例提供一种平板显示装置及其Top-OLED,以解决现有技术中OLED器件外量子效率较低的问题。
为解决上述技术问题,本发明实施例采用的一个技术方案是:提供一种Top-OLED,所述Top-OLED包括发光单元和设于所述发光单元光输出面的光输出耦合单元,所述光输出耦合单元包括自所述发光单元光输出面依次层叠设置的第一光输出耦合层和第二光输出耦合层,其中所述第一光输出耦合层的折射率大于所述第二光输出耦合层折射率;
所述光输出耦合单元进一步包括层叠设置于所述第二光输出耦合层上的第三光输出耦合层,所述第二光输出耦合层的折射率大于所述第三光输出耦合层折射率,其中,所述第一光输出耦合层采用折射率为1.75以上的有机或无机材料。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种Top-OLED,所述Top-OLED包括发光单元和设于所述发光单元光输出面的光输出耦合单元,所述光输出耦合单元包括自所述发光单元光输出面依次层叠设置的第一光输出耦合层和第二光输出耦合层,其中所述第一光输出耦合层的折射率大于所述第二光输出耦合层折射率。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种平板显示装置,所述平板显示装置包括上述的Top-OLED。
本发明的有益效果是:区别于现有技术的情况,本发明提供的平板显示装置及其Top-OLED中由于在出光面设有折射率渐小的光输出耦合层,提高了OLED器件外量子效率,有利于增加光输出效果。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明实施例提供的Top-OLED的简化结构示意图;
图2是一种具有单层光输出耦合结构的Top-OLED的简化结构示意图;
图3是另一种具有单层光输出耦合结构的Top-OLED的简化结构示意图;
图4是本发明实施例提供的一种具有多层光输出耦合结构的Top-OLED的简化结构示意图;
图5是本发明实施例提供的平板显示装置的简化结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明实施例提供一种Top-OLED 100,该Top-OLED 100包括发光单元110和设于发光单元110光输出面的光输出耦合单元120,光输出耦合单元120包括自发光单元110光输出面依次层叠设置的第一光输出耦合层121和第二光输出耦合层122,其中第一光输出耦合层121的折射率大于第二光输出耦合层122折射率。
在本发明一实施例中,光输出耦合单元120进一步包括层叠设置于第二光输出耦合层122上的第三光输出耦合层123,第二光输出耦合层122的折射率大于第三光输出耦合层123折射率。
在本发明一实施例中,第一光输出耦合层121可采用折射率为1.75以上的有机或无机材料,其中,第一光输出耦合层121具体可采用NPB(n=1.81@520nm,光波长为520nm时折射率为1.81)、ZnS(n=2.4@550nm)、ZnSe(n=2.58@550nm)、ITO、IZO。
在本发明一实施例中,第二光输出耦合层122可采用折射率为1.4至1.75的有机、无机或复合材料,其中,无机材料可采用LaF3(n=1.58@550nm),YF3(n=1.55@550nm),CeF3(n=1.63@500nm)等;有机材料可采用TcTa(n=1.71@550nm),Alq3(n=1.63@550nm),Liq(n=1.65@500nm)等;复合材料可采用有机材料与MgF、LiF或NaF共蒸镀形成的单层结构。
在本发明一实施例中,第三光输出耦合层123可采用射率在1.1至1.4的有机或无机材料,其中,第三光输出耦合层123可采用MgF、LiF、NaF、KF或BaF2。
在本发明一实施例中,发光单元110包括依次层叠设置的TFT基板101、ITO阳极102、空穴注入层103、空穴传输层104、R/G/B/Y发光层105、电子传输层106、电子注入层107以及金属阴极108。
光输出耦合单元120设于金属阴极108上。其中,R/G/B/Y发光层105可为单叠、两叠发光结构或三叠发光结构;金属阴极108采用低功函金属材料,包含但不限于Li,Mg,Ca,Sr,La,Ce,Eu,Yb,Al,Cs,Rb,Ag或者这些金属的合金,阴极材料可以单独使用,也可两两或者更多组合使用。
请一并参阅图4,在一具体实施例中,ITO阳极102采用Ag,厚度为1000A;空穴注入层103采用MoO3,厚度为50A;空穴传输层104采用NPB,厚度为300A;R/G/B/Y发光层105采用TCTA:(ppy)2Ir(acac),厚度为150A;电子传输层106采用TmPyPb,厚度为300a;电子注入层107采用LiF,厚度为10A;金属阴极108采用,厚度为Mg∶Ag(1∶9),厚度为200A;第一光输出耦合层121采用NPB,厚度为200A;第二光输出耦合层122采用NPB∶LiF(1∶1),厚度为200A;第三光输出耦合层123采用LiF,厚度为200A。
请一并参阅图2和图3,其发光单元110部分与图4相同,不同之处在于图2和图3采用单层耦合结构,在图2所示的实施例中,其光输出耦合层201采用NPB,厚度为600A;在图3所示的实施例中,其光输出耦合层202采用LiF,厚度为600A。
经试验测定图2、图3、图4三种器件性能如下:
  图2 图3 图4
最大电流效率(cd/A) 58.9 63.9 75.4
最大流明效率(lm/w) 37.4 41.7 48.7
最大外量子效率 16.2 17.8 20.8
图4公开的基于三层耦合结构的器件的外量子效率相比于图2、图3公开的器件来说分别提高了28.6%,16.8%。其外量子效率的提高可以归因于光输出耦合层120的耦合输出效率的提高。在图4所示的器件中,NPB和LiF在520nm处的折射率为1.81、1.39。NPB∶LiF掺杂层的折射率在520nm处的掺杂层的折射率为1.64,通过掺杂的方法,薄膜的折射率介于NPB和LiF二者折射率之间。所以,图4所示的器件的耦合层NPB(200A)/LiF∶NPB(1∶1,200A)/LiF(200A)组合在520nm处的折射率为1.8/1.64/1.39,折射率值递减。耦合层材料为折射率逐渐降低的组合,更有利于器件耦合输出效率的提高,使得器件C有较高的效率。
请一并参阅图5,本发明实施例还提供一种平板显示装置10,该平板显示装置10包括上述的Top-OLED 100。
综上所述,本领域技术人员容易理解,本发明提供的平板显示装置及其Top-OLED 100中由于在出光面设有折射率渐小的光输出耦合层,提高了OLED器件外量子效率,有利于增加光输出效果。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (19)

  1. 一种Top-OLED,其中,所述Top-OLED包括发光单元和设于所述发光单元光输出面的光输出耦合单元,所述光输出耦合单元包括自所述发光单元光输出面依次层叠设置的第一光输出耦合层和第二光输出耦合层,其中所述第一光输出耦合层的折射率大于所述第二光输出耦合层折射率;
    所述光输出耦合单元进一步包括层叠设置于所述第二光输出耦合层上的第三光输出耦合层,所述第二光输出耦合层的折射率大于所述第三光输出耦合层折射率,其中,所述第一光输出耦合层采用折射率为1.75以上的有机或无机材料。
  2. 一种Top-OLED,其中,所述Top-OLED包括发光单元和设于所述发光单元光输出面的光输出耦合单元,所述光输出耦合单元包括自所述发光单元光输出面依次层叠设置的第一光输出耦合层和第二光输出耦合层,其中所述第一光输出耦合层的折射率大于所述第二光输出耦合层折射率。
  3. 根据权利要求2所述的Top-OLED,其中,所述光输出耦合单元进一步包括层叠设置于所述第二光输出耦合层上的第三光输出耦合层,所述第二光输出耦合层的折射率大于所述第三光输出耦合层折射率。
  4. 根据权利要求2所述的Top-OLED,其中,所述第一光输出耦合层采用折射率为1.75以上的有机或无机材料。
  5. 根据权利要求2所述的Top-OLED,其中,所述第一光输出耦合层采用NPB、ZnS、ZnSe、ITO或IZO。
  6. 根据权利要求2所述的Top-OLED,其中,所述第二光输出耦合层采用折射率为1.4至1.75的有机、无机或复合材料。
  7. 根据权利要求6所述的Top-OLED,其中,所述无机材料采用LaF3、YF3或CeF3;
    所述有机材料采用TcTa、Alq3或Liq;
    所述复合材料采用有机材料与MgF、LiF或NaF共蒸镀形成的单层结构。
  8. 根据权利要求3所述的Top-OLED,其中,所述第三光输出耦合层采用射率在1.1至1.4的有机或无机材料。
  9. 根据权利要求8所述的Top-OLED,其中,所述第三光输出耦合层采用MgF、LiF、NaF、KF或BaF2。
  10. 根据权利要求2所述的Top-OLED,其中,所述发光单元包括依次层叠设置的TFT基板、ITO阳极、空穴注入层、空穴传输层、R/G/B/Y发光层、电子传输层、电子注入层以及金属阴极,所述光输出耦合单元设于所述金属阴极上。
  11. 一种平板显示装置,其中,所述平板显示装置包括Top-OLED,所述Top-OLED包括发光单元和设于所述发光单元光输出面的光输出耦合单元,所述光输出耦合单元包括自所述发光单元光输出面依次层叠设置的第一光输出耦合层和第二光输出耦合层,其中所述第一光输出耦合层的折射率大于所述第二光输出耦合层折射率。
  12. 根据权利要求11所述的平板显示装置,其中,所述光输出耦合单元进一步包括层叠设置于所述第二光输出耦合层上的第三光输出耦合层,所述第二光输出耦合层的折射率大于所述第三光输出耦合层折射率。
  13. 根据权利要求11所述的平板显示装置,其中,所述第一光输出耦合层采用折射率为1.75以上的有机或无机材料。
  14. 根据权利要求11所述的平板显示装置,其中,所述第一光输出耦合层采用NPB、ZnS、ZnSe、ITO或IZO。
  15. 根据权利要求11所述的平板显示装置,其中,所述第二光输出耦合层采用折射率为1.4至1.75的有机、无机或复合材料。
  16. 根据权利要求15所述的平板显示装置,其中,所述无机材料采用LaF3、YF3或CeF3;
    所述有机材料采用TcTa、Alq3或Liq;
    所述复合材料采用有机材料与MgF、LiF或NaF共蒸镀形成的单层结构。
  17. 根据权利要求12所述的平板显示装置,其中,所述第三光输出耦合层采用射率在1.1至1.4的有机或无机材料。
  18. 根据权利要求17所述的平板显示装置,其中,所述第三光输出耦合层采用MgF、LiF、NaF、KF或BaF2。
  19. 根据权利要求11所述的平板显示装置,其中,所述发光单元包括依次层叠设置的TFT基板、ITO阳极、空穴注入层、空穴传输层、R/G/B/Y发光层、电子传输层、电子注入层以及金属阴极,所述光输出耦合单元设于所述金属阴极上。
PCT/CN2017/089675 2017-06-01 2017-06-23 平板显示装置及其Top-OLED WO2018218715A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/543,992 US10461279B2 (en) 2017-06-01 2017-06-23 Top-OLEDs with multilayer output coupling unit and flat panel display devices using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710405437.7A CN107170903B (zh) 2017-06-01 2017-06-01 平板显示装置及其Top-OLED
CN201710405437.7 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018218715A1 true WO2018218715A1 (zh) 2018-12-06

Family

ID=59821432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089675 WO2018218715A1 (zh) 2017-06-01 2017-06-23 平板显示装置及其Top-OLED

Country Status (3)

Country Link
US (1) US10461279B2 (zh)
CN (1) CN107170903B (zh)
WO (1) WO2018218715A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170903B (zh) * 2017-06-01 2018-11-20 深圳市华星光电半导体显示技术有限公司 平板显示装置及其Top-OLED
CN109638175A (zh) * 2018-11-30 2019-04-16 武汉华星光电半导体显示技术有限公司 有机发光装置及阵列基板
US11114644B2 (en) 2019-05-22 2021-09-07 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED display panel and OLED display device
CN110212109B (zh) * 2019-05-22 2021-01-15 武汉华星光电半导体显示技术有限公司 Oled显示面板
CN112038501B (zh) * 2020-09-08 2021-08-10 长春海谱润斯科技股份有限公司 一种顶发射有机电致发光器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200511888A (en) * 2003-09-12 2005-03-16 Toppoly Optoelectronics Corp Organic light emitting device with a light efficiency enhanced structure
US20110260148A1 (en) * 2010-04-23 2011-10-27 Electronics And Telecommunications Research Institute Transmissive organic light emitting diode and transmissive lighting device using the same
CN103633256A (zh) * 2013-12-13 2014-03-12 广州新视界光电科技有限公司 阶梯增透结构式有机电致发光器件及其制备方法
CN103779501A (zh) * 2013-12-31 2014-05-07 昆山工研院新型平板显示技术中心有限公司 一种改善视角特性的顶发射oled器件
CN105720208A (zh) * 2016-02-29 2016-06-29 广州新视界光电科技有限公司 一种有机电致发光器件
CN106601932A (zh) * 2016-12-30 2017-04-26 上海天马有机发光显示技术有限公司 一种有机发光显示器件和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052130A1 (en) 2003-09-09 2005-03-10 Toppoly Optoelectronics Corp. Light emitting device with optical enhancement structure
KR101341012B1 (ko) * 2008-08-29 2013-12-13 엘지디스플레이 주식회사 유기 발광 표시 패널
EP3104427B1 (en) * 2013-12-31 2021-07-28 Kunshan New Flat Panel Display Technology Center Co., Ltd. Organic light-emitting display device and top emitting oled device for improving viewing angle characteristics
US9829710B1 (en) * 2016-03-02 2017-11-28 Valve Corporation Display with stacked emission and control logic layers
CN107170903B (zh) * 2017-06-01 2018-11-20 深圳市华星光电半导体显示技术有限公司 平板显示装置及其Top-OLED
US11957044B2 (en) * 2017-09-05 2024-04-09 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200511888A (en) * 2003-09-12 2005-03-16 Toppoly Optoelectronics Corp Organic light emitting device with a light efficiency enhanced structure
US20110260148A1 (en) * 2010-04-23 2011-10-27 Electronics And Telecommunications Research Institute Transmissive organic light emitting diode and transmissive lighting device using the same
CN103633256A (zh) * 2013-12-13 2014-03-12 广州新视界光电科技有限公司 阶梯增透结构式有机电致发光器件及其制备方法
CN103779501A (zh) * 2013-12-31 2014-05-07 昆山工研院新型平板显示技术中心有限公司 一种改善视角特性的顶发射oled器件
CN105720208A (zh) * 2016-02-29 2016-06-29 广州新视界光电科技有限公司 一种有机电致发光器件
CN106601932A (zh) * 2016-12-30 2017-04-26 上海天马有机发光显示技术有限公司 一种有机发光显示器件和装置

Also Published As

Publication number Publication date
US20180351132A1 (en) 2018-12-06
CN107170903B (zh) 2018-11-20
CN107170903A (zh) 2017-09-15
US10461279B2 (en) 2019-10-29

Similar Documents

Publication Publication Date Title
WO2018218715A1 (zh) 平板显示装置及其Top-OLED
US10026915B2 (en) White organic light emitting device
US8841836B2 (en) Flat panel display device, organic light emitting display device and method of manufacturing flat panel display device
TWI284492B (en) Organic EL device
CN102983285B (zh) 一种高效率有机发光二极管及其制备方法
US10446798B2 (en) Top-emitting WOLED display device
EP3018721B1 (en) Substrate for organic light emitting device and organic light emitting device comprising same
Kim et al. Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability
CN110212109B (zh) Oled显示面板
WO2020244100A1 (zh) 一种显示器件及其制备方法
CN209045557U (zh) 一种显示面板及显示装置
CN105720208A (zh) 一种有机电致发光器件
KR20140087629A (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2022247056A1 (zh) 显示面板及显示装置
JP2020517066A (ja) 有機el装置及びその電極
WO2019051878A1 (zh) 一种oled器件结构
US11430969B2 (en) Electroluminescent component having metal layer disposed between two of optical coupling layers and display device having the same
WO2017075880A1 (zh) Oled显示器及其显示模组
KR102023943B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2021035960A1 (zh) 电致发光器件及显示装置
KR20120076255A (ko) 백색 유기 발광 소자
WO2020155448A1 (zh) 增强光取出的白色有机发光二极管器件
WO2020258403A1 (zh) 有机电致发光器件及有机电致发光装置
Tsuji et al. High-efficiency technology of white OLEDs
TWI754181B (zh) 發光裝置及其電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911684

Country of ref document: EP

Kind code of ref document: A1