WO2020258403A1 - 有机电致发光器件及有机电致发光装置 - Google Patents

有机电致发光器件及有机电致发光装置 Download PDF

Info

Publication number
WO2020258403A1
WO2020258403A1 PCT/CN2019/096112 CN2019096112W WO2020258403A1 WO 2020258403 A1 WO2020258403 A1 WO 2020258403A1 CN 2019096112 W CN2019096112 W CN 2019096112W WO 2020258403 A1 WO2020258403 A1 WO 2020258403A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
disposed
light
electrode layer
electrode
Prior art date
Application number
PCT/CN2019/096112
Other languages
English (en)
French (fr)
Inventor
丁可
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2020258403A1 publication Critical patent/WO2020258403A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present disclosure relates to the field of display technology, in particular to an organic electroluminescence device and an organic electroluminescence device.
  • OLED Organic Light-Emitting Device
  • the nano-scale sub-wavelength structure is usually used to modify the metal
  • the interface with the organic material makes the luminous wave vector of the plasma on the metal surface and the luminous wave vector of the organic luminescent material match each other, and light is coupled out.
  • the suppression means is very complicated. And it is easy to damage each organic film layer, causing internal leakage current of the display device, and affecting the normal use of the display device.
  • the loss of light waves is relatively large, and at the same time, when different light wave vectors are matched to each other to couple out light, it is easy to damage each organic film layer and cause leakage current problems.
  • the present disclosure provides an organic electroluminescence device and an organic electroluminescence device to solve the problem of excessive light wave loss in the existing organic electroluminescence device, and when the organic electroluminescence device is designed, It is easy to damage each organic film layer, which shows the problem of leakage current inside the device.
  • an organic electroluminescent device including:
  • a dielectric layer, the dielectric layer is disposed on the light emitting device layer;
  • a coupling layer, the coupling layer is disposed on the dielectric layer
  • the light-emitting device layer includes a first electrode layer, the refractive indices of the upper and lower film layers adjacent to the first electrode layer are the same, and the structure of the coupling layer is a periodic grating microstructure;
  • the upper surface of the coupling layer includes convex structures, and the convex structures are periodically arranged.
  • the first electrode layer is a transparent electrode layer, and the material of the first electrode layer includes metal or alloy.
  • the thickness of the first electrode layer is 20 nanometers to 50 nanometers.
  • the light-emitting device layer further includes:
  • a second electrode layer the second electrode layer being a non-transparent electrode layer
  • a hole transport layer, the hole transport layer is disposed on the second electrode layer;
  • a light-emitting layer, the light-emitting layer is disposed on the hole transport layer;
  • a hole blocking layer, the hole blocking layer is disposed on the light-emitting layer
  • An electron transport layer the electron transport layer being disposed on the hole blocking layer;
  • An electron injection layer is disposed on the electron transport layer, and the first electrode layer is disposed on the electron injection layer;
  • the refractive index of the electron injection layer is the same as the refractive index of the dielectric layer, and the electrical polarity of the first electrode layer and the second electrode layer are different.
  • the light emitting device layer further includes an electron blocking layer, and the electron blocking layer is disposed between the hole transport layer and the light emitting layer.
  • the material of the electron blocking layer includes a laser blocking material.
  • the light-emitting device layer further includes a hole injection layer, and the hole injection layer is disposed between the hole transport layer and the second electrode layer.
  • the material of the light-emitting layer includes host and guest doped materials.
  • an organic electroluminescent device including: a light emitting device layer;
  • a dielectric layer, the dielectric layer is disposed on the light emitting device layer;
  • a coupling layer, the coupling layer is disposed on the dielectric layer
  • the light-emitting device layer includes a first electrode layer, the refractive index of the upper and lower film layers adjacent to the first electrode layer is the same, and the structure of the coupling layer is a periodic grating microstructure.
  • the first electrode layer is a transparent electrode layer, and the material of the first electrode layer includes metal or alloy.
  • the thickness of the first electrode layer is 20 nanometers to 50 nanometers.
  • the light-emitting device layer further includes:
  • a second electrode layer the second electrode layer being a non-transparent electrode layer
  • a hole transport layer, the hole transport layer is disposed on the second electrode layer;
  • a light-emitting layer, the light-emitting layer is disposed on the hole transport layer;
  • a hole blocking layer, the hole blocking layer is disposed on the light-emitting layer
  • An electron transport layer the electron transport layer being disposed on the hole blocking layer;
  • An electron injection layer is disposed on the electron transport layer, and the first electrode layer is disposed on the electron injection layer;
  • the refractive index of the electron injection layer is the same as the refractive index of the dielectric layer, and the electrical polarity of the first electrode layer and the second electrode layer are different.
  • the light emitting device layer further includes an electron blocking layer, and the electron blocking layer is disposed between the hole transport layer and the light emitting layer.
  • the material of the electron blocking layer includes a laser blocking material.
  • the light-emitting device layer further includes a hole injection layer, and the hole injection layer is disposed between the hole transport layer and the second electrode layer.
  • the material of the light-emitting layer includes host and guest doped materials.
  • the upper surface of the coupling layer includes convex structures, and the convex structures are periodically arranged.
  • an organic electroluminescence device including: a light-emitting device layer;
  • a dielectric layer, the dielectric layer is disposed on the light emitting device layer;
  • a coupling layer, the coupling layer is disposed on the dielectric layer
  • the light-emitting device layer includes a first electrode layer, the refractive index of the upper and lower film layers adjacent to the first electrode layer is the same, and the structure of the coupling layer is a periodic grating microstructure.
  • the light emitting device layer further includes an electron blocking layer, and the electron blocking layer is disposed between the hole transport layer and the light emitting layer.
  • the upper surface of the coupling layer includes convex structures, and the convex structures are periodically arranged.
  • the present disclosure provides an organic electroluminescence device and an organic electroluminescence device, a periodic micro-grating structure and a dielectric layer are designed, and the refractive index of the two film layers adjacent to the metal layer of the organic electroluminescence device is the same
  • the structure is designed to improve the light extraction efficiency of the display device, reduce the leakage current of the organic electroluminescence device, and improve the efficiency of the OLED.
  • FIG. 1 is a schematic diagram of each layer of an organic electroluminescent device provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of each layer structure of another organic electroluminescent device according to an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of each layer structure of another organic electroluminescent device provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of the structure of an organic electroluminescent device provided by an embodiment of the disclosure.
  • FIG. 1 is a schematic diagram of the structure of each layer of the organic electroluminescent device of the embodiment of the disclosure.
  • the organic electroluminescence device includes a light-emitting device layer 10, a dielectric layer 11 and a coupling layer 12.
  • the dielectric layer 11 is disposed on the light emitting device layer 10, and the coupling layer 12 is disposed on the dielectric layer 11.
  • the light-emitting device layer 10 also has other film layers. Among them, the top film layer of the light-emitting device layer 10 is a first electrode layer, and the bottom of the light-emitting device layer 10 is a second electrode layer.
  • the dielectric layer 11 is provided On the first electrode layer, the refractive index of another film layer adjacent to the first electrode layer is the same as the refractive index of the dielectric layer 11. In this way, the refractive indexes of the two film layers on both sides of the metal electrode layer are the same.
  • the light emitted by the light-emitting layer will pass through the above-mentioned film with the same refractive index, and the SPP plane wave vector on both sides of the metal film is the same.
  • the waveguide mode and substrate mode of the light-emitting device can be suppressed, thereby increasing the light output rate.
  • the structure of the coupling layer 12 is a periodic grating microstructure. Specifically, a plurality of protrusions can be periodically provided on the upper surface of the coupling layer 12. These protrusions form a grating microstructure.
  • the coupling layer 12 again couples all the SPP mode light on both sides of the metal layer through this microstructure, thereby regulating the luminescence wave vector of the metal surface plasma. .
  • the wavelength of the coupled out light wave is just near the emission peak of the organic electronic light-emitting device, thereby improving the luminous efficiency of the OLED device.
  • the microstructure of the coupling layer 12 can also be a periodic recessed structure.
  • FIG. 2 is a schematic diagram of each layer of another organic electroluminescent device provided by an embodiment of the disclosure.
  • the organic electroluminescent device includes a second electrode layer 200, a hole transport layer 201 disposed on the second electrode layer 200, a light emitting layer 202 disposed on the hole transport layer 201, and a hole blocking layer 202 disposed on the light emitting layer 202.
  • the first electrode layer 206 and the second electrode layer 200 have opposite polarities.
  • the first electrode layer 206 is a transparent electrode layer so that light can pass through the first electrode layer 206.
  • the material is a metal material or an alloy material.
  • the thickness of the first electrode layer 206 is not more than 50 nanometers, and the preferred thickness is 20 nanometers to 50 nanometers to ensure that light can better pass through the electrode layer.
  • the second electrode layer 200 is a non-transparent electrode layer, generally an anode layer, and the material of the second electrode layer 200 is a high work function metal or metal oxide or other metal materials.
  • the refractive index of the electron injection layer 205 and the refractive index of the dielectric layer 207 are the same.
  • the light emitted by the light-emitting layer 202 and the light transmitted by the electron injection layer 205 have the same SPP plane wave vector.
  • the waveguide mode and substrate mode of the light-emitting device can be effectively suppressed, thereby improving The transmittance of light.
  • the upper surface of the coupling layer 208 has a periodic grating microstructure. When light passes through the coupling layer 208, this microstructure further extracts light in the SPP mode, thereby improving the luminous efficiency of the OLED.
  • FIG. 3 is a schematic diagram of each layer structure of another organic electroluminescent device provided by an embodiment of the disclosure.
  • the organic electroluminescent device film layer includes a second electrode layer 300, a hole injection layer 301, a hole transport layer 302, an electron blocking layer 303, a light emitting layer 304, a hole blocking layer 305, which are sequentially arranged from bottom to top.
  • the second electrode layer 300 may be a non-transparent anode layer
  • the hole injection layer 301 and the hole transport layer 302 are made of organic small molecule materials
  • the electron blocking layer 303 includes but is not limited to electron blocking materials and laser blocking materials, etc.
  • Organic small molecule materials, the light-emitting layer 304 can be a host and guest doped material.
  • the hole injection layer 301 and the electron blocking layer 303 can be omitted according to the specific structure of the organic electroluminescent device, and the settings of other film layers are not changed.
  • the organic electroluminescent device provided by the embodiment of the present disclosure is Without damaging the layers, the leakage current of the device is avoided and the light transmittance is improved.
  • the electron injection layer 307 and the dielectric layer 309 on the upper and lower sides of the first electrode layer 308 have the same refractive index, and the upper surface of the coupling layer 310 has a periodic micro-grating structure.
  • the aforementioned organic electroluminescent device may be a top-emitting device or a bottom-emitting device.
  • the embodiment of the present disclosure also provides an organic electroluminescence device, as shown in FIG. 4, which is a schematic diagram of the organic electroluminescence device provided by the embodiment of the disclosure.
  • the organic electroluminescent device 400 includes the organic light emitting device 401 provided by the embodiment of the present disclosure.
  • the organic electroluminescence device 400 has high light extraction efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件及有机电致发光装置(400),有机电致发光器件包括发光器件层(10)、介电层(11、207、309)、以及耦合层(12、208、310),还包括第一电极层(206、308),与第一电极层(206、308)相邻的上下两个膜层的折射率相同,且耦合层(12、208、310)的结构为周期性光栅微结构。通过这种结构设计,将金属两侧膜层内的等离子体共振模式光全部耦合出来,提高出光效率。

Description

有机电致发光器件及有机电致发光装置 技术领域
本揭示涉及显示技术领域,尤其涉及一种有机电致发光器件及有机电致发光装置。
背景技术
有机电致发光显示器件(Organic Light-Emitting Device,OLED)拥有自发光、低功耗、反应快、轻薄等优点,已成为显示领域的新兴技术。
传统的OLED结构中,由于各膜层的折射率存在差异,激子在发光层复合发光后,80%的光会被吸收,在这被吸收的光中,40%的光损失来自于表面等离子体的共振(Suffer –plasmon polariton,SPP),剩余的光来自器件的吸收以及全反射而损耗,最终能发射出来的光只有20%,因此,发光效率很低。为了减小光的损耗,现有工艺中,通过匹配不同的折射率,改变光散射的结构,以及引入微透镜等方法,但是,在这些方法中,通常采用纳米尺度的亚波长结构来修饰金属与有机材料的界面,使得金属表面等离子体的发光波矢与有机发光材料的发光波矢相互匹配,而耦合出光,这种SPP模式中,其抑制手段很复杂。并且很容易破坏各有机膜层,造成显示器件内部漏电流,影响显示器件的正常使用。
因此需要对现有技术中的问题提出解决方法。
技术问题
现有的OLED显示器件在进行设计时,光波的损耗较大,同时,当不同的光波矢在相互匹配耦合出光时,容易破坏各有机膜层而造成漏电流的问题。
技术解决方案
为解决上述问题,本揭示提供一种有机电致发光器件及有机电致发光装置,以解决现有的有机电致发光器件中,光波的损耗过大,并且在有机电致发光器件设计时,容易破坏各有机膜层,显示器件内部漏电流的问题。
为解决上述技术问题,本揭示实施例提供的技术方案如下:
根据本揭示实施例的第一方面,提供了一种有机电致发光器件,包括:
发光器件层;
介电层,所述介电层设置在所述发光器件层上;以及
耦合层,所述耦合层设置在所述介电层上;
其中,所述发光器件层包括第一电极层,与所述第一电极层相邻的上下两个膜层的折射率相同,所述耦合层的结构为周期性光栅微结构;
所述耦合层的上表面包括凸起结构,所述凸起结构呈周期性设置。
根据本揭示一实施例,所述第一电极层为透明电极层,所述第一电极层的材料包括金属或合金。
根据本揭示一实施例,所述第一电极层的厚度为20纳米~50纳米。
根据本揭示一实施例,所述发光器件层还包括:
第二电极层,所述第二电极层为非透明电极层;
空穴传输层,所述空穴传输层设置在所述第二电极层上;
发光层,所述发光层设置在所述空穴传输层上;
空穴阻挡层,所述空穴阻挡层设置在所述发光层上;
电子传输层,所述电子传输层设置在所述空穴阻挡层上;以及
电子注入层,所述电子注入层设置在所述电子传输层上,所述第一电极层设置在所述电子注入层上;
其中,所述电子注入层的折射率与所述介电层的折射率相同,所述第一电极层与所述第二电极层的电极性不同。
根据本揭示一实施例,所述发光器件层还包括电子阻挡层,所述电子阻挡层设置在所述空穴传输层与所述发光层之间。
根据本揭示一实施例,所述电子阻挡层的材料包括激光阻挡材料。
根据本揭示一实施例,所述发光器件层还包括空穴注入层,所述空穴注入层设置在所述空穴传输层与所述第二电极层之间。
根据本揭示一实施例,所述发光层的材料包括主客体掺杂材料。
根据本揭示的第二方面,还提供了一种有机电致发光器件,包括:发光器件层;
介电层,所述介电层设置在所述发光器件层上;以及
耦合层,所述耦合层设置在所述介电层上;
其中,所述发光器件层包括第一电极层,与所述第一电极层相邻的上下两个膜层的折射率相同,所述耦合层的结构为周期性光栅微结构。
根据本揭示一实施例,所述第一电极层为透明电极层,所述第一电极层的材料包括金属或合金。
根据本揭示一实施例,所述第一电极层的厚度为20纳米~50纳米。
根据本揭示一实施例,所述发光器件层还包括:
第二电极层,所述第二电极层为非透明电极层;
空穴传输层,所述空穴传输层设置在所述第二电极层上;
发光层,所述发光层设置在所述空穴传输层上;
空穴阻挡层,所述空穴阻挡层设置在所述发光层上;
电子传输层,所述电子传输层设置在所述空穴阻挡层上;以及
电子注入层,所述电子注入层设置在所述电子传输层上,所述第一电极层设置在所述电子注入层上;
其中,所述电子注入层的折射率与所述介电层的折射率相同,所述第一电极层与所述第二电极层的电极性不同。
根据本揭示一实施例,所述发光器件层还包括电子阻挡层,所述电子阻挡层设置在所述空穴传输层与所述发光层之间。
根据本揭示一实施例,所述电子阻挡层的材料包括激光阻挡材料。
根据本揭示一实施例,所述发光器件层还包括空穴注入层,所述空穴注入层设置在所述空穴传输层与所述第二电极层之间。
根据本揭示一实施例,所述发光层的材料包括主客体掺杂材料。
根据本揭示一实施例,所述耦合层的上表面包括凸起结构,所述凸起结构呈周期性设置。
根据本揭示实施例的第三方面,还提供一种有机电致发光装置,包括:发光器件层;
介电层,所述介电层设置在所述发光器件层上;以及
耦合层,所述耦合层设置在所述介电层上;
其中,所述发光器件层包括第一电极层,与所述第一电极层相邻的上下两个膜层的折射率相同,所述耦合层的结构为周期性光栅微结构。
根据本揭示一实施例,所述发光器件层还包括电子阻挡层,所述电子阻挡层设置在所述空穴传输层与所述发光层之间。
根据本揭示一实施例,所述耦合层的上表面包括凸起结构,所述凸起结构呈周期性设置。
有益效果
综上所述,本揭示实施例的有益效果为:
本揭示提供一种有机电致发光器件及有机电致发光装置,设计周期性微光栅结构和介电层,以及保证与有机电致发光器件的金属层相邻的两膜层的折射率相同的设计结构,从而提高显示器件的出光效率,并减少有机电致发光器件的漏电流情况,提高OLED的效率。
附图说明
图1为本揭示实施例提供的有机电致发光器件各膜层示意图;
图2为本揭示实施例的另一种有机电致发光器件各膜层结构示意图;
图3为本揭示实施例提供的另一种有机电致发光器件各膜层结构示意图;
图4为本揭示实施例提供的有机电致发光装置结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本揭示可用以实施的特定实施例。
在本揭示的实施例中,如图1所示,图1为本揭示实施例的有机电致发光器件各膜层结构示意图。所述有机电致发光器件中包括发光器件层10、介电层11以及耦合层12。所述介电层11设置在发光器件层10上,耦合层12设置在介电层11上。发光器件层10还具有其他膜层,其中,发光器件层10的顶部膜层为第一电极层,发光器件层10的底部为第二电极层,在本揭示实施例中,介电层11设置在第一电极层上,同第一电极层相邻的另一膜层的折射率与介电层11的折射率相同,这样,金属电极层两侧的两个膜层的折射率相同,从发光层发出的光线会透过上述折射率相同的膜层,而在金属膜层两侧的SPP平面波矢是一样的,在进行耦合时,可抑制发光器件的波导模式和基底模式,进而提高出光率。
同时,耦合层12的结构为一周期性的光栅微结构,具体的,可在耦合层12的上表面呈周期性的设置多个凸起。这些凸起形成了光栅微结构,当光线透过耦合层12时,耦合层12通过这种微结构再次将金属层两侧的SPP模式光全部耦合出来,进而调控金属表面等离子体的发光波矢。通过调节耦合层12的微结构,使得耦合出射的光波的波长正好处于有机电子发光器件的发光峰附近,从而提高OLED器件的发光效率,耦合层12的微结构还可为周期性的凹陷结构。
具体的,如图2所示,图2为本揭示实施例提供的又一有机电致发光器件各膜层示意图。有机电致发光器件包括第二电极层200、设置在第二电极层200上的空穴传输层201、设置在空穴传输层201上的发光层202、设置在发光层202上的空穴阻挡层203、设置在空穴阻挡层203上的电子传输层204、设置在电子传输层204上的电子注入层205,以及第一电极层206,第一电极层206设置在电子注入层205上,同时还包括设置在第一电极层206上的介电层207、以及设置在介电层207上的耦合层208。
其中,第一电极层206与第二电极层200两电极的极性相反,第一电极层206为透明电极层,这样光线可透过第一电极层206,其材料为金属材料或者合金材料。第一电极层206的厚度不大于50纳米,优选的厚度为20纳米~50纳米,以保证光线能较好的透过电极层。第二电极层200为非透明的电极层,一般为阳极层,第二电极层200的材料为高功函的金属或金属氧化物或其他金属材料。
本揭示实施例中,电子注入层205的折射率和介电层207的折射率相同。由发光层202发出的光线,以及由电子注入层205透过的光线,上述两光线的SPP平面波矢是一样的,在进行耦合时,可有效的抑制发光器件的波导模式和基底模式,进而提高光的透过率。
耦合层208的上表面具有周期性光栅微结构,当光线透过耦合层208时,这种微结构进一步提取SPP模式的光,进而提高OLED的发光效率。
如图3所示,图3为本揭示实施例提供的另一种有机电致发光器件各膜层结构示意图。所述有机电致发光器件膜层包括自下而上依次设置的第二电极层300、空穴注入层301、空穴传输层302、电子阻挡层303、发光层304、空穴阻挡层305、电子传输层306、电子注入层307、第一电极层308、介电层309以及耦合层310。其中,第二电极层300可为非透明的阳极层,空穴注入层301和空穴传输层302的材料为有机小分子材料,电子阻挡层303包括但不限于电子阻挡材料和激光阻挡材料等有机小分子材料,发光层304可为主客体掺杂材料。
上述膜层中,空穴注入层301和电子阻挡层303可根据有机电致发光器件的具体结构而舍去,其他膜层的设置不做变化,本揭示实施例提供的有机电致发光器件在不破坏各膜层的情况下,避免了器件的漏电流情况,并提高了光的透过率。
具体的,第一电极层308上下两侧的电子注入层307和介电层309的折射率相同,耦合层310的上表面具有周期性微光栅结构。
上述有机电致发光器件可为顶发射器件或底发射器件。
同时,本揭示实施例还提供一种有机电致发光装置,如图4所示,图4为本揭示实施例提供的有机电致发光装置示意图。有机电致发光装置400中包括有本揭示实施例提供的有机发光器件401。所述有机电致发光装置400的出光效率高。
以上对本揭示实施例所提供的一种有机电致发光器件及有机电致发光装置进行了详细介绍,以上实施例的说明只是用于帮助理解本揭示的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,而这些修改或者替换,并不使相应技术方案的本质脱离本揭示各实施例的技术方案的范围。

Claims (20)

  1. 一种有机电致发光器件,包括:
    发光器件层;
    介电层,所述介电层设置在所述发光器件层上;以及
    耦合层,所述耦合层设置在所述介电层上;
    其中,所述发光器件层包括第一电极层,与所述第一电极层相邻的上下两个膜层的折射率相同,所述耦合层的结构为周期性光栅微结构;
    所述耦合层的上表面包括凸起结构。
  2. 根据权利要求1所述的有机电致发光器件,其中所述第一电极层为透明电极层,所述第一电极层的材料包括金属或合金,所述凸起结构呈周期性设置。
  3. 根据权利要求1所述的有机电致发光器件,其中所述第一电极层的厚度为20纳米~50纳米。
  4. 根据权利要求1所述的有机电致发光器件,其中所述发光器件层还包括:
    第二电极层,所述第二电极层为非透明电极层;
    空穴传输层,所述空穴传输层设置在所述第二电极层上;
    发光层,所述发光层设置在所述空穴传输层上;
    空穴阻挡层,所述空穴阻挡层设置在所述发光层上;
    电子传输层,所述电子传输层设置在所述空穴阻挡层上;以及
    电子注入层,所述电子注入层设置在所述电子传输层上,所述第一电极层设置在所述电子注入层上;
    其中,所述电子注入层的折射率与所述介电层的折射率相同,所述第一电极层与所述第二电极层的电极性不同。
  5. 根据权利要求4所述的有机电致发光器件,其中所述发光器件层还包括电子阻挡层,所述电子阻挡层设置在所述空穴传输层与所述发光层之间。
  6. 根据权利要求5所述的有机电致发光器件,其中所述电子阻挡层的材料包括激光阻挡材料。
  7. 根据权利要求4所述的有机电致发光器件,其中所述发光器件层还包括空穴注入层,所述空穴注入层设置在所述空穴传输层与所述第二电极层之间。
  8. 根据权利要求4所述的有机电致发光器件,其中所述发光层的材料包括主客体掺杂材料。
  9. 一种有机电致发光器件,包括:
    发光器件层;
    介电层,所述介电层设置在所述发光器件层上;以及
    耦合层,所述耦合层设置在所述介电层上;
    其中,所述发光器件层包括第一电极层,与所述第一电极层相邻的上下两个膜层的折射率相同,所述耦合层的结构为周期性光栅微结构。
  10. 根据权利要求9所述的有机电致发光器件,其中所述第一电极层为透明电极层,所述第一电极层的材料包括金属或合金。
  11. 根据权利要求9所述的有机电致发光器件,其中所述第一电极层的厚度为20纳米~50纳米。
  12. 根据权利要求9所述的有机电致发光器件,其中所述发光器件层还包括:
    第二电极层,所述第二电极层为非透明电极层;
    空穴传输层,所述空穴传输层设置在所述第二电极层上;
    发光层,所述发光层设置在所述空穴传输层上;
    空穴阻挡层,所述空穴阻挡层设置在所述发光层上;
    电子传输层,所述电子传输层设置在所述空穴阻挡层上;以及
    电子注入层,所述电子注入层设置在所述电子传输层上,所述第一电极层设置在所述电子注入层上;
    其中,所述电子注入层的折射率与所述介电层的折射率相同,所述第一电极层与所述第二电极层的电极性不同。
  13. 根据权利要求12所述的有机电致发光器件,其中所述发光器件层还包括电子阻挡层,所述电子阻挡层设置在所述空穴传输层与所述发光层之间。
  14. 根据权利要求13所述的有机电致发光器件,其中所述电子阻挡层的材料包括激光阻挡材料。
  15. 根据权利要求12所述的有机电致发光器件,其中所述发光器件层还包括空穴注入层,所述空穴注入层设置在所述空穴传输层与所述第二电极层之间。
  16. 根据权利要求12所述的有机电致发光器件,其中所述发光层的材料包括主客体掺杂材料。
  17. 根据权利要求9所述的有机电致发光器件,其中所述耦合层的上表面包括凸起结构,所述凸起结构呈周期性设置。
  18. 一种有机电致发光装置,包括:
    发光器件层;
    介电层,所述介电层设置在所述发光器件层上;以及
    耦合层,所述耦合层设置在所述介电层上;
    其中,所述发光器件层包括第一电极层,与所述第一电极层相邻的上下两个膜层的折射率相同,所述耦合层的结构为周期性光栅微结构。
  19. 根据权利要求18所述的有机电致发光装置,其中所述发光器件层还包括电子阻挡层,所述电子阻挡层设置在所述空穴传输层与所述发光层之间。
  20. 根据权利要求18所述的有机电致发光装置,其中所述耦合层的上表面包括凸起结构,所述凸起结构呈周期性设置。
PCT/CN2019/096112 2019-06-25 2019-07-16 有机电致发光器件及有机电致发光装置 WO2020258403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910564083.XA CN110299462A (zh) 2019-06-25 2019-06-25 有机电致发光器件及有机电致发光装置
CN201910564083.X 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020258403A1 true WO2020258403A1 (zh) 2020-12-30

Family

ID=68028914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096112 WO2020258403A1 (zh) 2019-06-25 2019-07-16 有机电致发光器件及有机电致发光装置

Country Status (2)

Country Link
CN (1) CN110299462A (zh)
WO (1) WO2020258403A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555515B (zh) * 2021-07-16 2023-03-28 京东方科技集团股份有限公司 发光器件及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792772A (zh) * 2010-03-10 2012-11-21 日本电气株式会社 发光元件、光源装置和投影显示装置
CN103490020A (zh) * 2013-09-30 2014-01-01 京东方科技集团股份有限公司 有机电致发光器件及其制作方法、显示装置、照明装置
CN103715372A (zh) * 2013-12-26 2014-04-09 京东方科技集团股份有限公司 Oled显示面板及其制作方法
US20140139809A1 (en) * 2011-06-17 2014-05-22 Nec Corporation Optical element, light source apparatus, and projection-type display apparatus
CN107305908A (zh) * 2016-04-20 2017-10-31 三星显示有限公司 有机发光二极管和有机发光显示面板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001281743A1 (en) * 2000-07-21 2002-02-05 Micro Managed Photons A/S Surface plasmon polariton band gap structures
CN204130537U (zh) * 2014-10-23 2015-01-28 京东方科技集团股份有限公司 一种 oled 面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792772A (zh) * 2010-03-10 2012-11-21 日本电气株式会社 发光元件、光源装置和投影显示装置
US20140139809A1 (en) * 2011-06-17 2014-05-22 Nec Corporation Optical element, light source apparatus, and projection-type display apparatus
CN103490020A (zh) * 2013-09-30 2014-01-01 京东方科技集团股份有限公司 有机电致发光器件及其制作方法、显示装置、照明装置
CN103715372A (zh) * 2013-12-26 2014-04-09 京东方科技集团股份有限公司 Oled显示面板及其制作方法
CN107305908A (zh) * 2016-04-20 2017-10-31 三星显示有限公司 有机发光二极管和有机发光显示面板

Also Published As

Publication number Publication date
CN110299462A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
CN109817832B (zh) 一种oled显示基板及其制备方法、显示装置
CN108615752B (zh) 显示面板及显示装置
US10446798B2 (en) Top-emitting WOLED display device
CN102983285B (zh) 一种高效率有机发光二极管及其制备方法
CN106684256A (zh) 一种显示面板及其制作方法
US20080265757A1 (en) Low Index Grids (LIG) To Increase Outcoupled Light From Top or Transparent OLED
CN102832356A (zh) Oled封装结构及其制造方法、发光器件
US10319290B2 (en) Electroluminescent device, manufacturing method and driving method thereof, and display device
CN101540373A (zh) 蓝光顶发光型有机发光二极管结构及其制作方法
JP2006030548A (ja) 光学基板、発光素子、表示装置およびそれらの製造方法
JP6089338B2 (ja) 有機el素子及びその製造方法
KR20120044655A (ko) 유기 발광 표시 장치
WO2020232965A1 (zh) Oled显示面板及显示装置
WO2024149104A1 (zh) 一种发光器件和显示面板
CN111584751B (zh) 封装结构及封装方法、电致发光器件、显示设备
CN107017347A (zh) 有机电致发光器件及其制备方法
WO2020258403A1 (zh) 有机电致发光器件及有机电致发光装置
KR101762642B1 (ko) 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
JP2013145700A (ja) 有機el素子及びこれを用いた表示装置
KR102023943B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US20220077426A1 (en) Light-emitting diode, display panel, display apparatus and light-emitting apparatus
CN202749419U (zh) Oled封装结构及发光器件
KR101615524B1 (ko) 유기전계발광소자
JP4893816B2 (ja) 光学基板、発光素子、表示装置およびそれらの製造方法
JP2005183048A (ja) 発光素子基板およびそれを用いた発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935241

Country of ref document: EP

Kind code of ref document: A1