WO2018218515A1 - 天线馈电结构和天线辐射系统 - Google Patents

天线馈电结构和天线辐射系统 Download PDF

Info

Publication number
WO2018218515A1
WO2018218515A1 PCT/CN2017/086629 CN2017086629W WO2018218515A1 WO 2018218515 A1 WO2018218515 A1 WO 2018218515A1 CN 2017086629 W CN2017086629 W CN 2017086629W WO 2018218515 A1 WO2018218515 A1 WO 2018218515A1
Authority
WO
WIPO (PCT)
Prior art keywords
high frequency
frequency
antenna
frequency radiating
unit
Prior art date
Application number
PCT/CN2017/086629
Other languages
English (en)
French (fr)
Inventor
道坚丁九
肖伟宏
高俊平
薛小刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/086629 priority Critical patent/WO2018218515A1/zh
Publication of WO2018218515A1 publication Critical patent/WO2018218515A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to an antenna feed structure and an antenna radiation system.
  • multi-frequency multi-array antenna refers to the adjacent column high-frequency antenna unit.
  • a column of low frequency antenna elements is arranged between the planar array arrays to achieve +/- 45 degree polarization.
  • a high-frequency unit is grounded through a cavity structure by providing a cylindrical cavity structure on the high-frequency unit.
  • FIG. 1 is a schematic structural view of a high frequency unit in the prior art
  • FIG. 2 is a schematic cross-sectional view of a high frequency unit in the prior art.
  • a cylindrical cavity structure is disposed on the high frequency unit.
  • the cavity structure includes an annular projection 11 and a tubular portion 12, the antenna balun of the high frequency unit is disposed within the tubular portion 12, and grounded by the annular projection 11, thereby reducing interference between high and low frequencies.
  • the embodiment of the present application provides an antenna feeding structure and an antenna radiation system to solve the problem that the antenna feeding structure designed in the prior art is complicated and the manufacturing cost is high in order to reduce the interference between high and low frequencies. problem.
  • an embodiment of the present application provides an antenna feed structure, including: a reflector, at least one low frequency radiation unit, and at least one high frequency radiation unit, wherein the high frequency radiation unit and the low frequency radiation unit are disposed at
  • the high-frequency radiation unit includes a layered grounding component
  • the grounding component includes a signal ground layer
  • the reflector has at least one through hole, the through hole and the high-frequency radiation unit Corresponding to the position, and the grounding component in the high-frequency radiation unit is disposed on the corresponding through hole, and an area of the overlapping area between the signal ground layer and the reflective plate is smaller than a preset threshold.
  • the grounding component in the high frequency radiation unit is covered on the corresponding through hole, so that the area of the overlapping area between the signal ground layer and the reflective plate in the grounding component is smaller than Presetting the threshold value, so that the intensity of the parasitic radiation excited by the high-frequency radiation unit can be controlled not only through the through hole on the reflector, but also to improve the radiation pattern deformity of the low-frequency radiation unit itself, so as to reduce the high-frequency radiation unit and
  • the interference between the low frequency radiating elements makes the antenna feeding structure simpler, which reduces the manufacturing cost of the structure.
  • an area of the overlapping area between the signal ground layer and the reflective plate is less than a quarter of an area of the signal formation.
  • the signal ground layer in the grounding component is located within a range of the through hole corresponding to the high frequency radiation unit, and an area of the signal ground layer is smaller than an area of the through hole.
  • the grounding component further includes a signal transmission layer and a PCB dielectric layer, the PCB dielectric layer being located between the signal transmission layer and the signal ground layer; the signal transmission layer and/or There is an overlapping area between the PCB dielectric layer and the reflective plate.
  • the number of the high frequency radiation units is at least two, and the reflection plate has at least one disconnection region, and the disconnection region and the two high frequency radiations communicating with each other The lines between the units have overlap.
  • the disconnected region is symmetrical with respect to the connecting line.
  • the peripheral length of the disconnected region is between 0.2 and 1.5 times the operating frequency of the low frequency radiating element.
  • At least one disconnecting region is provided on a communication path of the mutually communicating high-frequency radiating elements, so that the disconnected regions can block high-frequency radiation
  • an embodiment of the present application provides an antenna radiation system, including the antenna feed structure according to the first aspect.
  • the antenna feed structure and the antenna radiation system provided by the embodiments of the present application include a reflector, at least one low frequency radiating unit, and at least one high frequency radiating unit, wherein the high frequency radiating unit and the low frequency radiating unit are disposed on the reflecting plate.
  • the high frequency radiating unit comprises a layered grounding component, the grounding component comprises a signal ground layer, and the reflecting plate is provided with at least one through hole corresponding to the position of the high frequency radiating element, and the grounding component cover in the high frequency radiating unit It is disposed on the corresponding through hole, and the area of the overlapping area between the signal ground layer and the reflective plate is smaller than a preset threshold.
  • the grounding component in the high frequency radiation unit is disposed on the corresponding through hole, so that the area of the overlapping area between the signal ground layer and the reflector in the grounding component is less than a preset threshold, so that The intensity of the parasitic radiation excited by the high-frequency radiation unit can be controlled not only through the through hole on the reflector, but also to improve the radiation pattern distortion of the low-frequency radiation unit itself, so as to reduce the high-frequency radiation unit and the low-frequency radiation unit.
  • the interference between the antennas and the antenna feeding structure is relatively simple, which reduces the manufacturing cost of the structure.
  • FIG. 1 is a schematic structural view of a high frequency unit in the prior art
  • FIG. 2 is a schematic cross-sectional view of a high frequency unit in the prior art
  • FIG. 3 is a top plan view of a multi-frequency multi-array antenna
  • FIG. 4 is a schematic perspective structural diagram of an antenna feeding structure according to an embodiment of the present disclosure.
  • FIG. 5 is a front plan view of the antenna feeding structure of FIG. 4;
  • FIG. 6 is a top plan view of the antenna feed structure of FIG. 4;
  • Figure 7 is a schematic structural view of the grounding component of Figure 4.
  • Figure 8a is a low frequency pattern before the resonance is eliminated
  • Figure 8b is a low frequency direction diagram after eliminating resonance
  • FIG. 9 is a schematic structural view of a high frequency radiation unit in an antenna feeding structure when they are connected to each other;
  • FIG. 10 is a top plan view of the antenna feeding structure of FIG. 9;
  • FIG. 11 is a top plan view of the antenna feed structure of FIG. 9.
  • the antenna feed structure and the antenna radiation system according to the embodiments of the present application are applied to a multi-frequency multi-array antenna system, wherein the multi-frequency multi-array antenna refers to a column of low-frequency radiation units disposed between adjacent columns of high-frequency radiation units.
  • the planar array array achieves +/- 45 degree polarization and the low frequency radiating elements are disposed between the high frequency radiating elements.
  • 3 is a schematic top view of a multi-frequency multi-array antenna.
  • the reflector 21 is provided with a plurality of high frequency radiating elements 22 and a low frequency radiating unit 23, wherein the low frequency radiation
  • the unit 23 is disposed between the high frequency radiating elements 22.
  • the interference between the high and low frequencies will be significant, that is, the low frequency will excite the adjacent high frequency radiating elements to generate parasitic radiation, and the parasitic radiation will overlap with the low frequency main radiation. This causes the low frequency pattern to be deformed, which affects the normal operation of the high frequency radiating element and the low frequency radiating element.
  • the antenna feed structure is more complicated and the manufacturing cost is higher.
  • the antenna feeding structure and the antenna radiation system provided by the embodiments of the present application are intended to solve the technical problem that the antenna feeding structure is complicated and the manufacturing cost is high in the prior art.
  • FIG. 4 is a schematic top plan view of an antenna feed structure according to an embodiment of the present invention
  • FIG. 5 is a front plan view of the antenna feed structure of FIG. 4
  • FIG. 6 is a top plan view of the antenna feed structure of FIG. 7 is a schematic structural view of the grounding assembly of FIG. 4. As shown in FIG.
  • the antenna feeding structure includes a reflecting plate 21, at least one low frequency radiating unit 23, and at least one high frequency radiating unit 22, wherein the high frequency
  • the radiating unit 22 and the low-frequency radiating unit 23 are disposed on the reflecting plate 21,
  • the high-frequency radiating unit 22 includes a layered grounding component 223,
  • the grounding component 223 includes a signal ground layer 243, and
  • the reflecting plate 21 is provided with at least one through hole 25,
  • the through holes 25 and the high frequency radiation unit 22 are correspondingly positioned, and the grounding component 223 in the high frequency radiation unit 22 is disposed on the corresponding through hole 25, and the area of the overlapping area between the signal ground layer 243 and the reflection plate 21 is smaller than Preset threshold.
  • each of the high frequency radiating elements 22 includes at least one grounding component 223, at least one antenna balun 222 and at least four radiating arms 221.
  • the grounding component 223 is placed on the reflector 21 by electrical direct connection or by electrical coupling.
  • the height of the antenna balun 222 is about one quarter of the wavelength corresponding to the operating frequency, and one end of the antenna balun 222 is connected to the grounding component. At 223, the other end of the antenna balun 222 is coupled to the radiating arm 221, and each radiating arm 221 has a length of about one quarter of the wavelength corresponding to the operating frequency.
  • each of the high frequency radiating elements 22 when each of the high frequency radiating elements 22 is independently fed, i.e., each of the high frequency radiating elements 22 has an independent feed network (not shown), in order to reduce the high frequency
  • the interference between the radiating unit and the low-frequency radiating unit is such that at least one through hole 25 is formed in the reflecting plate 21 in the embodiment, wherein the number of the through holes 25 is equal to the number of the high-frequency radiating elements 22 and the position corresponds to
  • the grounding component 223 in the frequency radiating unit 22 is disposed on the corresponding through hole 25, and the area of the overlapping area between the signal ground layer 243 and the reflecting plate 21 in the grounding component 223 is smaller than a preset threshold, so that the through hole 25 will
  • the connection between the signal ground layer 243 of the high-frequency radiation unit 22 and the reflection plate 21 is blocked, and therefore, the low-frequency signal excited on the high-frequency radiation unit 22 does not constitute a circuit to the reflection plate, and the high-frequency radiation unit also The low frequency
  • Figure 8a is a low-frequency direction before the resonance is eliminated
  • Figure 8b is a low-frequency direction after the resonance is eliminated.
  • the operating frequency band of the low-frequency radiating element is 690M-960M
  • the operating frequency band of the high-frequency radiating element For the 1710M-2690M, when the high-frequency radiating element and the low-frequency radiating element work simultaneously, the frequency multiplication of the operating frequency of the low-frequency radiating element will fall within the operating frequency band of the high-frequency radiating element, and thus will be induced in the high-frequency radiating element.
  • the high frequency radiation unit will radiate the low frequency signal, and the low frequency radiation unit itself radiates the signal superimposed on the low frequency induction signal radiated by the high frequency radiation unit, which will cause the low frequency pattern to be deformed.
  • the through hole blocks the connection between the signal ground layer of the high frequency radiation unit and the reflection plate, and therefore, the low frequency signal excited on the high frequency radiation unit does not constitute In the circuit to the reflector, the high-frequency radiation unit will not radiate the low-frequency signal, and thus will not affect the radiation pattern of the low-frequency radiation unit itself, thereby reducing the interference between the high-frequency radiation unit and the low-frequency radiation unit.
  • the preset threshold may be selected according to experience or actual conditions, and the specific value is related to the area of the signal stratum, for example, may be a quarter of the signal stratum area, etc., for the specific value of the preset threshold, the implementation The example is not limited here.
  • the signal ground layer 243 of the grounding component 223 in the high frequency radiation unit 22 may be located in the range of the through hole 25 corresponding to the high frequency radiation unit 22.
  • the area of the signal ground layer 243 is smaller than the area of the through hole 25.
  • the signal ground layer 243 when the signal ground layer 243 is located within the range of the through hole 25 corresponding to the high frequency radiation unit 22, and the area of the signal ground layer 243 is smaller than the area of the through hole 25, there will be no signal between the ground layer 243 and the reflection plate 21.
  • the overlapping area, such that the through hole 25 will completely block the connection between the signal ground layer 243 of the high frequency radiating element 22 and the reflecting plate 21, thereby further reducing the interference between the high frequency radiating element and the low frequency radiating element.
  • the grounding component 223 further includes a signal transmission layer 241 and a PCB dielectric layer 242 located between the signal transmission layer 241 and the signal ground layer 243, the signal transmission layer 241 and / Or there is an overlapping area between the PCB dielectric layer 242 and the reflective plate 21.
  • the grounding component 223 includes a signal transmission layer 241, a PCB dielectric layer 242, and a signal ground layer 243, wherein the PCB dielectric layer 242 is located between the signal transmission layer 241 and the signal ground layer 243, and the signal ground layer 243 is located above the reflective plate 21, when The grounding component 223 is disposed on the corresponding through hole 25, and the weight between the signal ground layer 243 and the reflecting plate 21
  • the signal transmission layer 241 and/or the PCB dielectric layer 242 and the reflective plate 21 have an overlapping region, that is, tightly coupled to the reflective plate 21 through the signal transmission layer 241 and/or the PCB dielectric layer 242. In this way, the high-frequency radiation unit 22 can be stably disposed on the reflection plate 21.
  • the antenna feeding structure provided by the embodiment of the present application includes a reflecting plate, at least one low frequency radiating unit and at least one high frequency radiating unit, wherein the high frequency radiating unit and the low frequency radiating unit are both disposed on the reflecting plate, and the high frequency radiating unit
  • the device includes a layered grounding component, the grounding component includes a signal ground layer, and the reflecting plate is provided with at least one through hole corresponding to the position of the high frequency radiating unit, and the grounding component in the high frequency radiating unit is covered in the corresponding On the through hole, the area of the overlapping area between the signal ground layer and the reflecting plate is smaller than a preset threshold.
  • the grounding component in the high frequency radiation unit is disposed on the corresponding through hole, so that the area of the overlapping area between the signal ground layer and the reflector in the grounding component is less than a preset threshold, so that The intensity of the parasitic radiation excited by the high-frequency radiation unit can be controlled not only through the through hole on the reflector, but also to improve the radiation pattern deformity of the low-frequency radiation unit itself, so as to reduce the relationship between the high-frequency radiation unit and the low-frequency radiation unit.
  • the interference and the antenna feeding structure are relatively simple, which reduces the manufacturing cost of the structure.
  • the number of the high-frequency radiating units 22 is at least two, and the reflecting plate 21 has at least one disconnecting region, and the disconnecting regions are connected with two high-frequency radiations that communicate with each other.
  • the lines between the units have overlap.
  • FIG. 9 is a schematic structural view of the antenna feeding structure in which the high-frequency radiating elements communicate with each other.
  • a plurality of high-frequency radiating elements 22 are usually connected to work, that is, a plurality of high
  • the frequency radiating elements 22 are connected by a PCB board or an air strip line such that the plurality of high frequency radiating elements 22 will share a feed network (not shown), and the signal ground layer of each connected high frequency radiating element 22 grounding component will Electrically conductive to each other, since the signal formations of the plurality of high frequency radiating elements 22 are connected, the high frequency radiating element 22 radiates a low frequency signal, and the radiation is also reinforced, thereby causing a relationship between the high frequency radiating element and the low frequency radiating element. The interference is more significant.
  • FIG. 10 is a top plan view of the antenna feed structure of FIG. 9
  • FIG. 11 is a top plan view of the antenna feed structure of FIG. 9 , as shown in FIG. 9 - FIG.
  • At least one disconnecting region 26 is provided on the communication path to block the connection between the signal ground layer of the high-frequency radiating unit 22 and the reflecting plate 21, thus, in the high-frequency radiating unit 22
  • the excited low frequency signal does not constitute a loop to the reflector 21, and the high frequency radiating element 22 does not radiate the low frequency signal, so that the antenna feed structure can operate in the frequency band to be suppressed by the low frequency radiating unit 23.
  • the purpose of expanding the bandwidth can also be achieved by providing the disconnection region 26 on the line between the at least two high-frequency radiating elements that are operated in communication.
  • the disconnected regions 26 is symmetrical with respect to a line connecting the two high frequency radiating elements that are in communication with each other.
  • the connection between the two high-frequency radiation units is a connection between the center positions of the four radiation arms of the high-frequency radiation unit, and in practical applications, in order to facilitate processing
  • the disconnection region 26 is set to have a shape with a central symmetrical structure, and is approximately symmetrically distributed on both sides of the signal ground layer of the high-frequency radiation unit, for example, may be set as a "work" type or a dumbbell type, and may also be set as Other structures that are easy to process and have a shape symmetry, such as a "C" shape, etc., of course, may also be provided in a form that does not have a symmetrical structure, and for the specific structural form of the disconnected region 26, This embodiment is not limited herein.
  • the disconnected region 26 is symmetrical with respect to the line between the two high-frequency radiating elements, the connection between the signal ground layer of the high-frequency radiating element and the reflecting plate can be uniformly blocked, thereby making the direction of the low-frequency radiating element itself The figure can radiate normally.
  • the shape of the disconnected region 26 is not limited in the embodiment of the present application, as long as the peripheral length of the disconnected region 26 is between 0.2 and 1.5 times the operating frequency of the low frequency radiating element.
  • the disconnection region 26 on the reflector 21 may or may not communicate with the through hole 25.
  • the peripheral length of the disconnection region 26 is the disconnection region 26 and the passage. The sum of the circumferential lengths of the holes 25.
  • the antenna feeding structure provided by the embodiment of the present application includes a reflecting plate, at least one low frequency radiating unit and at least one high frequency radiating unit, wherein the high frequency radiating unit and the low frequency radiating unit are both disposed on the reflecting plate, and the high frequency radiating unit
  • the device includes a layered grounding component, the grounding component includes a signal ground layer, and the reflecting plate is provided with at least one through hole corresponding to the position of the high frequency radiating unit, and the grounding component in the high frequency radiating unit is covered in the corresponding On the through hole, the area of the overlapping area between the signal ground layer and the reflecting plate is smaller than a preset threshold.
  • the grounding component in the high frequency radiation unit is disposed on the corresponding through hole, so that the area of the overlapping area between the signal ground layer and the reflector in the grounding component is less than a preset threshold, so that The intensity of the parasitic radiation excited by the high-frequency radiation unit can be controlled not only through the through hole on the reflector, but also to improve the radiation pattern distortion of the low-frequency radiation unit itself, so as to reduce the high-frequency radiation unit and the low-frequency radiation unit.
  • the interference between the antennas and the antenna feeding structure is relatively simple, which reduces the manufacturing cost of the structure.
  • At least one disconnecting region is disposed on a communication path of the mutually communicating high-frequency radiating elements, so that the disconnected regions can block the signal stratum of the high-frequency radiating unit The connection with the reflector, whereby the interference between the high frequency radiating element and the low frequency radiating element can be reduced.
  • the embodiment of the present application further provides an antenna radiation system.
  • the antenna radiation system includes the antenna feeding structure described in the above embodiments, wherein the specific structure and function of the antenna feeding structure and the foregoing implementations are implemented.
  • the specific structure and function of the antenna feed structure described in the example are similar, and are not described herein again.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit is It can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本申请实施例涉及一种天线馈电结构和天线辐射系统,该天线馈电结构包括反射板、至少一个低频辐射单元和至少一个高频辐射单元,所述高频辐射单元和所述低频辐射单元均设置在所述反射板上,所述高频辐射单元包括呈层状的接地组件,所述接地组件包括信号地层,所述反射板上开设有至少一个通孔,所述通孔和所述高频辐射单元位置对应,且所述高频辐射单元中的接地组件盖设在对应的所述通孔上,所述信号地层和所述反射板之间的重叠区域的面积小于预设阈值。本申请实施例提供的天线馈电结构和天线辐射系统在降低高频辐射单元与低频辐射单元之间的干扰的基础上,使得天线馈电结构较简单,降低了该结构的制作成本。

Description

天线馈电结构和天线辐射系统 技术领域
本申请实施例涉及通信技术,特别涉及一种天线馈电结构和天线辐射系统。
背景技术
随着4G系统的普及,现在对系统容量的需求越来越高,而多频多阵列天线技术能够有效的应对这一趋势,其中,多频多阵列天线是指在相邻列高频天线单元之间设置一列低频天线单元进行平面阵列组阵实现+/-45度极化。
但是在多频多阵列的天线系统中,由于低频会激励相邻的高频单元产生寄生辐射,这种寄生辐射与低频的主辐射叠加导致低频方向图畸形,使得高低频之间的干扰会很显著,为了解决这一问题,现有技术中通过在高频单元上设置圆柱形的腔体结构,通过该腔体结构将高频单元接地。图1为现有技术中高频单元的结构示意图,图2为现有技术中高频单元的剖面示意图,如图1和图2所示,在高频单元上设置有圆柱形的腔体结构,该腔体结构包括环形凸起11和管状部分12,将高频单元的天线巴伦设置在管状部分12内,并通过环形凸起11接地,从而减小高低频之间的干扰。
然而,现有技术中通过设置圆柱形的腔体结构来减小高低频之间干扰的方式,天线馈电结构较复杂,且制作成本较高。
发明内容
本申请实施例提供了一种天线馈电结构和天线辐射系统,以解决现有技术中为了减小高低频之间的干扰时,设计的天线馈电结构较复杂,且制作成本较高的技术问题。
第一方面,本申请实施例提供一种天线馈电结构,包括:反射板、至少一个低频辐射单元和至少一个高频辐射单元,所述高频辐射单元和所述低频辐射单元均设置在所述反射板上,所述高频辐射单元包括呈层状的接地组件,所述接地组件包括信号地层,所述反射板上开设有至少一个通孔,所述通孔和所述高频辐射单元位置对应,且所述高频辐射单元中的接地组件盖设在对应的所述通孔上,所述信号地层和所述反射板之间的重叠区域的面积小于预设阈值。
在本方案中,由于在反射板上开设通孔,将高频辐射单元中的接地组件盖设在对应的通孔上,使得接地组件中的信号地层和反射板之间的重叠区域的面积小于预设阈值,这样,不仅可以通过反射板上的通孔控制高频辐射单元上激励起的寄生辐射的强度,达到改善低频辐射单元本身的辐射方向图畸形的目的,以降低高频辐射单元与低频辐射单元之间的干扰,而且使得天线馈电结构较简单,降低了该结构的制作成本。
在一种可能的实现方式中,所述信号地层和所述反射板之间的重叠区域的面积小于所述信号地层面积的四分之一。
在一种可能的实现方式中,所述接地组件中的信号地层均位于所述高频辐射单元所对应的通孔的范围内,且所述信号地层的面积小于所述通孔的面积。
在上述方案中,当信号地层均位于高频辐射单元所对应的通孔的范围内,且信号地层的面积小于该通孔的面积时,信号地层与反射板之间将没有交叠区域,这样,通孔将会完 全阻断高频辐射单元的信号地层与反射板之间的连接,因而会进一步降低高频辐射单元与低频辐射单元之间的干扰。
在一种可能的实现方式中,所述接地组件还包括信号传输层和PCB介质层,所述PCB介质层位于所述信号传输层和所述信号地层之间;所述信号传输层和/或所述PCB介质层与所述反射板之间具有重叠区域。
在上述方案中,当接地组件盖设在对应的通孔上,且信号地层和反射板之间的重叠区域的面积小于预设阈值时,信号传输层和/或PCB介质层与反射板之间具有重叠区域,即通过信号传输层和/或PCB介质层紧耦合在反射板上,由此可以使得高频辐射单元稳固的设置在反射板上。
在一种可能的实现方式中,所述高频辐射单元的数量为至少两个,所述反射板上具有至少一个断开区域,所述断开区域与互相连通的两个所述高频辐射单元之间的连线具有重叠。
在一种可能的实现方式中,所述断开区域相对于所述连线对称。
在一种可能的实现方式中,所述断开区域的周缘长度在所述低频辐射单元的工作频率对应波长的0.2倍至1.5倍之间。
在上述各方案中,当至少两个高频辐射单元连通工作时,通过在互相连通的高频辐射单元的连通路径上设置至少一个断开区域,使得该些断开区域能够阻断高频辐射单元的信号地层与反射板之间的连接,由此可以降低高频辐射单元与低频辐射单元之间的干扰。
第二方面,本申请实施例提供一种天线辐射系统,包括如第一方面所述的天线馈电结构。
本申请实施例提供的天线馈电结构和天线辐射系统,包括反射板、至少一个低频辐射单元和至少一个高频辐射单元,其中,该高频辐射单元和低频辐射单元均设置在反射板上,高频辐射单元包括呈层状的接地组件,该接地组件包括信号地层,反射板上开设有至少一个通孔,该通孔和高频辐射单元位置对应,且高频辐射单元中的接地组件盖设在对应的通孔上,信号地层和反射板之间的重叠区域的面积小于预设阈值。由于在反射板上开设通孔,将高频辐射单元中的接地组件盖设在对应的通孔上,使得接地组件中的信号地层和反射板之间的重叠区域的面积小于预设阈值,这样,不仅可以通过反射板上的通孔能够控制高频辐射单元上激励起的寄生辐射的强度,达到改善低频辐射单元本身的辐射方向图畸形的目的,以降低高频辐射单元与低频辐射单元之间的干扰,而且使得天线馈电结构较简单,降低了该结构的制作成本。
附图说明
图1为现有技术中高频单元的结构示意图;
图2为现有技术中高频单元的剖面示意图;
图3为多频多阵列天线的俯视示意图;
图4为本申请实施例提供的一种天线馈电结构的立体结构示意图;
图5为图4中天线馈电结构的正面俯视示意图;
图6为图4中天线馈电结构的背面俯视示意图;
图7为图4中接地组件的结构示意图;
图8a为消除谐振前的低频方向图;
图8b为消除谐振后的低频方向图;
图9为天线馈电结构中高频辐射单元相互连通时的结构示意图;
图10为图9中天线馈电结构的一背面俯视示意图;
图11为图9中天线馈电结构的另一背面俯视示意图。
具体实施方式
本申请实施例涉及的天线馈电结构和天线辐射系统应用于多频多阵列的天线系统中,其中,多频多阵列天线是指在相邻列高频辐射单元之间设置一列低频辐射单元进行平面阵列组阵实现+/-45度极化,且低频辐射单元设置于高频辐射单元之间。图3为多频多阵列天线的俯视示意图,如图3所示,在多频多阵列天线系统中,反射板21上设置有多个高频辐射单元22和低频辐射单元23,其中,低频辐射单元23设置于高频辐射单元22之间。当高频辐射单元22和低频辐射单元23共存时,高低频之间的干扰会很显著,即低频会激励相邻的高频辐射单元产生寄生辐射,这种寄生辐射与低频的主辐射叠加会导致低频方向图畸形,从而会影响高频辐射单元和低频辐射单元的正常工作。在现有技术中,通常的做法是在高频辐射单元上设置圆柱形的腔体结构,该腔体结构包括环形凸起和管状部分,将高频辐射单元的天线巴伦设置在管状部分内,并通过环形凸起接地,从而减小高低频之间的干扰。但是,通过设置圆柱形的腔体结构来减小高低频之间干扰的方式,使得天线馈电结构较复杂,且制作成本较高。
因此,本申请实施例提供的天线馈电结构和天线辐射系统,旨在解决现有技术中天线馈电结构较复杂,且制作成本较高的技术问题。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。另外,本申请实施例中均以四个高频辐射单元以及设置在四个高频辐射单元之间的一个低频辐射单元为例进行说明,当存在多个高频辐射单元以及多个低频辐射单元时,天线馈电结构的具体结构形式与包括四个高频辐射单元和一个低频辐射单元时的具体结构形式类似,此处不再赘述。
图4为本申请实施例提供的一种天线馈电结构的立体结构示意图,图5为图4中天线馈电结构的正面俯视示意图,图6为图4中天线馈电结构的背面俯视示意图,图7为图4中接地组件的结构示意图,如图4-图7所示,该天线馈电结构包括反射板21、至少一个低频辐射单元23和至少一个高频辐射单元22,其中,高频辐射单元22和低频辐射单元23均设置在反射板21上,高频辐射单元22包括呈层状的接地组件223,接地组件223包括信号地层243,反射板21上开设有至少一个通孔25,该些通孔25和高频辐射单元22位置对应,且高频辐射单元22中的接地组件223盖设在对应的通孔25上,信号地层243和反射板21之间的重叠区域的面积小于预设阈值。
具体地,如图4所示,假设水平方向为纵向,垂直于纵向的方向为横向,反射板21沿着纵向延伸,在实际应用中,在反射板21上会同时设置多个高频辐射单元22和多个低频辐射单元23,所有高频辐射单元22和低频辐射单元23均通过电气直接连接或者电气耦合连接的方式放置在反射装置上。另外,每个高频辐射单元22包括至少一个接地组件 223,至少一个天线巴伦222和至少四个辐射臂221。其中接地组件223通过电气直接连接或者通过电气耦合连接的方式放置在反射板21上,天线巴伦222的高度约是工作频率对应波长的四分之一,天线巴伦222的一端连接到接地组件223上,天线巴伦222的另一端连接到辐射臂221上,每个辐射臂221的长度约是工作频率对应波长的四分之一。
如图4-图7所示,当每个高频辐射单元22均被独立馈电时,即每个高频辐射单元22均有独立的馈电网络(未示出)时,为了降低高频辐射单元和低频辐射单元之间的干扰,本实施例中在反射板21上开设至少一个通孔25,其中,通孔25的数量与高频辐射单元22的数量相等且位置对应,通过将高频辐射单元22中的接地组件223盖设在对应的通孔25上,并且使得接地组件223中信号地层243与反射板21之间的重叠区域的面积小于预设阈值,这样,通孔25会阻断高频辐射单元22的信号地层243与反射板21之间的连接,因此,在高频辐射单元22上被激励起的低频信号就不会构成到反射板的回路,高频辐射单元也就不会辐射低频信号,因而也就不会影响低频辐射单元本身的辐射方向图,由此可以降低高频辐射单元与低频辐射单元之间的干扰。
图8a为消除谐振前的低频方向图,图8b为消除谐振后的低频方向图,如图8a-图8b所示,由于低频辐射单元的工作频段为690M-960M,高频辐射单元的工作频段为1710M-2690M,当高频辐射单元和低频辐射单元同时工作时,在低频辐射单元工作频率的倍频会恰好落在高频辐射单元的工作频段内,因而会在高频辐射单元中感应出低频对应的电流,高频辐射单元就会辐射低频信号,低频辐射单元本身辐射的信号叠加上高频辐射单元辐射出来的低频感应信号,就会造成低频方向图畸形。当在反射板上开设至少一个通孔后,通孔会阻断高频辐射单元的信号地层与反射板之间的连接,因此,在高频辐射单元上被激励起的低频信号就不会构成到反射板的回路,高频辐射单元也就不会辐射低频信号,因而也就不会影响低频辐射单元本身的辐射方向图,由此可以降低高频辐射单元与低频辐射单元之间的干扰。。
另外,预设阈值可以根据经验或者实际情况进行选取,其具体的取值与信号地层的面积有关,例如可以为信号地层面积的四分之一等,对于预设阈值的具体取值,本实施例在此不作限制。
可选地,为了进一步降低高频辐射单元与低频辐射单元之间的干扰,可以将高频辐射单元22中接地组件223的信号地层243均位于高频辐射单元22所对应的通孔25的范围内,且信号地层243的面积小于通孔25的面积。
具体地,当信号地层243均位于高频辐射单元22所对应的通孔25的范围内,且信号地层243的面积小于该通孔25的面积时,信号地层243与反射板21之间将没有交叠区域,这样,通孔25将会完全阻断高频辐射单元22的信号地层243与反射板21之间的连接,因而会进一步降低高频辐射单元与低频辐射单元之间的干扰。
可选地,继续参照图7所示,接地组件223还包括信号传输层241和PCB介质层242,该PCB介质层242位于信号传输层241和信号地层243之间,该信号传输层241和/或PCB介质层242与反射板21之间具有重叠区域。
具体地,接地组件223包括信号传输层241、PCB介质层242和信号地层243,其中,PCB介质层242位于信号传输层241和信号地层243之间,信号地层243位于反射板21的上面,当接地组件223盖设在对应的通孔25上,且信号地层243和反射板21之间的重 叠区域的面积小于预设阈值时,信号传输层241和/或PCB介质层242与反射板21之间具有重叠区域,即通过信号传输层241和/或PCB介质层242紧耦合在反射板21上,由此可以使得高频辐射单元22稳固的设置在反射板21上。
本申请实施例提供的天线馈电结构,包括反射板、至少一个低频辐射单元和至少一个高频辐射单元,其中,该高频辐射单元和低频辐射单元均设置在反射板上,高频辐射单元包括呈层状的接地组件,该接地组件包括信号地层,反射板上开设有至少一个通孔,该通孔和高频辐射单元位置对应,且高频辐射单元中的接地组件盖设在对应的通孔上,信号地层和反射板之间的重叠区域的面积小于预设阈值。由于在反射板上开设通孔,将高频辐射单元中的接地组件盖设在对应的通孔上,使得接地组件中的信号地层和反射板之间的重叠区域的面积小于预设阈值,这样,不仅可以通过反射板上的通孔控制高频辐射单元上激励起的寄生辐射的强度,达到改善低频辐射单元本身的辐射方向图畸形的目的,以降低高频辐射单元与低频辐射单元之间的干扰,而且使得天线馈电结构较简单,降低了该结构的制作成本。
可选地,在上述各实施例的基础上,高频辐射单元22的数量为至少两个,反射板21上具有至少一个断开区域,该些断开区域与互相连通的两个高频辐射单元之间的连线具有重叠。
图9为天线馈电结构中高频辐射单元相互连通时的结构示意图,如图9所示,在实际应用中,为了节约成本,通常会将多个高频辐射单元22连通工作,即将多个高频辐射单元22通过PCB板或者空气带线连通,这样多个高频辐射单元22将共用一个馈电网络(未示出),且每个被连接的高频辐射单元22接地组件的信号地层会相互电气导通,由于多个高频辐射单元22的信号地层被连通后,高频辐射单元22会辐射低频信号,且该辐射还会被加强,从而使得高频辐射单元和低频辐射单元之间的干扰更加显著。
为了解决这一问题,本申请实施例中不仅在反射板上开设通孔,使得高频辐射单元中的接地组件盖设在对应的通孔上,而且将在被连通工作的至少两个高频辐射单元之间的连线上设置至少一个断开区域,其中,该些断开区域与相邻两个高频辐射单元之间的连线具有重叠。具体的,图10为图9中天线馈电结构的一背面俯视示意图,图11为图9中天线馈电结构的另一背面俯视示意图,如图9-图11所示,当至少两个高频辐射单元22被连通工作时,通过在连通路径上设置至少一个断开区域26,以阻断高频辐射单元22的信号地层与反射板21之间的连接,这样,在高频辐射单元22上被激励起的低频信号就不会构成到反射板21的回路,高频辐射单元22也就不会辐射低频信号,因此可以使得天线馈电结构能够工作在低频辐射单元23待抑制的频段内,从而加强高频辐射单元和低频辐射单元之间去耦合的效果。另外,通过在被连通工作的至少两个高频辐射单元之间的连线上设置断开区域26,还可以达到扩展带宽的目的。
可选地,至少一个断开区域26相对于互相连通的两个高频辐射单元之间的连线对称。具体地,如图9-图11所示,两个高频辐射单元之间的连线为高频辐射单元的四个辐射臂的中心位置之间的连线,在实际应用中,为了便于加工,通常将断开区域26设置为具有中心对称结构的形状,近似对称的分布在高频辐射单元的信号地层的两侧,例如可以设置为“工”字型或者哑铃型等,还可以设置为其它容易加工且形状对称的结构,如“C”字型等等,当然,还可以设置为不具有对称结构的形式,对于断开区域26的具体结构形式, 本实施例在此不作限制。由于断开区域26相对于两个高频辐射单元之间的连线对称,可以均衡的阻断高频辐射单元的信号地层与反射板之间的连接,由此可以使得低频辐射单元本身的方向图能够正常辐射。
需要进行说明的是,本申请实施例中并不对断开区域26的形状进行限制,只要断开区域26的周缘长度在低频辐射单元的工作频率对应波长的0.2倍至1.5倍之间即可。
另外,反射板21上的断开区域26与通孔25可以相连通,也可以不连通,当断开区域26与通孔25连通时,断开区域26的周缘长度为断开区域26和通孔25的周缘长度的和。
本申请实施例提供的天线馈电结构,包括反射板、至少一个低频辐射单元和至少一个高频辐射单元,其中,该高频辐射单元和低频辐射单元均设置在反射板上,高频辐射单元包括呈层状的接地组件,该接地组件包括信号地层,反射板上开设有至少一个通孔,该通孔和高频辐射单元位置对应,且高频辐射单元中的接地组件盖设在对应的通孔上,信号地层和反射板之间的重叠区域的面积小于预设阈值。由于在反射板上开设通孔,将高频辐射单元中的接地组件盖设在对应的通孔上,使得接地组件中的信号地层和反射板之间的重叠区域的面积小于预设阈值,这样,不仅可以通过反射板上的通孔能够控制高频辐射单元上激励起的寄生辐射的强度,达到改善低频辐射单元本身的辐射方向图畸形的目的,以降低高频辐射单元与低频辐射单元之间的干扰,而且使得天线馈电结构较简单,降低了该结构的制作成本。另外,当至少两个高频辐射单元连通工作时,通过在互相连通的高频辐射单元的连通路径上设置至少一个断开区域,使得该些断开区域能够阻断高频辐射单元的信号地层与反射板之间的连接,由此可以降低高频辐射单元与低频辐射单元之间的干扰。
本申请实施例还提供一种天线辐射系统,如图4所示,该天线辐射系统包括上述各实施例所述的天线馈电结构,其中,天线馈电结构的具体结构与功能和上述各实施例中所述的天线馈电结构的具体结构与功能类似,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既 可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (8)

  1. 一种天线馈电结构,其特征在于,包括:反射板、至少一个低频辐射单元和至少一个高频辐射单元,所述高频辐射单元和所述低频辐射单元均设置在所述反射板上,所述高频辐射单元包括呈层状的接地组件,所述接地组件包括信号地层,所述反射板上开设有至少一个通孔,所述通孔和所述高频辐射单元位置对应,且所述高频辐射单元中的接地组件盖设在对应的所述通孔上,所述信号地层和所述反射板之间的重叠区域的面积小于预设阈值。
  2. 根据权利要求1所述的天线馈电结构,其特征在于,所述信号地层和所述反射板之间的重叠区域的面积小于所述信号地层面积的四分之一。
  3. 根据权利要求1或2所述的天线馈电结构,其特征在于,所述接地组件中的信号地层均位于所述高频辐射单元所对应的通孔的范围内,且所述信号地层的面积小于所述通孔的面积。
  4. 根据权利要求1-3任一项所述的天线馈电结构,其特征在于,所述接地组件还包括信号传输层和PCB介质层,所述PCB介质层位于所述信号传输层和所述信号地层之间;所述信号传输层和/或所述PCB介质层与所述反射板之间具有重叠区域。
  5. 根据权利要求1-4任一项所述的天线馈电结构,其特征在于,所述高频辐射单元的数量为至少两个,所述反射板上具有至少一个断开区域,所述断开区域与互相连通的两个所述高频辐射单元之间的连线具有重叠。
  6. 根据权利要求5所述的天线馈电结构,其特征在于,所述断开区域相对于所述连线对称。
  7. 根据权利要求5或6所述的天线馈电结构,其特征在于,所述断开区域的周缘长度在所述低频辐射单元的工作频率对应波长的0.2倍至1.5倍之间。
  8. 一种天线辐射系统,其特征在于,包括如权利要求1-7任一项所述的天线馈电结构。
PCT/CN2017/086629 2017-05-31 2017-05-31 天线馈电结构和天线辐射系统 WO2018218515A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086629 WO2018218515A1 (zh) 2017-05-31 2017-05-31 天线馈电结构和天线辐射系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086629 WO2018218515A1 (zh) 2017-05-31 2017-05-31 天线馈电结构和天线辐射系统

Publications (1)

Publication Number Publication Date
WO2018218515A1 true WO2018218515A1 (zh) 2018-12-06

Family

ID=64455160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086629 WO2018218515A1 (zh) 2017-05-31 2017-05-31 天线馈电结构和天线辐射系统

Country Status (1)

Country Link
WO (1) WO2018218515A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020254397A1 (en) * 2019-06-20 2020-12-24 Huber+Suhner Ag Antenna module with board connector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479888A (zh) * 2006-08-10 2009-07-08 凯瑟雷恩工厂两合公司 特别用于移动无线电基站的天线装置
CN105591209A (zh) * 2016-01-11 2016-05-18 广东晖速通信技术股份有限公司 一种多频多模集成式天线
WO2016114810A1 (en) * 2015-01-15 2016-07-21 Commscope Technologies Llc Low common mode resonance multiband radiating array
CN103730728B (zh) * 2013-12-31 2016-09-07 上海贝尔股份有限公司 多频天线
CN105960737A (zh) * 2015-12-03 2016-09-21 华为技术有限公司 一种多频通信天线以及基站
CN205790338U (zh) * 2016-05-20 2016-12-07 黄桂贤 天线模块装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479888A (zh) * 2006-08-10 2009-07-08 凯瑟雷恩工厂两合公司 特别用于移动无线电基站的天线装置
CN103730728B (zh) * 2013-12-31 2016-09-07 上海贝尔股份有限公司 多频天线
WO2016114810A1 (en) * 2015-01-15 2016-07-21 Commscope Technologies Llc Low common mode resonance multiband radiating array
CN105960737A (zh) * 2015-12-03 2016-09-21 华为技术有限公司 一种多频通信天线以及基站
CN105591209A (zh) * 2016-01-11 2016-05-18 广东晖速通信技术股份有限公司 一种多频多模集成式天线
CN205790338U (zh) * 2016-05-20 2016-12-07 黄桂贤 天线模块装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020254397A1 (en) * 2019-06-20 2020-12-24 Huber+Suhner Ag Antenna module with board connector
US12003033B2 (en) 2019-06-20 2024-06-04 Huber+Suhner Ag Antenna module with board connector

Similar Documents

Publication Publication Date Title
CN106785408B (zh) 宽频带低剖面全向圆极化天线
WO2019213878A1 (zh) 毫米波天线阵元、阵列天线及通信产品
JP5983760B2 (ja) アレーアンテナ
US20190089069A1 (en) Broadband phased array antenna system with hybrid radiating elements
US8830135B2 (en) Dipole antenna element with independently tunable sleeve
US20220059929A1 (en) Base station antenna radiator having function for suppressing unwanted resonances
CN110622356B (zh) 一种天线
WO2015127625A1 (zh) 一种共口径天线及基站
JP2018164149A (ja) アンテナ装置
US9831566B2 (en) Radiating element for an active array antenna consisting of elementary tiles
JP2022523001A (ja) 積層平面共振器を有する統合フィルタを備えたアンテナ装置
WO2016138763A1 (zh) 双极化天线
US11394118B2 (en) Loop-like dual-antenna system
WO2020052636A1 (zh) 天线装置及终端设备
EP3480886B1 (en) Wireless receiving/transmitting device and base station
JP2004120733A (ja) ストリップライン並列‐直列給電型プロキシミティ結合空洞バックパッチアンテナアレイ
JPWO2018186065A1 (ja) 高周波モジュール
CN115051142B (zh) 一种多频基站天线单元及通信设备
CN105244633A (zh) 宽带异频正交偶极子天线
US20160359232A1 (en) Antenna device having patch antenna
EP3455907B1 (en) C-fed antenna formed on multi-layer printed circuit board edge
JP5523992B2 (ja) 無指向性アンテナ装置及びアレーアンテナ装置
CN108352622B (zh) 天线单元及天线阵列
WO2018218515A1 (zh) 天线馈电结构和天线辐射系统
WO2023221651A1 (zh) 一种双极化辐射单元、一种天线以及一种天线系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911766

Country of ref document: EP

Kind code of ref document: A1