WO2015127625A1 - 一种共口径天线及基站 - Google Patents
一种共口径天线及基站 Download PDFInfo
- Publication number
- WO2015127625A1 WO2015127625A1 PCT/CN2014/072634 CN2014072634W WO2015127625A1 WO 2015127625 A1 WO2015127625 A1 WO 2015127625A1 CN 2014072634 W CN2014072634 W CN 2014072634W WO 2015127625 A1 WO2015127625 A1 WO 2015127625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- microstrip patch
- aperture
- microstrip
- array
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 230000010287 polarization Effects 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 9
- 230000006855 networking Effects 0.000 claims 1
- 238000003491 array Methods 0.000 abstract description 10
- PEZNEXFPRSOYPL-UHFFFAOYSA-N (bis(trifluoroacetoxy)iodo)benzene Chemical compound FC(F)(F)C(=O)OI(OC(=O)C(F)(F)F)C1=CC=CC=C1 PEZNEXFPRSOYPL-UHFFFAOYSA-N 0.000 description 24
- 239000004020 conductor Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/20—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
- H01Q21/205—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/357—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
- H01Q5/364—Creating multiple current paths
- H01Q5/371—Branching current paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/40—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
- H01Q5/42—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0421—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
Definitions
- the present invention relates to the field of antenna technologies, and in particular, to a common aperture antenna and a base station. Background technique
- FIG. 1 illustrates the use of orthogonal slot antenna arrays to achieve slot antenna array sharing in the same frequency band and different polarization modes, but this solution does not solve the common aperture of antenna arrays operating in different bands.
- Figure 2 shows the use of multi-band microstrip patch antenna arrays and slot antenna arrays to achieve antenna array sharing in different frequency bands, but this solution only designs microstrip patch antennas of different bands in the same printed circuit. On the board, there is no real common aperture. Summary of the invention
- Embodiments of the present invention provide a common aperture antenna and a base station for solving the problem of co-caliber of antenna arrays operating in different frequency bands.
- the embodiment of the present invention uses the following technical solution:
- a common aperture antenna including: a dielectric substrate, a microstrip antenna array, and an electrical small antenna array;
- the microstrip antenna array includes a plurality of rows of microstrip patch antenna units distributed uniformly, the microstrip patch antenna unit is disposed on the surface of the dielectric substrate; the small antenna array comprises a plurality of parallel antennas The electric small antenna unit is interposed in the microstrip patch antenna unit at intervals, and is disposed in the same The surface of the dielectric substrate.
- the adjacent two rows of small antenna units are separated by at least one row of microstrip patch antenna units, or two or more rows of small cells are set according to a frequency multiplication ratio.
- the small antenna unit is a dual-frequency or multi-frequency small antenna.
- a third possible implementation manner of the first aspect is further provided, wherein a resonant frequency generated by the small antenna unit is generated by the microstrip patch antenna unit The resonant frequency is the same.
- a fourth possible implementation manner of the first aspect is further provided, the microstrip patch antenna unit And the electric small antenna unit is related to the feeding network of the same resonant frequency band, and the feeding networks of different resonant frequency bands are irrelevant.
- the polarization directions of the microstrip patch antenna unit and the small antenna unit are the same or orthogonal.
- At least one layer of metamaterial dielectric layer is added to the common aperture array of the microstrip antenna array and the small antenna array.
- the embodiment of the present invention provides a base station, including: a signal processing device, and the common aperture antenna according to the first aspect or any possible implementation manner of the first aspect;
- the common aperture antenna is configured to send and receive wireless signals
- the signal processing device is configured to receive and process a wireless signal received by the common aperture antenna, and send the processed signal through the common aperture antenna.
- the embodiment of the present invention provides a common aperture antenna and a base station, where the common aperture antenna includes a dielectric substrate, a microstrip antenna array, and an electrical small antenna array.
- the microstrip antenna array includes a plurality of rows of microstrip patches distributed in a uniform array.
- a chip antenna unit the microstrip patch antenna unit is disposed on the surface of the dielectric substrate
- the small antenna array includes a plurality of electrically small antenna units that are parallel to each other, and the small antenna unit is intermittently inserted in the
- the microstrip patch antenna unit is disposed on the surface of the dielectric substrate to solve the problem The problem of common aperture of antenna arrays in different frequency bands.
- FIG. 1 is a schematic diagram of a common aperture of an isopolar slot antenna provided by the prior art
- FIG. 2 is a schematic diagram of a common aperture of a microstrip patch antenna and a slot antenna provided by the prior art
- FIG. 3 is a schematic diagram of a common aperture antenna according to an embodiment of the present invention
- FIG. 4 is a schematic side view of a microstrip patch antenna provided by the prior art
- FIG. 6 is a schematic side view of a small antenna provided by the prior art
- FIG. 3 is a schematic diagram of a common aperture antenna according to an embodiment of the present invention
- FIG. 4 is a schematic side view of a microstrip patch antenna provided by the prior art
- FIG. 6 is a schematic side view of a small antenna provided by the prior art
- FIG. 4 is a schematic side view of a microstrip patch antenna provided by the prior art
- FIG. 6 is a schematic side view of a small antenna provided by the prior art
- FIG. 7 is a schematic diagram of an antenna spacing of a common aperture antenna according to an embodiment of the present invention.
- FIG. 8 is a top plan view of a U-grooved PIFA antenna provided by the prior art
- FIG. 9 is a schematic diagram of an integrated design of a common aperture antenna and a metamaterial dielectric layer according to an embodiment of the present invention.
- FIG. 10 is a schematic diagram of application of a common aperture antenna in a base station according to an embodiment of the present invention.
- Embodiment 1 The embodiment of the present invention provides a common aperture antenna.
- the common aperture antenna includes: a dielectric substrate 1, a microstrip antenna array 2, and an electrical small antenna array 3;
- the microstrip antenna array 2 includes a plurality of rows of microstrip patch antenna units 21 distributed uniformly on the surface of the dielectric substrate 1 .
- the small antenna array 3 includes a plurality of electrically small antenna elements 31 that are parallel to each other, and the small antenna units 31 are intermittently inserted into the microstrip patch antenna unit 21, and are disposed on the medium.
- the portion shown in black in Fig. 3 is the microstrip patch antenna unit 21, and the portion shown in the black strip U-shaped slot is the small antenna unit 31.
- the microstrip patch antenna unit 21 is generally composed of a ground plate 210, a dielectric substrate 21 1 and a conductor patch 212, and is fed by a microstrip line or a coaxial line.
- a radio frequency electromagnetic field caused by excitation between the piece 212 and the ground plate 210, and is radiated through a gap between the periphery of the conductor patch and the ground plate.
- the shape of the conductor patch 212 may be any geometric shape, such as a matrix, a circle. Shape, triangle, etc.
- a rectangular microstrip patch antenna unit is taken as an example.
- the rectangular microstrip patch antenna conductor patch has a length L and a width W, and a resonant frequency of the rectangular microstrip patch antenna unit. /i can be approximated as:
- Jl 2 ⁇ (L + w) .
- c the speed of light, which is the relative dielectric constant of the dielectric substrate
- L the length of the rectangular microstrip patch antenna conductor patch
- W the rectangular microstrip patch antenna conductor patch The width.
- the microstrip patch antenna conductor patches and the wide side of the long sides equals approximately 4/2, then, the resonance frequency of the microstrip patch antenna with a 4/2 In proportion, where 4 is the wavelength corresponding to the resonant frequency generated by the microstrip patch antenna.
- the embodiment of the present invention uses the small antenna unit 3 1 as a PIFA antenna.
- the PIFA antenna is generally composed of a grounding plate 310, a dielectric substrate 311, a conductor patch 312, and a shorting probe 313.
- the conductor patch 312 (or a planar radiating element) is used as a radiator, and is connected.
- the floor 310 serves as a reflecting surface, and a coaxial RF electromagnetic field is generated between the conductor patch 312 and the grounding plate 310 by means of coaxial feeding.
- the electric field of the PIFA antenna is mainly concentrated on the edge of the patch conductor 310.
- the radiation field of the PIFA antenna is an edge radiation field, which is similar to the microstrip patch antenna unit 21, and then, to some extent, the PIFA antenna is similar to the microstrip patch antenna unit 21 Only the short pin is loaded on the microstrip patch antenna unit 21, and the PIFA antenna is compared with the resonant length of the microstrip patch antenna unit 21 due to the action of the shorting probe.
- the resonance length is shortened to ⁇ / 4 , where ⁇ is the wavelength corresponding to the resonant frequency generated by the PIFA antenna.
- the resonant frequency of the PIFA antenna can be approximated as:
- c is the speed of light, which is the relative dielectric constant of the dielectric substrate
- A is the length of the PIFA antenna conductor patch
- B is the width of the PIFA antenna conductor patch.
- At least one row of the microstrip patch antenna unit 21 is spaced between the two adjacent rows of small antenna elements 31, or the two or more rows of small antenna elements 31 are separated according to the multiplication ratio. The number of rows with the patch antenna unit 21.
- the small antenna unit 31 is a dual-frequency or multi-frequency small antenna.
- the PIFA antenna realizes multi-band operation by using a doubly-fed point, Or by using a slotting technique on the PIFA antenna.
- the resonance frequency resonance range generated by the PIFA antenna is often limited, so that the multi-frequency operation of the PIFA antenna is realized by slotting.
- the commonly used slotting methods include: L-shaped opening Slot and U-shaped slot.
- the U-grooved PIFA antenna is used for description, wherein the portion indicated by white is the U-shaped groove, and the portion indicated by the oblique line is the U-shaped grooved with the U-shaped groove.
- PIFA antenna A is the length of the conductor patch, B is the width of the PIFA antenna conductor patch, C is the length of the internal radiator, and D is the width of the internal radiator.
- the resonant frequency of the lower operating band can be expressed as:
- the resonant frequency of the higher operating band can be expressed as: It can be seen that the U-grooved PIFA antenna can produce different resonant frequencies.
- the resonant frequency generated by the small antenna unit 31 is the same as the resonant frequency generated by the microstrip patch antenna unit 21.
- the small antenna unit 31 is a dual-frequency or multi-frequency small antenna
- the higher resonant frequency generated by the small antenna unit 3 1 and the resonance generated by the microstrip patch antenna unit 21 The frequency is the same.
- the microstrip patch antenna unit 21 and the small antenna unit 3 1 are related to a feed network of the same resonant frequency band, and the feed networks of different resonant frequency bands are irrelevant.
- the microstrip patch antenna unit 21 and the small antenna unit 31 may use the same feed network.
- the microstrip patch antenna unit 21 and the small antenna unit 31 use different feeds. Electric network.
- the polarization directions of the microstrip patch antenna unit 21 and the small antenna unit 3 1 are the same or orthogonal.
- the polarization direction of the antenna includes horizontal polarization, vertical polarization, and the like.
- the polarization direction of the U-grooved PIFA antenna 3 1 (electric small antenna unit 3 1 ) as shown in FIG. 8 is horizontally polarized, and the polarization direction of the microstrip patch antenna unit 21 is also horizontal. Polarization, the polarization directions of the microstrip patch antenna unit 21 and the small antenna unit 3 1 are the same; if the U-groove in the U-grooved PIFA antenna 3 1 is used as shown in FIG.
- the polarization direction of the PIFA antenna 3 1 of the U-shaped slot opening is vertical polarization
- the polarization direction of the microstrip patch antenna unit 21 is horizontal polarization
- the microstrip patch The polarization directions of the antenna unit 21 and the small antenna unit 3 1 are orthogonal.
- At least one layer of metamaterial dielectric layer is added to the common aperture array of the strap antenna array 2 and the small antenna array 3.
- one or more layers of metamaterial are designed to be added in the direction of the common aperture array of the microstrip patch antenna unit 21 and the small antenna unit 31, and the microstrip patch is
- the gain of the antenna unit 21 and the small antenna unit 3 1 will tend to be the limit value of the planar array gain as the number of layers of the metamaterial medium increases, and the limit value of the planar array gain is: ⁇ 2 ;
- the area of the physical aperture of the microstrip patch antenna unit 21 and the small antenna unit 31 is the same as that generated by the microstrip patch antenna unit 21 and the small antenna unit 31.
- the wavelength corresponding to the resonant frequency is
- the gains of the microstrip patch antenna unit 21 and the small antenna unit 3 1 are the same in the same resonant band, and the unit factors are equivalent, so that different antenna units are in the same band.
- the gain aperture is maximized, and the influence of different unit factors on the array is reduced.
- the unit factor is characteristics of the antenna unit constituting the array antenna, such as beam width, sidelobe level, gain, front-to-back ratio, and the like.
- the microstrip patch antenna unit 21 and the small antenna unit are The 3 1 common aperture array is designed to add a top view and a side view of the three layers of metamaterial.
- the microstrip antenna array 2 and the small antenna array 3 are in the same plane, so that the common aperture arrays in the same plane are not blocked from each other, and Affects the radiation efficiency of different antenna arrays.
- the embodiment of the present invention provides a common aperture antenna, including a dielectric substrate, a microstrip antenna array, and an electrical small antenna array.
- the microstrip antenna array includes a plurality of rows of microstrip patch antenna units distributed in a uniform array.
- the microstrip patch antenna unit is disposed on the surface of the dielectric substrate, and the small antenna array comprises a plurality of electrically small antenna units that are parallel to each other, and the small antenna unit is intermittently inserted into the microstrip patch antenna unit.
- Embodiment 2 Embodiment 2
- An embodiment of the present invention provides a base station, where the base station includes: a signal processing device and a common aperture antenna;
- the common aperture antenna is configured to send and receive wireless signals
- the signal processing device is configured to receive and process a wireless signal received by the common aperture antenna, and send the processed signal through the common aperture antenna.
- the common aperture antenna includes: a dielectric substrate 1, a microstrip antenna array 2, and an electrical small antenna array 3; wherein the microstrip antenna array 2 includes a plurality of rows of microstrips distributed in a uniform array a patch antenna unit 21, the microstrip patch antenna unit 21 is disposed on the surface of the dielectric substrate 1; the small antenna array 3 includes a plurality of electrically small antenna units 3 1 that are parallel to each other, and the small antenna The unit 3 1 is intermittently inserted into the microstrip patch antenna unit 21 and disposed on the surface of the dielectric substrate 1.
- the portion shown in black in Fig. 3 is the microstrip patch antenna unit 21, and the portion shown in the black strip U-shaped groove is the small antenna unit 31.
- FIG. 10 is a schematic diagram of a base station of a hexahedral column, and the three intersecting dotted lines divide the base station into six sectors.
- FIG. 10 is only a schematic diagram showing the arrangement of a common aperture antenna of a sector in which the common aperture antenna is used, and the other five sectors and the opposite fan are used. Zone has the same antenna configuration
- the portion indicated by black indicates the microstrip patch unit 21, and the portion indicated by black with a U-shaped groove is the small antenna unit 3 1 , and the common aperture antenna can generate beams of two different frequency bands.
- the indicated portion indicates the resulting narrower beam, and the portion indicated by the double slash indicates the resulting wider beam.
- the common aperture antenna can also generate multiple beams in the same band. If the small antenna generates two resonant frequency bands, the lower resonant frequency band of the dual-band small electrical antenna constitutes a lower frequency band antenna array, and the microstrip patch antenna and the dual-band electric small antenna The higher frequency band constitutes a higher frequency band antenna array, and the base station achieves dual band (or multi band) coverage without increasing the antenna aperture.
- the common aperture antenna can also be applied to a 5G high frequency transceiver system, or a distributed base station, or a distributed antenna system.
- the embodiment of the present invention provides a base station, where the base station includes a signal processing device and a common aperture antenna, where the common aperture antenna is used for transmitting and receiving wireless signals, including a dielectric substrate, a microstrip antenna array, and a small antenna array;
- the microstrip antenna array includes a plurality of rows of microstrip patch antenna units distributed uniformly, the microstrip patch antenna unit is disposed on the surface of the dielectric substrate;
- the small antenna array comprises a plurality of parallel antennas a small antenna unit, the electrical small antenna unit is intermittently inserted into the microstrip patch antenna unit, and is disposed on the surface of the dielectric substrate;
- the signal processing device is configured to receive the common aperture antenna The wireless signal is processed and the processed signal is transmitted through the common aperture antenna to solve the problem of the common aperture of the antenna array operating in different frequency bands.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
本发明公开了一种共口径天线及基站,涉及天线技术领域,用于解决工作在不同频段天线阵列共口径的问题。所述共口径天线包括:介质基板、微带天线阵列、电小天线阵列;其中,所述微带天线阵列包含若干行均勾阵列分布的微带贴片天线单元,所述微带贴片天线单元贴合设置在所述介质基板表面;所述电小天线阵列包含若干相互平行的电小天线单元,所述电小天线单元间隔插接在所述微带贴片天线单元中,且贴合设置在所述介质基板表面。
Description
一种共口径天线及基站 技术领域
本发明涉及天线技术领域, 尤其涉及一种共口径天线及基站。 背景技术
随着无线通信的迅猛发展, 一套通信系统需要能够对多个波段 进行辐射和接收, 因此需要与之匹配的天线对多个不同波段进行辐 射和接收。 但是在很多通信设备中, 由于通信设备集成化、 小型化 的需求, 并没有足够大的空间分配给两个或多个不同波段的天线。
为了在有限的空间内实现不同波段的天线集成化设计, 需要将 不同波段的天线设计在同一口径上, 实现口径的共用。 共口径双频 或多频天线也是降低设备成本, 提升设备集成度, 促进智能化天线 集成的需求。 在现有技术中, 图 1 为釆用正交的缝隙天线阵列实现 工作在相同频段、 不同极化方式的缝隙天线阵列口径共用, 但是该 方案并没有解决工作在不同波段的天线阵列共口径的问题; 图 2为 釆用多波段的微带贴片天线阵列和缝隙天线阵列实现工作在不同 频段的天线阵列口径共用, 但是该方案只是将不同波段的微带贴片 天线加工设计在同一印刷电路板上, 并没有实现真正的共口径。 发明内容
本发明的实施例提供一种共口径天线及基站, 用以解决工作在 不同频段天线阵列共口径的问题。
为达到上述目 的, 本发明的实施例釆用如下技术方案: 第一方面, 本发明实施例提供了一种共口径天线, 包括: 介质 基板、 微带天线阵列、 电小天线阵列;
其中, 所述微带天线阵列包含若干行均匀阵列分布的微带贴片 天线单元, 所述微带贴片天线单元贴合设置在所述介质基板表面; 所述电小天线阵列包含若干相互平行的电小天线单元, 所述电 小天线单元间隔插接在所述微带贴片天线单元中, 且贴合设置在所
述介质基板表面。
在第一方面的第一种可能的实现方式中, 所述相邻两排电小天 线单元之间间隔至少一行微带贴片天线单元, 或者, 根据倍频比设 置两排或多排电小天线单元之间相隔的微带贴片天线单元的行数。
在第一方面的第二种可能的实现方式中, 所述电小天线单元为 双频或多频电小天线。
在第一方面的第二种可能的实现方式中, 还提供了第一方面的 第三种可能的实现方式, 所述电小天线单元产生的一谐振频率与所 述微带贴片天线单元产生的谐振频率相同。
在第一方面的第二种可能的实现方式, 或第一方面的第三种可 能的实现方式中, 还提供了第一方面的第四种可能的实现方式, 所 述微带贴片天线单元和所述电小天线单元在相同谐振频段的馈电 网络相关, 不同谐振频段的馈电网络不相关。
在第一方面的第五种可能的实现方式中, 所述微带贴片天线单 元和所述电小天线单元的极化方向相同或者正交。
在第一方面的第六种可能的实现方式中, 在所述微带天线阵列 和所述电小天线阵列的共口径阵列上增加至少一层超材料介质层。
第二方面, 本发明实施例提供了一种基站, 包括: 信号处理设 备、 以及第一方面或第一方面的任一可能的实现方式中所述的共口 径天线; 其中,
所述共口径天线用于收发无线信号;
所述信号处理设备用于接收所述共口径天线接收的无线信号并 进行处理, 并将处理后的信号通过所述共口径天线发送。
本发明实施例提供了一种共口径天线及基站, 该共口径天线包 括介质基板、 微带天线阵列、 电小天线阵列; 其中, 所述微带天线 阵列包含若干行均匀阵列分布的微带贴片天线单元, 所述微带贴片 天线单元贴合设置在所述介质基板表面, 所述电小天线阵列包含若 干相互平行的电小天线单元, 所述电小天线单元间隔插接在所述微 带贴片天线单元中, 且贴合设置在所述介质基板表面, 以解决工作
在不同频段天线阵列共口径的问题。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例 或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技 术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图 获得其他的附图。
图 1 为现有技术提供的一种异极化缝隙天线共口径的示意图; 图 2为现有技术提供的一种微带贴片天线和缝隙天线共口径的 示意图;
图 3为本发明实施例提供的一种共口径天线的示意图; 图 4为现有技术提供的一种微带贴片天线的侧视示意图; 图 5为现有技术提供的一种微带贴片天线的俯视示意图; 图 6为现有技术提供的一种电小天线的侧视示意图;
图 7为本发明实施例提供的一种共口径天线的天线间隔的示意 图;
图 8为现有技术提供的一种 U型开槽的 PIFA天线的俯视示意 图;
图 9为本发明实施例提供的共口径天线和超材料介质层集成设 计的示意图;
图 10 为本发明实施例提供的共口径天线在基站中应用的示意 图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
实施例一
本发明实施例提供了一种共口径天线, 如图 3 所示, 所述共口 径天线包括: 介质基板 1、 微带天线阵列 2、 电小天线阵列 3 ;
其中, 所述微带天线阵列 2 包含若干行均匀阵列分布的微带贴 片天线单元 21 , 所述微带贴片天线单元 21 贴合设置在所述介质基 板 1表面
所述电小天线阵列 3 包含若干相互平行的电小天线单元 3 1 , 所 述电小天线单元 3 1 间隔插接在所述微带贴片天线单元 21 中, 且贴 合设置在所述介质基板 1表面。
其中, 图 3 中黑色所示部分为所述微带贴片天线单元 21 , 黑色 带 U型槽所示部分为所述电小天线单元 3 1。
具体的, 如图 4 所示, 微带贴片天线单元 21 通常是由接地板 210、 介质基板 21 1 和导体贴片 212 构成, 利用微带线或同轴线等 馈电方式, 在导体贴片 212与接地板 210之间存在由激励引起的射 频电磁场, 通过导体贴片四周与接地板间的缝隙进行辐射, 其中, 所述导体贴片 212的形状可以是任意几何形状, 例如矩阵, 圓形, 三角形等。
示例的, 以矩形微带贴片天线单元为例进行说明, 如图 5所示, 矩形微带贴片天线导体贴片的长度为 L , 宽度为 W , 矩形微带贴片 天线单元的谐振频率 /i可近似表示为:
r C
Jl = 2^(L + w) . 其中, c为光速, 为介质基板的相对介电常数, L为矩形微带 贴片天线导体贴片的长度, W 为矩形微带贴片天线导体贴片的宽 度。
进一步的, 通过上述公式可以得出, 所述微带贴片天线导体贴 片的长边和宽边之和近似等于 4/2 , 那么, 所述微带贴片天线的谐 振频率 与 4/2成正比,其中, 4为微带贴片天线产生的谐振频率 所 对应的波长。
如图 6所示, 本发明实施例以电小天线单元 3 1 为 PIFA天线为
例进行说明, 所述 PIFA天线通常是由接地板 310、 介质基板 311、 导体贴片 312和短路探针 313构成, 以导体贴片 312 (或称为平面 辐射单元) 作为辐射体, 并以接地板 310作为反射面, 利用同轴馈 电的方式, 在导体贴片 312与接地板 310之间存在由激励引起的射 频电磁场, 所述 PIFA天线的电场主要集中在所述贴片导体 310 边 缘, 因此所述 PIFA 天线的辐射场是边缘辐射场, 这一点与所述微 带贴片天线单元 21类似, 那么, 在某种程度上, 所述 PIFA天线类 似于所述微带贴片天线单元 21, 只是在所述微带贴片天线单元 21 上加载短路探针( Short Pin), 由于短路探针的作用, 与所述微带贴 片天线单元 21 的谐振长度相比, 所述 PIFA天线的谐振长度缩短为 ^/4, 其中, ^为所述 PIFA天线产生的谐振频率 所对应的波长。
示例的, 假设所述导体贴片 312为矩形辐射体, 所述矩形辐射 体的长度为 A, 宽度为 B, 那么所述 PIFA天线的谐振频率 可近似 表示为:
2 = 4^(A + B) . 其中, c为光速, 为所述介质基板的相对介电常数, A为所述 PIFA天线导体贴片的长度, B为所述 PIFA天线导体贴片的宽度。
进一步的, 通过上述公式可以得出, 所述 PIFA 天线导体贴片 的长边 A和宽边 B之和近似等于 那么, 所述 PIFA天线的谐 振频率 Λ与 成正比。
可选的,所述相邻两排电小天线单元 31之间间隔至少一行微带 贴片天线单元 21, 或者, 根据倍频比设置两排或多排电小天线单元 31之间相隔的微带贴片天线单元 21 的行数。
示例的, 如图 7所示, 若所述相邻两排电小天线单元 31之间间 隔一行微带贴片天线单元 21, 相邻两排所述微带贴片天线单元 21 之间的距离为 d。, 相邻两排电小天线单元 31之间的距离为 2* d 可选的, 所述电小天线单元 31为双频或多频电小天线。
其中, 所述 PIFA 天线实现多频段工作可以通过使用双馈点,
或者通过在所述 PIFA 天线上釆用开槽的技术来实现。 使用双馈点 时所述 PIFA 天线产生的谐振频率谐振范围往往受到一定的限制, 因此多釆用开槽的方式实现所述 PIFA 天线的多频工作, 通常使用 的开槽方式包括: L型开槽和 U型开槽。
示例的, 如图 8所示, 以釆用 U型开槽的 PIFA天线进行说明, 其中, 白色所示部分为所述 U 型槽, 斜线所示部分为所述釆用 U 型开槽的 PIFA天线, A为所述导体贴片的长度, B为所述 PIFA天 线导体贴片的宽度, C为内部辐射体的长度, D为内部辐射体的宽 度。在 U型开槽方式下,较低工作频段的谐振频率近似可以表示为:
较高工作频段的谐振频率近似可以表示为:
由此可见, 所述釆用 U型开槽的 PIFA天线可以 产生不同的谐振频率。 可选的,所述电小天线单元 3 1产生的一谐振频率与所述微带贴 片天线单元 21产生的谐振频率相同。
具体的, 当所述电小天线单元 3 1 为双频或多频电小天线时, 所 述电小天线单元 3 1 产生的较高谐振频率与所述微带贴片天线单元 21产生的谐振频率相同。
可选的, 所述微带贴片天线单元 21 和所述电小天线单元 3 1在 相同谐振频段的馈电网络相关, 不同谐振频段的馈电网络不相关。
当所述微带贴片天线单元 21 和所述电小天线单元 3 1产生的谐 振频段相同时, 所述微带贴片天线单元 21 和所述电小天线单元 3 1 可以使用同一馈电网络; 当所述微带贴片天线单元 21 和所述电小 天线单元 3 1产生的谐振频段不同时, 所述微带贴片天线单元 21和 所述电小天线单元 3 1使用各自不同的馈电网络。
可选的, 所述微带贴片天线单元 21 和所述电小天线单元 3 1 的 极化方向相同或者正交。
其中, 所述天线的极化方向包括水平极化和垂直极化等。 如图 8所示的釆用 U型开槽的 PIFA天线 3 1 ( 电小天线单元 3 1 ) 的极化 方向为水平极化, 所述微带贴片天线单元 21 的极化方向也为水平 极化, 则所述微带贴片天线单元 21和所述电小天线单元 3 1 的极化 方向相同; 若图 8所示的釆用 U型开槽的 PIFA天线 3 1 中的 U型 槽开口向上,则该 U型槽开口向上的 PIFA天线 3 1 的极化方向为垂 直极化, 而所述微带贴片天线单元 21 的极化方向为水平极化, 则 所述微带贴片天线单元 21 和所述电小天线单元 3 1 的极化方向正 交。
可选的, 在所述啟带天线阵列 2和所述电小天线阵列 3 的共口 径阵列上增加至少一层超材料介质层。
具体的,通过在所述微带贴片天线单元 21和所述电小天线单元 3 1 的共口径阵列边射方向上设计增加一层或多层超材料, 此时, 所 述微带贴片天线单元 21和所述电小天线单元 3 1 的增益, 随着超材 料介质层数的增加, 将趋于平面阵增益的极限值, 所述平面阵增益 的极限值为: λ2; 其中, Α 为所述微带贴片天线单元 21 和所述电小天线单元 3 1 所在的物理口径的面积, 为所述微带贴片天线单元 21和所述电小 天线单元 3 1 所产生的相同谐振频率所对应的波长。
也就是说, 在物理口径相同的情况下, 所述微带贴片天线单元 21 和所述电小天线单元 3 1 在相同谐振波段的增益一致, 单元因子 相当, 以实现不同天线单元在同一波段增益口径最大化, 降低不同 单元因子对组阵的影响, 其中, 所述单元因子为组成阵列天线的天 线单元的特性, 如波束宽度、 副瓣电平、 增益、 前后比等。 示例的, 如图 9 所示, 为在所述微带贴片天线单元 21 和所述电小天线单元
3 1 的共口径阵列边射方向设计增加三层超材料的俯视图和侧视图。 需要说明的是, 本发明实施例所述的天线中的所述微带天线阵 列 2和所述电小天线阵列 3处于同一平面, 所以处于同一平面的共 口径阵列之间相互无遮挡, 不会影响不同天线阵列的辐射效率。
本发明实施例提供了一种共口径天线, 包括介质基板、 微带天 线阵列、 电小天线阵列; 其中, 所述微带天线阵列包含若干行均匀 阵列分布的微带贴片天线单元, 所述微带贴片天线单元贴合设置在 所述介质基板表面, 所述电小天线阵列包含若干相互平行的电小天 线单元, 所述电小天线单元间隔插接在所述微带贴片天线单元中, 且贴合设置在所述介质基板表面, 以解决工作在不同频段天线阵列 共口径的问题。 进一步的, 通过在阵列边射方向加载超材料介质层, 实现不同天线单元增益口径最大化, 降低不同单元因子对组阵的影 响。 实施例二
本发明实施例提供了一种基站, 所述基站包括: 信号处理设备 和共口径天线; 其中,
所述共口径天线用于收发无线信号;
所述信号处理设备用于接收所述共口径天线接收的无线信号并 进行处理, 并将处理后的信号通过所述共口径天线发送。
具体的, 如图 3 所示, 所述共口径天线包括: 介质基板 1、 微 带天线阵列 2、 电小天线阵列 3 ; 其中, 所述微带天线阵列 2 包含 若干行均匀阵列分布的微带贴片天线单元 21 ,所述微带贴片天线单 元 21 贴合设置在所述介质基板 1 表面; 所述电小天线阵列 3 包含 若干相互平行的电小天线单元 3 1 , 所述电小天线单元 3 1 间隔插接 在所述微带贴片天线单元 21 中, 且贴合设置在所述介质基板 1 表 面。 图 3 中黑色所示部分为所述微带贴片天线单元 21 , 黑色带 U 型槽所示部分为所述电小天线单元 3 1。
本实施例中所述的天线也可以包括实施例一所述的任 种共
口径天线结构, 具体可参考实施例一中所述的天线, 在此不再赘述。 示例的, 如图 10所示, 为本发明实施例所述的共口径天线在基 站中的应用, 图 10 表示的是一个六面体柱的基站示意图, 三条相 交的虚线将基站分为六个扇区, 图 10 中仅给出了其中正对的一个 扇区的共口径天线的布置示意图, 该共口径天线为釆用本实施中所 述的共口径天线, 其他五个扇区与正对的扇区有着相同的天线配置
(如 10 中未画出 )。其中,黑色所示部分表示所述微带贴片单元 21 , 带 U 型槽黑色所示部分为所述电小天线单元 3 1 , 该共口径天线能 够产生两个不同频段的波束, 以点所示部分表示产生的较窄的波 束, 以双斜线所示部分表示产生的较宽的波束, 当然, 该共口径天 线也可以在同一个波段中产生多个波束。 若所述电小天线产生两个 谐振频段时, 所述双频段的电小天线的较低谐振频段构成较低频段 天线阵列, 所述微带贴片天线和所述双频段的电小天线的较高频段 构成较高频段天线阵列, 那么基站在不增加天线口径的同时实现双 频段 (或多频段) 的覆盖。
当然, 除本发明所述的基站外, 所述共口径天线也可以应用在 5G 高频收发信机系统, 或者分布式基站, 或者分布式天线系统等 系统中。
本发明实施例提供了一种基站, 所述基站包括信号处理设备和 共口径天线; 其中, 所述共口径天线用于收发无线信号, 包括介质 基板、 微带天线阵列、 电小天线阵列; 其中, 所述微带天线阵列包 含若干行均匀阵列分布的微带贴片天线单元, 所述微带贴片天线单 元贴合设置在所述介质基板表面; 所述电小天线阵列包含若干相互 平行的电小天线单元, 所述电小天线单元间隔插接在所述微带贴片 天线单元中, 且贴合设置在所述介质基板表面; 所述信号处理设备 用于接收所述共口径天线接收的无线信号并进行处理, 并将处理后 的信号通过所述共口径天线发送, 以解决工作在不同频段天线阵列 共口径的问题。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案,
而非对其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依然可以对前述各实施例所记 载的技术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各实 施例技术方案的精神和范围。
Claims
1、 一种共口径天线, 其特征在于, 包括: 介质基板、 微带天线 阵列、 电小天线阵列;
其中,所述微带天线阵列包含若干行均匀阵列分布的微带贴片天 线单元, 所述微带贴片天线单元贴合设置在所述介质基板表面; 所述电小天线阵列包含若干相互平行的电小天线单元,所述电小 天线单元间隔插接在所述微带贴片天线单元中, 且贴合设置在所述 介质基板表面。
2、 根据权利要求 1 所述的共口径天线, 其特征在于, 所述相邻 两排电小天线单元之间间隔至少一行微带贴片天线单元, 或者, 根 据倍频比设置两排或多排电小天线单元之间相隔的微带贴片天线单 元的行数。
3、 根据权利要求 1 所述的共口径天线, 其特征在于, 所述电小 天线单元为双频或多频电小天线。
4、 根据权利要求 3所述的共口径天线, 其特征在于, 所述电小 天线单元产生的一谐振频率与所述微带贴片天线单元产生的谐振频 率相同。
5、 根据权利要求 3或 4所述的共口径天线, 其特征在于, 所述 微带贴片天线单元和所述电小天线单元在相同谐振频段的馈电网络 相关, 不同谐振频段的馈电网络不相关。
6、 根据权利要求 1 所述的共口径天线, 其特征在于, 所述微带 贴片天线单元和所述电小天线单元的极化方向相同或者正交。
7、 根据权利要求 1 所述的共口径天线, 其特征在于, 在所述微 带天线阵列和所述电小天线阵列的共口径阵列上增加至少一层超材 料介质层。
8、 一种基站, 其特征在于, 包括: 信号处理设备、 以及权利要 求 1 -7任一项所述的共口径天线; 其中,
所述共口径天线用于收发无线信号;
所述信号处理设备用于接收所述共口径天线接收的无线信号并
进行处理, 并将处理后的信号通过所述共口径天线发送。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/072634 WO2015127625A1 (zh) | 2014-02-27 | 2014-02-27 | 一种共口径天线及基站 |
CN201480056069.4A CN105612660B (zh) | 2014-02-27 | 2014-02-27 | 一种共口径天线及基站 |
US15/248,377 US10003132B2 (en) | 2014-02-27 | 2016-08-26 | Shared-aperture antenna and base station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/072634 WO2015127625A1 (zh) | 2014-02-27 | 2014-02-27 | 一种共口径天线及基站 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/248,377 Continuation US10003132B2 (en) | 2014-02-27 | 2016-08-26 | Shared-aperture antenna and base station |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015127625A1 true WO2015127625A1 (zh) | 2015-09-03 |
Family
ID=54008142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/072634 WO2015127625A1 (zh) | 2014-02-27 | 2014-02-27 | 一种共口径天线及基站 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10003132B2 (zh) |
CN (1) | CN105612660B (zh) |
WO (1) | WO2015127625A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107894583A (zh) * | 2017-09-28 | 2018-04-10 | 北京华航无线电测量研究所 | 一种基于互补结构的天线阵列设计的预处理方法 |
WO2018073701A1 (en) * | 2016-10-17 | 2018-04-26 | Director General, Defence Research & Development Organisation (Drdo) | Single layer shared aperture dual band antenna |
CN109904599A (zh) * | 2019-01-31 | 2019-06-18 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | K/Ka双频段共口径天线阵 |
CN110854520A (zh) * | 2019-11-22 | 2020-02-28 | 湖北汽车工业学院 | 一种基于卦型基元的k波段超材料微带天线 |
CN111276824A (zh) * | 2018-12-04 | 2020-06-12 | 深圳市超捷通讯有限公司 | 天线结构及具有该天线结构的无线通信装置 |
WO2021088651A1 (zh) * | 2019-11-06 | 2021-05-14 | 华为技术有限公司 | 天线结构、雷达和终端 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150222022A1 (en) * | 2014-01-31 | 2015-08-06 | Nathan Kundtz | Interleaved orthogonal linear arrays enabling dual simultaneous circular polarization |
US20170093465A1 (en) * | 2015-09-28 | 2017-03-30 | Futurewei Technologies, Inc. | System and Method for Large Scale Multiple Input Multiple Output Communications |
US10756435B2 (en) * | 2016-04-18 | 2020-08-25 | Ethertronics, Inc. | Low profile antenna module |
CN108258436B (zh) * | 2016-12-28 | 2022-02-18 | 中国移动通信集团公司 | 一种天线及通信终端 |
WO2018198754A1 (ja) * | 2017-04-26 | 2018-11-01 | 株式会社村田製作所 | アンテナモジュール及び通信装置 |
CN107026309B (zh) * | 2017-05-26 | 2024-04-19 | 迈锐数据(北京)有限公司 | 天线组件及车辆检测器 |
KR101921182B1 (ko) * | 2017-07-25 | 2018-11-22 | 엘지전자 주식회사 | 어레이 안테나 및 이동 단말기 |
EP3503298A1 (en) * | 2017-12-22 | 2019-06-26 | Deutsche Telekom AG | Base station antenna for cellular communications |
US10892553B2 (en) * | 2018-01-17 | 2021-01-12 | Kymeta Corporation | Broad tunable bandwidth radial line slot antenna |
DE102018120612A1 (de) * | 2018-02-23 | 2019-08-29 | Kathrein Se | Multibandantennenanordnung für Mobilfunkanwendungen |
CN110048218B (zh) * | 2019-04-28 | 2023-04-25 | 中国电子科技集团公司第二十六研究所 | 一种具有谐波抑制功能的微带天线 |
CN112290193B (zh) * | 2019-07-26 | 2023-07-25 | Oppo广东移动通信有限公司 | 毫米波模组、电子设备及毫米波模组的调节方法 |
US11005187B2 (en) | 2019-08-28 | 2021-05-11 | Government Of The United States, As Represented By The Secretary Of The Army | Antenna structure with metamaterial |
CN114450855A (zh) * | 2019-09-30 | 2022-05-06 | 华为技术有限公司 | 一种集成滤波功能的封装天线系统及通信设备 |
US11088469B1 (en) * | 2020-04-03 | 2021-08-10 | Auden Techno Corp. | Common antenna assembly and common antenna structure |
CN112421246B (zh) * | 2021-01-22 | 2021-04-23 | 成都天锐星通科技有限公司 | 一种共口径阵列天线和卫星通讯终端 |
CN113258306B (zh) * | 2021-06-29 | 2021-11-26 | 成都锐芯盛通电子科技有限公司 | 一种Ku/Ka双频复合相控阵天线辐射阵列及其设计方法 |
CN113745818B (zh) * | 2021-09-07 | 2024-05-14 | 重庆大学 | 一种四频段极化可重构共口径相控阵天线 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102231456A (zh) * | 2011-04-25 | 2011-11-02 | 中国电子科技集团公司第三十八研究所 | 双频段双极化共口径天线 |
CN103259087A (zh) * | 2013-05-07 | 2013-08-21 | 西安电子科技大学 | 基于频率选择表面的l/c双波段共口径天线 |
CN103337713A (zh) * | 2013-06-04 | 2013-10-02 | 上海无线电设备研究所 | 一种异频微带阵列与印刷振子阵列共口径复合天线 |
CN103441332A (zh) * | 2013-08-21 | 2013-12-11 | 华为技术有限公司 | 一种微带阵列天线及基站 |
CN103606745A (zh) * | 2013-11-06 | 2014-02-26 | 航天恒星科技有限公司 | 一种低剖面紧凑型双频段双极化共口径微带天线 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6025803A (en) * | 1998-03-20 | 2000-02-15 | Northern Telecom Limited | Low profile antenna assembly for use in cellular communications |
US6731241B2 (en) | 2001-06-13 | 2004-05-04 | Raytheon Company | Dual-polarization common aperture antenna with rectangular wave-guide fed centered longitudinal slot array and micro-stripline fed air cavity back transverse series slot array |
US6795020B2 (en) * | 2002-01-24 | 2004-09-21 | Ball Aerospace And Technologies Corp. | Dual band coplanar microstrip interlaced array |
US6597318B1 (en) * | 2002-06-27 | 2003-07-22 | Harris Corporation | Loop antenna and feed coupler for reduced interaction with tuning adjustments |
US20090021437A1 (en) * | 2007-07-20 | 2009-01-22 | Senglee Foo | Center panel movable three-column array antenna for wireless network |
US8344943B2 (en) * | 2008-07-28 | 2013-01-01 | Physical Domains, LLC | Low-profile omnidirectional retrodirective antennas |
CN102437425A (zh) * | 2011-09-16 | 2012-05-02 | 南京信息工程大学 | 一种“动中通”卫星移动通信天线 |
CN103296410A (zh) * | 2012-02-29 | 2013-09-11 | 深圳光启创新技术有限公司 | 高增益超材料天线罩和天线系统 |
CN102760942A (zh) | 2012-07-10 | 2012-10-31 | 中国船舶重工集团公司第七二四研究所 | L、s、c、x四频段共孔径天线模块 |
-
2014
- 2014-02-27 WO PCT/CN2014/072634 patent/WO2015127625A1/zh active Application Filing
- 2014-02-27 CN CN201480056069.4A patent/CN105612660B/zh active Active
-
2016
- 2016-08-26 US US15/248,377 patent/US10003132B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102231456A (zh) * | 2011-04-25 | 2011-11-02 | 中国电子科技集团公司第三十八研究所 | 双频段双极化共口径天线 |
CN103259087A (zh) * | 2013-05-07 | 2013-08-21 | 西安电子科技大学 | 基于频率选择表面的l/c双波段共口径天线 |
CN103337713A (zh) * | 2013-06-04 | 2013-10-02 | 上海无线电设备研究所 | 一种异频微带阵列与印刷振子阵列共口径复合天线 |
CN103441332A (zh) * | 2013-08-21 | 2013-12-11 | 华为技术有限公司 | 一种微带阵列天线及基站 |
CN103606745A (zh) * | 2013-11-06 | 2014-02-26 | 航天恒星科技有限公司 | 一种低剖面紧凑型双频段双极化共口径微带天线 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018073701A1 (en) * | 2016-10-17 | 2018-04-26 | Director General, Defence Research & Development Organisation (Drdo) | Single layer shared aperture dual band antenna |
US10978812B2 (en) | 2016-10-17 | 2021-04-13 | Director General, Defence Research & Development Organisation (Drdo) | Single layer shared aperture dual band antenna |
CN107894583A (zh) * | 2017-09-28 | 2018-04-10 | 北京华航无线电测量研究所 | 一种基于互补结构的天线阵列设计的预处理方法 |
CN107894583B (zh) * | 2017-09-28 | 2019-08-30 | 北京华航无线电测量研究所 | 一种基于互补结构的天线阵列设计的预处理方法 |
CN111276824A (zh) * | 2018-12-04 | 2020-06-12 | 深圳市超捷通讯有限公司 | 天线结构及具有该天线结构的无线通信装置 |
US11342661B2 (en) | 2018-12-04 | 2022-05-24 | Mobile Drive Netherlands B.V. | Antenna structure and wireless communication device using the same |
CN109904599A (zh) * | 2019-01-31 | 2019-06-18 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | K/Ka双频段共口径天线阵 |
WO2021088651A1 (zh) * | 2019-11-06 | 2021-05-14 | 华为技术有限公司 | 天线结构、雷达和终端 |
CN110854520A (zh) * | 2019-11-22 | 2020-02-28 | 湖北汽车工业学院 | 一种基于卦型基元的k波段超材料微带天线 |
Also Published As
Publication number | Publication date |
---|---|
US20160365647A1 (en) | 2016-12-15 |
CN105612660A (zh) | 2016-05-25 |
US10003132B2 (en) | 2018-06-19 |
CN105612660B (zh) | 2019-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015127625A1 (zh) | 一种共口径天线及基站 | |
CN112753133B (zh) | 多层贴片天线 | |
US8854270B2 (en) | Hybrid multi-antenna system and wireless communication apparatus using the same | |
US11431110B2 (en) | Multi-band antenna system | |
US20190267710A1 (en) | Dual-band millimeter-wave antenna system | |
CN110957569B (zh) | 一种宽频辐射单元及天线 | |
CN112290193B (zh) | 毫米波模组、电子设备及毫米波模组的调节方法 | |
US20110128201A1 (en) | Circularly polarized antenna in wireless communication system and method for manufacturing the same | |
CN109728413B (zh) | 天线结构及终端 | |
CN112310633B (zh) | 天线装置及电子设备 | |
EP3688840B1 (en) | Perpendicular end fire antennas | |
CN112615147B (zh) | 基于正交模式的紧凑型低耦合可扩展mimo天线 | |
JP2018530251A (ja) | 通信装置 | |
JP2000278039A (ja) | 偏波共用アンテナ | |
US9825372B1 (en) | Dual polarized aperture coupled radiating element for AESA systems | |
KR101161262B1 (ko) | 적층형 다중 대역 안테나 장치 | |
CN115207613B (zh) | 一种宽带双极化天线单元及天线阵列 | |
US9595756B1 (en) | Dual polarized probe coupled radiating element for satellite communication applications | |
TW201208197A (en) | High gain loop array antenna system and electronic device | |
JP7161626B2 (ja) | 積層アンテナ構造を有するアンテナ・システム | |
US12113299B2 (en) | Signal radiation device and antenna structure | |
WO2024114283A1 (zh) | 一种天线结构和电子设备 | |
CN113594718B (zh) | 天线阵列及无线通信设备 | |
CN218939995U (zh) | 贴片天线单元、毫米波贴片天线及无线通信设备 | |
KR101309505B1 (ko) | 다중 입출력 안테나 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14883813 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14883813 Country of ref document: EP Kind code of ref document: A1 |