WO2018218494A1 - 控制终端及其控制方法、可移动平台及其控制方法 - Google Patents

控制终端及其控制方法、可移动平台及其控制方法 Download PDF

Info

Publication number
WO2018218494A1
WO2018218494A1 PCT/CN2017/086581 CN2017086581W WO2018218494A1 WO 2018218494 A1 WO2018218494 A1 WO 2018218494A1 CN 2017086581 W CN2017086581 W CN 2017086581W WO 2018218494 A1 WO2018218494 A1 WO 2018218494A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal information
sub
data
signal
satellite
Prior art date
Application number
PCT/CN2017/086581
Other languages
English (en)
French (fr)
Inventor
张伟
石仁利
胡孟
崔留争
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/086581 priority Critical patent/WO2018218494A1/zh
Priority to CN201780005338.8A priority patent/CN108496122A/zh
Publication of WO2018218494A1 publication Critical patent/WO2018218494A1/zh
Priority to US16/694,001 priority patent/US20200088886A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/04Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing carrier phase data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end

Definitions

  • the invention relates to the technical field of global satellite navigation systems, and more particularly to a control terminal and a control method thereof, a movable platform and a control method thereof.
  • the differential global navigation satellite system (DGNSS) consists of three parts: the base station, the data communication chain and the rover (user equipment).
  • the base station forms differential correction information (pseudorange, carrier phase). Differential data) and send differential correction information to the rover using standard protocols.
  • the base station mainly uses the RTCM (radio technical commission for martine service) protocol to transmit the formed differential correction information to the rover.
  • RTCM radio technical commission for martine service
  • RTCM radio technical commission for martine service
  • the multi-signal information can not only support the DGNSS/RTK information contained in the original format, but also transmit and save the observation values of the network-based RINEX format in real time.
  • MSM Multiple Signal Messages
  • the reference station transmits the differential correction information using the multi-signal information in the RTCM V3.2 protocol, if a part of the data in one frame of the multi-signal information is erroneous, the multi-signal information of one entire frame cannot be used.
  • the base station wirelessly transmits multi-signal information, it is easy to cause error in the wireless transmission process, which can easily cause the rover to complete differential positioning according to the received multi-signal information.
  • the invention provides a control terminal and a control method thereof, a movable platform and a control method thereof, so as to improve fault tolerance and reliability of multi-signal information transmission.
  • the present invention provides the following technical solutions:
  • An aspect of the embodiments of the present invention provides a control method for controlling a terminal, where the method includes:
  • Another aspect of the embodiments of the present invention provides a control method of a mobile platform, where the method includes:
  • a further aspect of the embodiments of the present invention provides a control terminal, where the control terminal includes:
  • a communication interface for receiving multi-signal information
  • One or more processors working individually or in concert, for:
  • a further aspect of the embodiments of the present invention provides a mobile platform, where the mobile platform includes:
  • a communication interface configured to receive a plurality of sub-multiple signal information units sent by the control terminal
  • One or more processors working individually or in concert, for:
  • the control terminal after receiving the multi-signal information, can construct the multi-signal information into a plurality of sub-multiple signal information units, and send the plurality of sub-multiple signal information units to the mobile platform, thereby effectively reducing the data. Between the associations, after receiving the plurality of sub-multiple signal information units, the mobile platform reconstructs the multi-signal information according to the received plurality of sub-multiple signal information units.
  • the mobile platform can still reconstruct the multi-signal information according to other sub-multiple signal information units, and according to the reconstruction
  • the multi-signal information completes the differential positioning, which improves the fault tolerance and reliability of multi-signal information transmission.
  • FIG. 1 is a flowchart of a method for controlling a control terminal according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of another application scenario according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for controlling a control terminal according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a sub-multiple signal information unit according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a format of a sub-multiple signal information unit of a frame header including multi-signal information and a sub-multiple signal information unit including satellite data and signal data in multi-signal information according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a method for controlling a control terminal according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a format of a sub-multiple signal information unit including a frame tail according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for controlling a mobile platform according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a control terminal according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a mobile platform according to an embodiment of the present invention.
  • a component when referred to as being “set up” with another component, it can be directly on another component or can also have a component in the middle. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • MSM1, MSM2, MSM3, MSM4, MSM5, MSM6, and MSM7 are types of multi-signal information.
  • the multi-signal information of various navigation and positioning systems has the same structure, and internal
  • the order in which the modules are arranged is also basically the same.
  • the specific structure is shown in Table 1 below:
  • Table 1 frame format of multi-signal information
  • the multi-signal information includes a message header of multi-signal information, satellite data, signal data, and a check code.
  • the frame header of the multi-signal information contains all the information of the satellite and the signal transmitted by the multi-signal information of the frame;
  • the satellite data contains all the satellite data shared by all the information of any satellite (for example, the rough distance);
  • the signal data includes all the exclusive signals of the respective signals.
  • Signal data eg, precision carrier phase distance
  • the check code is used to verify multi-signal information.
  • FIG. 1 is a flowchart of a method for controlling a control terminal according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment may include:
  • S101 Receive multi-signal information.
  • control terminal may be a dedicated remote controller of a mobile platform (such as a drone), a smart phone, a tablet computer, a laptop computer, a ground control station, a wearable device (such as a watch or a wristband).
  • a mobile platform such as a drone
  • smart phone such as a smart phone
  • tablet computer such as a tablet computer
  • laptop computer such as a laptop computer
  • ground control station such as a ground control station
  • wearable device such as a watch or a wristband
  • the control terminal may configure a corresponding communication interface and receive multi-signal information through the communication interface.
  • control terminal can receive the multi-signal information in the following feasible manners:
  • the RTK base station ie, the aforementioned base station
  • the control terminal is set.
  • the control terminal can receive the multi-signal information broadcasted by the radio station through the radio station communication interface.
  • the wireless network base station communicates with the control terminal through a wireless network, such as a second generation mobile communication technology (2nd Generation, 2G), 3G or 4G network or other standard communication network, so that the control terminal can Receiving multi-signal information transmitted by the wireless network base station.
  • a wireless network such as a second generation mobile communication technology (2nd Generation, 2G), 3G or 4G network or other standard communication network
  • the control terminal may be provided with a wireless network communication interface, and a wireless network data connection is established between the wireless network communication interface and the wireless network base station, so that the control terminal can receive the multi-signal information sent by the wireless network base station based on the wireless network data connection.
  • radio station communication interface the wireless network communication interface
  • control terminal are separately drawn, and are only for illustrative purposes.
  • the radio station communication interface and the wireless network communication interface may be a functional device of the control terminal, which is not independent of the control terminal.
  • S102 Construct the multi-signal information into a plurality of sub-multiple signal information units.
  • the control terminal After receiving the multi-signal information sent by the control terminal, if the mobile station receives some data errors or receiving errors in the multi-signal information, it may cause the entire frame to receive the multi-signal information unusable. Therefore, in this embodiment, after receiving the multi-signal information, the control terminal splits the data in the multi-signal information, and constructs the data obtained after the split into a plurality of sub-multiple-signal information units, which is to be obtained after being split. The data is placed in different sub-multiple signal information units, thus reducing the correlation between the data, that is, using the constructed plurality of sub-multiple signal information to improve the fault tolerance of the multi-signal information in the transmission process.
  • S103 Send multiple sub-multiple signal information units to the mobile platform.
  • the control terminal may send the plurality of sub-multiple signal information units to the mobile platform through the uplink data link, so that the mobile platform is based on multiple sub-multiple
  • the signal information unit performs differential positioning.
  • the uplink data link may be based on a wireless WLAN (Wireless Fidelity (WI-FI), Software Defined Radio (SDR) or other custom protocol of the IEEE 802.11b standard.
  • WI-FI Wireless Fidelity
  • SDR Software Defined Radio
  • the sub-multiple signal information units may also be encrypted, for example, an encryption algorithm such as a symmetric encryption algorithm or an asymmetric encryption algorithm may be employed, and the sub-multiple signals are used.
  • an encryption algorithm such as a symmetric encryption algorithm or an asymmetric encryption algorithm may be employed, and the sub-multiple signals are used.
  • the data required for positioning in the sub-multiple signal information unit (such as satellite data or signal data) may be encrypted, or the entire sub-multiple signal information unit may be encrypted.
  • each of the sub-multiple signal information units can be constructed to be encrypted, that is, the sub-multiple signal information unit and the encrypted multi-signal information unit are constructed simultaneously, or are constructed as all sub-multiple signals.
  • sending a plurality of sub-multiple signal information units to the mobile platform includes: to the mobile platform The encrypted plurality of sub-multiple signal information units are transmitted.
  • the control terminal after receiving the multi-signal information, can construct the multi-signal information into a plurality of sub-multiple signal information units, and send the plurality of sub-multiple signal information units to the mobile platform, thereby effectively reducing the data. Between the associations, after receiving the plurality of sub-multiple signal information units, the mobile platform reconstructs the multi-signal information according to the received plurality of sub-multiple signal information units.
  • the mobile platform can still reconstruct the multi-signal information according to other sub-multiple signal information units, and according to the reconstruction
  • the multi-signal information completes the differential positioning, which improves the fault tolerance and reliability of multi-signal information transmission.
  • Another embodiment of the present invention provides a control method of a control terminal.
  • 4 is a control provided by another embodiment of the present invention Flow chart of the control method of the terminal. As shown in FIG. 4, on the basis of the embodiment in FIG. 1, the method in this embodiment may include:
  • Step S401 Receive multi-signal information.
  • step S401 and step S101 are the same, and details are not described herein again.
  • S402 Constructing the multi-signal information into a sub-multiple signal information unit including a frame header of the multi-signal information, a sub-multiple signal information unit including satellite data and signal data in the multi-signal information.
  • the construction process includes: acquiring a frame header of the multi-signal information, constructing a frame header of the multi-signal information into a sub-multiple signal information unit of the frame header including the multi-signal information, and acquiring satellite data and signal data in the multi-signal information,
  • the satellite data and signal data are constructed into sub-multiple signal information units containing satellite data and signal data in the multi-signal information.
  • the processor of the control terminal separates the frame header of the multi-signal information from the multi-signal information, and constructs the frame header of the multi-signal information into a sub-multiple signal information unit including a frame header of multi-signal information, the processor of the control terminal separating satellite data and signal data from the multi-signal information, and constructing the satellite data and the signal data into satellite data and signals including the multi-signal information Sub-multiple signal information unit of data.
  • satellite data and signal data in the multi-signal information acquiring satellite data and signal data in the multi-signal information, constructing the satellite data and the signal data into sub-multiple signal information units including satellite data and signal data in the multi-signal information, including: the satellite data and the signal data
  • the grouping determines satellite data and signal data corresponding to each satellite, and constructs satellite data and signal data corresponding to each satellite into a sub-multiple signal information unit including satellite data and signal data in the multi-signal information.
  • the control terminal receives one frame of multi-signal information
  • the processor of the control terminal can acquire satellite data and signal data in the multi-signal information, wherein the satellite data and the signal data are performed in units of satellites.
  • Grouping acquiring satellite data and signal data corresponding to each satellite in the multi-signal information, for example, wherein the satellite is a visible satellite, and there are three visible satellites in the multi-signal information, for the purpose of illustration, the three visible satellites are assumed Satellites with satellite number 1, satellite with satellite number 5, and satellite with satellite number 8, respectively, satellite data and signal data 501 for satellites with satellite number 1 and satellites with satellite number 5 are determined from multi-signal information.
  • the satellite data and signal data 502, the satellite data and signal data 503 of the satellite numbered 8, the satellite data and signal data 501 are constructed into the sub-multiple signal information unit 1, and the satellite data and signal data 502 are constructed into the sub-multiple signal information unit 2.
  • the satellite data and signal data 503 is constructed as a sub-multiple signal information unit 3.
  • a header may be included in the sub-multiple signal information unit.
  • the related information of the sub-multiple signal information unit may be included in the frame header, such as a modulation mode, a data length, and a type of the sub-multiple signal information unit (the multi-signal information unit includes multi-signal information
  • the frame header is one or more of satellite data and signal data in the multi-signal information.
  • a check code can be included in each sub-multiple signal information unit.
  • the control terminal may add a check code to each sub-multiple signal information unit, and the mobile platform verifies the satellite data and signals in the received sub-multiple signal information unit by using the check code. Whether the data is erroneous or not, a feasible form for the check code is the CRC check code.
  • the sub-multiple signal information unit including satellite data and signal data in the multi-signal information includes identification information, wherein the identification information is determined according to a satellite number.
  • the identification information may indicate satellite data and signal data of which satellite is included in the sub-multiple signal information unit.
  • the processor of the control terminal parses the frame header of the multi-signal information, acquires the satellite number, determines the identification information according to the satellite number, and inserts the determined identification information into the corresponding sub-multiple signal of the satellite data and the signal data included in the multi-signal information. In the information unit.
  • the mobile platform After receiving the plurality of sub-multiple signal information units, the mobile platform according to the identification information in the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information and the sub-multiple signal information from the frame header including the multi-signal information
  • the frame header of the multi-signal information in the unit if the identification information and the satellite number in the frame header of the multi-signal information are compared, it is possible to determine that several sub-multiple signal information units including satellite data and signal data are lost or errored. Specifically, which satellite corresponds to the sub-multiple signal information unit containing satellite data and signal data is lost or bit coded.
  • determining the identification information according to the satellite number can be implemented by the following feasible methods:
  • the control terminal receives one frame of multi-signal information 600. If there are three visible satellites in the multi-signal information of the frame, it is assumed that the three visible satellites are respectively satellites with satellite number 1, and the satellite number is The satellite of 5 and the satellite with satellite number 8 can determine the identification information of the sub-multiple signal information unit 601, the sub-multiple signal information unit 602, and the sub-multiple signal information unit 603 according to the satellite numbers of the three visible satellites, respectively. And 8.
  • the mobile platform After receiving the sub-multiple signal information unit of the frame header containing the multi-signal information, the mobile platform can obtain the satellite number from the frame header of the multi-signal information, that is, acquire the visible satellite as the satellite number 1 satellite, and the satellite number is If the mobile platform receives only the sub-multiple signal information unit 601 having the identification information of 1 and the sub-multiple signal information unit 603 having the identification information of 8, the mobile station receives the satellite number according to the obtained satellite number. Can know that the satellite number is 5 The sub-multiple signal information unit 602 is lost.
  • Another possible way is to use the sequence number corresponding to the satellite number as the identification information of the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information.
  • the three visible satellites are satellite number 1 satellite, satellite number 5, satellite number 8
  • the sub-multiple signals can be determined according to the satellite numbers of the three visible satellites.
  • the identification information of the information unit 601, the sub-multiple signal information unit 602, and the sub-multiple signal information unit 603 are 1, 2, and 3, respectively.
  • the mobile platform After receiving the sub-multiple signal information unit of the frame header containing the multi-signal information, the mobile platform can obtain the satellite number from the frame header of the multi-signal information, that is, acquire the visible satellite as the satellite number 1 satellite, and the satellite number is The satellite of 5, the satellite with satellite number 8, if the mobile platform receives only the sub-multiple signal information unit 601 with the identification information of 1 and the sub-multiple signal information unit 603 with the identification information of 3, according to the acquired satellite number, It can be known that the sub-multiple signal information unit 602 of satellite number 2 is lost.
  • the identification information is located in an idle bit formed when the satellite data and signal data are combined in the multi-signal information unit.
  • the satellite data and the signal data need to be combined, and the combined data length should be an integer multiple of 8 bits, otherwise there will be idle bits when there is When the bits are idle, the idle bits need to be padded so that the combined data length is an integer multiple of 8 bits.
  • the rover that is, the positioning device on the mobile platform
  • the rover is usually a single-frequency or dual-frequency receiver, so only one signal data and two signal data need to be considered. See Table 2 below for the number of bits of satellite data and signal data for different types of multi-signal information.
  • Table 2 Number of bits of satellite data and signal data for multi-signal information
  • the number of bits is an integer multiple of 8 bits.
  • the number of visible satellites in the received multi-signal information does not exceed 16, so the number of bits occupied by the identification information does not exceed four, and from the above Table 3, the sub-multiple signal is constructed.
  • the information unit forms no less than 4 idle bits, so the identification information can be placed in the idle bits of the sub-multiple signal information unit, saving the number of transmitted bytes.
  • S403 Send a sub-multiple signal information unit including a frame header of the multi-signal information to the mobile platform, a sub-multiple signal information unit including satellite data and signal data in the multi-signal information.
  • the control terminal after constructing the sub-multiple signal information unit including the frame header of the multi-signal information, the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information, the control terminal will include the multi-signal through the uplink data link.
  • the sub-multiple signal information unit of the frame header of the information, the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information are transmitted to the movable platform.
  • the mobile platform Since the mobile platform reconstructs the multi-signal information according to the received sub-multiple signal information unit, parsing the received sub-multiple signal information of the frame header containing the multi-signal information to obtain a frame header of the multi-signal information, and according to The frame header of the multi-signal information reconstructs multi-signal information. If the mobile platform does not receive the sub-multiple signal information element of the frame header containing the multi-signal information, the mobile platform cannot reconstruct the multi-signal information element.
  • transmitting the sub-multiple signal information unit including the frame header of the multi-signal information to the mobile platform includes: transmitting the information to the mobile platform multiple times A sub-multiple signal information unit of a frame header of multi-signal information.
  • the embodiment of the present invention is not limited to the manner of transmitting the sub-multiple signal information unit of the frame header including the multi-signal information multiple times.
  • a response mechanism may also be adopted, that is, after the control terminal transmits the sub-multiple signal information unit of the frame header including the multi-signal information to the mobile platform, if the preset time (pre-set according to the actual application) is not The response to the mobile platform is retransmitted again, but this approach requires waiting for a response from the mobile platform relative to active multiple transmissions, and this mechanism is more complicated than active multiple transmissions.
  • FIG. 7 is a schematic diagram of another embodiment of the present invention Flow chart of the control method of the terminal. As shown in FIG. 7, on the basis of the embodiments in FIG. 1 and FIG. 4, the method in this embodiment may include:
  • Step S701 Receive multi-signal information.
  • step S701 and step S101 are the same, and are not described here.
  • S702 Construct the multi-signal information into a sub-multiple signal information unit including a frame header of multi-signal information, a sub-multiple signal information unit including satellite data and signal data in the multi-signal information.
  • step S702 and step S402 are the same, and are not described here.
  • S703 Construct a sub-multiple signal information element including a frame tail.
  • the sub-multiple signal information unit including the frame tail is constructed to instruct the control terminal to complete the transmission of the sub-multiple signal information unit to the mobile platform, wherein the format of the sub-multiple signal information unit including the end of the frame is as shown in FIG.
  • the frame end can adopt 1 byte to save the number of transmitted bytes, and the bit occupied by the end of the frame is much smaller than the satellite data and signal in the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information.
  • the bit of the data so that the control terminal can also determine whether the current transmission is a sub-multiple signal information unit including the end of the frame, thereby determining whether the transmission is completed.
  • S704 transmit a sub-multiple signal information unit including a frame header of the multi-signal information to the mobile platform, a sub-multiple signal information unit including satellite data and signal data in the multi-signal information, and a sub-multiple signal information unit including a frame tail.
  • the sub-multiple signal information unit of the frame header including the multi-signal information is first transmitted to the mobile platform (may be transmitted multiple times), and after the transmission of the sub-multiple signal information unit of the frame header including the multi-signal information is completed, the transmission includes The sub-multiple signal information unit of the satellite data and the signal data in the multi-signal information finally transmits the sub-multiple signal information unit including the end of the frame.
  • Transmitting the sub-multiple signal information element including the frame tail to the mobile platform comprises: transmitting the sub-multiple signal information unit including the frame tail to the mobile platform multiple times.
  • the embodiment of the present invention is not limited to the manner of transmitting the sub-multiple signal information unit including the end of the frame multiple times.
  • a response mechanism may also be adopted, that is, after the control terminal sends the sub-multiple signal information unit including the end of the frame to the mobile platform, if the preset time (pre-set according to the actual application) is not received, the mobile terminal does not receive the mobile unit.
  • the platform's response will be retransmitted again, but this approach requires waiting for the response from the mobile platform relative to active multiple transmissions, and this mechanism is more complicated than active multiple transmissions.
  • Embodiments of the present invention provide a method for controlling a mobile platform.
  • FIG. 9 is a flowchart of a method for controlling a mobile platform according to an embodiment of the present invention. As shown in FIG. 9, the method in this embodiment may include:
  • S901 Receive a plurality of sub-multiple signal information units sent by the control terminal.
  • the movable platform may be the above-mentioned mobile station.
  • the movable platform may be a ground robot (remote control vehicle), an aerial robot (such as a drone), a surface robot (remote control ship), etc., as described above.
  • the control terminal sends a plurality of sub-multiple signal information units to the mobile platform through the uplink data link, the mobile platform can receive the plurality of sub-multiple signal information units, and the plurality of sub-multiple signal information units are controlled by the control terminal to receive the multi-signal information
  • the manner of controlling the multi-signal information received by the terminal to be a sub-multiple signal information unit please refer to the foregoing section, and details are not described herein again.
  • S902 Re-establish multi-signal information according to the received plurality of sub-multiple signal information units.
  • the processor of the mobile platform may reconstruct the multi-signal information according to the plurality of sub-multiple signal information units according to the format characteristic of the multi-signal information, wherein the reconstructed multi-signal information is consistent
  • the format of standard multi-signal information is required.
  • S903 Determine location information of the movable platform according to the multi-signal information.
  • the mobile platform may be configured with a positioning device, that is, a GNSS receiver. After the mobile platform reconstructs the multi-signal information, the difference between the GNSS receiver output data and the reconstructed multi-signal information may be performed to determine the movable. Location information for the platform.
  • the received sub-multiple signal information unit is decrypted according to a preset decryption rule; and the reconstructing the multi-signal information according to the received plurality of sub-multiple signal information units comprises: according to the decrypted A plurality of sub-multiple signal information units reconstruct multi-signal information.
  • the processor of the mobile platform decrypts the received sub-multiple signal information unit according to a preset decryption rule, according to the decrypted
  • the plurality of sub-multiple signal information units reconstruct the multi-signal information, wherein the preset decryption rule corresponds to the encryption rule on the control terminal side, and details are not described herein again.
  • the control terminal after receiving the multi-signal information, constructs the multi-signal information into a plurality of sub-multiple signal information units, and transmits the plurality of sub-multiple signal information units to the movable platform, thereby reducing the multi-signal information.
  • the mobile platform Correlation of the data, after receiving the plurality of sub-multiple signal information units, reconstructs the multi-signal information according to the received plurality of sub-multiple signal information units, so the control terminal transmits the plurality of sub-multiple signal information units to the mobile platform.
  • the mobile platform can still reconstruct multi-signal information according to other sub-multiple signal information units, thereby improving multi-signal information transmission. Fault tolerance and reliability.
  • FIG. 10 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention. As shown in FIG. 10, on the basis of the embodiment in FIG. 9, the method in this embodiment may include:
  • S1001 Receive multiple sub-multiple signal information units sent by the control terminal.
  • step S1001 and step S901 are the same, and are not described here.
  • the plurality of sub-multiple signal information includes at least: a sub-multiple signal information unit including a frame header of the multi-signal information, a sub-multiple signal information unit including satellite data and signal data in the multi-signal information; and the received according to the received The sub-multiple signal information unit of the frame header of the multi-signal information, the sub-multiple signal information unit including the satellite data in the multi-signal information, and the signal data reconstruct the multi-signal information.
  • the control terminal constructs the multi-signal information into a sub-multiple signal information unit including a frame header of the multi-signal information, a sub-multiple signal information unit including satellite data and signal data in the multi-signal information, and
  • the mobile platform transmits a sub-multiple signal information unit including a frame header of multi-signal information, a sub-multiple signal information unit including satellite data and signal data in the multi-signal information.
  • the mobile platform reconstructs multi-signal information according to the two sub-multiple signal information units, wherein the reconstructed multi-signal information conforms to the format requirement of the standard multi-signal information.
  • reconstructing the multi-signal information according to the received sub-multiple signal information unit of the frame header including the multi-signal information, the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information includes: acquiring the multi-signal information a frame header of the multi-signal information in the sub-multiple signal information unit of the frame header, acquiring satellite data and signal data in the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information, according to the multi-signal information Frame header, satellite data, and signal data reconstruct multi-signal information.
  • the processor of the mobile platform separates the frame header of the multi-signal information from the sub-multiple signal information unit of the frame header including the multi-signal information, from the sub-multiple signal information including the satellite data and the signal data in the multi-signal information
  • the satellite data and signal data are separated from the unit, and then the frame header, satellite data and signal data of the multi-signal information are recombined into multi-signal information according to the format requirements of the standard multi-signal information.
  • the satellite data and the signal data in the sub-multiple signal information unit each containing the satellite data and the signal data in the multi-signal information are satellite data and signal data corresponding to one satellite in the multi-signal information
  • the data reconstructing the multi-signal information comprises: reconstructing the multi-signal information according to the frame header of the multi-signal information, the satellite data corresponding to each satellite, and the signal data.
  • each of the sub-multiple signal information units including the satellite data and the signal data in the multi-signal information may include satellite data and signal data corresponding to one satellite, and the mobile platform acquires satellite data and signal data corresponding to each satellite. And combining the satellite data of each satellite, combining the signal data of each satellite, and combining the frame header of the multi-signal information with the combined satellite data according to the format requirements of the standard multi-signal information. The combined signal data is recombined into multi-signal information.
  • the plurality of sub-multiple signal information units further include a frame header, and after receiving the sub-multiple signal information unit, the movable platform can acquire the sub-head by parsing the frame header in the sub-multi-signal information unit.
  • the modulation mode of the multi-signal information unit, the data length, the type of the sub-multiple signal information unit (the header of the multi-signal information unit included in the sub-multiple signal information unit, or the satellite data and the signal data in the multi-signal information) One or more.
  • the plurality of sub-multiple signal information units further includes: a sub-multiple signal information unit including a frame tail, and after receiving the sub-multiple signal information unit including the end of the frame, according to the received multi-signal information
  • the sub-multiple signal information unit of the frame header, the sub-multiple signal information unit including the satellite data in the multi-signal information, and the signal data reconstruct the multi-signal information.
  • the control terminal when receiving the sub-multiple signal information unit including the end of the frame, the control terminal has transmitted all the sub-multiple signal information units constructed according to the multi-signal information, so that the mobile platform can be based on the received multiple sub-subjects.
  • the multi-signal information unit reconstructs multi-signal information.
  • S1003 Determine location information of the movable platform according to the multi-signal information.
  • step S1003 and step S903 are the same, and are not described here.
  • FIG. 11 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention. As shown in FIG. 11, on the basis of the embodiments in FIG. 9 and FIG. 10, the method in this embodiment may include:
  • S1101 Receive a plurality of sub-multiple signal information units sent by the control terminal.
  • step S1101 and step S901 are the same, and are not described here.
  • step 1102 Determine whether all sub-multiple signal information units including satellite data and signal data in the multi-signal information constructed from the multi-signal information are received. If no, step 1103 is performed, and if yes, step 1105 is performed.
  • the processor of the mobile platform needs to determine whether all satellite data and signal data included in the multi-signal information constructed by the multi-signal information are received.
  • the sub-multiple signal information unit determines the satellite data and signal data corresponding to which satellite or satellites are lost.
  • the satellite data and the signal data in the sub-multiple signal information unit each containing the satellite data and the signal data in the multi-signal information are satellite data and signal data corresponding to one satellite in the multi-signal information
  • the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information includes identification information. Comparing the obtained identification information with the satellite number in the frame header of the multi-signal information, it is possible to determine that several sub-multiple signal information units including satellite data and signal data in the multi-signal information are lost, specifically which satellite corresponds The sub-multiple signal information unit containing satellite data and signal data is lost.
  • the specific process please refer to the previous part of this article, and I will not repeat them here.
  • the identification information is located in an idle bit formed when the satellite data and the signal data are combined in the multi-signal information unit, and thus the idle bit formed when the satellite data and the signal data are combined from the multi-signal information unit.
  • 1103 Modify the frame header of the multi-signal information.
  • the processor of the mobile platform parses the frame header of the multi-signal information, it can be seen that the multi-signal information includes three visible satellites, and the three visible satellites are respectively satellites with satellite number 1 and satellite number 5 A satellite with a satellite number of 8, however, by analyzing the identification information in the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information, it is known that only the sub-multiple signal information unit having the identification information of 1 is currently received.
  • the sub-multiple signal information unit with the identification information of 3 it can be determined that the sub-multiple signal information unit with the identification information of 2 is lost, that is, the satellite data and the signal data of the satellite with the satellite number 5 are lost, so currently only Satellite data and signal data of two visible satellites, and the frame header of the current multi-signal information indicates that there are three visible satellites, so it is necessary to modify the frame header of the multi-signal information, and further, modify the frame header of the multi-signal information.
  • One of the satellite number and the number of signal data Kind or more.
  • a specific implementation manner is to modify one or more of a satellite mask, a signal mask, and a cell mask in a frame header in the multi-signal information.
  • 1104 Re-establish multi-signal information according to the frame header, satellite data and signal data of the modified multi-signal information.
  • the information in the frame header of the modified multi-signal information matches the received satellite data and the signal data, that is, the obtained satellite data and Signal data reconstructs multiple signal information.
  • S1105 Re-establish multi-signal information according to frame header, satellite data and signal data of multi-signal information.
  • the frame header is not modified, that is, all the frame header indications of the multi-signal information are received.
  • the satellite data and signal data of the satellite can be seen, that is, the multi-signal information can be reconstructed directly according to the received satellite data and signal data, and the frame header of the multi-signal information.
  • S1106 Determine location information of the movable platform according to the multi-signal information.
  • step S1106 and step S903 are the same, and are not described here.
  • FIG. 12 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention. As shown in FIG. 12, on the basis of the embodiments in FIG. 9, 10, and 11, the method in this embodiment may include:
  • S1201 Receive multiple sub-multiple signal information units sent by the control terminal.
  • step S1201 and step S901 are the same, and are not described here.
  • the sub-multiple signal information unit includes a check code, and determining, according to the check code, whether the sub-multiple signal information unit that receives the satellite data and the signal data in the multi-signal information has an error. If yes, go to step 1203, if no, go to step 1205.
  • the sub-multiple signal information unit includes a check code
  • the processor of the mobile platform may determine that the received multi-signal information is received according to the check code. Whether there is a bit error in the satellite data and the sub-multiple signal information unit of the signal data.
  • the identification information is located in an idle bit formed when the satellite data and the signal data are combined in the multi-signal information unit, and thus the idle bit formed when the satellite data and the signal data are combined from the multi-signal information unit.
  • the header of the multi-signal information can be modified based on the identification information acquired from the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information and the frame header of the multi-signal information.
  • each of the satellite data and the signal data in the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information is satellite data and signal data corresponding to one satellite in the multi-signal information, and includes a plurality of
  • the sub-multiple signal information unit of the satellite data and the signal data in the signal information includes identification information, wherein the identification information is determined according to the satellite number.
  • the processor of the mobile platform parses the frame header of the multi-signal information, it can be seen that the multi-signal information includes three visible satellites, and it is assumed that the three visible satellites are satellites with satellite number 1 and satellites with satellite number 5 Satellite with satellite number 8, however, it can be known that the identification information in the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information without error is known, the sub-multiple signal information in which the current identification information is 1.
  • the unit and the sub-multiple signal information unit with the identification information of 3 have no error, and the sub-multiple signal information unit error with the current identification information of 2 can be determined, and the satellite data and the signal data of the satellite including the satellite number 5 can be determined.
  • the sub-multiple signal information unit has an error, and the satellite data and signal data of the satellite with satellite number 5 are not available. Therefore, there are currently only two visible satellite satellite data and signal data without error, and the current multi-signal information header indicates that there are three visible satellites, so it is necessary to modify the frame header of the multi-signal information. Further, one or more of a satellite number and a number of signal data in a frame header of the multi-signal information are modified.
  • a specific implementation manner is to modify one or more of a satellite mask, a signal mask, and a cell mask in a frame header in the multi-signal information.
  • the information in the frame header of the modified multi-signal information matches the satellite data and the signal data in the sub-multiple signal information unit without the error, that is, The multi-signal information is reconstructed based on the satellite data and signal data acquired from the sub-multiple signal information unit in which the error is not present.
  • S1205 reconstruct multi-signal information according to a frame header, satellite data, and signal data of the multi-signal information.
  • the frame header is not modified, that is, directly according to the received satellite data and signal data, and multi-signal information. of The frame header reconstructs multi-signal information.
  • S1206 Determine location information of the movable platform according to the multi-signal information.
  • step S1206 and step S903 are the same, and are not described here.
  • Embodiments of the present invention provide a control terminal, which is a dedicated remote controller, a smart phone, a tablet computer, a laptop computer, a ground control station, and a wearable device (eg, a drone). One or more of a watch or a bracelet.
  • FIG. 13 is a schematic structural diagram of a control terminal according to an embodiment of the present invention. As shown in FIG. 13, the control terminal includes:
  • a communication interface 1301, configured to receive multi-signal information
  • One or more processors 1302, working alone or in concert, are used to:
  • the processor 1302 when the processor 1302 constructs the multiple signal information into multiple sub-multiple signal information units, specifically, the processor 1302 is specifically configured to:
  • the processor 1302 When the processor 1302 sends the multiple sub-multiple signal information to the mobile platform, specifically, the processor 1302 is configured to:
  • a sub-multiple signal information unit including a frame header of multi-signal information, a sub-multiple signal information unit including satellite data and signal data in the multi-signal information is transmitted to the mobile platform.
  • the processor 1302 constructs the multi-signal information into a sub-multiple signal information unit including a frame header of multi-signal information, sub-multiple signal information including satellite data and signal data in the multi-signal information.
  • a sub-multiple signal information unit including a frame header of multi-signal information, sub-multiple signal information including satellite data and signal data in the multi-signal information.
  • the satellite data and the signal data in the multi-signal information are acquired, and the satellite data and the signal data are constructed into sub-multiple signal information units including satellite data and signal data in the multi-signal information.
  • the processor 1302 constructs the satellite data and signal data into sub-multiple signal information units including satellite data and signal data in the multi-signal information, specifically for:
  • the satellite data and signal data corresponding to each satellite constitute a sub-multiple signal information unit containing satellite data and signal data in the multi-signal information.
  • the sub-multiple signal information unit including satellite data and signal data in the multi-signal information includes identification information, wherein the identification information is determined according to a satellite number.
  • the identification information is located in an idle bit formed when the satellite data and signal data are combined in the sub-multiple signal information unit.
  • the processor 1302 is further configured to:
  • the sub-multiple signal information element including the end of the frame is transmitted to the mobile platform.
  • the sub-multiple signal information unit includes a check code.
  • the sub-multiple signal information unit includes a frame header.
  • the processor 1302 when the processor 1302 sends the sub-multiple signal information unit of the frame header including the multi-signal information to the mobile platform, specifically, the processor 1302 is configured to:
  • the sub-multiple signal information unit of the frame header including the multi-signal information is transmitted to the mobile platform a plurality of times.
  • the communication interface 1301 when the communication interface 1301 receives the multi-signal information, it is specifically used to:
  • the communication interface 1301 when the communication interface 1301 receives the multi-signal information, it is specifically used to:
  • the processor 1302 is further configured to encrypt the sub-multiple signal information unit
  • the processor 1302 When the processor 1302 sends the multiple sub-multiple signal information units to the mobile platform, specifically, the processor 1302 is configured to:
  • the encrypted plurality of sub-multiple signal information units are transmitted to the mobile platform.
  • the communication interface 1301 constructs the multi-signal information into a plurality of sub-multiple signal information units, and transmits the plurality of sub-multiple signal information units to the movable platform, thereby reducing the Correlation of data in the multi-signal information
  • the mobile platform reconstructs the multi-signal information according to the received plurality of sub-multiple signal information units, and therefore sends the plurality of sub-multiples to the mobile platform at the control terminal
  • the mobile platform can still reconstruct the multi-signal information according to other sub-multiple signal information units, thereby improving the multi-signal. Fault tolerance and reliability of information transmission.
  • Embodiments of the present invention provide a mobile platform.
  • 14 is a schematic structural diagram of a mobile platform according to an embodiment of the present invention, where the mobile platform may be the above-mentioned mobile station.
  • the movable platform may be a ground robot (remote control vehicle) or an aerial robot (such as a drone). , the surface robot (remote control ship), etc., as shown in FIG. 14, the movable platform in this embodiment may include:
  • the communication interface 1401 is configured to receive, by the control terminal, a plurality of sub-multiple signal information units
  • One or more processors 1402, working alone or in concert, are used to:
  • the plurality of sub-multiple signal information includes at least: a sub-multiple signal information unit including a frame header of the multi-signal information, a sub-multiple signal information unit including satellite data and signal data in the multi-signal information;
  • the processor 1402 reconstructs the multi-signal information according to the received multiple sub-multiple signal information units
  • the processor 1402 is specifically configured to:
  • the multi-signal information is reconstructed based on the received sub-multiple signal information unit of the frame header containing the multi-signal information, the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information.
  • the processor 1402 reconstructs a multi-signal based on the received sub-multiple signal information unit of the frame header containing the multi-signal information, the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information.
  • information it is specifically used to:
  • the multi-signal information is reconstructed based on the frame header, satellite data, and signal data of the multi-signal information.
  • the satellite data and the signal data in each of the sub-multiple signal information units including the satellite data and the signal data in the multi-signal information are satellite data and signal data corresponding to one satellite in the multi-signal information.
  • the processor 1402 is configured to: when acquiring satellite data and signal data in a sub-multiple signal information unit including satellite data and signal data in the multi-signal information, specifically:
  • the processor 1402 reconstructs the multi-signal information according to the frame header, the satellite data, and the signal data of the multi-signal information
  • the processor 1402 is specifically configured to:
  • the multi-signal information is reconstructed according to the frame header of the multi-signal information, the satellite data corresponding to each satellite, and the signal data.
  • the processor is further configured to:
  • the processor 1402 reconstructs the multi-signal information according to the received multiple sub-multiple signal information units
  • the processor 1402 is specifically configured to:
  • the multi-signal information is reconstructed according to the frame header of the modified multi-signal information, the satellite data and the signal data in the received sub-multiple signal information unit.
  • the sub-multiple signal information unit including satellite data and signal data in the multi-signal information includes identification information, wherein the identification information is determined according to a satellite number;
  • the processor 1402 determines whether all the sub-multiple signal information units including the satellite data and the signal data in the multi-signal information constructed by the multi-signal information are received, specifically for:
  • the sub-multiple signal information unit includes a check code
  • the processor 1402 is further configured to:
  • the processor reconstructs the multi-signal information according to the received multiple sub-multiple signal information units
  • the processor is specifically configured to:
  • the multi-signal information is reconstructed based on the frame header of the modified multi-signal information, the satellite data and the signal data in the sub-multiple signal information unit in which the error is not present.
  • processor 1402 modifies the frame header of the multi-signal information, it is specifically used to:
  • Modifying one or more of a satellite number and a number of signal data in a frame header of the multi-signal information Modifying one or more of a satellite number and a number of signal data in a frame header of the multi-signal information.
  • the processor 1402 when the processor 1402 acquires the identification information in the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information, the processor 1402 is specifically configured to:
  • the plurality of sub-multiple signal information units further includes a sub-multiple signal information unit including a frame tail;
  • the processor 1402 reconstructs the multi-signal information according to the received sub-multiple signal information unit of the frame header including the multi-signal information, the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information, the processor 1402 is specifically configured to:
  • the sub-multiple signal information unit After receiving the sub-multiple signal information unit including the end of the frame, reconstructing according to the received sub-multiple signal information unit of the frame header containing the multi-signal information, the sub-multiple signal information unit including the satellite data and the signal data in the multi-signal information Multiple signal information.
  • the sub-multiple signal information unit includes a frame header.
  • the processor 1402 is further configured to: decrypt the received sub-multiple signal information unit according to a preset decryption rule
  • the processor 1402 reconstructs the multi-signal information according to the received multiple sub-multiple signal information units, specifically for:
  • the multi-signal information is reconstructed based on the decrypted plurality of sub-multiple signal information units.
  • the mobile platform is a drone.
  • the mobile platform can receive a plurality of sub-multiple signal information units constructed by the control terminal for the multi-signal information, and the plurality of sub-multiple signal information units are independent of each other, so if one of the plurality of sub-multiple signal information units or Multiple sub-multiple signal information units are erroneous or lost, and the mobile platform can still reconstruct multi-signal information according to other sub-multiple signal information units, thereby improving fault tolerance and reliability of information transmission.
  • the present invention can be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, may be embodied in the form of a software product, which may be stored in a storage medium such as a ROM/RAM or a disk. , an optical disk, etc., includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种控制终端及其控制方法、可移动平台及其控制方法,控制终端在接收到多信号信息后(S101),可以将多信号信息构建成多个子多信号信息单元(S102),并将多个子多信号信息单元发送给可移动平台(S103),可移动平台在接收到多个子多信号信息单元后(S901),根据接收到的多个子多信号信息单元重建多信号信息(S902),因此在控制终端向可移动平台发送多个子多信号信息单元过程中,若多个子多信号信息单元中的一个或多个子多信号信息单元误码或丢失,可移动平台仍可根据其他子多信号信息单元来重建多信号信息,并根据重建后的多信号信息完成差分定位,提高了多信号信息传输的容错能力和可靠性。

Description

控制终端及其控制方法、可移动平台及其控制方法 技术领域
本发明涉及全球卫星导航系统技术领域,更具体的说是涉及一种控制终端及其控制方法、可移动平台及其控制方法。
背景技术
差分全球导航卫星系统(differential global navigation satellite system,DGNSS)由基准站、数据通讯链和流动站(用户设备)三部分组成,由DGNSS定位原理可知,基准站形成差分改正信息(伪距、载波相位差分数据),并利用标准协议将差分改正信息发送给流动站。目前,基准站主要采用RTCM(radio technical commission for martine service)协议将形成的差分改正信息传输给流动站。目前,为了满足全球导航卫星系统的发展趋势,RTCM先后经历多次格式的改进,目前已经更新到RTCM V3.2标准格式,RTCM V3.2的制定和修正,不经弥补了之前的版本的缺陷,还增加和扩展了多种网络RTK信息,包括GPS、GLONNASS、GALILEO和BDS的多信号信息(Multiple Signal Messages,MSM)。多信号信息不仅能够支持原有格式中包含的DGNSS/RTK的信息,还能实时传输、保存基于网络的RINEX格式的观测值。
然而,基准站在使用RTCM V3.2协议中的多信号信息传输差分改正信息时,如果一帧多信号信息中的部分数据出现误码,将导致一整个帧的多信号信息无法使用。特别是在基准站通过无线传输多信号信息时,由于无线传输过程中容易出现误码,这样很容易导致流动站无法根据接收到的多信号信息完成差分定位。
发明内容
本发明提供一种控制终端及其控制方法、可移动平台及其控制方法,以提高多信号信息传输的容错能力和可靠性。
为实现上述目的,本发明提供如下技术方案:
本发明实施例的一方面提供一种控制终端的控制方法,所述方法包括:
接收多信号信息;
将所述多信号信息构建成多个子多信号信息单元;
向可移动平台发送所述多个子多信号信息单元。
本发明实施例的另一方面提供一种可移动平台的控制方法,所述方法包括:
接收控制终端发送的多个子多信号信息单元;
根据接收到的所述多个子多信号信息单元重建多信号信息;
根据所述多信号信息确定可移动平台的位置信息。
本发明实施例的再一方面提供一种控制终端,所述控制终端包括:
通信接口,用于接收多信号信息;
一个或多个处理器,单独或协同地工作,用于:
将所述多信号信息构建成多个子多信号信息单元;
向可移动平台发送所述多个子多信号信息单元。
本发明实施例的再一方面提供一种可移动平台,所述可移动平台包括:
通信接口,用于接收控制终端发送的多个子多信号信息单元;
一个或多个处理器,单独或协同地工作,用于:
根据接收到的所述多个子多信号信息单元重建多信号信息;
根据所述多信号信息确定可移动平台的位置信息。
从上述技术方案可知,控制终端在接收到多信号信息后,可以将多信号信息构建成多个子多信号信息单元,并将多个子多信号信息单元发送给可移动平台,这样可以有效地降低数据之间的关联性,可移动平台在接收到多个子多信号信息单元后,根据接收到的多个子多信号信息单元重建多信号信息。这样若多个子多信号信息单元中的一个或多个子多信号信息单元在传输过程中出现误码或丢失,可移动平台仍可根据其他子多信号信息单元来重建多信号信息,并根据重建后的多信号信息完成差分定位,提高了多信号信息传输的容错能力和可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明一实施例提供一种控制终端的控制方法的流程图;
图2为本发明实施例提供的一种应用场景示意图;
图3为本发明实施例提供的另一种应用场景示意图;
图4为本发明另一实施例提供的控制终端的控制方法的流程图;
图5为本发明实施例提供的构建子多信号信息单元的示意图;
图6为本发明实施例提供的包含多信号信息的帧头的子多信号信息单元和包含多信号信息中的卫星数据和信号数据的子多信号信息单元的格式示意图;
图7为本发明另一实施例提供的控制终端的控制方法的流程图;
图8为本发明实施例提供的包含帧尾的子多信号信息单元的格式示意图;
图9为本本发明一实施例提供的可移动平台的控制方法的流程图;
图10为本发明另一实施例提供的可移动平台的控制方法的流程图;
图11为本发明另一实施例提供的可移动平台的控制方法的流程图;
图12为本发明另一实施例提供的可移动平台的控制方法的流程图;
图13为本发明实施例提供控制终端的结构示意图;
图14为本发明实施例提供的可移动平台的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“设置有”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
目前,在RTCM V3.2协议中定义了7种类型的多信号信息:MSM1、MSM2、MSM3、MSM4、MSM5、MSM6、MSM7,各种导航定位系统的多信号信息具有相同的结构,内部 模块排列顺序也基本相同,具体结构如下表1所示:
表1多信号信息的帧格式
多信号信息的帧头 卫星数据 信号数据 校验码
多信号信息中包括多信号信息的帧头(message header)、卫星数据(satellite data)、信号数据(signal data)和校验码。其中,多信号信息的帧头包含这帧多信号信息所发送卫星和信号的所有信息;卫星数据包含任意卫星所有信息共有的全部卫星数据(例如粗略距离);信号数据包含各个信号专有的全部信号数据(例如精密载波相位距离);其中,校验码用于对多信号信息进行校验。
本发明实施例提供一种控制终端的控制方法。图1为本发明实施例提供的控制终端的控制方法的流程图。如图1所示,本实施例中的方法,可以包括:
S101:接收多信号信息。
具体地,所述控制终端可以是可移动平台(如无人机)的专用遥控器、智能手机、平板电脑、膝上型电脑、地面控制站、穿戴式设备(如手表或手环)中的一种或多种,控制终端可以配置相应的通信接口,并通过所述通信接口接收多信号信息。
在本发明实施例中,控制终端可以通过如下几种可行的方式接收多信号信息:
一种可行方式:接收RTK基站的无线电台发送的多信号信息,如图2中所述,RTK基站(即前述的基准站)上设置有无线电台或者RTK基站与无线电台连接,控制终端上设置有无线电台通信接口,RTK基站通过无线电台广播多信号信息时,控制终端就可以通过无线电台通信接口接收无线电台广播的多信号信息。
另一种可行方式:接收无线网络基站发送的多信号信息。如图3中所示,无线网络基站通过无线网络,如第二代移动通信技术(2nd Generation,2G)、3G或4G等网络或者其他标准的通信网络与控制终端相通信,以使控制终端可以接收无线网络基站发送的多信号信息。例如控制终端上可以设置有无线网络通信接口,通过此无线网络通信接口与无线网络基站之间建立无线网络数据连接,使得控制终端能够基于该无线网络数据连接接收无线网络基站发送的多信号信息。
需要说明的是,图2和图3中,为了方便理解,无线电台通信接口、无线网络通信接口与控制终端分开绘制,这里只是为了进行示意性说明。其中无线电台通信接口、无线网络通信接口可以是控制终端的一个功能装置,其与控制终端并不是相互独立的。
S102:将多信号信息构建成多个子多信号信息单元。
可移动平台在接收到控制终端发送的多信号信息之后,如果接收到的多信号信息中的部分数据误差或接收错误,则会导致接收到整个一帧多信号信息无法使用。为此,本实施例中,控制终端在接收到多信号信息时后,将多信号信息中的数据拆分,将拆分后得到的数据构建成多个子多信号信息单元,即将拆分后得到的数据放置在不同的子多信号信息单元中,这样,降低数据之间的关联性,即利用构建的多个子多信号信息提高多信号信息在传输过程中的容错能力。
S103:向可移动平台发送多个子多信号信息单元。
具体地,控制终端的处理器在构建得到多个子多信号信息单元后,控制终端可通过上行数据链路向可移动平台发送所述多个子多信号信息单元,以使可移动平台根据多个子多信号信息单元完成差分定位。其中,所述上行数据链路可以基于IEEE 802.11b标准的无线局域网(Wireless Fidelity,WI-FI)、软件无线电(Software Defined Radio,SDR)或者其他自定义协议。
在某些实施例中,在构建得到多个子多信号信息单元后,还可以对子多信号信息单元加密,例如可以采用加密算法,如对称加密算法或非对称加密算法等,在对子多信号信息单元加密时可以对子多信号信息单元中的定位所需数据(如卫星数据或信号数据)进行加密,或者可以对整个子多信号信息单元进行加密。并且可以每构建成一个子多信号信息单元,对构建成的子多信号信息单元进行加密,即构建子多信号信息单元和加密子多信号信息单元同时进行,又或者在构建成所有子多信号信息单元后,对所有子多信号信息单元依次或同时进行加密,以保证这些子多信号信息单元的安全性,相对应的,向可移动平台发送多个子多信号信息单元包括:向可移动平台发送加密后的多个子多信号信息单元。
从上述技术方案可知,控制终端在接收到多信号信息后,可以将多信号信息构建成多个子多信号信息单元,并将多个子多信号信息单元发送给可移动平台,这样可以有效地降低数据之间的关联性,可移动平台在接收到多个子多信号信息单元后,根据接收到的多个子多信号信息单元重建多信号信息。这样若多个子多信号信息单元中的一个或多个子多信号信息单元在传输过程中出现误码或丢失,可移动平台仍可根据其他子多信号信息单元来重建多信号信息,并根据重建后的多信号信息完成差分定位,提高了多信号信息传输的容错能力和可靠性。
本发明另一实施例提供一种控制终端的控制方法。图4为本发明另一实施例提供的控制 终端的控制方法的流程图。如图4所示,在图1中实施例的基础上,本实施例中的方法,可以包括:
步骤S401:接收多信号信息。
步骤S401和步骤S101的具体方法和原理一致,此处不再赘述。
S402:将多信号信息构建成包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
其中,构建过程包括:获取多信号信息的帧头,将多信号信息的帧头构建成包含多信号信息的帧头的子多信号信息单元,获取多信号信息中的卫星数据和信号数据,将卫星数据和信号数据构建成包含多信号信息中的卫星数据和信号数据的子多信号信息单元。具体地,在控制终端接收到多信号信息后,根据多信号信息的帧结构特点,控制终端的处理器从多信号信息中分离出多信号信息的帧头,将多信号信息的帧头构建成包含多信号信息的帧头的子多信号信息单元,控制终端的处理器从多信号信息中分离出卫星数据和信号数据,将卫星数据和信号数据构建成包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
进一步地,获取多信号信息中的卫星数据和信号数据,将卫星数据和信号数据构建成包含多信号信息中的卫星数据和信号数据的子多信号信息单元包括:对所述卫星数据和信号数据分组以确定每一颗卫星对应的卫星数据和信号数据,将所述每一颗卫星对应的卫星数据和信号数据构成一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
具体地,如图5所示,控制终端接收到一帧多信号信息,控制终端的处理器可以获取多信号信息中的卫星数据和信号数据,其中,以卫星为单位对卫星数据和信号数据进行分组,获取多信号信息中每一颗卫星对应的卫星数据和信号数据,例如,其中所述卫星为可见卫星,多信号信息中有三颗可见卫星,为了进行示意性说明,假设这三颗可见卫星分别为卫星编号为1的卫星、卫星编号为5的卫星、卫星编号为8的卫星,则从多信号信息中确定卫星编号为1的卫星的卫星数据和信号数据501、卫星编号为5的卫星的卫星数据和信号数据502、卫星编号为8的卫星的卫星数据和信号数据503,将卫星数据和信号数据501构建成子多信号信息单元1,卫星数据和信号数据502构建成子多信号信息单元2,卫星数据和信号数据503构建成子多信号信息单元3。这样,若可移动平台只接收到三个子多信号信息单元中的2个,或者接收到3个多信号信息单元中的1个子多信号信息单元误码,依然可以根据剩下的两个多子多信号信息单元中的卫星数据和信号数据完成差分定位。
下面将详细介绍下根据多信号信息单元构建的多个子多信号信息单元的具体格式:
在某些实施例中,子多信号信息单元中可以包括帧头。其中,在某些情况中帧头中可以包括该子多信号信息单元的相关信息,例如调制方式、数据长度、子多信号信息单元的类型(子多信号信息单元中包含的是多信号信息的帧头,还是多信号信息中的卫星数据和信号数据)等中的一种或多种。
在某些实施例中,每个子多信号信息单元中可以包括校验码。其中,控制终端在构建子多信号信息单元时,可以在每一个子多信号信息单元中加入校验码,可移动平台通过校验码验证接收到的子多信号信息单元中的卫星数据和信号数据是否有误码,对于校验码来说,其采用的一种可行形式是CRC校验码。
在某些实施例中,所述包含多信号信息中的卫星数据和信号数据的子多信号信息单元中包括标识信息,其中所述标识信息是根据卫星编号确定的。具体地,标识信息可以表示所述子多信号信息单元中包含的是哪一颗卫星的卫星数据和信号数据。控制终端的处理器对多信号信息的帧头进行解析,获取卫星编号,根据卫星编号确定标识信息,并将确定的标识信息插入对应的包含多信号信息中的卫星数据和信号数据的子多信号信息单元中。可移动平台在接收到多个子多信号信息单元后,根据包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的标识信息和从包含多信号信息的帧头的子多信号信息单元中多信号信息的帧头,如将标识信息和多信号信息的帧头中的卫星编号进行比对,就可以确定几个包含卫星数据和信号数据的子多信号信息单元丢失或误码,具体是哪颗卫星对应的包含卫星数据和信号数据的子多信号信息单元丢失或误码。
具体地,根据卫星编号确定标识信息可以通过如下的可行方式实现:
一种可行方式是:将卫星编号作为包含多信号信息中的卫星数据和信号数据的子多信号信息单元的标识信息。例如,如图6所示,控制终端接收到一帧多信号信息600,若这一帧多信号信息中有三颗可见卫星,假设这三颗可见卫星分别为卫星编号为1的卫星、卫星编号为5的卫星、卫星编号为8的卫星,可以按照三颗可见卫星的卫星编号分别确定子多信号信息单元601、子多信号信息单元602、子多信号信息单元603的标识信息分别为1、5和8。可移动平台在接收到包含多信号信息的帧头的子多信号信息单元后,可以从多信号信息的帧头中获取卫星编号,即获取到可见卫星为卫星编号为1的卫星、卫星编号为5的卫星、卫星编号为8的卫星,若可移动平台只接收到标识信息为1的子多信号信息单元601和标识信息为8的子多信号信息单元603,则根据获取到的卫星编号即可知道卫星编号为5 的子多信号信息单元602丢失。
另一种可行方式是:将与卫星编号相对应的序列号作为包含多信号信息中的卫星数据和信号数据的子多信号信息单元的标识信息。例如,继续参考图6,假设这三颗可见卫星分别为卫星编号为1的卫星、卫星编号为5的卫星、卫星编号为8的卫星,可以按照三颗可见卫星的卫星编号分别确定子多信号信息单元601、子多信号信息单元602、子多信号信息单元603的标识信息分别为1、2和3。可移动平台在接收到包含多信号信息的帧头的子多信号信息单元后,可以从多信号信息的帧头中获取卫星编号,即获取到可见卫星为卫星编号为1的卫星、卫星编号为5的卫星、卫星编号为8的卫星,若可移动平台只接收到标识信息为1的子多信号信息单元601和标识信息为3的子多信号信息单元603,则根据获取到的卫星编号即可知道卫星编号为2的子多信号信息单元602丢失。
在某些实施例中,所述标识信息位于多信号信息单元中卫星数据和信号数据组合时形成的空闲比特位中。具体地,在根据卫星数据和信号数据构建子多信号信息单元时,需要将卫星数据和信号数据进行组合,组合后的数据长度应当为8比特的整数倍,否则会存在空闲比特位,当存在空闲比特位时,需要将空闲比特位补齐以使组合后的数据长度为8比特的整数倍。目前流动站(即可移动平台上定位装置)通常为单频或者双频的接收机,因此只需要考虑1个信号数据和2个信号数据的情况。不同类型的多信号信息的卫星数据和信号数据的比特数请参见下表2。
表2多信号信息的卫星数据和信号数据的比特数
  MSM4 MSM5 MSM6 MSM7
卫星数据的比特数 18 36 18 36
信号数据的比特数 48 63 65 80
以MSM4为例,考虑一个信号数据的情况,由多信号信息中的卫星数据和信号数据组合的比特数为18+48=66,因此需要再凑6个空闲比特位才能使子多信号信息单元的比特数为8比特的整数倍。
考虑两个信号数据的情况,构建成的子多信号信息单元的比特数为18+48*2=114,因此需要再凑6个空闲比特位才能使子多信号信息单元的比特数为8比特的整数倍。参见表3,可以得到不同类型的多信号信息构建子多信号信息单元时的空闲比特位。
表3、多信号信息构建子多信号信息单元时的空闲比特位
  MSM4 MSM5 MSM6 MSM7
1个信号 6 5 5 4
2个信号 6 6 4 4
对于目前接收机而言,其接收的多信号信息中的可见卫星的个数不会超过16个,因此标识信息占用的比特数不会超过4个,而从上述表3可知,构建成子多信号信息单元形成的空闲比特位不小于4个,因此可以将标识信息放入子多信号信息单元的空闲比特位中,节约发送字节数。
需要说明的是,如图6所示将标识信息放在卫星数据和信号数据之前只是为了进行示意性说明,本领域技术人员还可以采用其他的放置方式,在这里不做具体的限定。
S403:向可移动平台发送包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
具体地,在构建得到包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元之后,控制终端通过上行数据链路将包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元发送给可移动平台。由于可移动平台在根据接收到的子多信号信息单元重建多信号信息时,要对接收到的包含多信号信息的帧头的子多信号信息进行解析以获取多信号信息的帧头,并根据所述多信号信息的帧头来重建多信号信息。如果可移动平台接收不到包含多信号信息的帧头的子多信号信息单元,则可移动平台无法重建多信号信息单元。因此,在满足控制终端与可移动平台之间的无线传输数据带宽要求的情况下,向可移动平台发送包含多信号信息的帧头的子多信号信息单元包括:向可移动平台多次发送包含多信号信息的帧头的子多信号信息单元。通过这种冗余发送的方式,确保可移动平台能够接收到包含多信号信息的帧头的子多信号信息单元,提高可移动平台接收到包含多信号信息的帧头的子多信号信息单元的概率。
其中,本发明实施例并不限于多次发送包含多信号信息的帧头的子多信号信息单元的方式。在某些实施例中,还可以采用响应机制,即控制终端在向可移动平台发送包含多信号信息的帧头的子多信号信息单元后,若预设时间(根据实际应用预先设置)内未接收到可移动平台的响应则会再次重传,但是这种方式相对于主动多次发送来说需要等待可移动平台的响应,且这种机制相对于主动多次发送来说更为复杂。
本发明另一实施例提供一种控制终端的控制方法。图7为本发明另一实施例提供的控制 终端的控制方法的流程图。如图7所示,在图1、4中实施例的基础上,本实施例中的方法,可以包括:
步骤S701:接收多信号信息。
步骤S701和步骤S101的具体方法和原理一致,此处不再赘述。
S702:将所述多信号信息构建成包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
步骤S702和步骤S402的具体方法和原理一致,此处不再赘述。
S703:构建包含帧尾的子多信号信息单元。
具体地,构建包含帧尾的子多信号信息单元是为了指示控制终端完成向可移动平台发送子多信号信息单元,其中包含帧尾的子多信号信息单元的格式如图8所示,在本实施例中帧尾可以采用1个字节,以节约发送字节数,且帧尾占用的比特位远小于包含多信号信息中的卫星数据和信号数据的子多信号信息单元中卫星数据和信号数据的比特位,因此通过此还可以使控制终端确定当前发送的是否是包含帧尾的子多信号信息单元,进而确定本次发送是否完成。
S704:向可移动平台发送包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元、包含帧尾的子多信号信息单元。
具体地,首先向可移动平台发送包含多信号信息的帧头的子多信号信息单元(可以多次发送),在完成包含多信号信息的帧头的子多信号信息单元的发送后,发送包含多信号信息中的卫星数据和信号数据的子多信号信息单元,最后发送包含帧尾的子多信号信息单元。
由于可移动平台需要通过包含帧尾的子多信号信息单元来确定本次发送是否完成,所以在本实施例中,在满足控制终端与可移动平台之间的无线传输数据带宽要求的情况下,向可移动平台发送包含帧尾的子多信号信息单元包括:向可移动平台多次发送包含帧尾的子多信号信息单元。通过这种冗余发送的方式,确保可移动平台能够接收到包含帧尾的子多信号信息单元,提高可移动平台接收到包含帧尾的子多信号信息单元的概率。
其中,本发明实施例并不限于多次发送包含帧尾的子多信号信息单元的方式。在某些实施例中,还可以采用响应机制,即控制终端在向可移动平台发送包含帧尾的子多信号信息单元后,若预设时间(根据实际应用预先设置)内未接收到可移动平台的响应则会再次重传,但是这种方式相对于主动多次发送来说需要等待可移动平台的响应,且这种机制相对于主动多次发送来说更为复杂。
本发明实施例提供一种可移动平台的控制方法。图9为本发明实施例提供的可移动平台的控制方法的流程图。如图9所示,本实施例中的方法,可以包括:
S901:接收控制终端发送的多个子多信号信息单元。
具体地,可移动平台可以是上述流动站,具体地,所述可移动平台可以是地面机器人(遥控车)、空中机器人(例如无人机)、水面机器人(遥控船舶)等,如前所述,控制终端通过上行数据链路向可移动平台发送多个子多信号信息单元,可移动平台可以接收多个子多信号信息单元,而所述多个子多信号信息单元由控制终端对接收的多信号信息构建得到的,具体地控制终端将接收到的多信号信息成子多信号信息单元的方式请参见前述部分,此处不再赘述。
S902:根据接收到的多个子多信号信息单元重建多信号信息。
具体地,在接收到多个子多信号信息单元后,可移动平台的处理器可以根据多信号信息的格式特点,根据多个子多信号信息单元重建多信号信息,其中重建后的多信号信息是符合标准的多信号信息的格式要求的。
S903:根据多信号信息确定可移动平台的位置信息。
具体地,可移动平台中可以配置有定位装置,即GNSS接收机,当可移动平台重建多信号信息后,可以根据GNSS接收机输出数据与重建的多信号信息进行差分解算,以确定可移动平台的位置信息。
在某些实施例中,根据预设的解密规则对接收到的所述子多信号信息单元解密;所述根据接收到的所述多个子多信号信息单元重建多信号信息包括:根据解密后的多个子多信号信息单元重建多信号信息。
具体地,若控制终端对根据多信号信息单元构建得到的子多信号信息单元加密发送,则可移动平台的处理器根据预设的解密规则对接收到的子多信号信息单元解密,根据解密后的多个子多信号信息单元重建多信号信息,其中预设的解密规则与控制终端侧的加密规则对应,对此不再赘述。
从上述技术方案可知,控制终端在接收到多信号信息后,将多信号信息构建成多个子多信号信息单元,并将多个子多信号信息单元发送给可移动平台,这样降低了多信号信息中数据的关联性,可移动平台在接收到多个子多信号信息单元后,根据接收到的多个子多信号信息单元重建多信号信息,因此在控制终端向可移动平台发送多个子多信号信息单元 过程中,若多个子多信号信息单元中的一个或多个子多信号信息单元误码或丢失,可移动平台仍可根据其他子多信号信息单元来重建多信号信息,提高了多信号信息传输的容错能力和可靠性。
本发明另一实施例提供一种可移动平台的控制方法。图10为本发明另一实施例提供的可移动平台的控制方法的流程图。如图10所示,在图9中实施例的基础上,本实施例中的方法,可以包括:
S1001:接收控制终端发送的多个子多信号信息单元。
步骤S1001和步骤S901的具体方法和原理一致,此处不再赘述。
S1002:所述多个子多信号信息中至少包括:包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元;根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息。
具体地,如前所述,控制终端将多信号信息构建成包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元,并向可移动平台发送包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元。可移动平台根据所述两种子多信号信息单元重建多信号信息,其中重建后的多信号信息符合标准的多信号信息的格式要求。
进一步地,根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息包括:获取包含多信号信息的帧头的子多信号信息单元中的多信号信息的帧头,获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据,根据所述多信号信息的帧头、卫星数据和信号数据重建多信号信息。具体地,可移动平台的处理器从包含多信号信息的帧头的子多信号信息单元中分离出多信号信息的帧头,从包含多信号信息中的卫星数据和信号数据的子多信号信息单元中分离出卫星数据和信号数据,接下来按照标准的多信号信息的格式要求,将多信号信息的帧头、卫星数据和信号数据重组成多信号信息。
进一步地,所述每一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据为多信号信息中一颗卫星对应的卫星数据和信号数据,则获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据包 括:从每一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元获取一颗卫星对应的卫星数据和信号数据,所述根据所述多信号信息的帧头、卫星数据和信号数据重建多信号信息包括:根据所述多信号信息的帧头、每一颗卫星对应的卫星数据和信号数据重建多信号信息。具体地,每一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元可以包括一颗卫星对应的卫星数据和信号数据,可移动平台获取每一颗卫星对应的卫星数据和信号数据,并将每一颗卫星的卫星数据组合在一起,将每一颗卫星的信号数据组合在一起,按照标准的多信号信息的格式要求,将多信号信息的帧头、组合后的卫星数据和组合后的信号数据重组成多信号信息。
在某些实施例中,多个子多信号信息单元还包括帧头,则在接收到子多信号信息单元后,通过对子多信号信息单元中的帧头进行解析,可移动平台可以获取该子多信号信息单元的调制方式、数据长度、子多信号信息单元的类型(子多信号信息单元中包含的是多信号信息的帧头,还是多信号信息中的卫星数据和信号数据)等中的一种或多种。
在某些实施例中,多个子多信号信息单元还包括:包含帧尾的子多信号信息单元,则在接收到包含帧尾的子多信号信息单元后,根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息。
具体地,当接收到包含帧尾的子多信号信息单元时,说明控制终端已经将根据多信号信息构建得到的所有子多信号信息单元发送出来,故此时可移动平台可以根据接收到的多个子多信号信息单元重建多信号信息。
S1003:根据多信号信息确定可移动平台的位置信息。
步骤S1003和步骤S903的具体方法和原理一致,此处不再赘述。
本发明另一实施例提供一种可移动平台的控制方法。图11为本发明另一实施例提供的可移动平台的控制方法的流程图。如图11所示,在图9、10中实施例的基础上,本实施例中的方法,可以包括:
S1101:接收控制终端发送的多个子多信号信息单元。
步骤S1101和步骤S901的具体方法和原理一致,此处不再赘述。
1102:确定是否接收到所有由多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元。如果否,执行步骤1103,如果是,执行步骤1105。
具体地,在根据接收到的多个子多信号信息单元重建多信号信息之前,可移动平台的处理器需要确定是否接收到所有由多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元,即确定是哪一颗卫星或者哪几颗卫星对应的卫星数据和信号数据丢失。
进一步地,所述包含多信号信息中的卫星数据和信号数据的子多信号信息单元中包括标识信息,其中所述标识信息是根据卫星编号确定的。所述确定是否接收到所有由所述多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元包括:获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的标识信息;根据所述多信号信息的帧头和所述标识信息确定是否接收到所有由所述多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
具体地,如前所述,每一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据为多信号信息中一颗卫星对应的卫星数据和信号数据,并且包含多信号信息中的卫星数据和信号数据的子多信号信息单元中包括标识信息。将获取到的标识信息与多信号信息的帧头中的卫星编号进行比对,可以确定几个包含多信号信息中的卫星数据和信号数据的子多信号信息单元丢失,具体是哪颗卫星对应的包含卫星数据和信号数据的子多信号信息单元丢失。具体过程请参考本文前述部分,这里不再赘述。
在某些实施例中,所述标识信息位于多信号信息单元中卫星数据和信号数据组合时形成的空闲比特位中,因此可以从多信号信息单元中卫星数据和信号数据组合时形成的空闲比特位中获取标识信息,而在构成子多信号信息单元时可以形成空闲比特位的原因可参阅前述方法实施例中的相关说明。
1103:修改多信号信息的帧头。
具体地,若可移动平台的处理器通过解析多信号信息的帧头,可知多信号信息中包括三颗可见卫星,假设这三颗可见卫星分别为卫星编号为1的卫星、卫星编号为5的卫星、卫星编号为8的卫星,然而,通过解析包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的标识信息可知,当前只接收到标识信息为1的子多信号信息单元和标识信息为3的子多信号信息单元,则如前所述可以确定标识信息为2的子多信号信息单元丢失,即卫星编号为5的卫星的卫星数据和信号数据丢失,因此,当前只有两颗可见卫星的卫星数据和信号数据,而当前的多信号信息的帧头指示有三颗可见卫星,因此需要修改多信号信息的帧头,进一步地,修改所述多信号信息的帧头中的卫星编号、信号数据个数中的一 种或多种。具体的实现方式是修改多信号信息中的帧头中的卫星掩码(satellite mask)、信号掩码(signal mask)、蜂窝掩码(cell mask)中的一种或多种。
1104:根据修改后的多信号信息的帧头、卫星数据和信号数据重建多信号信息。
具体地,得到修改后的多信号信息的帧头后,则此时修改后的多信号信息的帧头中的信息与接收到的卫星数据和信号数据匹配,即可以根据获取得到的卫星数据和信号数据重建多信号信息。
S1105:根据多信号信息的帧头、卫星数据和信号数据重建多信号信息。
具体地,若接收到所有由多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元,则帧头不用修改,即接收到多信号信息的帧头指示的所有可见卫星的卫星数据和信号数据,即可以直接根据接收到的卫星数据和信号数据、多信号信息的帧头重建多信号信息。
S1106:根据多信号信息确定可移动平台的位置信息。
步骤S1106和步骤S903的具体方法和原理一致,此处不再赘述。
本发明另一实施例提供一种可移动平台的控制方法。图12为本发明另一实施例提供的可移动平台的控制方法的流程图。如图12所示,在图9、10、11中实施例的基础上,本实施例中的方法,可以包括:
S1201:接收控制终端发送的多个子多信号信息单元。
步骤S1201和步骤S901的具体方法和原理一致,此处不再赘述。
1202:所述子多信号信息单元中包括校验码,根据所述校验码确定接收到包含多信号信息中的卫星数据和信号数据的子多信号信息单元是否存在误码。如果是,执行步骤1203,如果否,执行步骤1205。
具体地,如前所述子多信号信息单元中包括校验码,在根据接收到的多个子多信号信息单元之后,可移动平台的处理器可以根据校验码确定接收到包含多信号信息中的卫星数据和信号数据的子多信号信息单元是否存在误码。
在某些实施例中,所述标识信息位于多信号信息单元中卫星数据和信号数据组合时形成的空闲比特位中,因此可以从多信号信息单元中卫星数据和信号数据组合时形成的空闲比特位中获取标识信息,而在构成子多信号信息单元时可以形成空闲比特位的原因可参阅前述方法实施例中的相关说明。
1203:修改多信号信息的帧头。
具体地,可以根据从不存在误码的包含多信号信息中的卫星数据和信号数据的子多信号信息单元中获取的标识信息和多信号信息的帧头修改多信号信息的帧头。如前所述,每一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据为多信号信息中一颗卫星对应的卫星数据和信号数据,并且包含多信号信息中的卫星数据和信号数据的子多信号信息单元中包括标识信息,其中所述标识信息是根据卫星编号确定的。从不存在误码的包含多信号信息中的卫星数据和信号数据的子多信号信息单元中获取标识信息,将所述标识信息与多信号信息的帧头中的卫星编号进行比对,可以确定几个包含多信号信息中的卫星数据和信号数据的子多信号信息单元误码,具体是哪颗卫星对应的包含卫星数据和信号数据的子多信号信息单元误码。
例如,若可移动平台的处理器通过解析多信号信息的帧头,可知多信号信息中包括三颗可见卫星,假设这三颗可见卫星分别为卫星编号为1的卫星、卫星编号为5的卫星、卫星编号为8的卫星,然而,对不存在误码的包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的标识信息解析可知,当前标识信息为1的子多信号信息单元和标识信息为3的子多信号信息单元不存在误码,即可以确定当前标识信息为2的子多信号信息单元误码,即可以确定包含卫星编号为5的卫星的卫星数据和信号数据的子多信号信息单元存在误码,卫星编号为5的卫星的卫星数据和信号数据不可用。因此,当前只有两颗可见卫星的卫星数据和信号数据不存在误码,而当前的多信号信息的帧头指示有三颗可见卫星,因此需要修改多信号信息的帧头。进一步地,修改所述多信号信息的帧头中的卫星编号、信号数据个数中的一种或多种。具体的实现方式是修改多信号信息中的帧头中的卫星掩码(satellite mask)、信号掩码(signal mask)、蜂窝掩码(cell mask)中的一种或多种。
1204:根据修改后的多信号信息的帧头、不存在误码的子多信号信息单元中的卫星数据和信号数据重建多信号信息。
具体地,得到修改后的多信号信息的帧头后,即修改后的多信号信息的帧头中的信息与不存在误码的子多信号信息单元中的卫星数据和信号数据匹配,即可以根据从不存在误码的子多信号信息单元中获取得到的卫星数据和信号数据重建多信号信息。
S1205:根据多信号信息的帧头、卫星数据和信号数据重建多信号信息。
具体地,若接收到包含多信号信息中的卫星数据和信号数据的子多信号信息单元不存在误码,则帧头不用修改,即可以直接根据接收到的卫星数据和信号数据、多信号信息的 帧头重建多信号信息。
S1206:根据多信号信息确定可移动平台的位置信息。
步骤S1206和步骤S903的具体方法和原理一致,此处不再赘述。
本发明实施例提供一种控制终端,所述控制终端以是可移动平台(如无人机)的专用遥控器、智能手机、平板电脑、膝上型电脑、地面控制站、穿戴式设备(如手表或手环)中的一种或多种。图13为本发明实施例提供的一种控制终端的结构示意图,如图13所示,该控制终端包括:
通信接口1301,用于接收多信号信息;
一个或多个处理器1302,单独或协同地工作,用于:
将所述多信号信息构建成多个子多信号信息单元;
向可移动平台发送所述多个子多信号信息单元。
在某些实施例中,所述处理器1302将所述多信号信息构建成多个子多信号信息单元时,具体用于:
将所述多信号信息构建成包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元;
所述处理器1302向可移动平台发送所述多个子多信号信息时,具体用于:
向可移动平台发送包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
在某些实施例中,所述处理器1302将所述多信号信息构建成包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元时,具体用于:
获取多信号信息的帧头,将所述帧头构建成包含多信号信息的帧头的子多信号信息单元;
获取多信号信息中的卫星数据和信号数据,将所述卫星数据和信号数据构建成包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
在某些实施例中,所述处理器1302将所述卫星数据和信号数据构建成包含多信号信息中的卫星数据和信号数据的子多信号信息单元时,具体用于:
对所述卫星数据和信号数据分组以确定每一颗卫星对应的卫星数据和信号数据,将所 述每一颗卫星对应的卫星数据和信号数据构成一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
在某些实施例中,所述包含多信号信息中的卫星数据和信号数据的子多信号信息单元中包括标识信息,其中所述标识信息是根据卫星编号确定的。
在某些实施例中,所述标识信息位于所述子多信号信息单元中卫星数据和信号数据组合时形成的空闲比特位中。
在某些实施例中,所述处理器1302,还用于:
构建包含帧尾的子多信号信息单元;
向可移动平台发送所述包含帧尾的子多信号信息单元。
在某些实施例中,所述子多信号信息单元包括校验码。
在某些实施例中,所述子多信号信息单元包括帧头。
在某些实施例中,所述处理器1302向可移动平台发送包含多信号信息的帧头的子多信号信息单元时,具体用于:
向可移动平台多次发送所述包含多信号信息的帧头的子多信号信息单元。
在某些实施例中,所述通信接口1301接收多信号信息时,具体用于:
接收无线网络基站发送的多信号信息。
在某些实施例中,所述通信接口1301接收多信号信息时,具体用于:
接收RTK基站的无线电台发送的多信号信息。
在某些实施例中,所述处理器1302,还用于对所述子多信号信息单元加密;
所述处理器1302向可移动平台发送所述多个子多信号信息单元时,具体用于:
向可移动平台发送加密后的多个子多信号信息单元。
从上述技术方案可知,通信接口1301在接收到多信号信息后,处理器1302将多信号信息构建成多个子多信号信息单元,并将多个子多信号信息单元发送给可移动平台,这样降低了多信号信息中数据的关联性,可移动平台在接收到多个子多信号信息单元后,根据接收到的多个子多信号信息单元重建多信号信息,因此在控制终端向可移动平台发送多个子多信号信息单元过程中,若多个子多信号信息单元中的一个或多个子多信号信息单元误码或丢失,可移动平台仍可根据其他子多信号信息单元来重建多信号信息,提高了多信号信息传输的容错能力和可靠性。
本发明实施例提供一种可移动平台。图14为本发明实施例提供的可移动平台的结构示意图,其中可移动平台可以是上述流动站,具体地,所述可移动平台可以是地面机器人(遥控车)、空中机器人(例如无人机)、水面机器人(遥控船舶)等,如图14所示,本实施例中的可移动平台可以包括:
通信接口1401,用于接收控制终端发送的多个子多信号信息单元;
一个或多个处理器1402,单独或协同地工作,用于:
根据接收到的所述多个子多信号信息单元重建多信号信息;
根据所述多信号信息确定可移动平台的位置信息。
在某些实施例中,所述多个子多信号信息中至少包括:包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元;
所述处理器1402根据接收到的所述多个子多信号信息单元重建多信号信息时,具体用于:
根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息。
在某些实施例中,所述处理器1402根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息时,具体用于:
获取包含多信号信息的帧头的子多信号信息单元中的多信号信息的帧头;
获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据;
根据所述多信号信息的帧头、卫星数据和信号数据重建多信号信息。
在某些实施例中,每一个所述包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据为多信号信息中一颗卫星对应的卫星数据和信号数据;
所述处理器1402获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据时,具体用于:
从每一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元获取一颗卫星对应的卫星数据和信号数据;
所述处理器1402根据所述多信号信息的帧头、卫星数据和信号数据重建多信号信息时,具体用于:
根据所述多信号信息的帧头、每一颗卫星对应的卫星数据和信号数据重建多信号信息。
在某些实施例中,所述处理器还用于:
确定是否接收到所有由所述多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元;
若否,修改多信号信息的帧头;
所述处理器1402根据接收到的所述多个子多信号信息单元重建多信号信息时,具体用于:
根据修改后的多信号信息的帧头、接收到的子多信号信息单元中的卫星数据和信号数据重建多信号信息。
在某些实施例中,所述包含多信号信息中的卫星数据和信号数据的子多信号信息单元中包括标识信息,其中所述标识信息是根据卫星编号确定的;
所述处理器1402确定是否接收到所有由所述多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元时,具体用于:
获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的标识信息;
根据所述多信号信息的帧头和所述标识信息确定是否接收到所有由所述多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
在某些实施例中,其特征在于,所述子多信号信息单元中包括校验码;
所述处理器1402还用于:
根据所述校验码确定接收到包含多信号信息中的卫星数据和信号数据的子多信号信息单元是否存在误码;
若是,修改多信号信息的帧头;
所述处理器根据接收到的所述多个子多信号信息单元重建多信号信息时,具体用于:
根据修改后的多信号信息的帧头、不存在误码的所述子多信号信息单元中的卫星数据和信号数据重建多信号信息。
在某些实施例中,所述处理器1402修改多信号信息的帧头时,具体用于:
修改所述多信号信息的帧头中的卫星编号、信号数据个数中的一种或多种。
在某些实施例中,所述处理器1402获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的标识信息时,具体用于:
从所述子多信号信息单元中卫星数据和信号数据组合时形成的空闲比特位中获取所述 标识信息。
在某些实施例中,所述多个子多信号信息单元还包括包含帧尾的子多信号信息单元;
所述处理器1402根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息时,具体用于:
在接收到包含帧尾的子多信号信息单元后,根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息。
在某些实施例中,所述子多信号信息单元包括帧头。
在某些实施例中,所述处理器1402还用于:根据预设的解密规则对接收到的所述子多信号信息单元解密;
所述处理器1402根据接收到的所述多个子多信号信息单元重建多信号信息,具体用于:
根据解密后的多个子多信号信息单元重建多信号信息。
在某些实施例中,所述可移动平台为无人机。
从上述技术方案可知,可移动平台可接收控制终端对多信号信息构建得到的多个子多信号信息单元,且多个子多信号信息单元彼此相互独立,因此若多个子多信号信息单元中的一个或多个子多信号信息单元误码或丢失,可移动平台仍可根据其他子多信号信息单元来重建多信号信息,提高信息传输的容错能力和可靠性。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (51)

  1. 一种控制终端的控制方法,其特征在于,包括:
    接收多信号信息;
    将所述多信号信息构建成多个子多信号信息单元;
    向可移动平台发送所述多个子多信号信息单元。
  2. 根据权利要求1所述的控制方法,其特征在于,
    所述将所述多信号信息构建成多个子多信号信息单元包括:
    将所述多信号信息构建成包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元;
    所述向可移动平台发送所述多个子多信号信息包括:
    向可移动平台发送包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
  3. 根据权利要求2所述的控制方法,其特征在于,
    所述将所述多信号信息构建成包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元包括:
    获取多信号信息的帧头,将所述帧头构建成包含多信号信息的帧头的子多信号信息单元;
    获取多信号信息中的卫星数据和信号数据,将所述卫星数据和信号数据构建成包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
  4. 根据权利要求3所述的控制方法,其特征在于,
    所述将所述卫星数据和信号数据构建成包含多信号信息中的卫星数据和信号数据的子多信号信息单元包括:
    对所述卫星数据和信号数据分组以确定每一颗卫星对应的卫星数据和信号数据,将所述每一颗卫星对应的卫星数据和信号数据构成一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
  5. 根据权利要求4所述的控制方法,其特征在于,
    所述包含多信号信息中的卫星数据和信号数据的子多信号信息单元中包括标识信息,其中所述标识信息是根据卫星编号确定的。
  6. 根据权利要求5所述的控制方法,其特征在于,
    所述标识信息位于所述子多信号信息单元中卫星数据和信号数据组合时形成的空闲比特位中。
  7. 根据权利要求2-6任一项所述的控制方法,其特征在于,所述方法还包括:
    构建包含帧尾的子多信号信息单元;
    向可移动平台发送所述包含帧尾的子多信号信息单元。
  8. 根据权利要求1-7任一项所述的控制方法,其特征在于,
    所述子多信号信息单元包括校验码。
  9. 根据权利要求1-8任一项所述的控制方法,其特征在于,
    所述子多信号信息单元包括帧头。
  10. 根据权利要求2-9任一项所述的控制方法,其特征在于,
    所述向可移动平台发送包含多信号信息的帧头的子多信号信息单元包括:
    向可移动平台多次发送所述包含多信号信息的帧头的子多信号信息单元。
  11. 根据权利要求1-10任一项所述的控制方法,其特征在于,
    所述接收多信号信息包括:
    接收无线网络基站发送的多信号信息。
  12. 根据权利要求1-10任一项所述的控制方法,其特征在于,
    所述接收多信号信息包括:
    接收RTK基站的无线电台发送的多信号信息。
  13. 根据权利要求1-12任一项所述的控制方法,其特征在于,所述方法还包括:
    对所述子多信号信息单元加密;
    所述向可移动平台发送所述多个子多信号信息单元包括:
    向可移动平台发送加密后的多个子多信号信息单元。
  14. 一种可移动平台的控制方法,其特征在于,包括:
    接收控制终端发送的多个子多信号信息单元;
    根据接收到的所述多个子多信号信息单元重建多信号信息;
    根据所述多信号信息确定可移动平台的位置信息。
  15. 根据权利要求14所述的方法,其特征在于,
    所述多个子多信号信息中至少包括:包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元;
    所述根据接收到的所述多个子多信号信息单元重建多信号信息包括:
    根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息。
  16. 根据权利要求15所述的方法,其特征在于,
    所述根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息包括:
    获取包含多信号信息的帧头的子多信号信息单元中的多信号信息的帧头;
    获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据;
    根据所述多信号信息的帧头、卫星数据和信号数据重建多信号信息。
  17. 根据权利要求16所述的方法,其特征在于,
    每一个所述包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据为多信号信息中一颗卫星对应的卫星数据和信号数据;
    所述获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据 和信号数据包括:
    从每一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元获取一颗卫星对应的卫星数据和信号数据;
    所述根据所述多信号信息的帧头、卫星数据和信号数据重建多信号信息包括:
    根据所述多信号信息的帧头、每一颗卫星对应的卫星数据和信号数据重建多信号信息。
  18. 根据权利要求16-17任一项所述的方法,其特征在于,所述方法还包括:
    确定是否接收到所有由所述多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元;
    若否,修改多信号信息的帧头;
    所述根据接收到的所述多个子多信号信息单元重建多信号信息包括:
    根据修改后的多信号信息的帧头、接收到的子多信号信息单元中的卫星数据和信号数据重建多信号信息。
  19. 根据权利要求18所述的方法,其特征在于,
    所述包含多信号信息中的卫星数据和信号数据的子多信号信息单元中包括标识信息,其中所述标识信息是根据卫星编号确定的;
    所述确定是否接收到所有由所述多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元包括:
    获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的标识信息;
    根据所述多信号信息的帧头和所述标识信息确定是否接收到所有由所述多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
  20. 根据权利要求16-17任一项所述的方法,其特征在于,所述子多信号信息单元中包括校验码;
    所述方法还包括:
    根据所述校验码确定接收到包含多信号信息中的卫星数据和信号数据的子多信号信息单元是否存在误码;
    若是,修改多信号信息的帧头;
    所述根据接收到的所述多个子多信号信息单元重建多信号信息包括:
    根据修改后的多信号信息的帧头、不存在误码的所述子多信号信息单元中的卫星数据和信号数据重建多信号信息。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,
    所述修改多信号信息的帧头包括:
    修改所述多信号信息的帧头中的卫星编号、信号数据个数中的一种或多种。
  22. 根据权利要求19所述的方法,其特征在于,
    所述获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的标识信息包括:
    从所述子多信号信息单元中卫星数据和信号数据组合时形成的空闲比特位中获取所述标识信息。
  23. 根据权利要求15-22任一项的方法,其特征在于,
    所述多个子多信号信息单元还包括包含帧尾的子多信号信息单元;
    所述根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息包括:
    在接收到包含帧尾的子多信号信息单元后,根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息。
  24. 根据权利要求14-23任一项所述的方法,其特征在于,
    所述子多信号信息单元包括帧头。
  25. 根据权利要求14-24任一项所述的方法,其特征在于,所述方法还包括:
    根据预设的解密规则对接收到的所述子多信号信息单元解密;
    所述根据接收到的所述多个子多信号信息单元重建多信号信息包括:
    根据解密后的多个子多信号信息单元重建多信号信息。
  26. 一种控制终端,其特征在于,包括:
    通信接口,用于接收多信号信息;
    一个或多个处理器,单独或协同地工作,用于:
    将所述多信号信息构建成多个子多信号信息单元;
    向可移动平台发送所述多个子多信号信息单元。
  27. 根据权利要求26所述的控制终端,其特征在于,
    所述处理器将所述多信号信息构建成多个子多信号信息单元时,具体用于:
    将所述多信号信息构建成包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元;
    所述处理器向可移动平台发送所述多个子多信号信息时,具体用于:
    向可移动平台发送包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
  28. 根据权利要求27所述的控制终端,其特征在于,
    所述处理器将所述多信号信息构建成包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元时,具体用于:
    获取多信号信息的帧头,将所述帧头构建成包含多信号信息的帧头的子多信号信息单元;
    获取多信号信息中的卫星数据和信号数据,将所述卫星数据和信号数据构建成包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
  29. 根据权利要求28所述的控制终端,其特征在于,
    所述处理器将所述卫星数据和信号数据构建成包含多信号信息中的卫星数据和信号数据的子多信号信息单元时,具体用于:
    对所述卫星数据和信号数据分组以确定每一颗卫星对应的卫星数据和信号数据,将所述每一颗卫星对应的卫星数据和信号数据构成一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
  30. 根据权利要求29所述的控制终端,其特征在于,
    所述包含多信号信息中的卫星数据和信号数据的子多信号信息单元中包括标识信息,其中所述标识信息是根据卫星编号确定的。
  31. 根据权利要求30所述的控制终端,其特征在于,
    所述标识信息位于所述子多信号信息单元中卫星数据和信号数据组合时形成的空闲比特位中。
  32. 根据权利要求27-31任一项所述的控制终端,其特征在于,
    所述处理器,还用于:
    构建包含帧尾的子多信号信息单元;
    向可移动平台发送所述包含帧尾的子多信号信息单元。
  33. 根据权利要求26-32任一项所述的控制终端,其特征在于,
    所述子多信号信息单元包括校验码。
  34. 根据权利要求26-33任一项所述的控制终端,其特征在于,
    所述子多信号信息单元包括帧头。
  35. 根据权利要求27-34任一项所述的控制终端,其特征在于,
    所述处理器向可移动平台发送包含多信号信息的帧头的子多信号信息单元时,具体用于:
    向可移动平台多次发送所述包含多信号信息的帧头的子多信号信息单元。
  36. 根据权利要求26-35任一项所述的控制终端,其特征在于,
    所述通信接口接收多信号信息时,具体用于:
    接收无线网络基站发送的多信号信息。
  37. 根据权利要求26-35任一项所述的控制终端,其特征在于,
    所述通信接口接收多信号信息时,具体用于:
    接收RTK基站的无线电台发送的多信号信息。
  38. 根据权利要求26-37任一项所述的控制终端,其特征在于,
    所述处理器,还用于对所述子多信号信息单元加密;
    所述处理器向可移动平台发送所述多个子多信号信息单元时,具体用于:
    向可移动平台发送加密后的多个子多信号信息单元。
  39. 一种可移动平台,其特征在于,包括:
    通信接口,用于接收控制终端发送的多个子多信号信息单元;
    一个或多个处理器,单独或协同地工作,用于:
    根据接收到的所述多个子多信号信息单元重建多信号信息;
    根据所述多信号信息确定可移动平台的位置信息。
  40. 根据权利要求39所述的可移动平台,其特征在于,
    所述多个子多信号信息中至少包括:包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元;
    所述处理器根据接收到的所述多个子多信号信息单元重建多信号信息时,具体用于:
    根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息。
  41. 根据权利要求40所述的可移动平台,其特征在于,
    所述处理器根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息时,具体用于:
    获取包含多信号信息的帧头的子多信号信息单元中的多信号信息的帧头;
    获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据;
    根据所述多信号信息的帧头、卫星数据和信号数据重建多信号信息。
  42. 根据权利要求41所述的可移动平台,其特征在于,
    每一个所述包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据为多信号信息中一颗卫星对应的卫星数据和信号数据;
    所述处理器获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的卫星数据和信号数据时,具体用于:
    从每一个包含多信号信息中的卫星数据和信号数据的子多信号信息单元获取一颗卫星对应的卫星数据和信号数据;
    所述处理器根据所述多信号信息的帧头、卫星数据和信号数据重建多信号信息时,具体用于:
    根据所述多信号信息的帧头、每一颗卫星对应的卫星数据和信号数据重建多信号信息。
  43. 根据权利要求41-42任一项所述的可移动平台,其特征在于,
    所述处理器还用于:
    确定是否接收到所有由所述多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元;
    若否,修改多信号信息的帧头;
    所述处理器根据接收到的所述多个子多信号信息单元重建多信号信息时,具体用于:
    根据修改后的多信号信息的帧头、接收到的子多信号信息单元中的卫星数据和信号数据重建多信号信息。
  44. 根据权利要求43所述的可移动平台,其特征在于,
    所述包含多信号信息中的卫星数据和信号数据的子多信号信息单元中包括标识信息,其中所述标识信息是根据卫星编号确定的;
    所述处理器确定是否接收到所有由所述多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元时,具体用于:
    获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的标识信息;
    根据所述多信号信息的帧头和所述标识信息确定是否接收到所有由所述多信号信息构建成的包含多信号信息中的卫星数据和信号数据的子多信号信息单元。
  45. 根据权利要求41-42任一项所述的可移动平台,其特征在于,所述子多信号信息单元中包括校验码;
    所述处理器还用于:
    根据所述校验码确定接收到包含多信号信息中的卫星数据和信号数据的子多信号信息单元是否存在误码;
    若是,修改多信号信息的帧头;
    所述处理器根据接收到的所述多个子多信号信息单元重建多信号信息时,具体用于:
    根据修改后的多信号信息的帧头、不存在误码的所述子多信号信息单元中的卫星数据和信号数据重建多信号信息。
  46. 根据权利要求43-45任一项所述的可移动平台,其特征在于,
    所述处理器修改多信号信息的帧头时,具体用于:
    修改所述多信号信息的帧头中的卫星编号、信号数据个数中的一种或多种。
  47. 根据权利要求44所述的可移动平台,其特征在于,
    所述处理器获取包含多信号信息中的卫星数据和信号数据的子多信号信息单元中的标识信息时,具体用于:
    从所述子多信号信息单元中卫星数据和信号数据组合时形成的空闲比特位中获取所述标识信息。
  48. 根据权利要求40-47任一项的可移动平台,其特征在于,
    所述多个子多信号信息单元还包括包含帧尾的子多信号信息单元;
    所述处理器根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息时,具体用于:
    在接收到包含帧尾的子多信号信息单元后,根据接收到的包含多信号信息的帧头的子多信号信息单元、包含多信号信息中的卫星数据和信号数据的子多信号信息单元重建多信号信息。
  49. 根据权利要求39-48任一项所述的设备,其特征在于,
    所述子多信号信息单元包括帧头。
  50. 根据权利要求39-49任一项所述的设备,其特征在于,所述处理器还用于:
    根据预设的解密规则对接收到的所述子多信号信息单元解密;
    所述处理器根据接收到的所述多个子多信号信息单元重建多信号信息,具体用于:
    根据解密后的多个子多信号信息单元重建多信号信息。
  51. 根据权利要求39-50任一项所述的设备,其特征在于,
    所述可移动平台为无人机。
PCT/CN2017/086581 2017-05-31 2017-05-31 控制终端及其控制方法、可移动平台及其控制方法 WO2018218494A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/086581 WO2018218494A1 (zh) 2017-05-31 2017-05-31 控制终端及其控制方法、可移动平台及其控制方法
CN201780005338.8A CN108496122A (zh) 2017-05-31 2017-05-31 控制终端及其控制方法、可移动平台及其控制方法
US16/694,001 US20200088886A1 (en) 2017-05-31 2019-11-25 Control terminal and control method thereof, movable platform and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086581 WO2018218494A1 (zh) 2017-05-31 2017-05-31 控制终端及其控制方法、可移动平台及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/694,001 Continuation US20200088886A1 (en) 2017-05-31 2019-11-25 Control terminal and control method thereof, movable platform and control method thereof

Publications (1)

Publication Number Publication Date
WO2018218494A1 true WO2018218494A1 (zh) 2018-12-06

Family

ID=63344720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086581 WO2018218494A1 (zh) 2017-05-31 2017-05-31 控制终端及其控制方法、可移动平台及其控制方法

Country Status (3)

Country Link
US (1) US20200088886A1 (zh)
CN (1) CN108496122A (zh)
WO (1) WO2018218494A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111386477A (zh) * 2018-12-28 2020-07-07 深圳市大疆创新科技有限公司 观测数据转换方法、设备、可移动平台及存储介质
CN109782226B (zh) * 2019-01-24 2021-04-09 成都优艾维智能科技有限责任公司 一种基于网络rtk的无人机自主循迹定位系统及方法
TWI699990B (zh) * 2019-04-02 2020-07-21 俊華電子企業股份有限公司 輕量的遙控通訊協定之訊號傳輸方法
CN111123316A (zh) * 2019-12-17 2020-05-08 北京华力创通科技股份有限公司 网络rtk数据安全的确定方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069960A1 (en) * 2007-09-12 2009-03-12 Lapp Tiffany R Method and apparatus for detecting anomalies in landing systems utilizing a global navigation satellite system
CN101799550A (zh) * 2010-03-19 2010-08-11 北京东方联星科技有限公司 基于数字中频信号串行传输的卫星导航接收机和方法
CN202189145U (zh) * 2011-04-11 2012-04-11 北京邮电大学 一种特征参数采集装置
CN103353601A (zh) * 2013-07-01 2013-10-16 唐粮 一种基于gnss实时差分技术的无人机精准导航系统和方法
CN103675848A (zh) * 2013-12-26 2014-03-26 东莞市泰斗微电子科技有限公司 一种基于多路gnss信号的信号传输方法及系统
CN104954098A (zh) * 2015-05-27 2015-09-30 武汉光谷北斗控股集团有限公司 一种适用长距离通信的cors数据编码传输方法
CN106226796A (zh) * 2016-07-14 2016-12-14 成都之达科技有限公司 基于民用差分定位技术的位置确定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441015C (zh) * 2005-06-13 2008-12-03 中兴通讯股份有限公司 一种模拟移动台连续定位的测试系统及测试方法
EP2338313B1 (en) * 2008-09-10 2018-12-12 NextNav, LLC Wide area positioning system
CN101895813A (zh) * 2009-11-13 2010-11-24 北京三星通信技术研究有限公司 一种传输和接收定位参考信号的方法
DE102013106195A1 (de) * 2013-06-13 2014-12-18 DKE Aerospace Germany GmbH Vorrichtung zur Kombination von Satellitennavigationsinformationen mit komplementären Informationen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069960A1 (en) * 2007-09-12 2009-03-12 Lapp Tiffany R Method and apparatus for detecting anomalies in landing systems utilizing a global navigation satellite system
CN101799550A (zh) * 2010-03-19 2010-08-11 北京东方联星科技有限公司 基于数字中频信号串行传输的卫星导航接收机和方法
CN202189145U (zh) * 2011-04-11 2012-04-11 北京邮电大学 一种特征参数采集装置
CN103353601A (zh) * 2013-07-01 2013-10-16 唐粮 一种基于gnss实时差分技术的无人机精准导航系统和方法
CN103675848A (zh) * 2013-12-26 2014-03-26 东莞市泰斗微电子科技有限公司 一种基于多路gnss信号的信号传输方法及系统
CN104954098A (zh) * 2015-05-27 2015-09-30 武汉光谷北斗控股集团有限公司 一种适用长距离通信的cors数据编码传输方法
CN106226796A (zh) * 2016-07-14 2016-12-14 成都之达科技有限公司 基于民用差分定位技术的位置确定方法

Also Published As

Publication number Publication date
CN108496122A (zh) 2018-09-04
US20200088886A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2018218494A1 (zh) 控制终端及其控制方法、可移动平台及其控制方法
WO2018195845A1 (zh) 控制终端、无人机的控制方法、控制终端、无人机及系统
US8626212B2 (en) Group messaging at mobile terminal in autonomous network
WO2022077938A1 (zh) 一种星历数据传输方法、装置、存储介质、芯片及系统
EP3573390A1 (en) Paging message sending method and related device
US10292154B2 (en) Communication establishment method, mobile station and transfer device based on transfer mode
EP2656683B1 (en) Method to maintain end-to-end encrypted calls through a tetra tmo-dmo gateway when using super groups
CN107801187B (zh) 加解密方法、装置及系统
CN112003937B (zh) 卫星数据传输方法、装置、计算机设备、存储介质
US11452005B2 (en) System and method for construction of a protocol data unit using selective relay
WO2018228477A1 (zh) 通信方法、网络设备和终端
CN101657989A (zh) 多分组源确认
CN102164415B (zh) 一种获取扩展信息的方法、基站和终端
US9232376B2 (en) Concurrent voice and data service on a same digital radio channel
WO2017185980A1 (zh) 数据传输方法及装置
CN104917560B (zh) 北斗通信卫星多波束多用户监收装置和方法
WO2021088471A1 (zh) 连接恢复方法及装置
KR20230058724A (ko) 통신 방법 및 장치
KR20100078405A (ko) 랜덤 코드를 이용하여 네트워크 코딩 기법을 적용하는 무선네트워크
WO2017008766A1 (zh) 实现信息压缩的通信方法、装置和通信设备
US9800425B2 (en) Multiple multicast network system and method for ensuring reliability
WO2019039096A1 (ja) 情報処理装置、基地局、端末装置、及び情報処理方法
US11146605B2 (en) Distributed data transmission for Internet of Things devices
WO2021249525A1 (zh) 一种用于卫星通信的极化编码译码方法及装置
WO2021237724A1 (zh) 密钥协商方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912192

Country of ref document: EP

Kind code of ref document: A1