WO2018216682A1 - Palm material utilization method, and wood-based material and method for manufacturing same - Google Patents

Palm material utilization method, and wood-based material and method for manufacturing same Download PDF

Info

Publication number
WO2018216682A1
WO2018216682A1 PCT/JP2018/019632 JP2018019632W WO2018216682A1 WO 2018216682 A1 WO2018216682 A1 WO 2018216682A1 JP 2018019632 W JP2018019632 W JP 2018019632W WO 2018216682 A1 WO2018216682 A1 WO 2018216682A1
Authority
WO
WIPO (PCT)
Prior art keywords
vascular
separated
palm
vascular bundle
cells
Prior art date
Application number
PCT/JP2018/019632
Other languages
French (fr)
Japanese (ja)
Inventor
裕三 古田
昌男 福山
秀夫 月東
久士 宮藤
煕 梶田
由華 三好
圭輔 神代
貴文 伊藤
Original Assignee
株式会社パームホルツ
裕三 古田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パームホルツ, 裕三 古田 filed Critical 株式会社パームホルツ
Priority to JP2019520259A priority Critical patent/JP7260861B2/en
Priority to MYPI2019006460A priority patent/MY201099A/en
Publication of WO2018216682A1 publication Critical patent/WO2018216682A1/en
Priority to JP2022204779A priority patent/JP2023027350A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/02Manufacture of substantially flat articles, e.g. boards, from particles or fibres from particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Definitions

  • the present invention is a method for using palm wood that has been discarded without being used as a woody resource.
  • the trunk and stems and leaves of palm are separated into vascular bundles and parenchyma cells, and the separated vascular bundles and parenchyma cells are separated.
  • the present invention relates to a method for using a palm material that is used for different purposes, and a wood-based material and a method for producing the same.
  • coconut is a general term for plants belonging to the monocotyledonous coconut family, and is a plant widely distributed from the subtropical zone to the temperate zone mainly in the tropics. These plants belonging to the palm family are important as resource plants in the tropics, and many species have been used in various ways since ancient times. For example, coconut palm is used for food by taking palm oil, or a transparent liquid at the center of the fruit is used as a beverage. Moreover, palm oil collected from oil palm (oil palm) fruit is an important edible and industrial material.
  • palm is a useful plant resource, but only pulp and seeds are mainly used.
  • Wood parts such as tree trunks have low practical strength, are not useful as wood, and are left unused.
  • oil palm hereinafter referred to as “oil palm”
  • oil palm is cultivated on a large scale, mainly in Malaysia and Indonesia, as a commercial crop. The cultivation of this oil palm is aimed at collecting fats and oils, and only the pulp and seeds are used.
  • Oil palm has been replanted every 25 years after the end of its economic life due to a decrease in fruit yield in 25-30 years after planting.
  • a large amount of oil palm trunk material generated during this reforestation is considered to be unsuitable for lumbering because it is crazy for wood applications. Therefore, the felled oil palm trunk is not used effectively, but is discarded as industrial waste or left as it is in the oil palm plantation.
  • the felled oil palm trunk material contains many free sugars in addition to cellulose and hemicellulose, unlike other tree species. These free sugars are mainly composed of sucrose, glucose, fructose and the like and contain about 10% of the trunk material. Furthermore, it is said that the oil palm trunk material contains about 25% starch (Non-Patent Document 1 below).
  • the oil palm trunk material is squeezed and separated into a squeezed solution containing free sugar and a squeezed culm (squeezed culm). Furthermore, this pressed rice bran is subjected to an enzyme treatment (amylase treatment) to obtain a treatment liquid containing a monosaccharide, and a mixture of this treatment liquid and the compression liquid is fermented to obtain ethanol.
  • an enzyme treatment asmylase treatment
  • Patent Document 2 a “water-absorbing material” is proposed in which the oil palm trunk material is not decomposed but is used as a raw material.
  • This water-absorbing material is a highly water-absorbing material mainly composed of soft tissue obtained from oil palm trunk material (which is considered to be “soft cells” storing starch and the like).
  • Patent Document 3 “plywood, palm plywood, plywood manufacturing method, and palm plywood manufacturing method” using oil palm trunk as an original woody material is proposed.
  • This palm plywood is obtained by adhering a veneer obtained from an oil palm trunk material with an adhesive.
  • a plurality of single plates obtained by thinly peeling an oil palm trunk material are laminated. These are made by applying an adhesive between them and bonding them to form a single plate material (plywood).
  • Patent Document 1 the use of bioethanol as a raw material of Patent Document 1 is wonderful as a production of carbon neutral fuel, but it is necessary to squeeze the oil palm trunk material, to perform an enzyme treatment, and to perform a fermentation treatment. Requires large processes and large equipment. Furthermore, the vascular bundles that occupy most of the squeezes cannot be used effectively, and new industrial waste is generated.
  • the water absorbing material of the said patent document 2 is utilization as industrial material, complicated processes, such as isolation
  • soft tissue which is a water-absorbing material, is about 50-60% of the solid residue produced by pressing, and will generate new industrial waste such as pressing liquid and disposal of vascular bundles that are unnecessary solids. .
  • the use as a palm plywood of the above-mentioned patent document 3 can use a single board obtained by peeling off an oil palm trunk material and drying it. Therefore, since many parts of the oil palm trunk can be used, no new industrial waste is generated.
  • the veneer obtained from the oil palm trunk material is different from the veneer conventionally used for plywood, such as lauan, has a low density, and therefore its strength is weak. It became a problem and could not be used in a wide range of applications that could replace hard wood.
  • the present invention addresses the above and efficiently separates palm material such as oil palm material that has not been used so far into vascular bundles and parenchyma cells, and the vascular bundles. It is an object of the present invention to provide a method of using a palm material that effectively uses a cell and a parenchyma cell.
  • the present invention provides a wood-based material having a physical property similar to or higher than that of conventional wood using a separated vascular bundle and practically usable for uses such as building materials, and a method for producing the same. With the goal.
  • the present inventors In solving the above-mentioned problems, the present inventors, as a result of earnest research, separated the vascular bundle and parenchyma cells almost completely using means such as crushing, squeezing, blasting, and water flow high-pressure jetting on the oil palm material.
  • the present invention has been completed.
  • the present invention has been completed by using the separated vascular bundle as a structural material.
  • the palm material is separated into vascular bundles and parenchyma cells using means such as crushing, squeezing, blasting, water flow high pressure injection, etc.
  • the separated vascular bundles and parenchyma cells are effectively used as industrial materials or resources for agriculture, forestry and fisheries, respectively.
  • this invention is the utilization method of the palm material of Claim 1, In the method of separating the palm material into vascular bundles and parenchyma cells, Using a squeezing device provided with two metal rolls having a plurality of V-shaped or concavo-convex grooves composed of peaks and valleys provided in parallel on the surface of the cylinder along the circumferential direction.
  • this invention is the utilization method of the palm material of Claim 1,
  • a pulverization operation using a pulverizer, and a sieving operation for separating the pulverized product after the pulverization operation into vascular bundles and parenchyma cells using a sieving device In the pulverization operation, by changing the aperture of the porous sieve provided at the discharge port of the pulverizer and the aperture of the sieving machine used for the sieving operation, The axial diameter and axial length of the separated vascular bundle, and the ratio of parenchymal cells remaining in the vascular bundle are changed.
  • this invention is the utilization method of the palm material of Claim 3,
  • the aperture of the porous sieve has a pore diameter of 5 mm to 20 mm,
  • the vascular bundle and the parenchyma that have passed through the porous sieve are used.
  • the present invention is a method for using a palm material according to any one of claims 1 to 4, After the palm material is cut down, it is dried to a water content of 15% by mass or less and then separated into vascular bundles and parenchyma cells.
  • the present invention is a method for using a palm material according to any one of claims 1 to 4, After the felling of the palm material, it is separated into vascular bundles and parenchyma cells without drying.
  • the present invention is a method of using palm material, Using parenchyma cells separated by the method according to any one of claims 1 to 6, The parenchyma cells are used as livestock feed.
  • the present invention is a method for using palm material, Using parenchyma cells separated by the method according to any one of claims 1 to 6, The parenchyma cells are used as a raw material for bioethanol.
  • the present invention is a method for using palm material, Using parenchyma cells separated by the method according to any one of claims 1 to 6, The parenchyma cells are used as a medium used for fungus bed cultivation of mushrooms.
  • the wood-based material according to the present invention is Of the vascular bundles and parenchyma that make up the palm material, use the vascular bundles in which the parenchyma cells have been detached, It is composed of a structural material obtained by combining a plurality of the vascular bundles, and a resin material that binds the vascular bundles.
  • this invention is the woody material of Claim 10, Comprising:
  • the structural material is characterized in that the vascular bundle is oriented in a direction of two or more axes intersecting each other.
  • the present invention is the woody material according to claim 10,
  • the structural material is characterized in that the vascular bundle cut to a predetermined length is formed in a non-oriented manner.
  • the present invention is the woody material according to any one of claims 10 to 12,
  • the structural material is molded with the resin material applied,
  • the value of the air dry density after molding is in the range of 0.3 to 1.5 (g / cm 3 ).
  • the manufacturing method of the wood-based material according to the present invention A method for producing a woody material according to any one of claims 10 to 13, A separation process for separating the palm material into vascular bundles and parenchyma cells; An applying step of applying a resin material to the vascular bundle; A bonding step of bonding between the vascular bundles by the resin material,
  • a phenol resin is used as the resin material, and the vascular bundle is impregnated with a 2-50 mass% aqueous phenol resin solution,
  • the combining step The vascular bundle impregnated with the aqueous phenol resin solution is dried and then molded with a high-pressure press at a temperature of 140 to 220 ° C.
  • the method for using palm material according to the present invention first separates the palm material into vascular bundles and parenchyma cells.
  • the separation method means such as pulverization, squeezing, explosion, water flow high pressure injection, and the like can be used.
  • the vascular bundle can be effectively used as an industrial material such as a structural material of a wood-based material.
  • parenchymal cells can be effectively used as resources for agriculture, forestry and fisheries, such as industrial materials such as bioethanol raw materials, livestock feed, and culture media for fungus bed cultivation of mushrooms. As a result, it is possible to effectively use palm materials that have been left without being used so far, and do not generate new industrial waste.
  • a pressing device including two metal rolls may be used.
  • Each of the two metal rolls has a plurality of grooves provided in parallel on the surface of the cylinder along the circumferential direction. These grooves have a V-shaped or concavo-convex shape including a peak portion and a valley portion.
  • these metal rolls rotate in the opposite direction with the crests and the troughs engaged with each other with the cylinder axis directions in parallel.
  • the palm piece is inserted between two rotating metal rolls.
  • plate piece of palm material is inserted so that it may parallel or cross
  • a palm material mainly composed of vascular bundles and parenchyma cells is clearly separated into vascular bundles and parenchyma cells.
  • the pulverization operation using a pulverization apparatus and the pulverized product after the pulverization operation is separated into vascular bundles and parenchymal cells using a sieve. It may be combined with the sieving operation to be separated.
  • the aperture of the porous sieve provided at the discharge port of the crushing device and the aperture of the sieving device used for the sieving operation By changing the aperture of the porous sieve provided at the discharge port of the crushing device and the aperture of the sieving device used for the sieving operation, the axial diameter and the axial length of the separated vascular bundle, and The ratio of parenchymal cells remaining in the vascular bundle can be changed.
  • the aperture of the porous sieve provided at the discharge port of the pulverizer may be 5 to 20 mm. This makes it possible to adjust the separation ratio between the vascular bundle and parenchyma and the ratio of parenchymal cells remaining in the vascular bundle.
  • the palm material when separating the palm material into vascular bundles and parenchyma cells, the palm material may be cut and then separated after drying to a moisture content of 15% by mass or less, or You may make it isolate
  • the separation ratio between the vascular bundle and the parenchyma cells and the ratio of the parenchyma cells remaining in the vascular bundle can be adjusted. A wider use of vascular bundles and parenchyma cells can be achieved.
  • the separated vascular bundle can be molded after being provided with a resin material and used as a structural material of a wood-based material.
  • the structural material of the wood-based material may be oriented in the direction of two or more axes where the vascular bundles intersect each other, or the vascular bundle cut into a predetermined length may be configured to be non-oriented. Also good.
  • the woody material may have an air dry density value after molding in the range of 0.3 to 1.5 (g / cm 3 ). This improves the physical properties of the wood-based material, and can provide a wood-based material that can be used in a wide range of applications that can replace conventional hard wood.
  • the method for producing a wood-based material includes a separation step of separating the palm material into vascular bundles and parenchymal cells, an applying step of applying a resin material to the vascular bundle, and a vascular bundle using the resin material. And a joining step for joining.
  • a phenol resin may be used as the resin material, and the vascular bundle may be impregnated with an aqueous phenol resin solution having a concentration of 2 to 50% by mass.
  • the bonding step the vascular bundle impregnated with the aqueous phenol resin solution may be dried and then molded with a high-pressure press at a temperature of 140 to 220 ° C.
  • palm material such as oil palm material that has been left without being used so far is efficiently separated into vascular bundles and parenchymal cells, and the vascular bundles and parenchymal cells are separated. It is possible to provide a method of using palm materials that are used effectively.
  • a wood-based material having a physical property similar to or higher than that of conventional wood using separated vascular bundles and practically usable for uses such as building materials and a method for producing the same are provided. can do.
  • coconut palm refers to all plants belonging to the monocotyledonous palm family, as described above.
  • coconut palm and oil palm which are widely cultivated as resource plants in the tropical region, are particularly important from the viewpoint of use on a large scale as industrial materials and resources for agriculture, forestry and fisheries.
  • oil palm is particularly important from the viewpoint of use on a large scale as industrial materials and resources for agriculture, forestry and fisheries.
  • the present invention will be described below using oil palm as an example.
  • Oil palm is also called oil palm (oil palm) and is a general term for monocotyledonous plants categorized in the genus Palmia, which is native to West Africa. It is a major crop mainly in Malaysia and Indonesia for the purpose of collecting oils and fats. Grown on a scale. An adult tree consists of a single trunk and reaches a height of 20m. The leaves are wing-shaped and about 3 to 5 meters long, 20 to 30 new leaves grow every year.
  • oil palm has been replanted every 25 years after the end of its economic life due to a decrease in fruit yield 25 to 30 years after planting.
  • Oil palm cultivation uses only the pulp and seeds for the purpose of collecting oils and fats, so the trunk is not used effectively so far, but is discarded as industrial waste or left in the oil palm plantation. Yes.
  • vascular bundles In the cross section of the oil palm trunk material, there are visible vascular bundles with a diameter of about 0.4 to 1.2 mm and soft cells that store starch and the like around them.
  • the vascular bundle is long and parallel to the length direction of the trunk.
  • These cell walls are formed of resin components such as cellulose, hemicellulose, and lignin.
  • about 10% free sugar mainly sucrose, glucose, fructose, etc.
  • about 25% starch are contained in the trunk material.
  • a method for using a palm material according to the present invention will be described in each embodiment using an oil palm material as an example.
  • a wood-based material that is one of methods for using a vascular bundle separated from an oil palm material and a manufacturing method thereof will be described.
  • the feed for livestock which is one of the utilization methods of the soft cell isolate
  • the bioethanol raw material which is one of the utilization methods of the parenchyma isolate
  • oil palm trunk material is mainly used as a palm material, but is not limited to this, a portion of oil palm bark, stems and leaves, or other palm material tree trunks, bark, You may make it utilize parts, such as a foliage.
  • an oil palm trunk material is separated and its vascular bundle is used as a constituent element of a wood-based material.
  • this 1st Embodiment manufactures the laminated board which fixed the separated vascular bundle as a woody material which concerns on this invention.
  • the manufacturing method will be described below.
  • the manufacturing method of the laminated board which concerns on this 1st Embodiment consists of a isolation
  • FIG. 1 is a flow chart of a utilization method taking oil palm material considered by the present inventors as an example.
  • vascular bundles and parenchyma cells are pulverized using means (hereinafter also referred to as “separation means”) such as pulverization (including crushing in the present invention), squeezing, explosion, water flow high-pressure jetting, etc.
  • separation means such as pulverization (including crushing in the present invention), squeezing, explosion, water flow high-pressure jetting, etc.
  • FIG. 2 is an electron micrograph showing the vascular bundle and parenchyma of the oil palm trunk material.
  • the vascular bundle (indicated as vascular sheath) and the parenchymal cells (indicated as soft tissue) surrounding the vascular bundle can be clearly distinguished.
  • the tissue bundle can be easily separated into vascular bundles and parenchyma cells.
  • parenchymal cells adhere to the outer portion of the vascular bundle, the ratio of parenchymal cells remaining in the separated vascular bundle can be adjusted by controlling the type of separation means and the operation process.
  • the apparatus of separation means for separating the oil palm trunk material into vascular bundles and parenchyma cells is not particularly limited.
  • a crusher including a crusher
  • various types of mills such as a hammer mill, a spiral mill, a vibration ball mill, a vibration rod mill, a wheelie mill, a crusher such as a hammer crusher, a chipper, and a shredder can be used.
  • the squeezing device include a zephyrizing device.
  • An apparatus such as steam explosion can also be used.
  • an apparatus that injects the dispersed fluid at a high pressure of 100 to 250 MPa can be used.
  • the separation ratio between the vascular bundle and the parenchyma, the size of the processed material, and The ratio of parenchymal cells remaining in the vascular bundle can be adjusted.
  • Patent Document 2 it is said that about 50 to 60% by mass of the wood part of the oil palm trunk material is parenchyma.
  • the treatment conditions are weakened, they are separated into vascular bundles in which many parenchymal cells remain and detached parenchymal cells.
  • the treatment conditions are strengthened, the vascular bundle from which parenchymal cells are almost detached is separated into a mixture of detached parenchymal cells and broken vascular bundles.
  • the vascular bundles are separated depending on whether they are separated in an air-dried state (dried state having a water content of 15% by mass) or in a raw material state.
  • the separation ratio with parenchymal cells, the size of the treated product, and the ratio of parenchymal cells remaining in the vascular bundle can be adjusted.
  • a zephyrizing apparatus which is a type of squeezing apparatus, is used as the separating means.
  • Zephyrization apparatuses are conventionally used when producing bamboo zephyrs, zephyr boards, and the like.
  • no zephyrizing apparatus has been used for the treatment of oil palm trunks, and there is no fact that its use has been proposed. Also, it has never been used to separate wood tissue.
  • the inventors of the present invention have studied the structure and operation of the zephyrizing apparatus, and have determined that the use of the zefferizing apparatus is appropriate as a means for separating a long vascular bundle without excessively cutting. The reason will be described below.
  • Zephyrization device basically has the following structure. First, two cylindrical metal rolls are used. Note that two pairs may be used as a pair, and a plurality of pairs may be used continuously. Each metal roll has a plurality of grooves provided on its surface in parallel along the circumferential direction. This groove is formed in a concavo-convex shape composed of a crest and a trough. In the present invention, unlike a normal zephyrizing apparatus, a V-shaped or other groove structure may be adopted in accordance with the use of the separated vascular bundle. Further, in addition to the V-shaped, uneven, and other groove structures, the distance between the two metal rolls and the distance (pitch) between the grooves may be adjusted.
  • Such a pair of metal rolls rotate in the opposite direction with their crests and troughs engaged with each other with the cylinder axis directions parallel to each other.
  • the plate piece prepared from the oil palm trunk material is inserted into the occlusal part of the two metal rolls rotating in this manner.
  • the state of the vascular bundle in the oil palm plate piece will be described.
  • the vascular bundle is long and parallel to the length direction of the trunk of the oil palm. Therefore, if a plate material in the length direction of the trunk is prepared from the oil palm trunk material, a grid-like plate material in which vascular bundles are arranged in parallel can be obtained.
  • vascular bundles are arranged in parallel.
  • the state of the obtained vascular bundle differs by changing the direction in which the single plate is inserted into the occlusal part of the two rotating metal rolls. For example, when the length direction of the vascular bundle is inserted in parallel with the groove of the metal roll, the vascular bundle can be separated in an elongated state without being excessively cut. On the other hand, when the length direction of the vascular bundle is inserted in a direction perpendicular to the groove of the metal roll, the vascular bundle can be separated in a short cut state.
  • FIG. 3 is a photograph showing the zephyrization apparatus used in the first embodiment.
  • FIG. 4 is a photograph showing a state in which the grooves (uneven shape in the first embodiment) of the two metal rolls of the Zephyrization apparatus are engaged with each other at the crest and trough.
  • the used Zephyr apparatus is equipped with two pairs as a pair, and a plurality of pairs (5 pairs of used apparatuses) of metal rolls.
  • FIG. 5 is a photograph showing a state in which a veneer adjusted from an oil palm trunk is inserted into a zephyrizing apparatus.
  • a single plate is inserted with the length direction of the vascular bundle parallel to the groove of the metal roll.
  • FIG. 6 is a photograph showing a state in which vascular bundles and parenchyma cells are separated from the Zephyrization apparatus.
  • FIG. 7 is a photograph showing the vascular bundle separated by the Zephyrization apparatus. In FIG. 7, it can be seen that the obtained vascular bundle is separated in a long state without being excessively cut.
  • FIG. 8 is a photograph showing parenchyma cells separated by the Zephyrization apparatus. In FIG. 8, it can be seen that the obtained parenchymal cells are separated in a fine powder state without mixing the chopped vascular bundle pieces.
  • the conventional Zephyrization apparatus is not intended to separate vascular bundles and parenchymal cells as in the present invention.
  • 26.2 kg (77.1%) of vascular bundles and 3.1 kg (9.1%) of parenchymal cells were recovered from a single plate of about 34 kg of oil palm tree trunk.
  • the overall recovery rate was 86.1%. The reason why the recovery rate is low in this way is thought to be that when the conventional Zephyrization apparatus is used, the separated parenchymal cells scatter and cannot be efficiently recovered.
  • a dust collector capable of efficiently recovering the separated parenchyma cells may be used.
  • the method and type of the dust collector used in the present invention are not particularly limited.
  • a centrifugal dust collector such as a cyclone or a filtration dust collector such as a bag filter can be used.
  • FIG. 9 is an electron micrograph showing an enlarged surface of the vascular bundle separated by the Zephyrization apparatus.
  • FIG. 10 is an electron micrograph further enlarging the surface of the vascular bundle. 9 and 10, it can be seen that the surface of the vascular bundle has no large scratches, and the vascular bundle is not damaged in the processing of the zephyrizing apparatus, and is effective as a structural material. Moreover, it turns out that what is considered to be a crystal
  • Table 1 is a table showing the ratio of vascular bundles and parenchyma components of oil palm materials published in known literature (H. Abe, et.al. BioResources, 8 (2), 1573-1581 (2013)). It is. In addition, the actual ratio of the constituent components of the vascular bundle and parenchyma cells separated in the first embodiment has not been analyzed.
  • vascular bundle having a high ⁇ cellulose ratio as a structural material of a wood-based material.
  • parenchyma cell with a high ratio of starch as a feed for livestock, a raw material of bioethanol, or a fungus bed of mushroom cultivation.
  • the physical properties of the vascular bundle of the oil palm material obtained in the first embodiment were confirmed.
  • the density of vascular bundles of oil palm material is 0.62 g / cm 3 according to known literature (Nor Hafizab Ab Wahab, et.al. Journal of Adhesion, 90 (3), 210-229 (2014)). It is said that.
  • the apparent density of the vascular bundle separated in the first embodiment was measured by immersion in petroleum ether using Archimedes' principle and found to be 0.7 to 0.8 g / cm 3 as an actual measurement value. there were.
  • the tensile strength of the vascular bundle separated in the first embodiment was measured.
  • the measurement was performed with a precision universal testing machine Autograph (registered trademark; manufactured by Shimadzu Corporation) at a load speed of 3.0 mm / min.
  • the diameter of the fractured part was measured from two directions on the assumption that the vascular bundle was a cylinder, and the average value was used for calculation.
  • the tensile strength of the vascular bundle separated in the first embodiment was 146.8 MPa in actual measurement. This value is based on known literature (Wood Research, No.
  • the laminated plate according to the first embodiment is obtained by impregnating a separated vascular bundle with a resin material and joining the vascular bundles together.
  • the resin material referred to in the present invention is a material for bonding and binding vascular bundles, a material for filling and bonding between vascular bundles, or a vascular bundle that partially penetrates into the vascular bundle. It is a broad concept including materials that react with cellulose and other substances to bind them, and any material that finally forms a state in which vascular bundles are bound together. Therefore, any of a polymer, a prepolymer, an oligomer, and a monomer may be used at the stage of applying to the vascular bundle in the applying process.
  • examples of the polymer or prepolymer include synthetic resins such as phenol resin, urea resin, melamine resin, furan resin, urethane resin, epoxy resin, and natural resin such as shellac.
  • synthetic resins such as phenol resin, urea resin, melamine resin, furan resin, urethane resin, epoxy resin, and natural resin such as shellac.
  • a phenol resin or a melamine resin it may be an oligomer or a monomer or dimer having a smaller molecular weight.
  • a polyfunctional crosslinking agent that reacts with cellulose or the like may be used.
  • polyfunctional isocyanate, polyfunctional epoxy, polyfunctional aldehyde, polyfunctional carboxylic acid, etc. may be sufficient, for example.
  • a phenol resin is used.
  • a resol type phenol resin As the phenol resin impregnated in the vascular bundle, it is preferable to use a resol type phenol resin.
  • These phenol resins may be either low molecular weight phenol resins having a number average molecular weight of about 400 or less (filling type resin) or oligomer type phenol resins having a higher molecular weight (adhesive type resin).
  • the phenol resin may be used alone or in combination with a catalyst or the like.
  • the phenol resin is dissolved in water, and the phenol resin having a concentration of 2 to 50% by mass, more preferably 10 to 30% by mass, still more preferably 20 to 30% by mass.
  • the phenol resin having a concentration of 2 to 50% by mass, more preferably 10 to 30% by mass, still more preferably 20 to 30% by mass.
  • the vascular bundle is immersed in the prepared aqueous phenol resin solution at room temperature for 0.2 to 24 hours to impregnate the vascular bundle with the phenol resin.
  • an impregnation method such as decompression or pressurization may be employed.
  • the film was immersed for 0.5 hours at room temperature and normal pressure. The impregnation rate at this time was 134.6%.
  • the vascular bundle impregnated with the aqueous phenol resin solution is air-dried and then dried at about 50 ° C. to 105 ° C. for about 10 minutes to 12 hours.
  • the vascular bundle impregnated with the aqueous phenol resin solution was air-dried for about 12 hours and then dried at 80 ° C. for 3 hours.
  • the resin solid content of the resin-containing vascular bundle obtained by this operation was about 30% by mass.
  • FIG. 11 is a schematic view showing a configuration of a three-layer mat before lamination molding.
  • Each of the mats W1 to W3 is formed in a state in which the vascular bundles constituting the respective mats are oriented in the longitudinal direction. Further, each of the mats W1 to W3 is configured by alternately orienting the orientation directions. In FIG.
  • the mats W1 and W3 have their vascular bundles oriented in the same direction (upper right direction in the figure), and the mat W2 is disposed in a direction (lateral direction in the figure) perpendicular to them.
  • the physical properties of the laminate obtained by laminating them are improved, and the physical properties are further improved because the used vascular bundle is long.
  • the prepared mats W1 to W3 are configured as shown in FIG. 11 to prepare a laminate before bonding.
  • the laminated plate is set in a hot press and heated by the upper and lower hot plates, and the heated laminated plate is compressed by applying a predetermined pressing pressure to the upper and lower hot plates from the thickness direction. Further, while maintaining the pressing pressure, the temperature is further raised and maintained at a predetermined temperature for a predetermined time, and then the temperature is lowered to complete the fixation.
  • the predetermined temperature is generally in the temperature range of 140 to 220 ° C., preferably in the temperature range of 160 to 200 ° C., although it depends on the type of resin material used.
  • the time for maintaining this temperature range is appropriately selected depending on the object to be immobilized, and is, for example, in the range of 10 minutes to 120 minutes, and preferably in the range of 10 minutes to 60 minutes.
  • the pressing pressure applied from the thickness direction is appropriately selected depending on the object to be fixed, but is preferably in the range of 1 to 10 MPa, for example.
  • the laminated plate (thickness before pressing: about 10 cm) on which the mats W1 to W3 are stacked is treated at a temperature of 180 ° C. and a pressing pressure of 1.5 MPa for 15 minutes. Then, a laminated plate having a thickness of about 12 mm was fixed.
  • the value of the air dry density after fixation of the laminate thus obtained is equal to or slightly lower than the above-mentioned measured density of the vascular bundle (0.7 to 0.8 g / cm 3 ), 0.55 to It was 0.71 g / cm 3 .
  • molding is performed with a pressing pressure of 1.5 MPa.
  • the value of the air dry density after molding is changed by changing the degree of the pressing pressure or by further compacting. Is preferably in the range of 0.3 to 1.5 g / cm 3 . If the value of the air-dry density after molding is in the range of 0.3 to 1.5 g / cm 3 , physical properties such as rigidity (bending Young's modulus) of the fixed laminated plate will be good.
  • the physical property test items performed in the first embodiment are items of a bending test, a water absorption thickness expansion rate test, a wood screw holding force test, and a surface hardness (Brinell hardness) test. Each test method and result will be described below.
  • ⁇ Bending test> The bending test was performed according to JIS A 5908: 2008 (particle board). Moreover, in this 1st Embodiment, in addition to the measurement by a normal test piece, both the measurement (Method B) of the measurement by the test piece at the time of 2 hours after boiling were performed. In addition, since the laminated board of this 1st Embodiment consists of three layers, it measured with the test piece of only the vertical direction.
  • the longitudinal direction of the test piece indicates a test piece in which the length direction is matched with the direction in which the vascular bundle is oriented in the two-layer mats of the mats W1 and W3 in FIG.
  • a test piece having a thickness of 12 mm, a width of 50 mm, and a length of 230 mm was prepared.
  • the average load speed was measured at 10 mm / min by a three-point load method.
  • the measurement items were the bending strength (MPa), bending Young's modulus (GPa), and bending work (J).
  • Table 2 shows the measurement results regarding the fixed laminated plate according to the first embodiment.
  • the density of Table 2 means the density of the air-dried state of the produced test piece (before measurement).
  • the bending strength is 17.5 MPa or more (10.5 MPa or more when wet)
  • the bending Young's modulus is 3.0 GPa or more
  • the results in Table 2 are as follows. All were good.
  • the water absorption thickness expansion coefficient test was performed according to JIS A 5908: 2008 (particle board). First, a test piece having a width of 50 mm and a length of 50 mm was prepared, and the thickness and weight of the central portion were measured. Next, the test piece was placed horizontally in water at 20 ° C. 30 mm below the surface of the water and immersed for 24 hours. Then, the thickness and weight of the center part of the test piece were measured, and the water absorption thickness expansion coefficient and the water absorption coefficient were calculated. In addition, the dimensional change of the width
  • the wood screw holding force test was performed according to JIS A 5908: 2008 (particle board). First, a test piece having a width of 50 mm and a length of 50 mm was prepared, and a wood screw having a diameter of 2.7 mm and a length of 16 mm was screwed vertically to the screw portion (about 11 mm) at the center. Next, the specimen was fixed, the wood screw was pulled out vertically, and the maximum load required for the specimen was measured with a precision universal testing machine Autograph (registered trademark; manufactured by Shimadzu Corporation). Table 4 shows the measurement results regarding the fixed laminated plate according to the first embodiment. In addition, the density of Table 4 means the density of the air-dried state of the produced test piece (before measurement).
  • the surface hardness (Brinell hardness) test was performed according to JIS Z 2101: 2009 (wood testing method). First, when a hemispherical plunger with a radius of 5 mm is pressed into the surface of the test piece at a constant speed of 0.5 mm / min to a depth of 1 / ⁇ (about 0.32 mm), and that depth is reached. The load of was measured. Next, the measured load is divided by 10 (because the surface area of the press-fit surface is 10 mm 2 ) to obtain Brinell hardness.
  • Table 5 shows the measurement results regarding the fixed laminated plate according to the first embodiment. In addition, the density of Table 5 means the density of the air-dried state of the produced test piece (before measurement).
  • the palm material such as oil palm material that has been left without being used so far is efficiently separated into vascular bundles and parenchyma cells, and the separated vascular bundles are separated. It is possible to provide a wood-based material having a physical property similar to or higher than that of conventional wood and practically usable for applications such as building materials, and a method for producing the same.
  • the laminated board which fixed the separated vascular bundle as a wood type material which concerns on this invention is manufactured similarly to the said 1st Embodiment.
  • the manufacturing method will be described.
  • the manufacturing method of the laminated board which concerns on this 2nd Embodiment consists of a isolation
  • isolation process separation process
  • provision process provision process
  • joint process similarly to the said 1st Embodiment.
  • the resin material applied to the vascular bundle in the application step is changed with respect to the first embodiment.
  • polyfunctional isocyanate which is a crosslinking agent that reacts with cellulose or the like is used as the resin material.
  • MDI bifunctional diphenylmethane diisocyanate
  • 10% by mass of MDI was applied to the vascular bundle and allowed to stand for about 2 hours in an air-dried state.
  • a three-layer mat in which the vascular bundle provided with MDI was oriented in the longitudinal direction was produced in the same manner as in the first embodiment (see FIG. 11).
  • the packing density is basically not performed in the bonding step, and the filling density of each vascular bundle is improved. Therefore, the target density of the laminated sheet after molding was set to match the measured density of the vascular bundle described above.
  • the prepared mats W1 to W3 are configured as shown in FIG. 11 to prepare a laminate before bonding.
  • the laminated plate is set in a hot press and heated by the upper and lower hot plates, and the heated laminated plate is compressed by applying a predetermined pressing pressure to the upper and lower hot plates from the thickness direction. Further, while maintaining the pressing pressure, the temperature is further raised and maintained at a predetermined temperature for a predetermined time, and then the temperature is lowered to complete the fixation.
  • the conditions corresponding to the first embodiment are adopted as the immobilization conditions. Specifically, also in the second embodiment, at a temperature of 180 ° C. and a pressing pressure of 1.5 MPa with respect to a laminated plate (thickness before pressing: about 10 cm) on which the mats W1 to W3 are stacked. A laminated plate having a thickness of about 12 mm was fixed by treating for 15 minutes.
  • the value of the air dry density after fixation of the laminate thus obtained is equal to or slightly lower than the above-mentioned measured density (0.7 to 0.8 g / cm 3 ) of the vascular bundle, 0.63 to It was 0.72 g / cm 3 .
  • molding was performed with a pressing pressure of 1.5 MPa.
  • the value of the air dry density after molding was changed by changing the degree of the pressing pressure or by further compacting. Is preferably in the range of 0.3 to 1.5 g / cm 3 . If the value of the air-dry density after molding is in the range of 0.3 to 1.5 g / cm 3 , physical properties such as rigidity (bending Young's modulus) of the fixed laminated plate will be good.
  • the physical property test items performed in the second embodiment are items of a bending test and a water absorption thickness expansion coefficient test. Each test method and result will be described below.
  • a test piece having a thickness of 12 mm, a width of 50 mm, and a length of 230 mm was prepared in the same manner as in the first embodiment.
  • the average load speed was measured at 10 mm / min by a three-point load method.
  • the measurement items were the bending strength (MPa), bending Young's modulus (GPa), and bending work (J).
  • Table 6 shows the measurement results relating to the fixed laminated plate according to the second embodiment.
  • the density of Table 6 means the density of the air-dried state of the produced test piece (before measurement).
  • the bending strength is 17.5 MPa or more (10.5 MPa or more when wet), the bending Young's modulus is 3.0 GPa or more. All were good.
  • the palm material such as oil palm material that has been left without being used so far is efficiently separated into vascular bundles and parenchyma cells. It is possible to provide a wood-based material having a physical property similar to or higher than that of conventional wood and practically usable for applications such as building materials, and a method for producing the same.
  • Third embodiment As a wood-based material according to the present invention, a consolidated laminate in which separated vascular bundles are consolidated and fixed is manufactured.
  • the manufacturing method will be described below.
  • the manufacturing method of the consolidated laminated board which concerns on this 3rd Embodiment consists of a isolation
  • isolation process consists of a isolation
  • it demonstrates according to each process.
  • a zephyrizing apparatus was used as in the first embodiment.
  • the single board by the rotary race similar to the said 1st Embodiment was used as a board piece of the oil palm thrown into a zephyrization apparatus.
  • the separated long vascular bundle is used as it is, and a consolidated laminate is produced in which these are oriented in two orthogonal directions.
  • a low molecular weight phenol resin (filling resin) having a number average molecular weight of 400 or less was used as the resin material impregnated in the vascular bundle as in the first embodiment.
  • the application method and the application amount of the phenol resin to the vascular bundle were also the same as those in the first embodiment. Therefore, details are omitted here.
  • FIG. 12 is a schematic diagram showing the configuration of a five-layer mat before lamination molding.
  • Each of the mats W11 to W15 is formed in a state where the vascular bundles constituting the respective mats are oriented in the longitudinal direction. Further, each of the mats W11 to W15 is configured with the orientation directions alternately orthogonal to each other.
  • mats W11, W13, and W15 have their vascular bundles oriented in the same direction (upper right direction in the figure), and orthogonal to this, the mats W12 and W14 have their vascular bundles in the same direction (lateral direction in the figure). Oriented. This improves the physical properties of the consolidated laminate obtained by laminating these, and further improves the physical properties due to the long vascular bundle being used.
  • Bonding Step 3 a bonding step for bonding the vascular bundles used in the mats W11 to W15 and bonding the mats W11 to W15 to each other will be described.
  • the bonding step performs fixing by consolidation.
  • consolidation of the wood-based material will be described.
  • the present inventors have so far examined the consolidation and fixing of wood and the plastic processing of wood. From this background, a plurality of patents such as a method for fixing and compacting wood (Japanese Patent No. 4787432) and plastic working wood (Japanese Patent No. 5138080) have been established. Therefore, the present inventors have developed a consolidated wood-based material using the separated vascular bundle as a structural material by utilizing these technical knowledge and apparatus.
  • the mats W11 to W15 composed of vascular bundles impregnated with an aqueous phenol resin solution in the application step are laminated and dried at a temperature of about 50 ° C. to 105 ° C. for about 10 minutes to 12 hours.
  • the laminated board before consolidation is prepared.
  • the pre-consolidated laminated board prepared as described above is heated, and the pre-consolidated laminated board is compressed by applying a predetermined pressing pressure from the thickness direction. Further, while maintaining the pressing pressure, the temperature is further raised and maintained at a predetermined temperature for a predetermined time, and then the temperature is decreased to cool down to complete the consolidation.
  • the predetermined temperature is in a temperature range of 140 to 220 ° C., and preferably in a temperature range of 160 to 200 ° C.
  • the time for maintaining this temperature range is appropriately selected depending on the object to be consolidated and fixed, and is, for example, in the range of 10 minutes to 120 minutes, preferably in the range of 20 minutes to 60 minutes. is there.
  • the pressing pressure applied from the thickness direction is appropriately selected according to the object to be consolidated and fixed, but is preferably in the range of 1 to 10 MPa, for example.
  • FIG. 13 is a cross-sectional view showing an outline of a consolidation apparatus MC used in the third embodiment.
  • the compacting device MC is composed of a press board 10 (upper press board 10A and lower press board 10B) that is divided into two in the vertical direction.
  • the upper press board 10A and the lower press board 10B are divided into upper and lower parts to form an internal space IS and a positioning hole 18.
  • the positioning hole 18 determines and regulates the position of the laminated board PW1 before consolidation, and is formed in the lower press board 10B so that the peripheral edge part 10b faces the peripheral edge part 10a of the upper press board 10A. Yes.
  • a seal member 11 for sealing the internal space IS and the positioning hole 18 in the range of vertical movement of the press board 10 is formed on the peripheral edge portion 10a of the upper press board 10A.
  • the upper press panel 10A is provided with a pipe 12 having a pipe port 12a that communicates with the internal space IS from the upper surface side and supplies steam into the internal space IS and the positioning hole 18.
  • the pipe 12 is provided with a valve V4 on the downstream side thereof.
  • the lower press panel 10 ⁇ / b> B is provided with a pipe 13 having a pipe port 13 a that communicates from the side surface into the internal space IS and the positioning hole 18 and discharges water vapor from the internal space IS.
  • the pipe 13 is provided with a pressure gauge P2 for detecting the internal vapor pressure, a downstream valve V5, and a drain pipe 14 connected to the valve V5.
  • the upper press board 10A and the lower press board 10B are formed with piping paths 15 and 16 for raising the temperature to a predetermined temperature by passing high-temperature steam through them.
  • the pipes ST2 and ST3 branched from the steam supply side pipe ST1 and the steam discharge side pipes ET1 and ET2 are respectively connected to.
  • valves V1, V2, V3, and a pressure gauge P1 for detecting the vapor pressure in the pipe ST1 are arranged, and the steam discharge side pipes ET1, ET2 Is connected to the drain pipe 14 via a valve V6.
  • the boiler apparatus which supplies water vapor
  • the hydraulic mechanism for raising / lowering and pressurizing the upper press board 10A with respect to the lower press board 10B of the fixed side of the press board 10 are included.
  • the press lifting device is omitted.
  • the pipes 15 and 16 formed in the upper press board 10A and the lower press board 10B are branched from the cooling water supply side pipe ST11 which cools to a desired temperature by passing low temperature cooling water instead of water vapor.
  • the pipes ST12 and ST13 are connected to the pipes ST2 and ST3, respectively.
  • valves V11, V12, and V13 are disposed in the middle of the pipes ST11, ST12, and ST13 on the cooling water supply side.
  • a cooling water supply device that supplies cooling water to the pipe ST11 is omitted.
  • FIG. 14A the upper press platen 10A is raised with respect to the lower press platen 10B on the fixed side in the compacting device MC, and the laminated plate PW1 before consolidation, which has been dried to a predetermined condition in advance, It is placed in the internal space IS and the positioning hole 18 formed by the press board 10A and the lower press board 10B.
  • the laminated board PW1 before consolidation is formed to have predetermined dimensions (thickness, width, length), and the upper press panel 10A and the lower press are arranged on the upper and lower surfaces thereof. It faces each press surface of the board 10B, and is placed in the positioning hole 18 of the lower press board 10B.
  • the upper press board 10A is lowered with respect to the laminated board PW1 before consolidation placed on the positioning hole 18 of the fixed-side lower press board 10B, and the laminated board before consolidation. It is made to contact
  • water vapor of a predetermined temperature for example, 110 ° C. to 180 ° C.
  • a predetermined temperature for example, 110 ° C. to 180 ° C.
  • the space constituted by the internal space IS and the positioning hole 18 is not yet sealed.
  • the pressing pressure of the upper press board 10A is set to a predetermined pressure (for example, 1 to 10 MPa) with respect to the lower press board 10B on the fixed side, and the laminated plate PW1 before consolidation is placed on the upper press board 10A and the lower press machine.
  • the plate 10B is heated and compressed for a predetermined time (for example, 5 to 40 minutes).
  • the pressing pressure at this time depends on the temperature rise of the laminated board PW1 before consolidation, that is, the state of heat conduction (internal temperature rise) of the laminated board PW1 before consolidation, in order to prevent cracking. It is desirable to gradually raise the temperature, and it is preferable to set the time for heat compression in consideration of the time required for heat conduction. In this state, the space constituted by the internal space IS and the positioning hole 18 is not yet sealed.
  • the dimension interval in the vertical direction is set to the finished dimension (compression ratio) in the thickness direction so that the air-dry density value after consolidation becomes a preset value.
  • the compression ratio of the entire thickness of the laminated plate PW1 before consolidation that is, the change in the plate thickness due to compression of the laminated plate PW1 before consolidation is such that the peripheral edge portion 10a of the upper press panel 10A is lower than the lower press panel 10B. It is determined by contacting the peripheral edge 10b.
  • the upper press board 10A and the lower press board 10B are in surface contact with the front and back surfaces of the laminated board PW1 before consolidation, and the sealed internal space IS and the positioning hole 18 are in contact with each other. Since it is held, the entire thickness of the laminated plate PW1 before being consolidated is sufficiently heated and is efficiently compressed and deformed.
  • a predetermined vapor pressure can be supplied to the internal space IS through the pipe 12 and the pipe port 12a (FIG. 13) connected to the valve V4.
  • a predetermined vapor pressure can be supplied to the internal space IS through the pipe 12 and the pipe port 12a (FIG. 13) connected to the valve V4.
  • valve V5 is opened as a vapor pressure control process, so that the internal space passes through the piping port 13a and the piping 13. High-temperature and high-pressure steam is discharged from the IS and positioning hole 18 to the drain pipe 14 side.
  • normal temperature cooling water is passed through the piping path 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B, so that the upper press panel 10A and the lower press panel 10B are It is cooled to the front and back and held for a predetermined time (for example, 10 minutes to 120 minutes) that varies depending on the material.
  • a predetermined time for example, 10 minutes to 120 minutes
  • the pressing pressure of the upper press board 10A with respect to the lower press board 10B on the fixed side is maintained at the same predetermined pressure (for example, 1 to 10 MPa) as the pressure at the time of heat compression, and the upper press board 10A.
  • the lower press board 10B is cooled.
  • the consolidated laminate PW2 manufactured as described above had an air-dry density value of approximately 1.0 g / cm 3 after consolidation.
  • molding by compaction is performed.
  • the value of the air-dry density after molding is 0.3 to 1... Without changing the degree of consolidation or without consolidation. It is preferable to be within the range of 5 g / cm 3 . If the value of the air dry density after molding is in the range of 0.3 to 1.5 g / cm 3 , physical properties such as rigidity (bending Young's modulus) of the consolidated laminate PW2 will be good.
  • the compact board which uses a non-oriented vascular bundle as a structural material as a wood type material which concerns on this invention is manufactured.
  • the manufacturing method will be described below.
  • the manufacturing method of the compaction plate according to the fourth embodiment includes a separation step, an applying step, and a joining step, as in the first embodiment. Hereinafter, each step will be described.
  • the long vascular bundle obtained in the first embodiment is cut into a predetermined length to obtain a structural material.
  • the length of the structural material can be arbitrarily adjusted, and the physical properties of the structural material can be improved by combining vascular bundles having different lengths.
  • the long vascular bundle obtained in the first embodiment is cut into a length of 5 mm to 8 mm and used.
  • a low molecular weight phenolic resin (filling type resin) having a number average molecular weight of 400 or less was used as the resin material impregnated in the vascular bundle as in the first embodiment.
  • the application method and the application amount of the phenol resin to the vascular bundle were also the same as those in the first embodiment. Therefore, details are omitted here.
  • a structural material is produced from a vascular bundle impregnated with phenol resin.
  • the structural material is formed not as a laminated plate but as a thick single-layer plate. In the plate-like body before molding, a short but uniform vascular bundle exists in a non-oriented manner.
  • the compacted plate thus produced had an air dry density value of approximately 1.2 g / cm 3 after consolidation.
  • molding by compaction is performed.
  • the value of the air-dry density after molding is 0.3 to 1... Without changing the degree of consolidation or without consolidation. It is preferable to be within the range of 5 g / cm 3 . If the value of the air dry density after molding is in the range of 0.3 to 1.5 g / cm 3 , physical properties such as rigidity (bending Young's modulus) of the consolidated laminate PW2 will be good.
  • the oil palm trunk material is separated and the vascular bundle is used as a constituent element of the wood-based material.
  • the manufacturing method of the laminated board which concerns on this 5th Embodiment consists of a separation process, a provision process, and a joint process.
  • the fifth embodiment differs from the first to fourth embodiments in the separation means for separating the oil palm trunk material into vascular bundles and parenchyma cells in the separation step.
  • it demonstrates according to each process.
  • a hammer crusher which is a kind of pulverizer, is used as a separation means to pulverize and maintain oil palm trunk material in an air-dried state and a saturated state (assuming a raw material state). Separated into tube bundles and parenchyma cells.
  • FIG. 15 is a photograph showing an oil palm veneer, a hammer crusher and a pulverized product used in the fifth embodiment.
  • the oil palm veneer before separation 100 g of an air-dried veneer in which the oil palm trunk material was veneered by a rotary race was used.
  • the separator used was a hammer crusher NH-50S (manufactured by Sansho Industry Co., Ltd.), 200 V, 3.7 kW, an outer cylinder inner diameter of 290 mm and a hammer rotation speed of 3,450 rpm.
  • the pulverized product in FIG. 3 is a mixture of vascular bundles and parenchyma cells, and has passed through a porous sieve (pore diameter 15 mm) attached to the pulverized product discharge port of the hammer crusher.
  • FIG. 16 is a photograph showing a pulverized product obtained by pulverizing an air-dried oil palm trunk material under various conditions in the fifth embodiment.
  • FIG. 17 shows a pulverized product obtained by pulverizing, under each condition, a trunk material saturated with water by impregnating water in an oil-dried oil palm material, assuming a raw material state in the fifth embodiment. It is a photograph.
  • FIGS. 16 and 17 show the state of the pulverized product when it is processed once to three times with a hammer crusher.
  • Table 8 shows the yield of the pulverized product obtained by pulverizing the air-dried oil palm veneer under each condition, and the mass ratio between the vascular bundle and parenchyma cells.
  • the pulverization count of 2 is a pulverized product (passed through a porous sieve) with a pulverization count of 1 and pulverized again with a hammer crusher.
  • the number of pulverizations of 3 means that the pulverized product of 2 pulverizations (passed through the porous sieve) is pulverized again with a hammer crusher.
  • FIG. 18 is a photograph showing a state in which the pulverized product after pulverization is sieved into vascular bundles and parenchymal cells in the fifth embodiment.
  • FIG. 18 shows vascular bundles and parenchymal cells after the pulverized product that has passed through a porous sieve having a pore diameter of 15 mm with a pulverization frequency of 1 is sieved with a sifter having a mesh opening of 750 ⁇ m.
  • the vascular bundle shown in FIG. 18 is used.
  • a low molecular weight phenol resin (filling type resin) having a number average molecular weight of 400 or less is used as a resin material impregnated in the vascular bundle, as in the first, third to fifth embodiments. used.
  • the application method and the application amount of the phenol resin to the vascular bundle were also the same as those in the first embodiment. Therefore, details are omitted here.
  • a structural material is produced from a vascular bundle impregnated with phenol resin.
  • the structural material is molded not as a laminated plate but as a thick single-layer plate. In the plate-like body before molding, a short but uniform vascular bundle exists in a non-oriented manner.
  • the compacted plate thus produced had an air dry density value of approximately 1.0 g / cm 3 after consolidation.
  • molding by compaction is performed.
  • the value of the air-dry density after molding is 0.3 to 1... Without changing the degree of consolidation or without consolidation. It is preferable to be within the range of 5 g / cm 3 . If the value of the air dry density after molding is in the range of 0.3 to 1.5 g / cm 3 , physical properties such as rigidity (bending Young's modulus) of the consolidated laminate PW2 will be good.
  • oil palm trunk material is separated and the parenchyma cells are used as livestock feed.
  • oil palm trunk contains about 10% free sugar (mainly sucrose, glucose, fructose, etc.) and about 25% starch.
  • parenchyma cells are a part that stores starch and the like, and unlike vascular bundles mainly composed of lignocellulose, most of starch and free sugar contained in oil palm trunk material are contained in parenchyma cells. Conceivable.
  • these nutritious parenchyma cells are used as a livestock feed or a blend of livestock feed.
  • parenchyma cells separated by the Zephyrization apparatus in the first embodiment are used. Separation with the Zephyrization apparatus, the parenchyma cells after the separation were less contaminated with vascular fragments and were suitable as livestock feed.
  • the separation operation of the Zephyrization apparatus may be controlled to control the mixing ratio of the fiber that is a fragment of the vascular bundle according to the intended use.
  • the parenchyma cells after sieving the pulverized material separated by the hammer crusher in the fourth embodiment with an arbitrary sieve sieve for example, 750 ⁇ m may be used.
  • the parenchyma cells separated from the oil palm stem material have high nutritional value and are highly evaluated by livestock experts.
  • the parenchyma cells separated from the oil palm trunk can be used not only as they are, but also as silage material as fermented feed.
  • the use method of the palm material which does not produce a new industrial waste by using the soft cell which is a residue except the vascular bundle used in the said 1st Embodiment as a livestock feed is provided. Can do.
  • an oil palm trunk material is separated and its parenchyma cells are used as a raw material for bioethanol.
  • oil palm trunk contains about 10% free sugar (mainly sucrose, glucose, fructose, etc.) and about 25% starch.
  • parenchyma cells are a part that stores starch and the like, and unlike vascular bundles mainly composed of lignocellulose, most of starch and free sugar contained in oil palm trunk material are contained in parenchyma cells. Conceivable.
  • parenchymal cells containing a large amount of these monosaccharides and polysaccharides can be used as bioethanol raw materials.
  • the content ratio of cellulose that is difficult to saccharify is very low, and the content ratio of starch that is easily saccharified is very high. Therefore, parenchyma cells separated from oil palm trunk material can be used as a high-purity bioethanol raw material.
  • the parenchyma cells separated by the Zephyrization apparatus in the first embodiment were used as in the sixth embodiment.
  • parenchyma cells after sieving the pulverized material separated by the hammer crusher in the fourth embodiment with an arbitrary sieve sieve (for example, 750 ⁇ m) may be used.
  • a method for producing ethanol from these monosaccharides and polysaccharides a method using an existing enzyme can be employed.
  • the method disclosed in Patent Document 1 can be used.
  • This method uses amylase, which is a amylolytic enzyme, and is one of the methods suitable for parenchyma cells having a high starch content. Note that the method for producing ethanol from parenchyma cells is omitted here.
  • providing the utilization method of the palm material which does not produce a new industrial waste by using the soft cell which is the residue except the vascular bundle used in the said 1st Embodiment as a bioethanol raw material. Can do.
  • the oil palm trunk material is separated and the parenchyma cells are used as a medium used for fungus bed cultivation of mushrooms.
  • the fungus bed used for fungus bed cultivation of mushrooms is an artificial medium in which nutrient sources such as rice bran are mixed with woody base materials such as sawdust, widely used in oyster mushrooms, enokitake, maitake and other mushrooms It is possible to stabilize the yield and distribute it throughout the year.
  • the oil palm trunk material contains about 10% free sugar (mainly sucrose, glucose, fructose, etc.) and about 25% starch.
  • free sugar mainly sucrose, glucose, fructose, etc.
  • parenchyma cells are a part for storing starch and the like, and most of starch and free sugar contained in oil palm trunk are considered to be contained in parenchyma cells.
  • these nutritious parenchyma cells are used as a medium or a mixture of mediums used for fungus bed cultivation of mushrooms.
  • parenchyma cells separated by the Zephyrization apparatus in the first embodiment are used. By separating with a Zephyrization apparatus, the isolated parenchyma cells are less contaminated with fragments of vascular bundles and are suitable as a medium used for fungus bed cultivation.
  • the separation operation of the Zephyrization apparatus may be controlled to control the mixing ratio of the fiber that is a fragment of the vascular bundle according to the intended use.
  • the parenchyma cells after sieving the pulverized material separated by the hammer crusher in the fourth embodiment with an arbitrary sieve sieve for example, 750 ⁇ m may be used.
  • the parenchyma cells separated from the oil palm stem material have high nutritional value as they are and are highly expected by experts in mushroom cultivation.
  • the soft cells which are the residues other than the vascular bundle used in the first embodiment, as a medium used for fungus bed cultivation of mushrooms, the palm material that does not produce new industrial waste How to use can be provided.
  • palm material such as oil palm material that has been left without being used so far is efficiently separated into vascular bundles and parenchymal cells, and the vascular bundles and parenchymal cells are separated. It is possible to provide a method of using palm materials that are used effectively.
  • a wood-based material having a physical property similar to or higher than that of conventional wood using separated vascular bundles and practically usable for uses such as building materials and a method for producing the same are provided. can do.
  • the oil palm material is used for explanation.
  • the present invention is not limited to this, and other palm materials such as coconut may be used.
  • a zephyrizing apparatus or a hammer crusher is used as a separation means in the separation step.
  • other separation means include a hammer mill, a spiral mill, a vibrating ball mill, a vibration rod mill, a wheelie mill, a chipper, a shredder, a steam explosion device, and a high pressure injection device.
  • a low molecular weight phenol resin (filling type resin) or an isocyanate cross-linking agent is used as the resin material used for the production of the wood-based material.
  • the present invention is not limited to this.
  • three or five layers of mats are laminated to produce a laminated plate or a consolidated laminated plate.
  • the present invention is not limited to this.
  • a laminate or a consolidated laminate is produced by laminating only mats with oriented vascular bundles, but the present invention is not limited to this. You may make it laminate
  • a special consolidation apparatus is used for consolidation, but the present invention is not limited to this, and a normal hot press machine may be used.
  • the vascular bundle separated from the oil palm material is used as the structural material of the wood-based material.
  • the vascular bundle is not limited to this, and the vascular bundle is made of wood powder / plastic composite (kneaded WPC).
  • a vascular bundle after sieving the pulverized material that passed through a porous sieve having a pore diameter of 15 mm with a sifter of 750 ⁇ m is used.
  • the present invention is not limited to this, and a material having a size suitable for the purpose may be used by appropriately selecting the number of times of pulverization, the pore diameter of the porous sieve, and the opening of the sieve.
  • the vascular bundle separated from the oil palm material is used as the structural material of the wood-based material.
  • the vascular bundle is not limited to this, and the vascular bundle is used as another industrial material or It may be used as a resource for agriculture, forestry and fisheries.
  • the soft cells separated from the oil palm material are used as a livestock feed, a raw material for bioethanol, and a fungus bed for mushrooms, but are not limited thereto.
  • the soft cells may be used as other industrial materials or resources for agriculture, forestry and fisheries.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Housing For Livestock And Birds (AREA)
  • Mushroom Cultivation (AREA)
  • Fodder In General (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Debarking, Splitting, And Disintegration Of Timber (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided is a palm material utilization method for efficiently separating palm material, such as oil palm material that has hitherto been left unutilized, into vascular bundles and parenchymatous cells and effectively utilizing the same. Also provided are a wood-based material in which separated vascular bundles are utilized and which is practically applicable for uses such as building material, and a method for manufacturing the wood-based material. Palm material is separated into vascular bundles and parenchymatous cells by means of pulverization, compression, blasting, high-pressure water jetting, or the like. A plurality of the separated vascular bundles are combined and bonded together using a resin material and are utilized as a wood-based material structural member. Meanwhile, the separated parenchymatous cells are utilized as a livestock feed or a raw material for bioethanol.

Description

ヤシ材の利用方法、並びに、木質系材料及びその製造方法Method of using palm material, and wood-based material and method for producing the same
 本発明は、木質資源として利用されることなく廃棄されているヤシ材の利用方法として、ヤシ材の樹幹部や茎葉部を維管束と柔細胞とに分離し、分離した維管束と柔細胞とをそれぞれ別の目的に利用するヤシ材の利用方法、並びに、木質系材料及びその製造方法に関するものである。 The present invention is a method for using palm wood that has been discarded without being used as a woody resource. The trunk and stems and leaves of palm are separated into vascular bundles and parenchyma cells, and the separated vascular bundles and parenchyma cells are separated. The present invention relates to a method for using a palm material that is used for different purposes, and a wood-based material and a method for producing the same.
 ヤシ(椰子)は、単子葉植物ヤシ目ヤシ科に属する植物の総称であり、熱帯地方を中心に亜熱帯から温帯にかけて広く分布する植物である。これらヤシ科に属する植物は、熱帯地域の資源植物として重要であり、古来より多くの種がさまざまな方法で利用されている。例えば、ココヤシは、ヤシ油をとって食用に利用したり、果実の中心にある透明な液を飲料としたりする。また、アブラヤシ(油椰子)の実から採取するパーム油は、重要な食用、工業用の材料である。 Coconut (coconut palm) is a general term for plants belonging to the monocotyledonous coconut family, and is a plant widely distributed from the subtropical zone to the temperate zone mainly in the tropics. These plants belonging to the palm family are important as resource plants in the tropics, and many species have been used in various ways since ancient times. For example, coconut palm is used for food by taking palm oil, or a transparent liquid at the center of the fruit is used as a beverage. Moreover, palm oil collected from oil palm (oil palm) fruit is an important edible and industrial material.
 このように、ヤシは有用な植物資源ではあるが、主に利用されるのは果肉や種子だけである。樹幹などの木質部分は実用強度が低く、木材としての利用価値がなく、ほとんど利用されずに放置されている。例えば、アブラヤシ(以下「オイルパーム」という)は、商業作物としてマレーシア、インドネシアを中心に大規模に栽培されている。このオイルパームの栽培は、油脂の採取を目的としており、果肉と種子だけが利用されている。 Thus, palm is a useful plant resource, but only pulp and seeds are mainly used. Wood parts such as tree trunks have low practical strength, are not useful as wood, and are left unused. For example, oil palm (hereinafter referred to as “oil palm”) is cultivated on a large scale, mainly in Malaysia and Indonesia, as a commercial crop. The cultivation of this oil palm is aimed at collecting fats and oils, and only the pulp and seeds are used.
 オイルパームは、植え付け後25~30年で果実の収穫量が減少して経済寿命を終え、約25年毎に再植林されている。この再植林の際に生じる大量のオイルパーム幹材は、木材用途としては狂いが大きく製材化には適さないとされている。そこで、伐採されたオイルパーム幹材は、有効に利用されることなく、産業廃棄物として廃棄処分或いはオイルパーム農園にそのまま放置されている。 Oil palm has been replanted every 25 years after the end of its economic life due to a decrease in fruit yield in 25-30 years after planting. A large amount of oil palm trunk material generated during this reforestation is considered to be unsuitable for lumbering because it is crazy for wood applications. Therefore, the felled oil palm trunk is not used effectively, but is discarded as industrial waste or left as it is in the oil palm plantation.
 そこで、このオイルパーム幹材を資源として有効に利用すべく、種々の試みがなされている。近年においては、バイオマス資源としてカーボンニュートラルな燃料の原料として検討されている。例えば、下記特許文献1において、「バイオエタノールの原料としてのオイルパーム材の利用」が提案されている。 Therefore, various attempts have been made to effectively use this oil palm trunk as a resource. In recent years, it has been studied as a raw material for carbon neutral fuel as a biomass resource. For example, in the following Patent Document 1, “use of oil palm material as a raw material for bioethanol” is proposed.
 伐採したオイルパーム幹材には、他の樹種と異なり、セルロース、ヘミセルロース以外に多くの遊離糖が含有されている。これらの遊離糖は、主にショ糖、グルコース、フルクトースなどからなり幹材の約10%も含有される。更に、オイルパーム幹材は、デンプンを約25%も含有すると言われている(下記非特許文献1)。 The felled oil palm trunk material contains many free sugars in addition to cellulose and hemicellulose, unlike other tree species. These free sugars are mainly composed of sucrose, glucose, fructose and the like and contain about 10% of the trunk material. Furthermore, it is said that the oil palm trunk material contains about 25% starch (Non-Patent Document 1 below).
 そこで、下記特許文献1においては、オイルパーム幹材を圧搾して遊離糖を含む圧搾液と絞り粕(圧搾粕)とに分離する。更に、この圧搾粕を酵素処理(アミラーゼ処理)して単糖を含む処理液とし、この処理液と圧搾液とを混合したものを発酵処理してエタノールを得るというものである。 Therefore, in the following Patent Document 1, the oil palm trunk material is squeezed and separated into a squeezed solution containing free sugar and a squeezed culm (squeezed culm). Furthermore, this pressed rice bran is subjected to an enzyme treatment (amylase treatment) to obtain a treatment liquid containing a monosaccharide, and a mixture of this treatment liquid and the compression liquid is fermented to obtain ethanol.
 また、下記特許文献2においては、オイルパーム幹材を分解するのではなく、これを原料とする「吸水性素材」が提案されている。この吸水性素材は、オイルパーム幹材から得られる柔組織(デンプンなどを貯蔵する「柔細胞」と思われる)を主成分とする高吸水性素材である。 In Patent Document 2 below, a “water-absorbing material” is proposed in which the oil palm trunk material is not decomposed but is used as a raw material. This water-absorbing material is a highly water-absorbing material mainly composed of soft tissue obtained from oil palm trunk material (which is considered to be “soft cells” storing starch and the like).
 更に、下記特許文献3においては、オイルパーム幹材を本来の木質系材料として使用する「合板、パーム合板、合板製造方法、およびパーム合板製造方法」が提案されている。このパーム合板は、オイルパーム幹材から得られた単板を接着剤で接着したものであり、上述した一般の合板の製造法において、オイルパーム幹材を薄く剥いだ単板を複数枚積層し、これらの間に接着剤を塗布して接着し、1枚の板材(合板)としたものである。 Furthermore, in the following Patent Document 3, “plywood, palm plywood, plywood manufacturing method, and palm plywood manufacturing method” using oil palm trunk as an original woody material is proposed. This palm plywood is obtained by adhering a veneer obtained from an oil palm trunk material with an adhesive. In the above-mentioned general plywood manufacturing method, a plurality of single plates obtained by thinly peeling an oil palm trunk material are laminated. These are made by applying an adhesive between them and bonding them to form a single plate material (plywood).
特開2009-112246号公報JP 2009-112246 A 特開2011-224479号公報JP2011-224479A 特開2011-068015号公報JP 2011-068015 A
 ところで、上記特許文献1のバイオエタノールの原料としての利用は、カーボンニュートラルな燃料の製造として素晴らしいものであるが、オイルパーム幹材を圧搾し、酵素処理し、更に発酵処理する必要があり、複雑な工程と大掛かりな設備を必要とする。更に、圧搾粕の大部分を占める維管束を有効に利用することができず、新たな産業廃棄物を生み出すことになる。 By the way, the use of bioethanol as a raw material of Patent Document 1 is wonderful as a production of carbon neutral fuel, but it is necessary to squeeze the oil palm trunk material, to perform an enzyme treatment, and to perform a fermentation treatment. Requires large processes and large equipment. Furthermore, the vascular bundles that occupy most of the squeezes cannot be used effectively, and new industrial waste is generated.
 また、上記特許文献2の吸水性素材は、産業資材としての利用であるが、圧搾、固形残渣の乾燥、粉砕、篩分による柔組織と維管束との分離などの複雑な工程が必要である。また、吸水性素材となる柔組織は、圧搾による固形残渣の約50~60%であり、圧搾液や不必要な固形分である維管束の処分など、新たな産業廃棄物を生み出すことになる。 Moreover, although the water absorbing material of the said patent document 2 is utilization as industrial material, complicated processes, such as isolation | separation of soft tissue and a vascular bundle by pressing, drying of a solid residue, grinding | pulverization, and sieving, are required. . In addition, soft tissue, which is a water-absorbing material, is about 50-60% of the solid residue produced by pressing, and will generate new industrial waste such as pressing liquid and disposal of vascular bundles that are unnecessary solids. .
 一方、上記特許文献3のパーム合板としての利用は、オイルパーム幹材をカツラ剥きし乾燥して得られた単板をそのまま利用することができる。従って、オイルパーム幹材の多くの部分を利用することができるので、新たな産業廃棄物を生み出すこともない。 On the other hand, the use as a palm plywood of the above-mentioned patent document 3 can use a single board obtained by peeling off an oil palm trunk material and drying it. Therefore, since many parts of the oil palm trunk can be used, no new industrial waste is generated.
 しかし、オイルパーム幹材から得られる単板は、合板に従来使用されているラワンなどの単板と異なり、密度が低く、そのことから強度が弱く、合板としたときにもその物性の点で問題となり、硬質木材にも代わりえる広い用途に使用することができなかった。 However, the veneer obtained from the oil palm trunk material is different from the veneer conventionally used for plywood, such as lauan, has a low density, and therefore its strength is weak. It became a problem and could not be used in a wide range of applications that could replace hard wood.
 そこで、本発明は、以上のようなことに対処して、これまで利用されることなく放置されていたオイルパーム材などのヤシ材を維管束と柔細胞とに効率よく分離し、その維管束と柔細胞とをそれぞれ有効に利用するヤシ材の利用方法を提供することを目的とする。また、本発明は、分離した維管束を利用して従来の木材と同様又はそれ以上の物性を有して実用的に建材などの用途に利用可能な木質系材料及びその製造方法を提供することを目的とする。 Therefore, the present invention addresses the above and efficiently separates palm material such as oil palm material that has not been used so far into vascular bundles and parenchyma cells, and the vascular bundles. It is an object of the present invention to provide a method of using a palm material that effectively uses a cell and a parenchyma cell. In addition, the present invention provides a wood-based material having a physical property similar to or higher than that of conventional wood using a separated vascular bundle and practically usable for uses such as building materials, and a method for producing the same. With the goal.
 上記課題の解決にあたり、本発明者らは、鋭意研究の結果、オイルパーム材に粉砕、圧搾、爆砕、水流高圧噴射等の手段を用いて、維管束と柔細胞とをほぼ完全に分離して本発明の完成に至った。また、分離した維管束を構造材として利用することにより本発明の完成に至った。 In solving the above-mentioned problems, the present inventors, as a result of earnest research, separated the vascular bundle and parenchyma cells almost completely using means such as crushing, squeezing, blasting, and water flow high-pressure jetting on the oil palm material. The present invention has been completed. In addition, the present invention has been completed by using the separated vascular bundle as a structural material.
 即ち、本発明に係るヤシ材の利用方法は、請求項1の記載によると、
 ヤシ材を粉砕、圧搾、爆砕、水流高圧噴射等の手段を用いて維管束と柔細胞とに分離し、
 分離された維管束と柔細胞とをそれぞれ工業用材料、又は、農林水産用資源として有効利用することを特徴とする。
That is, according to the description of claim 1, the use method of the palm material according to the present invention,
The palm material is separated into vascular bundles and parenchyma cells using means such as crushing, squeezing, blasting, water flow high pressure injection, etc.
The separated vascular bundles and parenchyma cells are effectively used as industrial materials or resources for agriculture, forestry and fisheries, respectively.
 また、本発明は、請求項2の記載によると、請求項1に記載のヤシ材の利用方法であって、
 前記ヤシ材を維管束と柔細胞とに分離する方法において、
 円筒の表面に円周方向に沿って平行して設けられた、山部と谷部とからなるV字状又は凹凸状の複数の溝を有する2本の金属ロールを具備する圧搾装置を使用し、
 これらの金属ロールが互いの円筒軸方向を平行にして、互いの山部と谷部とが咬合した状態で逆方向に回転し、
 前記ヤシ材の板片を前記咬合して回転する2本の金属ロールの間に、その維管束の長さ方向を前記咬合する複数の溝に平行、又は交差するように挿入することにより、
 維管束と柔細胞とに効率よく分離することを特徴とする。
Moreover, according to the description of Claim 2, this invention is the utilization method of the palm material of Claim 1,
In the method of separating the palm material into vascular bundles and parenchyma cells,
Using a squeezing device provided with two metal rolls having a plurality of V-shaped or concavo-convex grooves composed of peaks and valleys provided in parallel on the surface of the cylinder along the circumferential direction. ,
These metal rolls rotate in the opposite direction with each other's crests and troughs engaged with each other with the cylindrical axis directions parallel to each other,
By inserting the length of the vascular bundle between the two metal rolls that rotate by meshing the piece of coconut material so as to be parallel to or intersecting the plurality of grooves to be engaged,
It is characterized by efficient separation into vascular bundles and parenchyma cells.
 また、本発明は、請求項3の記載によると、請求項1に記載のヤシ材の利用方法であって、
 前記ヤシ材を維管束と柔細胞とに分離する方法において、
 粉砕装置を使用する粉砕操作と、当該粉砕操作後の粉砕物を篩分器により維管束と柔細胞とに分離する篩分操作とからなり、
 前記粉砕操作において、前記粉砕装置の放出口に設けた多孔篩の目開きと、前記篩分操作に使用する篩分器の目開きとを変化させることにより、
 分離した維管束の軸径及び軸長、並びに、当該維管束に残留する柔細胞の比率を変化させることを特徴とする。
Moreover, according to the description of Claim 3, this invention is the utilization method of the palm material of Claim 1,
In the method of separating the palm material into vascular bundles and parenchyma cells,
A pulverization operation using a pulverizer, and a sieving operation for separating the pulverized product after the pulverization operation into vascular bundles and parenchyma cells using a sieving device,
In the pulverization operation, by changing the aperture of the porous sieve provided at the discharge port of the pulverizer and the aperture of the sieving machine used for the sieving operation,
The axial diameter and axial length of the separated vascular bundle, and the ratio of parenchymal cells remaining in the vascular bundle are changed.
 また、本発明は、請求項4の記載によると、請求項3に記載のヤシ材の利用方法であって、
 前記多孔篩の目開きは、孔径5mm~20mmであって、
 当該多孔篩を通過した前記維管束及び前記柔細胞を利用することを特徴とする。
Moreover, according to the description of Claim 4, this invention is the utilization method of the palm material of Claim 3,
The aperture of the porous sieve has a pore diameter of 5 mm to 20 mm,
The vascular bundle and the parenchyma that have passed through the porous sieve are used.
 また、本発明は、請求項5の記載によると、請求項1~4のいずれか1つに記載のヤシ材の利用方法であって、
 前記ヤシ材を伐採後、含水率15質量%以下に乾燥した後に、維管束と柔細胞とに分離することを特徴とする。
Further, according to the description of claim 5, the present invention is a method for using a palm material according to any one of claims 1 to 4,
After the palm material is cut down, it is dried to a water content of 15% by mass or less and then separated into vascular bundles and parenchyma cells.
 また、本発明は、請求項6の記載によると、請求項1~4のいずれか1つに記載のヤシ材の利用方法であって、
 前記ヤシ材を伐採後、乾燥することなく維管束と柔細胞とに分離することを特徴とする。
Further, according to the description of claim 6, the present invention is a method for using a palm material according to any one of claims 1 to 4,
After the felling of the palm material, it is separated into vascular bundles and parenchyma cells without drying.
 また、本発明は、請求項7の記載によると、ヤシ材の利用方法であって、
 請求項1~6のいずれか1つに記載の方法によって分離した柔細胞を使用し、
 当該柔細胞を家畜用飼料として利用することを特徴とする。
Moreover, according to the description of claim 7, the present invention is a method of using palm material,
Using parenchyma cells separated by the method according to any one of claims 1 to 6,
The parenchyma cells are used as livestock feed.
 また、本発明は、請求項8の記載によると、ヤシ材の利用方法であって、
 請求項1~6のいずれか1つに記載の方法によって分離した柔細胞を使用し、
 当該柔細胞をバイオエタノールの原料として利用することを特徴とする。
Moreover, according to the description of claim 8, the present invention is a method for using palm material,
Using parenchyma cells separated by the method according to any one of claims 1 to 6,
The parenchyma cells are used as a raw material for bioethanol.
 また、本発明は、請求項9の記載によると、ヤシ材の利用方法であって、
 請求項1~6のいずれか1つに記載の方法によって分離した柔細胞を使用し、
 当該柔細胞をキノコの菌床栽培に使用する培地として利用することを特徴とする。
Moreover, according to the description of claim 9, the present invention is a method for using palm material,
Using parenchyma cells separated by the method according to any one of claims 1 to 6,
The parenchyma cells are used as a medium used for fungus bed cultivation of mushrooms.
 また、本発明に係る木質系材料は、請求項10の記載によると、
 ヤシ材を構成する維管束と柔細胞のうち、柔細胞を離脱した状態の維管束を使用し、
 当該維管束を複数組み合わせた構造材と、これらの維管束を結合する樹脂材料とから構成されてなることを特徴とする。
According to the description of claim 10, the wood-based material according to the present invention is
Of the vascular bundles and parenchyma that make up the palm material, use the vascular bundles in which the parenchyma cells have been detached,
It is composed of a structural material obtained by combining a plurality of the vascular bundles, and a resin material that binds the vascular bundles.
 また、本発明は、請求項11の記載によると、請求項10に記載の木質系材料であって、
 前記構造材は、前記維管束が互いに交差する2軸以上の方向に配向してなることを特徴とする。
Moreover, according to the description of Claim 11, this invention is the woody material of Claim 10, Comprising:
The structural material is characterized in that the vascular bundle is oriented in a direction of two or more axes intersecting each other.
 また、本発明は、請求項12の記載によると、請求項10に記載の木質系材料であって、
 前記構造材は、所定の長さに切断した前記維管束を無配向に構成してなることを特徴とする。
According to the description of claim 12, the present invention is the woody material according to claim 10,
The structural material is characterized in that the vascular bundle cut to a predetermined length is formed in a non-oriented manner.
 また、本発明は、請求項13の記載によると、請求項10~12のいずれか1つに記載の木質系材料であって、
 前記構造材は、前記樹脂材料を付与した状態で成形されており、
 成形後の気乾密度の値が0.3~1.5(g/cm)の範囲内にあることを特徴とする。
Further, according to the description of claim 13, the present invention is the woody material according to any one of claims 10 to 12,
The structural material is molded with the resin material applied,
The value of the air dry density after molding is in the range of 0.3 to 1.5 (g / cm 3 ).
 また、本発明に係る木質系材料の製造方法は、請求項14の記載によると、
 請求項10~13のいずれか1つに記載の木質系材料を製造する方法であって、
 ヤシ材を維管束と柔細胞とに分離する分離工程と、
 前記維管束に樹脂材料を付与する付与工程と、
 前記樹脂材料により前記維管束の間を結合する結合工程とからなり、
 前記付与工程において、
 前記樹脂材料としてフェノール樹脂を使用し、前記維管束に2~50質量%濃度のフェノール樹脂水溶液を含浸させ、
 前記結合工程において、
 前記フェノール樹脂水溶液を含浸した前記維管束を乾燥後、温度140~220℃の高圧プレス装置で成形することを特徴とする。
Moreover, according to the description of claim 14, the manufacturing method of the wood-based material according to the present invention,
A method for producing a woody material according to any one of claims 10 to 13,
A separation process for separating the palm material into vascular bundles and parenchyma cells;
An applying step of applying a resin material to the vascular bundle;
A bonding step of bonding between the vascular bundles by the resin material,
In the applying step,
A phenol resin is used as the resin material, and the vascular bundle is impregnated with a 2-50 mass% aqueous phenol resin solution,
In the combining step,
The vascular bundle impregnated with the aqueous phenol resin solution is dried and then molded with a high-pressure press at a temperature of 140 to 220 ° C.
 上記構成によれば、本発明に係るヤシ材の利用方法は、まず、ヤシ材を維管束と柔細胞とに分離する。分離の方法は、粉砕、圧搾、爆砕、水流高圧噴射等の手段を用いることができる。分離した各部分のうち維管束は、木質系材料の構造材などの工業用材料として有効利用することができる。一方、柔細胞は、バイオエタノール原料などの工業用材料や、家畜用飼料、キノコの菌床栽培の培地などの農林水産用資源として有効利用することができる。このことにより、これまで利用されることなく放置されていたヤシ材を有効に利用できると共に、新たな産業廃棄物を生み出すことがない。 According to the above configuration, the method for using palm material according to the present invention first separates the palm material into vascular bundles and parenchyma cells. As the separation method, means such as pulverization, squeezing, explosion, water flow high pressure injection, and the like can be used. Among the separated parts, the vascular bundle can be effectively used as an industrial material such as a structural material of a wood-based material. On the other hand, parenchymal cells can be effectively used as resources for agriculture, forestry and fisheries, such as industrial materials such as bioethanol raw materials, livestock feed, and culture media for fungus bed cultivation of mushrooms. As a result, it is possible to effectively use palm materials that have been left without being used so far, and do not generate new industrial waste.
 また、上記構成によれば、ヤシ材を維管束と柔細胞とに分離する方法において、2本の金属ロールを具備する圧搾装置を使用するようにしてもよい。この2本の金属ロールには、それぞれ円筒の表面に円周方向に沿って平行して設けられた複数の溝がある。これらの溝は、山部と谷部とからなるV字状又は凹凸状の形状を有している。また、これらの金属ロールは、互いの円筒軸方向を平行にして、互いの山部と谷部とが咬合した状態で逆方向に回転する。 In addition, according to the above configuration, in a method of separating a palm material into a vascular bundle and a parenchyma cell, a pressing device including two metal rolls may be used. Each of the two metal rolls has a plurality of grooves provided in parallel on the surface of the cylinder along the circumferential direction. These grooves have a V-shaped or concavo-convex shape including a peak portion and a valley portion. In addition, these metal rolls rotate in the opposite direction with the crests and the troughs engaged with each other with the cylinder axis directions in parallel.
 このような状態において、ヤシ材の板片を咬合して回転する2本の金属ロールの間に挿入する。なお、ヤシ材の板片は、その維管束の長さ方向を咬合する複数の溝に平行、又は交差するように挿入する。このことにより、主として維管束と柔細胞とからなるヤシ材は、維管束と柔細胞とに明瞭に分離される。このことにより、金属ロールの山部と谷部の形状とピッチ並びに2本の金属ロールの間隔及び回転数を制御することにより、維管束と柔細胞との分離比率及び維管束に残留する柔細胞の比率を調整することができる。 In such a state, the palm piece is inserted between two rotating metal rolls. In addition, the board | plate piece of palm material is inserted so that it may parallel or cross | intersect the some groove | channel which bites the length direction of the vascular bundle. As a result, a palm material mainly composed of vascular bundles and parenchyma cells is clearly separated into vascular bundles and parenchyma cells. By controlling the shape and pitch of the crests and troughs of the metal roll and the distance between the two metal rolls and the rotational speed, the separation ratio between the vascular bundle and the parenchyma and the parenchymal cells remaining in the vascular bundle are thereby controlled. The ratio of can be adjusted.
 また、上記構成によれば、ヤシ材を維管束と柔細胞とに分離する方法において、粉砕装置を使用する粉砕操作と、当該粉砕操作後の粉砕物を篩分器により維管束と柔細胞とに分離する篩分操作とを組み合わせるようにしてもよい。このことにより、粉砕装置の放出口に設けた多孔篩の目開きと、篩分操作に使用する篩分器の目開きとを変化させて、分離した維管束の軸径及び軸長、並びに、当該維管束に残留する柔細胞の比率を変化させることができる。 Further, according to the above configuration, in the method of separating the palm material into vascular bundles and parenchymal cells, the pulverization operation using a pulverization apparatus, and the pulverized product after the pulverization operation is separated into vascular bundles and parenchymal cells using a sieve. It may be combined with the sieving operation to be separated. By changing the aperture of the porous sieve provided at the discharge port of the crushing device and the aperture of the sieving device used for the sieving operation, the axial diameter and the axial length of the separated vascular bundle, and The ratio of parenchymal cells remaining in the vascular bundle can be changed.
 また、上記構成によれば、粉砕装置の放出口に設けた多孔篩の目開きは、孔径5mm~20mmとするようにしてもよい。このことにより、維管束と柔細胞との分離比率及び維管束に残留する柔細胞の比率を調整することができる。 Further, according to the above configuration, the aperture of the porous sieve provided at the discharge port of the pulverizer may be 5 to 20 mm. This makes it possible to adjust the separation ratio between the vascular bundle and parenchyma and the ratio of parenchymal cells remaining in the vascular bundle.
 また、上記構成によれば、ヤシ材を維管束と柔細胞とに分離する際には、ヤシ材を伐採後、含水率15質量%以下に乾燥した後に分離するようにしてもよく、或いは、ヤシ材を伐採後、乾燥することなく分離するようにしてもよい。このように、分離する前のヤシ材の水分率を適宜変化させることによって、維管束と柔細胞との分離比率及び維管束に残留する柔細胞の比率を調整することができるので、分離された維管束と柔細胞とのより広い利用を図ることができる。 Further, according to the above configuration, when separating the palm material into vascular bundles and parenchyma cells, the palm material may be cut and then separated after drying to a moisture content of 15% by mass or less, or You may make it isolate | separate, without drying a palm material after felling. In this way, by appropriately changing the moisture content of the coconut material before separation, the separation ratio between the vascular bundle and the parenchyma cells and the ratio of the parenchyma cells remaining in the vascular bundle can be adjusted. A wider use of vascular bundles and parenchyma cells can be achieved.
 また、上記構成によれば、分離した維管束は、樹脂材料を付与した後に成形して、木質系材料の構造材として利用することができる。また、木質系材料の構造材は、維管束が互いに交差する2軸以上の方向に配向するようにしてもよく、或いは、所定の長さに切断した維管束を無配向に構成するようにしてもよい。 Also, according to the above configuration, the separated vascular bundle can be molded after being provided with a resin material and used as a structural material of a wood-based material. Further, the structural material of the wood-based material may be oriented in the direction of two or more axes where the vascular bundles intersect each other, or the vascular bundle cut into a predetermined length may be configured to be non-oriented. Also good.
 また、上記構成によれば、木質系材料は、成形後の気乾密度の値が0.3~1.5(g/cm)の範囲内にしてもよい。このことにより、木質系材料の物性が向上し、従来の硬質木材にも代わりえる広い用途に利用可能な木質系材料を提供することができる。 Further, according to the above configuration, the woody material may have an air dry density value after molding in the range of 0.3 to 1.5 (g / cm 3 ). This improves the physical properties of the wood-based material, and can provide a wood-based material that can be used in a wide range of applications that can replace conventional hard wood.
 また、上記構成によれば、木質系材料の製造方法は、ヤシ材を維管束と柔細胞とに分離する分離工程と、維管束に樹脂材料を付与する付与工程と、樹脂材料により維管束の間を結合する結合工程とからなる。付与工程においては、樹脂材料としてフェノール樹脂を使用し、維管束に2~50質量%濃度のフェノール樹脂水溶液を含浸させるようにしてもよい。次に、結合工程においては、フェノール樹脂水溶液を含浸した維管束を乾燥後、温度140~220℃の高圧プレス装置で成形するようにしてもよい。このことにより、木質系材料の物性が向上し、上記効果をより具体的に発揮できる木質系材料の製造方法を提供することができる。 Further, according to the above configuration, the method for producing a wood-based material includes a separation step of separating the palm material into vascular bundles and parenchymal cells, an applying step of applying a resin material to the vascular bundle, and a vascular bundle using the resin material. And a joining step for joining. In the applying step, a phenol resin may be used as the resin material, and the vascular bundle may be impregnated with an aqueous phenol resin solution having a concentration of 2 to 50% by mass. Next, in the bonding step, the vascular bundle impregnated with the aqueous phenol resin solution may be dried and then molded with a high-pressure press at a temperature of 140 to 220 ° C. As a result, the physical properties of the wood-based material can be improved, and a method for producing a wood-based material that can exhibit the above effects more specifically can be provided.
 以上のことから、本発明によれば、これまで利用されることなく放置されていたオイルパーム材などのヤシ材を維管束と柔細胞とに効率よく分離し、その維管束と柔細胞とをそれぞれ有効に利用するヤシ材の利用方法を提供することができる。また、本発明によれば、分離した維管束を利用して従来の木材と同様又はそれ以上の物性を有して実用的に建材などの用途に利用可能な木質系材料及びその製造方法を提供することができる。 From the above, according to the present invention, palm material such as oil palm material that has been left without being used so far is efficiently separated into vascular bundles and parenchymal cells, and the vascular bundles and parenchymal cells are separated. It is possible to provide a method of using palm materials that are used effectively. In addition, according to the present invention, a wood-based material having a physical property similar to or higher than that of conventional wood using separated vascular bundles and practically usable for uses such as building materials and a method for producing the same are provided. can do.
オイルパーム材を例にした利用方法のフロー図である。It is a flowchart of the usage method which made oil palm material the example. オイルパーム幹材の維管束と柔細胞とを示す電子顕微鏡写真である。It is an electron micrograph which shows the vascular bundle and parenchyma of an oil palm trunk material. 第1実施形態で使用したゼファー化装置を示す写真である。It is a photograph which shows the Zephyrization apparatus used in 1st Embodiment. 図3のゼファー化装置において、2本の金属ロールの溝が互いの山部と谷部とで咬合した状態を示す写真である。It is a photograph which shows the state which the groove | channel of the two metal rolls engaged in the mutual peak part and trough part in the Zephyrization apparatus of FIG. ゼファー化装置にオイルパーム樹幹から調製した単板を挿入する状態を示す写真である。It is a photograph which shows the state which inserts the veneer prepared from the oil palm trunk into the zephyrization apparatus. ゼファー化装置から維管束と柔細胞が分離されて出てくる状態を示す写真である。It is a photograph which shows the state from which a vascular bundle and parenchyma are separated from a Zephyrization apparatus. ゼファー化装置で分離された維管束を示す写真である。It is a photograph which shows the vascular bundle isolate | separated with the Zephyrization apparatus. ゼファー化装置で分離された柔細胞を示す写真である。It is a photograph which shows the parenchyma cell isolate | separated with the Zephyrization apparatus. ゼファー化装置で分離された維管束の表面を拡大した電子顕微鏡写真である。It is the electron micrograph which expanded the surface of the vascular bundle isolate | separated with the Zephyrization apparatus. 図9の維管束の表面を更に拡大した電子顕微鏡写真である。It is the electron micrograph which expanded further the surface of the vascular bundle of FIG. 第1実施形態において積層成形前の3層のマットの構成を示す概略図である。It is the schematic which shows the structure of the mat | matte of 3 layers before lamination molding in 1st Embodiment. 第3実施形態において積層成形前の5層のマットの構成を示す概略図である。It is the schematic which shows the structure of the mat | matte of 5 layers before lamination molding in 3rd Embodiment. 第3実施形態において使用する圧密化装置の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the compaction apparatus used in 3rd Embodiment. 第3実施形態において木質系材料を圧密化する工程の概要を示す工程図である。It is process drawing which shows the outline | summary of the process of compacting a wood type material in 3rd Embodiment. 第5実施形態において使用するオイルパーム単板、ハンマークラッシャー及び粉砕物を示す写真である。It is a photograph which shows the oil palm veneer used in 5th Embodiment, a hammer crusher, and a ground material. 第5実施形態において気乾状態のオイルパーム幹材を各条件で粉砕した粉砕物を示す写真である。It is a photograph which shows the ground material which grind | pulverized the oil palm trunk material of the air-dried state in each condition on 5th Embodiment. 第5実施形態において飽水状態のオイルパーム幹材を各条件で粉砕した粉砕物を示す写真である。It is a photograph which shows the pulverized material which grind | pulverized the oil palm trunk material of the saturated state in each condition in 5th Embodiment. 第5実施形態において粉砕後の粉砕物を維管束部分と柔細胞部分とに篩分した状態を示す写真である。It is a photograph which shows the state which sieved the ground material after grinding | pulverization in the 5th Embodiment into the vascular bundle part and the parenchyma part.
 本発明において、ヤシ(椰子)とは、上述のように、単子葉植物ヤシ目ヤシ科に属する植物の全てをいうものとする。なお、本発明において工業用材料や農林水産用資源として大規模に利用する意味から、熱帯地域の資源植物として広く栽培されているココヤシやアブラヤシ(オイルパーム)が特に重要である。本発明においては、オイルパームを例として本発明を以下に説明する。 In the present invention, the term “coconut palm” refers to all plants belonging to the monocotyledonous palm family, as described above. In the present invention, coconut palm and oil palm (oil palm), which are widely cultivated as resource plants in the tropical region, are particularly important from the viewpoint of use on a large scale as industrial materials and resources for agriculture, forestry and fisheries. In the present invention, the present invention will be described below using oil palm as an example.
 オイルパームとは、アブラヤシ(油椰子)ともいわれ、西アフリカ原産のヤシ科アブラヤシ属に分類される単子葉植物の総称であって、油脂の採取を目的とする商業作物としてマレーシア、インドネシアを中心に大規模に栽培されている。成木は単一の幹からなり、高さ20mに達する。葉は羽状で長さ3~5mほどのものが、毎年20~30枚新しく生える。 Oil palm is also called oil palm (oil palm) and is a general term for monocotyledonous plants categorized in the genus Palmia, which is native to West Africa. It is a major crop mainly in Malaysia and Indonesia for the purpose of collecting oils and fats. Grown on a scale. An adult tree consists of a single trunk and reaches a height of 20m. The leaves are wing-shaped and about 3 to 5 meters long, 20 to 30 new leaves grow every year.
 また、上述のように、オイルパームは、植え付け後25~30年で果実の収穫量が減少して経済寿命を終え、約25年毎に再植林されている。オイルパームの栽培は油脂の採取を目的として果肉と種子だけが利用されるので、その幹材はこれまで有効に利用されることなく、産業廃棄物として廃棄処分或いはオイルパーム農園にそのまま放置されている。 Also, as mentioned above, oil palm has been replanted every 25 years after the end of its economic life due to a decrease in fruit yield 25 to 30 years after planting. Oil palm cultivation uses only the pulp and seeds for the purpose of collecting oils and fats, so the trunk is not used effectively so far, but is discarded as industrial waste or left in the oil palm plantation. Yes.
 オイルパーム幹材の断面には、視認できる直径0.4~1.2mm程度の維管束とその周りにデンプンなどを貯蔵する柔細胞などが存在する。なお、維管束は、樹幹の長さ方向に平行に長尺で存在している。これらの細胞壁は、セルロース、ヘミセルロース、及び、リグニン等の樹脂成分で形成され、その他、幹材には約10%の遊離糖(主にショ糖、グルコース、フルクトースなど)や約25%のデンプンが含有されている(上記非特許文献1)。 In the cross section of the oil palm trunk material, there are visible vascular bundles with a diameter of about 0.4 to 1.2 mm and soft cells that store starch and the like around them. The vascular bundle is long and parallel to the length direction of the trunk. These cell walls are formed of resin components such as cellulose, hemicellulose, and lignin. In addition, about 10% free sugar (mainly sucrose, glucose, fructose, etc.) and about 25% starch are contained in the trunk material. (Non-Patent Document 1).
 以下、本発明に係るヤシ材の利用方法について、オイルパーム材を例として各実施形態において説明する。まず、第1~第5実施形態においては、オイルパーム材から分離した維管束の利用方法の一つである木質系材料及びその製造方法について説明する。次に、第6実施形態においては、オイルパーム材から分離した柔細胞の利用方法の一つである家畜用飼料について説明する。また、第7実施形態においては、オイルパーム材から分離した柔細胞の利用方法の一つであるバイオエタノール原料について説明する。 Hereinafter, a method for using a palm material according to the present invention will be described in each embodiment using an oil palm material as an example. First, in the first to fifth embodiments, a wood-based material that is one of methods for using a vascular bundle separated from an oil palm material and a manufacturing method thereof will be described. Next, in 6th Embodiment, the feed for livestock which is one of the utilization methods of the soft cell isolate | separated from the oil palm material is demonstrated. Moreover, in 7th Embodiment, the bioethanol raw material which is one of the utilization methods of the parenchyma isolate | separated from the oil palm material is demonstrated.
 なお、本発明は、下記に示す各実施形態にのみ限定されるものではない。また、各実施形態においては、ヤシ材として主にオイルパーム幹材を使用するが、これに限るものではなく、オイルパームの樹皮、茎葉などの部分、或いは、他のヤシ材の樹幹、樹皮、茎葉などの部分を利用するようにしてもよい。 In addition, this invention is not limited only to each embodiment shown below. Moreover, in each embodiment, oil palm trunk material is mainly used as a palm material, but is not limited to this, a portion of oil palm bark, stems and leaves, or other palm material tree trunks, bark, You may make it utilize parts, such as a foliage.
 第1実施形態:
 本第1実施形態は、オイルパーム幹材を分離して、その維管束を木質系材料の構成要素として利用するものである。また、本第1実施形態は、本発明に係る木質系材料として、分離した維管束を固定化した積層板を製造する。以下、その製造方法を説明する。本第1実施形態に係る積層板の製造方法は、分離工程と付与工程と結合工程とからなる。以下、各工程に従って説明する。
First embodiment:
In the first embodiment, an oil palm trunk material is separated and its vascular bundle is used as a constituent element of a wood-based material. Moreover, this 1st Embodiment manufactures the laminated board which fixed the separated vascular bundle as a woody material which concerns on this invention. The manufacturing method will be described below. The manufacturing method of the laminated board which concerns on this 1st Embodiment consists of a isolation | separation process, a provision process, and a joint process. Hereinafter, it demonstrates according to each process.
 1.分離工程
 本第1実施形態に係る分離工程は、オイルパーム材を維管束と柔細胞とに分離する。図1は、本発明者らが考えるオイルパーム材を例にした利用方法のフロー図である。図1において、まず、オイルパーム幹材を粉砕(本発明においては破砕を含む)、圧搾、爆砕、水流高圧噴射等の手段(以下「分離手段」ともいう)を用いて維管束と柔細胞とに分離する。
1. Separation process The separation process according to the first embodiment separates the oil palm material into vascular bundles and parenchyma cells. FIG. 1 is a flow chart of a utilization method taking oil palm material considered by the present inventors as an example. In FIG. 1, first, vascular bundles and parenchyma cells are pulverized using means (hereinafter also referred to as “separation means”) such as pulverization (including crushing in the present invention), squeezing, explosion, water flow high-pressure jetting, etc. To separate.
 そこで、本発明者らは、オイルパーム幹材の断面を観察した。図2は、オイルパーム幹材の維管束と柔細胞とを示す電子顕微鏡写真である。図2において、維管束(維管束鞘と表示)とこれを取り囲む柔細胞(柔組織と表示)が明瞭に区別できる。また、これらの組織の構造強度が異なることから、分離手段により維管束と柔細胞とに容易に分離することができる。なお、維管束の外郭部には柔細胞が固着しているが、分離手段の種類と操作工程を制御することにより、分離後の維管束に残留する柔細胞の比率を調整することができる。 Therefore, the present inventors observed a cross section of the oil palm trunk material. FIG. 2 is an electron micrograph showing the vascular bundle and parenchyma of the oil palm trunk material. In FIG. 2, the vascular bundle (indicated as vascular sheath) and the parenchymal cells (indicated as soft tissue) surrounding the vascular bundle can be clearly distinguished. In addition, since the structural strengths of these tissues are different, the tissue bundle can be easily separated into vascular bundles and parenchyma cells. Although parenchymal cells adhere to the outer portion of the vascular bundle, the ratio of parenchymal cells remaining in the separated vascular bundle can be adjusted by controlling the type of separation means and the operation process.
 オイルパーム幹材を維管束と柔細胞とに分離する分離手段の装置は、特に限定するものではない。例えば、粉砕装置(破砕装置も含む)としては、ハンマーミル、スパイラルミル、振動ボールミル、震動ロッドミル、ウィーリーミルなどの各種ミル、ハンマークラッシャーなどのクラッシャー、チッパーやシュレッダーなどが挙げられる。また、圧搾装置としては、ゼファー化装置などを挙げることができる。また、水蒸気爆砕などの装置も使用することができる。更に、分散流体を100~250MPaで高圧噴射する装置等も使用することができる。 The apparatus of separation means for separating the oil palm trunk material into vascular bundles and parenchyma cells is not particularly limited. For example, as a crusher (including a crusher), various types of mills such as a hammer mill, a spiral mill, a vibration ball mill, a vibration rod mill, a wheelie mill, a crusher such as a hammer crusher, a chipper, and a shredder can be used. In addition, examples of the squeezing device include a zephyrizing device. An apparatus such as steam explosion can also be used. Furthermore, an apparatus that injects the dispersed fluid at a high pressure of 100 to 250 MPa can be used.
 これらの装置を使用する際の処理条件、例えば、出力・回数・時間・ロール間隔などを調整することにより、上述のように、維管束と柔細胞との分離比率及び処理物の大きさ、並びに、維管束に残留する柔細胞の比率を調整することができる。上記特許文献2によれば、オイルパーム幹材の木質部の約50~60質量%が柔細胞であるといわれている。しかし、処理条件を弱くすれば、柔細胞が多く残存保持された維管束と、脱離した柔細胞に分離される。逆に、処理条件を強くすれば、柔細胞が殆ど脱離した維管束と、脱離した柔細胞と破壊された維管束との混合物に分離される。 By adjusting the processing conditions when using these devices, for example, output, number of times, time, roll interval, etc., as described above, the separation ratio between the vascular bundle and the parenchyma, the size of the processed material, and The ratio of parenchymal cells remaining in the vascular bundle can be adjusted. According to Patent Document 2, it is said that about 50 to 60% by mass of the wood part of the oil palm trunk material is parenchyma. However, if the treatment conditions are weakened, they are separated into vascular bundles in which many parenchymal cells remain and detached parenchymal cells. On the contrary, if the treatment conditions are strengthened, the vascular bundle from which parenchymal cells are almost detached is separated into a mixture of detached parenchymal cells and broken vascular bundles.
 また、オイルパーム幹材を維管束と柔細胞とに分離する際に、気乾状態(含水率15質量%の乾燥状態)で分離する場合と生材状態で分離する場合とで、維管束と柔細胞との分離比率及び処理物の大きさ、並びに、維管束に残留する柔細胞の比率を調整することができる。なお、オイルパーム農園で伐採されたオイルパーム幹材をその場で処理する場合には、生材状態で分離することが好ましい。いずれにしても、分離された各材料の用途により、装置の種類、処理条件及びオイルパーム幹材の含水率を適宜設定すればよい。 In addition, when separating the oil palm trunk material into vascular bundles and parenchyma cells, the vascular bundles are separated depending on whether they are separated in an air-dried state (dried state having a water content of 15% by mass) or in a raw material state. The separation ratio with parenchymal cells, the size of the treated product, and the ratio of parenchymal cells remaining in the vascular bundle can be adjusted. In addition, when processing the oil palm trunk material felled in the oil palm plantation on the spot, it is preferable to isolate | separate in a raw material state. In any case, what is necessary is just to set suitably the kind of apparatus, process conditions, and the moisture content of an oil palm trunk material by the use of each isolate | separated material.
 本第1実施形態においては、分離手段として圧搾装置の一種であるゼファー化装置を使用した。ゼファー化装置は、従来から竹ゼファーやゼファーボードなどを作製する際に使用されている。しかし、オイルパーム幹材の処理にゼファー化装置が使用されたことはなく、また、その使用が提案された事実もない。また、木質材の組織の分離にも使用されたことはない。本発明者らは、ゼファー化装置の構造と作用を検討し、長尺の維管束を過度に切断することなく分離する手段としてゼファー化装置の使用が適切であるとの判断を得た。以下、その理由について説明する。 In the first embodiment, a zephyrizing apparatus, which is a type of squeezing apparatus, is used as the separating means. Zephyrization apparatuses are conventionally used when producing bamboo zephyrs, zephyr boards, and the like. However, no zephyrizing apparatus has been used for the treatment of oil palm trunks, and there is no fact that its use has been proposed. Also, it has never been used to separate wood tissue. The inventors of the present invention have studied the structure and operation of the zephyrizing apparatus, and have determined that the use of the zefferizing apparatus is appropriate as a means for separating a long vascular bundle without excessively cutting. The reason will be described below.
 ゼファー化装置は、基本的には以下のような構造を有する。まず、2本の円筒状の金属ロールを使用する。なお、2本を1対として複数対を連続して使用するようにしてもよい。各金属ロールは、その表面に円周方向に沿って平行して設けられた複数の溝を有する。この溝は、山部と谷部とからなる凹凸状に形成されている。なお、本発明においては、通常のゼファー化装置とは異なり、分離される維管束の用途に合わせて、V字状、その他の形状の溝構造を採用するようにしてもよい。また、V字状、凹凸状、その他の形状の溝構造に加え、2本の金属ロールの間隔や溝間距離(ピッチ)も調整するようにしてもよい。 Zephyrization device basically has the following structure. First, two cylindrical metal rolls are used. Note that two pairs may be used as a pair, and a plurality of pairs may be used continuously. Each metal roll has a plurality of grooves provided on its surface in parallel along the circumferential direction. This groove is formed in a concavo-convex shape composed of a crest and a trough. In the present invention, unlike a normal zephyrizing apparatus, a V-shaped or other groove structure may be adopted in accordance with the use of the separated vascular bundle. Further, in addition to the V-shaped, uneven, and other groove structures, the distance between the two metal rolls and the distance (pitch) between the grooves may be adjusted.
 このような1対の金属ロールは、互いの円筒軸方向を平行にして、互いの山部と谷部とが咬合した状態で逆方向に回転する。このようにして回転する2本の金属ロールの咬合部に、オイルパーム幹材から調製した板片を挿入する。ここで、オイルパームの板片における維管束の状態について説明する。上述のように、維管束は、オイルパームの樹幹の長さ方向に平行に長尺で存在している。従って、オイルパーム幹材から樹幹の長さ方向の板材を調製すれば、維管束が平行に並んだ柾目状の板材を得ることができる。本第1実施形態においては、オイルパーム幹材から板材を調整する際に、ロータリーレースなどで単板にしたものを使用した。この単板においては、維管束が平行に並んでいる。 Such a pair of metal rolls rotate in the opposite direction with their crests and troughs engaged with each other with the cylinder axis directions parallel to each other. The plate piece prepared from the oil palm trunk material is inserted into the occlusal part of the two metal rolls rotating in this manner. Here, the state of the vascular bundle in the oil palm plate piece will be described. As described above, the vascular bundle is long and parallel to the length direction of the trunk of the oil palm. Therefore, if a plate material in the length direction of the trunk is prepared from the oil palm trunk material, a grid-like plate material in which vascular bundles are arranged in parallel can be obtained. In this 1st Embodiment, when adjusting a board | plate material from an oil palm trunk material, what was made into the single board with the rotary race etc. was used. In this single plate, vascular bundles are arranged in parallel.
 このような単板を回転する2本の金属ロールの咬合部に挿入する方向を変化させることにより、得られる維管束の状態が異なる。例えば、維管束の長さ方向を金属ロールの溝と平行に挿入した場合には、維管束を過度に切断することなく長尺の状態で分離することができる。一方、維管束の長さ方向を金属ロールの溝と直交する方向に挿入した場合には、維管束を短く切断された状態で分離することができる。 The state of the obtained vascular bundle differs by changing the direction in which the single plate is inserted into the occlusal part of the two rotating metal rolls. For example, when the length direction of the vascular bundle is inserted in parallel with the groove of the metal roll, the vascular bundle can be separated in an elongated state without being excessively cut. On the other hand, when the length direction of the vascular bundle is inserted in a direction perpendicular to the groove of the metal roll, the vascular bundle can be separated in a short cut state.
 ここで、本第1実施形態において、従来のゼファー化装置を使用してオイルパーム幹材を維管束と柔細胞とに分離する作業について説明する。図3は、本第1実施形態で使用したゼファー化装置を示す写真である。また、図4は、ゼファー化装置の2本の金属ロールの溝(本第1実施形態では凹凸状)が互いの山部と谷部とで咬合した状態を示す写真である。なお、使用したゼファー化装置には、2本を1対として複数対(使用した装置は5対)の金属ロールが装着されている。 Here, in the first embodiment, an operation of separating the oil palm trunk material into vascular bundles and parenchyma cells using a conventional Zephyr apparatus will be described. FIG. 3 is a photograph showing the zephyrization apparatus used in the first embodiment. FIG. 4 is a photograph showing a state in which the grooves (uneven shape in the first embodiment) of the two metal rolls of the Zephyrization apparatus are engaged with each other at the crest and trough. In addition, the used Zephyr apparatus is equipped with two pairs as a pair, and a plurality of pairs (5 pairs of used apparatuses) of metal rolls.
 本第1実施形態においては、ロータリーレースを使用してオイルパーム樹幹から単板を調製し、これを乾燥したものを使用した。従って、単板には維管束が平行に並んだ状態で含まれている。図5は、ゼファー化装置にオイルパーム樹幹から調整した単板を挿入する状態を示す写真である。なお、本第1実施形態においては、維管束の長さ方向を金属ロールの溝と平行にして単板を挿入した。 In the first embodiment, a veneer was prepared from an oil palm trunk using a rotary race and dried. Accordingly, the vascular bundles are included in the single plate in a state of being arranged in parallel. FIG. 5 is a photograph showing a state in which a veneer adjusted from an oil palm trunk is inserted into a zephyrizing apparatus. In the first embodiment, a single plate is inserted with the length direction of the vascular bundle parallel to the groove of the metal roll.
 図6は、ゼファー化装置から維管束と柔細胞が分離されて出てくる状態を示す写真である。また、図7は、ゼファー化装置で分離された維管束を示す写真である。図7において、得られた維管束は、過度に切断されることなく長尺の状態で分離されていることが分かる。また、図8は、ゼファー化装置で分離された柔細胞を示す写真である。図8において、得られた柔細胞は、細断された維管束片が混入することなく微細な粉末の状態で分離されていることが分かる。 FIG. 6 is a photograph showing a state in which vascular bundles and parenchyma cells are separated from the Zephyrization apparatus. FIG. 7 is a photograph showing the vascular bundle separated by the Zephyrization apparatus. In FIG. 7, it can be seen that the obtained vascular bundle is separated in a long state without being excessively cut. FIG. 8 is a photograph showing parenchyma cells separated by the Zephyrization apparatus. In FIG. 8, it can be seen that the obtained parenchymal cells are separated in a fine powder state without mixing the chopped vascular bundle pieces.
 なお、従来のゼファー化装置は、本発明のように維管束と柔細胞とを分離することを目的としていない。本第1実施形態においては、約34kgのオイルパーム樹幹の単板から、26.2kg(77.1%)の維管束と3.1kg(9.1%)の柔細胞を回収した。全体の回収率は、86.1%であった。このように回収率が低いのは、従来のゼファー化装置を使用した場合には、分離した柔細胞が飛散してしまい効率よく回収することができないからと考えられる。 Note that the conventional Zephyrization apparatus is not intended to separate vascular bundles and parenchymal cells as in the present invention. In the first embodiment, 26.2 kg (77.1%) of vascular bundles and 3.1 kg (9.1%) of parenchymal cells were recovered from a single plate of about 34 kg of oil palm tree trunk. The overall recovery rate was 86.1%. The reason why the recovery rate is low in this way is thought to be that when the conventional Zephyrization apparatus is used, the separated parenchymal cells scatter and cannot be efficiently recovered.
 そこで、本発明において使用するゼファー化装置、或いはこれに類似する装置においては、分離した柔細胞を効率よく回収することのできる集塵機を使用するようにしてもよい。本発明に使用する集塵機の方式や種類は、特に限定するものではない。例えば、サイクロンなどの遠心式集塵機やバグフィルタなどの濾過式集塵機等を挙げることができる。 Therefore, in the Zephyrization apparatus used in the present invention, or a similar apparatus, a dust collector capable of efficiently recovering the separated parenchyma cells may be used. The method and type of the dust collector used in the present invention are not particularly limited. For example, a centrifugal dust collector such as a cyclone or a filtration dust collector such as a bag filter can be used.
 次に、ゼファー化装置で分離された維管束の状態を観察した。図9は、ゼファー化装置で分離された維管束の表面を拡大した電子顕微鏡写真である。また、図10は、維管束の表面を更に拡大した電子顕微鏡写真である。図9及び図10において、維管束の表面には大きな傷が無くゼファー化装置の処理において維管束がダメージを受けておらず、構造材として有効であることが分かる。また、維管束の外周にはシリカの結晶と思われるものが付着していることが分かる。 Next, the state of the vascular bundle separated by the Zephyrization apparatus was observed. FIG. 9 is an electron micrograph showing an enlarged surface of the vascular bundle separated by the Zephyrization apparatus. FIG. 10 is an electron micrograph further enlarging the surface of the vascular bundle. 9 and 10, it can be seen that the surface of the vascular bundle has no large scratches, and the vascular bundle is not damaged in the processing of the zephyrizing apparatus, and is effective as a structural material. Moreover, it turns out that what is considered to be a crystal | crystallization of silica has adhered to the outer periphery of a vascular bundle.
 ここで、オイルパーム材の維管束と柔細胞の構成成分について比較する。表1は、公知文献(H.Abe,et.al.BioResources,8(2),1573-1581(2013))で公表されたオイルパーム材の維管束と柔細胞の構成成分の比率を示す表である。なお、本第1実施形態で分離した維管束と柔細胞の構成成分の実際の比率は未分析である。 Here, the vascular bundle of oil palm material and the constituents of parenchyma will be compared. Table 1 is a table showing the ratio of vascular bundles and parenchyma components of oil palm materials published in known literature (H. Abe, et.al. BioResources, 8 (2), 1573-1581 (2013)). It is. In addition, the actual ratio of the constituent components of the vascular bundle and parenchyma cells separated in the first embodiment has not been analyzed.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1において、αセルロースの比率及びデンプンの比率が、維管束と柔細胞とで大きく異なっていることが分かる。また、上記非特許文献1で公表されているオイルパーム幹材のデンプンの比率(約25%)とは若干異なっている。いずれも公知文献の資料であるが、個体差、地域差、季節変動などの影響が考えられる。 In Table 1, it can be seen that the ratio of α-cellulose and starch are greatly different between vascular bundles and parenchyma cells. Moreover, the ratio (about 25%) of the starch of the oil palm trunk material published by the said nonpatent literature 1 is a little different. All of them are publicly-known literature materials, but influences such as individual differences, regional differences, and seasonal variations are possible.
 いずれにしても、αセルロースの比率が高い維管束を木質系材料の構造材として利用することが有効であることが分かる。また、デンプンの比率が高い柔細胞を家畜用飼料やバイオエタノールの原料、又はキノコ栽培の菌床として利用することが有効であることが分かる。 In any case, it can be seen that it is effective to use a vascular bundle having a high α cellulose ratio as a structural material of a wood-based material. Moreover, it turns out that it is effective to use a parenchyma cell with a high ratio of starch as a feed for livestock, a raw material of bioethanol, or a fungus bed of mushroom cultivation.
 一方、本第1実施形態で得られたオイルパーム材の維管束の物性について確認した。まず、オイルパーム材の維管束の密度は、公知文献(Nor Hafizab Ab Wahab,et.al.Journal of Adhesion,90(3),210-229(2014))によれば、0.62g/cmとされている。一方、本第1実施形態で分離した維管束の見かけの密度は、アルキメデスの原理を利用して石油エーテル中での浸漬により測定したところ、実測値で0.7~0.8g/cmであった。 On the other hand, the physical properties of the vascular bundle of the oil palm material obtained in the first embodiment were confirmed. First, the density of vascular bundles of oil palm material is 0.62 g / cm 3 according to known literature (Nor Hafizab Ab Wahab, et.al. Journal of Adhesion, 90 (3), 210-229 (2014)). It is said that. On the other hand, the apparent density of the vascular bundle separated in the first embodiment was measured by immersion in petroleum ether using Archimedes' principle and found to be 0.7 to 0.8 g / cm 3 as an actual measurement value. there were.
 次に、本第1実施形態で分離した維管束の引張強度を測定した。測定には、荷重速度を3.0mm/minとして精密万能試験機オートグラフ(登録商標;株式会社島津製作所製)で測定した。引張強度の計算には、維管束を円柱であると仮定して破断部分の直径を2方向から測定し、その平均値を使用して算出した。本第1実施形態で分離した維管束の引張強度は、実測値で146.8MPaであった。この値は、公知文献(木材研究,第30号,P.32-39(1994))による、ジュート:550MPa、広葉樹:130MPa、針葉樹:140MPa、竹:300MPa、Lint:480MPa、ポリエステル:520MPaに比較しても非常に良好な強度である。よって、引張強度の高い維管束を木質系材料の構造材として利用することが有効であることが分かる。 Next, the tensile strength of the vascular bundle separated in the first embodiment was measured. The measurement was performed with a precision universal testing machine Autograph (registered trademark; manufactured by Shimadzu Corporation) at a load speed of 3.0 mm / min. In calculating the tensile strength, the diameter of the fractured part was measured from two directions on the assumption that the vascular bundle was a cylinder, and the average value was used for calculation. The tensile strength of the vascular bundle separated in the first embodiment was 146.8 MPa in actual measurement. This value is based on known literature (Wood Research, No. 30, P.32-39 (1994)) compared with jute: 550 MPa, hardwood: 130 MPa, conifer: 140 MPa, bamboo: 300 MPa, Lint: 480 MPa, polyester: 520 MPa. Even so, it is very good strength. Therefore, it can be seen that it is effective to use a vascular bundle having a high tensile strength as a structural material of a wood-based material.
 次に、分離工程で得られた維管束を用いて、これを構造材として利用する積層板の製造について説明する。本第1実施形態においては、分離された長尺の維管束を長尺のまま使用して、これらを直交する2方向に配向させた積層板を製造した。 Next, production of a laminate using the vascular bundle obtained in the separation step and using it as a structural material will be described. In this 1st Embodiment, the separated long vascular bundle was used as it was long, and the laminated board which orientated these in two orthogonal directions was manufactured.
 2.付与工程
 まず、維管束への樹脂材料の付与工程について説明する。本第1実施形態に係る積層板は、分離した維管束に樹脂材料を含浸して維管束どうしを結合したものである。本発明にいう樹脂材料とは、維管束どうしを接着して結合する材料、維管束どうしの間に充填してこれら結合する材料、或いは、維管束の内部に一部浸透して維管束を構成するセルロースその他の物質と反応してこれらを結合する材料などを含む広い概念であって、最終的に維管束どうしが結合された状態を形成する材料であればよい。従って、付与工程で維管束に付与する段階では、ポリマー、プレポリマー、オリゴマー、及びモノマーのいずれであってもよい。
2. Application Process First, an application process of the resin material to the vascular bundle will be described. The laminated plate according to the first embodiment is obtained by impregnating a separated vascular bundle with a resin material and joining the vascular bundles together. The resin material referred to in the present invention is a material for bonding and binding vascular bundles, a material for filling and bonding between vascular bundles, or a vascular bundle that partially penetrates into the vascular bundle. It is a broad concept including materials that react with cellulose and other substances to bind them, and any material that finally forms a state in which vascular bundles are bound together. Therefore, any of a polymer, a prepolymer, an oligomer, and a monomer may be used at the stage of applying to the vascular bundle in the applying process.
 具体的には、ポリマー或いはプレポリマーとしては、フェノール樹脂、ユリア樹脂、メラミン樹脂、フラン樹脂、ウレタン樹脂、エポキシ樹脂などの合成樹脂、又は、シェラックなどの天然樹脂を挙げることができる。また、フェノール樹脂やメラミン樹脂の場合には、オリゴマー或いは更に分子量の小さな1量体、2量体などであってもよい。更には、セルロースなどと反応する多官能の架橋剤であってもよい。架橋剤としては、例えば、多官能イソシアネート、多官能エポキシ、多官能アルデヒド、多官能カルボン酸などであってもよい。 Specifically, examples of the polymer or prepolymer include synthetic resins such as phenol resin, urea resin, melamine resin, furan resin, urethane resin, epoxy resin, and natural resin such as shellac. Moreover, in the case of a phenol resin or a melamine resin, it may be an oligomer or a monomer or dimer having a smaller molecular weight. Furthermore, a polyfunctional crosslinking agent that reacts with cellulose or the like may be used. As a crosslinking agent, polyfunctional isocyanate, polyfunctional epoxy, polyfunctional aldehyde, polyfunctional carboxylic acid, etc. may be sufficient, for example.
 なお、本第1実施形態においては、フェノール樹脂を使用した。維管束に含浸するフェノール樹脂としては、レゾール型のフェノール樹脂を使用することが好ましい。これらのフェノール樹脂としては、数平均分子量が約400以下の低分子量フェノール樹脂(充填型樹脂)、又は、それよりも分子量の大きなオリゴマー型フェノール樹脂(接着型樹脂)のいずれであってもよい。また、フェノール樹脂は、単独で使用してもよく或いは触媒等を併用するようにしてもよい。なお、本第1実施形態においては、数平均分子量:Mn=272、重量平均分子量:Mw=408の低分子量フェノール樹脂(充填型樹脂)を使用した。 In the first embodiment, a phenol resin is used. As the phenol resin impregnated in the vascular bundle, it is preferable to use a resol type phenol resin. These phenol resins may be either low molecular weight phenol resins having a number average molecular weight of about 400 or less (filling type resin) or oligomer type phenol resins having a higher molecular weight (adhesive type resin). The phenol resin may be used alone or in combination with a catalyst or the like. In the first embodiment, a low molecular weight phenol resin (filled resin) having a number average molecular weight: Mn = 272 and a weight average molecular weight: Mw = 408 was used.
 フェノール樹脂の維管束への含浸は、まず、フェノール樹脂を水に溶解させて、2~50質量%濃度、より好ましくは10~30質量%濃度、更に好ましくは20~30質量%濃度のフェノール樹脂水溶液を調製する。フェノール樹脂水溶液の濃度が2質量%未満であれば、維管束への含浸量が不十分になり積層板の物性が低下することが考えられる。一方、フェノール樹脂水溶液の濃度が50質量%を超えると、積層板が脆くなると共に製造コストが上昇することが考えられる。 In the impregnation of the vascular bundle with the phenol resin, first, the phenol resin is dissolved in water, and the phenol resin having a concentration of 2 to 50% by mass, more preferably 10 to 30% by mass, still more preferably 20 to 30% by mass. Prepare an aqueous solution. If the concentration of the aqueous phenol resin solution is less than 2% by mass, it is considered that the amount of impregnation into the vascular bundle is insufficient and the physical properties of the laminate are lowered. On the other hand, when the concentration of the aqueous phenol resin solution exceeds 50% by mass, it is considered that the laminated plate becomes brittle and the manufacturing cost increases.
 次に、調製したフェノール樹脂水溶液に常温下で維管束を0.2~24時間浸漬して、維管束にフェノール樹脂を含浸する。このとき、必要により減圧・加圧などの含浸方法を採用するようにしてもよい。なお、本第1実施形態においては、常温・常圧下で0.5時間浸漬した。このときの含浸率は、134.6%であった。次に、フェノール樹脂水溶液を含浸した維管束を風乾した後に50℃~105℃程度の温度条件下で10分~12時間程度かけて乾燥する。本第1実施形態においては、フェノール樹脂水溶液を含浸した維管束を約12時間風乾した後、80℃で3時間乾燥した。この操作で得られた樹脂含有維管束の樹脂固形分含有量は、約30質量%であった。 Next, the vascular bundle is immersed in the prepared aqueous phenol resin solution at room temperature for 0.2 to 24 hours to impregnate the vascular bundle with the phenol resin. At this time, if necessary, an impregnation method such as decompression or pressurization may be employed. In the first embodiment, the film was immersed for 0.5 hours at room temperature and normal pressure. The impregnation rate at this time was 134.6%. Next, the vascular bundle impregnated with the aqueous phenol resin solution is air-dried and then dried at about 50 ° C. to 105 ° C. for about 10 minutes to 12 hours. In the first embodiment, the vascular bundle impregnated with the aqueous phenol resin solution was air-dried for about 12 hours and then dried at 80 ° C. for 3 hours. The resin solid content of the resin-containing vascular bundle obtained by this operation was about 30% by mass.
 次に、これらのフェノール樹脂を含浸し乾燥した維管束を長尺方向に配向させた3層のマットを作製した。マットとは、パーティクルボードなどで使用される用語であって、圧締する前の繊維やパーティクル(本第1実施形態においては維管束)を散布堆積した各層をいう。図11は、積層成形前の3層のマットの構成を示す概略図である。各マットW1~W3は、それぞれを構成する維管束を長尺方向に配向させた状態で成形されている。また、各マットW1~W3は、配向方向を交互に直交させて構成されている。図11において、マットW1及びW3は、その維管束を同一方向(図示右上方向)に配向させ、これらに直交する方向(図示横方向)にマットW2が配置されている。このことにより、これらを積層した積層板の物性が向上すると共に、使用されている維管束が長尺であることにより更に物性が向上する。 Next, a three-layer mat in which the vascular bundle impregnated with these phenol resins and dried was oriented in the longitudinal direction was produced. The mat is a term used in a particle board or the like, and refers to each layer in which fibers and particles (a vascular bundle in the first embodiment) before being pressed are scattered and deposited. FIG. 11 is a schematic view showing a configuration of a three-layer mat before lamination molding. Each of the mats W1 to W3 is formed in a state in which the vascular bundles constituting the respective mats are oriented in the longitudinal direction. Further, each of the mats W1 to W3 is configured by alternately orienting the orientation directions. In FIG. 11, the mats W1 and W3 have their vascular bundles oriented in the same direction (upper right direction in the figure), and the mat W2 is disposed in a direction (lateral direction in the figure) perpendicular to them. As a result, the physical properties of the laminate obtained by laminating them are improved, and the physical properties are further improved because the used vascular bundle is long.
 3.結合工程
 次に、各マットW1~W3に使用された配向した各維管束の結合、及び、各マットW1~W3相互の結合を行う結合工程について説明する。なお、本第1実施形態においては、結合工程において基本的に圧密化を行わず、各維管束の充填密度を向上させた。よって、成形後の積層板の目標密度を上述の維管束の実測密度に合わせることとした。
3. Joining Step Next, a joining step for joining the oriented vascular bundles used for the mats W1 to W3 and joining the mats W1 to W3 to each other will be described. In the first embodiment, basically, consolidation is not performed in the joining step, and the filling density of each vascular bundle is improved. Therefore, the target density of the laminated sheet after molding was set to match the measured density of the vascular bundle described above.
 まず、準備したマットW1~W3を図11のように構成して結合前の積層板を準備する。この積層板を熱プレス機にセットして上下熱板により加温し、加温された積層板に対して、厚み方向から上下熱板に所定の圧締圧力を加えて圧縮する。更に、この圧締圧力を維持した状態で、更に昇温して所定温度下で所定時間維持した後、温度を降下させて結合し固定化を完了する。 First, the prepared mats W1 to W3 are configured as shown in FIG. 11 to prepare a laminate before bonding. The laminated plate is set in a hot press and heated by the upper and lower hot plates, and the heated laminated plate is compressed by applying a predetermined pressing pressure to the upper and lower hot plates from the thickness direction. Further, while maintaining the pressing pressure, the temperature is further raised and maintained at a predetermined temperature for a predetermined time, and then the temperature is lowered to complete the fixation.
 固定化条件として、所定温度とは、使用する樹脂材料の種類にもよるが、一般に140~220℃の温度範囲内であり、好ましくは、160~200℃の温度範囲内である。また、この温度範囲を維持する時間は、固定化する対象により適宜選定するものであるが、例えば、10分~120分の範囲内であり、好ましくは、10分~60分の範囲内である。一方、厚み方向から加える圧締圧力は、固定化する対象により適宜選定するものであるが、例えば、1~10MPaの範囲内であることが好ましい。なお、本第1実施形態においては、マットW1~W3を積層した積層板(圧締前の厚さ:約10cm)に対して、180℃の温度と1.5MPaの圧締圧力で15分間処理して厚さ約12mmの積層板を固定した。 As the immobilization conditions, the predetermined temperature is generally in the temperature range of 140 to 220 ° C., preferably in the temperature range of 160 to 200 ° C., although it depends on the type of resin material used. In addition, the time for maintaining this temperature range is appropriately selected depending on the object to be immobilized, and is, for example, in the range of 10 minutes to 120 minutes, and preferably in the range of 10 minutes to 60 minutes. . On the other hand, the pressing pressure applied from the thickness direction is appropriately selected depending on the object to be fixed, but is preferably in the range of 1 to 10 MPa, for example. In the first embodiment, the laminated plate (thickness before pressing: about 10 cm) on which the mats W1 to W3 are stacked is treated at a temperature of 180 ° C. and a pressing pressure of 1.5 MPa for 15 minutes. Then, a laminated plate having a thickness of about 12 mm was fixed.
 このようにして得られた積層板の固定化後の気乾密度の値は、上述の維管束の実測密度(0.7~0.8g/cm)と同等或いは若干低い、0.55~0.71g/cmであった。なお、本第1実施形態においては、1.5MPaの圧締圧力による成形を行ったが、圧締圧力の程度を変化させ、或いは、更に圧密化することにより、成形後の気乾密度の値が0.3~1.5g/cmの範囲内とすることが好ましい。成形後の気乾密度の値が0.3~1.5g/cmの範囲内にあれば、固定化された積層板の剛性(曲げヤング係数)などの物性が良好なものとなる。 The value of the air dry density after fixation of the laminate thus obtained is equal to or slightly lower than the above-mentioned measured density of the vascular bundle (0.7 to 0.8 g / cm 3 ), 0.55 to It was 0.71 g / cm 3 . In the first embodiment, molding is performed with a pressing pressure of 1.5 MPa. However, the value of the air dry density after molding is changed by changing the degree of the pressing pressure or by further compacting. Is preferably in the range of 0.3 to 1.5 g / cm 3 . If the value of the air-dry density after molding is in the range of 0.3 to 1.5 g / cm 3 , physical properties such as rigidity (bending Young's modulus) of the fixed laminated plate will be good.
 ここで、固定化された積層板について、その物性値を確認した。本第1実施形態において行った物性試験項目は、曲げ試験、吸水厚さ膨張率試験、木ねじ保持力試験、表面硬さ(ブリネル硬さ)試験の各項目である。それぞれの試験方法及び結果について以下に説明する。 Here, the property values of the fixed laminated plate were confirmed. The physical property test items performed in the first embodiment are items of a bending test, a water absorption thickness expansion rate test, a wood screw holding force test, and a surface hardness (Brinell hardness) test. Each test method and result will be described below.
 <曲げ試験>
 曲げ試験は、JIS A 5908:2008(パーティクルボード)に準じて行った。また、本第1実施形態においては、常態の試験片での測定に加え、煮沸2時間後の湿潤時の試験片での測定(B法)の両方の測定を行った。なお、本第1実施形態の積層板は3層からなるため、縦方向のみの試験片で測定した。ここで、試験片の縦方向とは、図11のマットW1及びW3の2層のマットにおいて、維管束の配向する方向に長さ方向を合わせた試験片を示している。
<Bending test>
The bending test was performed according to JIS A 5908: 2008 (particle board). Moreover, in this 1st Embodiment, in addition to the measurement by a normal test piece, both the measurement (Method B) of the measurement by the test piece at the time of 2 hours after boiling were performed. In addition, since the laminated board of this 1st Embodiment consists of three layers, it measured with the test piece of only the vertical direction. Here, the longitudinal direction of the test piece indicates a test piece in which the length direction is matched with the direction in which the vascular bundle is oriented in the two-layer mats of the mats W1 and W3 in FIG.
 測定には、まず、厚さ12mm、幅50mm、長さ230mmの試験片を準備した。次に、3点荷重方式により平均荷重速度10mm/minで測定した。測定項目は、曲げ強度(MPa)、曲げヤング係数(GPa)、曲げ仕事量(J)の各項目とした。本第1実施形態に係る固定化された積層板に関する測定結果を表2に示す。なお、表2の密度とは、作製した試験片(測定前)の気乾状態の密度をいう。 For the measurement, first, a test piece having a thickness of 12 mm, a width of 50 mm, and a length of 230 mm was prepared. Next, the average load speed was measured at 10 mm / min by a three-point load method. The measurement items were the bending strength (MPa), bending Young's modulus (GPa), and bending work (J). Table 2 shows the measurement results regarding the fixed laminated plate according to the first embodiment. In addition, the density of Table 2 means the density of the air-dried state of the produced test piece (before measurement).
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 上述のJIS A 5908:2008(パーティクルボード)の基準によれば、曲げ強度:17.5MPa以上(湿潤時10.5MPa以上)、曲げヤング係数:3.0GPa以上であり、表2の結果は、いずれも良好なものであった。 According to the above JIS A 5908: 2008 (particle board) standard, the bending strength is 17.5 MPa or more (10.5 MPa or more when wet), the bending Young's modulus is 3.0 GPa or more, and the results in Table 2 are as follows. All were good.
 <吸水厚さ膨張率試験>
 吸水厚さ膨張率試験は、JIS A 5908:2008(パーティクルボード)に準じて行った。まず、幅50mm、長さ50mmの試験片を準備し、その中央部の厚さと重量を測定した。次に、試験片を20℃の水中に水面下30mmに水平に置き、24時間浸漬した。その後、試験片の中央部の厚さと重量を測定し、吸水厚さ膨張率及び吸水率を算出した。なお、参考値として試験片の幅と長さの寸法変化も測定した。更に、20℃24時間浸漬に代えて、煮沸2時間浸漬についても同様にして測定した。本第1実施形態に係る固定化された積層板に関する測定結果を表3に示す。なお、表3の密度とは、作製した試験片(測定前)の気乾状態の密度をいう。
<Water absorption thickness expansion test>
The water absorption thickness expansion coefficient test was performed according to JIS A 5908: 2008 (particle board). First, a test piece having a width of 50 mm and a length of 50 mm was prepared, and the thickness and weight of the central portion were measured. Next, the test piece was placed horizontally in water at 20 ° C. 30 mm below the surface of the water and immersed for 24 hours. Then, the thickness and weight of the center part of the test piece were measured, and the water absorption thickness expansion coefficient and the water absorption coefficient were calculated. In addition, the dimensional change of the width | variety and length of a test piece was also measured as a reference value. Furthermore, it replaced with 20 degreeC 24 hours immersion, and measured similarly about boiling 2 hours immersion. Table 3 shows the measurement results regarding the fixed laminated plate according to the first embodiment. In addition, the density of Table 3 means the density of the air-dried state of the produced test piece (before measurement).
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 上述のJIS A 5908:2008(パーティクルボード)の基準によれば、厚さ12.7mm以下の試料の吸水厚さ膨張率は25%以下であり、表3の結果は、この基準を大幅に上回るものであった。 According to the above-mentioned JIS A 5908: 2008 (Particle Board) standard, the water absorption thickness expansion coefficient of a sample with a thickness of 12.7 mm or less is 25% or less, and the results in Table 3 greatly exceed this standard. It was a thing.
 <木ねじ保持力試験>
 木ねじ保持力試験は、JIS A 5908:2008(パーティクルボード)に準じて行った。まず、幅50mm、長さ50mmの試験片を準備し、その中央部に径2.7mm、長さ16mmの木ねじを垂直にねじ部(約11mm)までねじ込んだ。次に、試験片を固定して木ねじを垂直に引き抜き、それに要する最大荷重を精密万能試験機オートグラフ(登録商標;株式会社島津製作所製)で測定した。本第1実施形態に係る固定化された積層板に関する測定結果を表4に示す。なお、表4の密度とは、作製した試験片(測定前)の気乾状態の密度をいう。
<Wood screw retention test>
The wood screw holding force test was performed according to JIS A 5908: 2008 (particle board). First, a test piece having a width of 50 mm and a length of 50 mm was prepared, and a wood screw having a diameter of 2.7 mm and a length of 16 mm was screwed vertically to the screw portion (about 11 mm) at the center. Next, the specimen was fixed, the wood screw was pulled out vertically, and the maximum load required for the specimen was measured with a precision universal testing machine Autograph (registered trademark; manufactured by Shimadzu Corporation). Table 4 shows the measurement results regarding the fixed laminated plate according to the first embodiment. In addition, the density of Table 4 means the density of the air-dried state of the produced test piece (before measurement).
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 上述のJIS A 5908:2008(パーティクルボード)の基準によれば、木ねじ保持力は500N以上であるが、表4の結果は、ほぼこの水準を維持するものであった。 According to the above-mentioned JIS A 5908: 2008 (Particle Board) standard, the wood screw holding force is 500 N or more, but the results in Table 4 almost maintained this level.
 <表面硬さ(ブリネル硬さ)試験>
 表面硬さ(ブリネル硬さ)試験は、JIS Z 2101:2009(木材の試験方法)に準じて行った。まず、先端が半径5mmの半球状のプランジャーを0.5mm/minの一定速度で、試験片の表面に深さ1/π(約0.32mm)まで圧入し、その深さに達したときの荷重を測定した。次に、測定した荷重を10(圧入面の表面積が10mmであることによる)で除してブリネル硬さとする。本第1実施形態に係る固定化された積層板に関する測定結果を表5に示す。なお、表5の密度とは、作製した試験片(測定前)の気乾状態の密度をいう。
<Surface hardness (Brinell hardness) test>
The surface hardness (Brinell hardness) test was performed according to JIS Z 2101: 2009 (wood testing method). First, when a hemispherical plunger with a radius of 5 mm is pressed into the surface of the test piece at a constant speed of 0.5 mm / min to a depth of 1 / π (about 0.32 mm), and that depth is reached. The load of was measured. Next, the measured load is divided by 10 (because the surface area of the press-fit surface is 10 mm 2 ) to obtain Brinell hardness. Table 5 shows the measurement results regarding the fixed laminated plate according to the first embodiment. In addition, the density of Table 5 means the density of the air-dried state of the produced test piece (before measurement).
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 この試験法において、試験片の表面硬さが10MPa以上であることにより、キズが付き難く物性的に優れた積層板を提供できるものと考えられている。表4の結果は、この水準を上回って15MPaに近い値を示しており、更に用途が広がるものと考えられる。 In this test method, when the surface hardness of the test piece is 10 MPa or more, it is considered that it is possible to provide a laminate having excellent physical properties and being hardly scratched. The result of Table 4 shows a value close to this level and close to 15 MPa, and it is considered that the use is further expanded.
 以上のことから、本第1実施形態によれば、これまで利用されることなく放置されていたオイルパーム材などのヤシ材を維管束と柔細胞とに効率よく分離し、分離した維管束を利用して従来の木材と同様又はそれ以上の物性を有して実用的に建材などの用途に利用可能な木質系材料及びその製造方法を提供することができる。 From the above, according to the first embodiment, the palm material such as oil palm material that has been left without being used so far is efficiently separated into vascular bundles and parenchyma cells, and the separated vascular bundles are separated. It is possible to provide a wood-based material having a physical property similar to or higher than that of conventional wood and practically usable for applications such as building materials, and a method for producing the same.
 第2実施形態:
 本第2実施形態においては、上記第1実施形態と同様に、本発明に係る木質系材料として、分離した維管束を固定化した積層板を製造する。その製造方法を説明する。本第2実施形態に係る積層板の製造方法は、上記第1実施形態と同様に分離工程と付与工程と結合工程とからなる。以下、各工程に従って説明する。
Second embodiment:
In this 2nd Embodiment, the laminated board which fixed the separated vascular bundle as a wood type material which concerns on this invention is manufactured similarly to the said 1st Embodiment. The manufacturing method will be described. The manufacturing method of the laminated board which concerns on this 2nd Embodiment consists of a isolation | separation process, a provision process, and a joint process similarly to the said 1st Embodiment. Hereinafter, it demonstrates according to each process.
 1.分離工程
 本第2実施形態においても、上記第1実施形態と同様にゼファー化装置を使用した。また、ゼファー化装置に投入するオイルパームの板片として上記第1実施形態と同様のロータリーレースによる単板を使用した。
1. Separation process Also in the second embodiment, a zephyrizing apparatus was used as in the first embodiment. Moreover, the single board by the rotary race similar to the said 1st Embodiment was used as a board piece of the oil palm thrown into a zephyrization apparatus.
 次に、分離工程で得られた維管束を用いて、これを構造材として利用する積層板の製造について説明する。本第2実施形態においては、上記第1実施形態と同様に分離された長尺の維管束を長尺のまま使用して、これらを直交する2方向に配向させた圧密積層板を製造する。 Next, production of a laminate using the vascular bundle obtained in the separation step and using it as a structural material will be described. In the present second embodiment, a long vascular bundle separated in the same manner as in the first embodiment is used as it is, and a consolidated laminate is produced in which these are oriented in two orthogonal directions.
 2.付与工程
 本第2実施形態においては、上記第1実施形態に対して付与工程で維管束に付与する樹脂材料を変更した。本第2実施形態においては、樹脂材料としてセルロースなどと反応する架橋剤である多官能イソシアネートを使用した。具体的には、2官能のジフェニルメタンジイソシアネート(以下「MDI」という)を使用した。本第2実施形態においては、維管束に10質量%のMDIを付与し、気乾状態で約2時間静置した。次に、上記第1実施形態と同様にしてMDIを付与した維管束を長尺方向に配向させた3層のマットを作製した(図11参照)。
2. Application Step In the second embodiment, the resin material applied to the vascular bundle in the application step is changed with respect to the first embodiment. In the second embodiment, polyfunctional isocyanate which is a crosslinking agent that reacts with cellulose or the like is used as the resin material. Specifically, bifunctional diphenylmethane diisocyanate (hereinafter referred to as “MDI”) was used. In the second embodiment, 10% by mass of MDI was applied to the vascular bundle and allowed to stand for about 2 hours in an air-dried state. Next, a three-layer mat in which the vascular bundle provided with MDI was oriented in the longitudinal direction was produced in the same manner as in the first embodiment (see FIG. 11).
 3.結合工程
 本第2実施形態においては、上記第1実施形態と同様に、結合工程において基本的に圧密化を行わず、各維管束の充填密度を向上させた。よって、成形後の積層板の目標密度を上述の維管束の実測密度に合わせることとした。
3. Bonding Step In the second embodiment, as in the first embodiment, the packing density is basically not performed in the bonding step, and the filling density of each vascular bundle is improved. Therefore, the target density of the laminated sheet after molding was set to match the measured density of the vascular bundle described above.
 まず、準備したマットW1~W3を図11のように構成して結合前の積層板を準備する。この積層板を熱プレス機にセットして上下熱板により加温し、加温された積層板に対して、厚み方向から上下熱板に所定の圧締圧力を加えて圧縮する。更に、この圧締圧力を維持した状態で、更に昇温して所定温度下で所定時間維持した後、温度を降下させて結合し固定化を完了する。 First, the prepared mats W1 to W3 are configured as shown in FIG. 11 to prepare a laminate before bonding. The laminated plate is set in a hot press and heated by the upper and lower hot plates, and the heated laminated plate is compressed by applying a predetermined pressing pressure to the upper and lower hot plates from the thickness direction. Further, while maintaining the pressing pressure, the temperature is further raised and maintained at a predetermined temperature for a predetermined time, and then the temperature is lowered to complete the fixation.
 本第2実施形態においては、固定化条件として、上記第1実施形態に対応した条件を採用した。具体的には、本第2実施形態においても、マットW1~W3を積層した積層板(圧締前の厚さ:約10cm)に対して、180℃の温度と1.5MPaの圧締圧力で15分間処理して厚さ約12mmの積層板を固定した。 In the second embodiment, the conditions corresponding to the first embodiment are adopted as the immobilization conditions. Specifically, also in the second embodiment, at a temperature of 180 ° C. and a pressing pressure of 1.5 MPa with respect to a laminated plate (thickness before pressing: about 10 cm) on which the mats W1 to W3 are stacked. A laminated plate having a thickness of about 12 mm was fixed by treating for 15 minutes.
 このようにして得られた積層板の固定化後の気乾密度の値は、上述の維管束の実測密度(0.7~0.8g/cm)と同等或いは若干低い、0.63~0.72g/cmであった。なお、本第2実施形態においては、1.5MPaの圧締圧力による成形を行ったが、圧締圧力の程度を変化させ、或いは、更に圧密化することにより、成形後の気乾密度の値が0.3~1.5g/cmの範囲内とすることが好ましい。成形後の気乾密度の値が0.3~1.5g/cmの範囲内にあれば、固定化された積層板の剛性(曲げヤング係数)などの物性が良好なものとなる。 The value of the air dry density after fixation of the laminate thus obtained is equal to or slightly lower than the above-mentioned measured density (0.7 to 0.8 g / cm 3 ) of the vascular bundle, 0.63 to It was 0.72 g / cm 3 . In the second embodiment, molding was performed with a pressing pressure of 1.5 MPa. However, the value of the air dry density after molding was changed by changing the degree of the pressing pressure or by further compacting. Is preferably in the range of 0.3 to 1.5 g / cm 3 . If the value of the air-dry density after molding is in the range of 0.3 to 1.5 g / cm 3 , physical properties such as rigidity (bending Young's modulus) of the fixed laminated plate will be good.
 ここで、固定化された積層板について、その物性値を確認した。本第2実施形態において行った物性試験項目は、曲げ試験、及び、吸水厚さ膨張率試験の各項目である。それぞれの試験方法及び結果について以下に説明する。 Here, the property values of the fixed laminated plate were confirmed. The physical property test items performed in the second embodiment are items of a bending test and a water absorption thickness expansion coefficient test. Each test method and result will be described below.
 <曲げ試験>
 本第2実施形態においては、上記第1実施形態と同様に、JIS A 5908:2008(パーティクルボード)に準じて、常態の試験片での測定に加え、煮沸2時間後の湿潤時の試験片での測定(B法)の両方の測定を行った。なお、本第2実施形態の積層板は3層からなるため、縦方向のみの試験片で測定した。ここで、試験片の縦方向とは、図11のマットW1及びW3の2層のマットにおいて、維管束の配向する方向に長さ方向を合わせた試験片を示している。
<Bending test>
In the second embodiment, in the same manner as in the first embodiment, in accordance with JIS A 5908: 2008 (particle board), in addition to the measurement with a normal test piece, the test piece when wet after 2 hours of boiling. Both measurements were performed in (Method B). In addition, since the laminated board of this 2nd Embodiment consists of three layers, it measured with the test piece of only the vertical direction. Here, the longitudinal direction of the test piece indicates a test piece in which the length direction is matched with the direction in which the vascular bundle is oriented in the two-layer mats of the mats W1 and W3 in FIG.
 測定には、まず、上記第1実施形態と同様にして厚さ12mm、幅50mm、長さ230mmの試験片を準備した。次に、3点荷重方式により平均荷重速度10mm/minで測定した。測定項目は、曲げ強度(MPa)、曲げヤング係数(GPa)、曲げ仕事量(J)の各項目とした。本第2実施形態に係る固定化された積層板に関する測定結果を表6に示す。なお、表6の密度とは、作製した試験片(測定前)の気乾状態の密度をいう。 For the measurement, first, a test piece having a thickness of 12 mm, a width of 50 mm, and a length of 230 mm was prepared in the same manner as in the first embodiment. Next, the average load speed was measured at 10 mm / min by a three-point load method. The measurement items were the bending strength (MPa), bending Young's modulus (GPa), and bending work (J). Table 6 shows the measurement results relating to the fixed laminated plate according to the second embodiment. In addition, the density of Table 6 means the density of the air-dried state of the produced test piece (before measurement).
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 上述のJIS A 5908:2008(パーティクルボード)の基準によれば、曲げ強度:17.5MPa以上(湿潤時10.5MPa以上)、曲げヤング係数:3.0GPa以上であり、表6の結果は、いずれも良好なものであった。 According to the above-mentioned standard of JIS A 5908: 2008 (particle board), the bending strength is 17.5 MPa or more (10.5 MPa or more when wet), the bending Young's modulus is 3.0 GPa or more. All were good.
 <吸水厚さ膨張率試験>
 本第2実施形態においては、上記第1実施形態と同様に、JIS A 5908:2008(パーティクルボード)に準じて行った。まず、幅50mm、長さ50mmの試験片を準備し、その中央部の厚さと重量を測定した。次に、試験片を20℃の水中に水面下30mmに水平に置き、24時間浸漬した。その後、試験片の中央部の厚さと重量を測定し、吸水厚さ膨張率及び吸水率を算出した。なお、参考値として試験片の幅と長さの寸法変化も測定した。更に、20℃24時間浸漬に代えて、煮沸2時間浸漬についても同様にして測定した。本第2実施形態に係る固定化された積層板に関する測定結果を表7に示す。なお、表7の密度とは、作製した試験片(測定前)の気乾状態の密度をいう。
<Water absorption thickness expansion test>
In the second embodiment, as in the first embodiment, it was performed according to JIS A 5908: 2008 (particle board). First, a test piece having a width of 50 mm and a length of 50 mm was prepared, and the thickness and weight of the central portion were measured. Next, the test piece was placed horizontally in water at 20 ° C. 30 mm below the surface of the water and immersed for 24 hours. Then, the thickness and weight of the center part of the test piece were measured, and the water absorption thickness expansion coefficient and the water absorption coefficient were calculated. In addition, the dimensional change of the width | variety and length of a test piece was also measured as a reference value. Furthermore, it replaced with 20 degreeC 24 hours immersion, and measured similarly about boiling 2 hours immersion. Table 7 shows the measurement results regarding the fixed laminated plate according to the second embodiment. In addition, the density of Table 7 means the density of the air-dried state of the produced test piece (before measurement).
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 上述のJIS A 5908:2008(パーティクルボード)の基準によれば、厚さ12.7mm以下の試料の吸水厚さ膨張率は25%以下であり、表7の結果は、この基準を大幅に上回るものであった。 According to the above-mentioned JIS A 5908: 2008 (Particle Board) standard, the water absorption thickness expansion coefficient of a sample having a thickness of 12.7 mm or less is 25% or less, and the results in Table 7 greatly exceed this standard. It was a thing.
 以上のことから、本第2実施形態によれば、これまで利用されることなく放置されていたオイルパーム材などのヤシ材を維管束と柔細胞とに効率よく分離し、分離した維管束を利用して従来の木材と同様又はそれ以上の物性を有して実用的に建材などの用途に利用可能な木質系材料及びその製造方法を提供することができる。 From the above, according to the second embodiment, the palm material such as oil palm material that has been left without being used so far is efficiently separated into vascular bundles and parenchyma cells. It is possible to provide a wood-based material having a physical property similar to or higher than that of conventional wood and practically usable for applications such as building materials, and a method for producing the same.
 第3実施形態:
 本第3実施形態においては、本発明に係る木質系材料として、分離した維管束を圧密固定化した圧密積層板を製造する。以下、その製造方法を説明する。本第3実施形態に係る圧密積層板の製造方法は、上記第1実施形態と同様に分離工程と付与工程と結合工程とからなる。以下、各工程に従って説明する。
Third embodiment:
In the third embodiment, as a wood-based material according to the present invention, a consolidated laminate in which separated vascular bundles are consolidated and fixed is manufactured. The manufacturing method will be described below. The manufacturing method of the consolidated laminated board which concerns on this 3rd Embodiment consists of a isolation | separation process, an application | coating process, and a joint process similarly to the said 1st Embodiment. Hereinafter, it demonstrates according to each process.
 1.分離工程
 本第3実施形態においても、上記第1実施形態と同様にゼファー化装置を使用した。また、ゼファー化装置に投入するオイルパームの板片として上記第1実施形態と同様のロータリーレースによる単板を使用した。
1. Separation process Also in the third embodiment, a zephyrizing apparatus was used as in the first embodiment. Moreover, the single board by the rotary race similar to the said 1st Embodiment was used as a board piece of the oil palm thrown into a zephyrization apparatus.
 次に、分離工程で得られた維管束を用いて、これを構造材として利用する圧密積層板の製造について説明する。本第3実施形態においては、分離された長尺の維管束を長尺のまま使用して、これらを直交する2方向に配向させた圧密積層板を製造する。 Next, production of a consolidated laminate using the vascular bundle obtained in the separation step and using this as a structural material will be described. In the third embodiment, the separated long vascular bundle is used as it is, and a consolidated laminate is produced in which these are oriented in two orthogonal directions.
 2.付与工程
 本第3実施形態においても、上記第1実施形態と同様に維管束に含浸する樹脂材料として、数平均分子量が400以下の低分子量フェノール樹脂(充填型樹脂)を使用した。また、維管束へのフェノール樹脂の付与方法及び付与量も上記第1実施形態と同様にした。よって、ここでは詳細を省略する。
2. Application Step Also in the third embodiment, a low molecular weight phenol resin (filling resin) having a number average molecular weight of 400 or less was used as the resin material impregnated in the vascular bundle as in the first embodiment. Moreover, the application method and the application amount of the phenol resin to the vascular bundle were also the same as those in the first embodiment. Therefore, details are omitted here.
 次に、これらのフェノール樹脂を含浸し乾燥した維管束を長尺方向に配向させた5層のマットを作製した。図12は、積層成形前の5層のマットの構成を示す概略図である。各マットW11~W15は、それぞれを構成する維管束を長尺方向に配向させた状態で成形されている。また、各マットW11~W15は、1層ずつ配向方向を交互に直交させて構成されている。図12において、マットW11、W13、W15は、その維管束を同一方向(図示右上方向)に配向させ、これに直交してマットW12、W14は、その維管束を同一方向(図示横方向)に配向させている。このことにより、これらを積層した圧密積層板の物性が向上すると共に、使用されている維管束が長尺であることにより更に物性が向上する。 Next, a five-layer mat in which the vascular bundles impregnated with these phenol resins and dried was oriented in the longitudinal direction was produced. FIG. 12 is a schematic diagram showing the configuration of a five-layer mat before lamination molding. Each of the mats W11 to W15 is formed in a state where the vascular bundles constituting the respective mats are oriented in the longitudinal direction. Further, each of the mats W11 to W15 is configured with the orientation directions alternately orthogonal to each other. In FIG. 12, mats W11, W13, and W15 have their vascular bundles oriented in the same direction (upper right direction in the figure), and orthogonal to this, the mats W12 and W14 have their vascular bundles in the same direction (lateral direction in the figure). Oriented. This improves the physical properties of the consolidated laminate obtained by laminating these, and further improves the physical properties due to the long vascular bundle being used.
 3.結合工程
 次に、各マットW11~W15に使用された配向した各維管束の結合、及び、各マットW11~W15相互の結合を行う結合工程について説明する。本第3実施形態においては、上記第1実施形態とは異なり、結合工程は圧密化による固定を行う。
3. Bonding Step Next, a bonding step for bonding the vascular bundles used in the mats W11 to W15 and bonding the mats W11 to W15 to each other will be described. In the third embodiment, unlike the first embodiment, the bonding step performs fixing by consolidation.
 ここで、木質系材料の圧密化(圧密固定化)について説明する。本発明者らは、これまで、木材の圧密固定化及び木材の塑性加工について検討してきた。その経緯から、木材の圧密固定化方法(特許第4787432号)及び塑性加工木材(特許第5138080号)など複数の特許が成立している。そこで、本発明者らは、これらの技術的知見及び装置を活用して、分離した維管束を構造材として利用する圧密化された木質系材料を開発した。 Here, consolidation of the wood-based material (consolidation fixation) will be described. The present inventors have so far examined the consolidation and fixing of wood and the plastic processing of wood. From this background, a plurality of patents such as a method for fixing and compacting wood (Japanese Patent No. 4787432) and plastic working wood (Japanese Patent No. 5138080) have been established. Therefore, the present inventors have developed a consolidated wood-based material using the separated vascular bundle as a structural material by utilizing these technical knowledge and apparatus.
 まず、上記付与工程でフェノール樹脂水溶液を含浸した維管束から構成されたマットW11~W15を積層した状態で、50℃~105℃程度の温度条件下で10分~12時間程度かけて乾燥する。このようにして、圧密化前の積層板を準備する。 First, the mats W11 to W15 composed of vascular bundles impregnated with an aqueous phenol resin solution in the application step are laminated and dried at a temperature of about 50 ° C. to 105 ° C. for about 10 minutes to 12 hours. Thus, the laminated board before consolidation is prepared.
 次に、上述のようにして準備した圧密化前の積層板を加温し、この加温された圧密化前の積層板に対して、厚み方向から所定の圧締圧力を加えて圧縮する。更に、この圧締圧力を維持した状態で、更に昇温して所定温度下で所定時間維持した後、温度を降下させて冷却し圧密固定化を完了する。 Next, the pre-consolidated laminated board prepared as described above is heated, and the pre-consolidated laminated board is compressed by applying a predetermined pressing pressure from the thickness direction. Further, while maintaining the pressing pressure, the temperature is further raised and maintained at a predetermined temperature for a predetermined time, and then the temperature is decreased to cool down to complete the consolidation.
 なお、本第3実施形態における圧密固定化条件として、まず、所定温度とは、140~220℃の温度範囲内であり、好ましくは、160~200℃の温度範囲内である。また、この温度範囲を維持する時間は、圧密固定化する対象により適宜選定するものであるが、例えば、10分~120分の範囲内であり、好ましくは、20分~60分の範囲内である。一方、厚み方向から加える圧締圧力は、圧密固定化する対象により適宜選定するものであるが、例えば、1~10MPaの範囲内であることが好ましい。 Note that, as the consolidation and fixing condition in the third embodiment, first, the predetermined temperature is in a temperature range of 140 to 220 ° C., and preferably in a temperature range of 160 to 200 ° C. The time for maintaining this temperature range is appropriately selected depending on the object to be consolidated and fixed, and is, for example, in the range of 10 minutes to 120 minutes, preferably in the range of 20 minutes to 60 minutes. is there. On the other hand, the pressing pressure applied from the thickness direction is appropriately selected according to the object to be consolidated and fixed, but is preferably in the range of 1 to 10 MPa, for example.
 ここで、本第3実施形態において木質系材料を圧密化する圧密化装置MCについて説明する。図13は、本第3実施形態において使用する圧密化装置MCの概要を示す断面図である。図13において、圧密化装置MCは、上下に2分割されるプレス盤10(上プレス盤10A及び下プレス盤10B)から構成される。 Here, the compacting device MC for compacting the wood-based material in the third embodiment will be described. FIG. 13 is a cross-sectional view showing an outline of a consolidation apparatus MC used in the third embodiment. In FIG. 13, the compacting device MC is composed of a press board 10 (upper press board 10A and lower press board 10B) that is divided into two in the vertical direction.
 上プレス盤10Aと下プレス盤10Bとは、上下に分割されることにより、内部空間IS及び位置決め孔18を形成する。位置決め孔18は、圧密化前の積層板PW1の位置を定め規制するものであって、その周縁部10bを上プレス盤10Aの周縁部10aに対向するようにして下プレス盤10Bに形成されている。上プレス盤10Aの周縁部10aには、プレス盤10の上下動の範囲で内部空間IS及び位置決め孔18を密閉状態とするためのシール部材11が形成されている。 The upper press board 10A and the lower press board 10B are divided into upper and lower parts to form an internal space IS and a positioning hole 18. The positioning hole 18 determines and regulates the position of the laminated board PW1 before consolidation, and is formed in the lower press board 10B so that the peripheral edge part 10b faces the peripheral edge part 10a of the upper press board 10A. Yes. A seal member 11 for sealing the internal space IS and the positioning hole 18 in the range of vertical movement of the press board 10 is formed on the peripheral edge portion 10a of the upper press board 10A.
 また、上プレス盤10Aには、その上面側から内部空間IS内に連通され、内部空間IS及び位置決め孔18内に蒸気を供給するための配管口12aを有する配管12が設けられている。この配管12には、その下流側にバルブV4が設けられている。一方、下プレス盤10Bには、その側面側から内部空間IS及び位置決め孔18内に連通され、内部空間IS内から水蒸気を排出するための配管口13aを有する配管13が設けられている。この配管13には、その内部の蒸気圧を検出する圧力計P2と、その下流側のバルブV5と、バルブV5に接続されたドレン配管14が設けられている。 Further, the upper press panel 10A is provided with a pipe 12 having a pipe port 12a that communicates with the internal space IS from the upper surface side and supplies steam into the internal space IS and the positioning hole 18. The pipe 12 is provided with a valve V4 on the downstream side thereof. On the other hand, the lower press panel 10 </ b> B is provided with a pipe 13 having a pipe port 13 a that communicates from the side surface into the internal space IS and the positioning hole 18 and discharges water vapor from the internal space IS. The pipe 13 is provided with a pressure gauge P2 for detecting the internal vapor pressure, a downstream valve V5, and a drain pipe 14 connected to the valve V5.
 また、上プレス盤10A及び下プレス盤10Bには、その内部に高温の水蒸気を通すことにより所定の温度に昇温するための配管路15、16が形成されており、これら配管路15、16には蒸気供給側の配管ST1から分岐された配管ST2、ST3、蒸気排出側の配管ET1、ET2がそれぞれ接続されている。これらの蒸気供給側の配管ST1,ST2、ST3の途中にはバルブV1、V2、V3、配管ST1内の蒸気圧を検出する圧力計P1が配設されており、蒸気排出側の配管ET1、ET2は、バルブV6を介してドレン配管14に接続されている。 The upper press board 10A and the lower press board 10B are formed with piping paths 15 and 16 for raising the temperature to a predetermined temperature by passing high-temperature steam through them. The pipes ST2 and ST3 branched from the steam supply side pipe ST1 and the steam discharge side pipes ET1 and ET2 are respectively connected to. In the middle of these steam supply side pipes ST1, ST2, ST3, valves V1, V2, V3, and a pressure gauge P1 for detecting the vapor pressure in the pipe ST1 are arranged, and the steam discharge side pipes ET1, ET2 Is connected to the drain pipe 14 via a valve V6.
 なお、図13においては、配管ST1に水蒸気を供給するボイラ装置、また、プレス盤10の固定側の下プレス盤10Bに対して上プレス盤10Aを上昇/下降させ加圧するための油圧機構を含むプレス昇降装置は省略する。 In addition, in FIG. 13, the boiler apparatus which supplies water vapor | steam to piping ST1, and the hydraulic mechanism for raising / lowering and pressurizing the upper press board 10A with respect to the lower press board 10B of the fixed side of the press board 10 are included. The press lifting device is omitted.
 更に、上プレス盤10A及び下プレス盤10B内に形成された配管路15、16に水蒸気に換えて低温の冷却水を通すことによって所望の温度に冷却する冷却水供給側の配管ST11から分岐された配管ST12、ST13が、上記配管ST2、ST3にそれぞれ接続されている。また、冷却水供給側の配管ST11、ST12、ST13の途中にはバルブV11、V12、V13が配設されている。なお、図13においては、配管ST11に冷却水を供給する冷却水供給装置は省略する。 Further, the pipes 15 and 16 formed in the upper press board 10A and the lower press board 10B are branched from the cooling water supply side pipe ST11 which cools to a desired temperature by passing low temperature cooling water instead of water vapor. The pipes ST12 and ST13 are connected to the pipes ST2 and ST3, respectively. Further, valves V11, V12, and V13 are disposed in the middle of the pipes ST11, ST12, and ST13 on the cooling water supply side. In FIG. 13, a cooling water supply device that supplies cooling water to the pipe ST11 is omitted.
 次に、このように構成された圧密化装置MCを用いて、圧密化された圧密積層板PW2を製造する製造工程について図14の各工程に沿って説明する。まず、図14(a)において、圧密化装置MCにおける固定側の下プレス盤10Bに対して上プレス盤10Aが上昇し、予め所定の条件に乾燥させた圧密化前の積層板PW1を、上プレス盤10A及び下プレス盤10Bで形成される内部空間IS及び位置決め孔18内に載置する。 Next, a manufacturing process for manufacturing a consolidated compacted laminate PW2 using the compacting device MC configured as described above will be described along each process of FIG. First, in FIG. 14A, the upper press platen 10A is raised with respect to the lower press platen 10B on the fixed side in the compacting device MC, and the laminated plate PW1 before consolidation, which has been dried to a predetermined condition in advance, It is placed in the internal space IS and the positioning hole 18 formed by the press board 10A and the lower press board 10B.
 ここで、本第3実施形態において、圧密化前の積層板PW1は、所定の寸法(厚さ・幅・長さ)に形成されたものであり、その上下面を上プレス盤10A及び下プレス盤10Bの各プレス面に対向させ、下プレス盤10Bの位置決め孔18に載置する。 Here, in the third embodiment, the laminated board PW1 before consolidation is formed to have predetermined dimensions (thickness, width, length), and the upper press panel 10A and the lower press are arranged on the upper and lower surfaces thereof. It faces each press surface of the board 10B, and is placed in the positioning hole 18 of the lower press board 10B.
 次に、図14(b)において、固定側の下プレス盤10Bの位置決め孔18上に載置した圧密化前の積層板PW1に対して上プレス盤10Aを下降させて圧密化前の積層板PW1の上面に対して垂直方向に当接させる。この状態において、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に所定温度(例えば、110℃~180℃)の水蒸気を通して、内部空間IS及び位置決め孔18内を所定温度(例えば、110℃~180℃)に昇温する。この状態においては、内部空間IS及び位置決め孔18で構成される空間は、未だ密閉されていない。 Next, in FIG. 14B, the upper press board 10A is lowered with respect to the laminated board PW1 before consolidation placed on the positioning hole 18 of the fixed-side lower press board 10B, and the laminated board before consolidation. It is made to contact | abut perpendicularly with respect to the upper surface of PW1. In this state, water vapor of a predetermined temperature (for example, 110 ° C. to 180 ° C.) is passed through the piping path 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B to pass through the internal space IS and the positioning hole 18 to a predetermined temperature (for example, 110 ° C. to 180 ° C.). In this state, the space constituted by the internal space IS and the positioning hole 18 is not yet sealed.
 次に、固定側の下プレス盤10Bに対して上プレス盤10Aの圧締圧力を所定圧力(例えば、1~10MPa)に設定し、圧密化前の積層板PW1を上プレス盤10A及び下プレス盤10Bにて所定時間(例えば、5分~40分)加熱圧縮する。なお、このときの圧締圧力は、割れを防止するために、圧密化前の積層板PW1の温度上昇、即ち、圧密化前の積層板PW1の熱伝導(内部の温度上昇)の状態に応じて徐々に昇温することが望ましく、加熱圧縮の時間も熱伝導に要する時間を考慮して設定することが好ましい。この状態においては、内部空間IS及び位置決め孔18で構成される空間は、未だ密閉されていない。 Next, the pressing pressure of the upper press board 10A is set to a predetermined pressure (for example, 1 to 10 MPa) with respect to the lower press board 10B on the fixed side, and the laminated plate PW1 before consolidation is placed on the upper press board 10A and the lower press machine. The plate 10B is heated and compressed for a predetermined time (for example, 5 to 40 minutes). Note that the pressing pressure at this time depends on the temperature rise of the laminated board PW1 before consolidation, that is, the state of heat conduction (internal temperature rise) of the laminated board PW1 before consolidation, in order to prevent cracking. It is desirable to gradually raise the temperature, and it is preferable to set the time for heat compression in consideration of the time required for heat conduction. In this state, the space constituted by the internal space IS and the positioning hole 18 is not yet sealed.
 次に、図14(c)において、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接すると上プレス盤10Aの周縁部10aに配設されたシール部材11によって、上プレス盤10A及び下プレス盤10Bにて形成される内部空間IS及び位置決め孔18が密閉状態となる。この状態において、内部空間IS及び位置決め孔18の密閉状態が維持されると共に、上プレス盤10A及び下プレス盤10Bによる圧締圧力が維持された状態で、所定温度(例えば、150~210℃)まで昇温する。 Next, in FIG. 14C, when the peripheral portion 10a of the upper press panel 10A comes into contact with the peripheral portion 10b of the lower press panel 10B, the seal member 11 disposed on the peripheral portion 10a of the upper press panel 10A The internal space IS and the positioning hole 18 formed by the press board 10A and the lower press board 10B are sealed. In this state, the sealed state of the internal space IS and the positioning hole 18 is maintained, and the pressing pressure by the upper press panel 10A and the lower press panel 10B is maintained, and a predetermined temperature (for example, 150 to 210 ° C.). The temperature rises to
 なお、本第3実施形態において、上プレス盤10A及び下プレス盤10Bによって形成される内部空間IS及び位置決め孔18がシール部材11を介して密閉状態となったときにおける内部空間IS及び位置決め孔18の上下方向の寸法間隔は、圧密化後の気乾密度の値が予め設定された値になるように厚さ方向の仕上がり寸法(圧縮率)に設定しておく。このため、圧密化前の積層板PW1の厚さ全体の圧縮率、即ち、圧密化前の積層板PW1の圧縮による板厚の変化は、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接することで決まることとなる。 In the third embodiment, the internal space IS and the positioning hole 18 formed when the internal space IS and the positioning hole 18 formed by the upper press board 10A and the lower press board 10B are sealed through the seal member 11. The dimension interval in the vertical direction is set to the finished dimension (compression ratio) in the thickness direction so that the air-dry density value after consolidation becomes a preset value. For this reason, the compression ratio of the entire thickness of the laminated plate PW1 before consolidation, that is, the change in the plate thickness due to compression of the laminated plate PW1 before consolidation is such that the peripheral edge portion 10a of the upper press panel 10A is lower than the lower press panel 10B. It is determined by contacting the peripheral edge 10b.
 この状態において、図14(c)に示す内部空間IS及び位置決め孔18の密閉状態で、上プレス盤10A及び下プレス盤10Bの圧締圧力が維持され、且つ、内部空間IS及び位置決め孔18が所定温度(例えば、150~210℃)に維持されたまま、所定時間(例えば、30分~120分)保持され、この後の冷却圧縮を解除したときに、戻り(膨張)のない圧密積層板PW2を形成するための加熱処理が行われる。このとき、上プレス盤10A及び下プレス盤10Bで密閉状態とされている内部空間IS及び位置決め孔18を介して、圧密化前の積層板PW1の周囲面とその内部とでは高温高圧の蒸気圧が出入り自在となっている。 In this state, in the sealed state of the internal space IS and the positioning hole 18 shown in FIG. 14C, the pressing pressure of the upper press board 10A and the lower press board 10B is maintained, and the internal space IS and the positioning hole 18 are A consolidated laminate that is maintained at a predetermined temperature (for example, 150 to 210 ° C.) and is maintained for a predetermined time (for example, 30 to 120 minutes), and does not return (expand) when the subsequent cooling and compression is released. Heat treatment for forming PW2 is performed. At this time, high-temperature and high-pressure vapor pressure is generated between the surrounding surface of the laminated board PW1 before consolidation and the inside thereof through the internal space IS and the positioning hole 18 which are sealed by the upper press board 10A and the lower press board 10B. Is freely accessible.
 なお、このように、本第3実施形態においては、圧密化前の積層板PW1の表裏面に上プレス盤10A及び下プレス盤10Bが面接触し、密閉状態の内部空間IS及び位置決め孔18に保持されるため、圧密化前の積層板PW1は、厚さ全体が十分に加熱され、効率よく圧縮変形されることになる。 As described above, in the third embodiment, the upper press board 10A and the lower press board 10B are in surface contact with the front and back surfaces of the laminated board PW1 before consolidation, and the sealed internal space IS and the positioning hole 18 are in contact with each other. Since it is held, the entire thickness of the laminated plate PW1 before being consolidated is sufficiently heated and is efficiently compressed and deformed.
 次に、図14(d)において、内部空間IS及び位置決め孔18の密閉状態で加熱圧縮処理が行われているときに、蒸気圧制御処理として圧力計P2で内部空間IS及び位置決め孔18の蒸気圧が検出され、バルブV5が適宜、開閉される。これにより、配管口13a、配管13を通って内部空間IS及び位置決め孔18からドレン配管14側に高温高圧の水蒸気が排出されることで、特に、圧密化前の積層板PW1の外層部分の含水率に基づく余分な内部空間IS及び位置決め孔18内の水分が除去され、内部空間IS及び位置決め孔18内が所定の蒸気圧となるように調節される。 Next, in FIG. 14D, when the heat compression process is performed in the sealed state of the internal space IS and the positioning hole 18, the steam in the internal space IS and the positioning hole 18 is measured by the pressure gauge P2 as a steam pressure control process. The pressure is detected, and the valve V5 is appropriately opened and closed. Thereby, the high-temperature and high-pressure steam is discharged from the internal space IS and the positioning hole 18 to the drain pipe 14 side through the pipe port 13a and the pipe 13, and in particular, the water content of the outer layer portion of the laminate PW1 before consolidation. Excess internal space IS based on the rate and moisture in the positioning hole 18 are removed, and the internal space IS and the positioning hole 18 are adjusted to have a predetermined vapor pressure.
 また、必要に応じて、バルブV4に接続された配管12、配管口12a(図13)を介して内部空間ISに所定の蒸気圧を供給することができる。これらにより、圧密積層板の加熱圧縮処理の定着、所謂、圧密積層板の固定化がより促進されることとなる。 Further, if necessary, a predetermined vapor pressure can be supplied to the internal space IS through the pipe 12 and the pipe port 12a (FIG. 13) connected to the valve V4. As a result, fixing of the heat-compression treatment of the consolidated laminate, that is, fixing of the so-called consolidated laminate is further promoted.
 更に、上プレス盤10A及び下プレス盤10Bによる加熱圧縮から冷却圧縮へと移行する直前に、蒸気圧制御処理としてバルブV5が開状態とされることで配管口13a、配管13を通って内部空間IS及び位置決め孔18からドレン配管14側に高温高圧の水蒸気が排出される。 Further, immediately before the transition from the heating compression to the cooling compression by the upper press panel 10A and the lower press panel 10B, the valve V5 is opened as a vapor pressure control process, so that the internal space passes through the piping port 13a and the piping 13. High-temperature and high-pressure steam is discharged from the IS and positioning hole 18 to the drain pipe 14 side.
 次に、図14(e)において、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に常温の冷却水が通されることによって、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、材料によって異なる所定時間(例えば、10分~120分)保持される。なお、このときの固定側の下プレス盤10Bに対する上プレス盤10Aの圧締圧力は、加熱圧縮の際の圧力と同じ所定圧力(例えば、1~10MPa)に保持されたまま、上プレス盤10A及び下プレス盤10Bが冷却される。 Next, in FIG. 14E, normal temperature cooling water is passed through the piping path 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B, so that the upper press panel 10A and the lower press panel 10B are It is cooled to the front and back and held for a predetermined time (for example, 10 minutes to 120 minutes) that varies depending on the material. At this time, the pressing pressure of the upper press board 10A with respect to the lower press board 10B on the fixed side is maintained at the same predetermined pressure (for example, 1 to 10 MPa) as the pressure at the time of heat compression, and the upper press board 10A. And the lower press board 10B is cooled.
 最後に、図14(f)において、固定側の下プレス盤10Bに対して上プレス盤10Aを上昇させ、内部空間IS及び位置決め孔18から仕上がり品である圧密積層板PW2が取出されることで一連の処理工程が終了する。 Finally, in FIG. 14F, the upper press board 10A is raised with respect to the lower press board 10B on the fixed side, and the consolidated laminate PW2 which is the finished product is taken out from the internal space IS and the positioning hole 18. A series of processing steps are completed.
 上述のようにして製造した圧密積層板PW2は、圧密化後の気乾密度の値が約1.0g/cmであった。なお、本第3実施形態においては、圧密化による成形を行ったが、圧密化の程度を変化させ、或いは、圧密化することなく、成形後の気乾密度の値が0.3~1.5g/cmの範囲内とすることが好ましい。成形後の気乾密度の値が0.3~1.5g/cmの範囲内にあれば、圧密積層板PW2の剛性(曲げヤング係数)などの物性が良好なものとなる。 The consolidated laminate PW2 manufactured as described above had an air-dry density value of approximately 1.0 g / cm 3 after consolidation. In the third embodiment, molding by compaction is performed. However, the value of the air-dry density after molding is 0.3 to 1... Without changing the degree of consolidation or without consolidation. It is preferable to be within the range of 5 g / cm 3 . If the value of the air dry density after molding is in the range of 0.3 to 1.5 g / cm 3 , physical properties such as rigidity (bending Young's modulus) of the consolidated laminate PW2 will be good.
 第4実施形態:
 本第4実施形態においては、本発明に係る木質系材料として、無配向の維管束を構造材とする圧密板を製造する。以下、その製造方法を説明する。本第4実施形態に係る圧密板の製造方法は、上記第1実施形態と同様に分離工程と付与工程と結合工程とからなる。以下、各工程について説明する。
Fourth embodiment:
In this 4th Embodiment, the compact board which uses a non-oriented vascular bundle as a structural material as a wood type material which concerns on this invention is manufactured. The manufacturing method will be described below. The manufacturing method of the compaction plate according to the fourth embodiment includes a separation step, an applying step, and a joining step, as in the first embodiment. Hereinafter, each step will be described.
 1.分離工程
 本第4実施形態においても、上記第1実施形態と同様にゼファー化装置を使用した。また、ゼファー化装置に投入するオイルパームの板片として上記第1実施形態と同様のロータリーレースによる単板を使用した。なお、本第4実施形態においては、上記第1実施形態で得られた長尺の維管束を所定の長さに切断して構造材とした。長尺の維管束を使用することにより、構造材の長さを任意に調整することができると共に、長さの異なる維管束を組み合わせて構造材の物性の向上を図ることもできる。本第4実施形態においては、上記第1実施形態で得られた長尺の維管束を5mm~8mmの長さに切断して使用した。
1. Separation process Also in the fourth embodiment, a zephyrizing apparatus was used as in the first embodiment. Moreover, the single board by the rotary race similar to the said 1st Embodiment was used as a board piece of the oil palm thrown into a zephyrization apparatus. In the fourth embodiment, the long vascular bundle obtained in the first embodiment is cut into a predetermined length to obtain a structural material. By using a long vascular bundle, the length of the structural material can be arbitrarily adjusted, and the physical properties of the structural material can be improved by combining vascular bundles having different lengths. In the fourth embodiment, the long vascular bundle obtained in the first embodiment is cut into a length of 5 mm to 8 mm and used.
 2.付与工程
 本第4実施形態においても、上記第1実施形態と同様に維管束に含浸する樹脂材料として、数平均分子量が400以下の低分子量フェノール樹脂(充填型樹脂)を使用した。また、維管束へのフェノール樹脂の付与方法及び付与量も上記第1実施形態と同様にした。よって、ここでは詳細を省略する。
2. Application Step Also in the fourth embodiment, a low molecular weight phenolic resin (filling type resin) having a number average molecular weight of 400 or less was used as the resin material impregnated in the vascular bundle as in the first embodiment. Moreover, the application method and the application amount of the phenol resin to the vascular bundle were also the same as those in the first embodiment. Therefore, details are omitted here.
 次に、フェノール樹脂を含浸した維管束から構造材を作製する。本第4実施形態においては、構造材は積層板ではなく厚みのある1層の板状体として成形した。この成形前の板状体の内部には、短いが長さが均一の維管束が無配向に存在している。 Next, a structural material is produced from a vascular bundle impregnated with phenol resin. In the fourth embodiment, the structural material is formed not as a laminated plate but as a thick single-layer plate. In the plate-like body before molding, a short but uniform vascular bundle exists in a non-oriented manner.
 3.結合工程
 次に、準備した成形前の板状体の各維管束の結合を行う。本第4実施形態においても、上記第3実施形態と同様の圧密化装置(図13及び14参照)を使用した。圧密化装置の構造及び操作は、上記第3実施形態と同様にして行った。
3. Joining process Next, the vascular bundles of the prepared plate-like body before joining are joined. Also in the fourth embodiment, a consolidation device similar to that in the third embodiment (see FIGS. 13 and 14) was used. The structure and operation of the consolidation apparatus were performed in the same manner as in the third embodiment.
 このようにして製造した圧密板は、圧密化後の気乾密度の値が約1.2g/cmであった。なお、本第4実施形態においては、圧密化による成形を行ったが、圧密化の程度を変化させ、或いは、圧密化することなく、成形後の気乾密度の値が0.3~1.5g/cmの範囲内とすることが好ましい。成形後の気乾密度の値が0.3~1.5g/cmの範囲内にあれば、圧密積層板PW2の剛性(曲げヤング係数)などの物性が良好なものとなる。 The compacted plate thus produced had an air dry density value of approximately 1.2 g / cm 3 after consolidation. In the fourth embodiment, molding by compaction is performed. However, the value of the air-dry density after molding is 0.3 to 1... Without changing the degree of consolidation or without consolidation. It is preferable to be within the range of 5 g / cm 3 . If the value of the air dry density after molding is in the range of 0.3 to 1.5 g / cm 3 , physical properties such as rigidity (bending Young's modulus) of the consolidated laminate PW2 will be good.
 第5実施形態:
 本第5実施形態においては、上記第1~第4実施形態と同様に、オイルパーム幹材を分離して、その維管束を木質系材料の構成要素として利用するものである。本第5実施形態に係る積層板の製造方法は、分離工程と付与工程と結合工程とからなる。但し、本第5実施形態においては、上記第1~第4実施形態と異なり、分離工程においてオイルパーム幹材を維管束と柔細胞とに分離する分離手段が異なっている。以下、各工程に従って説明する。
Fifth embodiment:
In the fifth embodiment, as in the first to fourth embodiments, the oil palm trunk material is separated and the vascular bundle is used as a constituent element of the wood-based material. The manufacturing method of the laminated board which concerns on this 5th Embodiment consists of a separation process, a provision process, and a joint process. However, the fifth embodiment differs from the first to fourth embodiments in the separation means for separating the oil palm trunk material into vascular bundles and parenchyma cells in the separation step. Hereinafter, it demonstrates according to each process.
 1.分離工程
 本第5実施形態においては、分離手段として粉砕装置の一種であるハンマークラッシャーを用いて、気乾状態及び飽水状態(生材状態を想定)のオイルパーム幹材を粉砕等して維管束と柔細胞とに分離した。図15は、本第5実施形態において使用するオイルパーム単板、ハンマークラッシャー及び粉砕物を示す写真である。分離前のオイルパーム単板は、オイルパーム幹材をロータリーレースで単板にした気乾状態の単板を100g使用した。分離装置は、ハンマークラッシャーNH-50S(株式会社三庄インダストリー製)、200V、3.7kW、外筒の内径290mmをハンマーの回転数3,450rpmで使用した。図3の粉砕物は、維管束と柔細胞との混合物であって、ハンマークラッシャーの粉砕物放出口に取り付けた多孔篩(孔径15mm)を通過したものである。
1. Separation step In the fifth embodiment, a hammer crusher, which is a kind of pulverizer, is used as a separation means to pulverize and maintain oil palm trunk material in an air-dried state and a saturated state (assuming a raw material state). Separated into tube bundles and parenchyma cells. FIG. 15 is a photograph showing an oil palm veneer, a hammer crusher and a pulverized product used in the fifth embodiment. As the oil palm veneer before separation, 100 g of an air-dried veneer in which the oil palm trunk material was veneered by a rotary race was used. The separator used was a hammer crusher NH-50S (manufactured by Sansho Industry Co., Ltd.), 200 V, 3.7 kW, an outer cylinder inner diameter of 290 mm and a hammer rotation speed of 3,450 rpm. The pulverized product in FIG. 3 is a mixture of vascular bundles and parenchyma cells, and has passed through a porous sieve (pore diameter 15 mm) attached to the pulverized product discharge port of the hammer crusher.
 図16は、本第5実施形態において気乾状態のオイルパーム幹材を各条件で粉砕した粉砕物を示す写真である。一方、図17は、本第5実施形態において生材状態を想定して、気乾状態のオイルパーム材に水を含浸して飽水状態にした幹材を各条件で粉砕した粉砕物を示す写真である。図16及び図17においては、ハンマークラッシャーで1回~3回処理した場合の粉砕物の状態を示している。また、ハンマークラッシャーの粉砕物放出口に多孔篩(孔径15mm又は7mm)を取り付けた場合と取付けなかった場合の粉砕物の状態を示している。各条件において、維管束の軸径及び軸長が変化していることが分かる。 FIG. 16 is a photograph showing a pulverized product obtained by pulverizing an air-dried oil palm trunk material under various conditions in the fifth embodiment. On the other hand, FIG. 17 shows a pulverized product obtained by pulverizing, under each condition, a trunk material saturated with water by impregnating water in an oil-dried oil palm material, assuming a raw material state in the fifth embodiment. It is a photograph. FIGS. 16 and 17 show the state of the pulverized product when it is processed once to three times with a hammer crusher. Moreover, the state of the pulverized material when the porous sieve (pore diameter 15 mm or 7 mm) is attached to the pulverized material discharge port of the hammer crusher and when it is not attached is shown. It can be seen that the axial diameter and the axial length of the vascular bundle change under each condition.
 表8に、気乾状態のオイルパーム単板を各条件で粉砕した粉砕物の収量、及び維管束と柔細胞との質量比を示す。なお、粉砕回数2回とは、粉砕回数1回の粉砕物(多孔篩を通過したもの)を再度ハンマークラッシャーで粉砕したものである。同様に、粉砕回数3回とは、粉砕回数2回の粉砕物(多孔篩を通過したもの)を再度ハンマークラッシャーで粉砕したものである。 Table 8 shows the yield of the pulverized product obtained by pulverizing the air-dried oil palm veneer under each condition, and the mass ratio between the vascular bundle and parenchyma cells. The pulverization count of 2 is a pulverized product (passed through a porous sieve) with a pulverization count of 1 and pulverized again with a hammer crusher. Similarly, the number of pulverizations of 3 means that the pulverized product of 2 pulverizations (passed through the porous sieve) is pulverized again with a hammer crusher.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
 表8から分かるように、粉砕回数が多くなるにしたがって、維管束の質量比が低下し柔細胞の質量比が増加している。また、多孔篩の孔径が小さくなれば、柔細胞の質量比が増加している。なお、上述のように、オイルパーム幹材の木質部の約50~60質量%が柔細胞であるといわれている。従って、本第5実施形態で粉砕された維管束には、未だ相当の柔細胞が残存保持されており、柔細胞が多く残存保持された維管束と、脱離した柔細胞とに分離されていることが分かる。 As can be seen from Table 8, as the number of grinding increases, the mass ratio of the vascular bundle decreases and the mass ratio of the parenchyma cells increases. Moreover, if the pore diameter of the porous sieve is reduced, the mass ratio of parenchymal cells is increased. As described above, it is said that about 50 to 60% by mass of the wood part of the oil palm trunk material is parenchyma. Therefore, in the vascular bundle crushed in the fifth embodiment, considerable parenchymal cells are still retained and separated into vascular bundles in which many parenchymal cells remain and detached parenchymal cells. I understand that.
 次に、上述のようにして分離した粉砕物(維管束と柔細胞との混合物)から維管束を取り出し、これを構成要素として利用する圧密化された木質系材料の製造について説明する。図18は、本第5実施形態において粉砕後の粉砕物を維管束と柔細胞とに篩分した状態を示す写真である。図18においては、粉砕回数1回で孔径15mmの多孔篩を通過した粉砕物を目開き750μmの篩分器で篩い分けた後の維管束と柔細胞とを示している。本第5実施形態においては、図18に示す維管束を使用した。 Next, the production of a compacted wood-based material using the vascular bundle from the pulverized material (mixture of vascular bundle and parenchyma cell) separated as described above and using this as a constituent element will be described. FIG. 18 is a photograph showing a state in which the pulverized product after pulverization is sieved into vascular bundles and parenchymal cells in the fifth embodiment. FIG. 18 shows vascular bundles and parenchymal cells after the pulverized product that has passed through a porous sieve having a pore diameter of 15 mm with a pulverization frequency of 1 is sieved with a sifter having a mesh opening of 750 μm. In the fifth embodiment, the vascular bundle shown in FIG. 18 is used.
 2.付与工程
 本第5実施形態においても、上記第1、第3~第5実施形態と同様に維管束に含浸する樹脂材料として、数平均分子量が400以下の低分子量フェノール樹脂(充填型樹脂)を使用した。また、維管束へのフェノール樹脂の付与方法及び付与量も上記第1実施形態と同様にした。よって、ここでは詳細を省略する。
2. Application Step Also in the fifth embodiment, a low molecular weight phenol resin (filling type resin) having a number average molecular weight of 400 or less is used as a resin material impregnated in the vascular bundle, as in the first, third to fifth embodiments. used. Moreover, the application method and the application amount of the phenol resin to the vascular bundle were also the same as those in the first embodiment. Therefore, details are omitted here.
 次に、フェノール樹脂を含浸した維管束から構造材を作製する。本第5実施形態においては、上記第4実施形態と同様に構造材は積層板ではなく厚みのある1層の板状体として成形した。この成形前の板状体の内部には、短いが長さが均一の維管束が無配向に存在している。 Next, a structural material is produced from a vascular bundle impregnated with phenol resin. In the fifth embodiment, as in the fourth embodiment, the structural material is molded not as a laminated plate but as a thick single-layer plate. In the plate-like body before molding, a short but uniform vascular bundle exists in a non-oriented manner.
 3.結合工程
 次に、準備した成形前の板状体の各維管束の結合を行う。本第5実施形態においても、上記第3~第5実施形態と同様の圧密化装置(図13及び14参照)を使用した。圧密化装置の構造及び操作は、上記第3実施形態と同様にして行った。
3. Joining process Next, the vascular bundles of the prepared plate-like body before joining are joined. Also in the fifth embodiment, the same consolidation apparatus (see FIGS. 13 and 14) as in the third to fifth embodiments was used. The structure and operation of the consolidation apparatus were performed in the same manner as in the third embodiment.
 このようにして製造した圧密板は、圧密化後の気乾密度の値が約1.0g/cmであった。なお、本第5実施形態においては、圧密化による成形を行ったが、圧密化の程度を変化させ、或いは、圧密化することなく、成形後の気乾密度の値が0.3~1.5g/cmの範囲内とすることが好ましい。成形後の気乾密度の値が0.3~1.5g/cmの範囲内にあれば、圧密積層板PW2の剛性(曲げヤング係数)などの物性が良好なものとなる。 The compacted plate thus produced had an air dry density value of approximately 1.0 g / cm 3 after consolidation. In the fifth embodiment, molding by compaction is performed. However, the value of the air-dry density after molding is 0.3 to 1... Without changing the degree of consolidation or without consolidation. It is preferable to be within the range of 5 g / cm 3 . If the value of the air dry density after molding is in the range of 0.3 to 1.5 g / cm 3 , physical properties such as rigidity (bending Young's modulus) of the consolidated laminate PW2 will be good.
 第6実施形態:
 本第6実施形態は、オイルパーム幹材を分離して、その柔細胞を家畜用飼料として利用するものである。上述のように、オイルパーム幹材には、約10%の遊離糖(主にショ糖、グルコース、フルクトースなど)や約25%のデンプンが含有されている。また、柔細胞は、デンプンなどを貯蔵する部分であり、リグノセルロースを主成分とする維管束と異なり、オイルパーム幹材に含まれるデンプンや遊離糖の大部分は、柔細胞に含まれるものと考えられる。
Sixth embodiment:
In the sixth embodiment, the oil palm trunk material is separated and the parenchyma cells are used as livestock feed. As described above, oil palm trunk contains about 10% free sugar (mainly sucrose, glucose, fructose, etc.) and about 25% starch. In addition, parenchyma cells are a part that stores starch and the like, and unlike vascular bundles mainly composed of lignocellulose, most of starch and free sugar contained in oil palm trunk material are contained in parenchyma cells. Conceivable.
 本第6実施形態においては、これらの栄養価の高い柔細胞を家畜用飼料或いは家畜用飼料の配合物として利用する。なお、本第6実施形態においては、上記第1実施形態においてゼファー化装置で分離した柔細胞を使用した。ゼファー化装置で分離したことにより、分離後の柔細胞には維管束の断片の混入が少なく、家畜用飼料として適切であった。 In the sixth embodiment, these nutritious parenchyma cells are used as a livestock feed or a blend of livestock feed. In the sixth embodiment, parenchyma cells separated by the Zephyrization apparatus in the first embodiment are used. Separation with the Zephyrization apparatus, the parenchyma cells after the separation were less contaminated with vascular fragments and were suitable as livestock feed.
 また、ゼファー化装置の分離操作を制御して、使用する用途に合わせて維管束の断片である繊維質の混合比率をコントロールするようにしてもよい。更に、上記第4実施形態においてハンマークラッシャーで分離した粉砕物を任意の目開きの篩分器(例えば、750μm)で篩い分けた後の柔細胞を使用するようにしてもよい。 Also, the separation operation of the Zephyrization apparatus may be controlled to control the mixing ratio of the fiber that is a fragment of the vascular bundle according to the intended use. Furthermore, the parenchyma cells after sieving the pulverized material separated by the hammer crusher in the fourth embodiment with an arbitrary sieve sieve (for example, 750 μm) may be used.
 オイルパーム幹材から分離した柔細胞は、そのままの状態で栄養価値も高く畜産専門家から高い評価を受けている。なお、オイルパーム幹材から分離した柔細胞は、そのままの状態で使用するのみではなく、発酵飼料としてサイレージの材料などにも利用することができる。このように、上記第1実施形態で使用した維管束を除く残渣である柔細胞を家畜用飼料として使用することにより、新たな産業廃棄物を生み出すことのないヤシ材の利用方法を提供することができる。 The parenchyma cells separated from the oil palm stem material have high nutritional value and are highly evaluated by livestock experts. The parenchyma cells separated from the oil palm trunk can be used not only as they are, but also as silage material as fermented feed. Thus, the use method of the palm material which does not produce a new industrial waste by using the soft cell which is a residue except the vascular bundle used in the said 1st Embodiment as a livestock feed is provided. Can do.
 第7実施形態:
 本第7実施形態は、オイルパーム幹材を分離して、その柔細胞をバイオエタノールの原料として利用するものである。上述のように、オイルパーム幹材には、約10%の遊離糖(主にショ糖、グルコース、フルクトースなど)や約25%のデンプンが含有されている。また、柔細胞は、デンプンなどを貯蔵する部分であり、リグノセルロースを主成分とする維管束と異なり、オイルパーム幹材に含まれるデンプンや遊離糖の大部分は、柔細胞に含まれるものと考えられる。
Seventh embodiment:
In the seventh embodiment, an oil palm trunk material is separated and its parenchyma cells are used as a raw material for bioethanol. As described above, oil palm trunk contains about 10% free sugar (mainly sucrose, glucose, fructose, etc.) and about 25% starch. In addition, parenchyma cells are a part that stores starch and the like, and unlike vascular bundles mainly composed of lignocellulose, most of starch and free sugar contained in oil palm trunk material are contained in parenchyma cells. Conceivable.
 本第7実施形態においては、これらの単糖類や多糖類(デンプンや遊離糖)を多く含む柔細胞をバイオエタノール原料として利用することができる。特に、糖化が難しいセルロースの含有比率が非常に低く、糖化が容易なデンプンの含有比率が非常に高い。このことから、オイルパーム幹材から分離した柔細胞は、高純度のバイオエタノール原料として利用できる。なお、本第7実施形態においても、上記第6実施形態と同様に上記第1実施形態においてゼファー化装置で分離した柔細胞を使用した。なお、この場合にも上記第4実施形態においてハンマークラッシャーで分離した粉砕物を任意の目開きの篩分器(例えば、750μm)で篩い分けた後の柔細胞を使用するようにしてもよい。 In the seventh embodiment, parenchymal cells containing a large amount of these monosaccharides and polysaccharides (starch and free sugar) can be used as bioethanol raw materials. In particular, the content ratio of cellulose that is difficult to saccharify is very low, and the content ratio of starch that is easily saccharified is very high. Therefore, parenchyma cells separated from oil palm trunk material can be used as a high-purity bioethanol raw material. In the seventh embodiment as well, the parenchyma cells separated by the Zephyrization apparatus in the first embodiment were used as in the sixth embodiment. In this case as well, parenchyma cells after sieving the pulverized material separated by the hammer crusher in the fourth embodiment with an arbitrary sieve sieve (for example, 750 μm) may be used.
 これらの単糖類や多糖類からエタノールを製造する方法については、既存の酵素を利用した方法を採用することができる。例えば、上記特許文献1の方法を利用することができる。この方法は、デンプン分解酵素のアミラーゼなどを利用するものであり、デンプン含有比率の高い柔細胞には適する方法の一つである。なお、柔細胞からエタノールを製造する方法については、ここでは省略する。このように、上記第1実施形態で使用した維管束を除く残渣である柔細胞をバイオエタノール原料として使用することにより、新たな産業廃棄物を生み出すことのないヤシ材の利用方法を提供することができる。 As a method for producing ethanol from these monosaccharides and polysaccharides, a method using an existing enzyme can be employed. For example, the method disclosed in Patent Document 1 can be used. This method uses amylase, which is a amylolytic enzyme, and is one of the methods suitable for parenchyma cells having a high starch content. Note that the method for producing ethanol from parenchyma cells is omitted here. Thus, providing the utilization method of the palm material which does not produce a new industrial waste by using the soft cell which is the residue except the vascular bundle used in the said 1st Embodiment as a bioethanol raw material. Can do.
 第8実施形態:
 本第8実施形態は、オイルパーム幹材を分離して、その柔細胞をキノコの菌床栽培に使用する培地として利用するものである。
Eighth embodiment:
In the eighth embodiment, the oil palm trunk material is separated and the parenchyma cells are used as a medium used for fungus bed cultivation of mushrooms.
 一般に、キノコの菌床栽培に使用する菌床は、オガクズなどの木質基材に米糠などの栄養源を混ぜた人工の培地であって、ヒラタケ、エノキタケ、マイタケ、その他のキノコに広く使用されており、収穫量を安定させ年間を通じ流通させることが可能である。 In general, the fungus bed used for fungus bed cultivation of mushrooms is an artificial medium in which nutrient sources such as rice bran are mixed with woody base materials such as sawdust, widely used in oyster mushrooms, enokitake, maitake and other mushrooms It is possible to stabilize the yield and distribute it throughout the year.
 上述のように、オイルパーム幹材には、約10%の遊離糖(主にショ糖、グルコース、フルクトースなど)や約25%のデンプンが含有されている。また、柔細胞は、デンプンなどを貯蔵する部分であり、オイルパーム幹材に含まれるデンプンや遊離糖の大部分は、柔細胞に含まれるものと考えられる。 As described above, the oil palm trunk material contains about 10% free sugar (mainly sucrose, glucose, fructose, etc.) and about 25% starch. In addition, parenchyma cells are a part for storing starch and the like, and most of starch and free sugar contained in oil palm trunk are considered to be contained in parenchyma cells.
 本第8実施形態においては、これらの栄養価の高い柔細胞をキノコの菌床栽培に使用する培地或いは培地の配合物として利用する。なお、本第8実施形態においては、上記第1実施形態においてゼファー化装置で分離した柔細胞を使用した。ゼファー化装置で分離したことにより、分離後の柔細胞には維管束の断片の混入が少なく、菌床栽培に使用する培地として適切である。 In the present eighth embodiment, these nutritious parenchyma cells are used as a medium or a mixture of mediums used for fungus bed cultivation of mushrooms. In the eighth embodiment, parenchyma cells separated by the Zephyrization apparatus in the first embodiment are used. By separating with a Zephyrization apparatus, the isolated parenchyma cells are less contaminated with fragments of vascular bundles and are suitable as a medium used for fungus bed cultivation.
 また、ゼファー化装置の分離操作を制御して、使用する用途に合わせて維管束の断片である繊維質の混合比率をコントロールするようにしてもよい。更に、上記第4実施形態においてハンマークラッシャーで分離した粉砕物を任意の目開きの篩分器(例えば、750μm)で篩い分けた後の柔細胞を使用するようにしてもよい。 Also, the separation operation of the Zephyrization apparatus may be controlled to control the mixing ratio of the fiber that is a fragment of the vascular bundle according to the intended use. Furthermore, the parenchyma cells after sieving the pulverized material separated by the hammer crusher in the fourth embodiment with an arbitrary sieve sieve (for example, 750 μm) may be used.
 オイルパーム幹材から分離した柔細胞は、そのままの状態で栄養価値も高くキノコ栽培の専門家から高い期待を寄せられている。このように、上記第1実施形態で使用した維管束を除く残渣である柔細胞をキノコの菌床栽培に使用する培地として使用することにより、新たな産業廃棄物を生み出すことのないヤシ材の利用方法を提供することができる。 The parenchyma cells separated from the oil palm stem material have high nutritional value as they are and are highly expected by experts in mushroom cultivation. Thus, by using the soft cells, which are the residues other than the vascular bundle used in the first embodiment, as a medium used for fungus bed cultivation of mushrooms, the palm material that does not produce new industrial waste How to use can be provided.
 以上のことから、本発明によれば、これまで利用されることなく放置されていたオイルパーム材などのヤシ材を維管束と柔細胞とに効率よく分離し、その維管束と柔細胞とをそれぞれ有効に利用するヤシ材の利用方法を提供することができる。また、本発明によれば、分離した維管束を利用して従来の木材と同様又はそれ以上の物性を有して実用的に建材などの用途に利用可能な木質系材料及びその製造方法を提供することができる。 From the above, according to the present invention, palm material such as oil palm material that has been left without being used so far is efficiently separated into vascular bundles and parenchymal cells, and the vascular bundles and parenchymal cells are separated. It is possible to provide a method of using palm materials that are used effectively. In addition, according to the present invention, a wood-based material having a physical property similar to or higher than that of conventional wood using separated vascular bundles and practically usable for uses such as building materials and a method for producing the same are provided. can do.
 なお、本発明の実施にあたり、上記各実施形態に限らず次のような種々の変形例が挙げられる。
(1)上記各実施形態においては、オイルパーム材を使用して説明するものであるが、これに限るものではなく、ココヤシなど他のヤシ材を使用するようにしてもよい。
(2)上記各実施形態においては、分離工程の分離手段としてゼファー化装置、又は、ハンマークラッシャーを使用するが、これらに限るものではなく、他の分離手段を使用するようにしてもよい。他の分離手段としては、ハンマーミル、スパイラルミル、振動ボールミル、震動ロッドミル、ウィーリーミル、チッパー、シュレッダー、水蒸気爆砕装置、高圧噴射装置などを挙げることができる。
(3)上記各実施形態においては、木質系材料の製造に使用する樹脂材料として、低分子量フェノール樹脂(充填型樹脂)、又は、イソシアネート架橋剤を使用するが、これに限るものではなく、維管束どうしを接着して結合する材料、維管束どうしの間に充填してこれら結合する材料、或いは、維管束の内部に一部浸透して維管束を構成するセルロースその他の物質と反応してこれらを結合する材料などを含む広い意味の樹脂材料を使用してもよい。
(4)上記第1~第3実施形態においては、3層又は5層のマットを積層して積層板又は圧密積層板を製造するものであるが、これに限るものではなく、2層、4層、或いは6層以上を積層するようにしてもよい。
(5)上記第1~第3実施形態においては、維管束を配向させたマットのみを積層して積層板又は圧密積層板を製造するものであるが、これに限るものではなく、表面の化粧板として他の木材板を積層するようにしてもよい。
(6)上記第3~第5実施形態においては、圧密化に特殊な圧密化装置を使用するが、これに限るものではなく、通常のホットプレス機を使用するようにしてもよい。
(7)上記各実施形態においては、オイルパーム材から分離した維管束を木質系材料の構造材として利用するが、これに限るものではなく、維管束を木粉・プラスチック複合材(混練型WPC)の充填材として使用するようにしてもよい。
(8)上記第4実施形態においては、粉砕回数1回で孔径15mmの多孔篩を通過した粉砕物を目開き750μmの篩分器で篩い分けた後の維管束を使用した。しかし、これに限るものではなく、粉砕回数と多孔篩の孔径、及び篩分器の目開きを適宜選定することにより、目的に合わせた大きさの材料を使用するようにしてもよい。
(9)上記第1~第5実施形態においては、オイルパーム材から分離した維管束を木質系材料の構造材として利用するが、これに限るものではなく、維管束をその他の工業用材料や農林水産用資源として使用するようにしてもよい。
(10)上記第6~第8実施形態においては、オイルパーム材から分離した柔細胞を家畜用飼料、バイオエタノールの原料、及び、キノコの菌床として利用するが、これに限るものではなく、柔細胞をその他の工業用材料や農林水産用資源として使用するようにしてもよい。
In carrying out the present invention, the following various modifications are not limited to the above embodiments.
(1) In the above embodiments, the oil palm material is used for explanation. However, the present invention is not limited to this, and other palm materials such as coconut may be used.
(2) In each of the above embodiments, a zephyrizing apparatus or a hammer crusher is used as a separation means in the separation step. However, the present invention is not limited to this, and other separation means may be used. Examples of other separating means include a hammer mill, a spiral mill, a vibrating ball mill, a vibration rod mill, a wheelie mill, a chipper, a shredder, a steam explosion device, and a high pressure injection device.
(3) In each of the above embodiments, a low molecular weight phenol resin (filling type resin) or an isocyanate cross-linking agent is used as the resin material used for the production of the wood-based material. However, the present invention is not limited to this. A material that bonds and binds tube bundles, a material that is filled and bonded between vascular bundles, or reacts with cellulose or other substances that partially penetrate into the vascular bundle to form these vascular bundles. You may use the resin material of the broad meaning containing the material etc. which couple | bond.
(4) In the first to third embodiments, three or five layers of mats are laminated to produce a laminated plate or a consolidated laminated plate. However, the present invention is not limited to this. You may make it laminate | stack a layer or six layers or more.
(5) In the first to third embodiments described above, a laminate or a consolidated laminate is produced by laminating only mats with oriented vascular bundles, but the present invention is not limited to this. You may make it laminate | stack another wood board as a board.
(6) In the third to fifth embodiments, a special consolidation apparatus is used for consolidation, but the present invention is not limited to this, and a normal hot press machine may be used.
(7) In each of the above embodiments, the vascular bundle separated from the oil palm material is used as the structural material of the wood-based material. However, the vascular bundle is not limited to this, and the vascular bundle is made of wood powder / plastic composite (kneaded WPC). ) As a filler.
(8) In the fourth embodiment, a vascular bundle after sieving the pulverized material that passed through a porous sieve having a pore diameter of 15 mm with a sifter of 750 μm is used. However, the present invention is not limited to this, and a material having a size suitable for the purpose may be used by appropriately selecting the number of times of pulverization, the pore diameter of the porous sieve, and the opening of the sieve.
(9) In the first to fifth embodiments, the vascular bundle separated from the oil palm material is used as the structural material of the wood-based material. However, the vascular bundle is not limited to this, and the vascular bundle is used as another industrial material or It may be used as a resource for agriculture, forestry and fisheries.
(10) In the sixth to eighth embodiments, the soft cells separated from the oil palm material are used as a livestock feed, a raw material for bioethanol, and a fungus bed for mushrooms, but are not limited thereto. The soft cells may be used as other industrial materials or resources for agriculture, forestry and fisheries.
W1~W5…マット、PW1…圧密化前の積層板、PW2…圧密積層板、
MC…圧密化装置、10…プレス盤、10A…上プレス盤、10B…下プレス盤、
IS…内部空間、18…位置決め孔。
W1 to W5 ... mat, PW1 ... laminate before consolidation, PW2 ... consolidation laminate,
MC ... Consolidator, 10 ... Press board, 10A ... Upper press board, 10B ... Lower press board,
IS: internal space, 18: positioning hole.

Claims (14)

  1.  ヤシ材を粉砕、圧搾、爆砕、水流高圧噴射等の手段を用いて維管束と柔細胞とに分離し、
     分離された維管束と柔細胞とをそれぞれ工業用材料、又は、農林水産用資源として有効利用することを特徴とするヤシ材の利用方法。
    The palm material is separated into vascular bundles and parenchyma cells using means such as crushing, squeezing, blasting, water flow high pressure injection, etc.
    A method for using a palm material, wherein the separated vascular bundle and parenchyma cells are effectively used as industrial materials or agricultural, forestry and fishery resources, respectively.
  2.  前記ヤシ材を維管束と柔細胞とに分離する方法において、
     円筒の表面に円周方向に沿って平行して設けられた、山部と谷部とからなるV字状又は凹凸状の複数の溝を有する2本の金属ロールを具備する圧搾装置を使用し、
     これらの金属ロールが互いの円筒軸方向を平行にして、互いの山部と谷部とが咬合した状態で逆方向に回転し、
     前記ヤシ材の板片を前記咬合して回転する2本の金属ロールの間に、その維管束の長さ方向を前記咬合する複数の溝に平行、又は交差するように挿入することにより、
     維管束と柔細胞とに効率よく分離することを特徴とする請求項1に記載のヤシ材の利用方法。
    In the method of separating the palm material into vascular bundles and parenchyma cells,
    Using a squeezing device provided with two metal rolls having a plurality of V-shaped or concavo-convex grooves composed of peaks and valleys provided in parallel on the surface of the cylinder along the circumferential direction. ,
    These metal rolls rotate in the opposite direction with each other's crests and troughs engaged with each other with the cylindrical axis directions parallel to each other,
    By inserting the length of the vascular bundle between the two metal rolls that rotate by meshing the piece of coconut material so as to be parallel to or intersecting the plurality of grooves to be engaged,
    The method for using a coconut material according to claim 1, wherein the coconut material is efficiently separated into a vascular bundle and parenchyma cells.
  3.  前記ヤシ材を維管束と柔細胞とに分離する方法において、
     粉砕装置を使用する粉砕操作と、当該粉砕操作後の粉砕物を篩分器により維管束と柔細胞とに分離する篩分操作とからなり、
     前記粉砕操作において、前記粉砕装置の放出口に設けた多孔篩の目開きと、前記篩分操作に使用する篩分器の目開きとを変化させることにより、
     分離した維管束の軸径及び軸長、並びに、当該維管束に残留する柔細胞の比率を変化させることを特徴とする請求項1に記載のヤシ材の利用方法。
    In the method of separating the palm material into vascular bundles and parenchyma cells,
    A pulverization operation using a pulverizer, and a sieving operation for separating the pulverized product after the pulverization operation into vascular bundles and parenchyma cells using a sieving device,
    In the pulverization operation, by changing the aperture of the porous sieve provided at the discharge port of the pulverizer and the aperture of the sieving machine used for the sieving operation,
    The method of using a palm material according to claim 1, wherein the axial diameter and axial length of the separated vascular bundle and the ratio of parenchymal cells remaining in the vascular bundle are changed.
  4.  前記多孔篩の目開きは、孔径5mm~20mmであって、
     当該多孔篩を通過した前記維管束及び前記柔細胞を利用することを特徴とする請求項3に記載のヤシ材の利用方法。
    The aperture of the porous sieve has a pore diameter of 5 mm to 20 mm,
    The method for using a coconut material according to claim 3, wherein the vascular bundle and the parenchyma cells that have passed through the porous sieve are used.
  5.  前記ヤシ材を伐採後、含水率15質量%以下に乾燥した後に、維管束と柔細胞とに分離することを特徴とする請求項1~4のいずれか1つに記載のヤシ材の利用方法。 The method for using palm material according to any one of claims 1 to 4, wherein the palm material is separated into vascular bundles and parenchyma cells after being cut down and dried to a moisture content of 15% by mass or less. .
  6.  前記ヤシ材を伐採後、乾燥することなく維管束と柔細胞とに分離することを特徴とする請求項1~4のいずれか1つに記載のヤシ材の利用方法。 The method for using palm material according to any one of claims 1 to 4, wherein the palm material is separated into vascular bundles and parenchyma cells without being dried after being cut.
  7.  請求項1~6のいずれか1つに記載の方法によって分離した柔細胞を使用し、
     当該柔細胞を家畜用飼料として利用することを特徴とするヤシ材の利用方法。
    Using parenchyma cells separated by the method according to any one of claims 1 to 6,
    A method for using a palm material, characterized in that the parenchymal cells are used as a feed for livestock.
  8.  請求項1~6のいずれか1つに記載の方法によって分離した柔細胞を使用し、
     当該柔細胞をバイオエタノールの原料として利用することを特徴とするヤシ材の利用方法。
    Using parenchyma cells separated by the method according to any one of claims 1 to 6,
    A method for using a palm material, characterized in that the parenchymal cells are used as a raw material for bioethanol.
  9.  請求項1~6のいずれか1つに記載の方法によって分離した柔細胞を使用し、
     当該柔細胞をキノコの菌床栽培に使用する培地として利用することを特徴とするヤシ材の利用方法。
    Using parenchyma cells separated by the method according to any one of claims 1 to 6,
    A method for using a coconut material, characterized in that the parenchymal cells are used as a medium for use in mushroom fungus cultivation.
  10.  ヤシ材を構成する維管束と柔細胞のうち、柔細胞を離脱した状態の維管束を使用し、
     当該維管束を複数組み合わせた構造材と、これらの維管束を結合する樹脂材料とから構成されてなることを特徴とする木質系材料。
    Of the vascular bundles and parenchyma that make up the palm material, use the vascular bundles in which the parenchyma cells have been detached,
    A wood-based material comprising a structural material obtained by combining a plurality of the vascular bundles and a resin material that binds the vascular bundles.
  11.  前記構造材は、前記維管束が互いに交差する2軸以上の方向に配向してなることを特徴とする請求項10に記載の木質系材料。 The woody material according to claim 10, wherein the structural material is oriented in two or more directions in which the vascular bundle intersects each other.
  12.  前記構造材は、所定の長さに切断した前記維管束を無配向に構成してなることを特徴とする請求項10に記載の木質系材料。 The woody material according to claim 10, wherein the structural material is configured such that the vascular bundle cut into a predetermined length is non-oriented.
  13.  前記構造材は、前記樹脂材料を付与した状態で成形されており、
     成形後の気乾密度の値が0.3~1.5(g/cm)の範囲内にあることを特徴とする請求項10~12のいずれか1つに記載の木質系材料。
    The structural material is molded with the resin material applied,
    The woody material according to any one of claims 10 to 12, wherein an air-dry density value after molding is within a range of 0.3 to 1.5 (g / cm 3 ).
  14.  請求項10~13のいずれか1つに記載の木質系材料を製造する方法であって、
     ヤシ材を維管束と柔細胞とに分離する分離工程と、
     前記維管束に樹脂材料を付与する付与工程と、
     前記樹脂材料により前記維管束の間を結合する結合工程とからなり、
     前記付与工程において、
     前記樹脂材料としてフェノール樹脂を使用し、前記維管束に2~50質量%濃度のフェノール樹脂水溶液を含浸させ、
     前記結合工程において、
     前記フェノール樹脂水溶液を含浸した前記維管束を乾燥後、温度140~220℃の高圧プレス装置で成形することを特徴とする木質系材料の製造方法。
    A method for producing a woody material according to any one of claims 10 to 13,
    A separation process for separating the palm material into vascular bundles and parenchyma cells;
    An applying step of applying a resin material to the vascular bundle;
    A bonding step of bonding between the vascular bundles by the resin material,
    In the applying step,
    A phenol resin is used as the resin material, and the vascular bundle is impregnated with a 2-50 mass% aqueous phenol resin solution,
    In the combining step,
    A method for producing a woody material, characterized in that the vascular bundle impregnated with the aqueous phenol resin solution is dried and then molded with a high-pressure press at a temperature of 140 to 220 ° C.
PCT/JP2018/019632 2017-05-25 2018-05-22 Palm material utilization method, and wood-based material and method for manufacturing same WO2018216682A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019520259A JP7260861B2 (en) 2017-05-25 2018-05-22 How to use palm wood
MYPI2019006460A MY201099A (en) 2017-05-25 2018-05-22 Palm material utilization method, and wood-based material and method for manufacturing same
JP2022204779A JP2023027350A (en) 2017-05-25 2022-12-21 Wood-based material and production method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017103483 2017-05-25
JP2017-103483 2017-05-25
JP2018043121 2018-03-09
JP2018-043121 2018-03-09

Publications (1)

Publication Number Publication Date
WO2018216682A1 true WO2018216682A1 (en) 2018-11-29

Family

ID=64395674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019632 WO2018216682A1 (en) 2017-05-25 2018-05-22 Palm material utilization method, and wood-based material and method for manufacturing same

Country Status (3)

Country Link
JP (2) JP7260861B2 (en)
MY (1) MY201099A (en)
WO (1) WO2018216682A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021006014A1 (en) * 2019-07-11 2021-01-14
WO2021019946A1 (en) * 2019-07-31 2021-02-04 パナソニックIpマネジメント株式会社 Wooden layered board production method
JP2021024250A (en) * 2019-08-08 2021-02-22 永大産業株式会社 Method for separating bamboo structure
JP2021030548A (en) * 2019-08-22 2021-03-01 永大産業株式会社 Fiber board and method for manufacturing the same
JP2022512000A (en) * 2018-10-08 2022-02-01 トリアス パーム リサイクリング エージー Materials
WO2022080358A1 (en) * 2020-10-14 2022-04-21 パナソニックIpマネジメント株式会社 Method for manufacturing fiber board and biomass compressed material for manufacturing fiber board
JP7083140B1 (en) 2021-12-28 2022-06-10 株式会社パームホルツ Plate material and its manufacturing method
JP7498041B2 (en) 2020-06-30 2024-06-11 永大産業株式会社 Method for extracting vascular bundles from oil palm wood and method for manufacturing molded bodies

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174519A (en) * 1996-12-16 1998-06-30 Showa Denko Kk Medium for mushroom cultivation and bacterium bed for mushroom cultivation
JP2003039407A (en) * 2001-08-03 2003-02-13 Takekkusu:Kk Bamboo made plywood and decorative laminate
JP2005280030A (en) * 2004-03-29 2005-10-13 Daiken Trade & Ind Co Ltd Method for producing hard fiberboard
JP2006103088A (en) * 2004-10-04 2006-04-20 O Yuki Bamboo timber and its production method
JP2006225547A (en) * 2005-02-18 2006-08-31 Japan Science & Technology Agency Molding material composition, molded product and its manufacturing method
JP2007083694A (en) * 2005-09-26 2007-04-05 Matsushita Electric Works Ltd Method of manufacturing decorative thin plate material and the decorative thin plate material
JP2007136715A (en) * 2005-11-15 2007-06-07 National Institute Of Advanced Industrial & Technology Manufacturing method of biomass-based fiber and manufacturing apparatus therefor
JP2011224479A (en) * 2010-04-20 2011-11-10 Japan International Research Center For Agricultural Services Water absorbing material
JP2013034983A (en) * 2011-08-05 2013-02-21 Japan International Research Center For Agricultural Services Separation device of solid mixture
WO2015064085A1 (en) * 2013-10-30 2015-05-07 株式会社奈良機械製作所 Sieving device and sieving method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174519A (en) * 1996-12-16 1998-06-30 Showa Denko Kk Medium for mushroom cultivation and bacterium bed for mushroom cultivation
JP2003039407A (en) * 2001-08-03 2003-02-13 Takekkusu:Kk Bamboo made plywood and decorative laminate
JP2005280030A (en) * 2004-03-29 2005-10-13 Daiken Trade & Ind Co Ltd Method for producing hard fiberboard
JP2006103088A (en) * 2004-10-04 2006-04-20 O Yuki Bamboo timber and its production method
JP2006225547A (en) * 2005-02-18 2006-08-31 Japan Science & Technology Agency Molding material composition, molded product and its manufacturing method
JP2007083694A (en) * 2005-09-26 2007-04-05 Matsushita Electric Works Ltd Method of manufacturing decorative thin plate material and the decorative thin plate material
JP2007136715A (en) * 2005-11-15 2007-06-07 National Institute Of Advanced Industrial & Technology Manufacturing method of biomass-based fiber and manufacturing apparatus therefor
JP2011224479A (en) * 2010-04-20 2011-11-10 Japan International Research Center For Agricultural Services Water absorbing material
JP2013034983A (en) * 2011-08-05 2013-02-21 Japan International Research Center For Agricultural Services Separation device of solid mixture
WO2015064085A1 (en) * 2013-10-30 2015-05-07 株式会社奈良機械製作所 Sieving device and sieving method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7148771B2 (en) 2018-10-08 2022-10-06 トリアス パーム リサイクリング エージー materials
JP2022512000A (en) * 2018-10-08 2022-02-01 トリアス パーム リサイクリング エージー Materials
WO2021006014A1 (en) * 2019-07-11 2021-01-14 パナソニックIpマネジメント株式会社 Plywood board
JPWO2021006014A1 (en) * 2019-07-11 2021-01-14
WO2021019946A1 (en) * 2019-07-31 2021-02-04 パナソニックIpマネジメント株式会社 Wooden layered board production method
JPWO2021019946A1 (en) * 2019-07-31 2021-02-04
JP2021024250A (en) * 2019-08-08 2021-02-22 永大産業株式会社 Method for separating bamboo structure
JP7280145B2 (en) 2019-08-08 2023-05-23 永大産業株式会社 Separation method of bamboo tissue
JP7306919B2 (en) 2019-08-22 2023-07-11 永大産業株式会社 Fiber board and its manufacturing method
JP2021030548A (en) * 2019-08-22 2021-03-01 永大産業株式会社 Fiber board and method for manufacturing the same
JP7430289B2 (en) 2019-08-22 2024-02-09 永大産業株式会社 fiber board
JP7498041B2 (en) 2020-06-30 2024-06-11 永大産業株式会社 Method for extracting vascular bundles from oil palm wood and method for manufacturing molded bodies
WO2022080358A1 (en) * 2020-10-14 2022-04-21 パナソニックIpマネジメント株式会社 Method for manufacturing fiber board and biomass compressed material for manufacturing fiber board
EP4230373A4 (en) * 2020-10-14 2024-04-10 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing fiber board and biomass compressed material for manufacturing fiber board
JP7083140B1 (en) 2021-12-28 2022-06-10 株式会社パームホルツ Plate material and its manufacturing method
JP2023097458A (en) * 2021-12-28 2023-07-10 株式会社パームホルツ Plate and production method thereof

Also Published As

Publication number Publication date
JP7260861B2 (en) 2023-04-19
MY201099A (en) 2024-02-05
JPWO2018216682A1 (en) 2020-05-07
JP2023027350A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
WO2018216682A1 (en) Palm material utilization method, and wood-based material and method for manufacturing same
Klímek et al. Utilizing Miscanthus stalks as raw material for particleboards
JP2007021972A (en) Binderless board
CN101544010B (en) Cotton stalk artificial boards and its production method
JP6175926B2 (en) Oil palm compacted plywood
CN101066607A (en) Process of producing stalk recombining material
WO2018143004A1 (en) Compound consolidated plywood
WO2017010005A1 (en) Woody laminated plate and method for manufacturing same
JP6164649B2 (en) Wood laminate, wood compacted laminate, and method for manufacturing wood compacted laminate
US20130199743A1 (en) Binderless panel made from wood particles and cellulosic fibers
JP5963195B2 (en) Oil palm compact
JP6143046B2 (en) Laminated plywood
JP6086521B2 (en) Oil palm sheet joining composition and joining method thereof
JP6168357B2 (en) WOOD LAMINATE AND METHOD FOR MANUFACTURING THE SAME
Hasan et al. Scope of medium density fiberboard (MDF) from water hyacinth (Eichhornia crassipes)
WO2018061919A1 (en) Consolidated plywood
JP6086522B2 (en) Oil palm compact
JP6086523B2 (en) Oil palm compact
JP6504634B2 (en) Wood board
WO2014057583A1 (en) Compressed oil-palm material
WO2023095463A1 (en) Fiber board production method
WO2023176286A1 (en) Method for producing fiber board and compressed material for production of fiber board
RU2404048C2 (en) Method of producing plate composite material from lignocelluloses
JP6083691B2 (en) Manufacturing method of laminated plywood
CN116238025A (en) Wooden board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019520259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806608

Country of ref document: EP

Kind code of ref document: A1