WO2018216667A1 - ロータ及び当該ロータを有するモータ - Google Patents

ロータ及び当該ロータを有するモータ Download PDF

Info

Publication number
WO2018216667A1
WO2018216667A1 PCT/JP2018/019560 JP2018019560W WO2018216667A1 WO 2018216667 A1 WO2018216667 A1 WO 2018216667A1 JP 2018019560 W JP2018019560 W JP 2018019560W WO 2018216667 A1 WO2018216667 A1 WO 2018216667A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
yoke
yokes
rotor according
magnet
Prior art date
Application number
PCT/JP2018/019560
Other languages
English (en)
French (fr)
Inventor
國智 顔
秀瑛 林
耿彰 呉
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to DE112018002638.8T priority Critical patent/DE112018002638T5/de
Priority to JP2019520249A priority patent/JP7014227B2/ja
Priority to US16/491,597 priority patent/US11159068B2/en
Publication of WO2018216667A1 publication Critical patent/WO2018216667A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • This application relates to the motor region, and more particularly, to a rotor and a motor having the rotor.
  • an axial magnetic flux motor in which a rotor includes a disk yoke composed of one low carbon steel and a plurality of magnets are attached to the disk yoke is often seen.
  • the disk yoke guides the magnetic flux circuit as a magnetic guide assembly.
  • loss due to eddy current occurs in the disk yoke.
  • an axial clearance type rotary motor described in Patent Document 1 can be cited.
  • a yoke as described in Patent Document 2 is manufactured by laminating silicon steel sheets, the manufacturing becomes complicated and the manufacturing cost increases.
  • Patent Document 1 Japanese Patent No. 5052288 Publication
  • Patent Document 2 US Pat. No. 8836192 Publication Note that the introduction to the background art described above is a clearer and more complete explanation of the technical proposal of the present application. It is intended to make it easier to perform, and is merely provided to make it easier for those skilled in the art to understand. It should not be recognized that the above technical schemes are known by those skilled in the art only by the fact that those schemes are described in the background art section of the present application.
  • a rotating shaft that rotates about a central axis as a rotation center
  • a nonmagnetic rotating frame that rotates with the rotating shaft about the rotating shaft
  • a nonmagnetic rotating frame A plurality of yokes arranged in a divided manner, and a magnet arranged on at least one surface of the yoke, and the nonmagnetic rotating frame holds the plurality of yokes and the magnet
  • a first annular rib disposed along the circumferential direction on the outer periphery of the rotating shaft, a plurality of radial ribs extending along the radial direction from the outer periphery of the first annular rib, and the first annular rib
  • a rotor composed of a second annular rib concentrically connected to the plurality of radial ribs, wherein one of the plurality of yokes includes two of the magnets, and The two magnets are on the side facing the stator
  • a motor including the rotor described in the first aspect and a stator disposed to face the rotor.
  • the beneficial effect of the embodiment of the present invention is that the loss of the eddy current generated in the rotor can be reduced because the loop of the magnetic flux path connected to the yoke is reduced, and further the efficiency of the motor can be improved.
  • FIG. 1 is a schematic diagram of one of the rotors according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of one arrangement method of the magnets and yokes of the rotor in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of another arrangement method of the magnets and yokes of the rotor according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of one of the nonmagnetic rotating frames of the rotor according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a motor in Embodiment 2 of the present invention.
  • FIG. 6 is an exploded view of the motor in Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a motor in Embodiment 2 of the present invention.
  • axis direction a direction parallel to the direction extending along the rotation axis
  • radial direction a radial direction centered on the rotation axis
  • circumferential direction a direction parallel to the direction extending along the rotation axis
  • FIG. 1 is a schematic diagram of a rotor 10 in the present embodiment, showing each component of the rotor 10 and the overall structure.
  • the rotor 10 includes a rotating shaft 11, a nonmagnetic rotating frame 12, a plurality of yokes 13, and a magnet.
  • the rotor 10 includes a rotating shaft 11, a nonmagnetic rotating frame 12, a plurality of yokes 13, and a magnet.
  • FIG. 1 for convenience of explanation, only one yoke 13 and one magnet 14 are indicated by reference numerals.
  • the rotating shaft 11 rotates about the central axis OO '
  • the nonmagnetic rotating frame 12 rotates together with the rotating shaft 11 about the rotating shaft 11.
  • the plurality of yokes 13 are divided and arranged in the nonmagnetic rotating frame 12, and the magnet 14 is arranged on at least one surface of the yoke 13.
  • the non-magnetic rotating frame 12 includes a first annular rib 121 arranged along the circumferential direction on the outer periphery of the rotating shaft 11 and a first annular rib in order to hold the plurality of yokes 13 and the magnets 14.
  • It consists of a plurality of radial ribs 122 extending along the radial direction from the outer periphery of 121, and a second annular rib 123 concentric with the first annular rib 121 and connected to the plurality of radial ribs 122.
  • the second annular rib 123 is located on the radially outer side of the first annular rib 121.
  • two magnets 14 are arranged in any one of the plurality of yokes 13, and the two magnets 14 have a north pole and a south pole on the side facing the stator, respectively ( Not shown in Figure 1). That is, two magnets 14 are attached to each yoke 13 among the plurality of yokes 13.
  • the plurality of yokes 13 are divided and arranged in the nonmagnetic rotating frame 12, and any one yoke 13 has magnets having N poles and S poles on the sides facing the stator, respectively. Two 14 are arranged. With this configuration, since the loop of the magnetic flux path connected in the plurality of yokes 13 becomes small, loss due to eddy current can be reduced.
  • the efficiency of the motor can be improved. Further, the manufacturing of the rotor can be facilitated and the manufacturing cost can be reduced. Moreover, according to the embodiment of the present disclosure, by using a plurality of divided yokes, the magnetically conductive material can be effectively used, and the amount of unnecessary magnetic material used can be reduced. Material costs can be reduced.
  • the magnet having the north pole on the side facing the stator and the magnet having the south pole on the side facing the stator are arranged with a gap in the circumferential direction.
  • the magnetic flux generated by the magnet can be effectively passed through the stator on the opposite side, magnetic flux leakage can be reduced, and the performance of the motor can be improved.
  • the present embodiment is not limited thereto, and for example, a gap may not be provided between magnets.
  • two adjacent magnets arranged in adjacent yokes have the same polarity on the side facing the stator.
  • the two adjacent magnets 14a and 14b arranged in the adjacent yoke 13a and yoke 13b are both N poles.
  • any one of a plurality of magnets is disposed across two adjacent yokes. As shown in FIG. 3, a part of the magnet 14c is attached to the yoke 13a, and the other part is attached to the yoke 13b adjacent to the yoke 13a. Thereby, since the loop of the magnetic flux path connected in the some yoke 13 becomes small, the grade of a magnetic flux change can be reduced and the loss by an eddy current can be reduced.
  • the magnetic pole distribution of the magnet 14 shown in FIGS. 2 to 3 is only for illustrative explanation, and the magnetic pole distribution of the magnet 14 may be based on other methods.
  • the nonmagnetic rotating frame 12 may be made of a stainless steel material. Thereby, the loss due to the eddy current can be further reduced.
  • the present embodiment is not limited thereto, and the nonmagnetic rotating frame 12 may be made of other materials.
  • the yoke 13 may be composed of a base steel plate or a soft magnetic composite material. Thereby, the loss due to the eddy current can be further reduced.
  • the present embodiment is not limited to this, and the yoke 13 may be made of other materials. For example, it may be made of S10C low carbon steel. Further, as shown in FIG. 1, the yoke 13 may have a sector shape. Thereby, a combination can be made easy.
  • the present embodiment is not limited to this, and the shape of the yoke may be another shape.
  • the yoke 13 may be fixed to the nonmagnetic rotating frame 12 with an adhesive.
  • this embodiment is not limited thereto, and the yoke 13 is fixed to the nonmagnetic rotating frame 12 by other methods. May be.
  • the magnet 14 may be fixed to the yoke 13 with an adhesive. Thereby, the structure of the rotor can be stabilized.
  • FIG. 4 is a schematic view of one nonmagnetic rotating frame in the embodiment of the present invention.
  • the size d1 of the first annular rib 121 in the axial direction is larger than the size d2 of the radial ribs 122 in the axial direction.
  • the arch-shaped portion 1221 may be formed at a position where the first annular rib 121 and the radial rib 122 are connected.
  • d1 becomes larger than d2.
  • the present embodiment is not limited thereto, and for example, the arch-shaped portion 1221 may have other shapes such as a triangle or a trapezoid.
  • the radial rib 122 of the nonmagnetic rotating frame 12 has a size d3 of 2 mm or less in the radial direction and the direction perpendicular to the axial direction. Thereby, it was ensured that the motor had good performance.
  • the size of the nonmagnetic rotating frame 12 in the axial direction is equal to or less than the sum of the sizes of the yoke 13 and the magnet 14 in the axial direction.
  • the size d4 of the second annular rib 123 in the axial direction is not more than the sum of the sizes of the yoke 13 and the magnet 14 in the axial direction.
  • the rotor of this embodiment since the loop of the magnetic flux path connected to the plurality of yokes 13 becomes small, not only can loss due to eddy current be reduced and motor efficiency be improved, but also the rotor can be easily manufactured. By doing so, the cost can be reduced.
  • Example 2 The second embodiment provides a rotor.
  • FIG. 5 is a cross-sectional view of a motor in the present embodiment
  • FIG. 6 is a cross-sectional view of a schematic diagram of each component of the motor in the present embodiment
  • FIG. 7 is an overall schematic of the motor in the present embodiment.
  • the motor 50 includes a rotor 51 and a stator 54 arranged corresponding to the rotor 51.
  • the rotor 51 may be the rotor 10 in the first embodiment.
  • the configuration of the rotor in the motor of the present embodiment is as described in the first embodiment and should be omitted here.
  • the loop of the magnetic flux path connected to the plurality of yokes 13 is reduced, not only can the loss due to eddy current be reduced and the efficiency of the motor be improved, but also the manufacture of the rotor is facilitated. Thus, the cost can be reduced.
  • the motor 50 further includes a bearing 52, a coil 53, a stator 54, and a casing 55.
  • the present invention is not limited thereto, and other conventional members of the motor may be referred to. Good.
  • the motor can be applied to any electric device.
  • the motor may be used as a robot joint motor or as a wheel motor for a moving carrier.
  • the motor may be used as a motor in an electric device such as an indoor unit of an air conditioner, an outdoor unit of an air conditioner, a water server, a vacuum cleaner, a compressor, a blower, a mixer, or various information devices. It may be used as a motor in industrial equipment or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本発明の実施例は、ロータ及び当該ロータを有するモータを提供する。当該ロータは、回転軸と、非磁性回転枠と、非磁性回転枠内に分割されて配置されている複数のヨークと、ヨークの表面の少なくとも一面に配置されている磁石と、を備え、非磁性回転枠が、複数のヨークと前記磁石とを保持するために、回転軸の外周において周方向に沿って配置された第1の環状リブと、第1の環状リブの外周から径方向に沿って延伸する複数の放射状リブと、第1の環状リブと同心で複数の放射状リブと接続された第2の環状リブとからなるロータであって、複数のヨークのうちのいずれか1つには、磁石が2つ配置されており、かつ、2つの磁石はステータに向かう側がそれぞれ、N極とS極となることを特徴とする。本発明の実施例によれば、渦電流による損失を低減し、モータの効率を向上させることができるだけではなく、ロータの製造を容易にすることで、コストを低減することもできる。

Description

ロータ及び当該ロータを有するモータ
 本願は、モータ領域に関し、特に、ロータ及び当該ロータを有するモータに関する。
 従来技術では、ロータが1つの低炭素鋼で構成された円盤ヨークを含み、かつ、円盤ヨークには、複数の磁石が貼り付けられた軸方向磁束モータがよく見られる。そのうち、円盤ヨークは導磁組立体として磁束回路を案内する。ここで、円盤ヨークには、渦電流による損失が生じてしまう。例えば、特許文献1に記載の軸方向隙間型回転モータが挙げられる。その問題を解決するために、従来技術では、珪素鋼シートを積層することで軸方向磁束モータのヨークを構成することが提案されている。しかし、一般的な径方向モータとは異なり、珪素鋼シートを積層することで特許文献2に記載のようなヨークを製造する場合、その製造が複雑となり、製造コストが高くなる。
特許文献1:日本国特許第5052288号公報
特許文献2:米国特許第8836192号公報
ここで注意すべきなのは、以上の背景技術に対する紹介は、本願の技術案に対してより明瞭かつ完全な説明を行いやすくするためのものであって、当業者が理解しやすいように供するものに過ぎない。それらの方案が本願の背景技術の部分に記載されていることだけで、上記の技術方案が当業者によって公知されたものであると認定してはならない。
 本発明の実施例の第1の態様では、中心軸線を回転中心として回転する回転軸と、前記回転軸を中心軸として前記回転軸とともに回転する非磁性回転枠と、前記非磁性回転枠内に分割されて配置されている複数のヨークと、前記ヨークの表面の少なくとも一面に配置されている磁石と、を備え、前記非磁性回転枠は、前記複数のヨークと前記磁石とを保持するために、前記回転軸の外周において周方向に沿って配置された第1の環状リブと、前記第1の環状リブの外周から径方向に沿って延伸する複数の放射状リブと、前記第1の環状リブと同心で前記複数の放射状リブと接続された第2の環状リブとからなるロータであって、前記複数のヨークのうちのいずれか1つには、前記磁石が2つ配置されており、かつ、2つの前記磁石はステータに向かう側がそれぞれ、N極とS極となることを特徴とするロータを提供する。
 本発明の実施例の第2の態様では、上記の第1の様態に記載のロータと、当該ロータに対向して配置されているステータと、を備えたモータを提供する。
 本発明の実施例による有益な効果は、ヨークに結びつく磁束経路のループが小さくなるためロータに生じる渦電流による損失を低減し、さらに、モータの効率を向上させることができる。
後述する説明や添付図面を参照して、本発明の実施の形態は詳しく開示されている。理解すべきことは、本発明の実施の形態は、範囲上にそれによって限定されていない。添付される特許請求の範囲の精神及び請求項の範囲内において、本発明の実施の形態は多くの変更、修正及び均等物を含む。
 1つの実施の形態の記載及び/又は示された特徴に対して、同様又は類似する様態で1つ又は更に多くのその他の実施の形態に使用され、その他の実施の形態の特徴と組み合わせ、或はその他の実施の形態の特徴を切り替えることができる。
強調すべきことは、術語である「含む/包含する/備える」は本文で特徴、整体部材、又は部品の存在を示すために使われているが、1つ又は更に多くのその他の特徴、整体部材、又は部品の存在或は付加が排除されるわけではない。
 当該ロータの構造によれば、渦電流による損失を低減し、モータの効率を向上させる。
 以下の添付図面を結び付けた詳細の記載から、本発明の実施例における上記及び他の目的、特徴及び利点がさらに明らかになるだろう。
図1は、本発明の実施例1におけるロータの1つの概略図である。 図2は、本発明の実施例1におけるロータの磁石及びヨークの1つの配置方式の概略図である。 図3は、本発明の実施例1におけるロータの磁石及びヨークのもう1つの配置方式の概略図である。 図4は、本発明の実施例1におけるロータの非磁性回転枠の1つの概略図である。 図5は、本発明の実施例2におけるモータの断面図である。 図6は、本発明の実施例2におけるモータの分解図である。 図7は、本発明の実施例2におけるモータの概略図である。
 図面を参照して、以下の明細書によれば、本発明の実施例における上記及びその他の特徴がより明瞭になるであろう。明細書及び図面から、本発明の特定の実施形態は具体的に開示され、本発明の原理を採用可能な実施形態の一部が示されるが、本発明は記載された実施形態に限らず、添付される請求の範囲内に入っている全ての修正、変形及び均等物を含むということに注意されたい。
 また、本発明の以下の説明において、説明に利便性を図るために、回転軸線に沿って延伸する方向とは平行な方向を「軸方向」と呼び、回転軸線を中心とした半径方向を「径方向」と呼び、回転軸線を中心とした円周方向を「周方向」と呼ぶことにする。
以下は、添付図面を結び付けながら、本発明の実施例におけるロータ及びモータを説明する。
 実施例1
 本実施例1はロータを提供する。図1は、本実施例におけるロータ10の概略図であり、ロータ10の各構成部分及び全体の構造を示す。図1に示されるように、ロータ10は、回転軸11、非磁性回転枠12、複数のヨーク13及び磁石14を含む。図1において、説明の便宜上、1つのヨーク13及び1つの磁石14のみが符号で示される。
 本実施例では、図1に示されるように、回転軸11は、中心軸線OO’を回転中心として回転し、非磁性回転枠12は、回転軸11を中心軸として回転軸11とともに回転する。複数のヨーク13は非磁性回転枠12内に分割されて配置されており、磁石14はヨーク13の表面の少なくとも一面に配置されている。そのうち、非磁性回転枠12は、複数のヨーク13と磁石14とを保持するために、回転軸11の外周において周方向に沿って配置された第1の環状リブ121と、第1の環状リブ121の外周から径方向に沿って延伸する複数の放射状リブ122と、第1の環状リブ121と同心で複数の放射状リブ122と接続された第2の環状リブ123とからなる。第2の環状リブ123は、第1の環状リブ121の径方向外側に位置する。
 本実施例では、複数のヨーク13のうちのいずれか1つには、磁石14が2つ配置されており、かつ、2つの磁石14はステータに向かう側がそれぞれ、N極とS極となる(図1に示されない)。すなわち、複数のヨーク13のうち各ヨーク13に対して、磁石14が2つ取り付けられる。上記の実施例によれば、複数のヨーク13が非磁性回転枠12に分割されて配置されるとともに、任意の1つのヨーク13には、ステータに向かう側がそれぞれ、N極とS極である磁石14が2つ配置される。この構成により、複数のヨーク13において結びつく磁束経路のループが小さくなるため、渦電流による損失を低減することができる。その結果、本開示の実施形態によれば、モータの効率を向上させることができる。また、ロータの製造を容易にして、製造コストを低減することができる。また、本開示の実施形態によれば、分割された複数のヨークを用いることで、導磁材料を効果的に利用することができ、不要な磁性材料の使用量を低減することができるため、材料のコストを削減することができる。
 本実施例では、複数の磁石14のうち、ステータに向かう側がN極である磁石と、ステータに向かう側がS極である磁石とは、周方向に隙間を設けて配置されている。それにより、磁石が発生した磁束を、対向側のステータに効果的に流すことができ、磁束漏れを低減して、モータの性能を向上させることができる。しかし、本実施例はそれに限らず、例えば、磁石の間には隙間が設けられなくてもよい。
 一実施の形態では、隣接したヨークに配置されている2つの隣接した磁石は、ステータに向かう側が同極である。図2に示されるように、隣接したヨーク13aとヨーク13bに配置されている2つの隣接した磁石14aと14bがともに、N極である。それにより、複数のヨーク13において結びつく磁束経路のループが小さくなるため渦電流による損失を低減することができる。
 一実施の形態では、複数の磁石のうちのいずれか1つが、隣接した2つのヨークに跨って配置されている。図3に示されるように、磁石14cは、一部がヨーク13aに取り付けられ、他部がヨーク13aに隣接したヨーク13bに取り付けられる。これにより、複数のヨーク13において結びつく磁束経路のループが小さくなるため、磁束変化の程度を低下させ、渦電流による損失を低減することができる。
 ここで注意すべきなのは、図2~3に示す磁石14の磁極分布が、例示的な説明のためのものに過ぎず、磁石14の磁極分布が他の方式によるものであってもよい。
本実施例では、非磁性回転枠12は、ステンレス鋼の材料で構成されてもよい。それにより、渦電流による損失をさらに低減することができる。しかし、本実施例は、それに限らず、非磁性回転枠12は他の材料で構成されてもよい。
 本実施例では、ヨーク13は、ベース鋼板または軟磁性複合材料で構成されてもよい。それにより、渦電流による損失をさらに低減することができる。しかし、本実施例はそれに限らず、ヨーク13が他の材料で構成されてもよい。例えば、S10Cの低炭素鋼で構成されてもよい。また、図1に示されるように、ヨーク13の形状は扇形であってもよい。それにより、組合せを容易にすることができる。しかし、本実施例はそれに限らず、ヨークの形状が他の形状であってもよい。
 本実施例では、ヨーク13は、非磁性回転枠12に接着剤によって固定されてもよいが、しかし、本実施例はそれに限らず、ヨーク13が非磁性回転枠12に他の方式によって固定されてもよい。磁石14はヨーク13に接着剤によって固定されてもよい。それにより、ロータの構造を安定化させることができる。
 図4は、本発明の実施例における非磁性回転枠の1つの概略図である。図4に示されるように、第1の環状リブ121の軸方向でのサイズd1は、放射状リブ122の軸方向でのサイズd2よりも大きい。それにより、位置決めを行うことができる。例えば、第1の環状リブ121と放射状リブ122とが接続された位置に、アーチ形状部1221が形成されてもよい。それにより、d1がd2よりも大きくなる。しかし、本実施例はそれに限らず、例えば、アーチ形状部1221は他の形状、例えば、三角形、台形などであってもよい。
 本実施例では、非磁性回転枠12の放射状リブ122は、径方向及び軸方向と垂直な方向でのサイズd3が2mm以下である。それにより、モータが良好な性能を有することは確保された。
 本実施例では、非磁性回転枠12の軸方向でのサイズは、ヨーク13と磁石14との軸方向でのサイズの和以下である。例えば、図4に示されるように、第2の環状リブ123の軸方向でのサイズd4はヨーク13と磁石14との軸方向でのサイズの和以下である。それにより、モータの薄型化が図れる。
 本実施例のロータによれば、複数のヨーク13において結びつく磁束経路のループが小さくなるため、渦電流による損失を低減し、モータの効率を向上させることができるだけではなく、ロータの製造を容易にすることで、コストを低減することもできる。
 実施例2
 本実施例2は、ロータを提供する。図5は、本実施例におけるモータの断面図であり、図6は、本実施例におけるモータの各構成部材の概略図の断面図であり、図7は、本実施例におけるモータの全体的概略図である。
 図5~7に示されるように、モータ50は、ロータ51と、ロータ51に対応して配置されているステータ54とを備える。ロータ51は、上記の実施例1におけるロータ10であってもよい。本実施例のモータにおけるロータの構成は、上記の実施例1に記載された通りであり、ここでは省略されたい。
 本実施例におけるモータによれば複数のヨーク13において結びつく磁束経路のループが小さくなるため、渦電流による損失を低減し、モータの効率を向上させることができるだけではなく、ロータの製造を容易にすることで、コストを低減することもできる。
 図5~7に示されるように、モータ50は、軸受け52、コイル53、ステータ54及びケーシング55をさらに備え、しかし、それらに限らず、モータの他の部材について、従来技術が参照されてもよい。
 本実施例では、当該モータは、任意の電気機器に適用できる。例えば、当該モータは、ロボット関節モータとして、または、移動キャリアのホイールモータとして、使用されてもよい。また、当該モータは、空調機の室内機、空調機の室外機、ウォーターサーバー、掃除機、圧縮機、送風機、ミキサーなどの電気機器におけるモータとして使用されてもよいし、または、種々の情報機器、工業用機器などにおけるモータとして使用されてもよい。
 以上は、添付図面を参照して、本発明の実施例を詳しく説明し、本発明の原理を利用可能な方式も明示した。しかし、理解すべきなのは、本発明の実施は、上記の実施例における方式に限らず、本発明の主旨から逸脱しない範囲内における全ての変更、補正及び均等物などをさらに含む。

Claims (13)

  1. 中心軸線を回転中心として回転する回転軸と、
    前記回転軸を中心軸として前記回転軸とともに回転する非磁性回転枠と、
    前記非磁性回転枠内に分割されて配置されている複数のヨークと、
    前記ヨークの表面の少なくとも一面に配置されている磁石と、を備え、
    前記非磁性回転枠は、前記複数のヨークと前記磁石とを保持するために、前記回転軸の外周において周方向に沿って配置された第1の環状リブと、前記第1の環状リブの外周から径方向に沿って延伸する複数の放射状リブと、前記第1の環状リブと同心で前記複数の放射状リブと接続された第2の環状リブとからなるロータであって、
    前記複数のヨークのうちのいずれか1つには、前記磁石が2つ配置されており、かつ、2つの前記磁石はステータに向かう側がそれぞれ、N極とS極となることを特徴とするロータ。
  2. 複数の前記磁石のうち、ステータに向かう側がN極である磁石と、ステータに向かう側がS極である磁石とは、周方向に隙間を設けて配置されている、ことを特徴とする請求項1に記載のロータ。
  3. 隣接したヨークに配置されている2つの隣接した磁石は、ステータに向かう側が同極である、ことを特徴とする請求項1に記載のロータ。
  4. 複数の前記磁石のうちのいずれか1つが、隣接した2つのヨークに配置されている、ことを特徴とする請求項1に記載のロータ。
  5. 前記非磁性回転枠は、ステンレス鋼の材料で構成されている、ことを特徴とする請求項1に記載のロータ。
  6. 前記ヨークは、積層鋼板または軟磁性複合材料で構成されている、ことを特徴とする請求項1に記載のロータ。
  7. 前記非磁性回転枠の前記放射状リブは、径方向及び軸方向と垂直な方向でのサイズが2mm以下である、ことを特徴とする請求項1に記載のロータ。
  8. 前記非磁性回転枠の軸方向でのサイズは、前記ヨークと前記磁石との軸方向でのサイズの和以下である、ことを特徴とする請求項1に記載のロータ。
  9. 前記ヨークは扇形である、ことを特徴とする請求項1に記載のロータ。
  10. 前記ヨークは、前記非磁性回転枠に接着剤によって固定される、ことを特徴とする請求項1に記載のロータ。
  11. 前記磁石は、前記ヨークに接着剤によって固定される、ことを特徴とする請求項1に記載のロータ。
  12. 前記第1の環状リブの軸方向でのサイズは、前記放射状リブの軸方向でのサイズよりも大きい、ことを特徴とする請求項1に記載のロータ。
  13. 請求項1から12のうちのいずれか1項に記載のロータと、前記ロータに対向して配置されているステータと、を備えた、ことを特徴とする軸方向隙間型モータ。
PCT/JP2018/019560 2017-05-22 2018-05-21 ロータ及び当該ロータを有するモータ WO2018216667A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018002638.8T DE112018002638T5 (de) 2017-05-22 2018-05-21 Rotor und Motor, welcher den Rotor aufweist
JP2019520249A JP7014227B2 (ja) 2017-05-22 2018-05-21 ロータ及び当該ロータを有するモータ
US16/491,597 US11159068B2 (en) 2017-05-22 2018-05-21 Rotor and motor including the rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710363923.7A CN108933488B (zh) 2017-05-22 2017-05-22 转子及具有该转子的马达
CN201710363923.7 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018216667A1 true WO2018216667A1 (ja) 2018-11-29

Family

ID=64395693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019560 WO2018216667A1 (ja) 2017-05-22 2018-05-21 ロータ及び当該ロータを有するモータ

Country Status (5)

Country Link
US (1) US11159068B2 (ja)
JP (1) JP7014227B2 (ja)
CN (1) CN108933488B (ja)
DE (1) DE112018002638T5 (ja)
WO (1) WO2018216667A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355313A (zh) * 2018-12-24 2020-06-30 日本电产株式会社 一种轴向磁通马达以及电气产品
US11330938B2 (en) * 2019-11-06 2022-05-17 Whirlpool Corporation Non-contact magnetic coupler for food processing appliance having small brushless permanent magnet motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089270A (ja) * 2005-09-20 2007-04-05 Toyota Central Res & Dev Lab Inc アキシャル型電動機及びそのロータ
US7402934B1 (en) * 2005-08-18 2008-07-22 Revolution Motor Company, Inc. High performance air core motor-generator winding
JP2010279185A (ja) * 2009-05-29 2010-12-09 Daikin Ind Ltd アキシャルギャップ型回転電機用ロータ
JP2011239570A (ja) * 2010-05-11 2011-11-24 Daikin Ind Ltd 回転電機装置
WO2015159418A1 (ja) * 2014-04-18 2015-10-22 株式会社日立産機システム アキシャルエアギャップ型回転電機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037696A (en) * 1993-12-29 2000-03-14 Samot Engineering (1992) Ltd. Permanent magnet axial air gap electric machine
JP2004129374A (ja) 2002-10-02 2004-04-22 Shinano Kenshi Co Ltd 減速機付きモータ
US7187098B2 (en) * 2004-03-03 2007-03-06 Kabushikikaisha Equos Research Axial gap rotating electrical machine
US20100225195A1 (en) * 2006-03-27 2010-09-09 Yoshinari Asano Armature Core, Motor Using It, and Its Manufacturing Method
JP5066863B2 (ja) * 2006-08-04 2012-11-07 ダイキン工業株式会社 回転電機
JP5052288B2 (ja) 2007-06-28 2012-10-17 信越化学工業株式会社 アキシャルギャップ型回転機
JP5027169B2 (ja) * 2009-01-30 2012-09-19 本田技研工業株式会社 アキシャルギャップ型モータ及びそのロータ製造方法
US9490685B2 (en) * 2009-10-16 2016-11-08 National University Corporation Hokkaido University Axial gap motor using non-rare-earth magnets
JP5502463B2 (ja) 2009-12-28 2014-05-28 株式会社日立産機システム アキシャルギャップ型回転電機及びそれに用いるロータ
CN205160315U (zh) * 2015-10-26 2016-04-13 深圳市捷鼎顺科技有限公司 一种盘式永磁体发电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7402934B1 (en) * 2005-08-18 2008-07-22 Revolution Motor Company, Inc. High performance air core motor-generator winding
JP2007089270A (ja) * 2005-09-20 2007-04-05 Toyota Central Res & Dev Lab Inc アキシャル型電動機及びそのロータ
JP2010279185A (ja) * 2009-05-29 2010-12-09 Daikin Ind Ltd アキシャルギャップ型回転電機用ロータ
JP2011239570A (ja) * 2010-05-11 2011-11-24 Daikin Ind Ltd 回転電機装置
WO2015159418A1 (ja) * 2014-04-18 2015-10-22 株式会社日立産機システム アキシャルエアギャップ型回転電機

Also Published As

Publication number Publication date
JP7014227B2 (ja) 2022-02-01
CN108933488B (zh) 2020-08-04
US11159068B2 (en) 2021-10-26
US20210135523A1 (en) 2021-05-06
DE112018002638T5 (de) 2020-03-05
CN108933488A (zh) 2018-12-04
JPWO2018216667A1 (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
JP2017022914A (ja) ロータ及びブラシレスモータ
JPH04219496A (ja) きれいな分子真空のための真空ポンプ
JP2007089270A (ja) アキシャル型電動機及びそのロータ
JP5096756B2 (ja) 回転電機
JP2010246367A (ja) 回転機用コア部材及び回転機
US8981612B2 (en) Rotor and motor
WO2018216667A1 (ja) ロータ及び当該ロータを有するモータ
JP4640373B2 (ja) 回転電機
WO2021109294A1 (zh) 一种永磁同步电机
JP2005051929A (ja) 電動機
JP2016063657A (ja) 直動回転アクチュエータ
JP2007082300A (ja) コア及びそれを備える電動機
JP2009022146A (ja) アキシャルモータ
JP2009254030A (ja) モータ
JPH1094202A (ja) 永久磁石モータとロータ着磁器
JP2001298922A (ja) バーニアモータ
JP2013106417A (ja) ロータ及びモータ
JPS61244250A (ja) 交流電動機
JP2010110096A (ja) 回転子、回転電機及び回転子の製造方法
JPH0386051A (ja) 電動機のヨーク
JP2006014597A (ja) 永久磁石式回転電機
JP2014187858A (ja) ロータ、及びモータ
JP2012244704A (ja) 外転型の電動機
JP3186600U (ja) 磁気浮上式ファン
JP4591152B2 (ja) モータ及び空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019520249

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18805983

Country of ref document: EP

Kind code of ref document: A1