WO2018216325A1 - 回転子鉄心の製造方法 - Google Patents

回転子鉄心の製造方法 Download PDF

Info

Publication number
WO2018216325A1
WO2018216325A1 PCT/JP2018/010261 JP2018010261W WO2018216325A1 WO 2018216325 A1 WO2018216325 A1 WO 2018216325A1 JP 2018010261 W JP2018010261 W JP 2018010261W WO 2018216325 A1 WO2018216325 A1 WO 2018216325A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
permanent magnets
permanent
nth
sets
Prior art date
Application number
PCT/JP2018/010261
Other languages
English (en)
French (fr)
Inventor
吉田 康平
Original Assignee
株式会社三井ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井ハイテック filed Critical 株式会社三井ハイテック
Priority to CN201880032568.8A priority Critical patent/CN110637409A/zh
Priority to EP18805909.1A priority patent/EP3633832A4/en
Publication of WO2018216325A1 publication Critical patent/WO2018216325A1/ja
Priority to US16/690,134 priority patent/US20200091802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/16Centering rotors within the stator; Balancing rotors
    • H02K15/165Balancing the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • This disclosure relates to a method for manufacturing a rotor core.
  • Patent Document 1 discloses a rotor core used in a surface magnet type (SPM) motor.
  • the rotor core is composed of an iron core body and a plurality of permanent magnets attached to the outer peripheral surface of the iron core body.
  • Patent Document 2 discloses a rotor core used in an interior magnet type (IPM) motor.
  • the rotor core includes an iron core body having a plurality of insertion holes provided so as to extend in the rotation axis direction, and a plurality of permanent magnets respectively inserted into the insertion holes.
  • the weight of the permanent magnet may vary, for example, about several grams.
  • a deviation in weight balance (hereinafter also referred to as “weight unbalance”) occurs in the rotor iron core.
  • weight unbalance a deviation in weight balance
  • a motor configured using a rotor core having such a weight imbalance is driven, for example, abnormal vibration, noise, or the like may occur.
  • the present disclosure describes a method of manufacturing a rotor core that can efficiently produce a rotor core excellent in weight balance.
  • a method for manufacturing a rotor core wherein the weights of a plurality of permanent magnets are individually acquired, and the plurality of permanent magnets are obtained based on the acquired individual weights of the plurality of permanent magnets.
  • the first to Nth (N is a natural number of 2 or more) magnet sets can be obtained.
  • a method of manufacturing a rotor core includes individually acquiring the weights of first to L-th (L is a natural number of 5 or more) permanent magnets and rotating around a predetermined rotation axis.
  • the first to L-th permanent magnets of the first to L-th permanent magnets and the first to L-th permanent magnets of the first to L-th permanent magnets are not adjacent to the d + 1-th permanent magnet in the circumferential direction of the rotating shaft. Attaching the L permanent magnets to the first to L-th attachment parts one by one. m 1 ⁇ m 2 ⁇ ... m L ⁇ 1 ⁇ m L (1)
  • a method of manufacturing a rotor core includes obtaining the weights of first to Kth (K is an even number of 4 or more) permanent magnets individually and rotating around a predetermined rotation axis.
  • the e-th (e is an odd number from 1 to K) permanent magnet and the first to K-th permanent magnets Among the 1st to Kth permanent magnets, the 1st to Kth permanent magnets are arranged so that the fth permanent magnets (f is an even number from 1 to K satisfying f e + 1) are opposed to each other with the rotation axis therebetween. Attaching the magnets to the first to Kth attachment parts one by one. m 1 ⁇ m 2 ⁇ ... m K-1 ⁇ m K (2)
  • a method of manufacturing a rotor core includes obtaining the weights of the first to Jth permanent magnets (J is an even number equal to or greater than 6) individually and rotating around a predetermined rotation axis.
  • the relatively heavy permanent magnets of each pair are not adjacent to each other in the circumferential direction of the rotating shaft, and the relatively light permanent magnets of the pair are not adjacent to each other in the circumferential direction of the rotating shaft, and
  • the first to J-th permanent magnets are connected to the first to J-th permanent magnets so that the pair of permanent magnets face each other with the rotation axis therebetween.
  • the manufacturing method of a rotor core including attaching to a mounting part one by one. m 1 ⁇ m 2 ⁇ ... m J-1 ⁇ m J (3)
  • FIG. 1 is a perspective view showing an example of a rotor laminated iron core.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a top view showing an example of a rotor laminated iron core.
  • FIG. 4 is a schematic view showing a combination of a magnet insertion hole and a magnet set.
  • FIG. 5 is a schematic view showing a combination of a magnet insertion hole and a magnet set.
  • FIG. 6 is a schematic view showing an example of a manufacturing apparatus for a rotor laminated core.
  • FIG. 7 is a schematic view showing a combination of a magnet insertion hole and a magnet set.
  • FIG. 8 is a cross-sectional view of another example of the rotor laminated iron core cut in the same manner as in FIG.
  • FIG. 9 is a perspective view showing another example of the rotor laminated iron core.
  • the rotor laminated core 1 is a part of a rotor (rotor).
  • a rotor is constituted by attaching an end face plate and a shaft to the rotor laminated core 1.
  • An electric motor (motor) is configured by combining the rotor with the stator (stator).
  • the rotor laminated core 1 in this embodiment is used for an interior magnet type (IPM) motor.
  • the rotor laminated iron core 1 includes a laminated body 10 (iron core main body), a plurality of permanent magnets 12, and a plurality of resin materials 14.
  • the laminate 10 has a cylindrical shape as shown in FIG. That is, a shaft hole 10 a that penetrates the stacked body 10 is provided at the center of the stacked body 10 so as to extend along the central axis Ax. That is, the shaft hole 10a extends in the stacking direction of the stacked body 10 (also referred to as the “height direction” of the stacked body 10). The stacking direction is also the extending direction of the central axis Ax. In the present embodiment, the laminated body 10 rotates around the central axis Ax, so the central axis Ax is also a rotational axis. A shaft is inserted into the shaft hole 10a.
  • the laminated body 10 is formed with a plurality of magnet insertion holes 16 (attachment portions). As shown in FIGS. 1 and 3, the magnet insertion holes 16 are arranged at predetermined intervals along the outer peripheral edge of the stacked body 10. As shown in FIG. 2, the magnet insertion hole 16 penetrates the stacked body 10 so as to extend along the central axis Ax. That is, the magnet insertion hole 16 extends in the stacking direction.
  • the shape of the magnet insertion hole 16 is a long hole extending along the outer peripheral edge of the laminate 10 in the present embodiment.
  • the number of magnet insertion holes 16 is six in this embodiment.
  • these magnet insertion holes 16 may be referred to as magnet insertion holes 16 1 to 16 6 , respectively.
  • the magnet insertion holes 16 1 to 16 6 are arranged in this order in the clockwise direction when viewed from above. The position, shape, and number of the magnet insertion holes 16 may be changed according to the use of the motor, required performance, and the like.
  • the laminated body 10 is configured by stacking a plurality of punching members W.
  • the punching member W is a plate-like body in which a later-described electromagnetic steel plate ES is punched into a predetermined shape, and has a shape corresponding to the laminated body 10.
  • the laminated body 10 may be configured by so-called inversion. “Rolling” refers to stacking a plurality of punching members W while relatively shifting the angle between the punching members W. The inversion is performed mainly for the purpose of canceling the thickness deviation of the laminated body 10. You may set the angle of inversion to arbitrary magnitude
  • the punching members W adjacent in the stacking direction may be fastened by a crimping portion 18 as shown in FIGS. These punching members W may be fastened by various known methods in place of the caulking portion 18.
  • the plurality of punching members W may be joined together using an adhesive or a resin material, or may be joined together by welding.
  • provisional caulking may be provided on the punching member W, a plurality of punching members W may be fastened via the temporary caulking to obtain the laminated body 10, and then the temporary caulking may be removed from the laminated body.
  • the “temporary caulking” means caulking that is used to temporarily integrate a plurality of punching members W and is removed in the process of manufacturing a product (rotor laminated core 1).
  • the permanent magnet 12 is inserted into the magnet insertion hole 16 as shown in FIGS. Specifically, in the present embodiment, one set of magnets 20 in which two permanent magnets 12 are combined is inserted into one magnet insertion hole 16. In this embodiment, twelve permanent magnets 12 have no six pairs of magnet pairs 20 1 to 20 6 are combined two by two, six magnet insertion holes 16 1 through 16 respectively magnet set within 6 20 1 6 to 20 are inserted one by one set. In the magnet insertion hole 16, the two permanent magnets 12 are arranged adjacent to each other in the longitudinal direction of the magnet insertion hole 16 (the circumferential direction of the multilayer body 10).
  • the shape of the permanent magnet 12 is not particularly limited, but has a rectangular parallelepiped shape in the present embodiment.
  • the type of the permanent magnet 12 may be determined according to the use of the motor, required performance, and the like.
  • the permanent magnet 12 may be a sintered magnet or a bonded magnet.
  • the weight of the permanent magnet 12 varies, for example, by several grams due to manufacturing errors.
  • the resin material 14 is filled in the magnet insertion hole 16 after the permanent magnet 12 (magnet assembly 20) is inserted.
  • the resin material 14 has a function of fixing the permanent magnet 12 (magnet set 20) in the magnet insertion hole 16.
  • An example of the resin material 14 is a thermosetting resin.
  • Specific examples of the thermosetting resin include a resin composition including an epoxy resin, a curing initiator, and an additive.
  • the additive include a filler, a flame retardant, and a stress reducing agent.
  • the resin material 14 also has a function of joining the punching members W adjacent in the vertical direction. Note that a thermoplastic resin may be used as the resin material 14.
  • the magnet set 20 is not a combination of two arbitrary permanent magnets 12 but a combination of two permanent magnets 12 that satisfy a predetermined condition.
  • the weights m 1 to m 12 of the 12 permanent magnets 12 1 to 12 12 satisfy the expression 4
  • the relatively heavy permanent magnets 12 1 to 12 6 and the relatively light permanent magnets 12 7 to 12 12 and 12 may be combined one by one to form a set of magnets 20 (condition 1).
  • the magnet groups 20 1 to 20 6 may be combined as follows (condition 2).
  • Magnet set 20 1 Combination of permanent magnet 12 1 (weight m 1 ) and permanent magnet 12 12 (weight m 12 )
  • Magnet set 20 2 Permanent magnet 12 2 (weight m 2 ) and permanent magnet 12 11 (weight m 11) )
  • Magnet combination 20 3 Permanent magnet 12 3 (weight m 3 ) and permanent magnet 12 10 (weight m 10 ) combination
  • Magnet set 20 4 Permanent magnet 12 4 (weight m 4 ) and permanent magnet 12 9
  • Magnet set 20 5 Combination with permanent magnet 12 5 (weight m 5 ) and permanent magnet 12 8 (weight m 8 )
  • Magnet set 20 6 Permanent magnet 12 6 (weight m 6 ) the combination of a permanent magnet 12 7 (weight m 7) That is, 12 pieces of the lightest permanent magnets 12 12 and heaviest permanent magnet
  • the magnet set 20 a (a is a natural number of 2 to 5) becomes the magnet set 20 a-1 and the magnet set 20 a + 1 .
  • the magnet sets 20 1 to 20 6 may be inserted one by one into the magnet insertion holes 16 1 to 16 6 so as not to be adjacent to each other in the circumferential direction of the central axis Ax (Condition 4).
  • the combination of the six magnet insertion holes 16 1 to 16 6 and the six magnet sets 20 1 to 20 6 that can satisfy the condition 4 is the same combination when the rotor laminated core 1 is turned upside down. 5 are present, as shown in FIG. 4 and Table 1.
  • the magnet sets 20 1 to 20 6 may be inserted into the magnet insertion holes 16 1 to 16 6 one by one so that the center axis Ax is opposed to 5). That is, the magnet set 20 b and the magnet set 20 c are paired so as to face each other with the central axis Ax therebetween, and the weights M 1 , M 2 ,... M 5 of the magnet sets 20 1 to 20 6 M 6 may be lightened in this order.
  • the odd-numbered magnet sets 20 of the magnet sets 20 forming each pair are heavier than the even-numbered magnet sets 20 of the paired magnet sets 20.
  • the combination of the six magnet insertion holes 16 1 to 16 6 and the six magnet sets 20 1 to 20 6 that can satisfy the condition 5 is the same combination when the rotor laminated core 1 is turned upside down. 4 are present as shown in FIG. 5 and Table 2.
  • condition 5 the magnet assembly 20 between odd out of the magnet assembly 20 1-20 6 does not next in the circumferential direction of the central axis Ax, and, even the magnet pairs of the magnet assembly 20 1-20 6 20 may not be adjacent to each other in the circumferential direction of the central axis Ax (condition 6).
  • the combination of the six magnet insertion holes 16 1 to 16 6 and the six magnet sets 20 1 to 20 6 that can satisfy the condition 6 is the same combination when the rotor laminated core 1 is turned upside down. Is excluded, as shown in FIG. 5C and Table 2, there is one.
  • the weight M 1 ⁇ M 6 of the magnet assembly 20 1-20 6 satisfies the equation 5
  • select any magnet set 20 out of the magnet assembly 20 1-20 6 by two without three pairs The relatively heavy magnet sets 20 of each pair are not adjacent to each other in the circumferential direction of the central axis Ax, and the relatively light magnet sets 20 of each pair are not adjacent to each other in the circumferential direction of the central axis Ax.
  • the magnet sets 20 1 to 20 6 may be inserted into the magnet insertion holes 16 1 to 16 6 one by one so that the paired magnet sets 20 face each other with the central axis Ax therebetween (condition 7). ).
  • each pair of magnet sets 20 is separated by the symbol “/”.
  • one magnet set 20 1 to 20 6 is placed in the magnet insertion holes 16 1 to 16 6 so that the condition 7 is satisfied and the magnet set 20 b and the magnet set 20 c face each other with the central axis Ax therebetween. It may be inserted one by one (condition 8).
  • the combination of the six magnet insertion holes 16 1 to 16 6 and the six magnet sets 20 1 to 20 6 that can satisfy the condition 8 is the same combination when the rotor laminated core 1 is turned upside down. Is excluded, as shown in the first term of Table 3, there are one type (the same as the one in which the top and bottom of the rotor laminated core 1 shown in FIG. 5C are turned over).
  • the manufacturing apparatus 100 is an apparatus for manufacturing the rotor lamination
  • the manufacturing apparatus 100 includes an uncoiler 110, a delivery device 120, a punching device 130, a magnet mounting device 140, a magnet sorting device 150, and a controller 160 (control unit).
  • the uncoiler 110 rotatably holds the coil material 111 in a state in which the coil material 111 that is a strip-shaped electromagnetic steel plate ES wound in a coil shape is mounted.
  • the feeding device 120 includes a pair of rollers 121 and 122 that sandwich the electromagnetic steel plate ES from above and below. The pair of rollers 121 and 122 rotate and stop based on an instruction signal from the controller 160, and intermittently sequentially feed the electromagnetic steel sheet ES toward the punching device 130.
  • the length of the electromagnetic steel plate ES constituting the coil material 111 may be, for example, about 500 m to 10000 m.
  • the thickness of the electromagnetic steel sheet ES may be, for example, about 0.1 mm to 0.5 mm.
  • the thickness of the electromagnetic steel sheet ES may be, for example, about 0.1 mm to 0.3 mm from the viewpoint of obtaining the rotor laminated core 1 having more excellent magnetic characteristics.
  • the width of the electromagnetic steel sheet ES may be about 50 mm to 500 mm, for example.
  • the punching device 130 operates based on an instruction signal from the controller 160.
  • the punching device 130 sequentially stacks and stacks the punching member W obtained by the punching process and the function of forming the punching member W by sequentially punching the electromagnetic steel plates ES sent intermittently by the feeding device 120. And a function of manufacturing the body 10.
  • the laminated body 10 When the laminated body 10 is discharged from the punching device 130, it is placed on a conveyor Cv provided so as to extend between the punching device 130 and the magnet mounting device 140.
  • the conveyor Cv operates based on an instruction from the controller 160 and sends the laminated body 10 to the magnet attachment device 140.
  • the laminated body 10 may be conveyed by means other than the conveyor Cv.
  • the laminated body 10 may be manually transported in a state of being placed in a container.
  • the magnet mounting device 140 operates based on an instruction signal from the controller 160.
  • the magnet mounting device 140 has a function of performing an operation of inserting the magnet sets 20 1 to 20 6 obtained in the magnet sorting device 150 into the magnet insertion holes 16 1 to 16 6 according to any of the conditions 3 to 8, and a magnet. It has a function of performing the work of filling the resin material 14 into the magnet insertion holes 16 1 to 16 6 through which the sets 20 1 to 20 6 are inserted.
  • the magnet sorting device 150 operates based on an instruction signal from the controller 160.
  • the magnet sorting device 150 has a weight measuring device and a robot hand (not shown).
  • the magnet sorting device 150 has a function that the controller 160 acquires the individual weights of the permanent magnets 12 1 to 12 12 by placing the permanent magnets 12 1 to 12 12 one by one on the weight measuring device by the robot hand, obtained permanent magnets 12 1 to 12 12 and a function of determining a combination of permanent magnets 12 1 to 12 12 controller 160 according to the conditions 1 or 2, based on the weight of the robot hand permanent magnet 12 1 based on the determined combination To 12 12 are combined two by two to form a magnet set 20 1 to 20 6 .
  • the controller 160 controls the feeding device 120, the punching device 130, the magnet mounting device 140, and the magnet sorting device 150 based on a program recorded on a recording medium (not shown) or an operation input from an operator, respectively.
  • An instruction signal for operation is generated, and the instruction signal is transmitted to the delivery device 120, the punching device 130, the magnet mounting device 140, and the magnet sorting device 150, respectively.
  • stacking iron core 1 is demonstrated.
  • the laminated body 10 is formed (third step). Specifically, based on an instruction from the controller 160, the electromagnetic steel plate ES is sent out to the punching device 130 by the feeding device 120, and the processed portion of the electromagnetic steel plate ES is punched into a predetermined shape by the punching device 130. Thereby, the punching member W is formed. By repeating this punching process, a plurality of punching members W are stacked while being fastened to each other by the crimping portion 18 to manufacture a single laminate 10.
  • the conveyor Cv conveys the laminated body 10 discharged from the punching device 130 to the magnet mounting device 140.
  • each operation is executed by the magnet sorting device 150 based on an instruction from the controller 160 until the laminated body 10 reaches the magnet mounting device 140. That is, the controller 160 is placed individually on the gravimetric measuring instrument permanent magnets 12 1 to 12 12 to control the robot hand, the measured permanent magnets 12 1 to 12 12 individual weight m 1 ⁇ m 12 Data is received from the weighing instrument (first step). Subsequently, the controller 160 determines the combination of the permanent magnets 12 1 to 12 12 according to the condition 1 or 2 based on the acquired individual weights m 1 to m 12 . Subsequently, the controller 160 controls the robot hand to combine the permanent magnets 12 1 to 12 12 two by two based on the determined combination, thereby forming the magnet sets 20 1 to 20 6 (second step). ).
  • the controller 160 calculates the weights M 1 to M 6 of the magnet sets 20 1 to 20 6 based on the already measured data of the individual weights m 1 to m 12 of the permanent magnets 12 1 to 12 12. (5th process). Alternatively, the controller 160 controls the robot hand so that the magnet sets 20 1 to 20 6 are individually placed on the weight measuring device, and the individual weights M 1 to M 6 of the measured magnet sets 20 1 to 20 6 are set. Data may be received from the weighing device (fifth step). Thereafter, the controller 160 controls the robot hand and conveys these magnet sets 20 1 to 20 6 to the magnet mounting device 140.
  • the controller 160 controls the magnet mounting device 140 to insert the magnet sets 20 1 to 20 6 into the magnet insertion holes 16 1 to 16 6 one by one according to any of the conditions 3 to 8.
  • the controller 160 instructs the magnet mounting device 140 to fill and solidify the molten resin material 14 in each magnet insertion hole 16.
  • each magnet set 20 is fixed in each magnet insertion hole 16 by the solidified resin material 14, and the punching members W adjacent in the stacking direction are integrated.
  • the rotor laminated iron core 1 is obtained.
  • the shaft is inserted into the shaft hole 10a, the shaft mounting step for fixing the shaft to the rotor laminated core 1 with a key or the like, the end plate attaching step for arranging the end plates on both end faces of the rotor laminated core 1, etc. Go through.
  • the end face plate may be fixed to the end surface of the rotor laminated core 1 by caulking, welding, bonding, resin sealing, or the like, or fixed to the rotor laminated core 1 by screwing a nut onto the shaft. It may be fixed to the shaft by a key or the like. In this way, a rotor including the rotor laminated core 1, the shaft, and the end face plate is obtained.
  • the permanent magnets 12 1 to 12 12 are combined two by two according to the condition 1 or 2, thereby forming the magnet sets 20 1 to 20 6 . That is, in condition 1, among the 12 permanent magnets 12 1 to 12 12, a relatively heavy permanent magnet 12 and a relatively light permanent magnet 12 are combined one by one to form a set of magnets 20. Thus, the magnet assemblies 20 1 to 20 6 are obtained. For this reason, the weights of the magnet groups 20 1 to 20 6 are equalized. Therefore, the rotor laminated core 1 excellent in weight balance can be efficiently produced by an extremely simple method of simply measuring the weight of each permanent magnet 12 to obtain the predetermined magnet set 20.
  • condition 2 by combining the heaviest permanent magnet 12 and the lightest permanent magnet 12 out of the 12 permanent magnets 12 1 to 12 12 one by one, the magnet set 20 is repeated. As a result, magnet sets 20 1 to 20 6 are obtained. As described above, when the two permanent magnets 12 are combined to form one magnet set 20, the weight of each magnet set 20 is more equalized, so that it is possible to obtain the rotor laminated core 1 with a better weight balance. It becomes possible.
  • one set of magnets 20 1 to 20 6 is attached to each of the magnet insertion holes 16 1 to 16 6 according to any one of the conditions 3 to 8. That is, in condition 3, the magnet sets 20 1 to 20 6 are inserted into the arbitrary magnet insertion holes 16 1 to 16 6 one by one.
  • the magnet set 20 a (a is a natural number of 2 to 5) becomes the magnet set 20 a-1 and The magnet sets 20 1 to 20 6 are inserted into the magnet insertion holes 16 1 to 16 6 one by one so as not to be adjacent to the magnet set 20 a + 1 in the circumferential direction of the central axis Ax.
  • the relatively heavy magnet sets 20 or the relatively light magnet sets 20 are not adjacent to each other in the circumferential direction, so that the weight balance of the rotor laminated core 1 as a whole is increased. Therefore, it becomes possible to obtain the rotor laminated core 1 having a more excellent weight balance.
  • the two magnet sets 20 having the same weight are opposed to each other with the central axis Ax therebetween, they are attached to positions farthest from each other in the magnet insertion hole 16.
  • the relatively heavy magnet sets 20 or the relatively light magnet sets 20 are difficult to be gathered in the circumferential direction, so that the weight balance as the rotor laminated core 1 is increased. Therefore, it is possible to obtain the rotor laminated core 1 having a more excellent weight balance.
  • the condition 7 when the weight M 1 ⁇ M 6 of the magnet assembly 20 1-20 6 satisfies the equation 5, select any magnet set 20 out of the magnet assembly 20 1-20 6 by two Three pairs are formed, and the relatively heavy magnet sets 20 in each pair are not adjacent in the circumferential direction of the central axis Ax, and the relatively light magnet sets 20 in each pair are in the circumferential direction of the central axis Ax.
  • the magnet sets 20 1 to 20 6 are inserted one by one into the magnet insertion holes 16 1 to 16 6 so that the magnet sets 20 that are not adjacent to each other and face each other with the central axis Ax therebetween. .
  • the weight of the magnet sets 20 is It becomes difficult to be biased in one direction. Therefore, the weight balance as the rotor laminated core 1 is increased. Therefore, it is possible to obtain the rotor laminated core 1 having a more excellent weight balance.
  • the magnet assembly 20 between odd out of the magnet assembly 20 1-20 6 does not next in the circumferential direction of the central axis Ax, and, of the magnet assembly 20 1-20 6 Of these, even-numbered magnet sets 20 are not adjacent to each other in the circumferential direction of the central axis Ax.
  • the condition 8 in addition to the condition 7, and the magnet assembly 20 b and the magnet assembly 20 c faces between the central axis Ax.
  • the heavy permanent magnet 12 or the light permanent magnet 12 is less likely to be biased to one side in the circumferential direction of the central axis Ax, so that the weight balance of the rotor laminated core 1 as a whole is increased. Therefore, it is possible to obtain the rotor laminated core 1 having a more excellent weight balance.
  • one set of magnets 20 is configured by combining two permanent magnets 12, but one set of magnets 20 is configured by a combination of three or more permanent magnets 12. May be.
  • one set of magnets 20 is constituted by three permanent magnets 12, a relatively heavy permanent magnet 12 and a relatively light permanent magnet 12 among a plurality of permanent magnets 12 and an arbitrary A plurality of magnet sets 20 may be obtained by repeating the combination of the permanent magnets 12 one by one to form one set of magnet sets 20.
  • a plurality of magnets can be obtained by combining the heaviest permanent magnet 12, the lightest permanent magnet 12, and an arbitrary permanent magnet 12 one by one to form a set of magnets 20 among the plurality of permanent magnets 12, a plurality of magnets can be obtained.
  • a set 20 may be obtained.
  • the weight of each magnet set 20 is more equalized, it is possible to obtain the rotor laminated core 1 having a better weight balance.
  • Even when five or more and an odd number of permanent magnets 12 constitute one set of magnets 20, the permanent magnets 12 may be combined by the same method as described above.
  • a relatively heavy permanent magnet 12, a relatively light permanent magnet 12, and a permanent magnet 12 having a weight indicating a median value are combined one by one.
  • a plurality of magnet sets 20 may be obtained by repeating the set 20. Alternatively, it is repeated that the heaviest permanent magnet 12, the lightest permanent magnet 12, and the permanent magnet 12 having a weight indicating a median value are combined one by one to form a set of magnets 20. Thus, a plurality of magnet sets 20 may be obtained. In this case, since the weight of each magnet set 20 is further equalized, it is possible to obtain a rotor core with a better weight balance. Even when five or more and an odd number of permanent magnets 12 constitute one set of magnets 20, the permanent magnets 12 may be combined by the same method as described above.
  • one set of magnet sets 20 is composed of four permanent magnets 12, a relatively heavy permanent magnet 12 and a relatively light permanent magnet 12 among the plurality of permanent magnets 12
  • a plurality of magnet sets 20 may be obtained by repeating the combination of two sets to form one set of magnet sets 20. Even when six or more and even number of permanent magnets 12 constitute one set of magnet sets 20, the permanent magnets 12 may be combined by the same method as described above.
  • the pair of magnets set 20 is for the definition herein of "opposing between the central axis Ax ', lamination stack 10 into eight magnet insertion holes 16 1 to 16 8 are formed
  • the body 10 will be described as an example. That is, in the present specification, the pair of magnet sets 20 "opposite the central axis Ax" means that the pair of magnet sets 20 is on a straight line passing through the central axis Ax as shown in FIG. As shown in FIG. 7B, the pair of magnet sets 20 and the central axis Ax are arranged in a straight line to some extent even if the pair of magnet sets 20 are not arranged on a straight line passing through the central axis Ax. It also includes being out.
  • the permanent magnet 12 may be inserted into the magnet insertion hole 16 one by one without forming the magnet set 20 as in the above embodiment. Specifically, the steps of individually obtaining the weights m 1 to m 6 of the six permanent magnets 12 1 to 12 6 in the magnet sorting device 150 and the weights of the obtained six permanent magnets 12 1 to 12 6 When m 1 to m 6 satisfy Expression 6, the d-th permanent magnet 12 d (d is a natural number of 2 to 5) becomes the d ⁇ 1-th permanent magnet 12 d ⁇ 1 and the d + 1-th permanent magnet 12 d + 1.
  • the rotor laminated core 1 may be configured (Condition 9). m 1 ⁇ m 2 ⁇ ... m 5 ⁇ m 6 (6)
  • the two permanent magnets 12 having the same weight are opposed to each other with the central axis Ax therebetween, they are attached to positions farthest from each other in the magnet insertion hole 16. Therefore, the relatively heavy permanent magnets 12 or the relatively light permanent magnets 12 are less likely to be grouped in the circumferential direction, so that the weight balance of the rotor laminated core 1 as a whole is increased. Therefore, it is possible to efficiently produce the rotor laminated iron core 1 with an excellent weight balance by simply measuring the weight of each permanent magnet 12 and attaching it to the predetermined magnet insertion hole 16. .
  • the e-th permanent magnet 12 e and the f-th permanent magnet 12 f are paired so as to face each other with the central axis Ax therebetween, and the weights of the first to K-th permanent magnets 12 1 to 12 K m 1 , m 2 ,... m K ⁇ 1 , m K may be lighter in this order. Therefore, the odd-numbered permanent magnets 12 of the paired permanent magnets 12 are heavier than the even-numbered permanent magnets 12 of the paired permanent magnets 12. m 1 ⁇ m 2 ⁇ ... m K-1 ⁇ m K (8)
  • odd-numbered permanent magnets 12 among the first to Kth permanent magnets 12 1 to 12 K are not adjacent to each other in the circumferential direction of the central axis Ax, and the first to Kth permanent magnets 12 1 to 12 are used. Even-numbered permanent magnets 12 of K may not be adjacent to each other in the circumferential direction of the central axis Ax. If it does in this way, since the heavy permanent magnet 12 or the light permanent magnet 12 becomes difficult to be biased to one side in the circumferential direction of the central axis Ax, the weight balance of the rotor laminated core 1 as a whole increases. Therefore, it is possible to obtain the rotor laminated core 1 having a more excellent weight balance.
  • the weight of the permanent magnet 12 is less likely to be biased to one side in the circumferential direction of the central axis Ax, the weight balance of the rotor laminated core 1 as a whole is increased. Therefore, it is possible to efficiently produce the rotor laminated iron core 1 with an excellent weight balance by simply measuring the weight of each permanent magnet 12 and attaching it to the predetermined magnet insertion hole 16. .
  • the weights m 1 , m 2 ,... Of the first to J-th permanent magnets 12 are similarly applied when the first to J-th (J is an even number of 6 or more) permanent magnets 12 are present.
  • m J-1 and m J satisfy Equation 9, two arbitrary permanent magnets are selected from the first to J-th permanent magnets to form J / 2 pairs.
  • the first to J-th permanent magnets may be inserted into the first to J-th magnet insertion holes 16 1 to 16 J one by one so that the rotation axes face each other.
  • the plurality of permanent magnets 12 may be arranged adjacent to each other along the extending direction (stacking direction) in one magnet insertion hole 16.
  • the plurality of permanent magnets 12 may be arranged in the longitudinal direction of the magnet insertion hole 16 and the plurality of permanent magnets 12 may be arranged in the extending direction (stacking direction) of the magnet insertion hole 16. .
  • the claims and the gist thereof may be applied to the rotor laminated core 1 used in a surface magnet type (SPM) motor.
  • a concave groove 22 (attachment portion) extending in the central axis Ax direction is provided on the outer peripheral surface of the laminated body 10, and one magnet set 20 is attached to each concave groove 22.
  • the laminated body 10 formed by laminating a plurality of punching members W functions as an iron core main body to which the permanent magnet 12 is attached.
  • the iron core main body is configured other than the laminated body 10. It may be.
  • the iron core main body may be, for example, one obtained by compression-molding a ferromagnetic powder or one obtained by injection-molding a resin material containing a ferromagnetic powder.
  • Each operation in the magnet attachment device 140 or the magnet selection device 150 may be performed manually by an operator.
  • a method of manufacturing a rotor core includes: obtaining the weights of a plurality of permanent magnets individually; and obtaining a plurality of permanent magnets based on the obtained individual weights of the plurality of permanent magnets.
  • the first to Nth (N is a natural number of 2 or more) magnet sets can be obtained.
  • a combination of at least one relatively heavy permanent magnet and at least one relatively light permanent magnet among the plurality of permanent magnets is combined into a set of magnets.
  • Magnet groups 1 to N (N is a natural number of 2 or more) are obtained. Therefore, the weight of each magnet set is equalized. Therefore, it is possible to efficiently produce a rotor core with an excellent weight balance by simply measuring the weight of each permanent magnet to obtain a predetermined magnet set.
  • Example 2 In the method of Example 1, obtaining the first to Nth magnet sets is to combine the heaviest permanent magnet and the lightest permanent magnet one by one into a set of magnets. It may include repeating. Thus, when combining two permanent magnets into one magnet set, the weight of each magnet set is more equalized, so it is possible to obtain a rotor core with a better weight balance.
  • Example 3 In the method of Example 1, obtaining the first to N-th magnet sets includes combining a heaviest permanent magnet, a lightest permanent magnet, and an arbitrary permanent magnet one by one in a plurality of permanent magnets. It may include repeating the pairing. As described above, when three permanent magnets are combined to form one magnet set, the weight of each magnet set is more equalized, so that a rotor core with a better weight balance can be obtained.
  • Example 4 In the method of Example 1, obtaining the first to N-th magnet sets includes a heaviest permanent magnet, a lightest permanent magnet, and a permanent magnet having a weight indicating a median value one by one. It may include repeating combining them into one set of magnets. As described above, when three permanent magnets are combined to form one magnet set, the weight of each magnet set is further equalized, so that a rotor core with a better weight balance can be obtained.
  • Example 5 The method of any of Examples 1 to 4 further includes individually obtaining the weights of the first to Nth magnet sets before attaching the first to Nth magnet sets one by one, When the obtained weights M 1 , M 2 ,... M N ⁇ 1 , M N of the first to Nth magnet groups satisfy the expression 10, the first to Nth magnet groups are attached one by one.
  • the a-th (a is a natural number of 2 to N-1) magnet group among the first to N-th magnet groups is the a-1th magnet group and the first one of the first to N-th magnet groups.
  • the first to Nth magnet groups are attached to the first to Nth mounting parts one by one so that they are not adjacent to the a + 1th magnet group in the circumferential direction of the rotating shaft among the Nth magnet groups.
  • Example 7 In the method of Example 6, attaching the first to N-th magnet sets one by one means that the odd-numbered magnet sets among the first to N-th magnet sets are not adjacent to each other in the circumferential direction of the rotating shaft, and The first to Nth magnet groups are attached to the first to Nth mounting parts one by one so that even-numbered magnet groups among the first to Nth magnet groups are not adjacent to each other in the circumferential direction of the rotating shaft. You may include that. By the way, the b-th magnet set and the c-th magnet set are paired so as to face each other with the rotation axis therebetween, and the weights of the first to N-th magnet sets become lighter in this order from Equation 10. Yes.
  • the odd number of magnet pairs among the pairs of magnets is heavier than the even number of magnet pairs in the pair of magnet sets.
  • a heavy magnet set or a light magnet set is one side in the circumferential direction of the rotation shaft. Since it becomes difficult to bias, the weight balance of the entire rotor core increases. Therefore, it is possible to obtain a rotor core having a more excellent weight balance.
  • Example 8 The method according to any of Examples 1 to 4 further includes obtaining the weights of the first to Nth magnet sets individually before attaching the first to Nth magnet sets one by one. In order to obtain the first to Nth magnet sets, a combination of at least one of a relatively heavy permanent magnet and a relatively light permanent magnet among the plurality of permanent magnets is combined into one set of magnets.
  • the first to Nth magnet sets including the first to Nth (N is a natural number of 6 or more) magnet sets, and attaching the first to Nth magnet sets one by one is magnet sets of weight M 1, M 2, ⁇ M N-1, M N is selected if, two by two arbitrary magnet pairs from among the magnet pairs of the first to N that satisfies equation 12 N / Two pairs are formed, and the relatively heavy magnets of each pair are not adjacent to each other in the circumferential direction of the rotating shaft.
  • the first to Nth magnet sets are arranged in such a manner that the relatively light magnet sets are not adjacent to each other in the circumferential direction of the rotating shaft, and the paired magnet sets face each other with the rotating shaft in between. It may include attaching to the Nth attachment part one by one.
  • Example 9 A method of manufacturing a rotor core according to another example of the present disclosure includes individually acquiring the weights of first to L-th (L is a natural number of 5 or more) permanent magnets and rotating around a predetermined rotation axis.
  • the first to L-th permanent magnets of the first to L-th permanent magnets and the first to L-th permanent magnets of the first to L-th permanent magnets are not adjacent to the d + 1-th permanent magnet in the circumferential direction of the rotating shaft. Attaching the L permanent magnets to the first to L-th attachment parts one by one. m 1 ⁇ m 2 ⁇ ... m L ⁇ 1 ⁇ m L (13)
  • each permanent magnet is attached to each attachment portion one by one according to the acquired weight of each permanent magnet.
  • relatively heavy permanent magnets or relatively light permanent magnets are not adjacent to each other in the circumferential direction. Therefore, the weight balance as the whole rotor core increases. Therefore, it is possible to efficiently produce a rotor core with an excellent weight balance by simply measuring the weight of each permanent magnet and attaching it to a predetermined mounting portion.
  • Example 10 A method of manufacturing a rotor core according to another example of the present disclosure includes obtaining the weights of the first to K-th permanent magnets (K is an even number equal to or greater than 4) and rotating around a predetermined rotation axis.
  • the e-th (e is an odd number from 1 to K) permanent magnet and the first to K-th permanent magnets Among the 1st to Kth permanent magnets, the 1st to Kth permanent magnets are arranged so that the fth permanent magnets (f is an even number from 1 to K satisfying f e + 1) are opposed to each other with the rotation axis therebetween. Attaching the magnets to the first to Kth attachment parts one by one. m 1 ⁇ m 2 ⁇ ... m K-1 ⁇ m K (14)
  • each permanent magnet is attached to each attachment portion one by one in accordance with the acquired weight of each permanent magnet. Specifically, since two permanent magnets having the same weight are opposed to each other with the rotation axis therebetween, they are attached at positions farthest from each other among the attachment portions. Therefore, relatively heavy permanent magnets or relatively light permanent magnets are difficult to be gathered in the circumferential direction, and the weight balance of the entire rotor core is increased. Therefore, it is possible to efficiently produce a rotor core with an excellent weight balance by simply measuring the weight of each permanent magnet and attaching it to a predetermined mounting portion.
  • Example 11 In the method of Example 10, attaching the first to K-th permanent magnets one by one means that the odd-numbered permanent magnets among the first to K-th permanent magnets are not adjacent to each other in the circumferential direction of the rotating shaft, and The first to Kth permanent magnets are attached to the first to Kth attachment portions one by one so that even-numbered permanent magnets among the first to Kth permanent magnets are not adjacent to each other in the circumferential direction of the rotating shaft. You may include that. By the way, the e-th permanent magnet and the f-th permanent magnet are paired so as to face each other with the rotation axis therebetween, and the weights of the first to K-th permanent magnets become lighter in this order from Equation 12. Yes.
  • the odd number of permanent magnets in each pair is heavier than the even number of permanent magnets in the pair of permanent magnets.
  • a heavy permanent magnet or a light permanent magnet is on one side in the circumferential direction of the rotating shaft. Since it becomes difficult to bias, the weight balance of the entire rotor core increases. Therefore, it is possible to obtain a rotor core having a more excellent weight balance.
  • a method of manufacturing a rotor core according to another example of the present disclosure includes obtaining the weights of the first to Jth permanent magnets (J is an even number of 6 or more) individually and rotating about a predetermined rotation axis.
  • the relatively heavy permanent magnets of each pair are not adjacent to each other in the circumferential direction of the rotating shaft, and the relatively light permanent magnets of the pair are not adjacent to each other in the circumferential direction of the rotating shaft, and
  • the first to J-th permanent magnets are connected to the first to J-th permanent magnets so that the pair of permanent magnets face each other with the rotation axis therebetween. Attaching to the attachment part one by one. m 1 ⁇ m 2 ⁇ ... m J ⁇ 1 ⁇ m J (15)
  • each permanent magnet is attached to each attachment portion one by one in accordance with the acquired weight of each permanent magnet.
  • the permanent magnets are aligned with each mounting portion so that relatively heavy permanent magnets or relatively light permanent magnets in the pair of magnets are not adjacent to each other in the circumferential direction of the rotating shaft. Can be attached one by one. Therefore, the weight of the permanent magnet is less likely to be biased to one side in the circumferential direction, so that the weight balance of the entire rotor core is increased. Therefore, it is possible to efficiently produce a rotor core with an excellent weight balance by simply measuring the weight of each permanent magnet and attaching it to a predetermined mounting portion.
  • rotor core 1 ... laminated rotor core (rotor core), 10 ... laminate (core body), 12 ... permanent magnet, 14 ... resin material, 16, 16 1-16 6 ... magnet insertion holes (attachment portions) 20, 20 1 to 20 6 ... magnet assembly, 22 ... concave groove (mounting portion), Ax ... central axis (rotating shaft).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本開示の課題は、重量バランスに優れた回転子鉄心を効率的に生産することが可能な回転子鉄心の製造方法を提供することにある。 回転子鉄心の製造方法は、複数の永久磁石の重量を個々に取得することと、取得された複数の永久磁石の個々の重量に基づいて、複数の永久磁石のうち相対的に重い永久磁石と相対的に軽い永久磁石とをそれぞれ少なくとも一つずつ組み合わせて一組の磁石組とすることで、第1~第N(Nは2以上の自然数)の磁石組を得ることと、所定の回転軸周りで回転するように構成された鉄心本体であって、回転軸の周方向に並ぶ第1~第Nの取付部を有する鉄心本体を用意することと、第1~第Nの磁石組を、第1~第Nの取付部のうち任意の取付部に一つずつ取り付けることとを含む。

Description

回転子鉄心の製造方法
 本開示は、回転子鉄心の製造方法に関する。
 特許文献1は、表面磁石型(SPM:Surface Permanent Magnet)モータに用いられる回転子鉄心を開示している。当該回転子鉄心は、鉄心本体と、鉄心本体の外周面に取り付けられた複数の永久磁石とで構成されている。
 特許文献2は、埋込磁石型(IPM:Interior Permanent Magnet)モータに用いられる回転子鉄心を開示している。当該回転子鉄心は、回転軸方向に延びるように設けられた複数の挿入孔を有する鉄心本体と、各挿入孔にそれぞれ挿入された複数の永久磁石とで構成されている。
特開2016-092994号公報 特開2013-009453号公報
 ところで、永久磁石の重量は、例えば数グラム程度のばらつきが存在している場合がある。このような重量ばらつきのある永久磁石を鉄心本体に取り付けて回転子鉄心を構成すると、回転子鉄心に重量バランスの偏り(以下、「重量アンバランス」ともいう。)が生ずる。このような重量アンバランスが存在する回転子鉄心を用いて構成されたモータが駆動されると、例えば、異常振動、ノイズ等が生じうる。
 そこで、本開示は、重量バランスに優れた回転子鉄心を効率的に生産することが可能な回転子鉄心の製造方法を説明する。
 本開示の一つの観点に係る回転子鉄心の製造方法は、複数の永久磁石の重量を個々に取得することと、取得された複数の永久磁石の個々の重量に基づいて、複数の永久磁石のうち相対的に重い永久磁石と相対的に軽い永久磁石とをそれぞれ少なくとも一つずつ組み合わせて一組の磁石組とすることで、第1~第N(Nは2以上の自然数)の磁石組を得ることと、所定の回転軸周りで回転するように構成された鉄心本体であって、回転軸の周方向に並ぶ第1~第Nの取付部を有する鉄心本体を用意することと、第1~第Nの磁石組を、第1~第Nの取付部のうち任意の取付部に一つずつ取り付けることとを含む。
 本開示の他の観点に係る回転子鉄心の製造方法は、第1~第L(Lは5以上の自然数)の永久磁石の重量を個々に取得することと、所定の回転軸周りで回転するように構成された鉄心本体であって、回転軸の周方向に並ぶ第1~第Lの取付部を有する鉄心本体を用意することと、取得された第1~第Lの永久磁石の重量m,m,・・・mL-1,mが式1を満たす場合、第1~第Lの永久磁石のうち第d(dは、2~L-1の自然数)の永久磁石が第1~第Lの永久磁石のうち第d-1の永久磁石及び第1~第Lの永久磁石のうち第d+1の永久磁石と回転軸の周方向において隣り合わないように、第1~第Lの永久磁石を第1~第Lの取付部に一つずつ取り付けることとを含む。
   m≧m≧・・・mL-1≧m ・・・ (1)
 本開示の他の観点に係る回転子鉄心の製造方法は、第1~第K(Kは4以上の偶数)の永久磁石の重量を個々に取得することと、所定の回転軸周りで回転するように構成された鉄心本体であって、回転軸の周方向に並ぶ第1~第Kの取付部を有する鉄心本体を用意することと、取得された第1~第Kの永久磁石の重量m,m,・・・mK-1,mが式2を満たす場合、第1~第Kの永久磁石のうち第e(eは、1~Kまでの奇数)の永久磁石と第1~第Kの永久磁石のうち第f(fは、f=e+1を満たし且つ1~Kまでの偶数)の永久磁石とが回転軸を間において対向するように、第1~第Kの永久磁石を第1~第Kの取付部に一つずつ取り付けることとを含む。
   m≧m≧・・・mK-1≧m ・・・ (2)
 本開示の他の観点に係る回転子鉄心の製造方法は、第1~第J(Jは6以上の偶数)の永久磁石の重量を個々に取得することと、所定の回転軸周りで回転するように構成された鉄心本体であって、回転軸の周方向に並ぶ第1~第Jの取付部を有する鉄心本体を用意することと、取得された第1~第Jの永久磁石の重量m,m,・・・mJ-1,mが式3を満たす場合、第1~第Jの永久磁石のうちから任意の永久磁石を2つずつ選択してJ/2個の対をなし、当該各対のうち相対的に重い永久磁石同士が回転軸の周方向において隣り合わず、当該対のうち相対的に軽い永久磁石同士が回転軸の周方向において隣り合わず、且つ、当該各対をなす永久磁石が回転軸を間において対向するように、第1~第Jの永久磁石を第1~第Jの取付部に一つずつ取り付けることとを含む、回転子鉄心の製造方法。
   m≧m≧・・・mJ-1≧m ・・・ (3)
 本開示に係る回転子鉄心の製造方法によれば、重量バランスに優れた回転子鉄心を効率的に生産することが可能となる。
図1は、回転子積層鉄心の一例を示す斜視図である。 図2は、図1のII-II線断面図である。 図3は、回転子積層鉄心の一例を示す上面図である。 図4は、磁石挿入孔と磁石組との組み合わせを示す概略図である。 図5は、磁石挿入孔と磁石組との組み合わせを示す概略図である。 図6は、回転子積層鉄心の製造装置の一例を示す概略図である。 図7は、磁石挿入孔と磁石組との組み合わせを示す概略図である。 図8は、回転子積層鉄心の他の例を、図2と同様に切断したときの断面図である。 図9は、回転子積層鉄心の他の例を示す斜視図である。
 以下に、本開示に係る実施形態の一例について、図面を参照しつつより詳細に説明する。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
 [回転子積層鉄心の構成]
 まず、図1~図3を参照して、回転子積層鉄心1(回転子鉄心)の構成について説明する。回転子積層鉄心1は、回転子(ロータ)の一部である。回転子積層鉄心1に端面板及びシャフトが取り付けられることにより、回転子が構成される。回転子が固定子(ステータ)と組み合わせられることにより、電動機(モータ)が構成される。本実施形態における回転子積層鉄心1は、埋込磁石型(IPM)モータに用いられる。回転子積層鉄心1は、図1に示されるように、積層体10(鉄心本体)と、複数の永久磁石12と、複数の樹脂材料14とを備える。
 積層体10は、図1に示されるように、円筒状を呈している。すなわち、積層体10の中央部には、中心軸Axに沿って延びるように積層体10を貫通する軸孔10aが設けられている。すなわち、軸孔10aは、積層体10の積層方向(積層体10の「高さ方向」ともいう。)に延びている。積層方向は、中心軸Axの延在方向でもある。本実施形態において積層体10は中心軸Ax周りに回転するので、中心軸Axは回転軸でもある。軸孔10a内には、シャフトが挿通される。
 積層体10には、複数の磁石挿入孔16(取付部)が形成されている。磁石挿入孔16は、図1及び図3に示されるように、積層体10の外周縁に沿って所定間隔で並んでいる。磁石挿入孔16は、図2に示されるように、中心軸Axに沿って延びるように積層体10を貫通している。すなわち、磁石挿入孔16は積層方向に延びている。
 磁石挿入孔16の形状は、本実施形態では、積層体10の外周縁に沿って延びる長孔である。磁石挿入孔16の数は、本実施形態では6個である。以下では、これらの磁石挿入孔16をそれぞれ磁石挿入孔16~16と表記することがある。磁石挿入孔16~16は、上方から見て時計回りにこの順に並んでいる。磁石挿入孔16の位置、形状及び数は、モータの用途、要求される性能などに応じて変更してもよい。
 積層体10は、複数の打抜部材Wが積み重ねられて構成されている。打抜部材Wは、後述する電磁鋼板ESが所定形状に打ち抜かれた板状体であり、積層体10に対応する形状を呈している。積層体10は、いわゆる転積によって構成されていてもよい。「転積」とは、打抜部材W同士の角度を相対的にずらしつつ、複数の打抜部材Wを積層することをいう。転積は、主に積層体10の板厚偏差を相殺することを目的に実施される。転積の角度は、任意の大きさに設定してもよい。
 積層方向において隣り合う打抜部材W同士は、図1~図3に示されるように、カシメ部18によって締結されていてもよい。これらの打抜部材W同士は、カシメ部18に代えて、種々の公知の方法にて締結されてもよい。例えば、複数の打抜部材W同士は、接着剤又は樹脂材料を用いて互いに接合されてもよいし、溶接によって互いに接合されてもよい。あるいは、打抜部材Wに仮カシメを設け、仮カシメを介して複数の打抜部材Wを締結して積層体10を得た後、仮カシメを当該積層体から除去してもよい。なお、「仮カシメ」とは、複数の打抜部材Wを一時的に一体化させるのに使用され且つ製品(回転子積層鉄心1)を製造する過程において取り除かれるカシメを意味する。
 永久磁石12は、図1~図3に示されるように、磁石挿入孔16に挿入されている。具体的には、本実施形態では、2つの永久磁石12が組み合わされた一組の磁石組20が、一つの磁石挿入孔16内にそれぞれ挿入されている。本実施形態では、12個の永久磁石12が2つずつ組み合わされて6組の磁石組20~20をなしており、6つの磁石挿入孔16~16内にそれぞれ磁石組20~20が一組ずつ挿入されている。磁石挿入孔16内において、2つの永久磁石12は、磁石挿入孔16の長手方向(積層体10の周方向)において隣り合うように並んでいる。永久磁石12の形状は、特に限定されないが、本実施形態では直方体形状を呈している。永久磁石12の種類は、モータの用途、要求される性能などに応じて決定すればよく、例えば、焼結磁石であってもよいし、ボンド磁石であってもよい。なお、永久磁石12の重さは、製造誤差により例えば数グラム程度ばらついている。
 樹脂材料14は、永久磁石12(磁石組20)が挿入された後の磁石挿入孔16内に充填されている。樹脂材料14は、永久磁石12(磁石組20)を磁石挿入孔16内に固定する機能を有する。樹脂材料14としては、例えば熱硬化性樹脂が挙げられる。熱硬化性樹脂の具体例としては、例えば、エポキシ樹脂と、硬化開始剤と、添加剤とを含む樹脂組成物が挙げられる。添加剤としては、フィラー、難燃剤、応力低下剤などが挙げられる。樹脂材料14は、上下方向で隣り合う打抜部材W同士を接合する機能も有する。なお、樹脂材料14として熱可塑性樹脂を使用してもよい。
 [磁石組の詳細]
 ここで、磁石組20の詳細について説明する。本実施形態では、磁石組20は任意の2つの永久磁石12の組み合わせではなく、所定の条件を満たす2つの永久磁石12の組み合わせにより構成されている。具体的には、12個の永久磁石12~1212の重量m~m12が式4を満たす場合、相対的に重い永久磁石12~12と相対的に軽い永久磁石12~1212とがそれぞれ一つずつ組み合わされて一組の磁石組20とされてもよい(条件1)。
   m≧m≧・・・≧m11≧m12 ・・・ (4)
 あるいは、12個の永久磁石12~1212の重量m~m12が式4を満たす場合、磁石組20~20はそれぞれ下記のように組み合わされていてもよい(条件2)。
   磁石組20:永久磁石12(重量m)と永久磁石1212(重量m12)との組み合わせ
   磁石組20:永久磁石12(重量m)と永久磁石1211(重量m11)との組み合わせ
   磁石組20:永久磁石12(重量m)と永久磁石1210(重量m10)との組み合わせ
   磁石組20:永久磁石12(重量m)と永久磁石12(重量m)との組み合わせ
   磁石組20:永久磁石12(重量m)と永久磁石12(重量m)との組み合わせ
   磁石組20:永久磁石12(重量m)と永久磁石12(重量m)との組み合わせ
すなわち、12個の永久磁石12~1212のうち最も重い永久磁石12と最も軽い永久磁石1212とを一つずつ組み合わせて一組の磁石組20を得て、残余の10個の永久磁石12~1211のうち最も重い永久磁石12と最も軽い永久磁石1211とを一つずつ組み合わせて一組の磁石組20を得るという手順を繰り返して、磁石組20~20を得てもよい。
 磁石組20~20の重量M~Mが式5を満たす場合、これらの磁石組20~20が任意の磁石挿入孔16~16内に一つずつ挿入されていてもよい(条件3)。
   M≧M≧M≧M≧M≧M ・・・ (5)
 あるいは、磁石組20~20の重量M~Mが式5を満たす場合、磁石組20(aは、2~5の自然数)が磁石組20a-1及び磁石組20a+1と中心軸Axの周方向において隣り合わないように、磁石組20~20が磁石挿入孔16~16内に一つずつ挿入されていてもよい(条件4)。この条件4を満たすことのできる6つの磁石挿入孔16~16と6つの磁石組20~20との組み合わせは、回転子積層鉄心1の上下をひっくり返したときに同一となる組み合わせを除外すると、図4及び表1に示されるように、5通り存在する。
Figure JPOXMLDOC01-appb-T000001
 あるいは、磁石組20~20の重量M~Mが式5を満たす場合、磁石組20(bは、1~6の奇数)と磁石組20(cは、c=b+1を満たし且つ1~6の偶数)とが中心軸Axを間において対向するように、磁石組20~20が磁石挿入孔16~16内に一つずつ挿入されていてもよい(条件5)。すなわち、磁石組20と磁石組20とは中心軸Axを間において対向するように対をなしており、磁石組20~20の重量M,M,・・・M,Mはこの順で軽くなっていてもよい。そのため、各対をなす磁石組20のうち奇数の磁石組20は、当該対の磁石組20のうち偶数の磁石組20よりも重い。この条件5を満たすことのできる6つの磁石挿入孔16~16と6つの磁石組20~20との組み合わせは、回転子積層鉄心1の上下をひっくり返したときに同一となる組み合わせを除外すると、図5及び表2に示されるように、4通り存在する。
Figure JPOXMLDOC01-appb-T000002
 あるいは、条件5を満たすと共に、磁石組20~20のうち奇数の磁石組20同士が中心軸Axの周方向において隣り合わず、且つ、磁石組20~20のうち偶数の磁石組20同士が中心軸Axの周方向において隣り合っていなくてもよい(条件6)。この条件6を満たすことのできる6つの磁石挿入孔16~16と6つの磁石組20~20との組み合わせは、回転子積層鉄心1の上下をひっくり返したときに同一となる組み合わせを除外すると、図5(c)及び表2に示されるように、1通り存在する。
 あるいは、磁石組20~20の重量M~Mが式5を満たす場合、磁石組20~20のうちから任意の磁石組20を2つずつ選択して3つの対をなし、各対のうち相対的に重い磁石組20同士が中心軸Axの周方向において隣り合わず、各対のうち相対的に軽い磁石組20同士が中心軸Axの周方向において隣り合わず、且つ、各対をなす磁石組20が中心軸Axを間において対向するように、磁石組20~20が磁石挿入孔16~16内に一つずつ挿入されていてもよい(条件7)。すなわち、各対のうち相対的に重い磁石組20は磁石挿入孔16,16,16内に挿入されており、各対のうち相対的に軽い磁石組20は磁石挿入孔16,16,16内に挿入されていてもよい。磁石組20~20から任意の磁石組20を2つずつ選択して3つの対をなす場合の組み合わせは、以下に示されるように、15通り存在する。なお、以下では、記号「/」によって磁石組20の各対を区切っている。
   1:磁石組20,20/磁石組20,20/磁石組20,20
   2:磁石組20,20/磁石組20,20/磁石組20,20
   3:磁石組20,20/磁石組20,20/磁石組20,20
   4:磁石組20,20/磁石組20,20/磁石組20,20
   5:磁石組20,20/磁石組20,20/磁石組20,20
   6:磁石組20,20/磁石組20,20/磁石組20,20
   7:磁石組20,20/磁石組20,20/磁石組20,20
   8:磁石組20,20/磁石組20,20/磁石組20,20
   9:磁石組20,20/磁石組20,20/磁石組20,20
  10:磁石組20,20/磁石組20,20/磁石組20,20
  11:磁石組20,20/磁石組20,20/磁石組20,20
  12:磁石組20,20/磁石組20,20/磁石組20,20
  13:磁石組20,20/磁石組20,20/磁石組20,20
  14:磁石組20,20/磁石組20,20/磁石組20,20
  15:磁石組20,20/磁石組20,20/磁石組20,20
そして、この条件7を満たすことのできる6つの磁石挿入孔16~16と6つの磁石組20~20との組み合わせも、回転子積層鉄心1の上下をひっくり返したときに同一となる組み合わせを除外すると、表3に示されるように、15通り存在する。
Figure JPOXMLDOC01-appb-T000003
 あるいは、条件7を満たすと共に、磁石組20と磁石組20とが中心軸Axを間において対向するように、磁石組20~20が磁石挿入孔16~16内に一つずつ挿入されていてもよい(条件8)。この条件8を満たすことのできる6つの磁石挿入孔16~16と6つの磁石組20~20との組み合わせは、回転子積層鉄心1の上下をひっくり返したときに同一となる組み合わせを除外すると、表3の第1項に示されるように、1通り存在する(図5(c)に示される回転子積層鉄心1の上下をひっくり返したものと同じ)。
 [回転子積層鉄心の製造装置]
 続いて、図6を参照して、回転子積層鉄心1の製造装置100について説明する。
 製造装置100は、帯状の金属板である電磁鋼板ES(被加工板)から回転子積層鉄心1を製造するための装置である。製造装置100は、アンコイラー110と、送出装置120と、打抜装置130と、磁石取付装置140と、磁石選別装置150と、コントローラ160(制御部)とを備える。
 アンコイラー110は、コイル状に巻回された帯状の電磁鋼板ESであるコイル材111が装着された状態で、コイル材111を回転自在に保持する。送出装置120は、電磁鋼板ESを上下から挟み込む一対のローラ121,122を有する。一対のローラ121,122は、コントローラ160からの指示信号に基づいて回転及び停止し、電磁鋼板ESを打抜装置130に向けて間欠的に順次送り出す。
 コイル材111を構成する電磁鋼板ESの長さは、例えば500m~10000m程度であってもよい。電磁鋼板ESの厚さは、例えば0.1mm~0.5mm程度であってもよい。電磁鋼板ESの厚さは、より優れた磁気的特性を有する回転子積層鉄心1を得る観点から、例えば0.1mm~0.3mm程度であってもよい。電磁鋼板ESの幅は、例えば50mm~500mm程度であってもよい。
 打抜装置130は、コントローラ160からの指示信号に基づいて動作する。打抜装置130は、送出装置120によって間欠的に送り出される電磁鋼板ESを順次打ち抜き加工して打抜部材Wを形成する機能と、打ち抜き加工によって得られた打抜部材Wを順次積層して積層体10を製造する機能とを有する。
 積層体10は、打抜装置130から排出されると、打抜装置130と磁石取付装置140との間を延びるように設けられたコンベアCvに載置される。コンベアCvは、コントローラ160からの指示に基づいて動作し、積層体10を磁石取付装置140に送り出す。なお、打抜装置130と磁石取付装置140との間において、積層体10はコンベアCv以外によって搬送されてもよい。例えば、積層体10は、コンテナに載置された状態で、人手によって搬送されてもよい。
 磁石取付装置140は、コントローラ160からの指示信号に基づいて動作する。磁石取付装置140は、磁石選別装置150において得られた磁石組20~20を条件3~8のいずれかに従ってそれぞれ磁石挿入孔16~16内に挿通する作業を行う機能と、磁石組20~20が挿通された磁石挿入孔16~16内に樹脂材料14を充填する作業を行う機能とを有する。
 磁石選別装置150は、コントローラ160からの指示信号に基づいて動作する。磁石選別装置150は、図示しない重量計測器及びロボットハンドを有する。磁石選別装置150は、ロボットハンドによって永久磁石12~1212を一つずつ重量測定器に載置することで、永久磁石12~1212の個々の重量をコントローラ160が取得する機能と、取得した永久磁石12~1212の重量に基づいて条件1又は2に従って永久磁石12~1212の組み合わせをコントローラ160が決定する機能と、決定した組み合わせに基づいてロボットハンドが永久磁石12~1212を2つずつ組み合わせて磁石組20~20をなす機能とを有する。
 コントローラ160は、例えば、記録媒体(図示せず)に記録されているプログラム又はオペレータからの操作入力等に基づいて、送出装置120、打抜装置130、磁石取付装置140及び磁石選別装置150をそれぞれ動作させるための指示信号を生成し、送出装置120、打抜装置130、磁石取付装置140及び磁石選別装置150に当該指示信号をそれぞれ送信する。
 [回転子積層鉄心の製造方法]
 続いて、回転子積層鉄心1の製造方法について説明する。まず、積層体10を形成する(第3の工程)。具体的には、コントローラ160の指示に基づいて、送出装置120によって電磁鋼板ESを打抜装置130に送り出し、打抜装置130によって電磁鋼板ESの被加工部位を所定形状に打ち抜く。これにより、打抜部材Wが形成される。この打ち抜き加工を繰り返すことにより、複数の打抜部材Wが互いにカシメ部18によって締結されながら所定枚数積層されて、一つの積層体10が製造される。
 次に、コントローラ160の指示に基づいて、打抜装置130から排出された積層体10をコンベアCvが磁石取付装置140まで搬送する。
 一方、積層体10が磁石取付装置140までに到達するまでの間に、コントローラ160の指示に基づいて、磁石選別装置150によって各作業を実行させる。すなわち、コントローラ160は、ロボットハンドを制御して永久磁石12~1212を個々に重量測定器に載置し、測定された永久磁石12~1212の個々の重量m~m12のデータを重量測定器から受信する(第1の工程)。続いて、コントローラ160は、取得した個々の重量m~m12に基づいて、条件1又は2に従って永久磁石12~1212の組み合わせを決定する。続いて、コントローラ160は、ロボットハンドを制御して、決定した組み合わせに基づいて永久磁石12~1212を2つずつ組み合わせ、これにより磁石組20~20を構成する(第2の工程)。
 ここで、コントローラ160は、既に測定された永久磁石12~1212の個々の重量m~m12のデータに基づいて、磁石組20~20の重量M~Mを計算してもよい(第5の工程)。あるいは、コントローラ160は、ロボットハンドを制御して磁石組20~20を個々に重量測定器に載置し、測定された磁石組20~20の個々の重量M~Mのデータを重量測定器から受信してもよい(第5の工程)。その後、コントローラ160は、ロボットハンドを制御して、これらの磁石組20~20を磁石取付装置140へと搬送する。
 次に、コントローラ160は、磁石取付装置140を制御して、条件3~8のいずれかに従って、磁石組20~20を磁石挿入孔16~16内に一つずつ挿入させる。次に、コントローラ160が磁石取付装置140に指示して、各磁石挿入孔16内に溶融状態の樹脂材料14を充填及び固化させる。こうして、固化した樹脂材料14によって、各磁石組20が各磁石挿入孔16内に固定されると共に、積層方向において隣り合う打抜部材Wが一体化される。以上により、回転子積層鉄心1が得られる。
 その後、軸孔10aにシャフトを挿通し、キー等によりシャフトを回転子積層鉄心1に固定するシャフト取付工程、回転子積層鉄心1の両端面に対して端面板をそれぞれ配置する端面板取付工程等を経る。端面板は、例えば、回転子積層鉄心1の端面とカシメ、溶接、接着、樹脂封止等により固定されてもよいし、ナットをシャフトに螺合することにより回転子積層鉄心1に対して固定されてもよいし、キー等によりシャフトに対して固定されてもよい。こうして、回転子積層鉄心1と、シャフトと、端面板とを備える回転子が得られる。
 [作用]
 以上のような本実施形態では、条件1又は2に従って永久磁石12~1212を2つずつ組み合わせ、これにより磁石組20~20を構成している。すなわち、条件1においては、12個の永久磁石12~1212のうち相対的に重い永久磁石12と相対的に軽い永久磁石12とをそれぞれ一つずつ組み合わせて一組の磁石組20とすることで、磁石組20~20が得られる。そのため、各磁石組20~20の重量が均等化される。従って、単に各永久磁石12の重量を計測して所定の磁石組20を得るという極めてシンプルな手法により、重量バランスに優れた回転子積層鉄心1を効率的に生産することが可能となる。
 一方、条件2においては、12個の永久磁石12~1212のうち最も重い永久磁石12と最も軽い永久磁石12とを一つずつ組み合わせて一組の磁石組20とすることを繰り返すことにより、磁石組20~20が得られる。このように、2つの永久磁石12を組み合わせて一つの磁石組20とする場合、各磁石組20の重量がより均等化されるので、より優れた重量バランスの回転子積層鉄心1を得ることが可能となる。
 本実施形態では、条件3~8のいずれかに従って、磁石組20~20をそれぞれ磁石挿入孔16~16内に一つずつ取り付けている。すなわち、条件3においては、磁石組20~20を任意の磁石挿入孔16~16内に一つずつ挿入している。
 一方、条件4においては、磁石組20~20の重量M~Mが式5を満たす場合、磁石組20(aは、2~5の自然数)が磁石組20a-1及び磁石組20a+1と中心軸Axの周方向において隣り合わないように、磁石組20~20を磁石挿入孔16~16内に一つずつ挿入している。この場合、比較的重い磁石組20同士又は比較的軽い磁石組20同士が周方向において隣り合わなくなるので、回転子積層鉄心1全体としての重量バランスが高まる。そのため、いっそう優れた重量バランスの回転子積層鉄心1を得ることが可能となる。
 さらに、条件5においては、磁石組20~20の重量M~Mが式5を満たす場合、磁石組20(bは、1~6の奇数)と磁石組20(cは、c=b+1を満たし且つ1~6の偶数)とが中心軸Axを間において対向するように、磁石組20~20を磁石挿入孔16~16内に一つずつ挿入している。この場合、同程度の重量を有する2つの磁石組20は、中心軸Axを間において対向するので、磁石挿入孔16のうち互いに最も遠い位置に取り付けられる。そのため、比較的重い磁石組20同士又は比較的軽い磁石組20同士が周方向においてまとまり難くなるので、回転子積層鉄心1としての重量バランスが高まる。従って、いっそう優れた重量バランスの回転子積層鉄心1を得ることが可能となる。
 さらに、条件7においては、磁石組20~20の重量M~Mが式5を満たす場合、磁石組20~20のうちから任意の磁石組20を2つずつ選択して3つの対をなし、各対のうち相対的に重い磁石組20同士が中心軸Axの周方向において隣り合わず、各対のうち相対的に軽い磁石組20同士が中心軸Axの周方向において隣り合わず、且つ、各対をなす磁石組20が中心軸Axを間において対向するように、磁石組20~20が磁石挿入孔16~16内に一つずつ挿入している。この場合、各対をなす磁石組20のうち相対的に重い磁石組20同士又は相対的に軽い磁石組20同士が中心軸Axの周方向において隣り合わないので、磁石組20の重量が当該周方向において一方に偏り難くなる。そのため、回転子積層鉄心1としての重量バランスが高まる。従って、いっそう優れた重量バランスの回転子積層鉄心1を得ることが可能となる。
 さらに、条件6においては、条件5に加えて、磁石組20~20のうち奇数の磁石組20同士が中心軸Axの周方向において隣り合わず、且つ、磁石組20~20のうち偶数の磁石組20同士が中心軸Axの周方向において隣り合っていない。また、条件8においては、条件7に加えて、磁石組20と磁石組20とが中心軸Axを間において対向している。これらの場合、中心軸Axの周方向において重い永久磁石12又は軽い永久磁石12が一方に偏り難くなるので、回転子積層鉄心1全体としての重量バランスが高まる。従って、いっそう優れた重量バランスの回転子積層鉄心1を得ることが可能となる。
 [変形例]
 以上、本開示に係る実施形態について詳細に説明したが、特許請求の範囲及びその要旨の範囲内で種々の変形を上記の実施形態に加えてもよい。
 (1)例えば、上記の実施形態では、2つの永久磁石12を組み合わせて一組の磁石組20を構成していたが、一組の磁石組20が3つ以上の永久磁石12の組み合わせによって構成されていてもよい。
 (2)例えば、一組の磁石組20が3つの永久磁石12によって構成されている場合には、複数の永久磁石12のうち相対的に重い永久磁石12と相対的に軽い永久磁石12と任意の永久磁石12とを一つずつ組み合わせて一組の磁石組20とすることを繰り返すことにより、複数の磁石組20を得てもよい。または、複数の永久磁石12のうち最も重い永久磁石12と最も軽い永久磁石12と任意の永久磁石12とを一つずつ組み合わせて一組の磁石組20とすることを繰り返すことにより、複数の磁石組20を得てもよい。この場合、各磁石組20の重量がより均等化されるので、より優れた重量バランスの回転子積層鉄心1を得ることが可能となる。5つ以上で且つ奇数個の永久磁石12によって一組の磁石組20を構成する場合も、上記と同様の手法によって永久磁石12を組み合わせてもよい。
 (3)あるいは、複数の永久磁石12のうち相対的に重い永久磁石12と相対的に軽い永久磁石12と中央値を示す重さを有する永久磁石12とを一つずつ組み合わせて一組の磁石組20とすることを繰り返すことにより、複数の磁石組20を得てもよい。または、複数の永久磁石12のうち最も重い永久磁石12と最も軽い永久磁石12と中央値を示す重さを有する永久磁石12とを一つずつ組み合わせて一組の磁石組20とすることを繰り返すことにより、複数の磁石組20を得てもよい。この場合、各磁石組20の重量がさらに均等化されるので、より優れた重量バランスの回転子鉄心を得ることが可能となる。5つ以上で且つ奇数個の永久磁石12によって一組の磁石組20を構成する場合も、上記と同様の手法によって永久磁石12を組み合わせてもよい。
 (4)一方、一組の磁石組20が4つの永久磁石12によって構成されている場合には、複数の永久磁石12のうち相対的に重い永久磁石12と相対的に軽い永久磁石12とを二つずつ組み合わせて一組の磁石組20とすることを繰り返すことにより、複数の磁石組20を得てもよい。6つ以上で且つ偶数個の永久磁石12によって一組の磁石組20を構成する場合も、上記と同様の手法によって永久磁石12を組み合わせてもよい。
 (5)上記の実施形態では、積層体10に6つの磁石挿入孔16が形成されている場合について主として説明したが、積層体10に複数の磁石挿入孔16が形成されていてもよい。後述するが、一つの磁石挿入孔16に一つの永久磁石12を挿入する場合も同様に、積層体10に複数の磁石組20が形成されていてもよい。
 (6)ところで、一対の磁石組20が「中心軸Axを間において対向する」の本明細書における定義について、積層体10に8個の磁石挿入孔16~16が形成されている積層体10を例示しつつ説明する。すなわち、本明細書において、一対の磁石組20が「中心軸Axを間において対向する」とは、図7(a)に示されるように、一対の磁石組20が中心軸Axを通る直線上において並ぶことのみならず、図7(b)に示されるように、一対の磁石組20が中心軸Axを通る直線上において並ばずとも一対の磁石組20及び中心軸Axがある程度直線状に並んでいることも含むものとする。従って、前者のように解して、相対的に重い磁石組20Heavyと相対的に軽い磁石組20Lightとの対が「中心軸Axを間において対向する」場合には、図7(a)に示されるように、相対的に重い磁石組20Heavy同士又は相対的に軽い磁石組20Light同士が周方向において隣り合う。一方、後者のように解して、相対的に重い磁石組20Heavyと相対的に軽い磁石組20Lightとの対が「中心軸Axを間において対向する」場合には、図7(b)に示されるように、相対的に重い磁石組20Heavyと相対的に軽い磁石組20Lightとが周方向において交互に並ぶ(相対的に重い磁石組20Heavy同士又は相対的に軽い磁石組20Light同士が周方向において隣り合わない)。
 (7)上記の実施形態のような磁石組20を構成せず、永久磁石12を磁石挿入孔16に一つずつ挿入してもよい。具体的には、6個の永久磁石12~12の重量m~mを磁石選別装置150において個々に取得する工程と、取得された6個の永久磁石12~12の重量m~mが式6を満たす場合に、第d(dは、2~5の自然数)の永久磁石12が第d-1の永久磁石12d-1及び第d+1の永久磁石12d+1と中心軸Axの周方向において隣り合わないように、これらの6個の永久磁石12~12を6つの磁石挿入孔16~16に磁石取付装置140により一つずつ挿入する工程とを経て、回転子積層鉄心1を構成してもよい(条件9)。
   m≧m≧・・・m≧m ・・・ (6)
 この場合、比較的重い永久磁石12同士又は比較的軽い永久磁石12同士が周方向において隣り合わなくなる。そのため、回転子積層鉄心1全体としての重量バランスが高まる。従って、単に各永久磁石12の重量を計測して、所定の磁石挿入孔16に取り付けるという極めてシンプルな手法により、重量バランスに優れた回転子積層鉄心1を効率的に生産することが可能となる。
 (8)なお、第1~第L(Lは5以上の自然数)の永久磁石12が存在する場合にも同様に、第1~第Lの永久磁石12の重量m,m,・・・mL-1,mが式7を満たす場合、第d(dは、2~L-1の自然数)の永久磁石12が第d-1の永久磁石12d-1及び第d+1の永久磁石12d+1と中心軸Axの周方向において隣り合わないように、第1~第Lの永久磁石12~12を第1~第Lの磁石挿入孔16~16に一つずつ挿入してもよい。
   m≧m≧・・・mL-1≧m ・・・ (7)
 (9)あるいは、6個の永久磁石12~12の重量m~mを磁石選別装置150において個々に取得する工程と、取得された6個の永久磁石12~12の重量m~mが式6を満たす場合に、第e(eは、1~6までの奇数)の永久磁石と第f(fは、f=e+1を満たし且つ1~6までの偶数)の永久磁石とが回転軸を間において対向するように、これらの6個の永久磁石12~12を6つの磁石挿入孔16~16に磁石取付装置140により一つずつ挿入する工程とを経て、回転子積層鉄心1を構成してもよい(条件10)。
 この場合、同程度の重量を有する2つの永久磁石12が、中心軸Axを間において対向するので、磁石挿入孔16のうち互いに最も遠い位置に取り付けられる。そのため、比較的重い永久磁石12同士又は比較的軽い永久磁石12同士が周方向においてまとまり難くなるので、回転子積層鉄心1全体としての重量バランスが高まる。従って、単に各永久磁石12の重量を計測して、所定の磁石挿入孔16に取り付けるという極めてシンプルな手法により、重量バランスに優れた回転子積層鉄心1を効率的に生産することが可能となる。
 (10)なお、第1~第K(Kは4以上の偶数)の永久磁石12が存在する場合にも同様に、第1~第Kの永久磁石12の重量m,m,・・・mK-1,mが式8を満たす場合、第e(eは、1~Kまでの奇数)の永久磁石12と第f(fは、f=e+1を満たし且つ1~Kまでの偶数)の永久磁石12とが中心軸Axを間において対向するように、第1~第Kの永久磁石12~12を第1~第Kの磁石挿入孔16~16に一つずつ挿入してもよい。すなわち、第eの永久磁石12と第fの永久磁石12とは中心軸Axを間において対向するように対をなしており、第1~第Kの永久磁石12~12の重量m,m,・・・mK-1,mはこの順で軽くなっていてもよい。そのため、各対をなす永久磁石12のうち奇数の永久磁石12は、当該対の永久磁石12のうち偶数の永久磁石12よりも重い。
   m≧m≧・・・mK-1≧m ・・・ (8)
 この場合、第1~第Kの永久磁石12~12のうち奇数の永久磁石12同士が中心軸Axの周方向において隣り合わず、且つ、第1~第Kの永久磁石12~12のうち偶数の永久磁石12同士が中心軸Axの周方向において隣り合っていなくてもよい。このようにすると、中心軸Axの周方向において重い永久磁石12又は軽い永久磁石12が一方に偏り難くなるので、回転子積層鉄心1全体としての重量バランスが高まる。従って、いっそう優れた重量バランスの回転子積層鉄心1を得ることが可能となる。
 (11)あるいは、6個の永久磁石12~12の重量m~mを磁石選別装置150において個々に取得する工程と、取得された6個の永久磁石12~12の重量m~mが式6を満たす場合に、永久磁石12~12のうちから任意の永久磁石12を2つずつ選択して3個の対をなし、当該各対のうち相対的に重い永久磁石12同士が中心軸Axの周方向において隣り合わず、当該対のうち相対的に軽い永久磁石12同士が中心軸Axの周方向において隣り合わず、且つ、当該各対をなす永久磁石12が中心軸Axを間において対向するように、これらの6個の永久磁石12~12を6つの磁石挿入孔16~16に磁石取付装置140により一つずつ挿入する工程とを経て、回転子積層鉄心1を構成してもよい(条件11)。
 この場合、永久磁石12の重量が中心軸Axの周方向において一方に偏り難くなるので、回転子積層鉄心1全体としての重量バランスが高まる。従って、単に各永久磁石12の重量を計測して、所定の磁石挿入孔16に取り付けるという極めてシンプルな手法により、重量バランスに優れた回転子積層鉄心1を効率的に生産することが可能となる。
 (12)なお、第1~第J(Jは6以上の偶数)の永久磁石12が存在する場合にも同様に、第1~第Jの永久磁石12の重量m,m,・・・mJ-1,mが式9を満たす場合、第1~第Jの永久磁石のうちから任意の永久磁石を2つずつ選択してJ/2個の対をなし、当該各対のうち相対的に重い永久磁石同士が回転軸の周方向において隣り合わず、当該対のうち相対的に軽い永久磁石同士が回転軸の周方向において隣り合わず、且つ、当該各対をなす永久磁石が回転軸を間において対向するように、第1~第Jの永久磁石を第1~第Jの磁石挿入孔16~16に一つずつ挿入してもよい。
   m≧m≧・・・mJ-1≧m ・・・ (9)
 (13)図8に示されるように、複数の永久磁石12は、一つの磁石挿入孔16内において、その延在方向(積層方向)に沿って隣り合うように並んでいてもよい。あるいは、一つの磁石挿入孔16において、複数の永久磁石12が磁石挿入孔16の長手方向に並ぶと共に複数の永久磁石12が磁石挿入孔16の延在方向(積層方向)に並んでいてもよい。
 (14)図9に示されるように、表面磁石型(SPM)モータに用いられる回転子積層鉄心1に特許請求の範囲及びその要旨を適用してもよい。この場合、積層体10の外周面には中心軸Ax方向に延びる凹溝22(取付部)が設けられており、各凹溝22内に磁石組20が一つずつ取り付けられている。
 (15)上記の実施形態では、複数の打抜部材Wが積層されてなる積層体10が、永久磁石12が取り付けられる鉄心本体として機能していたが、鉄心本体が積層体10以外で構成されていてもよい。具体的には、鉄心本体は、例えば、強磁性体粉末が圧縮成形されたものであってもよいし、強磁性体粉末を含有する樹脂材料が射出成形されたものであってもよい。
 (16)磁石取付装置140又は磁石選別装置150における各作業は、作業者によって人手で行われてもよい。
 [例示]
 例1.本開示の一つの例に係る回転子鉄心の製造方法は、複数の永久磁石の重量を個々に取得することと、取得された複数の永久磁石の個々の重量に基づいて、複数の永久磁石のうち相対的に重い永久磁石と相対的に軽い永久磁石とをそれぞれ少なくとも一つずつ組み合わせて一組の磁石組とすることで、第1~第N(Nは2以上の自然数)の磁石組を得ることと、所定の回転軸周りで回転するように構成された鉄心本体であって、回転軸の周方向に並ぶ第1~第Nの取付部を有する鉄心本体を用意することと、第1~第Nの磁石組を、第1~第Nの取付部のうち任意の取付部に一つずつ取り付けることとを含む。
 例1の回転子鉄心の製造方法では、複数の永久磁石のうち相対的に重い永久磁石と相対的に軽い永久磁石とをそれぞれ少なくとも一つずつ組み合わせて一組の磁石組とすることで、第1~第N(Nは2以上の自然数)の磁石組を得ている。そのため、各磁石組の重量が均等化される。従って、単に各永久磁石の重量を計測して所定の磁石組を得るという極めてシンプルな手法により、重量バランスに優れた回転子鉄心を効率的に生産することが可能となる。
 例2.例1の方法において、第1~第Nの磁石組を得ることは、複数の永久磁石のうち最も重い永久磁石と最も軽い永久磁石とを一つずつ組み合わせて一組の磁石組とすることを繰り返すことを含んでもよい。このように、2つの永久磁石を組み合わせて一つの磁石組とする場合、各磁石組の重量がより均等化されるので、より優れた重量バランスの回転子鉄心を得ることが可能となる。
 例3.例1の方法において、第1~第Nの磁石組を得ることは、複数の永久磁石のうち最も重い永久磁石と最も軽い永久磁石と任意の永久磁石とを一つずつ組み合わせて一組の磁石組とすることを繰り返すことを含んでもよい。このように、3つの永久磁石を組み合わせて一つの磁石組とする場合、各磁石組の重量がより均等化されるので、より優れた重量バランスの回転子鉄心を得ることが可能となる。
 例4.例1の方法において、第1~第Nの磁石組を得ることは、複数の永久磁石のうち最も重い永久磁石と最も軽い永久磁石と中央値を示す重さを有する永久磁石とを一つずつ組み合わせて一組の磁石組とすることを繰り返すことを含んでもよい。このように、3つの永久磁石を組み合わせて一つの磁石組とする場合、各磁石組の重量がさらに均等化されるので、より優れた重量バランスの回転子鉄心を得ることが可能となる。
 例5.例1~例4のいずれかの方法は、第1~第Nの磁石組を一つずつ取り付けることの前に、第1~第Nの磁石組の重量を個々に取得することをさらに含み、取得された第1~第Nの磁石組の重量M,M,・・・MN-1,Mが式10を満たす場合、第1~第Nの磁石組を一つずつ取り付けることは、第1~第Nの磁石組のうち第a(aは、2~N-1の自然数)の磁石組が第1~第Nの磁石組のうち第a-1の磁石組及び第1~第Nの磁石組のうち第a+1の磁石組と回転軸の周方向において隣り合わないように、第1~第Nの磁石組を第1~第Nの取付部に一つずつ取り付けることを含んでもよい。
   M≧M≧・・・MN-1≧M ・・・ (10)
この場合、比較的重い磁石組同士又は比較的軽い磁石組同士が周方向において隣り合わなくなるので、回転子鉄心全体としての重量バランスが高まる。そのため、いっそう優れた重量バランスの回転子鉄心を得ることが可能となる。
 例6.例1~例4のいずれかに記載の方法において、第1~第Nの磁石組を一つずつ取り付けることの前に、第1~第Nの磁石組の重量を個々に取得することをさらに含み、取得された第1~第Nの磁石組の重量M,M,・・・MN-1,Mが式11を満たす場合、第1~第Nの磁石組を一つずつ取り付けることは、第1~第Nの磁石組のうち第b(bは、1~Nまでの奇数)の磁石組と第1~第Nの磁石組のうち第c(cは、c=b+1を満たし且つ1~Nまでの偶数)の磁石組とが回転軸を間において対向するように、第1~第Nの磁石組を第1~第Nの取付部に一つずつ取り付けることを含んでもよい。
   M≧M≧・・・MN-1≧M ・・・ (11)
この場合、同程度の重量を有する2つの磁石組は、回転軸を間において対向するので、取付部のうち互いに最も遠い位置に取り付けられる。そのため、比較的重い磁石組同士又は比較的軽い磁石組同士が周方向においてまとまり難くなるので、回転子鉄心全体としての重量バランスが高まる。従って、いっそう優れた重量バランスの回転子鉄心を得ることが可能となる。
 例7.例6の方法において、第1~第Nの磁石組を一つずつ取り付けることは、第1~第Nの磁石組のうち奇数の磁石組同士が回転軸の周方向において隣り合わず、且つ、第1~第Nの磁石組のうち偶数の磁石組同士が回転軸の周方向において隣り合わないように、第1~第Nの磁石組を第1~第Nの取付部に一つずつ取り付けることを含んでもよい。ところで、第bの磁石組と第cの磁石組とは回転軸を間において対向するように対をなしており、第1~第Nの磁石組の重量は式10よりこの順で軽くなっている。そのため、各対をなす磁石組のうち奇数の磁石組は、当該対の磁石組のうち偶数の磁石組よりも重い。このとき、例7の方法のように第1~第Nの磁石組を第1~第Nの取付部に一つずつ取り付けると、回転軸の周方向において重い磁石組又は軽い磁石組が一方に偏り難くなるので、回転子鉄心全体としての重量バランスが高まる。従って、いっそう優れた重量バランスの回転子鉄心を得ることが可能となる。
 例8.例1~例4のいずれかに記載の方法は、第1~第Nの磁石組を一つずつ取り付けることの前に、第1~第Nの磁石組の重量を個々に取得することをさらに含み、第1~第Nの磁石組を得ることは、複数の永久磁石のうち相対的に重い永久磁石と相対的に軽い永久磁石とをそれぞれ少なくとも一つずつ組み合わせて一組の磁石組とすることで、第1~第N(Nは6以上の自然数)の磁石組を得ることを含み、第1~第Nの磁石組を一つずつ取り付けることは、取得された第1~第Nの磁石組の重量M,M,・・・MN-1,Mが式12を満たす場合、第1~第Nの磁石組のうちから任意の磁石組を2つずつ選択してN/2個の対をなし、当該各対のうち相対的に重い磁石組同士が回転軸の周方向において隣り合わず、当該対のうち相対的に軽い磁石組同士が回転軸の周方向において隣り合わず、且つ、当該各対をなす磁石組が回転軸を間において対向するように、第1~第Nの磁石組を第1~第Nの取付部に一つずつ取り付けることを含んでもよい。
   M≧M≧・・・MN-1≧M ・・・ (12)
この場合、各対をなす磁石組のうち相対的に重い磁石組同士又は相対的に軽い磁石組同士が回転軸の周方向において隣り合わないので、磁石組の重量が当該周方向において一方に偏り難くなる。そのため、回転子鉄心全体としての重量バランスが高まる。従って、いっそう優れた重量バランスの回転子鉄心を得ることが可能となる。
 例9.本開示の他の例に係る回転子鉄心の製造方法は、第1~第L(Lは5以上の自然数)の永久磁石の重量を個々に取得することと、所定の回転軸周りで回転するように構成された鉄心本体であって、回転軸の周方向に並ぶ第1~第Lの取付部を有する鉄心本体を用意することと、取得された第1~第Lの永久磁石の重量m,m,・・・mL-1,mが式13を満たす場合、第1~第Lの永久磁石のうち第d(dは、2~L-1の自然数)の永久磁石が第1~第Lの永久磁石のうち第d-1の永久磁石及び第1~第Lの永久磁石のうち第d+1の永久磁石と回転軸の周方向において隣り合わないように、第1~第Lの永久磁石を第1~第Lの取付部に一つずつ取り付けることとを含む。
   m≧m≧・・・mL-1≧m ・・・ (13)
 例9の回転子鉄心の製造方法では、取得された個々の永久磁石の重量に応じて、各永久磁石を各取付部に一つずつ取り付けている。具体的には、比較的重い永久磁石同士又は比較的軽い永久磁石同士が周方向において隣り合わなくなる。そのため、回転子鉄心全体としての重量バランスが高まる。従って、単に各永久磁石の重量を計測して、所定の取付部に取り付けるという極めてシンプルな手法により、重量バランスに優れた回転子鉄心を効率的に生産することが可能となる。
 例10.本開示の他の例に係る回転子鉄心の製造方法は、第1~第K(Kは4以上の偶数)の永久磁石の重量を個々に取得することと、所定の回転軸周りで回転するように構成された鉄心本体であって、回転軸の周方向に並ぶ第1~第Kの取付部を有する鉄心本体を用意することと、取得された第1~第Kの永久磁石の重量m,m,・・・mK-1,mが式14を満たす場合、第1~第Kの永久磁石のうち第e(eは、1~Kまでの奇数)の永久磁石と第1~第Kの永久磁石のうち第f(fは、f=e+1を満たし且つ1~Kまでの偶数)の永久磁石とが回転軸を間において対向するように、第1~第Kの永久磁石を第1~第Kの取付部に一つずつ取り付けることとを含む。
   m≧m≧・・・mK-1≧m ・・・ (14)
 例10の回転子鉄心の製造方法では、取得された個々の永久磁石の重量に応じて、各永久磁石を各取付部に一つずつ取り付けている。具体的には、同程度の重量を有する2つの永久磁石が、回転軸を間において対向するので、取付部のうち互いに最も遠い位置に取り付けられる。そのため、比較的重い永久磁石同士又は比較的軽い永久磁石同士が周方向においてまとまり難くなるので、回転子鉄心全体としての重量バランスが高まる。従って、単に各永久磁石の重量を計測して、所定の取付部に取り付けるという極めてシンプルな手法により、重量バランスに優れた回転子鉄心を効率的に生産することが可能となる。
 例11.例10の方法において、第1~第Kの永久磁石を一つずつ取り付けることは、第1~第Kの永久磁石のうち奇数の永久磁石同士が回転軸の周方向において隣り合わず、且つ、第1~第Kの永久磁石のうち偶数の永久磁石同士が回転軸の周方向において隣り合わないように、第1~第Kの永久磁石を第1~第Kの取付部に一つずつ取り付けることを含んでもよい。ところで、第eの永久磁石と第fの永久磁石とは回転軸を間において対向するように対をなしており、第1~第Kの永久磁石の重量は式12よりこの順で軽くなっている。そのため、各対をなす永久磁石のうち奇数の永久磁石は、当該対の永久磁石のうち偶数の永久磁石よりも重い。このとき、例11の方法のように第1~第Kの永久磁石を第1~第Nの取付部に一つずつ取り付けると、回転軸の周方向において重い永久磁石又は軽い永久磁石が一方に偏り難くなるので、回転子鉄心全体としての重量バランスが高まる。従って、いっそう優れた重量バランスの回転子鉄心を得ることが可能となる。
 例12.本開示の他の例に係る回転子鉄心の製造方法は、第1~第J(Jは6以上の偶数)の永久磁石の重量を個々に取得することと、所定の回転軸周りで回転するように構成された鉄心本体であって、回転軸の周方向に並ぶ第1~第Jの取付部を有する鉄心本体を用意することと、取得された第1~第Jの永久磁石の重量m,m,・・・mJ-1,mが式15を満たす場合、第1~第Jの永久磁石のうちから任意の永久磁石を2つずつ選択してJ/2個の対をなし、当該各対のうち相対的に重い永久磁石同士が回転軸の周方向において隣り合わず、当該対のうち相対的に軽い永久磁石同士が回転軸の周方向において隣り合わず、且つ、当該各対をなす永久磁石が回転軸を間において対向するように、第1~第Jの永久磁石を第1~第Jの取付部に一つずつ取り付けることとを含む。
   m≧m≧・・・mJ-1≧m ・・・ (15)
 例12の回転子鉄心の製造方法では、取得された個々の永久磁石の重量に応じて、各永久磁石を各取付部に一つずつ取り付けている。具体的には、各対をなす磁石組のうち相対的に重い永久磁石同士又は相対的に軽い永久磁石同士が回転軸の周方向において隣り合わないように、各永久磁石が各取付部に一つずつ取り付けられる。そのため、永久磁石の重量が当該周方向において一方に偏り難くなるので、回転子鉄心全体としての重量バランスが高まる。従って、単に各永久磁石の重量を計測して、所定の取付部に取り付けるという極めてシンプルな手法により、重量バランスに優れた回転子鉄心を効率的に生産することが可能となる。
 1…回転子積層鉄心(回転子鉄心)、10…積層体(鉄心本体)、12…永久磁石、14…樹脂材料、16,16~16…磁石挿入孔(取付部)、20,20~20…磁石組、22…凹溝(取付部)、Ax…中心軸(回転軸)。

Claims (12)

  1.  複数の永久磁石の重量を個々に取得することと、
     取得された前記複数の永久磁石の個々の重量に基づいて、前記複数の永久磁石のうち相対的に重い永久磁石と相対的に軽い永久磁石とをそれぞれ少なくとも一つずつ組み合わせて一組の磁石組とすることで、第1~第N(Nは2以上の自然数)の磁石組を得ることと、
     所定の回転軸周りで回転するように構成された鉄心本体であって、前記回転軸の周方向に並ぶ第1~第Nの取付部を有する鉄心本体を用意することと、
     前記第1~第Nの磁石組を、前記第1~第Nの取付部のうち任意の取付部に一つずつ取り付けることとを含む、回転子鉄心の製造方法。
  2.  前記第1~第Nの磁石組を得ることは、前記複数の永久磁石のうち最も重い永久磁石と最も軽い永久磁石とを一つずつ組み合わせて一組の磁石組とすることを繰り返すことを含む、請求項1に記載の方法。
  3.  前記第1~第Nの磁石組を得ることは、前記複数の永久磁石のうち最も重い永久磁石と最も軽い永久磁石と任意の永久磁石とを一つずつ組み合わせて一組の磁石組とすることを繰り返すことを含む、請求項1に記載の方法。
  4.  前記第1~第Nの磁石組を得ることは、前記複数の永久磁石のうち最も重い永久磁石と最も軽い永久磁石と中央値を示す重さを有する永久磁石とを一つずつ組み合わせて一組の磁石組とすることを繰り返すことを含む、請求項1に記載の方法。
  5.  前記第1~第Nの磁石組を一つずつ取り付けることの前に、前記第1~第Nの磁石組の重量を個々に取得することをさらに含み、
     取得された前記第1~第Nの磁石組の重量M,M,・・・MN-1,Mが式1を満たす場合、前記第1~第Nの磁石組を一つずつ取り付けることは、前記第1~第Nの磁石組のうち第a(aは、2~N-1の自然数)の磁石組が前記第1~第Nの磁石組のうち第a-1の磁石組及び前記第1~第Nの磁石組のうち第a+1の磁石組と前記回転軸の周方向において隣り合わないように、前記第1~第Nの磁石組を前記第1~第Nの取付部に一つずつ取り付けることを含む、請求項1~4のいずれか一項に記載の方法。
       M≧M≧・・・MN-1≧M ・・・ (1)
  6.  前記第1~第Nの磁石組を一つずつ取り付けることの前に、前記第1~第Nの磁石組の重量を個々に取得することをさらに含み、
     取得された前記第1~第Nの磁石組の重量M,M,・・・MN-1,Mが式2を満たす場合、前記第1~第Nの磁石組を一つずつ取り付けることは、前記第1~第Nの磁石組のうち第b(bは、1~Nの奇数)の磁石組と前記第1~第Nの磁石組のうち第c(cは、c=b+1を満たし且つ1~Nの偶数)の磁石組とが前記回転軸を間において対向するように、前記第1~第Nの磁石組を前記第1~第Nの取付部に一つずつ取り付けることを含む、請求項1~4のいずれか一項に記載の方法。
       M≧M≧・・・MN-1≧M ・・・ (2)
  7.  前記第1~第Nの磁石組を一つずつ取り付けることは、前記第1~第Nの磁石組のうち奇数の磁石組同士が前記回転軸の周方向において隣り合わず、且つ、前記第1~第Nの磁石組のうち偶数の磁石組同士が前記回転軸の周方向において隣り合わないように、前記第1~第Nの磁石組を前記第1~第Nの取付部に一つずつ取り付けることを含む、請求項6に記載の方法。
  8.  前記第1~第Nの磁石組を一つずつ取り付けることの前に、前記第1~第Nの磁石組の重量を個々に取得することをさらに含み、
     前記第1~第Nの磁石組を得ることは、前記複数の永久磁石のうち相対的に重い永久磁石と相対的に軽い永久磁石とをそれぞれ少なくとも一つずつ組み合わせて一組の磁石組とすることで、第1~第N(Nは6以上の自然数)の磁石組を得ることを含み、
     前記第1~第Nの磁石組を一つずつ取り付けることは、取得された前記第1~第Nの磁石組の重量M,M,・・・MN-1,Mが式3を満たす場合、前記第1~第Nの磁石組のうちから任意の磁石組を2つずつ選択してN/2個の対をなし、当該各対のうち相対的に重い磁石組同士が前記回転軸の周方向において隣り合わず、当該対のうち相対的に軽い磁石組同士が前記回転軸の周方向において隣り合わず、且つ、当該各対をなす磁石組が前記回転軸を間において対向するように、前記第1~第Nの磁石組を前記第1~第Nの取付部に一つずつ取り付けることを含む、請求項1~4のいずれか一項に記載の回転子鉄心の製造方法。
       M≧M≧・・・MN-1≧M ・・・ (3)
  9.  第1~第L(Lは5以上の自然数)の永久磁石の重量を個々に取得することと、
     所定の回転軸周りで回転するように構成された鉄心本体であって、前記回転軸の周方向に並ぶ第1~第Lの取付部を有する鉄心本体を用意することと、
     取得された前記第1~第Lの永久磁石の重量m,m,・・・mL-1,mが式4を満たす場合、前記第1~第Lの永久磁石のうち第d(dは、2~L-1の自然数)の永久磁石が前記第1~第Lの永久磁石のうち第d-1の永久磁石及び前記第1~第Lの永久磁石のうち第d+1の永久磁石と前記回転軸の周方向において隣り合わないように、前記第1~第Lの永久磁石を前記第1~第Lの取付部に一つずつ取り付けることとを含む、回転子鉄心の製造方法。
       m≧m≧・・・mL-1≧m ・・・ (4)
  10.  第1~第K(Kは4以上の偶数)の永久磁石の重量を個々に取得することと、
     所定の回転軸周りで回転するように構成された鉄心本体であって、前記回転軸の周方向に並ぶ第1~第Kの取付部を有する鉄心本体を用意することと、
     取得された前記第1~第Kの永久磁石の重量m,m,・・・mK-1,mが式5を満たす場合、前記第1~第Kの永久磁石のうち第e(eは、1~Kまでの奇数)の永久磁石と前記第1~第Kの永久磁石のうち第f(fは、f=e+1を満たし且つ1~Kまでの偶数)の永久磁石とが前記回転軸を間において対向するように、前記第1~第Kの永久磁石を前記第1~第Kの取付部に一つずつ取り付けることとを含む、回転子鉄心の製造方法。
       m≧m≧・・・mK-1≧m ・・・ (5)
  11.  前記第1~第Kの永久磁石を一つずつ取り付けることは、前記第1~第Kの永久磁石のうち奇数の永久磁石同士が前記回転軸の周方向において隣り合わず、且つ、前記第1~第Kの永久磁石のうち偶数の永久磁石同士が前記回転軸の周方向において隣り合わないように、前記第1~第Kの永久磁石を前記第1~第Kの取付部に一つずつ取り付けることを含む、請求項10に記載の方法。
  12.  第1~第J(Jは6以上の偶数)の永久磁石の重量を個々に取得することと、
     所定の回転軸周りで回転するように構成された鉄心本体であって、前記回転軸の周方向に並ぶ第1~第Jの取付部を有する鉄心本体を用意することと、
     取得された前記第1~第Jの永久磁石の重量m,m,・・・mJ-1,mが式6を満たす場合、前記第1~第Jの永久磁石のうちから任意の永久磁石を2つずつ選択してJ/2個の対をなし、当該各対のうち相対的に重い永久磁石同士が前記回転軸の周方向において隣り合わず、当該対のうち相対的に軽い永久磁石同士が前記回転軸の周方向において隣り合わず、且つ、当該各対をなす永久磁石が前記回転軸を間において対向するように、前記第1~第Jの永久磁石を前記第1~第Jの取付部に一つずつ取り付けることとを含む、回転子鉄心の製造方法。
       m≧m≧・・・mJ-1≧m ・・・ (6)
PCT/JP2018/010261 2017-05-25 2018-03-15 回転子鉄心の製造方法 WO2018216325A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880032568.8A CN110637409A (zh) 2017-05-25 2018-03-15 转子铁芯的制造方法
EP18805909.1A EP3633832A4 (en) 2017-05-25 2018-03-15 ROTOR CORE MANUFACTURING PROCESS
US16/690,134 US20200091802A1 (en) 2017-05-25 2019-11-21 Method of manufacturing rotor core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-103579 2017-05-25
JP2017103579A JP6901907B2 (ja) 2017-05-25 2017-05-25 回転子鉄心の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/690,134 Continuation US20200091802A1 (en) 2017-05-25 2019-11-21 Method of manufacturing rotor core

Publications (1)

Publication Number Publication Date
WO2018216325A1 true WO2018216325A1 (ja) 2018-11-29

Family

ID=64396478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010261 WO2018216325A1 (ja) 2017-05-25 2018-03-15 回転子鉄心の製造方法

Country Status (5)

Country Link
US (1) US20200091802A1 (ja)
EP (1) EP3633832A4 (ja)
JP (1) JP6901907B2 (ja)
CN (1) CN110637409A (ja)
WO (1) WO2018216325A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950569U (ja) * 1982-08-31 1984-04-03 飯田電機工業株式会社 内燃機関用点火装置におけるフライホイ−ル
JPH09294358A (ja) * 1996-04-24 1997-11-11 Honda Motor Co Ltd モータ用ロータの組立方法
JP2007124819A (ja) * 2005-10-28 2007-05-17 Asmo Co Ltd 埋込磁石型モータ及びそのロータ
JP2012100499A (ja) * 2010-11-05 2012-05-24 Toyota Motor Corp 回転電機用ロータの製造方法
JP2013009453A (ja) 2011-06-22 2013-01-10 Nissan Motor Co Ltd ロータの製造方法
JP2016019381A (ja) * 2014-07-09 2016-02-01 株式会社三井ハイテック 回転子積層鉄心及びその製造方法
JP2016092994A (ja) 2014-11-06 2016-05-23 多摩川精機株式会社 モータロータ構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746568B2 (ja) * 1996-05-14 2006-02-15 追浜工業株式会社 磁石発電機の回転子
JPH11164529A (ja) * 1997-11-25 1999-06-18 Asmo Co Ltd 回転電機用ロータのマグネット装着方法
JP2013021829A (ja) * 2011-07-12 2013-01-31 Mitsuba Corp 電動モータの製造方法および電動モータ
JP6179396B2 (ja) * 2013-12-27 2017-08-16 ダイキン工業株式会社 回転電機のロータの製造方法およびロータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950569U (ja) * 1982-08-31 1984-04-03 飯田電機工業株式会社 内燃機関用点火装置におけるフライホイ−ル
JPH09294358A (ja) * 1996-04-24 1997-11-11 Honda Motor Co Ltd モータ用ロータの組立方法
JP2007124819A (ja) * 2005-10-28 2007-05-17 Asmo Co Ltd 埋込磁石型モータ及びそのロータ
JP2012100499A (ja) * 2010-11-05 2012-05-24 Toyota Motor Corp 回転電機用ロータの製造方法
JP2013009453A (ja) 2011-06-22 2013-01-10 Nissan Motor Co Ltd ロータの製造方法
JP2016019381A (ja) * 2014-07-09 2016-02-01 株式会社三井ハイテック 回転子積層鉄心及びその製造方法
JP2016092994A (ja) 2014-11-06 2016-05-23 多摩川精機株式会社 モータロータ構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633832A4 *

Also Published As

Publication number Publication date
JP2018201269A (ja) 2018-12-20
JP6901907B2 (ja) 2021-07-14
EP3633832A4 (en) 2021-03-10
EP3633832A1 (en) 2020-04-08
US20200091802A1 (en) 2020-03-19
CN110637409A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN107809156B (zh) 转子层叠铁芯的制造方法及转子层叠铁芯的制造装置
JP6343557B2 (ja) 回転子用積層体及びその製造方法並びに回転子の製造方法
JP6162656B2 (ja) 回転子積層鉄心及びその製造方法
US10298102B2 (en) Method of manufacturing laminated core
WO2015105133A1 (ja) 積層鉄心の製造方法
EP2083502A3 (en) Laminated core, method and apparatus for manufacturing laminated core, and stator
JP6343556B2 (ja) 積層鉄心用積層体及びその製造方法並びに積層鉄心の製造方法
KR20210072080A (ko) 적층 코어 및 회전 전기 기계
JP6401605B2 (ja) ダミーカシメを有する積層体及びその製造方法、並びに積層鉄心の製造方法
KR20210083337A (ko) 스테이터용 접착 적층 코어 및 회전 전기 기기
CN105490466B (zh) 层叠铁心及其制造方法
CN106341005B (zh) 层叠铁芯的制造方法和制造装置
JP2018068073A (ja) 回転子積層鉄心の製造方法、回転子積層鉄心の製造装置及び回転子積層鉄心
JP2018007421A (ja) 積層鉄心及びその製造方法
WO2018216325A1 (ja) 回転子鉄心の製造方法
JP6537296B2 (ja) 仮カシメを有する積層体及びその製造方法並びに積層鉄心の製造方法
JP7094803B2 (ja) 回転子積層鉄心及び回転子積層鉄心の製造方法
WO2019188048A1 (ja) 鉄心製品の製造方法
JP6915823B2 (ja) 積層鉄心及び積層鉄心の製造方法
JP6761762B2 (ja) 回転子積層鉄心及びその製造方法
JP6567314B2 (ja) 仮カシメを有する積層体及びその製造方法並びに積層鉄心の製造方法
EP3086441A1 (en) Stator for an ac motor for an electromechanical actuator
JP2016178755A (ja) 仮カシメを有する積層体及びその製造方法並びに積層鉄心の製造方法
TWM556184U (zh) 用於馬達的矽鋼片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018805909

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018805909

Country of ref document: EP

Effective date: 20200102