WO2018216275A1 - 静電容量式ハイトセンサ及びそれを用いたレーザ加工ノズル、レーザ加工装置 - Google Patents

静電容量式ハイトセンサ及びそれを用いたレーザ加工ノズル、レーザ加工装置 Download PDF

Info

Publication number
WO2018216275A1
WO2018216275A1 PCT/JP2018/005430 JP2018005430W WO2018216275A1 WO 2018216275 A1 WO2018216275 A1 WO 2018216275A1 JP 2018005430 W JP2018005430 W JP 2018005430W WO 2018216275 A1 WO2018216275 A1 WO 2018216275A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
sensor electrode
signal
laser processing
laser
Prior art date
Application number
PCT/JP2018/005430
Other languages
English (en)
French (fr)
Inventor
田中 康之
裕也 吉田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019519465A priority Critical patent/JPWO2018216275A1/ja
Priority to CN201880033676.7A priority patent/CN110662938A/zh
Priority to EP18806260.8A priority patent/EP3633314A4/en
Publication of WO2018216275A1 publication Critical patent/WO2018216275A1/ja
Priority to US16/683,942 priority patent/US20200080831A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/08Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means
    • G01B7/082Height gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • B23K26/048Automatically focusing the laser beam by controlling the distance between laser head and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures

Definitions

  • the present disclosure relates to a capacitance type height sensor used in a laser processing apparatus, a laser processing nozzle using the same, and a laser processing apparatus.
  • a capacitance type height sensor is generally used for this distance measurement.
  • Patent Document 1 an alternating voltage is applied between a sensor electrode attached to the tip of a laser processing nozzle and a workpiece electrically connected to the ground, and a gap between the sensor electrode and the workpiece is detected.
  • a capacitance-type height sensor is disclosed in which a voltage whose amplitude is modulated based on capacitance is detected by a conversion circuit, and the voltage is converted into a distance for measurement.
  • the capacitance type height sensor is configured to measure the distance by removing the influence of the stray capacitance of the cable connected to the sensor electrode.
  • the technology of the present disclosure has been made in view of such a point, and an object thereof is to provide a capacitance type height sensor that can easily and reliably detect disconnection of a cable.
  • the capacitive height sensor includes a sensor electrode attached to the tip of a laser processing nozzle, and supplies a voltage signal to the sensor electrode, and detects a signal from the sensor electrode to detect the sensor.
  • a capacitive height sensor having a signal processing unit for measuring the distance between the tip of the electrode and a workpiece electrically connected to the ground, and a cable for electrically connecting the sensor electrode and the signal processing unit.
  • the signal processing unit includes a disconnection determination unit that determines that the cable is disconnected when the signal from the sensor electrode is equal to or greater than a predetermined value.
  • the predetermined value is equal to or greater than the value of the signal from the sensor electrode when the distance between the tip of the sensor electrode and the workpiece is a predetermined distance greater than the maximum distance during laser processing, and the cable is connected to the signal processing unit. It is preferable to be in a range equal to or less than the value of the signal from the sensor electrode when not.
  • the laser processing nozzle is electrically connected to the sensor electrode of the capacitance type height sensor described above, and defines a laser beam emission path and a flow path of assist gas supplied during laser processing.
  • a second nozzle that is provided so as to surround the outer periphery of the first nozzle with a gap and is electrically insulated from the first nozzle and the sensor electrode by an insulating member.
  • the disconnection of the cable can be easily determined, and the external electromagnetic noise flying to the sensor electrode can be shielded by the second nozzle.
  • first nozzle and the second nozzle are configured to have the same potential.
  • This configuration improves the cable disconnection detection accuracy.
  • a laser processing apparatus includes a laser light source that emits laser light, an optical fiber that guides the laser light, and the laser light guided by the optical fiber toward the workpiece.
  • the robot controller that supplies a signal to drive or stop the joint axis of the robot arm and the laser light source are controlled so that the cable is disconnected by the disconnection determination unit
  • a laser control unit that stops laser oscillation of the laser light source, and the robot control unit measures the distance measured by the capacitance type height sensor.
  • the basis characterized in that the distance between the tip and the workpiece of the sensor electrode is at least a position control unit for controlling the position of the laser processing nozzle to be the target value.
  • FIG. 1 is a diagram illustrating a configuration of a laser processing nozzle according to the first embodiment.
  • FIG. 2 is a diagram illustrating a functional block configuration of a signal processing unit of the capacitive height sensor.
  • FIG. 3 is a diagram illustrating an example of a circuit configuration of a signal processing unit of the capacitive height sensor.
  • FIG. 4 is a diagram illustrating a configuration of a laser processing nozzle according to the second embodiment.
  • FIG. 5 is a diagram illustrating a configuration of a laser processing apparatus according to the third embodiment.
  • FIG. 1 shows a configuration of a laser processing nozzle 1 according to the present embodiment.
  • the laser processing nozzle 1 is attached to the tip of a robot arm 33 (see FIG. 5) (not shown).
  • the laser processing nozzle 1 includes a sensor nozzle 2 (first nozzle), a shield nozzle 3 (second nozzle), an insulating member 4 (first insulating member), and a capacitive height sensor 10 (hereinafter simply referred to as height). Sensor 10).
  • the laser beam incident side in the laser processing nozzle 1 is referred to as “upper” or “upper”, and the laser beam emission side, that is, the side on which the workpiece 5 is disposed is “lower” or Sometimes called “downward”.
  • the sensor nozzle 2 is a metal member having a conical portion and cylindrical portions above and below the conical portion.
  • the conical portion is provided so that its diameter decreases downward.
  • the lower cylindrical portion is electrically connected to the sensor electrode 11 of the height sensor 10.
  • the inner space of the sensor nozzle 2 is a laser beam emission path indicated by a two-dot chain line in the drawing, and a flow path for assist gas blown to the workpiece 5 during laser processing. That is, the sensor nozzle 2 defines a laser light emission path and an assist gas flow path.
  • the shield nozzle 3 is a metal member having a conical portion and cylindrical portions above and below the conical portion, similarly to the sensor nozzle 2.
  • the conical portion is provided so that its diameter decreases downward.
  • the shield nozzle 3 is disposed so as to surround the outer periphery of the sensor nozzle 2 with a space therebetween.
  • the shield nozzle 3 is configured to have the same potential as the sensor nozzle 2 and the sensor electrode 11.
  • the shield nozzle 3 shields external electromagnetic noise from the sensor nozzle 2 and the sensor electrode 11 and protects the sensor nozzle 2 from mechanical shock.
  • the insulating member 4 (first insulating member) is a flange made of an annular heat resistant resin or the like having a flange.
  • the inner peripheral surface of the insulating member 4 comes into contact with the outer peripheral surface of the cylindrical portion below the sensor nozzle 2.
  • the lower surface of the shield nozzle 3 is in contact with the upper surface of the collar portion. Further, the lower surface of the insulating member 4 is in contact with the sensor electrode 11.
  • the sensor nozzle 2 and sensor electrode 11 and the shield nozzle 3 are electrically insulated by the insulating member 4.
  • the insulating member 4 serves to seal the space between the sensor nozzle 2 and the shield nozzle 3.
  • the height sensor 10 includes a sensor electrode 11, a coaxial cable 12, and a signal processing unit 13.
  • the sensor electrode 11 is a substantially conical metal member provided so that the inner diameter and the outer diameter become smaller downward.
  • the sensor electrode 11 is attached to the tip of the laser processing nozzle 1 and constitutes a part of the laser processing nozzle 1.
  • the opening at the tip of the sensor electrode 11 corresponds to a laser beam emission port and an assist gas injection port. Further, by disposing the workpiece 5 at a predetermined position, the sensor electrode 11 is electrically coupled with a capacitance corresponding to the distance from the workpiece 5.
  • the coaxial cable 12 generally includes an internal wiring 12a (internal conductor), a dielectric covering the internal wiring 12a, a shield wire 12b (external conductor) covering the dielectric, and an insulating film covering the shield wire 12b. Cable with a typical configuration.
  • the coaxial cable 12 has a coaxial connector 12c at its tip.
  • the internal wiring 12a is electrically connected to the sensor nozzle 2 via the coaxial connector 12c.
  • the shield wire 12b is electrically connected to the shield nozzle 3 via the coaxial connector 12c. Therefore, the internal wiring 12a and the shield wire 12b of the coaxial cable 12 are configured to have the same potential. External electromagnetic noise is shielded by the shield wire 12b.
  • the signal processing unit 13 has an external terminal T that serves as both a signal supply terminal that supplies a voltage signal generated inside to the sensor electrode 11 and a signal detection terminal that receives a signal returned from the sensor electrode 11.
  • the external terminal T is connected to one end of the coaxial cable 12.
  • the signal processing unit 13 is connected to the tip of the laser processing nozzle 1, that is, the tip of the sensor electrode 11 and the workpiece 5 electrically connected to the ground, based on the signal from the sensor electrode 11. It has a function to measure distance. Note that the signal supply terminal and the signal detection terminal may be provided separately.
  • FIG. 2 shows a functional block configuration of the signal processing unit 13 of the height sensor 10.
  • the signal processing unit 13 of the height sensor 10 includes a signal generation unit 14, a signal detection unit 15, a distance calculation unit 16, and a disconnection determination unit 17.
  • the signal generator 14 generates a voltage signal Vo having a predetermined frequency f and amplitude, and supplies the signal Vo to the sensor electrode 11 via the external terminal T and the coaxial cable 12.
  • the signal detector 15 has an external terminal T and detects the voltage signal Vin returned from the sensor electrode 11. Further, the signal detection unit 15 includes an impedance adjustment resistor 18 (see FIG. 3) connected to the external terminal T. The impedance adjusting resistor 18 may be directly connected to the path between the signal generator 14 and the external terminal T.
  • the distance calculation unit 16 calculates the distance between the tip of the sensor electrode 11 and the workpiece 5 based on the voltage signal Vin detected by the signal detection unit 15, and sends the value to an external control unit or storage unit (not shown). As will be described later, the laser processing apparatus 30 (see FIG. 5) controls the position of the laser processing nozzle 1 based on the difference between the distance calculated by the distance calculation unit 16 and the target value.
  • the disconnection determination unit 17 monitors the voltage signal Vin detected by the signal detection unit 15, and determines that the coaxial cable 12 is disconnected when the signal Vin is equal to or greater than a predetermined threshold value Vth. When it is determined that the coaxial cable 12 is disconnected, the disconnection determination unit 17 sends a disconnection detection signal directly to an external control unit or storage unit (not shown), or the above control via the distance calculation unit 16. Sent indirectly to the department or storage.
  • the voltage signal Vin is a modulation signal obtained by amplitude-modulating the voltage signal Vo supplied to the sensor electrode 11 by an electrostatic capacity or the like electrically coupled to the external terminal T (signal detection terminal).
  • of the modulation signal is expressed by Expression (1).
  • the voltage signal Vo output from the external terminal T is a general low-pass that is determined by the resistance value R, the capacitance value C, and the frequency f of the voltage signal Vo. Amplitude modulated by the filter. The amplitude-modulated voltage signal Vo is detected at the external terminal T as the modulation signal Vin.
  • the capacitance value C is expressed by the equation (2) using C 0 , C 1 , and C W shown in FIG.
  • C C 0 + C 1 + C W (2) here, C 0 is a capacitance value C 1 electrically coupled to the external terminal T in the signal processing unit 13, C 1 is a floating capacitance value of the coaxial cable 12, and C W is a distance between the tip of the sensor electrode 11 and the workpiece 5. Capacitance value.
  • the capacitance value C 0 is a value determined by the arrangement of elements in the signal processing unit 13, the wiring layout, and the like, and is substantially constant. Similarly, when the arrangement of the laser processing nozzle 1 and the coaxial cable 12 is determined, the capacitance value C 0 is also substantially constant.
  • the capacitance value CW changes according to the distance between the tip of the sensor electrode 11 and the workpiece 5. Therefore, the capacitance value CW can be calculated from the value of the signal Vin, and the distance between the tip of the sensor electrode 11 and the workpiece 5 can be calculated from this value.
  • the capacitance values C 0 and C 1 are about 5 pF, and the capacitance value C W is 0 pF to several pF depending on the distance between the tip of the sensor electrode 11 and the workpiece 5.
  • these values can be appropriately changed depending on the size and internal layout of the signal processing unit 13, the cable length of the coaxial cable 12, laser processing conditions, and the like.
  • the disconnection of the coaxial cable 12 can be determined from the value of the signal Vin.
  • the setting range of the threshold value Vth for determining the presence or absence of disconnection is expressed by Expression (3).
  • C W1 is a capacitance value when the distance between the tip of the sensor electrode 11 and the workpiece 5 is increased by a predetermined length from the distance at the time of laser processing.
  • Equation (3) C W1 is electrically connected to the external terminal T when the distance between the tip of the sensor electrode 11 and the workpiece 5 is a predetermined distance larger than the maximum distance set during laser processing. Is the capacitance value coupled to. As the distance between the tip of the sensor electrode 11 and the workpiece 5 increases, the capacitance value CW decreases, so that the corresponding Vin value increases as is apparent from the equations (1) and (2). Become.
  • the presence or absence of disconnection of the coaxial cable 12 can be easily determined based on the value of the signal Vin received from the sensor electrode 11 by the external terminal T that is a signal detection terminal. Further, in selecting the lower limit value of the threshold value Vth, by using the capacitance value CW1 when the distance between the tip of the sensor electrode 11 and the workpiece 5 is sufficiently larger than that during normal laser processing. Since the lower limit value of Vth is sufficiently larger than the voltage signal detected at the external terminal T (signal detection terminal) during normal laser processing, erroneous determination of disconnection can be reliably prevented.
  • the upper limit value of Vth in the equation (3) is the value at the external terminal T when the coaxial cable 12 is not connected to the external terminal T (signal detection terminal). This is the value of the detected voltage signal.
  • the threshold value Vth can be arbitrarily changed depending on the laser processing conditions, particularly the set distance between the tip of the sensor electrode 11 and the workpiece 5. Further, when the arrangement or internal configuration of each member in the laser processing nozzle 1 is changed, the threshold value Vth is changed according to the change in the capacitance value electrically coupled to the external terminal T (signal detection terminal). Needless to say, the setting range is changed.
  • FIG. 3 shows an example of a specific circuit configuration of the signal processing unit 13 of the height sensor 10.
  • the signal processing unit 13 includes a CPU 20, a digital-analog signal converter 21 (hereinafter referred to as DAC 21), an analog-digital signal converter 22 (hereinafter referred to as ADC 22), an impedance adjusting resistor 18, and an external unit. And a terminal T.
  • CPU 20 reads a control program or the like from a storage unit (not shown) and outputs a pulse train signal having a predetermined cycle. Further, the CPU 20 receives a signal from the ADC 22 and calculates the distance between the tip of the sensor electrode 11 and the workpiece 5. Further, if the pulse train signal received from the ADC 22 per unit time is equal to or greater than a predetermined count number, the CPU 20 determines that the coaxial cable 12 is disconnected and sends a disconnection detection signal to an external control unit or storage unit (not shown). That is, the CPU 20 corresponds to the distance calculation unit 16 and the disconnection determination unit 17 illustrated in FIG.
  • the DAC 21 converts the pulse train signal supplied from the CPU 20 into an analog voltage signal having a predetermined frequency, and amplifies the analog voltage signal within a predetermined range and outputs it as a voltage signal Vo. That is, the DAC 21 corresponds to the signal generator 14 shown in FIG.
  • the ADC 22 detects the modulation signal Vin sent from the sensor electrode 11 via the coaxial cable 12, converts it to a pulse train signal having a count number corresponding to the amplitude of the signal Vin, and supplies it to the CPU 20.
  • the ADC 22 corresponds to a part of the signal detection unit 15 shown in FIG.
  • the influence of the signal offset can be reduced. It is also possible to detect contact between the sensor electrode 11 and the workpiece 5.
  • the configuration of the signal processing unit 13 shown in FIG. 3 is merely an example, and other configurations may be used.
  • an AC power supply may be used instead of the DAC 21 and an analog filter may be used instead of the ADC 22.
  • FIG. 4 shows the configuration of the laser processing nozzle 1 according to the present embodiment.
  • the laser processing nozzle 1 further includes a conductive portion 7.
  • the conductive portion 7 is electrically insulated from the sensor nozzle 2 and the shield nozzle 3 by an annular insulating member 6 (second insulating member), and is electrically connected to the ground so that the conductive portion 7 has a ground potential. It is connected.
  • the insulating member 6 also serves as a packing that prevents the assist gas from leaking out of the laser processing nozzle 1.
  • C C 0 + C 1 + C 2 + C W (4) here, C 2 is a capacitance value between the conductive portion 7 and the sensor electrode 11.
  • the setting range of the threshold value Vth is expressed by the equation (5).
  • the total sum C of the capacitance values is made larger than the configuration shown in the first embodiment. Can do.
  • the degree of change in the modulation signal Vin due to the presence or absence of disconnection of the coaxial cable 12 is greater than that in the configuration shown in the first embodiment. . That is, it is easy to determine the presence or absence of disconnection, and the disconnection detection accuracy is improved.
  • the insulating member 6 (second insulating member) and the conductive portion 7 are provided in order to add a certain capacitance to the sensor electrode 11.
  • a structure for adding a certain capacitance to the electrode 11 may be provided separately to increase the total sum C of the capacitance values.
  • a separate capacitor may be connected between the sensor electrode 11 and the ground.
  • the capacitance value C 2 is preferably smaller than the capacitance value C 0, C 1, C W .
  • FIG. 5 shows the configuration of the laser processing apparatus according to the present embodiment.
  • the laser processing apparatus 30 includes a laser light source 31, an optical fiber 32, a robot arm 33, a laser processing nozzle 1, and a control unit 34.
  • a laser processing apparatus 30 also includes a supply path for assist gas supplied to the laser processing nozzle 1.
  • the laser light source 31 includes a power source (not shown), a laser resonator (not shown) that receives power supply from the power source and generates laser light, and collects the laser light and couples it to the optical fiber 32. And an optical system (not shown).
  • the optical fiber 32 receives the laser light generated by the laser resonator and condensed by the optical system, and guides it to the laser processing nozzle 1.
  • An optical fiber 32 such as a single clad type or a double clad type is appropriately selected depending on the type of laser processing, laser light intensity, and the like. Similarly, the core diameter and the cladding diameter of the optical fiber 32 can be changed as appropriate.
  • the robot arm 33 has the laser processing nozzle 1 attached to the tip, and receives the signal from the control unit 34 based on a processing program or the like, and moves the laser processing nozzle 1 so as to draw a predetermined locus. Further, during laser processing, the robot arm 33 moves the position of the laser processing nozzle 1 so that the distance between the tip of the sensor electrode 11 that is the tip of the laser processing nozzle 1 and the workpiece 5 is a predetermined distance. To control.
  • the control unit 34 includes a laser control unit 35 that controls the amount of light of the laser light source 31 and a robot control unit 36 that controls the operation of the robot arm 33.
  • the laser control unit 35 controls the power supplied from the power supply, the temperature of the laser resonator, and the like so that laser light having a desired intensity is emitted.
  • the robot control unit 36 supplies a signal for driving or stopping the joint axis of the robot arm 33 so that the tip of the robot arm 33, that is, the tip of the laser processing nozzle 1 draws a predetermined locus, based on a machining program or the like.
  • the robot control unit 36 has a position control unit 37.
  • the position controller 37 determines the position of the laser processing nozzle 1, specifically the robot arm 33 so that the distance between the tip of the sensor electrode 11 and the workpiece 5 becomes a target value based on the distance measured by the height sensor 10. Is supplied to the robot arm 33.
  • the power supply of the entire laser processing apparatus 30 is turned on, and power is supplied to the laser processing apparatus 30.
  • a predetermined laser processing program is activated automatically or by an operator's operation, the robot arm 33 moves to a predetermined initial position, and power is also applied to the height sensor 10 to enable measurement. Further, the power source of the laser light source 31 is also turned on.
  • the laser processing device 30 moves the robot arm 33 to move the laser processing nozzle 1 closer to the workpiece 5.
  • the height sensor 10 measures the actual distance between the laser processing nozzle 1 and the workpiece 5.
  • the position control unit 37 compares the target distance between the tip of the sensor electrode 11 and the workpiece 5 defined by the program with the actual distance. Further, the position control unit 37 drives the robot arm 33 so that the laser processing nozzle 1 comes to the target position according to these differences.
  • the laser processing apparatus 30 supplies assist gas into the laser processing nozzle 1 and generates laser light with a laser light source 31.
  • the laser beam guided into the laser processing nozzle 1 by the optical fiber 32 is irradiated to the workpiece 5. Thereby, laser processing is started.
  • the height sensor 10 always measures the distance between the tip of the sensor electrode 11 and the workpiece 5.
  • the position control unit 37 controls the position of the laser processing nozzle 1, that is, the position of the robot arm 33 based on the measured actual distance.
  • the laser oscillation at the laser light source 31 is stopped, and the supply of assist gas is also stopped.
  • the robot arm 33 moves to a predetermined initial position and waits at that position until the next machining starts.
  • the disconnection determination unit 17 of the signal processing unit 13 immediately detects the disconnection and sends a disconnection detection signal to the control unit 34.
  • the laser control unit 35 of the control unit 34 receives this signal and immediately stops the laser oscillation in the laser light source 31. At the same time, the robot controller 36 of the controller 34 moves the robot arm 33 to a predetermined initial position.
  • the height sensor 10 measures the distance between the tip of the sensor electrode 11 and the workpiece 5 and always determines whether or not the coaxial cable 12 is disconnected. Conventionally, the presence or absence of disconnection of the coaxial cable 12 is inspected by periodic inspection of the processing apparatus, and the disconnection of the coaxial cable 12 cannot be detected in real time.
  • the laser processing apparatus 30 determines whether or not the coaxial cable 12 is disconnected in real time, and immediately stops the operation of the laser processing apparatus 30 when the disconnection is detected. Therefore, it is possible to prevent the processing defects of the workpiece 5 from expanding. Further, it is possible to prevent the laser processing nozzle 1 from colliding with the workpiece 5 due to the fact that the distance cannot be measured by the height sensor 10. Thereby, damage of the laser processing nozzle 1 can be prevented.
  • the laser light source 31 may break down when the laser control unit 35 suddenly stops the laser oscillation upon receiving the disconnection detection signal. In such a case, the laser control unit 35 may control the laser light source 31 so as to gradually stop the laser oscillation. Similarly, if the robot arm 33 is suddenly moved to the initial position and the robot arm 33 is likely to break down, the moving speed of the robot arm 33 can be controlled to avoid the failure.
  • the robot arm 33 can be prevented from moving from the position when the disconnection detection signal is received.
  • the sensor electrode 11 of the height sensor 10 and the signal processing unit 13 are connected by the coaxial cable 12.
  • the present invention is not particularly limited thereto, and other types of cables may be used.
  • the signal processing unit 13 of the height sensor 10 may be incorporated in the control unit 34 of the laser processing apparatus 30. However, care must be taken so that the cable length of the coaxial cable 12 does not become longer than necessary.
  • the sensor nozzle 2, the shield nozzle 3, and the conductive portion 7 are preferably made of copper or a copper-based material from the viewpoint of lowering electrical resistance and increasing thermal conductivity, but other materials such as aluminum It may be a material.
  • the electrostatic capacity type height sensor of the present disclosure can be easily and reliably determined whether or not the cable connected to the sensor electrode is disconnected, and is useful for application to a laser processing apparatus or the like.
  • Laser processing nozzle 1 Laser processing nozzle 2 Sensor nozzle (first nozzle) 3 Shield nozzle (second nozzle) 4 Insulating member (first insulating member) 5 Workpiece 6 Insulating member (second insulating member) 7 Conductive part 10 Capacitance type height sensor 11 Sensor electrode 12 Coaxial cable (cable) 13 Signal processing unit 14 Signal generation unit 15 Signal detection unit 16 Distance calculation unit 17 Disconnection determination unit 30 Laser processing device 31 Laser light source 32 Optical fiber 33 Robot arm 34 Control unit 35 Laser control unit 36 Robot control unit 37 Position control unit T External Terminal (signal detection terminal)

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

静電容量式ハイトセンサ(10)は、レーザ加工ノズル(1)の先端に取り付けられたセンサ電極(11)と、センサ電極(11)に電圧信号を供給するとともに、センサ電極(11)からの信号を検出してセンサ電極(11)の先端とアースに電気的に接続された被加工物(5)との距離を計測する信号処理部(13)と、センサ電極(11)と信号処理部(13)とを電気的に接続するケーブル(12)とを備えている。信号処理部(13)は、センサ電極(11)からの信号が所定の値以上であるとき、ケーブル(12)が断線していると判定する断線判定部を有している。

Description

静電容量式ハイトセンサ及びそれを用いたレーザ加工ノズル、レーザ加工装置
 本開示は、レーザ加工装置に用いられる静電容量式ハイトセンサ及びそれを用いたレーザ加工ノズル、レーザ加工装置に関する。
 レーザ加工装置を用いて被加工物の切断加工等を行う場合、レーザ光の焦点を被加工物の表面あるいはその近傍に合わせることが加工品質を維持する上で重要である。このため、ロボットアーム等に設けられたレーザ加工ノズルの先端と被加工物との距離を所望の値に保つ必要がある。この距離計測のために静電容量式ハイトセンサが一般に用いられる。
 特許文献1には、レーザ加工ノズルの先端部に取り付けられたセンサ電極とアースに電気的に接続された被加工物との間に交流電圧を印加し、センサ電極と被加工物との間の静電容量に基づいて振幅が変調された電圧を変換回路で検出して、当該電圧を距離に換算して計測を行う静電容量式ハイトセンサが開示されている。また、この静電容量式ハイトセンサは、センサ電極に接続されたケーブルの浮遊容量の影響を除去して距離計測を行うように構成されている。
特開平09-331089号公報
 特許文献1に開示された従来の構成によれば、センサ電極に接続されたケーブルの浮遊容量の影響を除去して距離計測を行うため、ケーブルの取り替え時にハイトセンサを調整し直す必要が無い。
 ところで、レーザ加工ノズルはロボットアーム等とともに移動するため、センサ電極に接続されたケーブルに張力が加わることが多く、ケーブルがセンサ電極から外れたり、あるいはケーブルが断線したりする場合がある。ケーブルが断線すると、レーザ加工ノズルの先端部と被加工物との距離が計測できず、加工不良を起こすおそれがある。一方、上記従来の構成では、ケーブルの断線をうまく検出できないおそれがある。実際のハイトセンサにおいては、ケーブル以外の要素による静電容量が変換回路に電気的に結合しており、この静電容量によって断線時にも一定の電圧が検出されるためである。
 本開示の技術はかかる点に鑑みなされたもので、その目的はケーブルの断線を簡便かつ確実に検知できる静電容量式ハイトセンサを提供することにある。
 上記目的を達成するために、本開示の技術では、静電容量式ハイトセンサで検出された信号が所定の値以上であるときケーブルが断線したと判定するようにした。
 具体的には、本開示に係る静電容量式ハイトセンサは、レーザ加工ノズルの先端に取り付けられたセンサ電極と、センサ電極に電圧信号を供給するとともに、センサ電極からの信号を検出してセンサ電極の先端とアースに電気的に接続された被加工物との距離を計測する信号処理部と、センサ電極と信号処理部とを電気的に接続するケーブルとを有する静電容量式ハイトセンサであって、信号処理部は、センサ電極からの信号が所定の値以上であるとき、ケーブルが断線していると判定する断線判定部を有していることを特徴とする。
 この構成によれば、センサ電極から受け取る信号の値に基づいてケーブルの断線の有無を簡便に判定することができる。
 所定の値は、センサ電極の先端と被加工物との距離がレーザ加工時の最大距離よりも大きい所定の距離であるときのセンサ電極からの信号の値以上、信号処理部にケーブルが接続されていないときのセンサ電極からの信号の値以下の範囲にあることが好ましい。
 この構成によれば、ケーブルの断線の誤判定を防止し、断線の有無を確実に検知することができる。
 また、本開示に係るレーザ加工ノズルは上記の静電容量式ハイトセンサのセンサ電極に電気的に接続され、レーザ光の出射経路及びレーザ加工時に供給されるアシストガスの流路を画定する第1のノズルと、第1のノズルの外周を間隔をあけて囲むように設けられ、絶縁部材によって第1のノズル及びセンサ電極と電気的に絶縁された第2のノズルとを備えることを特徴とする。
 この構成によれば、ケーブルの断線を簡便に判定できるとともに、第2のノズルにより、センサ電極に飛来する外来の電磁ノイズを遮蔽することができる。
 第1のノズルと第2のノズルとが同電位になるように構成されていることが好ましい。
 この構成によれば、センサ電極に飛来する外来の電磁ノイズを確実に遮蔽することができる。
 センサ電極に対して一定の静電容量を付加する構造をさらに備えることが好ましい。
 この構成によれば、ケーブルの断線検知精度が向上する。
 また、本開示に係るレーザ加工装置は、レーザ光を出射するレーザ光源と、レーザ光を導波する光ファイバと、光ファイバで導波されたレーザ光を被加工物に向けて照射する上記のレーザ加工ノズルと、先端にレーザ加工ノズルが取り付けられ、レーザ加工ノズルを移動させるロボットアームと、レーザ光源及びロボットアームの動作を制御する制御部と、を備え、制御部は、レーザ加工ノズルの先端が所定の軌跡を描くように、ロボットアームの関節軸を駆動または停止させる信号を供給するロボット制御部と、レーザ光源を制御するとともに、断線判定部でケーブルが断線していると判定されたとき、レーザ光源のレーザ発振を停止させるレーザ制御部とを少なくとも有し、ロボット制御部は、静電容量式ハイトセンサで計測された距離に基づき、センサ電極の先端と被加工物との距離が目標値になるようレーザ加工ノズルの位置を制御する位置制御部を少なくとも有していることを特徴とする。
 この構成によれば、ケーブルの断線を検知してレーザ発振を停止させるため、被加工物の加工不良が拡大するのを防止できる。
 以上説明したように、本開示によれば、静電容量式ハイトセンサのセンサ電極と信号処理部とを接続するケーブルの断線を簡便かつ確実に判定できる。
図1は、実施形態1に係るレーザ加工ノズルの構成を示す図である。 図2は、静電容量式ハイトセンサの信号処理部の機能ブロック構成を示す図である。 図3は、静電容量式ハイトセンサの信号処理部の回路構成の一例を示す図である。 図4は、実施形態2に係るレーザ加工ノズルの構成を示す図である。 図5は、実施形態3に係るレーザ加工装置の構成を示す図である。
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示の技術、その適用物或いはその用途を制限することを意図するものでは全くない。
 (実施形態1)
 [レーザ加工ノズルの構成]
 図1は本実施形態に係るレーザ加工ノズル1の構成を示す。このレーザ加工ノズル1は図示しないロボットアーム33(図5参照)の先端に取り付けられている。また、レーザ加工ノズル1はセンサノズル2(第1のノズル)とシールドノズル3(第2のノズル)と絶縁部材4(第1の絶縁部材)と静電容量式ハイトセンサ10(以下、単にハイトセンサ10という)とを備えている。
 なお、以降の説明において、レーザ加工ノズル1におけるレーザ光の入射側を「上」または「上方」と呼び、レーザ光の出射側、つまり、被加工物5が配置された側を「下」または「下方」と呼ぶことがある。
 センサノズル2は、円錐部とその上下にそれぞれ円筒部を有する金属製部材である。円錐部は下方に向かって径が小さくなるように設けられている。また、下方に位置する円筒部はハイトセンサ10のセンサ電極11に電気的に接続されている。センサノズル2の内空間は、図中に二点鎖線で示されるレーザ光の出射経路であるとともに、レーザ加工時に被加工物5に吹き付けられるアシストガスの流路である。すなわち、センサノズル2は、レーザ光の出射経路及びアシストガスの流路を画定している。
 シールドノズル3は、センサノズル2と同様に、円錐部とその上下にそれぞれ円筒部を有する金属製部材である。円錐部は下方に向かって径が小さくなるように設けられている。シールドノズル3は、センサノズル2と間隔をあけてその外周を囲むように配置されている。シールドノズル3は、センサノズル2及びセンサ電極11と同電位になるように構成されている。これらにより、シールドノズル3は、センサノズル2及びセンサ電極11に対する外来の電磁ノイズを遮蔽するとともにセンサノズル2を機械的衝撃から保護する。
 絶縁部材4(第1の絶縁部材)は、鍔部を有する円環形状の耐熱樹脂等からなるフランジである。絶縁部材4の内周面とセンサノズル2の下方の円筒部の外周面とが当接する。鍔部の上面にシールドノズル3の下面が当接している。また、絶縁部材4の下面はセンサ電極11に当接している。絶縁部材4によってセンサノズル2及びセンサ電極11とシールドノズル3とが電気的に絶縁されている。また、絶縁部材4は、センサノズル2とシールドノズル3との間の空間を封止する役割を果たしている。
 ハイトセンサ10はセンサ電極11と同軸ケーブル12と信号処理部13とを備えている。
 センサ電極11は、下方に向かって内径、外径とも小さくなるように設けられた略円錐形の金属製部材である。センサ電極11は、レーザ加工ノズル1の先端に取り付けられて、レーザ加工ノズル1の一部を構成している。センサ電極11の先端の開口部はレーザ光の出射口及びアシストガスの噴射口にあたる。また、被加工物5を所定の位置に配置することで、センサ電極11には、被加工物5との距離に応じた静電容量が電気的に結合される。
 同軸ケーブル12は、内部配線12a(内部導体)と、内部配線12aを被覆する誘電体と、誘電体を被覆するシールド線12b(外部導体)と、シールド線12bを被覆する絶縁被膜とを有する一般的な構成のケーブルである。同軸ケーブル12は、その先端に同軸コネクタ12cを有する。内部配線12aが同軸コネクタ12cを介してセンサノズル2に電気的に接続されている。シールド線12bが同軸コネクタ12cを介してシールドノズル3に電気的に接続されている。よって、同軸ケーブル12の内部配線12aとシールド線12bとは同電位になるように構成されている。シールド線12bにより外来の電磁ノイズが遮蔽される。
 信号処理部13は、内部で発生した電圧信号をセンサ電極11に供給する信号供給端子とセンサ電極11から戻ってきた信号を受け取る信号検出端子とを兼ねる外部端子Tを有する。外部端子Tは、同軸ケーブル12の一端に接続されている。後述するように、信号処理部13は、センサ電極11からの信号に基づいて、レーザ加工ノズル1の先端、つまり、センサ電極11の先端とアースに電気的に接続された被加工物5との距離を計測する機能を有している。なお、信号供給端子と信号検出端子とは別々に設けられていてもよい。
 [ハイトセンサの信号処理部の機能ブロック構成]
 図2は、ハイトセンサ10の信号処理部13の機能ブロック構成を示す。
 ハイトセンサ10の信号処理部13は、信号発生部14と信号検出部15と距離算出部16と断線判定部17とを有している。
 信号発生部14は、所定の周波数fと振幅とを有する電圧信号Voを発生し、外部端子T及び同軸ケーブル12を介してセンサ電極11に当該信号Voを供給する。
 信号検出部15は外部端子Tを有し、センサ電極11から戻ってきた電圧信号Vinを検出する。また、信号検出部15は外部端子Tに接続されたインピーダンス調整用抵抗18(図3参照)を有している。インピーダンス調整用抵抗18は信号発生部14と外部端子Tとの間の経路に直接に接続されていればよい。
 距離算出部16は信号検出部15で検出された電圧信号Vinに基づきセンサ電極11の先端と被加工物5との距離を算出し、図示しない外部の制御部あるいは記憶部にその値を送る。後述するように、レーザ加工装置30(図5参照)では、距離算出部16で算出された距離と目標値との差異に基づき、レーザ加工ノズル1の位置を制御している。
 断線判定部17は、信号検出部15で検出された電圧信号Vinをモニターしており、信号Vinが所定の閾値Vth以上となった場合に、同軸ケーブル12が断線していると判定する。同軸ケーブル12が断線していると判定された場合、断線判定部17は断線検知信号を図示しない外部の制御部あるいは記憶部に直接的に送るか、あるいは距離算出部16を介して上記の制御部あるいは記憶部に間接的に送る。
 電圧信号Vinは、センサ電極11に供給された電圧信号Voが外部端子T(信号検出端子)に電気的に結合された静電容量等によって振幅変調された変調信号である。電圧信号の振幅|Vo|と変調信号の振幅|Vin|との関係は式(1)で表わされる。
Figure JPOXMLDOC01-appb-M000001
 ここで、
 Rはインピーダンス調整用抵抗18の抵抗値
 Cは外部端子Tに電気的に結合された静電容量値の総和
 ωは電圧信号Voの角周波数であり、ω=2πfである。
 式(1)から明らかなように、外部端子T(信号検出端子)から出力された電圧信号Voは、抵抗値Rと静電容量値C及び電圧信号Voの周波数fによって定まる、一般的なローパスフィルタによって振幅変調を受ける。振幅変調された電圧信号Voは、変調信号Vinとして外部端子Tで検出される。
 また、静電容量値Cは図2に示すC、C、Cを用いて式(2)で表わされる。
 C=C+C+C・・・(2)
 ここで、
 Cは信号処理部13内で外部端子Tに電気的に結合された静電容量値
 Cは同軸ケーブル12の浮遊容量値
 Cはセンサ電極11の先端と被加工物5との間の静電容量値
 である。
 静電容量値Cは、信号処理部13内の素子の配置や配線レイアウト等によって定まる値であり、ほぼ一定である。同様に、レーザ加工ノズル1や同軸ケーブル12の配置が定まると静電容量値Cもほぼ一定となる。一方、静電容量値Cは、センサ電極11の先端と被加工物5との距離に応じて変化する。よって、信号Vinの値から静電容量値Cを算出することができ、この値からセンサ電極11の先端と被加工物5との距離を算出することができる。
 なお、本実施形態において、静電容量値C、Cは5pF程度であり、静電容量値Cは、センサ電極11の先端と被加工物5との距離に応じて0pF~数pFに変化するが、これらの値は信号処理部13の大きさや内部レイアウト、同軸ケーブル12のケーブル長、またはレーザ加工条件等によって適宜変更されうる。
 さらに、信号Vinの値から同軸ケーブル12の断線を判定することができる。本実施形態において、断線の有無を判定する閾値Vthの設定範囲は式(3)で表わされる。信号Vinの値が閾値Vth以上であるとき、同軸ケーブル12が断線していると判定される。
Figure JPOXMLDOC01-appb-M000002
 ここで、
 CW1はセンサ電極11の先端と被加工物5との距離をレーザ加工時の当該距離より所定の長さ分大きくしたときの静電容量値である。
 レーザ加工時の当該距離が通常、数mm程度であるのに対し、本実施形態では、CW1に対応するセンサ電極11の先端と被加工物5との距離を数十cm~1m程度に設定している。すなわち、式(3)において、CW1は、センサ電極11の先端と被加工物5との距離をレーザ加工時に設定される最大距離よりも大きい所定の距離としたときの外部端子Tに電気的に結合された静電容量値である。センサ電極11の先端と被加工物5との距離が大きくなるにつれて、静電容量値Cは小さくなるため、式(1)、(2)から明らかなように、対応するVinの値は大きくなる。
 本実施形態によれば、信号検出端子である外部端子Tがセンサ電極11から受け取る信号Vinの値によって同軸ケーブル12の断線の有無を簡便に判定することができる。また、閾値Vthの下限値を選択するにあたって、通常のレーザ加工時よりもセンサ電極11の先端と被加工物5との距離を十分に大きく取ったときの静電容量値CW1を用いることで、通常のレーザ加工時に外部端子T(信号検出端子)で検出される電圧信号よりもVthの下限値が十分に大きくなるため、断線の誤判定を確実に防止することができる。
 また、式(1)、(2)から明らかなように、式(3)におけるVthの上限値は、外部端子T(信号検出端子)に同軸ケーブル12が接続されていないときに外部端子Tで検出される電圧信号の値である。式(3)で表わされる範囲で閾値Vthを設定することにより、同軸ケーブル12の断線の有無を確実に判定することができる。また、閾値Vthの上限、下限は、予めデータを取得して継続的に使用できる。そのため、専用のハードウェア等を追加することなく、断線の判定を変調信号の値のみで簡便に行うことができる。
 なお、式(3)で表わされる範囲において、レーザ加工条件、特にセンサ電極11の先端と被加工物5との間の設定距離等により閾値Vthは任意に変更しうる。また、レーザ加工ノズル1における各部材の配置や内部構成等を変更した場合は、外部端子T(信号検出端子)に電気的に結合される静電容量値の変化等に応じて、閾値Vthの設定範囲が変更されることは言うまでもない。
 図3は、ハイトセンサ10の信号処理部13の具体的な回路構成の一例を示す。図3に示す構成においては、信号処理部13はCPU20とデジタル-アナログ信号変換器21(以下、DAC21という)とアナログ-デジタル信号変換器22(以下、ADC22という)とインピーダンス調整用抵抗18と外部端子Tとを有している。
 CPU20は、図示しない記憶部から制御プログラム等を読み出し、所定の周期を有するパルス列信号を出力する。また、CPU20はADC22からの信号を受けてセンサ電極11の先端と被加工物5との距離を算出する。CPU20は、さらに、単位時間当りにADC22から受け取るパルス列信号が所定のカウント数以上であれば同軸ケーブル12が断線したと判定して断線検知信号を図示しない外部の制御部または記憶部に送る。つまり、CPU20は、図2に示す距離算出部16と断線判定部17に相当する。
 DAC21はCPU20から供給されたパルス列信号を所定の周波数を有するアナログ電圧信号に変換するとともに、このアナログ電圧信号を所定の範囲で増幅して電圧信号Voとして出力する。つまり、DAC21は、図2に示す信号発生部14に相当する。
 ADC22は、同軸ケーブル12を介してセンサ電極11から送られてきた変調信号Vinを検出し、信号Vinの振幅に応じたカウント数のパルス列信号に変換し、CPU20に供給する。ADC22は図2に示す信号検出部15の一部に相当する。
 また、ハイトセンサ10の信号処理部13を図3に示す構成とすることで、信号のオフセットの影響を小さくすることができる。また、センサ電極11と被加工物5との接触検知を行うことも可能である。
 なお、図3に示す信号処理部13の構成はあくまでも一例であり、これ以外の構成であっても構わない。例えば、DAC21の代わりに交流電源を使用し、ADC22の代わりにアナログフィルターを使用する構成であってもよい。
 (実施形態2)
 図4は、本実施形態に係るレーザ加工ノズル1の構成を示す。本実施形態に示す構成と実施形態1に示す構成との違いは、レーザ加工ノズル1が、導電部7をさらに備えている点にある。導電部7は、円環形状の絶縁部材6(第2の絶縁部材)によってセンサノズル2及びシールドノズル3と電気的に絶縁され、かつ導電部7がアース電位を有するようにアースに電気的に接続されている。なお、絶縁部材6はレーザ加工ノズル1からアシストガスが外部に漏れ出すのを防止するパッキンの役割も果たしている。
 絶縁部材6及び導電部7を設けることにより、外部端子T(信号検出端子)に電気的に結合された静電容量値の総和Cは式(4)で表わされる。
 C=C+C+C+C・・・(4)
 ここで、
 Cは導電部7とセンサ電極11との間の静電容量値である。
 また、閾値Vthの設定範囲は式(5)で表わされる。
Figure JPOXMLDOC01-appb-M000003
 このように、本実施形態によれば、センサ電極11に対して一定の値の静電容量を付加することにより、静電容量値の総和Cを実施形態1に示した構成よりも大きくすることができる。このことにより、式(1),(4)及び式(5)から明らかなように、同軸ケーブル12の断線の有無による変調信号Vinの変化の度合いは、実施形態1に示す構成よりも大きくなる。すなわち、断線の有無の判定が容易となり、断線検知精度が向上する。
 なお、本実施形態において、センサ電極11に対して一定の静電容量を付加させるために絶縁部材6(第2の絶縁部材)及び導電部7を設けたが、特にこれに限定されず、センサ電極11に対して一定の静電容量を付加する構造を別途設け、静電容量値の総和Cを大きくするようにしてもよい。例えば、センサ電極11とアースとの間に別置のキャパシタを接続してもよい。また、センサ電極11の先端と被加工物5との距離の計測感度を維持するために、静電容量値Cは容量値C,C,Cよりも小さくすることが好ましい。
 (実施形態3)
 図5は、本実施形態に係るレーザ加工装置の構成を示す。このレーザ加工装置30は、レーザ光源31と、光ファイバ32と、ロボットアーム33と、レーザ加工ノズル1と、制御部34とを備えている。なお、説明の便宜上、上記の構成部品以外の種々の部品等については図示及びその説明を省略する。また、図示しないが、レーザ加工装置30は、レーザ加工ノズル1に供給されるアシストガスの供給経路も備えている。
 レーザ光源31は、電源(図示せず)と、電源からの電力供給を受けてレーザ光を発生するレーザ共振器(図示せず)と、当該レーザ光を集光し、光ファイバ32に結合させるための光学系(図示せず)とを有している。
 光ファイバ32は、レーザ共振器で発生し光学系で集光されたレーザ光を受け取り、レーザ加工ノズル1に導波する。レーザ加工の種類やレーザ光強度等によってシングルクラッドタイプやダブルクラッドタイプ等の光ファイバ32が適宜選択される。同様に光ファイバ32のコア径やクラッド径も適宜変更しうる。
 ロボットアーム33は、先端にレーザ加工ノズル1が取り付けられており、加工プログラム等に基づく制御部34からの信号を受けて、所定の軌跡を描くようにレーザ加工ノズル1を移動させる。また、レーザ加工の際には、ロボットアーム33は、レーザ加工ノズル1の先端であるセンサ電極11の先端と被加工物5との距離が所定の距離となるように、レーザ加工ノズル1の位置を制御する。
 制御部34は、レーザ光源31の光量等を制御するレーザ制御部35と、ロボットアーム33の動作を制御するロボット制御部36とを有している。
 レーザ制御部35は、所望の強度のレーザ光が出射されるように、電源から供給される電力やレーザ共振器の温度等を制御している。
 ロボット制御部36は、加工プログラム等に基づいて、ロボットアーム33の先端、つまりレーザ加工ノズル1の先端が所定の軌跡を描くように、ロボットアーム33の関節軸を駆動または停止させる信号を供給する。また、ロボット制御部36は位置制御部37を有する。位置制御部37は、ハイトセンサ10で計測された距離に基づいてセンサ電極11の先端と被加工物5との距離が目標値になるようレーザ加工ノズル1の位置、具体的にはロボットアーム33の位置を制御する信号をロボットアーム33に供給する。
 次に、レーザ加工装置30の動作について説明する。
 まず、レーザ加工装置30全体の電源を立ち上げ、レーザ加工装置30に電力を投入する。自動で、あるいは操作者の操作により所定のレーザ加工用プログラムが起動し、ロボットアーム33は所定の初期位置に移動するとともに、ハイトセンサ10にも電力が投入されて計測可能状態となる。さらに、レーザ光源31の電源もONになる。
 次に、被加工物5がセットされる。レーザ加工装置30は、ロボットアーム33を動かしてレーザ加工ノズル1を被加工物5の近くへ移動させる。ハイトセンサ10は、レーザ加工ノズル1と被加工物5との実際の距離を計測する。位置制御部37は、プログラムで規定されたセンサ電極11の先端と被加工物5との間の目標距離と実際の距離とを比較する。位置制御部37は、さらに、これらの差異に応じて、レーザ加工ノズル1が目標位置に来るようにロボットアーム33を駆動する。
 レーザ加工装置30は、レーザ加工ノズル1内にアシストガスを供給し、レーザ光源31でレーザ光を発生させる。光ファイバ32によりレーザ加工ノズル1内に導波されたレーザ光が被加工物5に照射される。これによりレーザ加工が開始される。レーザ加工中は、常時、ハイトセンサ10によってセンサ電極11の先端と被加工物5との距離が計測される。位置制御部37は計測された実際の距離に基づいてレーザ加工ノズル1の位置、つまり、ロボットアーム33の位置を制御する。
 所要の加工が終了すると、レーザ光源31でのレーザ発振が停止し、続けてアシストガスの供給も停止する。ロボットアーム33は所定の初期位置に移動し、次の加工開始までその位置で待機する。
 上記のレーザ加工中にハイトセンサ10に接続された同軸ケーブル12が断線した場合は、信号処理部13の断線判定部17が直ちに断線を検知し、断線検知信号を制御部34に送る。
 制御部34のレーザ制御部35はこの信号を受けて、レーザ光源31でのレーザ発振を直ちに停止させる。それとともに、制御部34のロボット制御部36がロボットアーム33を所定の初期位置に移動させる。
 本実施形態によれば、レーザ加工中は、ハイトセンサ10は、センサ電極11の先端と被加工物5との距離を計測するとともに、同軸ケーブル12の断線の有無の判定も常時行っている。従来は、加工装置の定期点検等で同軸ケーブル12の断線の有無を検査しており、同軸ケーブル12の断線をリアルタイムで検知することはできなかった。
 本実施形態のレーザ加工装置30は、同軸ケーブル12の断線の有無をリアルタイムで判定して、断線を検知すると直ちにレーザ加工装置30の動作を停止させる。そのため、被加工物5の加工不良が拡大するのを防止することができる。また、ハイトセンサ10による距離の計測が行えないことによるレーザ加工ノズル1の被加工物5への衝突を防止できる。これによりレーザ加工ノズル1の破損等を防止できる。
 なお、断線検知信号を受けて、レーザ制御部35がレーザ発振を急に停止することで、レーザ光源31が故障するおそれもある。そのような場合は、徐々にレーザ発振を停止させるようレーザ制御部35がレーザ光源31を制御するようにすることもできる。同様に、ロボットアーム33を初期位置に急に移動させて、ロボットアーム33が故障するおそれがある場合は、ロボットアーム33の移動速度を制御して故障を回避することも可能である。
 また、ロボットアーム33を初期位置に移動させるとかえってロボットアーム33が故障するおそれがある場合は、断線検知信号を受けた時点のロボットアーム33の位置から動かさないようにすることもできる。
 なお、実施形態1~3において、ハイトセンサ10のセンサ電極11と信号処理部13との間を同軸ケーブル12で接続しているが、特にこれに限定されず、他の種類のケーブルでもよい。
 また、実施形態3において、ハイトセンサ10の信号処理部13はレーザ加工装置30の制御部34に組み込まれていてもよい。ただし、同軸ケーブル12のケーブル長が必要以上に長くならないように留意する必要がある。
 また、電気抵抗を低くし、熱伝導率を高めるという点から、センサノズル2やシールドノズル3、また導電部7は銅ないし銅系材料であることが好ましいが、他の材料、例えば、アルミ系材料であってもよい。
 本開示の静電容量式ハイトセンサは、センサ電極に接続されたケーブルの断線の有無を簡便かつ確実に判定でき、レーザ加工装置等に適用する上で有用である。
1  レーザ加工ノズル
2  センサノズル(第1のノズル)
3  シールドノズル(第2のノズル)
4  絶縁部材(第1の絶縁部材)
5  被加工物
6  絶縁部材(第2の絶縁部材)
7  導電部
10 静電容量式ハイトセンサ
11 センサ電極
12 同軸ケーブル(ケーブル)
13 信号処理部
14 信号発生部
15 信号検出部
16 距離算出部
17 断線判定部
30 レーザ加工装置
31 レーザ光源
32 光ファイバ
33 ロボットアーム
34 制御部
35 レーザ制御部
36 ロボット制御部
37 位置制御部
T  外部端子(信号検出端子)

Claims (6)

  1.  レーザ加工ノズルの先端に取り付けられたセンサ電極と、前記センサ電極に電圧信号を供給するとともに、前記センサ電極からの信号を検出して前記センサ電極の先端とアースに電気的に接続された被加工物との距離を計測する信号処理部と、前記センサ電極と前記信号処理部とを電気的に接続するケーブルとを有する静電容量式ハイトセンサであって、
     前記信号処理部は、前記センサ電極からの信号が所定の値以上であるとき、前記ケーブルが断線していると判定する断線判定部を有していることを特徴とする静電容量式ハイトセンサ。
  2.  請求項1に記載の静電容量式ハイトセンサにおいて、
     前記所定の値は、前記センサ電極の先端と前記被加工物との距離がレーザ加工時の最大距離よりも大きい所定の距離であるときの前記センサ電極からの信号の値以上、前記信号処理部に前記ケーブルが接続されていないときの前記センサ電極からの信号の値以下の範囲にあることを特徴とする静電容量式ハイトセンサ。
  3.  請求項1または2に記載の静電容量式ハイトセンサの前記センサ電極に電気的に接続され、レーザ光の出射経路及びレーザ加工時に供給されるアシストガスの流路を画定する第1のノズルと、
     前記第1のノズルの外周を間隔をあけて囲むように設けられ、絶縁部材によって前記第1のノズル及び前記センサ電極と電気的に絶縁された第2のノズルとを備えることを特徴とするレーザ加工ノズル。
  4.  請求項3に記載のレーザ加工ノズルにおいて、
     前記第1のノズルと前記第2のノズルとが同電位になるように構成されていることを特徴とするレーザ加工ノズル。
  5.  請求項3または4に記載のレーザ加工ノズルにおいて、
     前記センサ電極に対して一定の静電容量を付加する構造をさらに備えることを特徴とするレーザ加工ノズル。
  6.  レーザ光を出射するレーザ光源と、
     前記レーザ光を導波する光ファイバと、
     前記光ファイバで導波されたレーザ被加工物に向けて照射する請求項3から5のいずれか1項に記載のレーザ加工ノズルと、
     先端に前記レーザ加工ノズルが取り付けられ、前記レーザ加工ノズルを移動させるロボットアームと、
     前記レーザ光源及び前記ロボットアームの動作を制御する制御部と、を備え、
     前記制御部は、
     前記レーザ加工ノズルの先端が所定の軌跡を描くように、前記ロボットアームの関節軸を駆動または停止させる信号を供給するロボット制御部と、
     前記断線判定部で前記ケーブルが断線していると判定されたとき、前記レーザ光源のレーザ発振を停止させるレーザ制御部とを有し、
     前記ロボット制御部は、
     前記静電容量式ハイトセンサで計測された距離に基づき、前記センサ電極の先端と前記被加工物との距離が目標値になるよう前記レーザ加工ノズルの位置を制御する位置制御部を有していることを特徴とするレーザ加工装置。
PCT/JP2018/005430 2017-05-24 2018-02-16 静電容量式ハイトセンサ及びそれを用いたレーザ加工ノズル、レーザ加工装置 WO2018216275A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019519465A JPWO2018216275A1 (ja) 2017-05-24 2018-02-16 静電容量式ハイトセンサ及びそれを用いたレーザ加工ノズル、レーザ加工装置
CN201880033676.7A CN110662938A (zh) 2017-05-24 2018-02-16 静电电容式高度传感器以及使用其的激光加工喷嘴、激光加工装置
EP18806260.8A EP3633314A4 (en) 2017-05-24 2018-02-16 HEIGHT SENSOR OF ELECTROSTATIC CAPACITY TYPE, LASER PROCESSING NOZZLE THEREFOR, AND LASER PROCESSING DEVICE
US16/683,942 US20200080831A1 (en) 2017-05-24 2019-11-14 Electrostatic capacitance type height sensor, laser machining nozzle using same, and laser machining device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017102665 2017-05-24
JP2017-102665 2017-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/683,942 Continuation US20200080831A1 (en) 2017-05-24 2019-11-14 Electrostatic capacitance type height sensor, laser machining nozzle using same, and laser machining device

Publications (1)

Publication Number Publication Date
WO2018216275A1 true WO2018216275A1 (ja) 2018-11-29

Family

ID=64395548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005430 WO2018216275A1 (ja) 2017-05-24 2018-02-16 静電容量式ハイトセンサ及びそれを用いたレーザ加工ノズル、レーザ加工装置

Country Status (5)

Country Link
US (1) US20200080831A1 (ja)
EP (1) EP3633314A4 (ja)
JP (1) JPWO2018216275A1 (ja)
CN (1) CN110662938A (ja)
WO (1) WO2018216275A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021058909A (ja) * 2019-10-07 2021-04-15 古河機械金属株式会社 レーザー加工ヘッド及びレーザー加工装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084716A1 (ja) 2021-11-11 2023-05-19 株式会社ニコン 光加工装置
CN116100167A (zh) * 2023-02-08 2023-05-12 济南金威刻科技发展有限公司 一种三维五轴切割头及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518791A (ja) * 1990-11-07 1993-01-26 C A Weidmueller Gmbh & Co 非接触距離計測用センサ装置
US5293023A (en) * 1992-03-13 1994-03-08 Mitsui Petrochemical Industries, Ltd. Laser irradiation nozzle and laser apparatus using the same
JPH09331089A (ja) 1996-06-11 1997-12-22 Daihen Corp レーザ加工装置用ノズルハイトセンサ
JPH11197866A (ja) * 1998-01-16 1999-07-27 Fuji Electric Co Ltd レーザ加工装置およびワークのレーザ切断方法
JP2008043989A (ja) * 2006-08-21 2008-02-28 Omron Laserfront Inc レーザ加工装置及びこれを使用したレーザ加工方法
JP2009300160A (ja) * 2008-06-11 2009-12-24 Ihi Corp 膜厚計測装置および膜厚計測方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2097057U (zh) * 1991-06-24 1992-02-26 华中理工大学 喷嘴与电容传感器一体结构的激光头
DE4201640C1 (en) * 1992-01-22 1993-02-25 Weidmueller Interface Gmbh & Co, 4930 Detmold, De Nozzle for processing workpiece e.g. by laser beam - consists of nozzle body with sensor element of e.g. copper@ attached to insulating body for contactless measurement
JPH10202386A (ja) * 1997-01-22 1998-08-04 Amada Co Ltd レーザー加工用ノズル
JPH11267871A (ja) * 1998-03-19 1999-10-05 Amada Co Ltd Yagレーザ加工方法及びその装置
DE10121655C1 (de) * 2001-05-03 2002-10-31 Precitec Kg Laserbearbeitungsanlage und Verfahren zu ihrer Betriebssteuerung
CN1981976B (zh) * 2005-12-12 2012-07-18 普雷茨特两合公司 激光加工设备及运行控制这样一个激光加工设备的方法
CN202192375U (zh) * 2011-08-01 2012-04-18 苏州领创激光科技有限公司 一种双焦距激光切割头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518791A (ja) * 1990-11-07 1993-01-26 C A Weidmueller Gmbh & Co 非接触距離計測用センサ装置
US5293023A (en) * 1992-03-13 1994-03-08 Mitsui Petrochemical Industries, Ltd. Laser irradiation nozzle and laser apparatus using the same
JPH09331089A (ja) 1996-06-11 1997-12-22 Daihen Corp レーザ加工装置用ノズルハイトセンサ
JPH11197866A (ja) * 1998-01-16 1999-07-27 Fuji Electric Co Ltd レーザ加工装置およびワークのレーザ切断方法
JP2008043989A (ja) * 2006-08-21 2008-02-28 Omron Laserfront Inc レーザ加工装置及びこれを使用したレーザ加工方法
JP2009300160A (ja) * 2008-06-11 2009-12-24 Ihi Corp 膜厚計測装置および膜厚計測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633314A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021058909A (ja) * 2019-10-07 2021-04-15 古河機械金属株式会社 レーザー加工ヘッド及びレーザー加工装置

Also Published As

Publication number Publication date
JPWO2018216275A1 (ja) 2020-04-02
EP3633314A4 (en) 2020-06-10
CN110662938A (zh) 2020-01-07
EP3633314A1 (en) 2020-04-08
US20200080831A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2018216275A1 (ja) 静電容量式ハイトセンサ及びそれを用いたレーザ加工ノズル、レーザ加工装置
JP6495103B2 (ja) 電圧検出プローブおよび測定装置
US9816808B2 (en) Measuring device for acquiring surface data and/or interfaces of a workpiece to be processed by a laser processing device
US20200139474A1 (en) Method and Device for Scanning a Workpiece Surface of a Metal Workpiece
CN111566488B (zh) 用于测试印刷电路板的测试针、测试探针、及飞针测试器
JP2019181551A (ja) 静電容量式ハイトセンサ、レーザ加工ノズルおよびレーザ加工装置
JP2006343236A (ja) ギャップ検出装置
JP2013104875A (ja) 近接センサアセンブリおよび検査システム
US20210375577A1 (en) Collision avoidance for particle beam instruments
JP5596525B2 (ja) 固体絶縁物内部欠陥検出システム
JP7117505B2 (ja) チップ診断方法、および、レーザ加工装置
JP4397508B2 (ja) ノズルの静電容量検出方法及びノズルの静電容量検出センサ及びレーザ加工機のノズル
JP2019200157A (ja) 磁性体検査システムおよびプログラム
JP2021058909A (ja) レーザー加工ヘッド及びレーザー加工装置
US11815392B2 (en) Self-levelling piercing sensor in a light guide cable plug connection
JP2008076213A (ja) 帯電電位測定プローブ及びこのプローブを用いた帯電電位分布測定システムと帯電電位分布測定装置
JP2018169296A (ja) 渦電流式変位計
JP3218761U (ja) ギャップセンサおよびこれを備えるレーザ加工機
JP2005315815A (ja) 高電圧測定装置
CN219767134U (zh) 激光加工头
JP2019209344A (ja) レーザ溶接装置
US10048114B2 (en) Device for measuring the vibrational amplitude of a capillary tube of a wire bonder
JPH087823A (ja) 集束イオンビーム装置
JP6973203B2 (ja) 異常検出装置、異常検出システム、および異常検出方法
JPH04356391A (ja) レーザ加工機の静電容量式ハイトセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018806260

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018806260

Country of ref document: EP

Effective date: 20200102