WO2018216258A1 - 処理装置、処理方法及びプログラム - Google Patents

処理装置、処理方法及びプログラム Download PDF

Info

Publication number
WO2018216258A1
WO2018216258A1 PCT/JP2018/000241 JP2018000241W WO2018216258A1 WO 2018216258 A1 WO2018216258 A1 WO 2018216258A1 JP 2018000241 W JP2018000241 W JP 2018000241W WO 2018216258 A1 WO2018216258 A1 WO 2018216258A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
data
target device
detection data
processing
Prior art date
Application number
PCT/JP2018/000241
Other languages
English (en)
French (fr)
Inventor
康晴 大西
靖行 福田
隆 工藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/615,200 priority Critical patent/US20200173887A1/en
Priority to JP2019519456A priority patent/JP6988890B2/ja
Priority to CN201880034125.2A priority patent/CN110678821B/zh
Publication of WO2018216258A1 publication Critical patent/WO2018216258A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection

Definitions

  • the present invention relates to a processing device, a processing method, and a program.
  • Patent Document 1 discloses an apparatus for detecting an abnormality of the facility based on vibration sound transmitted to members constituting the transmission line facility.
  • An object of the present invention is to realize power saving in a technique for determining normality / abnormality of a target device using a plurality of types of data.
  • First determination means for determining normality / abnormality of the target device based on detection data of the first sensor; When normality / abnormality cannot be determined based on the detection data of the first sensor, the second sensor is activated, and the normality / abnormality of the target device is determined based on the detection data of the second sensor.
  • Two determination means Is provided.
  • Computer First determination means for determining normality / abnormality of the target device based on detection data of the first sensor; When normality / abnormality cannot be determined based on the detection data of the first sensor, the second sensor is activated, and the normality / abnormality of the target device is determined based on the detection data of the second sensor.
  • a program is provided that functions as:
  • power saving is realized in a technique for determining normality / abnormality of a target device using a plurality of types of data.
  • the processing system according to the present embodiment is a system that determines whether a target device is normal or abnormal.
  • the processing system of this embodiment is suitable for evaluation of processing apparatuses such as a polishing machine and a cutting machine. It is also possible to apply to the evaluation of other devices.
  • the processing system of the present embodiment includes a processing device 10, one or more first sensors 21, and one or more second sensors 22 as shown in the functional block diagram of FIG.
  • the processing device 10 and the first sensor 21 and the second sensor 22 are configured to be able to communicate with each other by any communication means.
  • the processing device 10 and the first sensor 21 and the second sensor 22 may be connected to each other via a dedicated line (wired), may communicate with each other by short-range wireless communication, or may be a LAN. (Local ⁇ area network) may be connected to each other to communicate.
  • the first sensor 21 and the second sensor 22 are sensors that detect data related to the target device.
  • the first sensor 21 and the second sensor 22 are installed at positions where predetermined data related to the target device can be detected.
  • the processing device 10 is a device that determines normality / abnormality of the target device based on the detection data of the first sensor 21 and the second sensor 22.
  • the processing apparatus 10 is installed at the site where the target apparatus is installed.
  • the first sensor 21 always operates and continues to detect data.
  • the second sensor 22 is activated when a predetermined condition is satisfied, and then detects data only for a certain period of time. Specifically, the second sensor 22 is activated when normal / abnormal determination of the target device cannot be made based on the detection data of the first sensor 21, and then detects data only for a certain period of time.
  • first sensor 21 a part
  • second sensor 22 the other part
  • the condition for starting the second sensor 22 may be “when the normal / abnormal determination of the target device cannot be made based on the detection data of the first sensor 21”. it can.
  • the result may be adopted, and there is no need to perform further determination based on other types of data.
  • the normal / abnormal of the target device is determined by performing determination from another viewpoint based on other types of data. Try to determine.
  • the second sensor 22 is operated only when necessary, and the operation of the second sensor 22 at an unnecessary timing can be suppressed, so that reduction in power consumption can be efficiently realized.
  • Each functional unit included in the processing apparatus 10 includes an arbitrary computer CPU (Central Processing Unit), a memory, a program loaded in the memory, and a storage unit such as a hard disk for storing the program (the device is shipped in advance).
  • CPU Central Processing Unit
  • a memory a program loaded in the memory
  • a storage unit such as a hard disk for storing the program (the device is shipped in advance).
  • storage media such as CDs (Compact Discs) and programs downloaded from servers on the Internet can also be stored.
  • Arbitrary hardware and software mainly network connection interfaces Realized by a combination of It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
  • FIG. 2 is a block diagram illustrating a hardware configuration of the processing apparatus 10 according to this embodiment.
  • the processing device 10 includes a processor 1A, a memory 2A, an input / output interface 3A, a peripheral circuit 4A, and a bus 5A.
  • the peripheral circuit 4A includes various modules.
  • the bus 5A is a data transmission path through which the processor 1A, the memory 2A, the peripheral circuit 4A, and the input / output interface 3A transmit / receive data to / from each other.
  • the processor 1A is an arithmetic processing unit such as a CPU or a GPU (Graphics Processing Unit).
  • the memory 2A is a memory such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the input / output interface 3A is an interface for acquiring information from an input device (eg, keyboard, mouse, microphone, physical key, touch panel display, code reader, etc.), external device, external server, external sensor, etc., and an output device ( Examples: display, speaker, printer, mailer, etc.), external device, an interface for outputting information to an external server, etc.
  • the processor 1A can issue a command to each module and perform a calculation based on the calculation result.
  • FIG. 3 shows an example of a functional block diagram of the processing apparatus 10. As illustrated, the processing apparatus 10 includes a first determination unit 11 and a second determination unit 12.
  • the first determination unit 11 determines normality / abnormality of the target device based on detection data of the first sensor 21 (eg, time-series data of detection values).
  • the first sensor 21 always operates and continues to detect data. Then, the first determination unit 11 continues the determination based on the data detected by the first sensor 21.
  • the first determination unit 11 can make the above determination using, for example, an estimation model obtained by machine learning based on teacher data in which an explanatory variable and an objective variable (normal or abnormal) are paired.
  • the determination result in this case is one of “normal”, “abnormal”, and “unknown (normal / abnormal cannot be determined)”. If the learned teacher data is not sufficient, it is likely to be “unknown”.
  • the estimation technique is a design matter and any technique can be adopted.
  • the explanatory variable may be time series data of detection values detected by the first sensor 21, or may be a feature amount extracted from the time series data.
  • the type of feature quantity is a design matter.
  • the explanatory variables may include the environment of the target device, the processing conditions of the product being processed by the target device, and the like. Examples of the environment of the target device include, but are not limited to, the temperature and humidity at the target device installation position. Examples of the processing conditions of the product include, but are not limited to, the setting of the target device and the type of accessory (eg, polishing liquid) used for processing the product.
  • the first determination unit 11 detects the detection data of the first sensor 21 (time-series data of detection values for a predetermined time) or is extracted therefrom. The determination may be made by inputting the feature quantity into the estimation model without performing preprocessing. Then, the first determination unit 11 may output the determination result.
  • the first determination unit 11 performs one type or a plurality of types of preprocessing on the detection data of the first sensor 21, and inputs the detection data after the preprocessing or the feature amount extracted therefrom to the estimation model. A determination may be made. Then, the first determination unit 11 may output the determination result.
  • the first determination unit 11 may combine the above methods. That is, the first determination unit 11 may first perform determination by inputting the detection data of the first sensor 21 or the feature amount extracted therefrom into the estimation model without performing preprocessing. If the determination result is “normal” or “abnormal”, the first determination unit 11 may output the determination result.
  • the first determination unit 11 performs one type or a plurality of types of preprocessing on the detection data of the first sensor 21, and extracts the detection data after the preprocessing or extracted therefrom.
  • the determined feature amount may be input to the estimation model and the determination may be performed again. Then, the first determination unit 11 may output the determination result.
  • the types of pretreatment to be performed may be increased step by step. That is, when the result of determination that the detection data of the first sensor 21 or the feature amount extracted from the first sensor 21 is input to the estimation model without performing preprocessing is “unknown”, the first determination unit 11 The detection data obtained by performing the preprocessing of 1 or the feature amount extracted therefrom may be input to the estimation model and the determination may be performed again. If the determination result is “normal” or “abnormal”, the first determination unit 11 may output the determination result.
  • the first determination unit 11 inputs the detection data obtained by performing the first preprocessing and the second preprocessing or the feature amount extracted from the detection data to the estimation model. The determination may be performed again. In this way, while the determination result “unknown” is maintained, the types of preprocessing to be performed may be increased stepwise. If the determination result is “unknown” even after performing all the preprocessing, the first determination unit 11 may output the determination result.
  • the preprocessing includes at least one of level correction (baseline correction), noise processing (removal of unnecessary peaks), and processing data narrowing (waveform zoom-up). Note that the pre-processing may include other processing. Hereinafter, each process will be described.
  • Level correction The peak level included in the detection data is corrected by correcting the baseline of the detection data.
  • the correction of the baseline may be performed by the first determination unit 11 based on the environment of the target device, the processing conditions of the product being processed by the target device, and a predetermined rule.
  • noise processing In the noise processing, peaks (noise) not related to the target device are removed.
  • the first determination unit 11 acquires detection data from a plurality of first sensors 21 (same characteristics and settings) whose distances from the target device are different from each other, and the detection acquired from the plurality of first sensors 21. Synchronize data. Then, the first determination unit 11 removes, as noise, a peak in which a relationship between corresponding peaks (peaks based on the same factor included in detection data of each of the plurality of first sensors 21) does not satisfy a predetermined condition.
  • the predetermined condition is “the peak is larger as the detection data of the first sensor 21 having a smaller distance from the target device”. This is based on the fact that the first sensor 21 that is closer to the target device can more easily detect data (eg, vibration, sound, etc.) caused by the target device.
  • “Filter processing data” Narrow down the data to be processed (the target of processing to input to the estimation model or extract feature quantities). For example, the frequency range is narrowed down. Thereby, the difference between the upper and lower limits of the peak level in the data to be processed becomes small. By correcting the baseline and zooming up the waveform in this state, it is possible to improve the zoom-in rate of the waveform while keeping the difference between the upper and lower limits of the peak level within a predetermined range.
  • the second determination unit 12 determines whether the normal / abnormal determination cannot be made based on the detection data of the first sensor 21, that is, when the determination result “unknown” is output from the first determination unit 11. 22 is activated. Then, the second determination unit 12 determines normality / abnormality of the target device based on the detection data of the second sensor 22.
  • the second sensor 22 detects different types of data from the first sensor 21.
  • the first sensor 21 may consume less power than the second sensor 22. That is, a sensor with relatively low power consumption is used as the first sensor 21 that always operates, and a sensor with relatively high power consumption is used as the second sensor 22 that is activated according to a predetermined condition. Also good.
  • Example 1 In Example 1, the first sensor 21 and the second sensor 22 detect the same kind of data, specifically vibration or sound.
  • the second sensor 22 has a narrower bandwidth to detect than the first sensor 21.
  • the first sensor 21 detects a relatively wide bandwidth (eg, 10 Hz to 20 kHz), and the second sensor 22 includes a part (eg, 10 Hz to 1 kHz, 1 kHz to 5 kHz, 5 kHz to 20 kHz) included therein. Etc.) can be the detection target.
  • the second sensor 22 having a narrower bandwidth can collect data with higher sensitivity.
  • the plurality of second sensors 22 may cover the bandwidth of the first sensor 21. That is, when the bandwidth of the first sensor 21 is 10 Hz to 20 kHz, the bandwidth of one second sensor 22 is 10 Hz to 1 kHz, and the bandwidth of the other second sensor 22 is 1 kHz to 5 kHz. The bandwidth of the other second sensor 22 may be 5 kHz to 20 kHz.
  • the detection target band of the first determination unit 11 and the detection target band of the second sensor 22 can be determined according to the specifications and settings of the target device.
  • Example 2 In Example 2, the first sensor 21 detects vibration or sound.
  • the second sensor 22 detects something other than vibration or sound. That is, the first sensor 21 and the second sensor 22 detect different types of data.
  • the first sensor 21 may detect vibration and the second sensor 22 may detect sound.
  • the first sensor 21 may detect sound
  • the second sensor 22 may detect vibration.
  • the first sensor 21 detects vibration or sound
  • the second sensor 22 detects at least one of temperature, pressure, the number of revolutions of the polishing machine, the flow rate of the polishing liquid, and the pH of the polishing liquid. Also good.
  • the second sensor 22 may capture an image (a still image or a moving image) of a predetermined portion of the target device. A plurality of types of data may be detected by the plurality of second sensors 22.
  • the second determination unit 12 can make the above determination using an estimation model obtained by machine learning.
  • the details are the same as the determination by the first determination unit 11.
  • the determination result in this case is one of “normal”, “abnormal”, and “unknown (normal / abnormal cannot be determined)”. If the learned teacher data is not sufficient, it is likely to be “unknown”.
  • the second determination unit 12 detects the detection data of the second sensor 22 (time-series data of detection values for a predetermined time or features extracted therefrom) The determination may be made by inputting the amount into the estimation model without performing preprocessing, and the second determination unit 12 may output the determination result.
  • the second determination unit 12 performs one type or a plurality of types of preprocessing on the detection data of the second sensor 22 and inputs the detection data after the preprocessing or the feature amount extracted therefrom to the estimation model. A determination may be made. Then, the second determination unit 12 may output the determination result.
  • the second determination unit 12 may combine the above methods. That is, the second determination unit 12 may first perform determination by inputting the detection data of the second sensor 22 or the feature amount extracted therefrom into the estimation model without performing preprocessing. When the determination result is “normal” or “abnormal”, the second determination unit 12 may output the determination result.
  • the second determination unit 12 inputs the detection data that has been subjected to one or more types of preprocessing or the feature amount extracted from the detection data to the estimation model and determines again. May be performed. Then, the second determination unit 12 may output the determination result.
  • the types of pretreatment to be performed may be increased step by step. That is, when the result of determination that the detection data of the second sensor 22 or the feature amount extracted from the second sensor 22 is input to the estimation model without performing preprocessing is “unknown”, the second determination unit 12 The detection data subjected to the first preprocessing or the feature amount extracted from the detection data may be input to the estimation model and the determination may be performed again. When the determination result is “normal” or “abnormal”, the second determination unit 12 may output the determination result.
  • the second determination unit 12 inputs the detection data obtained by performing the first preprocessing and the second preprocessing or the feature amount extracted from the detection data to the estimation model. The determination may be performed again. In this way, while the determination result “unknown” is maintained, the types of preprocessing to be performed may be increased stepwise. If the determination result is “unknown” even after performing all the preprocessing, the second determination unit 12 may output the determination result.
  • the second determination unit 12 may activate the plurality of second sensors 22 in stages. That is, when the normal / abnormal determination cannot be made based on the detection data of the first sensor 21, the second determination unit 12 includes the 2-1 sensor 22 that is a part of the plurality of second sensors 22. May be activated. When the determination result based on the detection data of the 2-1 sensor 22 is “normal” or “abnormal”, the second determination unit 12 may output the determination result.
  • the second determination unit 12 is the second part of the plurality of second sensors 22.
  • the sensor 22 of 2-2 may be activated. At this time, the 2-1 sensor 22 may be stopped.
  • the second determination unit 12 may output the determination result.
  • the second determination unit 12 is the second part of the plurality of second sensors 22. 2-3 sensors 22 may be activated. At this time, the 2-2 sensor 22 may be stopped.
  • the second sensor 22 to be activated may be sequentially switched while the determination result “unknown” is maintained. If the determination result is “unknown” even when all the second sensors 22 are activated, the second determination unit 12 may output the determination result.
  • the first determination unit 11 starts determining whether the target device is normal or abnormal based on the detection data of the first sensor 21 (S10). That is, the first determination unit 11 activates the first sensor 21 and starts data detection. And the 1st determination part 11 acquires detection data from the 1st sensor 21, and performs the said determination.
  • the processing apparatus 10 When the determination result output from the first determination unit 11 is “normal” or “abnormal” (S11), the processing apparatus 10 outputs the determination result (S14).
  • the processing device 10 can output the determination result via any output device such as a display, a speaker, a lamp, or a mailer.
  • the second determination unit 12 activates the second sensor 22, and then for a certain time (eg, predetermined).
  • the data is detected (until the determination result by the second determination unit 12 is output) for a predetermined time (S12).
  • the second determination unit 12 acquires detection data from the second sensor 22, and determines normality / abnormality of the target device based on the detection data (S13). Note that the second sensor 22 may stop operating when the detection of the data for the predetermined time is completed.
  • the processing apparatus 10 outputs the determination result of the second determination unit 12 (S14).
  • the determination result to be output is “normal”, “abnormal”, or “unknown”.
  • the processing device 10 can output the determination result via any output device such as a display, a speaker, a lamp, or a mailer.
  • the processing system of the present embodiment it is possible to determine normality / abnormality of the target device using a plurality of types of data acquired by a plurality of sensors. For this reason, the state of the target device can be evaluated from various aspects, and normality / abnormality of the target device can be accurately determined.
  • first sensor 21 a part
  • second sensor 22 the other part
  • the condition for starting the second sensor 22 may be “when the normal / abnormal determination of the target device cannot be made based on the detection data of the first sensor 21”. it can.
  • the result may be adopted, and there is no need to perform further determination based on other types of data.
  • the normal / abnormal of the target device is determined by performing determination from another viewpoint based on other types of data. Try to determine.
  • the second sensor 22 is operated only when necessary, and the operation of the second sensor 22 at an unnecessary timing can be suppressed, so that reduction in power consumption can be efficiently realized.
  • the processing system of the present embodiment it is possible to determine normality / abnormality of the target device using the estimation model obtained by machine learning. In this case, the inconvenience of the determination result “unknown” can be avoided by performing machine learning using more teacher data. In other words, if the learned teacher data is not sufficient, there is a high possibility that the determination result is “unknown”.
  • the product status can be different, so the status of the target device that processes it can also be processed. Can vary depending on. For this reason, it becomes difficult to prepare and learn teacher data in advance so as to cover all situations. As a result, the determination result is more likely to be “unknown”.
  • the judgment result is “Unknown”, it will be difficult for humans in the field to judge. If an abnormality has occurred, it is preferable to immediately stop the target device. On the other hand, if the target equipment is stopped, the production line stops, causing enormous damage. For this reason, it is preferable to avoid the stop of the target device in a state where no abnormality has occurred.
  • the processing system of the present embodiment when the determination result becomes “unknown”, various pre-processing is performed on the detection data, and re-determination is performed using the detection data. Data can be detected and re-determination can be performed based on it. In this way, by performing multifaceted evaluation, it is possible to suppress the inconvenience that the output determination result is “unknown”.
  • a sensor with relatively low power consumption is used as the first sensor 21 that is always operating, and a sensor with relatively high power consumption is activated according to a predetermined condition.
  • the second sensor 22 can be used. With this configuration, power saving can be realized.
  • the processing system of the present embodiment is different from the first embodiment in that the processing device 10 has a function of controlling the target device. Specifically, when the determination results by the first determination unit 11 and the second determination unit 12 satisfy a predetermined condition, the processing device 10 transmits a control signal for stopping the operation to the target device.
  • the configuration of the processing system of the present embodiment will be described in detail.
  • the hardware configuration of the processing apparatus 10 of this embodiment is the same as that of the first embodiment.
  • FIG. 5 shows an example of a functional block diagram of the processing apparatus 10 of the present embodiment.
  • the processing apparatus 10 includes a first determination unit 11, a second determination unit 12, and a control unit 14.
  • the structure of the 1st determination part 11 and the 2nd determination part 12 is the same as that of 1st Embodiment.
  • the structure of the 1st sensor 21 and the 2nd sensor 22 is the same as that of 1st Embodiment.
  • the control unit 14 controls the operation of the target device. Specifically, when the determination result by the first determination unit 11 and the second determination unit 12 satisfies a predetermined condition, the control unit 14 transmits a control signal for stopping the operation to the target device.
  • control unit 14 determines that the target device is abnormal based on the detection data of the first sensor 21 or the detection data of the second sensor 22, that is, the first determination unit 11 or the second determination unit.
  • the determination result “abnormal” is output from 12
  • a control signal for stopping the operation can be transmitted to the target device.
  • the target device may immediately stop its own operation in response to receiving the control signal.
  • control unit 14 stops the operation when the normal / abnormal determination cannot be made based on the detection data of the second sensor 22, that is, when the determination result “unknown” is output from the second determination unit 12.
  • a control signal can be transmitted to the target device.
  • the target device may immediately stop its own operation in response to receiving the control signal.
  • the target device may stop the operation of its own device after completing the process being executed at the time of receiving the control signal.
  • the first determination unit 11 starts determining whether the target device is normal or abnormal based on the detection data of the first sensor 21 (S20). That is, the first determination unit 11 activates the first sensor 21 and starts data detection. And the 1st determination part 11 acquires detection data from the 1st sensor 21, and performs the said determination.
  • the processing apparatus 10 If the determination result output from the first determination unit 11 is “normal” (S21), the processing apparatus 10 returns to S20 and repeats the process if there is no instruction input to end the process (No in S26). .
  • the control unit 14 transmits a control signal for stopping the operation to the target device (S25).
  • the target device may immediately stop the operation of its own device in response to receiving the control signal.
  • the second determination unit 12 activates the second sensor 22, and then for a certain time (eg, predetermined).
  • the data is detected (until the determination result by the second determination unit 12 is output) for a predetermined time (S22).
  • the second determination unit 12 acquires detection data from the second sensor 22, and determines normality / abnormality of the target device based on the detection data (S23). Note that the second sensor 22 may stop operating when the detection of the data for the predetermined time is completed.
  • the processing apparatus 10 When the determination result output from the second determination unit 11 is “normal” (S24), the processing apparatus 10 returns to S20 and repeats the process if there is no instruction input to end the process (No in S26). .
  • the control unit 14 transmits a control signal for stopping the operation to the target device (S25).
  • the target device may immediately stop the operation of the device itself in response to reception of the control signal.
  • the determination result is “unknown”
  • the target device may immediately stop the operation of the device itself in response to the reception of the control signal, or the processing being executed at the time of receiving the control signal is completed. Later, the operation of the device itself may be stopped.
  • the control signal transmitted from the control unit 14 may include information that can identify the determination result of the second determination unit 12.
  • the processing apparatus 10 may output the determination result of the 1st determination part 11 after S21.
  • the processing device 10 can output the determination result via any output device such as a display, a speaker, a lamp, or a mailer.
  • the processing apparatus 10 may output the determination result of the second determination unit 12.
  • the processing device 10 can output the determination result via any output device such as a display, a speaker, a lamp, or a mailer.
  • the processing apparatus 10 can control the operation of the target apparatus. For this reason, when detecting the abnormality of the target device, the processing device 10 can stop the operation of the target device by transmitting a control signal for stopping the operation. As a result, it is possible to reduce the inconvenience that the operation of the target device is continued in an abnormal state and the damage is increased.
  • the processing device 10 transmits a control signal for stopping the operation, and the target device The operation can be stopped.
  • the operation of the target device can be continued in an unknown state, and the risk that damage will be increased can be reduced.
  • the processing system of this embodiment is different from the first and second embodiments in that it has a function of accumulating detection data whose determination result is “unknown”. For example, “normal” or “abnormal” can be associated with the accumulated detection data to obtain new teacher data.
  • “normal” or “abnormal” can be associated with the accumulated detection data to obtain new teacher data.
  • the hardware configuration of the processing apparatus 10 of this embodiment is the same as that of the first and second embodiments.
  • FIG. 7 shows an example of a functional block diagram of the processing apparatus 10 of the present embodiment.
  • the processing apparatus 10 includes a first determination unit 11, a second determination unit 12, and a registration unit 13.
  • the processing apparatus 10 may include a control unit 14.
  • the configurations of the first determination unit 11, the second determination unit 12, and the control unit 14 are the same as those in the first and second embodiments.
  • the configurations of the first sensor 21 and the second sensor 22 are the same as those in the first and second embodiments.
  • the registration unit 13 stores the determination impossible data in the storage unit.
  • Non-determinable data is detection data (time-series data of detection values for a predetermined time) that cannot be determined as normal / abnormal among the detection data of the first sensor 21 and the detection data of the second sensor 22. That is, it is detection data whose determination result is “unknown”.
  • the storage unit may be provided in the processing device 10 or may be provided in an external device configured to be able to communicate with the processing device 10.
  • the registration unit 13 can store various information in association with the data that cannot be determined in the storage unit.
  • the registration unit 13 may store the non-determinable data in the storage unit in association with the date and time when the non-determinable data is detected.
  • the registration unit 13 may store the determination impossible data in the storage unit in association with the processing conditions of the product processed by the target device when the determination impossible data is detected.
  • the processing conditions of the product include, but are not limited to, the setting of the target device and the type of accessory (eg, polishing liquid) used for processing the product.
  • the registration unit 13 may store the data that cannot be determined in the storage unit in association with the environment of the target device when the data that cannot be determined is detected.
  • Examples of the environment of the target device include, but are not limited to, the temperature and humidity at the target device installation position.
  • the registration unit 13 may store the non-determinable data in the storage unit in association with the product identification information processed by the target device when the non-determinable data is detected.
  • the processing apparatus 10 of the present embodiment it is possible to accumulate determination impossible data whose determination result is “unknown”.
  • the processing device 10 may associate “normal” or “abnormal” with the determination-impossible data, and use it as new teacher data. In this way, the performance of the estimation model used for the determination by the first determination unit 11 and the second determination unit 12 is improved, and the frequency at which the determination result becomes “unknown” can be reduced.
  • the processing apparatus 10 may accept a user input that designates “normal” or “abnormal” for each non-determinable data.
  • the processing device 10 determines the information related to the non-determinable data to be designated as “normal” or “abnormal”, specifically, the date and time when the non-determinable data is detected, and when the non-determinable data is detected.
  • the output can be realized through any output device such as a display and a mailer.
  • the user can determine the state (normal or abnormal) of the target device when each non-determinable data is detected based on the above information, and can input it to the processing device 10.
  • the processing device 10 determines the determination result as normal / abnormal in the detection data of the first sensor 21. It may be associated with data that cannot be determined.
  • detection data determination impossible data
  • undecidable data can be used as teacher data.
  • the more experienced the determination process is the more teacher data is enriched and the reliability of the determination result is improved.
  • the determination impossible data that cannot be determined as normal / abnormal among the detection data of the first sensor 21 is performed based on the detection data different from the first sensor 21.
  • the determined determination result (determination result by the second determination unit 12) can be associated with the teacher data. In such a case, it is possible to reduce the burden on the user who designates “normal” or “abnormal” for the undecidable data.
  • FIG. 8 shows an example of a functional block diagram of a processing system according to a modification.
  • the processing system of the modified example includes a processing device 10, a first sensor 21, a second sensor 22, and a relay device 30.
  • the processing apparatus 10 of the modification is a server (eg, cloud server) and is installed at a location different from the site where the target apparatus is installed.
  • the relay device 30 is installed at the site where the target device is installed.
  • the processing device 10 and the relay device 30 communicate with each other via a wide-area communication network 40 such as the Internet.
  • the first sensor 21, the second sensor 22, and the relay device 30 may be connected to each other via a dedicated line (wired), may be connected to each other by short-range wireless communication, or may be connected to each other via a LAN. You may communicate.
  • the relay device 30 acquires detection data from the first sensor 21 and the second sensor 22 and transmits the detection data to the processing device 10. In addition, the relay device 30 receives a signal for controlling the first sensor 21 and the second sensor 22 from the processing device 10, and transmits the signal to the first sensor 21 and the second sensor 22. In addition, the relay device 30 receives a signal for controlling the target device from the processing device 10 and transmits the signal to the target device.
  • First determination means for determining normality / abnormality of the target device based on detection data of the first sensor; When normality / abnormality cannot be determined based on the detection data of the first sensor, the second sensor is activated, and the normality / abnormality of the target device is determined based on the detection data of the second sensor.
  • Two determination means A processing apparatus. 2. In the processing apparatus according to 1, The processing apparatus which further has a registration means which memorize
  • the control means transmits a control signal to stop the operation to the target device. Processing equipment. 9.
  • the control device is a processing device that transmits a control signal to stop the operation to the target device when normality / abnormality cannot be determined based on the detection data of the second sensor. 10.
  • the first sensor and the second sensor detect vibration or sound; The processing device with which the second sensor has a narrower bandwidth than the first sensor.
  • the first sensor detects vibration or sound;
  • the processing device, wherein the second sensor is a sensor that detects something other than vibration or sound.
  • the first sensor is a processing device that consumes less power than the second sensor. 13.
  • the target device is a processing device which is a processing device.
  • Computer First determination means for determining normality / abnormality of the target device based on detection data of the first sensor; When normality / abnormality cannot be determined based on the detection data of the first sensor, the second sensor is activated, and the normality / abnormality of the target device is determined based on the detection data of the second sensor.
  • 2 determination means Program to function as.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本発明によれば、第1のセンサの検出データに基づき、対象装置の正常/異常を判定する第1の判定部(11)と、第1のセンサの検出データに基づき正常/異常の判定ができない場合、第2のセンサを起動させ、第2のセンサの検出データに基づき、対象装置の正常/異常を判定する第2の判定部(12)と、を有する処理装置(10)が提供される。

Description

処理装置、処理方法及びプログラム
 本発明は、処理装置、処理方法及びプログラムに関する。
 特許文献1には、送電線路設備を構成する部材に伝わる振動音に基づき、当該設備の異常を検出する装置が開示されている。
特開2011-193567号公報
 対象装置の正常/異常の判定を行う場合、複数種類のデータを用いて多面的に評価することが望ましい。しかし、複数のセンサを用いて複数種類のデータを測定すると、消費電力が大きくなる。本発明は、複数種類のデータを用いて対象装置の正常/異常を判定する技術において、省電力を実現することを課題とする。
 本発明によれば、
 第1のセンサの検出データに基づき、対象装置の正常/異常を判定する第1の判定手段と、
 前記第1のセンサの前記検出データに基づき正常/異常の判定ができない場合、第2のセンサを起動させ、前記第2のセンサの検出データに基づき、前記対象装置の正常/異常を判定する第2の判定手段と、
を有する処理装置が提供される。
 また、本発明によれば、
 コンピュータが、
 第1のセンサの検出データに基づき、対象装置の正常/異常を判定する第1の判定工程と、
 前記第1のセンサの前記検出データに基づき正常/異常の判定ができない場合、第2のセンサを起動させ、前記第2のセンサの検出データに基づき、前記対象装置の正常/異常を判定する第2の判定工程と、
を実行する処理方法が提供される。
 また、本発明によれば、
 コンピュータを、
 第1のセンサの検出データに基づき、対象装置の正常/異常を判定する第1の判定手段、
 前記第1のセンサの前記検出データに基づき正常/異常の判定ができない場合、第2のセンサを起動させ、前記第2のセンサの検出データに基づき、前記対象装置の正常/異常を判定する第2の判定手段、
として機能させるプログラムが提供される。
 本発明によれば、複数種類のデータを用いて対象装置の正常/異常を判定する技術において、省電力が実現される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態の処理システムの機能ブロック図の一例である。 本実施形態の処理装置のハードウエア構成の一例を示す図である。 本実施形態の処理装置の機能ブロック図の一例である。 本実施形態の処理装置の処理の流れの一例を示すフローチャートである。 本実施形態の処理装置の機能ブロック図の一例である。 本実施形態の処理装置の処理の流れの一例を示すフローチャートである。 本実施形態の処理装置の機能ブロック図の一例である。 本実施形態の処理システムの機能ブロック図の一例である。
<第1の実施形態>
 まず、本実施形態の処理システムの全体像及び概要を説明する。本実施形態の処理システムは、対象装置の正常/異常を判定するシステムである。本実施形態の処理システムは、研磨機、切削機等の加工装置の評価に適している。なお、その他の装置の評価に適用することも可能である。
 本実施形態の処理システムは、図1の機能ブロック図に示すように、処理装置10と、1つ又は複数の第1のセンサ21と、1つ又は複数の第2のセンサ22とを有する。処理装置10と、第1のセンサ21及び第2のセンサ22とは、任意の通信手段で通信可能に構成される。例えば、処理装置10と、第1のセンサ21及び第2のセンサ22とは、専用線(有線)で互いに繋がり通信してもよいし、近距離無線通信で互いに通信してもよいし、LAN(local area network)で互いに繋がり通信してもよい。
 第1のセンサ21及び第2のセンサ22は、対象装置に関係するデータを検出するセンサである。第1のセンサ21及び第2のセンサ22は、対象装置に関係する所定のデータを検出可能な位置に設置される。
 処理装置10は、第1のセンサ21及び第2のセンサ22の検出データに基づき、対象装置の正常/異常を判定する装置である。処理装置10は、対象装置を設置している現場に設置される。
 第1のセンサ21は、常時稼働し、データの検出を継続する。これに対し、第2のセンサ22は、所定条件を満たした場合に起動し、それから一定時間のみデータの検出を行う。具体的には、第2のセンサ22は、第1のセンサ21の検出データに基づき対象装置の正常/異常の判定ができない場合に起動し、それから一定時間のみデータの検出を行う。
 このような本実施形態の処理システムによれば、複数のセンサにより取得された複数種類のデータを用いて、対象装置の正常/異常を判定することができる。このため、対象装置の状態を多面的に評価し、対象装置の正常/異常の判定結果の信頼度を高めることができる。
 また、本実施形態の処理システムによれば、常時すべてのセンサを稼働させるのでなく、一部(第1のセンサ21)のみを常時稼働させ、他の一部(第2のセンサ22)は所定条件を満たした場合のみ一時的に稼働させることができる。このため、常時すべてのセンサを稼働させる場合に比べて、消費電力を低減できる。
 また、本実施形態の処理システムによれば、第2のセンサ22を起動させる条件を、「第1のセンサ21の検出データに基づき対象装置の正常/異常の判定ができない場合」とすることができる。
 第1のセンサ21の検出データに基づき対象装置の正常/異常の判定ができる場合にはその結果を採用すればよく、他の種類のデータに基づくさらなる判定を行う必要はない。一方で、第1のセンサ21の検出データに基づき対象装置の正常/異常の判定ができない場合には、他の種類のデータに基づく他の視点から判定を行うことで、対象装置の正常/異常の判定を試みる。このように、必要な場合のみ第2のセンサ22を稼働させ、不要なタイミングでの第2のセンサ22の稼働を抑制できるので、消費電力の低減を効率的に実現できる。
 次に、処理装置10の構成を詳細に説明する。まず、処理装置10のハードウエア構成の一例について説明する。本実施形態の処理装置10が備える各機能部は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされるプログラム、そのプログラムを格納するハードディスク等の記憶ユニット(あらかじめ装置を出荷する段階から格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムをも格納できる)、ネットワーク接続用インターフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
 図2は、本実施形態の処理装置10のハードウエア構成を例示するブロック図である。図2に示すように、処理装置10は、プロセッサ1A、メモリ2A、入出力インターフェイス3A、周辺回路4A、バス5Aを有する。周辺回路4Aには、様々なモジュールが含まれる。
 バス5Aは、プロセッサ1A、メモリ2A、周辺回路4A及び入出力インターフェイス3Aが相互にデータを送受信するためのデータ伝送路である。プロセッサ1Aは、例えばCPUやGPU(Graphics Processing Unit)などの演算処理装置である。メモリ2Aは、例えばRAM(Random Access Memory)やROM(Read Only Memory)などのメモリである。入出力インターフェイス3Aは、入力装置(例:キーボード、マウス、マイク、物理キー、タッチパネルディスプレイ、コードリーダ等)、外部装置、外部サーバ、外部センサ等から情報を取得するためのインターフェイスや、出力装置(例:ディスプレイ、スピーカ、プリンター、メーラ等)、外部装置、外部サーバ等に情報を出力するためのインターフェイスなどを含む。プロセッサ1Aは、各モジュールに指令を出し、それらの演算結果をもとに演算を行うことができる。
 次に、処理装置10の機能構成を説明する。図3に、処理装置10の機能ブロック図の一例を示す。図示するように、処理装置10は、第1の判定部11と、第2の判定部12とを有する。
 第1の判定部11は、第1のセンサ21の検出データ(例:検出値の時系列データ)に基づき、対象装置の正常/異常を判定する。第1のセンサ21は常時稼働し、データの検出を継続する。そして、第1の判定部11は、第1のセンサ21により検出されたデータに基づく判定を継続する。
 第1の判定部11は、例えば、説明変数と目的変数(正常又は異常)とをペアにした教師データに基づく機械学習で得られた推定モデルを用いて、上記判定を行うことができる。この場合の判定結果は、「正常」、「異常」及び「不明(正常/異常の判定ができない)」のいずれかとなる。学習させた教師データが十分でない場合、「不明」となりやすい。
 推定技法は設計的事項であり、あらゆる技術を採用できる。説明変数は、第1のセンサ21で検出される検出値の時系列データであってもよいし、当該時系列データから抽出された特徴量であってもよい。特徴量の種類は設計的事項である。また、説明変数は、対象装置の環境、対象装置により処理されている製品の加工条件等を含んでもよい。対象装置の環境は、対象装置設置位置の気温、湿度等が例示されるが、これらに限定されない。製品の加工条件は、対象装置の設定、製品の加工に用いる付属品(例:研磨液等)の種類等が例示されるが、これらに限定されない。
 第1の判定部11は、第1のセンサ21の検出データ及び推定モデルを用いた判定において、第1のセンサ21の検出データ(所定時間分の検出値の時系列データ)又はそれから抽出された特徴量を、前処理を行わずに推定モデルに入力して判定を行ってもよい。そして、第1の判定部11はその判定結果を出力してもよい。
 その他、第1の判定部11は、第1のセンサ21の検出データに1種類又は複数種類の前処理を行い、前処理後の検出データ又はそれから抽出された特徴量を推定モデルに入力して判定を行ってもよい。そして、第1の判定部11はその判定結果を出力してもよい。
 その他、第1の判定部11は、上記手法を組み合わせてもよい。すなわち、第1の判定部11は、まず、第1のセンサ21の検出データ又はそれから抽出された特徴量を、前処理を行わずに推定モデルに入力して判定を行ってもよい。そして、判定結果が「正常」又は「異常」であった場合、第1の判定部11はその判定結果を出力してもよい。
 一方、判定結果が「不明」であった場合、第1の判定部11は、第1のセンサ21の検出データに1種類又は複数種類の前処理を行い、前処理後の検出データ又はそれから抽出された特徴量を推定モデルに入力して再度判定を行ってもよい。そして、第1の判定部11はその判定結果を出力してもよい。
 なお、上記手法を組み合わせる場合、実施する前処理の種類を段階的に増やしてもよい。すなわち、第1のセンサ21の検出データ又はそれから抽出された特徴量を前処理を行わずに推定モデルに入力した判定の結果が「不明」であった場合、第1の判定部11は、第1の前処理を行った検出データ又はそれから抽出された特徴量を推定モデルに入力して再度判定を行ってもよい。そして、判定結果が「正常」又は「異常」であった場合、第1の判定部11はその判定結果を出力してもよい。
 一方、判定結果が「不明」であった場合、第1の判定部11は、第1の前処理及び第2の前処理を行った検出データ又はそれから抽出された特徴量を推定モデルに入力して再度判定を行ってもよい。このように、判定結果「不明」が維持される間、実施する前処理の種類を段階的に増やしてもよい。そして、すべての前処理を行っても判定結果が「不明」である場合、第1の判定部11はその判定結果を出力してもよい。
 前処理は、レベル補正(ベースラインの補正)、ノイズ処理(不要ピークの除去)及び処理データの絞り込み(波形のズームアップ)の中の少なくとも1つを含む。なお、前処理はその他の処理を含んでもよい。以下、各処理について説明する。
「レベル補正」
 検出データのベースラインを補正することで、検出データに含まれるピークのレベルを補正する。ベースラインの補正は、対象装置の環境や、対象装置により処理されている製品の加工条件等と、予め定められたルールとに基づき、第1の判定部11が行ってもよい。
「ノイズ処理」
 ノイズ処理では、対象装置に関係しないピーク(ノイズ)を除去する。例えば、第1の判定部11は、対象装置からの距離が互いに異なる複数の第1のセンサ21(同特性、同設定)から検出データを取得し、複数の第1のセンサ21から取得した検出データを同期させる。そして、第1の判定部11は、対応するピーク(複数の第1のセンサ21各々の検出データに含まれる同じ要因に基づくピーク)間の関係が所定条件を満たさないピークをノイズとして除去する。
 所定条件は、「対象装置からの距離が小さい第1のセンサ21の検出データほど、ピークが大きい」である。これは、対象装置からの距離が近い第1のセンサ21ほど、対象装置に起因したデータ(例:振動、音等)をより検出しやすいことに基づく。
「処理データの絞り込み」
 処理対象(推定モデルに入力したり、特徴量を抽出したりする処理の対象)とするデータを絞り込む。例えば、周波数の範囲を絞り込む。これにより、処理対象のデータ内におけるピークレベルの上限下限の差が小さくなる。この状態でベースラインの補正、及び、波形のズームアップを行うことで、ピークレベルの上限下限の差を所定範囲に収めつつ、波形のズームアップ率を向上させることができる。
 第2の判定部12は、第1のセンサ21の検出データに基づき正常/異常の判定ができない場合、すなわち第1の判定部11から判定結果「不明」が出力された場合、第2のセンサ22を起動させる。そして、第2の判定部12は、第2のセンサ22の検出データに基づき、対象装置の正常/異常を判定する。
 第2のセンサ22は、第1のセンサ21と異なる種類のデータを検出する。なお、第1のセンサ21は、第2のセンサ22よりも消費電力が小さくなるようにしてもよい。すなわち、相対的に消費電力が小さいセンサを常時稼働しておく第1のセンサ21として利用し、相対的に消費電力が大きいセンサを所定条件に応じて起動させる第2のセンサ22として利用してもよい。
 以下、第1のセンサ21と第2のセンサ22の具体例を示す。
「例1」
 例1では、第1のセンサ21及び第2のセンサ22は、同種のデータ、具体的は振動又は音を検出する。そして、第2のセンサ22は、第1のセンサ21よりも検出する帯域幅が狭い。
 第1のセンサ21は、比較的広い帯域幅(例:10Hz~20kHz)を検出対象とし、第2のセンサ22は、それに含まれる一部(例:10Hz~1kHz、1kHz~5kHz、5kHz~20kHz等)を検出対象とすることができる。帯域幅を狭くした第2のセンサ22の方が、より感度が高いデータを収集できる。
 この場合、複数の第2のセンサ22で、第1のセンサ21の帯域幅をカバーしてもよい。すなわち、第1のセンサ21の帯域幅が10Hz~20kHzである場合、1つの第2のセンサ22の帯域幅を10Hz~1kHzとし、他の第2のセンサ22の帯域幅を1kHz~5kHzとし、他の第2のセンサ22の帯域幅を5kHz~20kHzとしてもよい。
 第1の判定部11の検出対象の帯域、及び、第2のセンサ22の検出対象の帯域は、対象装置のスペックや設定等に応じて決定することができる。
「例2」
 例2では、第1のセンサ21は、振動又は音を検出する。そして、第2のセンサ22は、振動又は音以外を検出する。すなわち、第1のセンサ21と第2のセンサ22は異なる種類のデータを検出する。
 例えば、第1のセンサ21は振動を検出し、第2のセンサ22は音を検出してもよい。その他、第1のセンサ21は音を検出し、第2のセンサ22は振動を検出してもよい。その他、第1のセンサ21は振動又は音を検出し、第2のセンサ22は温度、圧力、研磨機の回転数、研磨液の流量、研磨液のPHの中の少なくとも1つを検出してもよい。また、第2のセンサ22は、対象装置の所定箇所の画像(静止画像、動画像)を撮影してもよい。なお、複数の第2のセンサ22で、複数種類のデータを検出してもよい。
 第2の判定部12は、機械学習で得られた推定モデルを用いて上記判定を行うことができる。詳細は、第1の判定部11による判定と同様である。この場合の判定結果は、「正常」、「異常」及び「不明(正常/異常の判定ができない)」のいずれかとなる。学習させた教師データが十分でない場合、「不明」となりやすい。
 第2の判定部12は、第2のセンサ22の検出データ及び推定モデルを用いた判定において、第2のセンサ22の検出データ(所定時間分の検出値の時系列データ又はそれから抽出された特徴量を、前処理を行わずに推定モデルに入力して判定を行ってもよい。そして、第2の判定部12はその判定結果を出力してもよい。
 その他、第2の判定部12は、第2のセンサ22の検出データに1種類又は複数種類の前処理を行い、前処理後の検出データ又はそれから抽出された特徴量を推定モデルに入力して判定を行ってもよい。そして、第2の判定部12はその判定結果を出力してもよい。
 その他、第2の判定部12は、上記手法を組み合わせてもよい。すなわち、第2の判定部12は、まず、第2のセンサ22の検出データ又はそれから抽出された特徴量を、前処理を行わずに推定モデルに入力して判定を行ってもよい。そして、判定結果が「正常」又は「異常」であった場合、第2の判定部12はその判定結果を出力してもよい。
 一方、判定結果が「不明」であった場合、第2の判定部12は、1種類又は複数種類の前処理を行った検出データ又はそれから抽出された特徴量を推定モデルに入力して再度判定を行ってもよい。そして、第2の判定部12はその判定結果を出力してもよい。
 なお、上記手法を組み合わせる場合、実施する前処理の種類を段階的に増やしてもよい。すなわち、第2のセンサ22の検出データ又はそれから抽出された特徴量を、前処理を行わずに推定モデルに入力した判定の結果が「不明」であった場合、第2の判定部12は、第1の前処理を行った検出データ又はそれから抽出された特徴量を推定モデルに入力して再度判定を行ってもよい。そして、判定結果が「正常」又は「異常」であった場合、第2の判定部12はその判定結果を出力してもよい。
 一方、判定結果が「不明」であった場合、第2の判定部12は、第1の前処理及び第2の前処理を行った検出データ又はそれから抽出された特徴量を推定モデルに入力して再度判定を行ってもよい。このように、判定結果「不明」が維持される間、実施する前処理の種類を段階的に増やしてもよい。そして、すべての前処理を行っても判定結果が「不明」である場合、第2の判定部12はその判定結果を出力してもよい。
 前処理の詳細は、第1の判定部11が実施する前処理と同様である。
 また、第2の判定部12は、複数の第2のセンサ22を段階的に起動させてもよい。すなわち、第1のセンサ21の検出データに基づき正常/異常の判定ができない場合、第2の判定部12は、複数の第2のセンサ22の中の一部である第2-1のセンサ22を起動させてもよい。そして、第2-1のセンサ22の検出データに基づく判定結果が「正常」又は「異常」であった場合、第2の判定部12はその判定結果を出力してもよい。
 一方、第2-1のセンサ22の検出データに基づく判定結果が「不明」であった場合、第2の判定部12は、複数の第2のセンサ22の中の他の一部である第2-2のセンサ22を起動させてもよい。この時、第2-1のセンサ22は停止させてもよい。そして、第2-2のセンサ22の検出データに基づく判定結果が「正常」又は「異常」であった場合、第2の判定部12はその判定結果を出力してもよい。
 一方、第2-2のセンサ22の検出データに基づく判定結果が「不明」であった場合、第2の判定部12は、複数の第2のセンサ22の中の他の一部である第2-3のセンサ22を起動させてもよい。この時、第2-2のセンサ22は停止させてもよい。
 このように、判定結果「不明」が維持される間、起動させる第2のセンサ22を順次切り替えてもよい。そして、すべての第2のセンサ22を起動させても判定結果が「不明」である場合、第2の判定部12はその判定結果を出力してもよい。
 次に、図4のフローチャートを用いて、本実施形態の処理装置10の処理の流れの一例を説明する。
 処理を開始すると、第1の判定部11は、第1のセンサ21の検出データに基づく対象装置の正常/異常の判定を開始する(S10)。すなわち、第1の判定部11は、第1のセンサ21を起動させ、データの検出を開始させる。そして、第1の判定部11は、第1のセンサ21から検出データを取得し、上記判定を行う。
 第1の判定部11から出力された判定結果が「正常」又は「異常」である場合(S11)、処理装置10はその判定結果を出力する(S14)。処理装置10は、ディスプレイ、スピーカ、ランプ、メーラ等のあらゆる出力装置を介して、判定結果を出力することができる。
 一方、第1の判定部11から出力された判定結果が「不明」である場合(S11)、第2の判定部12は第2のセンサ22を起動させ、それから一定時間(例:予め定められた時間、第2の判定部12による判定結果が出力されるまで)データを検出させる(S12)。そして、第2の判定部12は、第2のセンサ22から検出データを取得し、当該検出データに基づいて対象装置の正常/異常を判定する(S13)。なお、第2のセンサ22は、上記一定時間のデータの検出を完了すると、動作を停止してもよい。
 その後、処理装置10は、第2の判定部12の判定結果を出力する(S14)。出力される判定結果は、「正常」、「異常」又は「不明」である。処理装置10は、ディスプレイ、スピーカ、ランプ、メーラ等のあらゆる出力装置を介して、判定結果を出力することができる。
 以降、処理を終了する指示入力がない間(S15のNo)、処理装置10は処理を継続する。
 次に、本実施形態の処理システムの作用効果を説明する。本実施形態の処理システムによれば、複数のセンサにより取得された複数種類のデータを用いて、対象装置の正常/異常を判定することができる。このため、対象装置の状態を多面的に評価し、精度よく対象装置の正常/異常を判定できる。
 また、本実施形態の処理システムによれば、常時すべてのセンサを稼働させるのでなく、一部(第1のセンサ21)のみを常時稼働させ、他の一部(第2のセンサ22)は所定条件を満たした場合のみ一時的に稼働させることができる。このため、常時すべてのセンサを稼働させる場合に比べて、消費電力を低減できる。
 また、本実施形態の処理システムによれば、第2のセンサ22を起動させる条件を、「第1のセンサ21の検出データに基づき対象装置の正常/異常の判定ができない場合」とすることができる。
 第1のセンサ21の検出データに基づき対象装置の正常/異常の判定ができる場合にはその結果を採用すればよく、他の種類のデータに基づくさらなる判定を行う必要はない。一方で、第1のセンサ21の検出データに基づき対象装置の正常/異常の判定ができない場合には、他の種類のデータに基づく他の視点から判定を行うことで、対象装置の正常/異常の判定を試みる。このように、必要な場合のみ第2のセンサ22を稼働させ、不要なタイミングでの第2のセンサ22の稼働を抑制できるので、消費電力の低減を効率的に実現できる。
 また、本実施形態の処理システムによれば、機械学習で得られた推定モデルを用いて、対象装置の正常/異常を判定することができる。この場合、より多くの教師データを用いて機械学習をさせることで、判定結果「不明」となる不都合を回避できる。換言すれば、学習させた教師データが十分でないと、判定結果「不明」となる可能性が高くなる。
 例えば、航空エンジンの製造等に代表されるように、規格品の大量製造でなく、一品ものの製造においては、製品の状態が各々異なり得るので、それを処理する対象機器の状態も処理する製品に応じて異なり得る。このため、あらゆる状況をカバーするように教師データを事前に用意し、学習させるのが困難になる。結果、判定結果「不明」となる可能性が高くなる。
 判定結果が「不明」の場合、現場の人間の判断が難しくなる。仮に、異常が生じている場合には、即座に対象機器を停止させるのが好ましい。一方で、対象機器を停止させると、生産ラインがストップし、甚大な損害が発生する。このため、異常が生じていない状態での対象機器の停止は、できるだけ回避することが好ましい。
 本実施形態の処理システムによれば、判定結果「不明」となった場合、検出データに各種前処理を施し、それを用いて再判定を行ったり、また、異なるセンサを起動させて異なる種類のデータを検出し、それに基づき再判定を行ったりできる。このように、多面的に評価することで、出力される判定結果が「不明」となる不都合を抑制できる。
 また、本実施形態の処理システムによれば、相対的に消費電力が小さいセンサを常時稼働しておく第1のセンサ21として利用し、相対的に消費電力が大きいセンサを所定条件に応じて起動させる第2のセンサ22として利用することができる。このように構成することで、省電力を実現できる。
<第2の実施形態>
 本実施形態の処理システムは、処理装置10が対象装置を制御する機能を有する点で第1の実施形態と異なる。具体的には、処理装置10は、第1の判定部11及び第2の判定部12による判定結果が所定条件を満たすと、動作を停止させる制御信号を対象装置に送信する。以下、本実施形態の処理システムの構成を詳細に説明する。
 本実施形態の処理装置10のハードウエア構成は、第1の実施形態と同様である。
 図5に、本実施形態の処理装置10の機能ブロック図の一例を示す。図示するように、処理装置10は、第1の判定部11と、第2の判定部12と、制御部14とを有する。第1の判定部11及び第2の判定部12の構成は、第1の実施形態と同様である。また、第1のセンサ21及び第2のセンサ22の構成は、第1の実施形態と同様である。
 制御部14は、対象装置の動作を制御する。具体的には、制御部14は、第1の判定部11及び第2の判定部12による判定結果が所定条件を満たすと、動作を停止させる制御信号を対象装置に送信する。
 例えば、制御部14は、第1のセンサ21の検出データ又は第2のセンサ22の検出データに基づき対象装置は異常と判定された場合、すなわち、第1の判定部11又は第2の判定部12から判定結果「異常」が出力された場合、動作を停止させる制御信号を対象装置に送信することができる。この場合、対象装置は、制御信号の受信に応じて、直ちに自装置の動作を停止してもよい。
 その他、制御部14は、第2のセンサ22の検出データに基づき正常/異常の判定ができない場合、すなわち、第2の判定部12から判定結果「不明」が出力された場合、動作を停止させる制御信号を対象装置に送信することができる。なお、この場合は、第1のセンサ21の検出データに基づいても正常/異常の判定ができない場合となる。この場合、対象装置は、制御信号の受信に応じて、直ちに自装置の動作を停止してもよい。その他、対象装置は、制御信号の受信時点で実行中の処理を完了した後に、自装置の動作を停止してもよい。
 次に、図6のフローチャートを用いて、本実施形態の処理装置10の処理の流れの一例を説明する。
 処理を開始すると、第1の判定部11は、第1のセンサ21の検出データに基づく対象装置の正常/異常の判定を開始する(S20)。すなわち、第1の判定部11は、第1のセンサ21を起動させ、データの検出を開始させる。そして、第1の判定部11は、第1のセンサ21から検出データを取得し、上記判定を行う。
 第1の判定部11から出力された判定結果が「正常」である場合(S21)、処理装置10は、処理を終了する指示入力がなければ(S26のNo)、S20に戻って処理を繰り返す。
 また、第1の判定部11から出力された判定結果が「異常」である場合(S21)、制御部14は、動作を停止させる制御信号を対象装置に送信する(S25)。対象装置は、当該制御信号の受信に応じて、直ちに自装置の動作を停止してもよい。
 また、第1の判定部11から出力された判定結果が「不明」である場合(S21)、第2の判定部12は第2のセンサ22を起動させ、それから一定時間(例:予め定められた時間、第2の判定部12による判定結果が出力されるまで)データを検出させる(S22)。そして、第2の判定部12は、第2のセンサ22から検出データを取得し、当該検出データに基づいて対象装置の正常/異常を判定する(S23)。なお、第2のセンサ22は、上記一定時間のデータの検出を完了すると、動作を停止してもよい。
 第2の判定部11から出力された判定結果が「正常」である場合(S24)、処理装置10は、処理を終了する指示入力がなければ(S26のNo)、S20に戻って処理を繰り返す。
 第2の判定部12から出力された判定結果が「異常」又は「不明」である場合(S24)、制御部14は、動作を停止させる制御信号を対象装置に送信する(S25)。判定結果が「異常」の場合、対象装置は、当該制御信号の受信に応じて、直ちに自装置の動作を停止してもよい。一方、判定結果が「不明」の場合、対象装置は、当該制御信号の受信に応じて、直ちに自装置の動作を停止してもよいし、制御信号の受信時点で実行中の処理を完了した後に、自装置の動作を停止してもよい。この場合、制御部14から送信される制御信号は、第2の判定部12の判定結果を識別可能な情報を含んでもよい。
 なお、S21の後、処理装置10は、第1の判定部11の判定結果を出力してもよい。処理装置10は、ディスプレイ、スピーカ、ランプ、メーラ等のあらゆる出力装置を介して、判定結果を出力することができる。
 また、S24の後、処理装置10は、第2の判定部12の判定結果を出力してもよい。処理装置10は、ディスプレイ、スピーカ、ランプ、メーラ等のあらゆる出力装置を介して、判定結果を出力することができる。
 次に、本実施形態の処理システムの作用効果を説明する。本実施形態の処理システムによれば、第1の実施形態と同様の作用効果を実現できる。
 また、本実施形態の処理装置10は、対象装置の動作を制御することができる。このため、処理装置10は、対象装置の異常を検出した場合、動作を停止させる制御信号を送信し、対象装置の動作を停止させることができる。結果、異常状態のまま対象装置の稼働を継続し、被害が大きくなる不都合を軽減することができる。
 また、処理装置10は、第1の判定部11及び第2の判定部12の両方で判定を行っても判定結果が「不明」の場合、動作を停止させる制御信号を送信し、対象装置の動作を停止させることができる。結果、不明状態のまま対象装置の稼働を継続し、被害が大きくなるリスクを軽減することができる。
<第3の実施形態>
 本実施形態の処理システムは、判定結果が「不明」となった検出データを蓄積する機能を有する点で、第1及び第2の実施形態と異なる。例えば、蓄積された検出データに「正常」又は「異常」を対応付け、新たな教師データとすることができる。以下、本実施形態の処理システムの構成を詳細に説明する。
 本実施形態の処理装置10のハードウエア構成は、第1及び第2の実施形態と同様である。
 図7に、本実施形態の処理装置10の機能ブロック図の一例を示す。図示するように、処理装置10は、第1の判定部11と、第2の判定部12と、登録部13とを有する。図示しないが、処理装置10は、制御部14を有してもよい。第1の判定部11、第2の判定部12及び制御部14の構成は、第1及び第2の実施形態と同様である。また、第1のセンサ21及び第2のセンサ22の構成は、第1及び第2の実施形態と同様である。
 登録部13は、判定不可データを記憶部に記憶させる。判定不可データは、第1のセンサ21の検出データ及び第2のセンサ22の検出データの内の正常/異常の判定ができない検出データ(所定時間分の検出値の時系列データ)である。すなわち、判定結果が「不明」となる検出データである。記憶部は、処理装置10内に設けられてもよいし、処理装置10と通信可能に構成された外部装置内に設けられてもよい。
 登録部13は、判定不可データに各種情報を対応付けて記憶部に記憶させることができる。
 例えば、登録部13は、判定不可データを、判定不可データが検出された日時に対応付けて記憶部に記憶させてもよい。
 その他、登録部13は、判定不可データを、判定不可データが検出された際に対象装置により処理されていた製品の加工条件に対応付けて記憶部に記憶させてもよい。製品の加工条件は、対象装置の設定、製品の加工に用いる付属品(例:研磨液等)の種類等が例示されるが、これらに限定されない。
 その他、登録部13は、判定不可データを、判定不可データが検出された際の対象装置の環境に対応付けて記憶部に記憶させてもよい。対象装置の環境は、対象装置設置位置の気温、湿度等が例示されるが、これらに限定されない。
 その他、登録部13は、判定不可データを、判定不可データが検出された際に対象装置により処理されていた製品の識別情報に対応付けて記憶部に記憶させてもよい。
 本実施形態の処理装置10によれば、判定結果が「不明」となった判定不可データを蓄積することができる。処理装置10は、判定不可データに「正常」又は「異常」を対応付け、新たな教師データとしてもよい。このようにすれば、第1の判定部11及び第2の判定部12による判定に用いられる推定モデルの性能が向上し、判定結果が「不明」となる頻度を減らすことができる。
 ここで、判定不可データに「正常」又は「異常」を対応付ける手段を説明する。例えば、処理装置10は、各判定不可データに「正常」又は「異常」を指定するユーザ入力を受付けてもよい。この場合、処理装置10は、「正常」又は「異常」を指定する対象の判定不可データに関連する情報、具体的には、判定不可データが検出された日時、判定不可データが検出された際に対象装置により処理されていた製品の加工条件、判定不可データが検出された際の対象装置の環境、判定不可データが検出された際に対象装置により処理されていた製品の識別情報等をユーザに向けて出力してもよい。出力は、ディスプレイ、メーラ等のあらゆる出力装置を介して実現できる。
 ユーザは、上記情報に基づき、各判定不可データが検出された際の対象装置の状態(正常又は異常)を判断し、処理装置10に入力することができる。
 その他、処理装置10は、第2の判定部12による判定結果が「正常」又は「異常」であった場合、その判定結果を、第1のセンサ21の検出データの内の正常/異常の判定ができなかった判定不可データに対応付けてもよい。
 次に、本実施形態の処理システムの作用効果を説明する。本実施形態の処理システムによれば、第1及び第2の実施形態と同様の作用効果を実現できる。
 また、本実施形態の処理システムによれば、判定結果が「不明」となった検出データ(判定不可データ)を蓄積し、有効活用することができる。例えば、判定不可データを教師データとして利用することができる。このような本実施形態の処理システムによれば、判定処理の経験を積むほど、教師データが充実し、判定結果の信頼性が向上する。
 また、本実施形態の処理システムによれば、第1のセンサ21の検出データの内の正常/異常の判定ができなかった判定不可データに、第1のセンサ21と異なる検出データに基づいて行われた判定結果(第2の判定部12による判定結果)を対応付けて、教師データとすることができる。かかる場合、判定不可データに「正常」又は「異常」を指定するユーザ負担を軽減できる。
<変形例>
 第1乃至第3の実施形態に適用可能な変形例を説明する。図8に、変形例の処理システムの機能ブロック図の一例を示す。変形例の処理システムは、処理装置10と、第1のセンサ21と、第2のセンサ22と、中継装置30とを有する。
 変形例の処理装置10は、サーバ(例:クラウドサーバ)であり、対象装置を設置している現場と異なる場所に設置される。中継装置30は、対象装置を設置している現場に設置される。
 処理装置10と中継装置30は、インターネット等の広域の通信ネットワーク40を介して互いに通信する。第1のセンサ21及び第2のセンサ22と中継装置30とは、専用線(有線)で互いに繋がり通信してもよいし、近距離無線通信で互いに通信してもよいし、LANで互いに繋がり通信してもよい。
 中継装置30は、第1のセンサ21及び第2のセンサ22から検出データを取得し、処理装置10に送信する。また、中継装置30は、処理装置10から第1のセンサ21及び第2のセンサ22を制御する信号を受信し、第1のセンサ21及び第2のセンサ22に送信する。また、中継装置30は、処理装置10から対象装置を制御する信号を受信し、対象装置に送信する。
 当該変形例においても、第1乃至第3の実施形態と同様の作用効果を実現する。
 以下、参考形態の例を付記する。
1. 第1のセンサの検出データに基づき、対象装置の正常/異常を判定する第1の判定手段と、
 前記第1のセンサの前記検出データに基づき正常/異常の判定ができない場合、第2のセンサを起動させ、前記第2のセンサの検出データに基づき、前記対象装置の正常/異常を判定する第2の判定手段と、
を有する処理装置。
2. 1に記載の処理装置において、
 正常/異常の判定ができない前記第1のセンサの前記検出データ及び前記第2のセンサの前記検出データである判定不可データを、記憶手段に記憶させる登録手段をさらに有する処理装置。
3. 2に記載の処理装置において、
 前記登録手段は、前記判定不可データを、前記判定不可データが検出された日時に対応付けて前記記憶手段に記憶させる処理装置。
4. 2又は3に記載の処理装置において、
 前記登録手段は、前記判定不可データを、前記判定不可データが検出された際に前記対象装置により処理されていた製品の加工条件に対応付けて前記記憶手段に記憶させる処理装置。
5. 2から4のいずれかに記載の処理装置において、
 前記登録手段は、前記判定不可データを、前記判定不可データが検出された際の前記対象装置の環境に対応付けて前記記憶手段に記憶させる処理装置。
6. 2から5のいずれかに記載の処理装置において、
 前記登録手段は、前記判定不可データを、前記判定不可データが検出された際に前記対象装置により処理されていた製品の識別情報に対応付けて前記記憶手段に記憶させる処理装置。
7. 1から6のいずれかに記載の処理装置において、
 前記対象装置の動作を制御する制御手段をさらに有する処理装置。
8. 7に記載の処理装置において、
 前記制御手段は、前記第1のセンサの前記検出データ又は前記第2のセンサの前記検出データに基づき前記対象装置は異常と判定された場合、動作を停止させる制御信号を前記対象装置に送信する処理装置。
9. 7又は8に記載の処理装置において、
 前記制御手段は、前記第2のセンサの前記検出データに基づき正常/異常の判定ができない場合、動作を停止させる制御信号を前記対象装置に送信する処理装置。
10. 1から9のいずれかに記載の処理装置において、
 前記第1のセンサ及び前記第2のセンサは振動又は音を検出し、
 前記第2のセンサは、前記第1のセンサよりも検出する帯域幅が狭い処理装置。
11. 1から9のいずれかに記載の処理装置において、
 前記第1のセンサは、振動又は音を検出し、
 前記第2のセンサは、振動又は音以外を検出するセンサである処理装置。
12. 1から11のいずれかに記載の処理装置において、
 前記第1のセンサは、前記第2のセンサよりも消費電力が小さい処理装置。
13. 1から12のいずれかに記載の処理装置において、
 前記対象装置は、加工装置である処理装置。
14. コンピュータが、
 第1のセンサの検出データに基づき、対象装置の正常/異常を判定する第1の判定工程と、
 前記第1のセンサの前記検出データに基づき正常/異常の判定ができない場合、第2のセンサを起動させ、前記第2のセンサの検出データに基づき、前記対象装置の正常/異常を判定する第2の判定工程と、
を実行する処理方法。
15. コンピュータを、
 第1のセンサの検出データに基づき、対象装置の正常/異常を判定する第1の判定手段、
 前記第1のセンサの前記検出データに基づき正常/異常の判定ができない場合、第2のセンサを起動させ、前記第2のセンサの検出データに基づき、前記対象装置の正常/異常を判定する第2の判定手段、
として機能させるプログラム。
 この出願は、2017年5月25日に出願された日本出願特願2017-103546号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (15)

  1.  第1のセンサの検出データに基づき、対象装置の正常/異常を判定する第1の判定手段と、
     前記第1のセンサの前記検出データに基づき正常/異常の判定ができない場合、第2のセンサを起動させ、前記第2のセンサの検出データに基づき、前記対象装置の正常/異常を判定する第2の判定手段と、
    を有する処理装置。
  2.  請求項1に記載の処理装置において、
     正常/異常の判定ができない前記第1のセンサの前記検出データ及び前記第2のセンサの前記検出データである判定不可データを、記憶手段に記憶させる登録手段をさらに有する処理装置。
  3.  請求項2に記載の処理装置において、
     前記登録手段は、前記判定不可データを、前記判定不可データが検出された日時に対応付けて前記記憶手段に記憶させる処理装置。
  4.  請求項2又は3に記載の処理装置において、
     前記登録手段は、前記判定不可データを、前記判定不可データが検出された際に前記対象装置により処理されていた製品の加工条件に対応付けて前記記憶手段に記憶させる処理装置。
  5.  請求項2から4のいずれか1項に記載の処理装置において、
     前記登録手段は、前記判定不可データを、前記判定不可データが検出された際の前記対象装置の環境に対応付けて前記記憶手段に記憶させる処理装置。
  6.  請求項2から5のいずれか1項に記載の処理装置において、
     前記登録手段は、前記判定不可データを、前記判定不可データが検出された際に前記対象装置により処理されていた製品の識別情報に対応付けて前記記憶手段に記憶させる処理装置。
  7.  請求項1から6のいずれか1項に記載の処理装置において、
     前記対象装置の動作を制御する制御手段をさらに有する処理装置。
  8.  請求項7に記載の処理装置において、
     前記制御手段は、前記第1のセンサの前記検出データ又は前記第2のセンサの前記検出データに基づき前記対象装置は異常と判定された場合、動作を停止させる制御信号を前記対象装置に送信する処理装置。
  9.  請求項7又は8に記載の処理装置において、
     前記制御手段は、前記第2のセンサの前記検出データに基づき正常/異常の判定ができない場合、動作を停止させる制御信号を前記対象装置に送信する処理装置。
  10.  請求項1から9のいずれか1項に記載の処理装置において、
     前記第1のセンサ及び前記第2のセンサは振動又は音を検出し、
     前記第2のセンサは、前記第1のセンサよりも検出する帯域幅が狭い処理装置。
  11.  請求項1から9のいずれか1項に記載の処理装置において、
     前記第1のセンサは、振動又は音を検出し、
     前記第2のセンサは、振動又は音以外を検出するセンサである処理装置。
  12.  請求項1から11のいずれか1項に記載の処理装置において、
     前記第1のセンサは、前記第2のセンサよりも消費電力が小さい処理装置。
  13.  請求項1から12のいずれか1項に記載の処理装置において、
     前記対象装置は、加工装置である処理装置。
  14.  コンピュータが、
     第1のセンサの検出データに基づき、対象装置の正常/異常を判定する第1の判定工程と、
     前記第1のセンサの前記検出データに基づき正常/異常の判定ができない場合、第2のセンサを起動させ、前記第2のセンサの検出データに基づき、前記対象装置の正常/異常を判定する第2の判定工程と、
    を実行する処理方法。
  15.  コンピュータを、
     第1のセンサの検出データに基づき、対象装置の正常/異常を判定する第1の判定手段、
     前記第1のセンサの前記検出データに基づき正常/異常の判定ができない場合、第2のセンサを起動させ、前記第2のセンサの検出データに基づき、前記対象装置の正常/異常を判定する第2の判定手段、
    として機能させるプログラム。
PCT/JP2018/000241 2017-05-25 2018-01-10 処理装置、処理方法及びプログラム WO2018216258A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/615,200 US20200173887A1 (en) 2017-05-25 2018-01-10 Processing apparatus, processing method, and non-transitory storage medium
JP2019519456A JP6988890B2 (ja) 2017-05-25 2018-01-10 処理装置、処理方法及びプログラム
CN201880034125.2A CN110678821B (zh) 2017-05-25 2018-01-10 处理装置、处理方法和程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017103546 2017-05-25
JP2017-103546 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018216258A1 true WO2018216258A1 (ja) 2018-11-29

Family

ID=64395463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000241 WO2018216258A1 (ja) 2017-05-25 2018-01-10 処理装置、処理方法及びプログラム

Country Status (4)

Country Link
US (1) US20200173887A1 (ja)
JP (1) JP6988890B2 (ja)
CN (1) CN110678821B (ja)
WO (1) WO2018216258A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116089A1 (ja) * 2018-12-04 2020-06-11 パナソニックIpマネジメント株式会社 電池パック、電源システム
WO2020162425A1 (ja) * 2019-02-05 2020-08-13 日本電気株式会社 解析装置、解析方法、およびプログラム
CN114567536A (zh) * 2022-02-24 2022-05-31 北京百度网讯科技有限公司 异常数据处理方法、装置、电子设备和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019132356A1 (de) * 2019-11-28 2021-06-02 Tdk Electronics Ag Zweikanaliger Detektor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276404A (ja) * 1987-05-09 1988-11-14 Kubota Ltd 自動走行作業車用の境界検出装置
JPH11118592A (ja) * 1997-10-15 1999-04-30 Hitachi Ltd 機器異常診断装置およびそれを搭載したプラント装置
JP2004064626A (ja) * 2002-07-31 2004-02-26 Denso Corp 車両用通信システム
JP2005284519A (ja) * 2004-03-29 2005-10-13 Koyo Seiko Co Ltd 異常診断装置
JP2012242982A (ja) * 2011-05-18 2012-12-10 Mitsubishi Electric Corp プラントの機器維持管理システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817749B2 (ja) * 1991-10-07 1998-10-30 三菱電機株式会社 レーザ加工装置
ATE236418T1 (de) * 1998-08-17 2003-04-15 Aspen Technology Inc Verfahren und vorrichtung zur sensorbestätigung
CA2401161C (en) * 2000-02-29 2006-10-03 Pcc Specialty Products, Inc. Smart machine tool system
KR100788974B1 (ko) * 2005-08-19 2007-12-27 엘지전자 주식회사 세탁기 진동 감지 방법
CN101135601A (zh) * 2007-10-18 2008-03-05 北京英华达电力电子工程科技有限公司 一种旋转机械振动故障诊断装置及方法
ES2524043T3 (es) * 2008-03-07 2014-12-03 Vestas Wind Systems A/S Un sistema de control y un procedimiento para controlar una turbina eólica
JP2010276339A (ja) * 2009-05-26 2010-12-09 Hitachi-Ge Nuclear Energy Ltd センサ診断方法およびセンサ診断装置
JP5363213B2 (ja) * 2009-06-30 2013-12-11 東京エレクトロン株式会社 異常検出システム、異常検出方法、記憶媒体及び基板処理装置
CN101719315B (zh) * 2009-12-23 2011-06-01 山东大学 一种基于中间件的动态交通信息采集方法
WO2012088707A1 (zh) * 2010-12-31 2012-07-05 中国科学院自动化研究所 用于设备故障检测的智能检测系统及检测方法
US20130027561A1 (en) * 2011-07-29 2013-01-31 Panasonic Corporation System and method for improving site operations by detecting abnormalities
CN103823409B (zh) * 2014-02-27 2016-08-17 电子科技大学 数控机床加工状态多参数在线主动监控系统及其实现方法
CN203894596U (zh) * 2014-02-27 2014-10-22 电子科技大学 数控机床加工状态多参数在线主动监控系统
CN104750068B (zh) * 2015-02-13 2018-08-21 湖北锐世数字医学影像科技有限公司 一种多节点传感器网络的数据传输及控制装置
CN106032994B (zh) * 2015-03-16 2019-01-25 大陆汽车电子(长春)有限公司 一种传感器功能检测方法和设备
JP6671248B2 (ja) * 2016-06-08 2020-03-25 株式会社日立製作所 異常候補情報分析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276404A (ja) * 1987-05-09 1988-11-14 Kubota Ltd 自動走行作業車用の境界検出装置
JPH11118592A (ja) * 1997-10-15 1999-04-30 Hitachi Ltd 機器異常診断装置およびそれを搭載したプラント装置
JP2004064626A (ja) * 2002-07-31 2004-02-26 Denso Corp 車両用通信システム
JP2005284519A (ja) * 2004-03-29 2005-10-13 Koyo Seiko Co Ltd 異常診断装置
JP2012242982A (ja) * 2011-05-18 2012-12-10 Mitsubishi Electric Corp プラントの機器維持管理システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116089A1 (ja) * 2018-12-04 2020-06-11 パナソニックIpマネジメント株式会社 電池パック、電源システム
WO2020162425A1 (ja) * 2019-02-05 2020-08-13 日本電気株式会社 解析装置、解析方法、およびプログラム
CN114567536A (zh) * 2022-02-24 2022-05-31 北京百度网讯科技有限公司 异常数据处理方法、装置、电子设备和存储介质
CN114567536B (zh) * 2022-02-24 2024-02-23 北京百度网讯科技有限公司 异常数据处理方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN110678821A (zh) 2020-01-10
US20200173887A1 (en) 2020-06-04
CN110678821B (zh) 2022-09-27
JP6988890B2 (ja) 2022-01-05
JPWO2018216258A1 (ja) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2018216258A1 (ja) 処理装置、処理方法及びプログラム
CN108231079B (zh) 用于控制电子设备的方法、装置、设备以及计算机可读存储介质
JP6374466B2 (ja) センサインタフェース装置、測定情報通信システム、測定情報通信方法、及び測定情報通信プログラム
US10181976B2 (en) System and method of adjusting data collection frequency
JP6053487B2 (ja) 時系列データ処理装置、時系列データ処理方法及び時系列データ処理プログラム
US7945338B2 (en) Automation human machine interface having virtual graphic controls
US11178026B2 (en) Monitoring system, processing device, and monitoring device
JP7391601B2 (ja) 情報処理装置、情報処理システム、学習モデルの生成方法、異常予測方法、およびプログラム
KR20170050461A (ko) 이벤트 신호 및 영상의 저장 방법 및 저장 장치, 저장 장치로 이벤트 신호를 전송하는 비전 센서의 동작 방법
EP3759558B1 (en) Intelligent audio analytic apparatus (iaaa) and method for space system
WO2006072097A3 (en) Method and apparatus for external processor thermal control
US20200314130A1 (en) Attack detection device, attack detection method, and computer readable medium
US20140154049A1 (en) Verification system and method for rotation speed value of fan
JP6729577B2 (ja) 信号検知装置、信号検知方法およびプログラム
WO2024120018A1 (zh) 检测方法、训练方法、电器、监控系统、存储介质和设备
JP2006205970A (ja) プラットホームドア状態監視システム
TW201736997A (zh) 轉動設備的控制裝置
WO2018193571A1 (ja) 機器管理システム、モデル学習方法およびモデル学習プログラム
JP6981547B2 (ja) 監視システム及び監視方法
JP7155854B2 (ja) 情報処理装置
WO2019235035A1 (ja) 収音解析システム及び収音解析方法
JP7373803B2 (ja) 情報送信装置、サーバ、及び、情報送信方法
JP2021179986A (ja) Plcの資産の切り替えを検出する方法
JP6499621B2 (ja) 制御装置及び制御システム
RU2793797C2 (ru) Интеллектуальное аудиоаналитическое устройство и способ для космического аппарата

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805675

Country of ref document: EP

Kind code of ref document: A1