WO2018216164A1 - プロペラファン及び冷凍サイクル装置 - Google Patents

プロペラファン及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2018216164A1
WO2018216164A1 PCT/JP2017/019545 JP2017019545W WO2018216164A1 WO 2018216164 A1 WO2018216164 A1 WO 2018216164A1 JP 2017019545 W JP2017019545 W JP 2017019545W WO 2018216164 A1 WO2018216164 A1 WO 2018216164A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller fan
outer peripheral
recess
inner peripheral
front edge
Prior art date
Application number
PCT/JP2017/019545
Other languages
English (en)
French (fr)
Inventor
勝幸 山本
誠治 中島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to ES17911234T priority Critical patent/ES2926858T3/es
Priority to US16/496,544 priority patent/US11333166B2/en
Priority to EP17911234.7A priority patent/EP3633208B1/en
Priority to CN201780089891.4A priority patent/CN110678659B/zh
Priority to PCT/JP2017/019545 priority patent/WO2018216164A1/ja
Priority to JP2019519900A priority patent/JP7113819B2/ja
Publication of WO2018216164A1 publication Critical patent/WO2018216164A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade

Definitions

  • the present invention relates to a propeller fan used in a refrigeration cycle apparatus such as an air conditioner or a ventilator, and a refrigeration cycle apparatus including the propeller fan.
  • propeller fans axial blowers
  • various propeller fans have been proposed that are designed to reduce noise depending on the shape of the blades.
  • Patent Document 1 in a propeller fan in which two blades are provided on a hub attached to a fan rotation shaft, the blades have an air flow at a blade trailing edge corresponding to an outflow portion of the air flow during fan rotation.
  • a substantially arc-shaped, V-shaped, or polygonal-shaped trailing edge recess recessed in the opposite direction is provided, and one blade is substantially pointed with the other blade within a range of 180 ° ⁇ 5 ° about the fan rotation axis.
  • the propeller fan is disclosed.
  • Patent Document 1 The technique shown in Patent Document 1 described above is intended to reduce noise by setting the solidity ⁇ to 0.3 to 0.55.
  • the technique shown in Patent Document 1 since the inner peripheral side of the recess has a linear shape, the flow that leaks from the pressure surface to the suction surface increases. For this reason, there has been a problem that sufficient noise reduction cannot be achieved.
  • the present invention has been made to solve such a problem, and has a propeller fan that adopts a blade shape that suppresses a flow leaking from the pressure surface to the suction surface, and achieves low noise, and the propeller fan.
  • Another object of the present invention is to provide a refrigeration cycle apparatus.
  • a propeller fan according to the present invention includes a rotating shaft portion that rotates about an axis, and a plurality of blades disposed on an outer peripheral portion of the rotating shaft portion, and the blade has a trailing edge opened.
  • the recessed portion has at least one recessed portion, and the recessed portion has a first side on the inner peripheral side that extends from the rear edge toward the front edge and is curved toward the outer peripheral side.
  • the refrigeration cycle apparatus has a refrigerant circuit in which a compressor, a first heat exchanger, a throttle device, and a second heat exchanger are connected by piping, and the propeller fan is connected to the first heat exchanger with air. Is mounted on the cooling unit together with the first heat exchanger.
  • the wing having the concave portion formed by curving the inner peripheral first side extending from the rear edge toward the front edge toward the outer peripheral side is provided on the rear edge, so that leakage vortices can be suppressed, and low input and low noise can be realized.
  • the propeller fan is provided in the cooling unit together with the first heat exchanger, the noise is reduced.
  • FIG. 1 is a schematic view of a propeller fan 100A according to Embodiment 1 of the present invention viewed from the upstream side.
  • FIG. 2 is a schematic view for explaining the recess 8A of the propeller fan 100A.
  • FIG. 3 is a schematic view of a conventional propeller fan (hereinafter referred to as propeller fan 100X) viewed from the upstream side.
  • the propeller fan 100A will be described with reference to FIGS.
  • the propeller fan 100X in FIG. 3 is appropriately compared.
  • “X” is appended to each configuration of the propeller fan 100X corresponding to the configuration of the propeller fan 100A to distinguish it from the configuration of the propeller fan 100A.
  • propeller fan 100A has a plurality of blades 2A, but only one blade 2A is shown for convenience.
  • propeller fan 100A has a plurality of blades 2A, but only one blade 2A is shown for convenience.
  • four blades 2A of the propeller fan 100A are shown.
  • the number of blades 2A is not particularly limited.
  • the recesses are set for each blade regardless of the number of blades 2A, and the effect of implementing propeller fan 100A according to Embodiment 1 of the present invention is obtained for each blade.
  • the propeller fan 100A includes a boss 1 that rotates about an axis RC and a plurality of blades 2A that are disposed on the outer periphery of the boss 1.
  • the wing 2 ⁇ / b> A is surrounded by an inner peripheral end 21, an outer peripheral end 22, a front edge 4, and a rear edge 3. Further, a concave portion 8A is formed in the rear edge 3 of the wing 2A so that a part of the rear edge 3 is opened.
  • the boss 1 corresponds to the “rotary shaft portion” of the present invention.
  • the recess 8A will be described in detail.
  • one side extending from the rear edge 3 toward the front edge 4 and the inner peripheral side (the inner peripheral end 21 side), which is one side of the outer peripheral side constituting the recess 8A is defined as a second side 6A. Since the first side 5A extends toward the front edge 4 and the outer peripheral side, and the second side 6A extends toward the front edge 4 and the inner peripheral side, both sides are portions that extend from the rear edge 3 to the front edge 4. Connecting. This connection portion is defined as a connection point 7A.
  • the first side 5A is formed in a curved shape that bulges and curves toward the outer peripheral side, as shown in FIGS.
  • the concave portion 8A is formed as a space portion with the first side 5A and the second side 6A as a boundary.
  • the concave portion 8A is configured to have a substantially triangular shape when viewed from above, but the first side 5A is configured to have a curved shape on the outer peripheral side, that is, a convex curve on the outer peripheral side.
  • the propeller fan 100 has, for example, four blades 2A as shown in FIG. A recess 8A in which a part of the trailing edge 3 is opened is formed on the entire wing 2A.
  • the first side 5A of the recess 8A can be formed to overlap the circumference of the concentric circle 50 of the boss 1, for example. That is, when the propeller fan 100 ⁇ / b> A is viewed from the upstream side, the first side 5 ⁇ / b> A constitutes a partial arc of the concentric circle 50 of the boss 1.
  • the shape of the first side 5A can be determined, the determination of the shape of the first side 5A can be simplified.
  • the propeller fan 100X includes a boss 1X that rotates about an axis RC and a plurality of blades 2X that are disposed on the outer periphery of the boss 1X.
  • the blade 2X is surrounded by an inner peripheral end 21X, an outer peripheral end 22X, a front edge 4X, and a rear edge 3X. Further, a recess 8X is formed at the trailing edge 3X of the blade 2X.
  • the recess 8X will be described in detail.
  • one side extending from the rear edge 3X to the front edge 4X and the inner peripheral side (the inner peripheral end 21X side), which is one side of the outer peripheral side constituting the recess 8X is defined as a second side 6X.
  • first side 5X extends toward the front edge 4X and the outer peripheral side, and the second side 6X extends toward the front edge 4X and the inner peripheral side, the first side 5X is connected at a portion extending from the rear edge 3X to the front edge 4X. .
  • This connection portion is defined as a connection point 7X.
  • the concave portion 8X is formed as a space with the first side 5X and the second side 6X as a boundary.
  • the recess 8X is configured as a substantially triangular shape when viewed from above, and the first side 5X and the second side 6X are configured in a linear shape.
  • the recessed part 8X is comprised by the top view substantially triangular shape, and the 1st edge
  • the operation of the propeller fan 100A will be briefly described.
  • a motor (not shown) attached to the boss 1 is driven to rotate, the three-dimensional three-dimensional blade 2A shown in FIGS. 1 and 2 rotates in the direction of arrow A about the axis RC together with the boss 1.
  • an air flow (air flow) from the front side to the back side is generated.
  • the upstream side of the blade 2A is a negative pressure surface, and the downstream side is a positive pressure surface.
  • Propeller fan 100X can divert the air flow (arrow 10X shown in FIG. 3) passing through the vicinity of recess 8X from connection point 7X to the inner periphery and the outer periphery by providing recess 8X.
  • the air flow on the inner peripheral side is represented by an arrow 10-1X
  • the air flow on the outer peripheral side is represented by an arrow 10-2X.
  • the flow on the outer peripheral side (arrow 10-2X) can be transferred to the outer peripheral side where the work amount during one rotation is large due to a synergistic effect with the centrifugal force of the propeller fan 100X, and the input is reduced.
  • the flow on the inner peripheral side (arrow 10-1X) separates without being cut along the linear shape on the inner peripheral side of the recess 8X. Therefore, the separated flow is directed from the pressure surface side to the suction surface side, and the leakage vortex 11X is increased.
  • the leakage vortex 11X increases, the loss also increases, so that the input deteriorates, and the leakage vortex 11X interferes with an object installed on the downstream side to generate large noise.
  • Propeller fan 100A can deflect the flow (arrow 10 shown in FIG. 1) passing through the vicinity of recess 8A from connection point 7 to the inner periphery and the outer periphery by providing recess 8A.
  • the air flow on the inner peripheral side is represented by an arrow 10-1, and the air flow on the outer peripheral side is represented by an arrow 10-2.
  • the flow on the outer peripheral side (arrow 10-2) can be transferred to the outer peripheral side where the work amount during one rotation is large due to a synergistic effect with the centrifugal force of the propeller fan 100A, and the input is reduced.
  • the flow on the inner peripheral side (arrow 10-1) has a curved shape in which the first side 5A of the recess 8A is curved toward the outer peripheral side
  • the flow on the pressure surface side follows the curved shape curved toward the outer peripheral side. In other words, peeling can be suppressed. Therefore, the leakage vortex 11 can be suppressed in the flow on the inner peripheral side (arrow 10-1). Therefore, according to the propeller fan 100A, the leakage vortex 11 can be suppressed by the recess 8A, and low input and low noise are realized.
  • FIG. 4 is a cross-sectional view taken along the line II of the propeller fan 100A in FIG.
  • FIG. 5 is a II-II sectional view of propeller fan 100A in FIG.
  • FIG. 6 is a schematic configuration diagram schematically showing an example of the configuration of the cooling unit 210B on which the propeller fan 100A is mounted. The effects of the propeller fan 100A will be further described with reference to FIGS.
  • the cooling unit 210B shown in FIG. 6 will be described in detail in the sixth embodiment.
  • FIG. 4 the camber line 33 of the blade 2 ⁇ / b> A and the chord center point 34, which is the midpoint of the straight line connecting the leading edge 4 and the trailing edge 3 of the camber line 33, are shown in the cylindrical cross section centered on the axis RC.
  • FIG. 5 illustrates a chord centerline 35 that is a curve connecting the chord center point 34 illustrated in FIG. 4 from the inner peripheral end 21 to the outer peripheral end 22.
  • the leakage vortex 11 contributes to the magnitude of the pressure difference between the pressure surface and the suction surface, and the leakage vortex 11 increases as the pressure difference increases.
  • the propeller fan 100 ⁇ / b> A in which the chord centerline 35 protrudes downstream in the region excluding the radial recess 8 ⁇ / b> A tends to have a large pressure rise on the pressure surface side during rotation. It is in. Therefore, the pressure difference between the positive pressure surface and the negative pressure surface increases, and the leakage vortex 11 increases. Therefore, since the propeller fan 100A is provided with the recess 8A to suppress the leakage vortex 11, the effect is great.
  • the cooling unit 210B is used as, for example, a heat source side unit (outdoor unit).
  • the cooling unit 210B has a housing 204B that constitutes an outer shell.
  • a separator 250 is provided inside the housing 204B, and a blower chamber 252 in which the propeller fan 100A is installed and a machine chamber 251 in which the compressor 211 and the like are installed are partitioned.
  • a motor 206 that drives the propeller fan 100A and a first heat exchanger 205 are installed.
  • a bell mouth 255 is installed around the propeller fan 100A.
  • the number of the concave portions 8A, the length of the first side 5A constituting the concave portion 8A, the length of the second side 6A, the angle formed by the first side 5A and the second side 6A at the connection point 7A, and the like are particularly limited. It is not intended to be set appropriately.
  • the shape of the first side 5A is shown based on FIG. 2, the curvature of the first side 5A and the like are not limited to the contents of FIG.
  • the case where the first side 5A extends from the rear edge 3 toward the front edge 4 is shown as an example, depending on the shape of the first side 5A, the first side 5A extends from the rear edge 3 to the front edge 4 and the outer peripheral side. It is also conceivable to extend toward the outer peripheral end 22 side.
  • the second side 6A may be a straight line or a curved line.
  • the propeller fan 100A including the boss 1 is shown as an example of the rotating shaft portion.
  • the propeller fan 100A may be configured as a so-called blade-integrated propeller fan.
  • a blade-integrated propeller fan includes a rotation shaft portion (rotation center) connected to a rotation shaft of a drive source such as a motor, and a plurality of blades provided on the outer peripheral side of the rotation shaft portion, and is adjacent to the rotation shaft portion.
  • the blade is configured by connecting the front edge portion and the rear edge portion. That is, the blade-integrated propeller fan has a configuration in which adjacent blades are connected through a continuous surface without a boss portion.
  • the rotation shaft portion serving as the rotation center corresponds to the “rotation shaft portion” of the present invention.
  • the configuration as a blade-integrated propeller fan is the same in the following embodiments.
  • FIG. FIG. 7 is a schematic view of propeller fan 100B according to Embodiment 2 of the present invention as viewed from the upstream side.
  • the propeller fan 100B will be described with reference to FIG.
  • differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
  • the blade 2B of the propeller fan 100B is different from the blade 2A of the propeller fan 100A according to the first embodiment.
  • FIG. 7 only one blade 2B of propeller fan 100B is shown. That is, although the propeller fan 100B includes a plurality of blades 2B, only one blade 2B is illustrated for convenience.
  • the number of blades 2B is not particularly limited.
  • the recesses are set for each blade regardless of the number of blades 2B, and the effect of implementing the propeller fan 100B according to Embodiment 2 of the present invention is obtained for each blade.
  • the propeller fan 100B includes a boss 1 that rotates about an axis RC and a plurality of blades 2B that are disposed on the outer periphery of the boss 1.
  • the blade 2 ⁇ / b> B is surrounded by an inner peripheral end 21, an outer peripheral end 22, a front edge 4, and a rear edge 3. Further, a concave portion 8B is formed in the rear edge 3 of the wing 2B so that a part of the rear edge 3 is opened.
  • the recess 8B will be described in detail.
  • one side extending from the rear edge 3 toward the front edge 4 and the inner peripheral side (the inner peripheral end 21 side), which is one side of the outer peripheral side constituting the recess 8B, is defined as a second side 6B.
  • one side of the front edge side that constitutes the recess 8B is defined as a third side 12.
  • the third side 12 is one side connecting the front edge side vertex of the first side 5B and the front edge side vertex of the second side 6B.
  • side 5B is comprised by the curve shape curved to the outer peripheral side, as shown in FIG.
  • the concave portion 8B is formed as a space with the first side 5B, the second side 6B, and the third side 12 as boundaries.
  • the recessed part 8B is comprised as top surface substantially square shape (for example, parallelogram shape or trapezoid shape)
  • side 5B is curving to the outer peripheral side, ie, the shape which became a convex curve to the outer peripheral side. It is configured.
  • the effect of the propeller fan 100B will be described.
  • the rear edge of the propeller fan is formed with a concave portion having a substantially parallelogram shape in a top view with a straight line on the inner periphery
  • the load on the outer periphery is reduced by reducing the load on the inner periphery and having the greatest work load during one rotation. Therefore, the input is reduced.
  • the concave portion 8X shown in FIG. 3 the air flow on the inner peripheral side is peeled off without being along the linear shape on the inner peripheral side. For this reason, in such a recess, as in the conventional propeller fan 100X described above, it is not possible to efficiently realize low input and low noise.
  • the air flow (arrow 10-1) on the inner peripheral side of the concave portion 8B has a curved shape in which the first side 5B of the concave portion 8B is curved toward the outer peripheral side.
  • the flow on the positive pressure surface side follows a curved shape curved toward the outer peripheral side, so that peeling can be suppressed. Therefore, the leakage vortex 11 can be suppressed in the flow on the inner peripheral side (arrow 10-1). Therefore, according to propeller fan 100B, similarly to propeller fan 100A according to the first embodiment, leakage vortex 11 can be suppressed by recess 8B, and low input and low noise can be realized.
  • the shape of the first side 5B can be determined as shown in FIG. 2 similarly to the first side 5A, but the curvature of the first side 5B is not particularly limited.
  • the first side 5B extends from the rear edge 3 toward the front edge 4 is shown as an example, depending on the shape of the first side 5B, the first side 5B extends from the rear edge 3 to the front edge 4 and the outer peripheral side. It is also conceivable to extend toward the outer peripheral end 22 side.
  • the second side 6B may be a straight line or a curved line.
  • FIG. 8 and 9 are schematic views of propeller fan 100E according to Embodiment 3 of the present invention as viewed from the upstream side. Based on FIG.8 and FIG.9, the propeller fan 100E is demonstrated.
  • the fourth embodiment differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments will be denoted by the same reference numerals and the description thereof will be omitted.
  • the blade 2E of the propeller fan 100E is different from the blade 2A of the propeller fan 100A according to the first embodiment.
  • FIG. 8 only one blade 2E of the propeller fan 100E is illustrated. That is, although the propeller fan 100E has a plurality of blades 2E, only one blade 2E is shown for convenience.
  • the number of blades 2E is not particularly limited. Further, the recesses are set for each blade regardless of the number of blades 2E, and the effect obtained by implementing propeller fan 100E according to Embodiment 3 of the present invention is obtained for each blade.
  • the propeller fan 100E includes a boss 1 that rotates about an axis RC and a plurality of blades 2E that are disposed on the outer periphery of the boss 1.
  • the blade 2 ⁇ / b> E is surrounded by an inner peripheral end 21, an outer peripheral end 22, a front edge 4, and a rear edge 3.
  • a concave portion 8E is formed in the rear edge 3 of the wing 2E so that a part of the rear edge 3 is opened.
  • the convex part (1st convex part) 30 is formed in the one side of the inner peripheral side which comprises the recessed part 8E.
  • the concave portion 8E and the convex portion 30 will be described in detail.
  • one side extending from the rear edge 3 toward the front edge 4 and the inner peripheral side (the inner peripheral end 21 side), which is one side of the outer peripheral side constituting the recess 8E is defined as a second side 6E. Since the first side 5E extends toward the front edge 4 and the outer peripheral side, and the second side 6E extends toward the front edge 4 and the inner peripheral side, both sides are portions that extend from the rear edge 3 to the front edge 4. Connecting. This connection portion is defined as a connection point 7E. And the 1st edge
  • the concave portion 8E is formed as a space with the first side 5E and the second side 6E as a boundary.
  • the recessed part 8E is comprised as a substantially triangular shape in the top view, the 1st edge
  • side 5E is comprised in the shape which curved to the outer peripheral side, ie, became a convex curve to the outer peripheral side.
  • the concave portion 8E is basically the same as the concave portion 8A described in the first embodiment.
  • the convex portion 30 is formed by projecting a part of the first side 5E of the concave portion 8E toward the outer peripheral end 22 side. Moreover, the convex part 30 is comprised by the rectangular shape, when the top view of the propeller fan 100E is seen from the upstream of an axial direction. In addition, in FIG. 8, the state in which one convex part 30 is installed is shown as an example.
  • the first side 5E has a curved concave portion 8E curved to the outer peripheral side, and the convex portion 30 is formed on the first side 5E of the concave portion 8E.
  • a region having a width can be formed between 5E and the leakage vortex 11 generated from the connection point 7E along the arc shape of the first side 5E. This region reduces the contribution to the generation of the leakage vortex 11. Therefore, according to the propeller fan 100E, the leakage vortex 11 flowing downstream from the propeller fan 100E can be suppressed, and noise reduction is realized.
  • the number, size, shape, curvature of the fourth side 13-3, etc. are not particularly limited, and can be set as appropriate.
  • the convex portion 30 may be composed of a plurality of front edge side convex portions 30a and rear edge side convex portions 30b, and the outer periphery of each may be curved.
  • each when comprising the convex part 30 with two or more, each may be made into the same shape and magnitude
  • the shape of the first side 5E can be determined as shown in FIG. 2 similarly to the first side 5A, but the curvature of the first side 5E is not particularly limited.
  • the convex portion 30 may be combined with the concave portion 8B described in the second embodiment.
  • the first side 5E extends from the rear edge 3 toward the front edge 4 is shown as an example, depending on the shape of the first side 5E, the first side 5E extends from the rear edge 3 to the front edge 4 and the outer peripheral side. It is also conceivable to extend toward the outer peripheral end 22 side.
  • the second side 6E may be a straight line or a curved line.
  • FIG. FIG. 10 is a schematic view of propeller fan 100C according to Embodiment 4 of the present invention as viewed from the upstream side.
  • the propeller fan 100C will be described with reference to FIG.
  • differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments will be denoted by the same reference numerals and the description thereof will be omitted.
  • the blade 2C of the propeller fan 100C is different from the blade 2A of the propeller fan 100A according to the first embodiment.
  • FIG. 10 only one blade 2C of the propeller fan 100C is illustrated. That is, although the propeller fan 100C includes a plurality of blades 2C, only one blade 2C is illustrated for convenience.
  • the number of blades 2C is not particularly limited.
  • the recess is set for each blade regardless of the number of blades 2C, and the effect of implementing propeller fan 100C according to Embodiment 4 of the present invention is obtained for each blade.
  • the propeller fan 100 ⁇ / b> C includes a boss 1 that rotates about an axis RC and a plurality of blades 2 ⁇ / b> C that are disposed on the outer periphery of the boss 1.
  • the blade 2 ⁇ / b> C is surrounded by an inner peripheral end 21, an outer peripheral end 22, a front edge 4, and a rear edge 3. Further, the rear edge 3 of the wing 2C is formed with a concave portion 8C in which a part of the rear edge 3 is opened, and a convex portion (second convex portion) 13.
  • the concave portion 8C and the convex portion 13 will be described in detail.
  • one side extending from the rear edge 3 toward the front edge 4 and the inner peripheral side (the inner peripheral end 21 side), which is one side of the outer peripheral side constituting the recess 8C is defined as a second side 6C. Since the first side 5C extends toward the front edge 4 and the outer peripheral side, and the second side 6C extends toward the front edge 4 and the inner peripheral side, both sides are portions that extend from the rear edge 3 to the front edge 4. Connecting. This connection portion is defined as a connection point 7C. And the 1st edge
  • side 5C is comprised by the curve shape curved to the outer peripheral side, as shown in FIG.
  • the concave portion 8C is formed as a space with the first side 5C and the second side 6C as a boundary.
  • the recessed part 8C is comprised as a substantially triangular shape in the top view, it is comprised in the shape where the 1st edge
  • the recess 8C is basically the same as the recess 8A described in the first embodiment.
  • the vertex on the outer peripheral end 22 side of the convex portion 13 is defined as a vertex 13-1, and the vertex on the inner peripheral end 21 side of the convex portion 13 is defined as a vertex 13-2.
  • the convex portion 13 has an apex 13-1 on the inner peripheral side (the inner peripheral end 21 side) of the rear edge 3 delimited by the concave portion 8C, and the apex 13-1 is the apex on the rear edge side of the first side 5C of the concave portion 8C.
  • the vertex 13-2 is connected to the inner peripheral side with respect to the vertex 13-1 of the trailing edge 3, and the side connecting the vertex 13-1 and the vertex 13-2 at the outer periphery of the convex portion 13 (fourth The side 13-3) protrudes downstream.
  • the effect of the propeller fan 100C will be described. For example, if a convex portion protruding downstream is formed on a part of the trailing edge of the propeller fan, the work amount of the region where the convex portion is formed increases. Therefore, the flow of air passing through the convex portion is relatively accelerated from the surrounding flow. When the flow of air passing through the convex portion is increased, the effect of attracting the surrounding flow is obtained.
  • the rear edge of the propeller fan is formed with a substantially triangular or parallelogram-shaped recess whose top surface is a straight line on the inner periphery, and the rear edge is delimited by the recess in order to suppress leakage on the inner periphery of the recess. If the convex portion is formed on the inner peripheral side, the air flow on the inner peripheral side peels off without following the linear shape on the inner peripheral side. The effect of attracting is not obtained much.
  • the propeller fan 100C has a curved concave portion 8C in which the first side 5C is curved toward the outer peripheral side, and the convex portion 13 is formed on the inner peripheral side of the rear edge 3 partitioned by the concave portion 8C.
  • the air flow along the inner peripheral side of the concave portion 8C follows the curved shape curved toward the outer peripheral side, and the attraction effect by the convex portion 13 is easily obtained. Therefore, generation
  • the size, the shape of the convex portion 13, the curvature of the fourth side 13-3, etc. are not particularly limited, and can be set as appropriate. Further, the shape of the first side 5C can be determined as shown in FIG. 2 similarly to the first side 5A, but the curvature of the first side 5C is not particularly limited. Further, the convex portion 13 may be combined with at least one of the concave portion 8B described in the second embodiment and the concave portion 8E claimed in the third embodiment.
  • first side 5C extends from the rear edge 3 toward the front edge 4
  • first side 5C extends from the rear edge 3 to the front edge 4 and the outer peripheral side. It is also conceivable to extend toward the outer peripheral end 22 side.
  • second side 6C may be a straight line or a curved line.
  • FIG. FIG. 11 is a schematic view of propeller fan 100D according to Embodiment 5 of the present invention as viewed from the upstream side.
  • the propeller fan 100D will be described with reference to FIG.
  • differences from the first to third embodiments will be mainly described, and the same parts as those in the first to third embodiments will be denoted by the same reference numerals and the description thereof will be omitted.
  • the blade 2D of the propeller fan 100D is different from the blade 2A of the propeller fan 100A according to the first embodiment.
  • FIG. 11 only one blade 2D of propeller fan 100D is shown. That is, although the propeller fan 100D includes a plurality of blades 2D, only one blade 2D is illustrated for convenience.
  • the number of blades 2D is not particularly limited.
  • the recesses are set for each blade regardless of the number of blades 2D, and the effect of implementing propeller fan 100D according to Embodiment 5 of the present invention is obtained for each blade.
  • the propeller fan 100D includes a boss 1 that rotates about an axis RC and a plurality of blades 2D that are disposed on the outer periphery of the boss 1.
  • the blade 2 ⁇ / b> D is surrounded by an inner peripheral end 21, an outer peripheral end 22, a front edge 4, and a rear edge 3. Further, the rear edge 3 of the wing 2D is formed with a concave portion 8D in which a part of the rear edge 3 is opened and a convex portion 13A.
  • the concave portion 8D and the convex portion 13A will be described in detail.
  • one side extending from the rear edge 3 to the front edge 4 and the inner peripheral side (the inner peripheral end 21 side), which is one side of the outer peripheral side constituting the recess 8D is defined as a second side 6D. Since the first side 5D extends toward the front edge 4 and the outer peripheral side, and the second side 6D extends toward the front edge 4 and the inner peripheral side, both sides are portions that are advanced from the rear edge 3 to the front edge 4. Connecting. This connection portion is defined as a connection point 7D. And as shown in FIG. 11, 1st edge
  • side 5D is comprised by the curve shape curved to the outer peripheral side.
  • the concave portion 8D is formed as a space portion with the first side 5D and the second side 6D as a boundary.
  • the concave portion 8D is configured to have a substantially triangular shape when viewed from above, but the first side 5D is configured to have a curved shape toward the outer peripheral side, that is, a convex curve toward the outer peripheral side.
  • the recess 8D is basically the same as the recess 8A described in the first embodiment.
  • a vertex on the outer peripheral end 22 side of the convex portion 13A is defined as a vertex 13A-1, and a vertex on the inner peripheral end 21 side of the convex portion 13A is defined as a vertex 13A-2.
  • the convex portion 13A has an apex 13A-1 on the inner peripheral side (the inner peripheral end 21 side) of the rear edge 3 delimited by the concave portion 8D, the apex 13A-1 being the rear edge side apex of the first side 5D of the concave portion 8D.
  • the vertex 13A-2 is connected to the inner peripheral side with respect to the vertex 13A-1 of the trailing edge 3, and the side connecting the vertex 13A-1 and the vertex 13-2A at the outer periphery of the convex portion 13A (fourth)
  • the side 13A-3) is configured to protrude downstream.
  • a line connecting the vertex 13A-1 and the vertex 13A-2 linearly is defined as a first virtual line 15.
  • a line extending vertically from the midpoint of the first virtual line 15 and connecting to the fourth side 13A-3 is defined as a second virtual line 16.
  • An intersection point between the fourth side 13A-3 and the second virtual line 16 is defined as an intersection point 17.
  • the convex portion 13A is configured such that the maximum protruding point 14 on the fourth side 13A-3 of the convex portion 13A is located on the inner peripheral side with respect to the intersection point 17.
  • the convex portion 13A has an effect of attracting the surrounding flow.
  • the air flow passing through the convex portion 13A is concentrated at the point that protrudes most downstream of the convex portion 13A, that is, the maximum protruding point 14. Therefore, by providing the maximum projecting point 14 on the inner peripheral side with respect to the intersection point 17, the effect that the flow on the inner peripheral side of the recess 8 ⁇ / b> D can be more attracted to the inner peripheral side is obtained. That is, according to the propeller fan 100D, in addition to the effect of the propeller fan 100C according to the fourth embodiment, the leakage vortex 11 can be further suppressed by the convex portion 13A, and further reduction in input and noise can be realized.
  • the number of the concave portions 8D, the length of the first side 5D constituting the concave portion 8D, the length of the second side 6D, the angle formed by the first side 5D and the second side 6D at the connection point 7D, the convex portion 13A The size, the shape of the convex portion 13A, the curvature of the fourth side 13A-3, etc. are not particularly limited, and can be set as appropriate. Further, the shape of the first side 5D can be determined as shown in FIG. 2 similarly to the first side 5A, but the curvature of the first side 5D is not particularly limited. Further, the convex portion 13A may be combined with the concave portion 8B described in the second embodiment.
  • first side 5D extends from the rear edge 3 toward the front edge 4
  • first side 5D extends from the rear edge 3 to the front edge 4 and the outer peripheral side. It is also conceivable to extend toward the outer peripheral end 22 side.
  • second side 6D may be a straight line or a curved line.
  • FIG. 12 is a circuit configuration diagram schematically showing the refrigerant circuit configuration of the refrigeration cycle apparatus 200 according to Embodiment 6 of the present invention.
  • FIG. 13 is a schematic perspective view schematically showing an example of the configuration of a cooling unit 210 (hereinafter, referred to as a cooling unit 210 ⁇ / b> A) that constitutes a part of the refrigeration cycle apparatus 200.
  • 14 is a sectional view of the cooling unit in FIG. 13 taken along the line IV-IV.
  • FIG. 15 is a schematic configuration diagram schematically showing another example of the configuration of the cooling unit 210 (hereinafter, referred to as a cooling unit 210B) that constitutes a part of the refrigeration cycle apparatus 200.
  • the refrigeration cycle apparatus 200 will be described with reference to FIGS.
  • the refrigeration cycle apparatus 200 performs vapor compression refrigeration cycle operation, and includes the propeller fan according to Embodiments 1 to 4 in the cooling unit 210 (cooling unit 210A, cooling unit 210B). .
  • the propeller fan 100A according to the first embodiment is provided will be described as an example.
  • the refrigeration cycle apparatus 200 includes a compressor 211, a first heat exchanger 205, an expansion device 213, and a second heat exchanger 221.
  • the compressor 211, the first heat exchanger 205, the expansion device 213, and the second heat exchanger 221 are connected by a refrigerant pipe 216 to form a refrigerant circuit.
  • the compressor 211 compresses and discharges the refrigerant to a high temperature and a high pressure.
  • the compressor 211 can be composed of, for example, an inverter compressor.
  • a rotary compressor, a scroll compressor, a screw compressor, a reciprocating compressor, or the like can be employed as the compressor 211.
  • the first heat exchanger 205 functions as a condenser (heat radiator) and condenses the refrigerant discharged from the compressor 211 into a high-pressure liquid refrigerant.
  • the first heat exchanger 205 has an upstream side connected to the compressor 211 and a downstream side connected to the expansion device 213.
  • the first heat exchanger 205 can be configured by, for example, a fin-and-tube heat exchanger or the like.
  • the first heat exchanger 205 is provided with a propeller fan 100 ⁇ / b> A that supplies air to the first heat exchanger 205.
  • the expansion device 213 expands and decompresses the refrigerant that has passed through the first heat exchanger 205.
  • the expansion device 213 may be configured by an electric expansion valve or the like that can adjust the opening and adjust the flow rate of the refrigerant, for example.
  • the expansion device 213 not only an electric expansion valve but also a mechanical expansion valve employing a diaphragm for a pressure receiving portion, a capillary tube, or the like can be applied.
  • the expansion device 213 has an upstream side connected to the first heat exchanger 205 and a downstream side connected to the second heat exchanger 221.
  • the second heat exchanger 221 functions as an evaporator, and evaporates the refrigerant decompressed by the expansion device 213 to form a gas refrigerant.
  • the second heat exchanger 221 has an upstream side connected to the expansion device 213 and a downstream side connected to the compressor 211.
  • the 2nd heat exchanger 221 can be constituted by a fin and tube type heat exchanger etc., for example.
  • a fan 222 such as a propeller fan that supplies air to the second heat exchanger 221 is attached to the second heat exchanger 221.
  • the compressor 211, the first heat exchanger 205, and the propeller fan 100A are mounted on the cooling unit 210.
  • the expansion device 213, the second heat exchanger 221, and the fan 222 are mounted on the use side unit 220.
  • the expansion device 213 may be mounted not on the use side unit 220 but on the cooling unit 210.
  • a flow path switching device that switches the refrigerant flow path may be provided on the discharge side of the compressor 211 so that the first heat exchanger 205 functions as an evaporator and the second heat exchanger 221 functions as a condenser.
  • a flow-path switching apparatus can be comprised by what combined a four-way valve, two two-way valves, or a three-way valve, for example.
  • the high-pressure liquid refrigerant sent out from the first heat exchanger 205 becomes a two-phase refrigerant consisting of a low-pressure gas refrigerant and a liquid refrigerant by the expansion device 213.
  • the two-phase refrigerant flows into the second heat exchanger 221.
  • heat exchange is performed between the refrigerant in the two-phase state that has flowed in and the air supplied by the fan 222, and the liquid refrigerant in the two-phase refrigerant evaporates to reduce the pressure. It becomes a gas refrigerant.
  • the low-pressure gas refrigerant sent out from the second heat exchanger 221 flows into the compressor 211, is compressed to become a high-temperature high-pressure gas refrigerant, and is discharged from the compressor 211 again. Thereafter, this cycle is repeated.
  • the cooling unit 210A is assumed to be mounted on a vehicle such as a train, and includes a base 201, a propeller fan 100A, a casing 204A, a motor 206, 1 heat exchanger 205.
  • the base 201 constitutes the bottom (the installation surface of the motor 206) and the side of the cooling unit 210A.
  • the casing 204A is provided on the base 201 so as to surround at least the propeller fan 100A, and has a discharge part 202 and a suction part 203.
  • the discharge part 202 is provided in a z-axis plane where z> 0 when the z-axis with the normal direction upward of the base 201 defined as positive and the direction perpendicular thereto is defined as the x-axis. That is, the opening part above the propeller fan 100A functions as the discharge part 202 serving as an air outlet.
  • the suction part 203 is provided so as to face the base 201 in the x-axis direction. That is, the opening part in the arrangement position of the first heat exchanger 205 functions as the suction part 203 serving as an air inflow port.
  • the first heat exchanger 205 exchanges heat between a refrigerant that is conducted through a refrigerant pipe (not shown) and the air supplied by the propeller fan 100 ⁇ / b> A.
  • Propeller fan 100A is disposed on the z-axis of housing 204A so that the airflow is discharged in the positive direction of the z-axis upstream of discharge portion 202.
  • propeller fan 100 ⁇ / b> A may be provided directly under discharge part 202.
  • the propeller fan 100 ⁇ / b> A takes air into the base 201 through the suction part 203 and blows air out from the base 201 through the discharge part 202.
  • the motor 206 supports the propeller fan 100A and drives the propeller fan 100A.
  • the air flow inside the base 201 is an air flow S1 as shown in FIG.
  • the air flow inside the base 201 is opposite to the air flow S1.
  • the functions of the discharge unit 202 and the suction unit 203 are also reversed.
  • the cooling unit 210B is assumed to be used as a heat source side unit (outdoor unit), and includes a casing 204B constituting an outer shell and a propeller installed inside the casing 204B.
  • the fan 100A, the motor 206 installed inside the housing 204B, the first heat exchanger 205 installed inside the housing 204B, the compressor 211 shown in FIG. 12, and the like are included.
  • the housing 204B has an air suction port on at least two surfaces (for example, a side surface and a back surface), and is configured in a box shape.
  • a separator 250 is provided inside the housing 204B, and a blower chamber 252 in which the propeller fan 100A is installed and a machine chamber 251 in which the compressor 211 and the like are installed are partitioned.
  • the first heat exchanger 205 is configured in an L shape when viewed from above so as to be positioned on the side surface and the back surface corresponding to the air suction port of the housing 204B.
  • Propeller fan 100A is rotationally driven by a motor 206 installed inside housing 204B.
  • the refrigeration cycle apparatus 200 since the refrigeration cycle apparatus 200 includes the propeller fan according to any of Embodiments 1 to 4 in the cooling unit 210, the propeller fan has a curved recess whose first side is curved toward the outer peripheral side. Since the trailing edge 3 is formed, separation of the air flow on the first side can be suppressed, and the occurrence of leakage vortices can be reduced. Therefore, according to the refrigeration cycle apparatus 200, by providing the propeller fan according to any of Embodiments 1 to 4, it is possible to realize low input and low noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

プロペラファンは、軸心を中心に回転する回転軸部と、回転軸部の外周部に配設される複数枚の翼と、を有し、翼は、後縁を開放させた凹部を少なくとも1つ有し、凹部は、後縁から前縁に向かって伸びる内周側の第一辺が外周側へ湾曲しているものである。

Description

プロペラファン及び冷凍サイクル装置
 本発明は、例えば空気調和装置、換気装置等の冷凍サイクル装置に用いられるプロペラファン及びこのプロペラファンを備えた冷凍サイクル装置に関するものである。
 従来から、プロペラファン(軸流送風機)には低騒音化が求められている。そこで、翼の形状によって、低騒音化を図るようにしたプロペラファンが種々提案されている。
 例えば、特許文献1には、「ファン回転軸に取り付けられるハブに2枚の翼が設けられたプロペラファンにおいて、前記翼はファン回転中の空気流れの流出部にあたる翼後縁部に空気流れと逆方向に凹んだ略円弧状、またはV字状、あるいは多角形状の後縁凹部が設けられ、かつ一方の翼はファン回転軸を中心に180°±5°の範囲で他方の翼とほぼ点対称に配置され、翼外径寸法D1、ハブ外径寸法D2、Rm=(D1-D2)/2としたとき、0.75Rm~1.25Rmの範囲にて、翼弦線の長さL、翼間ピッチTからなるソリディティσ=L/Tが、0.3~0.55となるように翼が配置される」プロペラファンが開示されている。
特許第4467952号公報
 上記の特許文献1に示す技術は、ソリディティσを0.3~0.55にすることにより、低騒音化を図るようにしたものである。しかしながら、特許文献1に示す技術においては、凹部の内周側が直線形状となっているため、正圧面から負圧面へ漏れる流れが増大してしまう。そのため、十分な低騒音化を図れていないという問題点があった。
 本発明は、かかる問題を解決するためになされたものであり、正圧面から負圧面へ漏れる流れを抑制した翼形状を採用し、低騒音化を図るようにしたプロペラファン及びこのプロペラファンを備えた冷凍サイクル装置を提供することを目的とする。
 本発明に係るプロペラファンは、軸心を中心に回転する回転軸部と、前記回転軸部の外周部に配設される複数枚の翼と、を有し、前記翼は、後縁を開放させた凹部を少なくとも1つ有し、前記凹部は、後縁から前縁に向かって伸びる内周側の第一辺が外周側へ湾曲しているものである。
 本発明に係る冷凍サイクル装置は、圧縮機、第1熱交換器、絞り装置、第2熱交換器を配管接続した冷媒回路を有し、上記のプロペラファンは、前記第1熱交換器に空気を供給するものとして、前記第1熱交換器とともに冷却ユニットに搭載されるものである。
 本発明に係るプロペラファンによれば、後縁から前縁に向かって伸びる内周側の第一辺を外周側へ湾曲させた凹部を後縁に有した翼を備えているので、凹部の内周側の空気流れが第1辺の曲線形状に沿い、漏れ渦を抑制でき、低入力化及び低騒音化が実現できる。
 本発明に係る冷凍サイクル装置によれば、上記のプロペラファンを第1熱交換器とともに冷却ユニットに備えているので、騒音が低減したものになる。
本発明の実施の形態1に係るプロペラファンを上流側から見た概略図である。 本発明の実施の形態1に係るプロペラファンの凹部を説明するための概略図である。 従来のプロペラファンを上流側から見た概略図である。 図1におけるプロペラファンのI-I断面図である。 図2におけるプロペラファンのII-II断面図である。 本発明の実施の形態1に係るプロペラファンが搭載された冷却ユニットの構成の一例を概略的に示す概略構成図である。 本発明の実施の形態2に係るプロペラファンを上流側から見た概略図である。 本発明の実施の形態3に係るプロペラファンを上流側から見た概略図である。 本発明の実施の形態3に係るプロペラファンを上流側から見た概略図である。 本発明の実施の形態4に係るプロペラファンを上流側から見た概略図である。 本発明の実施の形態5に係るプロペラファンを上流側から見た概略図である。 本発明の実施の形態6に係る冷凍サイクル装置の冷媒回路構成を概略的に示す回路構成図である。 本発明の実施の形態6に係る冷凍サイクル装置の一部を構成する冷却ユニットの構成の一例を概略的に示す概略斜視図である。 図13における冷却ユニットのIV-IV断面図である。 本発明の実施の形態6に係る冷凍サイクル装置の一部を構成する冷却ユニットの構成の別の一例を概略的に示す概略構成図である。
 以下、図面に基づいて本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係るプロペラファン100Aを上流側から見た概略図である。図2は、プロペラファン100Aの凹部8Aを説明するための概略図である。図3は、従来のプロペラファン(以下、プロペラファン100Xと称する)を上流側から見た概略図である。図1及び図2に基づいて、プロペラファン100Aについて説明する。プロペラファン100Aを説明するにあたり、適宜、図3のプロペラファン100Xと比較するものとする。なお、図2では、プロペラファン100Aの構成に相当するプロペラファン100Xの各構成には、末尾に「X」を付記し、プロペラファン100Aの構成と区別するものとする。
 なお、図1では、プロペラファン100Aの翼2Aを1つだけ図示している。つまり、プロペラファン100Aは翼2Aが複数存在するものの、便宜的に、1つの翼2Aのみを図示している。また、図2では、プロペラファン100Aの翼2Aを4つ図示している。ただし、翼2Aの枚数を特に限定するものではない。さらに、翼2Aの枚数によらず凹部は翼毎に設定され、本発明の実施の形態1に係るプロペラファン100Aを実施することによる効果は翼毎に得られる。
 プロペラファン100Aは、軸心RCを中心に回転するボス1と、ボス1の外周部に配設される複数枚の翼2Aとを有している。翼2Aは、内周端21、外周端22、前縁4、後縁3で囲繞されている。また、翼2Aの後縁3には、後縁3の一部を開放させた凹部8Aが形成されている。
 ボス1が、本発明の「回転軸部」に相当する。
 凹部8Aについて詳しく説明する。
 凹部8Aを構成する内周側の一辺である、後縁3から前縁4に向かって伸びる一辺を、第一辺5Aと定義する。また、凹部8Aを構成する外周側の一辺である、後縁3から前縁4かつ内周側(内周端21側)に向かって伸びる一辺を、第二辺6Aと定義する。第一辺5Aは前縁4かつ外周側に向かって伸び、第二辺6Aは前縁4かつ内周側に向かって伸びているので、両辺は後縁3から前縁4に進んだ部分で接続する。この接続部分を接続点7Aと定義する。そして、第一辺5Aは、図1及び図2に示すように、外周側へ膨らんで湾曲した曲線形状に構成されている。
 すなわち、プロペラファン100Aを軸方向の上流側から上面視した場合、凹部8Aは、第一辺5Aと第二辺6Aとを境とした空間部として形成される。また、凹部8Aは、上面視略三角形状として構成されるが、第一辺5Aが、外周側へ湾曲、つまり外周側に凸の曲線となった形状に構成されている。
 更に具体的に凹部8Aを説明する。
 プロペラファン100は、例えば図2に示すように、4つの翼2Aを有している。翼2Aの全部に、後縁3の一部が開放された凹部8Aが形成されている。プロペラファン100Aを上流側から上面視した場合、凹部8Aの第一辺5Aは、例えば、ボス1の同心円50の円周と重なるように形成することができる。つまり、プロペラファン100Aを上流側から上面視した場合、第一辺5Aは、ボス1の同心円50の一部の円弧を構成する。このように、第一辺5Aの形状を決定することができるため、第一辺5Aの形状の決定を簡素化することができる。
 図3に示すように、プロペラファン100Xは、軸心RCを中心に回転するボス1Xと、ボス1Xの外周部に配設される複数枚の翼2Xとを有している。翼2Xは、内周端21X、外周端22X、前縁4X、後縁3Xで囲繞されている。また、翼2Xの後縁3Xには、凹部8Xが形成されている。
 凹部8Xについて詳しく説明する。
 凹部8Xを構成する内周側の一辺である、後縁3Xから前縁4Xかつ外周側(外周端22X側)に向かって伸びる一辺を、第一辺5Xと定義する。また、凹部8Xを構成する外周側の一辺である、後縁3Xから前縁4Xかつ内周側(内周端21X側)に向かって伸びる一辺を、第二辺6Xと定義する。第一辺5Xは前縁4Xかつ外周側に向かって伸び、第二辺6Xは前縁4Xかつ内周側に向かって伸びているので、後縁3Xから前縁4Xに進んだ部分で接続する。この接続部分を接続点7Xと定義する。
 すなわち、プロペラファン100Xを軸方向の上流側から上面視した場合、凹部8Xは、第一辺5Xと第二辺6Xとを境とした空間部として形成される。また、凹部8Xは、上面視略三角形状として構成され、第一辺5X及び第二辺6Xが、直線形状に構成されている。あるいは、凹部8Xは、上面視略三角形状として構成され、第一辺5Xが、空気流れと逆方向に凹んだ円弧形状に構成されている。
 プロペラファン100Aの動作を簡単に説明する。
 ボス1に取り付けられているモータ(図示省略)が回転駆動することにより、図1及び図2に示す3次元立体形状の翼2Aが、ボス1ともに軸心RCを中心に矢印Aの方向に回転する。翼2Aが回転することによって紙面正面側から紙面裏側側に向けての気流(送風流)が発生する。なお、翼2Aの上流側が負圧面となり、下流側が正圧面となる。
 プロペラファン100Aの効果について、プロペラファン100Xと比較しながら説明する。
 プロペラファン100Xは、凹部8Xを設けることによって、凹部8Xの近傍を通る空気流れ(図3に示す矢印10X)を接続点7Xから内周側と外周側とにそれぞれそらすことができる。内周側の空気流れを矢印10-1Xで表し、外周側の空気流れを矢印10-2Xで表している。
 そして、外周側の流れ(矢印10-2X)は、プロペラファン100Xの遠心力との相乗効果により、一回転時の仕事量が大きい外周側へ流れを移行でき、低入力化する。しかしながら、内周側の流れ(矢印10-1X)は、凹部8Xの内周側の直線形状に沿い切らずに剥離してしまう。そのため、剥離した流れが正圧面側から負圧面側へ向かい、漏れ渦11Xを大きくしてしまう。漏れ渦11Xが大きくなると損失も大きくなるため、入力が悪化し、かつ漏れ渦11Xが下流側に設置された物体に干渉することにより大きく騒音を発生させる。
 プロペラファン100Aは、凹部8Aを設けることによって、凹部8Aの近傍を通る流れ(図1に示す矢印10)を接続点7から内周側と外周側とにそれぞれそらすことができる。内周側の空気流れを矢印10-1で表し、外周側の空気流れを矢印10-2で表している。
 そして、外周側の流れ(矢印10-2)は、プロペラファン100Aの遠心力との相乗効果により、一回転時の仕事量が大きい外周側へ流れを移行でき、低入力化する。加えて、内周側の流れ(矢印10-1)は、凹部8Aの第一辺5Aを外周側へ湾曲した曲線形状としているので、正圧面側の流れが外周側へ湾曲した曲線形状に沿うことになり剥離を抑制できる。そのため、内周側の流れ(矢印10-1)において、漏れ渦11を抑制することができる。したがって、プロペラファン100Aによれば、凹部8Aによって漏れ渦11を抑制することができ、低入力化、低騒音化が実現する。
 図4は、図1におけるプロペラファン100AのI-I断面図である。図5は、図2におけるプロペラファン100AのII-II断面図である。図6は、プロペラファン100Aが搭載された冷却ユニット210Bの構成の一例を概略的に示す概略構成図である。図4~図6に基づいて、プロペラファン100Aの効果について更に説明する。なお、図6に示す冷却ユニット210Bについては、実施の形態6で詳細に説明するものとする。
 図4では、軸心RCを中心とする円筒断面における翼2Aのキャンバーライン33、及び、キャンバーライン33の前縁4と後縁3とを結ぶ直線の中点である翼弦中心点34を図示している。図5では、図4に示す翼弦中心点34を内周端21から外周端22まで結んだ曲線である翼弦中心線35を図示している。
 漏れ渦11は、正圧面と負圧面との圧力差の大きさに寄与し、圧力差が大きいほど漏れ渦11は大きくなる。図4及び図5に示すように、翼弦中心線35が半径方向の凹部8Aを除いた領域で下流側に凸となるようなプロペラファン100Aは、回転時に正圧面側の圧力上昇が大きい傾向にある。そのため、正圧面と負圧面との圧力差が大きくなり、漏れ渦11が大きくなる。そこで、プロペラファン100Aでは凹部8Aを設け、漏れ渦11を抑制することを可能にしているので、効果が大きい。
 図6に示すように、冷却ユニット210Bは、例えば熱源側ユニット(室外ユニット)として利用される。冷却ユニット210Bは、外郭を構成する筐体204Bを有している。筐体204Bの内部には、セパレータ250が設けられ、プロペラファン100Aが設置される送風機室252と、圧縮機211などが設置される機械室251と、が区画形成されている。また、送風機室252には、プロペラファン100Aを駆動するモータ206、第1熱交換器205が設置されている。さらに、プロペラファン100Aの周囲にはベルマウス255が設置されている。
 図6に示すように、プロペラファン100Aを側面から見たときに、ベルマウス255とプロペラファン100Aとの重なる領域が大きくなるように両者を配置した場合、両者が重なる領域では正圧面側の圧力上昇が大きくなる。そのため、漏れ渦11が大きくなってしまう。そこで、ベルマウス255とプロペラファン100Aとの重なる領域が大きくなるように両者が配置されたとしても、プロペラファン100Aには凹部8Aが設けられているので、漏れ渦11を抑制することが可能になり、効果が大きい。
 なお、凹部8Aの個数、凹部8Aを構成する第一辺5Aの長さ、第二辺6Aの長さ、接続点7Aにおける第一辺5Aと第二辺6Aとがなす角度等を特に限定するものではなく、適宜設定できるものとする。
 また、第一辺5Aの形状について図2を基に示したが、第一辺5Aの曲率等を図2の内容に限定するものではない。
 また、第一辺5Aが、後縁3から前縁4に向かって伸びる場合を例に示したが、第一辺5Aの形状によっては第一辺5Aが後縁3から前縁4かつ外周側(外周端22側)に向かって伸びることも考えられる。
 さらに、第二辺6Aは、直線であってもよく、曲線であってもよい。
 実施の形態1では、回転軸部の一例としてボス1を備えたプロペラファン100Aを示したが、プロペラファン100Aを、いわゆる翼一体型のプロペラファンとして構成してもよい。翼一体型のプロペラファンは、モータ等の駆動源の回転軸に接続される回転軸部(回転中心)と、該回転軸部の外周側に設けられた複数の羽根と、を備え、隣接する羽根が前縁部と後縁部とで接続されて構成されている。つまり、翼一体型のプロペラファンは、隣接する羽根をボス部を介さず連続面で接続する構成となる。この場合、回転中心となる回転軸部が、本発明の「回転軸部」に相当する。なお、翼一体型のプロペラファンとして構成することは、以下の実施の形態でも同様である。
実施の形態2.
 図7は、本発明の実施の形態2に係るプロペラファン100Bを上流側から見た概略図である。図7に基づいて、プロペラファン100Bについて説明する。
 なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
 実施の形態2では、プロペラファン100Bの翼2Bが、実施の形態1に係るプロペラファン100Aの翼2Aと相違している。
 なお、図7では、プロペラファン100Bの翼2Bを1つだけ図示している。つまり、プロペラファン100Bは翼2Bが複数存在するものの、便宜的に、1つの翼2Bのみを図示している。そして、翼2Bの枚数を特に限定するものではない。さらに、翼2Bの枚数によらず凹部は翼毎に設定され、本発明の実施の形態2に係るプロペラファン100Bを実施することによる効果は翼毎に得られる。
 プロペラファン100Bは、軸心RCを中心に回転するボス1と、ボス1の外周部に配設される複数枚の翼2Bとを有している。翼2Bは、内周端21、外周端22、前縁4、後縁3で囲繞されている。また、翼2Bの後縁3には、後縁3の一部を開放させた凹部8Bが形成されている。
 凹部8Bについて詳しく説明する。
 凹部8Bを構成する内周側の一辺である、後縁3から前縁4に向かって伸びる一辺を、第一辺5Bと定義する。また、凹部8Bを構成する外周側の一辺である、後縁3から前縁4かつ内周側(内周端21側)に向かって伸びる一辺を、第二辺6Bと定義する。さらに、凹部8Bを構成する前縁側の一辺を第三辺12と定義する。この第三辺12は、第一辺5Bの前縁側頂点と第二辺6Bの前縁側頂点を結ぶ一辺である。そして、第一辺5Bは、図7に示すように、外周側へ湾曲した曲線形状に構成されている。
 すなわち、プロペラファン100Bを軸方向の上流側から上面視した場合、凹部8Bは、第一辺5Bと第二辺6Bと第三辺12を境とした空間部として形成される。また、凹部8Bは、上面視略四角形状(例えば、平行四辺形状又は台形状)として構成されるが、第一辺5Bが、外周側へ湾曲、つまり外周側に凸の曲線となった形状に構成されている。
 プロペラファン100Bの効果について説明する。
 例えば、プロペラファンの後縁に、内周側が直線である上面視略平行四辺形状の凹部を形成したとすると、内周側の負荷を減らし、一回転時の最も仕事量の大きい外周側の負荷を相対的に増加させるため、低入力化することになる。しかし、このような凹部では、図3で示した凹部8Xと同様に、内周側の空気の流れが、内周側の直線形状に沿い切らずに剥離してしまう。そのため、このような凹部では、上述した従来のプロペラファン100Xと同様に、低入力化及び低騒音化が効率的に実現できない。
 それに対し、プロペラファン100Bは、凹部8Bを設けることによって、凹部8Bの内周側の空気流れ(矢印10-1)は、凹部8Bの第一辺5Bを外周側へ湾曲した曲線形状としているので、正圧面側の流れが外周側へ湾曲した曲線形状に沿うことになり剥離を抑制できる。そのため、内周側の流れ(矢印10-1)において、漏れ渦11を抑制することができる。したがって、プロペラファン100Bによれば、実施の形態1に係るプロペラファン100Aと同様に、凹部8Bによって漏れ渦11を抑制することができ、低入力化、低騒音化が実現する。
 なお、凹部8Bの個数、凹部8Bを構成する第一辺5Bの長さ、第二辺6Bの長さ、第三辺12の長さ、第一辺5Aと第三辺12とがなす角度、第二辺6Aと第三辺12とがなす角度等を特に限定するものではなく、適宜設定できるものとする。
 また、第一辺5Bの形状について、第一辺5Aと同様に図2のように決定することができるものとするが、第一辺5Bの曲率等を特に限定するものではない。
 また、第一辺5Bが、後縁3から前縁4に向かって伸びる場合を例に示したが、第一辺5Bの形状によっては第一辺5Bが後縁3から前縁4かつ外周側(外周端22側)に向かって伸びることも考えられる。
 さらに、第二辺6Bは、直線であってもよく、曲線であってもよい。
実施の形態3.
 図8及び図9は、本発明の実施の形態3に係るプロペラファン100Eを上流側から見た概略図である。図8及び図9に基づいて、プロペラファン100Eについて説明する。
 なお、実施の形態4では実施の形態1、2との相違点を中心に説明し、実施の形態1、2と同一部分には、同一符号を付して説明を省略するものとする。
 実施の形態3では、プロペラファン100Eの翼2Eが、実施の形態1に係るプロペラファン100Aの翼2Aと相違している。
 なお、図8では、プロペラファン100Eの翼2Eを1つだけ図示している。つまり、プロペラファン100Eは翼2Eが複数存在するものの、便宜的に、1つの翼2Eのみを図示している。そして、翼2Eの枚数を特に限定するものではない。さらに、翼2Eの枚数によらず凹部は翼毎に設定され、本発明の実施の形態3に係るプロペラファン100Eを実施することによる効果は翼毎に得られる。
 プロペラファン100Eは、軸心RCを中心に回転するボス1と、ボス1の外周部に配設される複数枚の翼2Eとを有している。翼2Eは、内周端21、外周端22、前縁4、後縁3で囲繞されている。また、翼2Eの後縁3には、後縁3の一部を開放させた凹部8Eが形成されている。さらに、凹部8Eを構成する内周側の一辺にと凸部(第1凸部)30が形成されている。
 凹部8E及び凸部30について詳しく説明する。
 凹部8Eを構成する内周側の一辺である、後縁3から前縁4に向かって伸びる一辺を、第一辺5Eと定義する。また、凹部8Eを構成する外周側の一辺である、後縁3から前縁4かつ内周側(内周端21側)に向かって伸びる一辺を、第二辺6Eと定義する。第一辺5Eは前縁4かつ外周側に向かって伸び、第二辺6Eは前縁4かつ内周側に向かって伸びているので、両辺は後縁3から前縁4に進んだ部分で接続する。この接続部分を接続点7Eと定義する。そして、第一辺5Eは、図8に示すように、外周側へ湾曲した曲線形状に構成されている。
 すなわち、プロペラファン100Eを軸方向の上流側から上面視した場合、凹部8Eは、第一辺5Eと第二辺6Eとを境とした空間部として形成される。また、凹部8Eは、上面視略三角形状として構成されるが、第一辺5Eが、外周側へ湾曲、つまり外周側に凸の曲線となった形状に構成されている。なお、凹部8Eは、実施の形態1で説明した凹部8Aと基本的に同じである。
 凸部30は、図8に示すように、凹部8Eの第一辺5Eの一部を外周端22側に突出させて形成されている。また、凸部30は、プロペラファン100Eを軸方向の上流側から上面視した場合、長方形状に構成されている。なお、図8では、凸部30が1つ設置されている状態を例に示している。
 プロペラファン100Eの効果について説明する。
 プロペラファン100Eでは、第一辺5Eが外周側へ湾曲した曲線形状の凹部8Eを有し、凹部8Eの第一辺5Eに凸部30を形成したことにより、第一辺5Eに、第一辺5Eと第一辺5Eの円弧形状に沿って接続点7Eから生じる漏れ渦11との間に幅を有する領域が形成できることになる。その領域により、漏れ渦11の生成への寄与が小さくなる。
そのため、プロペラファン100Eによれば、プロペラファン100Eから下流へ流れる漏れ渦11を抑制でき、低騒音化が実現する。
 なお、凹部8Eの個数、凹部8Eを構成する第一辺5Eの長さ、第二辺6Eの長さ、接続点7Eにおける第一辺5Eと第二辺6Eとがなす角度、凸部30の個数、大きさ、形状、第四辺13-3の曲率等を特に限定するものではなく、適宜設定できるものとする。
 例えば、図9に示すように、凸部30を、前縁側凸部30a、後縁側凸部30bの複数で構成し、それぞれの外周を曲線としてもよい。なお、凸部30を複数で構成する場合、それぞれを同じ形状、大きさとしてもよく、それぞれを異なる形状、大きさとしてもよい。
 また、第一辺5Eの形状について、第一辺5Aと同様に図2のように決定することができるものとするが、第一辺5Eの曲率等を特に限定するものではない。
 また、凸部30を実施の形態2で説明した凹部8Bと組み合わせてもよい。
 また、第一辺5Eが、後縁3から前縁4に向かって伸びる場合を例に示したが、第一辺5Eの形状によっては第一辺5Eが後縁3から前縁4かつ外周側(外周端22側)に向かって伸びることも考えられる。
 さらに、第二辺6Eは、直線であってもよく、曲線であってもよい。
実施の形態4.
 図10は、本発明の実施の形態4に係るプロペラファン100Cを上流側から見た概略図である。図10に基づいて、プロペラファン100Cについて説明する。
 なお、実施の形態4では実施の形態1、2との相違点を中心に説明し、実施の形態1、2と同一部分には、同一符号を付して説明を省略するものとする。
 実施の形態4では、プロペラファン100Cの翼2Cが、実施の形態1に係るプロペラファン100Aの翼2Aと相違している。
 なお、図10では、プロペラファン100Cの翼2Cを1つだけ図示している。つまり、プロペラファン100Cは翼2Cが複数存在するものの、便宜的に、1つの翼2Cのみを図示している。そして、翼2Cの枚数を特に限定するものではない。さらに、翼2Cの枚数によらず凹部は翼毎に設定され、本発明の実施の形態4に係るプロペラファン100Cを実施することによる効果は翼毎に得られる。
 プロペラファン100Cは、軸心RCを中心に回転するボス1と、ボス1の外周部に配設される複数枚の翼2Cとを有している。翼2Cは、内周端21、外周端22、前縁4、後縁3で囲繞されている。また、翼2Cの後縁3には、後縁3の一部を開放させた凹部8C、及び凸部(第2凸部)13が形成されている。
 凹部8C及び凸部13について詳しく説明する。
 凹部8Cを構成する内周側の一辺である、後縁3から前縁4に向かって伸びる一辺を、第一辺5Cと定義する。また、凹部8Cを構成する外周側の一辺である、後縁3から前縁4かつ内周側(内周端21側)に向かって伸びる一辺を、第二辺6Cと定義する。第一辺5Cは前縁4かつ外周側に向かって伸び、第二辺6Cは前縁4かつ内周側に向かって伸びているので、両辺は後縁3から前縁4に進んだ部分で接続する。この接続部分を接続点7Cと定義する。そして、第一辺5Cは、図10に示すように、外周側へ湾曲した曲線形状に構成されている。
 すなわち、プロペラファン100Cを軸方向の上流側から上面視した場合、凹部8Cは、第一辺5Cと第二辺6Cとを境とした空間部として形成される。また、凹部8Cは、上面視略三角形状として構成されるが、第一辺5Cが、外周側へ湾曲、つまり外周側に凸の曲線となった形状に構成されている。なお、凹部8Cは、実施の形態1で説明した凹部8Aと基本的に同じである。
 凸部13の外周端22側の頂点を頂点13-1と定義し、凸部13の内周端21側の頂点を頂点13-2と定義する。
 凸部13は、図10に示すように、凹部8Cにより区切られた後縁3の内周側(内周端21側)において、頂点13-1が凹部8Cの第一辺5Cの後縁側頂点となっており、頂点13-2が後縁3の頂点13-1よりも内周側と接続し、頂点13-1と頂点13-2とを凸部13の外周で接続する辺(第四辺13-3)を下流側へ突出させて構成される。
 プロペラファン100Cの効果について説明する。
 例えば、プロペラファンの後縁の一部に、下流側に突出する凸部を形成したとすると、凸部を形成した領域の仕事量が増加する。そのため、凸部を通過する空気の流れが周囲の流れより相対的に増速することになる。凸部を通過する空気の流れが増速すると、その周囲の流れが誘引されるという効果が得られる。
 ところで、プロペラファンの後縁に、内周側が直線である上面視略三角形状又は平行四辺形状の凹部を形成し、この凹部の内周側の漏れ抑制を狙いとして、凹部により区切られた後縁の内周側に凸部を形成したとすると、内周側の空気の流れが、内周側の直線形状に沿い切らずに剥離してしまうため、凸部を設けても内周側の流れを誘引する効果があまり得られない。
 それに対し、プロペラファン100Cは、第一辺5Cが外周側へ湾曲した曲線形状の凹部8Cを有し、凹部8Cにより区切られた後縁3の内周側に凸部13を形成しているので、凹部8Cの内周側の空気流れ外周側へ湾曲した曲線形状に沿うことになり、凸部13による誘引効果が得られやすくなる。そのため、漏れ渦11の発生をより抑制することができる。したがって、プロペラファン100Cによれば、実施の形態1に係るプロペラファン100Aによる効果に加え、凸部13によって漏れ渦11をより抑制することができ、低入力化、低騒音化が更に実現する。
 なお、凹部8Cの個数、凹部8Cを構成する第一辺5Cの長さ、第二辺6Cの長さ、接続点7Cにおける第一辺5Cと第二辺6Cとがなす角度、凸部13の大きさ、凸部13の形状、第四辺13-3の曲率等を特に限定するものではなく、適宜設定できるものとする。
 また、第一辺5Cの形状について、第一辺5Aと同様に図2のように決定することができるものとするが、第一辺5Cの曲率等を特に限定するものではない。
 また、凸部13を、実施の形態2で説明した凹部8B、実施の形態3で請求項した凹部8Eの少なくともいずれかと組み合わせてもよい。
 また、第一辺5Cが、後縁3から前縁4に向かって伸びる場合を例に示したが、第一辺5Cの形状によっては第一辺5Cが後縁3から前縁4かつ外周側(外周端22側)に向かって伸びることも考えられる。
 さらに、第二辺6Cは、直線であってもよく、曲線であってもよい。
実施の形態5.
 図11は、本発明の実施の形態5に係るプロペラファン100Dを上流側から見た概略図である。図11に基づいて、プロペラファン100Dについて説明する。
 なお、実施の形態5では実施の形態1~3との相違点を中心に説明し、実施の形態1~3と同一部分には、同一符号を付して説明を省略するものとする。
 実施の形態5では、プロペラファン100Dの翼2Dが、実施の形態1に係るプロペラファン100Aの翼2Aと相違している。
 なお、図11では、プロペラファン100Dの翼2Dを1つだけ図示している。つまり、プロペラファン100Dは翼2Dが複数存在するものの、便宜的に、1つの翼2Dのみを図示している。そして、翼2Dの枚数を特に限定するものではない。さらに、翼2Dの枚数によらず凹部は翼毎に設定され、本発明の実施の形態5に係るプロペラファン100Dを実施することによる効果は翼毎に得られる。
 プロペラファン100Dは、軸心RCを中心に回転するボス1と、ボス1の外周部に配設される複数枚の翼2Dとを有している。翼2Dは、内周端21、外周端22、前縁4、後縁3で囲繞されている。また、翼2Dの後縁3には、後縁3の一部を開放させた凹部8D、及び凸部13Aが形成されている。
 凹部8D及び凸部13Aについて詳しく説明する。
 凹部8Dを構成する内周側の一辺である、後縁3から前縁4に向かって伸びる一辺を、第一辺5Dと定義する。また、凹部8Dを構成する外周側の一辺である、後縁3から前縁4かつ内周側(内周端21側)に向かって伸びる一辺を、第二辺6Dと定義する。第一辺5Dは前縁4かつ外周側に向かって伸び、第二辺6Dは前縁4かつ内周側に向かって伸びているので、両辺は後縁3から前縁4に進んだ部分で接続する。この接続部分を接続点7Dと定義する。そして、第一辺5Dは、図11に示すように、外周側へ湾曲した曲線形状に構成されている。
 すなわち、プロペラファン100Dを軸方向の上流側から上面視した場合、凹部8Dは、第一辺5Dと第二辺6Dとを境とした空間部として形成される。また、凹部8Dは、上面視略三角形状として構成されるが、第一辺5Dが、外周側へ湾曲、つまり外周側に凸の曲線となった形状に構成されている。なお、凹部8Dは、実施の形態1で説明した凹部8Aと基本的に同じである。
 凸部13Aの外周端22側の頂点を頂点13A-1と定義し、凸部13Aの内周端21側の頂点を頂点13A-2と定義する。
 凸部13Aは、図11に示すように、凹部8Dにより区切られた後縁3の内周側(内周端21側)において、頂点13A-1が凹部8Dの第一辺5Dの後縁側頂点となっており、頂点13A-2が後縁3の頂点13A-1よりも内周側と接続し、頂点13A-1と頂点13-2Aとを凸部13Aの外周で接続する辺(第四辺13A-3)を下流側へ突出させて構成される。
 また、頂点13A-1と頂点13A-2とを直線的に結んだ線を第1仮想線15と定義する。第1仮想線15の中点から垂直に伸びて第四辺13A-3と接続する線を第2仮想線16と定義する。第四辺13A-3と第2仮想線16との交点を交点17と定義する。
 そして、凸部13Aは、凸部13Aの第四辺13A-3における最大突出点14が、交点17よりも内周側に位置するように構成される。
 プロペラファン100Dの効果について説明する。
 実施の形態4の凸部13と同様に、凸部13Aには周囲の流れを誘引するという作用がある。加えて、凸部13Aを通過する空気の流れは、凸部13Aの下流側に最も突出した点、つまり最大突出点14に集中する。そのため、最大突出点14を交点17よりも内周側に設けることにより、凹部8Dの内周側の流れを内周側へより誘引できるという効果が得られる。つまり、プロペラファン100Dによれば、実施の形態4に係るプロペラファン100Cによる効果に加え、凸部13Aによって漏れ渦11をより抑制することができ、低入力化、低騒音化が更に実現する。
 なお、凹部8Dの個数、凹部8Dを構成する第一辺5Dの長さ、第二辺6Dの長さ、接続点7Dにおける第一辺5Dと第二辺6Dとがなす角度、凸部13Aの大きさ、凸部13Aの形状、第四辺13A-3の曲率等を特に限定するものではなく、適宜設定できるものとする。
 また、第一辺5Dの形状について、第一辺5Aと同様に図2のように決定することができるものとするが、第一辺5Dの曲率等を特に限定するものではない。
 また、凸部13Aを実施の形態2で説明した凹部8Bと組み合わせてもよい。
 また、第一辺5Dが、後縁3から前縁4に向かって伸びる場合を例に示したが、第一辺5Dの形状によっては第一辺5Dが後縁3から前縁4かつ外周側(外周端22側)に向かって伸びることも考えられる。
 さらに、第二辺6Dは、直線であってもよく、曲線であってもよい。
実施の形態6.
 図12は、本発明の実施の形態6に係る冷凍サイクル装置200の冷媒回路構成を概略的に示す回路構成図である。図13は、冷凍サイクル装置200の一部を構成する冷却ユニット210(以下、冷却ユニット210Aと称する)の構成の一例を概略的に示す概略斜視図である。図14は、図13における冷却ユニットのIV-IV断面図である。図15は、冷凍サイクル装置200の一部を構成する冷却ユニット210(以下、冷却ユニット210Bと称する)の構成の別の一例を概略的に示す概略構成図である。図12~図15に基づいて、冷凍サイクル装置200について説明する。
<冷凍サイクル装置200の冷媒回路構成>
 冷凍サイクル装置200は、蒸気圧縮式の冷凍サイクル運転を行うものであり、実施の形態1~4に係るプロペラファンを冷却ユニット210(冷却ユニット210A、冷却ユニット210B)に備えるようにしたものである。なお、実施の形態6では、実施の形態1に係るプロペラファン100Aを備えた場合を例に説明する。
 冷凍サイクル装置200は、圧縮機211と、第1熱交換器205と、絞り装置213と、第2熱交換器221と、を有している。
 そして、冷凍サイクル装置200は、圧縮機211、第1熱交換器205、絞り装置213、第2熱交換器221が、冷媒配管216によって配管接続され、冷媒回路が形成されている。
(圧縮機211)
 圧縮機211は、冷媒を高温、高圧に圧縮して吐出するものである。圧縮機211は、例えば、インバータ圧縮機などで構成することができる。例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、往復圧縮機等を圧縮機211として採用することができる。
(第1熱交換器205)
 第1熱交換器205は、凝縮器(放熱器)として機能し、圧縮機211から吐出された冷媒を凝縮させて高圧液冷媒にするものである。第1熱交換器205は、上流側が圧縮機211に接続され、下流側が絞り装置213に接続されている。第1熱交換器205は、例えば、フィン・アンド・チューブ型熱交換器等で構成することができる。第1熱交換器205には、第1熱交換器205に空気を供給するプロペラファン100Aが付設されている。
(絞り装置213)
 絞り装置213は、第1熱交換器205を経由した冷媒を膨張させて減圧するものである。絞り装置213は、例えば開度が調整でき冷媒の流量を調整可能な電動膨張弁等で構成するとよい。なお、絞り装置213としては、電動膨張弁だけでなく、受圧部にダイアフラムを採用した機械式膨張弁、または、キャピラリーチューブ等を適用することも可能である。絞り装置213は、上流側が第1熱交換器205に接続され、下流側が第2熱交換器221に接続されている。
(第2熱交換器221)
 第2熱交換器221は、蒸発器として機能し、絞り装置213で減圧された冷媒を蒸発させてガス冷媒にするものである。第2熱交換器221は、上流側が絞り装置213に接続され、下流側が圧縮機211に接続されているものである。第2熱交換器221は、例えば、フィン・アンド・チューブ型熱交換器等で構成することができる。第2熱交換器221には、第2熱交換器221に空気を供給するプロペラファン等のファン222が付設されている。
(冷却ユニット210)
 圧縮機211、第1熱交換器205、プロペラファン100Aは、冷却ユニット210に搭載される。
(利用側ユニット220)
 絞り装置213、第2熱交換器221、ファン222は、利用側ユニット220に搭載される。なお、絞り装置213を、利用側ユニット220ではなく、冷却ユニット210に搭載してもよい。
(その他)
 圧縮機211の吐出側に冷媒流路を切り替える流路切替装置を設けて、第1熱交換器205を蒸発器として機能させ、第2熱交換器221を凝縮器として機能させてもよい。
 なお、流路切替装置は、例えば四方弁、2つの二方弁又は三方弁を組み合わせたもので構成することができる。
<冷凍サイクル装置200の動作>
 次に、冷凍サイクル装置200の動作について、冷媒の流れとともに説明する。
 圧縮機211を駆動させることによって、圧縮機211から高温高圧のガス状態の冷媒が吐出する。圧縮機211から吐出した高温高圧のガス冷媒は、第1熱交換器205に流れ込む。第1熱交換器205では、流れ込んだ高温高圧のガス冷媒と、プロペラファン100Aによって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒になる。
 第1熱交換器205から送り出された高圧の液冷媒は、絞り装置213によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、第2熱交換器221に流れ込む。第2熱交換器221では、流れ込んだ二相状態の冷媒と、ファン222によって供給される空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒となる。第2熱交換器221から送り出された低圧のガス冷媒は、圧縮機211に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機211から吐出する。以下、このサイクルが繰り返される。
<冷却ユニット210A>
 図13及び図14に示すように、冷却ユニット210Aは、電車等の車両に搭載されることを想定したものであり、ベース201と、プロペラファン100Aと、筐体204Aと、モータ206と、第1熱交換器205と、を有している。
 ベース201は、冷却ユニット210Aの底部(モータ206の設置面)及び側部を構成するものである。
 筐体204Aは、少なくともプロペラファン100Aを囲繞するようにベース201に設けられ、吐き出し部202及び吸い込み部203を有している。
 吐き出し部202は、ベース201の法線方向上向きを正とするz軸及びそれに垂直な方向をx軸と定義したとき、z>0となるz軸平面内に設けられている。つまり、プロペラファン100Aの上方における開口部分が、空気の流出口となる吐き出し部202として機能する。
 吸い込み部203は、ベース201のx軸方向に対向するように設けられている。つまり、第1熱交換器205の配置位置における開口部分が、空気の流入口となる吸い込み部203として機能する。
 第1熱交換器205は、図示省略の冷媒配管を導通する冷媒とプロペラファン100Aにより供給される空気との間で熱交換を行うものであり、一対が吸い込み部203に近接するように筐体204Aに配置されている。
 プロペラファン100Aは、吐き出し部202の上流にz軸の正の向きに気流が吐き出されるように筐体204Aのz軸上に配設されている。具体的には、プロペラファン100Aは、吐き出し部202の直下に設けられるとよい。そして、プロペラファン100Aは、吸い込み部203を介してベース201内に空気を取り込み、吐き出し部202を介してベース201内から外部に空気を吹き出すものである。
 モータ206は、プロペラファン100Aを支持するとともに、プロペラファン100Aを駆動させるものである。
 例えば、冷却ユニット210Aでは、ベース201内部の空気の流れは、図14に示すような気流S1となる。ただし、プロペラファン100Aの空気の吹き出し方向を逆にすることにより、ベース201内部の空気の流れは、気流S1とは逆向きになる。この場合、吐き出し部202と吸い込み部203の機能も逆転する。
<冷却ユニット210B>
 図15に示すように、冷却ユニット210Bは、熱源側ユニット(室外ユニット)として利用されることを想定したものであり、外郭を構成する筐体204Bと、筐体204Bの内部に設置されるプロペラファン100Aと、筐体204Bの内部に設置されるモータ206と、筐体204Bの内部に設置される第1熱交換器205と、図12に示した圧縮機211などを有している。
 筐体204Bは、少なくとも2面(たとえば、側面及び背面)に空気吸込口を有し、箱型に構成されている。また、筐体204Bの内部にはセパレータ250が設けられ、プロペラファン100Aが設置される送風機室252と、圧縮機211などが設置される機械室251とが、区画形成されている。
 第1熱交換器205は、筐体204Bの空気吸込口に対応する側面及び背面に位置するように上面視L字形状に構成されている。
 なお、筐体204Bの前面には、空気が流れる開口部が開口形成されている。
 また、プロペラファン100Aは、筐体204Bの内部に設置されるモータ206によって回転駆動される。
 以上のように、冷凍サイクル装置200は、実施の形態1~4のいずれかに係るプロペラファンを冷却ユニット210に備えているため、第一辺が外周側へ湾曲した曲線形状の凹部をプロペラファンの後縁3が形成されているので、第一辺における空気の流れの剥離を抑制でき、漏れ渦の発生を低減できる。よって、冷凍サイクル装置200によれば、実施の形態1~4のいずれかに係るプロペラファンを備えたことにより、低入力化及び低騒音化を実現できる。
 1 ボス、1X ボス、2A 翼、2B 翼、2C 翼、2D 翼、2E 翼、2X 翼、3 後縁、3X 後縁、4 前縁、4X 前縁、5A 第一辺、5B 第一辺、5C 第一辺、5D 第一辺、5E 第一辺、5X 第一辺、6A 第二辺、6B 第二辺、6C 第二辺、6D 第二辺、6E 第二辺、6X 第二辺、7 接続点、7A 接続点、7C 接続点、7D 接続点、7E 接続点、7X 接続点、8A 凹部、8B 凹部、8C 凹部、8D 凹部、8E 凹部、8X 凹部、10 空気流れ、10-1 空気流れ、10-1X 空気流れ、10-2 空気流れ、10-2X 空気流れ、10X 空気流れ、11 漏れ渦、11X 漏れ渦、12 第三辺、13 凸部(第2凸部)、13-1 頂点、13-2 頂点、13-2A 頂点、13-3 第四辺、13A 凸部、13A-1 頂点、13A-2 頂点、13A-3 第四辺、14 最大突出点、15 第1仮想線、16 第2仮想線、17 交点、21 内周端、21X 内周端、22 外周端、22X 外周端、30 凸部(第1凸部)、30a 前縁側凸部、30b 後縁側凸部、33 キャンバーライン、34 翼弦中心点、35 翼弦中心線、50 同心円、100A プロペラファン、100B プロペラファン、100C プロペラファン、100D プロペラファン、100E プロペラファン、100X プロペラファン、200 冷凍サイクル装置、201 ベース、202 吐き出し部、203 吸い込み部、204A 筐体、204B 筐体、205 第1熱交換器、206 モータ、210 冷却ユニット、210A 冷却ユニット、210B 冷却ユニット、211 圧縮機、213 絞り装置、216 冷媒配管、220 利用側ユニット、221 第2熱交換器、222 ファン、250 セパレータ、251 機械室、252 送風機室、255 ベルマウス、A 回転方向、RC 軸心、S1 気流。

Claims (9)

  1.  軸心を中心に回転する回転軸部と、
     前記回転軸部の外周部に配設される複数枚の翼と、を有し、
     前記翼は、
     後縁を開放させた凹部を少なくとも1つ有し、
     前記凹部は、
     後縁から前縁に向かって伸びる内周側の第一辺が外周側へ湾曲している
     プロペラファン。
  2.  軸方向の上流側から上面視した状態において、
     前記第一辺は、
     前記回転軸部の同心円の一部の円弧を構成する
     請求項1に記載のプロペラファン。
  3.  前記凹部は、
     前記第一辺と、
     後縁から前縁かつ内周側に向かって伸びる外周側の第二辺と、
     前記第一辺と前記第二辺とが前縁側で接続する接続点と、を有する上面視略三角形状に構成されている
     請求項1又は2に記載のプロペラファン。
  4.  前記凹部は、
     前記第一辺と、
     後縁から前縁かつ内周側に向かって伸びる外周側の第二辺と、
     前記第一辺の前縁側頂点と前記第二辺の前縁側頂点とを結ぶ第三辺と、を有する上面視略四角形状に構成されている
     請求項1又は2に記載のプロペラファン。
  5.  前記翼は、
     前記第一辺に、外周側へ突出させた第1凸部を少なくとも一つ有する
     請求項1~4のいずれか一項に記載のプロペラファン。
  6.  前記翼は、
     前記凹部により区切られた後縁の内周側に、下流側へ突出させた第2凸部を有する
     請求項1~5のいずれか一項に記載のプロペラファン。
  7.  前記第2凸部は、
     外周端側の頂点が、前記凹部の前記第一辺の後縁側頂点となっている
     請求項6に記載のプロペラファン。
  8.  前記第2凸部の外周端側の頂点と内周端側の頂点とを前記第2凸部の外周で結んだ線を第四辺とし
     前記第2凸部の外周端側の頂点と内周端側の頂点とを直線的に結んだ線を第1仮想線とし、
     前記第1仮想線の中点から垂直に伸びて前記第四辺と接続する線を第2仮想線とし、
     前記第2凸部は、
     最大突出点が、
     前記第四辺と前記第2仮想線との交点よりも内周側に位置している
     請求項6又は7に記載のプロペラファン。
  9.  圧縮機、第1熱交換器、絞り装置、第2熱交換器を配管接続した冷媒回路を有し、
     請求項1~8のいずれか一項に記載のプロペラファンは、
     前記第1熱交換器に空気を供給するものとして、前記第1熱交換器とともに冷却ユニットに搭載される
     冷凍サイクル装置。
PCT/JP2017/019545 2017-05-25 2017-05-25 プロペラファン及び冷凍サイクル装置 WO2018216164A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES17911234T ES2926858T3 (es) 2017-05-25 2017-05-25 Ventilador de hélice y aparato de ciclo de refrigeración
US16/496,544 US11333166B2 (en) 2017-05-25 2017-05-25 Propeller fan and refrigeration cycle apparatus
EP17911234.7A EP3633208B1 (en) 2017-05-25 2017-05-25 Propeller fan and refrigerating cycle apparatus
CN201780089891.4A CN110678659B (zh) 2017-05-25 2017-05-25 螺旋桨式风扇以及制冷循环装置
PCT/JP2017/019545 WO2018216164A1 (ja) 2017-05-25 2017-05-25 プロペラファン及び冷凍サイクル装置
JP2019519900A JP7113819B2 (ja) 2017-05-25 2017-05-25 プロペラファン及び冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019545 WO2018216164A1 (ja) 2017-05-25 2017-05-25 プロペラファン及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2018216164A1 true WO2018216164A1 (ja) 2018-11-29

Family

ID=64396372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019545 WO2018216164A1 (ja) 2017-05-25 2017-05-25 プロペラファン及び冷凍サイクル装置

Country Status (6)

Country Link
US (1) US11333166B2 (ja)
EP (1) EP3633208B1 (ja)
JP (1) JP7113819B2 (ja)
CN (1) CN110678659B (ja)
ES (1) ES2926858T3 (ja)
WO (1) WO2018216164A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965522B2 (en) * 2015-12-11 2024-04-23 Delta Electronics, Inc. Impeller
CN113153809B (zh) * 2020-12-31 2024-06-25 西安航空学院 带仿生鱼尾鳍的高速离心轮

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206894A (ja) * 2002-01-10 2003-07-25 Sharp Corp プロペラファンおよびその成型金型並びに流体送り装置
JP4467952B2 (ja) 2003-11-10 2010-05-26 東芝キヤリア株式会社 プロペラファン、これを用いた空気調和機用室外ユニット
WO2016117413A1 (ja) * 2015-01-20 2016-07-28 シャープ株式会社 プロペラファン、流体送り装置および成形用金型
JP2016183643A (ja) * 2015-03-26 2016-10-20 株式会社富士通ゼネラル プロペラファン

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613272B2 (ja) * 1988-08-29 1997-05-21 株式会社日立製作所 軸流ファン
JP3448136B2 (ja) * 1994-11-08 2003-09-16 三菱重工業株式会社 プロペラファン
JP5263198B2 (ja) 2010-02-26 2013-08-14 パナソニック株式会社 羽根車と送風機及びそれを用いた空気調和機
JP5353994B2 (ja) * 2011-11-21 2013-11-27 ダイキン工業株式会社 軸流ファン
JP2013130125A (ja) * 2011-12-21 2013-07-04 Toshiba Carrier Corp プロペラファンおよびこれを用いた熱源ユニット
CN102588339B (zh) * 2012-03-01 2016-02-03 Tcl空调器(中山)有限公司 风扇结构及轴流风扇
JP6066691B2 (ja) 2012-11-26 2017-01-25 株式会社サムスン日本研究所 プロペラファン及び前記プロペラファンを用いた空気調和装置
EP2711558B1 (en) 2012-09-24 2020-07-08 Samsung Electronics Co., Ltd. Propeller fan
WO2015004720A1 (ja) * 2013-07-08 2015-01-15 三菱電機株式会社 熱交換器、及び空気調和機
CN203717440U (zh) * 2014-02-08 2014-07-16 美的集团股份有限公司 轴流风轮
JP6592358B2 (ja) 2015-03-03 2019-10-16 東芝キヤリア株式会社 プロペラファンおよび熱源ユニット
AU2017206193B2 (en) * 2016-09-02 2023-07-27 Fujitsu General Limited Axial fan and outdoor unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206894A (ja) * 2002-01-10 2003-07-25 Sharp Corp プロペラファンおよびその成型金型並びに流体送り装置
JP4467952B2 (ja) 2003-11-10 2010-05-26 東芝キヤリア株式会社 プロペラファン、これを用いた空気調和機用室外ユニット
WO2016117413A1 (ja) * 2015-01-20 2016-07-28 シャープ株式会社 プロペラファン、流体送り装置および成形用金型
JP2016183643A (ja) * 2015-03-26 2016-10-20 株式会社富士通ゼネラル プロペラファン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633208A4

Also Published As

Publication number Publication date
EP3633208A1 (en) 2020-04-08
US20200325909A1 (en) 2020-10-15
JP7113819B2 (ja) 2022-08-05
ES2926858T3 (es) 2022-10-31
CN110678659B (zh) 2021-11-16
EP3633208B1 (en) 2022-08-17
JPWO2018216164A1 (ja) 2019-12-19
EP3633208A4 (en) 2020-06-17
US11333166B2 (en) 2022-05-17
CN110678659A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN108350898B (zh) 鼓风机、室外机以及制冷循环装置
CN111279085A (zh) 离心送风机、送风装置、空调装置以及制冷循环装置
US9970454B2 (en) Propeller fan, blower device, and outdoor equipment
CN109247023B (zh) 离心送风机、空气调节装置以及制冷循环装置
WO2018216164A1 (ja) プロペラファン及び冷凍サイクル装置
JP6755331B2 (ja) プロペラファン及び冷凍サイクル装置
CN110945250B (zh) 螺旋桨风扇、送风装置及制冷循环装置
WO2018016012A1 (ja) 熱源機及び冷凍サイクル装置
CN109891101B (zh) 螺旋桨风扇、室外机和制冷循环装置
JP7378505B2 (ja) 遠心送風機及びそれを備えた空気調和機
CN115516211A (zh) 轴流风扇、送风装置以及制冷循环装置
JP6430032B2 (ja) 遠心ファン、空気調和装置および冷凍サイクル装置
WO2023223383A1 (ja) クロスフローファン、送風装置及び冷凍サイクル装置
WO2022234630A1 (ja) 送風機、空気調和装置および冷凍サイクル装置
WO2017060973A1 (ja) 送風装置、室外機及び冷凍サイクル装置
WO2023084652A1 (ja) クロスフローファン、送風装置及び冷凍サイクル装置
WO2016038690A1 (ja) 空気調和装置用室内機および空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017911234

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017911234

Country of ref document: EP

Effective date: 20200102