WO2018216122A1 - Heat-resistant reflecting mirror, gas concentration monitor and method for producing heat-resistant reflecting mirror - Google Patents

Heat-resistant reflecting mirror, gas concentration monitor and method for producing heat-resistant reflecting mirror Download PDF

Info

Publication number
WO2018216122A1
WO2018216122A1 PCT/JP2017/019290 JP2017019290W WO2018216122A1 WO 2018216122 A1 WO2018216122 A1 WO 2018216122A1 JP 2017019290 W JP2017019290 W JP 2017019290W WO 2018216122 A1 WO2018216122 A1 WO 2018216122A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
reflecting mirror
heat
reflective film
resistant
Prior art date
Application number
PCT/JP2017/019290
Other languages
French (fr)
Japanese (ja)
Inventor
信和 林
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2019519861A priority Critical patent/JPWO2018216122A1/en
Priority to PCT/JP2017/019290 priority patent/WO2018216122A1/en
Publication of WO2018216122A1 publication Critical patent/WO2018216122A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a heat-resistant reflector used in a high-temperature environment, a gas concentration monitor provided with the same, and a method for manufacturing the heat-resistant reflector.
  • the heat-resistant reflector is mainly provided with a metal oxide film having a different refractive index or a reflective film in which metal films are laminated (see, for example, Patent Documents 1 to 3 below).
  • a heat-resistant reflector is used in a high-temperature environment such as in an engine, for example, the conventional heat-resistant reflector has insufficient heat resistance.
  • the said high temperature environment means the environment exposed to the high temperature of 600 degreeC or more, for example.
  • the present invention has been made in view of the above circumstances, and provides a heat-resistant reflector, a gas concentration monitor, and a method for manufacturing a heat-resistant reflector that can stably reflect light even in a high-temperature environment. With the goal.
  • a heat-resistant reflecting mirror according to the present invention includes a base material, a reflecting film, and a protective film.
  • the reflective film is formed on the base material by a platinum group element.
  • the protective film is formed on the reflective film with a metal oxide.
  • the reflective film is formed on the base material by the platinum group element having high heat resistance, and the protective film is formed on the reflective film by the metal oxide film. Become. Therefore, light can be stably reflected by the reflective film even in a high temperature environment.
  • the reflective film may be a single layer film, a multilayer film, or an alloy film formed of at least one of Pt, Rh, Ru, and Ir.
  • the heat resistance is further improved by forming the reflective film from at least one of Pt, Rh, Ru, and Ir among the platinum group elements.
  • the reflective film may have a thickness of 100 to 200 nm.
  • the heat resistance can be effectively improved within an appropriate film thickness range in which the influence of the thermal expansion of the reflective film is unlikely to occur.
  • the protective film may be a single layer film or a multilayer film formed of at least one of SiO 2 , Al 2 O 3 , TiO 2, and HfO 2 .
  • the heat resistance is further improved by forming the protective film with at least one of SiO 2 , Al 2 O 3 , TiO 2, and HfO 2 among the metal oxides.
  • the protective film may have a thickness of 50 to 100 nm.
  • the heat resistance can be effectively improved within an appropriate film thickness range in which the influence of the thermal expansion of the protective film hardly occurs.
  • the base material may be formed of Si, glass, or ceramic.
  • the heat resistance is further improved by forming the base material from Si, glass or ceramic which is difficult to thermally expand.
  • the heat-resistant reflecting mirror may further include an adhesive layer formed between the base material and the reflective film.
  • the adhesive layer is formed between the base material and the reflective film, the reflective film is hardly peeled from the base material. Accordingly, the heat resistance is further improved.
  • the adhesive layer may be formed of Cr, Ti, Al, Ta, Cu, or Ni.
  • the adhesive layer is formed of Cr, Ti, Al, Ta, Cu, or Ni, the reflective film becomes more difficult to peel from the base material.
  • the adhesive layer may have a thickness of 5 to 10 nm.
  • a gas concentration monitor includes the heat-resistant reflecting mirror, a light source that emits measurement light, and a detector that detects the measurement light from the light source.
  • the gas concentration monitor multi-reflects the measurement light from the light source in the measurement space using the reflecting mirror, and detects the measurement light emitted from the measurement space with the detector. Monitor the gas concentration.
  • the manufacturing method of the heat-resistant reflecting mirror according to the present invention includes a reflecting film forming step and a protective film forming step.
  • a reflective film is formed on the substrate with a platinum group element.
  • a protective film is formed on the reflective film with a metal oxide.
  • the manufacturing method of the heat resistant reflecting mirror may further include an adhesive layer forming step of forming an adhesive layer on the substrate.
  • the reflective film may be formed on the adhesive layer.
  • a reflective film is formed on a base material by a platinum group element having high heat resistance, and a protective film is formed on the reflective film by a metal oxide film. Light can be reflected stably in the film.
  • FIG. 1 is a schematic sectional view showing a configuration example of a gas concentration monitor according to an embodiment of the present invention.
  • the gas concentration monitor includes a multiple reflection cell 101, a light source 102, and a detector 103.
  • the multi-reflection cell 101 includes a cylindrical cell main body 110 and reflecting mirrors 130 and 140 provided in the cell main body 110.
  • the cell body 110 is, for example, a cylindrical member, and at least the inner surface is formed of a material that does not transmit light.
  • One or more openings 111 are formed in the wall surface of the cell body 110. In this example, a pair (two) of openings 111 are formed at positions facing each other across the central axis of the cell body 110.
  • a measurement space 150 is formed between the two reflecting mirrors 130 and 140. That is, the two reflecting mirrors 130 and 140 are disposed so as to face each other along the axial direction of the cell body 110 with the measurement space 150 interposed therebetween.
  • a reflecting surface 131 is formed on the surface of the reflecting mirror 130 on the measurement space 150 side.
  • a reflecting surface 141 is formed on the surface of the reflecting mirror 140 on the measurement space 150 side.
  • the reflecting mirrors 130 and 140 are disposed in the cell body 110 so that the reflecting surfaces 131 and 141 face each other with a space therebetween.
  • the reflecting surface 131 of the reflecting mirror 130 is formed only on a part of the surface of the reflecting mirror 130 on the measurement space 150 side.
  • the reflecting mirror 130 is formed in a disc shape, and the reflecting surface 131 is formed only at the center thereof. Thereby, the reflecting mirror 130 can reflect light by the reflecting surface 131 and can transmit light in a region other than the reflecting surface 131 on the surface on the measurement space 150 side.
  • the reflecting surface 141 of the reflecting mirror 140 is formed on the entire surface of the reflecting mirror 140 on the measurement space 150 side.
  • the opening 111 is formed in a part of a region partitioning the measurement space 150 on the wall surface of the cell main body 110.
  • the measurement space 150 is sealed by the cell main body 110 and the reflecting mirrors 130 and 140 except for a portion where the opening 111 is formed, for example. Thereby, the gas outside the cell body 110 can flow into the measurement space 150 through the opening 111.
  • the multi-reflection cell 101 is inserted into a target area such as in an engine, for example, and gas existing in the target area is taken into the measurement space 150 through the opening 111.
  • a target area such as in an engine, for example
  • the light source 102 irradiates light (measurement light) toward the multiple reflection cell 101 from one side in the axial direction of the multiple reflection cell 101.
  • the light source 102 is, for example, a laser light source.
  • the wavelength of light emitted from the light source 102 is not particularly limited. For example, light having a wavelength in the infrared region is emitted from the light source 102.
  • the light emitted from the light source 102 passes through a portion of the reflecting mirror 130 that does not interfere with the reflecting surface 131 and enters the measurement space 150, for example.
  • the light that has entered the measurement space 150 is reflected by the reflecting surface 141 of the reflecting mirror 140, and the reflected light is reflected by the reflecting surface 131 of the reflecting mirror 130.
  • the reflected light from the reflecting surface 131 is reflected again by the reflecting surface 141 of the reflecting mirror 140, it passes through a portion of the reflecting mirror 130 that does not interfere with the reflecting surface 131 and is emitted from the measurement space 150.
  • the light incident on the measurement space 150 is emitted from the measurement space 150 after being multiple-reflected in the measurement space 150.
  • the detector 103 receives light emitted from the measurement space 150. That is, the light that has been multiple-reflected in the measurement space 150 in which the gas to be measured is taken in from the opening 111 is emitted from the measurement space 150 and detected by the detector 103.
  • the light that has entered the multi-reflection cell 101 undergoes multiple reflections in the measurement space 150, light having a wavelength corresponding to the component contained in the gas in the measurement space 150 is absorbed. Therefore, by detecting the light after multiple reflection by the detector 103, the concentration of the component contained in the gas can be measured based on the detection intensity at each wavelength of the light. If the measurement is performed while flowing the gas in the measurement space 150, it is possible to monitor the change with time of the concentration of the component contained in the gas.
  • FIG. 2 is a cross-sectional view of the reflecting mirror 140 of FIG.
  • the reflecting mirror 140 is a heat resistant reflecting mirror that can be used in a high temperature environment of 600 ° C. or higher.
  • the reflecting mirror 140 has a configuration in which a base material 142, an adhesive layer 143, a reflecting film 144, and a protective film 145 are integrally formed.
  • the base material 133 is made of, for example, Si, glass, or ceramic. Examples of the glass include synthetic quartz, but are not limited thereto.
  • the base material 133 has a plate shape, for example, a disk shape. In this example, both surfaces of the base material 133 are formed as flat surfaces, but at least one surface of the base material 133 may be formed other than a flat surface such as a concave curved surface or a convex curved surface.
  • the reflective film 144 is provided on one surface of the base material 133 with the adhesive layer 143 interposed therebetween. That is, the adhesive layer 143 is formed between the base material 133 and the reflective film 144 and has a function of improving the adhesion between the base material 133 and the reflective film 144.
  • the reflective film 144 is a film for reflecting the light formed on the base material 133, and the surface opposite to the base material 133 constitutes the reflective surface 141.
  • the reflective film 144 is made of a platinum group element. Specifically, the reflection film 144 is configured by a single layer film formed of Pt, Rh, Ru, or Ir. However, the reflective film 144 is not limited to a single layer film, and may be a multilayer film including at least one of Pt, Rh, Ru, and Ir, or may be an alloy film. On the other hand, the adhesive layer 143 is formed of, for example, Cr, Ti, Al, Ta, Cu, or Ni.
  • the protective film 145 is provided on the surface of the reflective film 144 opposite to the base material 142 side.
  • the protective film 145 has a function of protecting the reflective film 144 by being formed on the reflective film 144. As shown by an arrow in FIG. 2, the protective film 145 transmits at least a part of light incident from the side opposite to the reflective film 144 side and reflects the light on the surface (reflective surface 141) of the reflective film 144.
  • the protective film 145 is made of a metal oxide. Specifically, the protective film 145 is composed of a single layer film made of SiO 2 , Al 2 O 3 , TiO 2, or HfO 2 . However, the protective film 145 is not limited to a single layer film, and may be a multilayer film including at least one of SiO 2 , Al 2 O 3 , TiO 2, and HfO 2 , for example.
  • FIGS. 3A to 3D are cross-sectional views for explaining an example of a manufacturing method of the reflecting mirror 140.
  • a cleaned base material 142 is prepared as shown in FIG. 3A.
  • the base material 142 is formed in a disk shape with a diameter of 30 mm and a thickness of 1.5 mm, for example, and at least one surface is optically polished.
  • an adhesive layer 143 is formed on one surface of the substrate 142 (adhesive layer forming step).
  • the film thickness of the adhesive layer 143 is, for example, 5 nm.
  • the adhesive layer 143 is formed of Cr using, for example, a sputtering method. As described above, when the adhesive layer 143 is formed, a sputtering method can be used. However, depending on the material, the adhesive layer 143 can be formed by another method such as an evaporation method.
  • a reflective film 144 is formed on the adhesive layer 143 (reflective film forming step).
  • the film thickness of the reflective film 144 is, for example, 200 nm.
  • the reflective film 144 is formed of Pt using, for example, a sputtering method. As described above, when the reflective film 144 is formed, a sputtering method can be used. However, depending on the material, the reflective film 144 can be formed by another method such as an evaporation method.
  • a protective film 145 is formed on the reflective film 144 as shown in FIG. 3D (protective film forming step).
  • the film thickness of the protective film 145 is, for example, 100 nm.
  • the protective film 145 is formed of SiO 2 using, for example, a vapor deposition method. As described above, when the protective film 145 is formed, an evaporation method can be used. However, depending on the material, the protective film 145 can be formed by another method such as a sputtering method.
  • 4A and 4B are diagrams showing the results of evaluating the heat resistance of the reflecting mirror 140.
  • FIG. 4A the reflectance for each film thickness when SiO 2 is used as the protective film 145 is shown.
  • FIG. 4B the reflectance for each film thickness when Al 2 O 3 is used as the protective film 145 is shown in association with the wavelength.
  • the thickness of the protective film 145 is preferably 50 to 100 nm in the infrared region (especially 1100 nm or more).
  • 5A to 5C are diagrams showing the results of evaluating the heat resistance of the reflecting mirror 140.
  • the reflectance of the reflecting mirror 140 before and after heating the reflecting mirror 140 when Al 2 O 3 is used as the protective film 145 is shown. Is shown in correspondence with the wavelength.
  • 5A to 5C show experimental results when Pt is used as the reflective film 144 and Cr is used as the adhesive layer 143.
  • the heating of the reflecting mirror 140 was performed, for example, by heating at 800 ° C. for 1 hour in an electric furnace.
  • the reflectance before the manufactured reflector 140 is heated is indicated by a solid line
  • the reflectance after the manufactured reflector 140 is heated at 800 ° C. is indicated by a broken line. Yes.
  • the thickness of the reflective film 144 is 200 nm, and the thickness of the adhesive layer 143 is 30 nm. According to the result shown in FIG. 5A, the reflectance of the reflecting mirror 140 changes greatly before and after heating at least in the infrared region having a wavelength of 780 nm or more.
  • the thickness of the reflective film 144 is 200 nm, and the thickness of the adhesive layer 143 is 5 to 10 nm. According to the result shown in FIG. 5B, the reflectance of the reflecting mirror 140 hardly changes before and after heating at least in the infrared region having a wavelength of 780 nm or more.
  • the thickness of the reflective film 144 is 100 nm, and the thickness of the adhesive layer 143 is 5 to 10 nm. According to the result shown in FIG. 5B, the reflectance of the reflecting mirror 140 hardly changes before and after heating at least in the infrared region having a wavelength of 780 nm or more.
  • the thickness of the reflective film 144 is 100 to 200 nm in the infrared region (especially 780 nm or more).
  • the thickness of the layer 143 is preferably 5 to 10 nm.
  • 6A and 6B are diagrams showing the results of evaluating the heat resistance of the reflecting mirror 140.
  • the reflectance of the reflecting mirror 140 before and after heating the reflecting mirror 140 when SiO 2 is used as the protective film 145 is the wavelength. It is shown in association with. 6A and 6B show experimental results when Pt is used as the reflective film 144 and Cr is used as the adhesive layer 143.
  • FIG. 6A and 6B show experimental results when Pt is used as the reflective film 144 and Cr is used as the adhesive layer 143.
  • the heating of the reflecting mirror 140 was performed, for example, by heating at 800 ° C. for 1 hour in an electric furnace. 6A and 6B, the reflectance before the manufactured reflector 140 is heated is indicated by a solid line, and the reflectance after the manufactured reflector 140 is heated at 800 ° C. is indicated by a broken line. Yes.
  • the thickness of the reflective film 144 is 200 nm, and the thickness of the adhesive layer 143 is 5 to 10 nm. According to the result shown in FIG. 6B, the reflectance of the reflecting mirror 140 hardly changes before and after heating at least in the infrared region having a wavelength of 780 nm or more.
  • the thickness of the reflective film 144 is 100 nm, and the thickness of the adhesive layer 143 is 5 to 10 nm. According to the result shown in FIG. 6B, the reflectance of the reflecting mirror 140 hardly changes before and after heating at least in the infrared region having a wavelength of 780 nm or more.
  • the thickness of the reflective film 144 is 100 to 200 nm.
  • the thickness of the layer 143 is preferably 5 to 10 nm.
  • the reflective film 144 is formed on the base material 142 by the platinum group element having high heat resistance, and the protective film 145 is formed on the reflective film 144 by the metal oxide film. Furthermore, heat resistance becomes high. Therefore, light can be stably reflected by the reflective film 144 even in a high temperature environment.
  • the heat resistance is further improved by forming the reflective film 144 from at least one of Pt, Rh, Ru, and Ir among the platinum group elements.
  • the heat resistance can be effectively improved within an appropriate film thickness range in which the influence of the thermal expansion of the reflective film 144 is less likely to occur. Can do.
  • heat resistance is further improved by forming the protective film 145 by at least one of SiO 2 , Al 2 O 3 , TiO 2, and HfO 2 among metal oxides.
  • the heat resistance can be effectively improved within an appropriate thickness range in which the thermal expansion of the protective film 145 is less likely to occur. Can do.
  • the heat resistance is further improved by forming the base material 142 from Si, glass, or ceramic that is difficult to thermally expand.
  • the adhesive film 143 is formed between the base material 142 and the reflective film 144, so that the reflective film 144 is difficult to peel from the base material 142. Accordingly, the heat resistance is further improved.
  • the adhesive layer 143 is formed of Cr, Ti, Al, Ta, Cu, or Ni, the reflective film 144 is more difficult to peel from the base material 142.
  • the reflective layer 144 is formed on the base material 142 by the adhesive layer 143 formed with a thickness that does not affect the dimensional accuracy. Can be made difficult to peel.
  • the heat-resistant reflecting mirror according to the present invention is not limited to such a configuration, and can be used for devices other than the multi-reflection cell 101. In that case, the heat-resistant reflecting mirror can be applied to devices other than the gas concentration monitor.

Abstract

Provided are: a heat-resistant reflecting mirror which is capable of stably reflecting light even in a high-temperature environment; a gas concentration monitor; and a method for producing a heat-resistant reflecting mirror. A reflecting mirror 140 according to the present invention is provided with a substrate 142, a reflective film 144 and a protective film 145. The reflective film 144 is formed from a platinum group element on the substrate 142. The protective film 145 is formed from a metal oxide on the reflective film 144. Since the reflective film 144 is formed from a platinum group element, which has high heat resistance, on the substrate 142 and the protective film 145 is formed from a metal oxide film on the reflective film 144, the heat resistance of the reflecting mirror is further enhanced. Consequently, the reflecting mirror is capable of stably reflecting light by means of the reflective film 144 even in a high-temperature environment.

Description

耐熱性反射鏡、ガス濃度モニタ及び耐熱性反射鏡の製造方法Heat-resistant reflector, gas concentration monitor, and heat-resistant reflector manufacturing method
 本発明は、高温環境下で使用される耐熱性反射鏡及びこれを備えたガス濃度モニタ、並びに、耐熱性反射鏡の製造方法に関するものである。 The present invention relates to a heat-resistant reflector used in a high-temperature environment, a gas concentration monitor provided with the same, and a method for manufacturing the heat-resistant reflector.
 耐熱性反射鏡には、主に、屈折率の異なる金属酸化膜又は金属膜を積層した反射膜が備えられている(例えば、下記特許文献1~3参照)。しかし、例えばエンジン内などの高温環境下で耐熱性反射鏡を使用する場合には、従来の耐熱性反射鏡では耐熱性が不十分であった。なお、上記高温環境とは、例えば600℃以上の高温に晒される環境を意味している。 The heat-resistant reflector is mainly provided with a metal oxide film having a different refractive index or a reflective film in which metal films are laminated (see, for example, Patent Documents 1 to 3 below). However, when a heat-resistant reflector is used in a high-temperature environment such as in an engine, for example, the conventional heat-resistant reflector has insufficient heat resistance. In addition, the said high temperature environment means the environment exposed to the high temperature of 600 degreeC or more, for example.
 近年、エンジンについては、熱効率の向上、優れた環境性能、代替燃料への対応などが求められている。特に、エンジン内での燃焼の質の向上への関心が高まっており、燃焼サイクルの過程で変化する燃焼状態を高精度で計測することができる計測手法への期待が高まっている。中でも光を用いた計測手法は、高速応答性を有するという特性から、燃焼状態の変化を瞬時に計測することができるため、非常に有効と考えられている。 In recent years, engines have been required to improve thermal efficiency, have excellent environmental performance, and support alternative fuels. In particular, there is an increasing interest in improving the quality of combustion in the engine, and there is an increasing expectation for a measurement method that can measure a combustion state that changes in the course of a combustion cycle with high accuracy. Among them, the measurement method using light is considered to be very effective because it can measure a change in the combustion state instantaneously because of its high-speed response characteristic.
特開2006-106720号公報JP 2006-106720 A 特開2010-55058号公報JP 2010-55058 A 特開2015-153431号公報Japanese Patent Laid-Open No. 2015-153431
 エンジン内などの高温環境から安定して光を取り出すためには、高温環境下でも安定した分光特性を有する反射膜を用いることが必要である。しかしながら、従来の耐熱性反射鏡では、エンジン点火時の高温雰囲気に晒された場合に、層間の熱応力で膜に亀裂や剥離が発生し、分光特性が劣化するため、安定して光を反射させることができないという問題があった。 In order to stably extract light from a high temperature environment such as in an engine, it is necessary to use a reflective film having stable spectral characteristics even in a high temperature environment. However, in conventional heat-resistant reflectors, when exposed to a high-temperature atmosphere during engine ignition, cracks and delamination occur in the film due to thermal stress between layers, and the spectral characteristics deteriorate, so light is reflected stably. There was a problem that it could not be made.
 本発明は、上記実情に鑑みてなされたものであり、高温環境下においても安定して光を反射させることができる耐熱性反射鏡、ガス濃度モニタ及び耐熱性反射鏡の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a heat-resistant reflector, a gas concentration monitor, and a method for manufacturing a heat-resistant reflector that can stably reflect light even in a high-temperature environment. With the goal.
(1)本発明に係る耐熱性反射鏡は、基材と、反射膜と、保護膜とを備える。前記反射膜は、白金族元素により前記基材上に形成されている。前記保護膜は、金属酸化物により前記反射膜上に形成されている。 (1) A heat-resistant reflecting mirror according to the present invention includes a base material, a reflecting film, and a protective film. The reflective film is formed on the base material by a platinum group element. The protective film is formed on the reflective film with a metal oxide.
 このような構成によれば、耐熱性の高い白金族元素により基材上に反射膜が形成されるとともに、その反射膜上に金属酸化膜により保護膜が形成されるため、さらに耐熱性が高くなる。したがって、高温環境下においても反射膜において安定して光を反射させることができる。 According to such a configuration, the reflective film is formed on the base material by the platinum group element having high heat resistance, and the protective film is formed on the reflective film by the metal oxide film. Become. Therefore, light can be stably reflected by the reflective film even in a high temperature environment.
(2)前記反射膜は、Pt、Rh、Ru及びIrの少なくとも1つにより形成された単層膜、多層膜又は合金膜であってもよい。 (2) The reflective film may be a single layer film, a multilayer film, or an alloy film formed of at least one of Pt, Rh, Ru, and Ir.
 このような構成によれば、白金族元素の中でもPt、Rh、Ru及びIrの少なくとも1つにより反射膜が形成されることで、耐熱性がさらに向上する。 According to such a configuration, the heat resistance is further improved by forming the reflective film from at least one of Pt, Rh, Ru, and Ir among the platinum group elements.
(3)前記反射膜の膜厚は、100~200nmであってもよい。 (3) The reflective film may have a thickness of 100 to 200 nm.
 このような構成によれば、反射膜の熱膨張の影響が生じにくい適切な膜厚の範囲内で、効果的に耐熱性を向上させることができる。 According to such a configuration, the heat resistance can be effectively improved within an appropriate film thickness range in which the influence of the thermal expansion of the reflective film is unlikely to occur.
(4)前記保護膜は、SiO、Al、TiO及びHfOの少なくとも1つにより形成された単層膜又は多層膜であってもよい。 (4) The protective film may be a single layer film or a multilayer film formed of at least one of SiO 2 , Al 2 O 3 , TiO 2, and HfO 2 .
 このような構成によれば、金属酸化物の中でもSiO、Al、TiO及びHfOの少なくとも1つにより保護膜が形成されることで、耐熱性がさらに向上する。 According to such a configuration, the heat resistance is further improved by forming the protective film with at least one of SiO 2 , Al 2 O 3 , TiO 2, and HfO 2 among the metal oxides.
(5)前記保護膜の膜厚は、50~100nmであってもよい。 (5) The protective film may have a thickness of 50 to 100 nm.
 このような構成によれば、保護膜の熱膨張の影響が生じにくい適切な膜厚の範囲内で、効果的に耐熱性を向上させることができる。 According to such a configuration, the heat resistance can be effectively improved within an appropriate film thickness range in which the influence of the thermal expansion of the protective film hardly occurs.
(6)前記基材は、Si、ガラス又はセラミックにより形成されていてもよい。 (6) The base material may be formed of Si, glass, or ceramic.
 このような構成によれば、熱膨張しにくいSi、ガラス又はセラミックにより基材が形成されることで、耐熱性がさらに向上する。 According to such a configuration, the heat resistance is further improved by forming the base material from Si, glass or ceramic which is difficult to thermally expand.
(7)前記耐熱性反射鏡は、前記基材と前記反射膜との間に形成された接着層をさらに備えていてもよい。 (7) The heat-resistant reflecting mirror may further include an adhesive layer formed between the base material and the reflective film.
 このような構成によれば、基材と反射膜との間に接着層が形成されることにより、基材に対して反射膜が剥離しにくくなる。したがって、耐熱性がさらに向上する。 According to such a configuration, since the adhesive layer is formed between the base material and the reflective film, the reflective film is hardly peeled from the base material. Accordingly, the heat resistance is further improved.
(8)前記接着層は、Cr、Ti、Al、Ta、Cu又はNiにより形成されていてもよい。 (8) The adhesive layer may be formed of Cr, Ti, Al, Ta, Cu, or Ni.
 このような構成によれば、接着層がCr、Ti、Al、Ta、Cu又はNiにより形成されることで、基材に対して反射膜がさらに剥離しにくくなる。 According to such a configuration, since the adhesive layer is formed of Cr, Ti, Al, Ta, Cu, or Ni, the reflective film becomes more difficult to peel from the base material.
(9)前記接着層の膜厚は、5~10nmであってもよい。 (9) The adhesive layer may have a thickness of 5 to 10 nm.
 このような構成によれば、寸法精度に影響を与えない範囲の膜厚で形成された接着層により、基材に対して反射膜を剥離しにくくすることができる。 According to such a configuration, it is possible to make it difficult to peel the reflective film from the base material by the adhesive layer formed with a film thickness in a range that does not affect the dimensional accuracy.
(10)本発明に係るガス濃度モニタは、前記耐熱性反射鏡と、測定光を照射する光源と、前記光源からの測定光を検出する検出器とを備える。前記ガス濃度モニタは、前記反射鏡を用いて前記光源からの測定光を測定空間内で多重反射させ、当該測定空間から出射した測定光を前記検出器で検出することにより、前記測定空間内のガスの濃度をモニタする。 (10) A gas concentration monitor according to the present invention includes the heat-resistant reflecting mirror, a light source that emits measurement light, and a detector that detects the measurement light from the light source. The gas concentration monitor multi-reflects the measurement light from the light source in the measurement space using the reflecting mirror, and detects the measurement light emitted from the measurement space with the detector. Monitor the gas concentration.
(11)本発明に係る耐熱性反射鏡の製造方法は、反射膜形成ステップと、保護膜形成ステップとを含む。前記反射膜形成ステップでは、白金族元素により基材上に反射膜を形成する。前記保護膜形成ステップでは、金属酸化物により前記反射膜上に保護膜を形成する。 (11) The manufacturing method of the heat-resistant reflecting mirror according to the present invention includes a reflecting film forming step and a protective film forming step. In the reflective film forming step, a reflective film is formed on the substrate with a platinum group element. In the protective film forming step, a protective film is formed on the reflective film with a metal oxide.
(12)前記耐熱性反射鏡の製造方法は、前記基材上に接着層を形成する接着層形成ステップをさらに含んでいてもよい。この場合、前記反射膜形成ステップでは、前記接着層上に前記反射膜を形成してもよい。 (12) The manufacturing method of the heat resistant reflecting mirror may further include an adhesive layer forming step of forming an adhesive layer on the substrate. In this case, in the reflective film formation step, the reflective film may be formed on the adhesive layer.
 本発明によれば、、耐熱性の高い白金族元素により基材上に反射膜が形成されるとともに、その反射膜上に金属酸化膜により保護膜が形成されるため、高温環境下においても反射膜において安定して光を反射させることができる。 According to the present invention, a reflective film is formed on a base material by a platinum group element having high heat resistance, and a protective film is formed on the reflective film by a metal oxide film. Light can be reflected stably in the film.
本発明の一実施形態に係るガス濃度モニタの構成例を示した概略断面図である。It is the schematic sectional drawing which showed the structural example of the gas concentration monitor which concerns on one Embodiment of this invention. 図1の反射鏡の断面図である。It is sectional drawing of the reflective mirror of FIG. 反射鏡の製造方法の一例について説明するための断面図である。It is sectional drawing for demonstrating an example of the manufacturing method of a reflective mirror. 反射鏡の製造方法の一例について説明するための断面図である。It is sectional drawing for demonstrating an example of the manufacturing method of a reflective mirror. 反射鏡の製造方法の一例について説明するための断面図である。It is sectional drawing for demonstrating an example of the manufacturing method of a reflective mirror. 反射鏡の製造方法の一例について説明するための断面図である。It is sectional drawing for demonstrating an example of the manufacturing method of a reflective mirror. 反射鏡の耐熱性を評価した結果を示す図であり、SiOを保護膜として用いた場合の膜厚ごとの反射率が波長に対応付けて示されている。Shows the results of evaluation of the heat resistance of the reflector, the reflectance of each film thickness in the case of using SiO 2 as the protective layer is shown in association with the wavelength. 反射鏡の耐熱性を評価した結果を示す図であり、Alを保護膜として用いた場合の膜厚ごとの反射率が波長に対応付けて示されている。Shows the results of evaluation of the heat resistance of the reflector, the reflectance of each film thickness in the case of using Al 2 O 3 as a protective film is shown in association with the wavelength. 反射鏡の耐熱性を評価した結果を示す図であり、Alを保護膜として用いた場合の反射鏡を加熱する前後における反射鏡の反射率が波長に対応付けて示されている。Shows the results of evaluation of the heat resistance of the reflector, the reflectivity of the reflector before and after heating the reflecting mirror when using Al 2 O 3 as a protective film is shown in association with the wavelength. 反射鏡の耐熱性を評価した結果を示す図であり、Alを保護膜として用いた場合の反射鏡を加熱する前後における反射鏡の反射率が波長に対応付けて示されている。Shows the results of evaluation of the heat resistance of the reflector, the reflectivity of the reflector before and after heating the reflecting mirror when using Al 2 O 3 as a protective film is shown in association with the wavelength. 反射鏡の耐熱性を評価した結果を示す図であり、Alを保護膜として用いた場合の反射鏡を加熱する前後における反射鏡の反射率が波長に対応付けて示されている。Shows the results of evaluation of the heat resistance of the reflector, the reflectivity of the reflector before and after heating the reflecting mirror when using Al 2 O 3 as a protective film is shown in association with the wavelength. 反射鏡の耐熱性を評価した結果を示す図であり、SiOを保護膜として用いた場合の反射鏡を加熱する前後における反射鏡の反射率が波長に対応付けて示されている。Shows the results of evaluation of the heat resistance of the reflector, the reflectivity of the reflector before and after heating the reflector in the case of using SiO 2 as the protective layer is shown in association with the wavelength. 反射鏡の耐熱性を評価した結果を示す図であり、SiOを保護膜として用いた場合の反射鏡を加熱する前後における反射鏡の反射率が波長に対応付けて示されている。Shows the results of evaluation of the heat resistance of the reflector, the reflectivity of the reflector before and after heating the reflector in the case of using SiO 2 as the protective layer is shown in association with the wavelength.
1.ガス濃度モニタの構成例
 図1は、本発明の一実施形態に係るガス濃度モニタの構成例を示した概略断面図である。このガス濃度モニタには、多重反射セル101、光源102及び検出器103が備えられている。多重反射セル101は、筒状のセル本体110と、セル本体110内に設けられた反射鏡130,140などを備えている。
1. Configuration Example of Gas Concentration Monitor FIG. 1 is a schematic sectional view showing a configuration example of a gas concentration monitor according to an embodiment of the present invention. The gas concentration monitor includes a multiple reflection cell 101, a light source 102, and a detector 103. The multi-reflection cell 101 includes a cylindrical cell main body 110 and reflecting mirrors 130 and 140 provided in the cell main body 110.
 セル本体110は、例えば円筒状の部材であり、少なくとも内面が光を透過しない材料により形成されている。セル本体110の壁面には、1つ又は複数の開口111が形成されている。この例では、セル本体110の中心軸線を挟んで互いに対向する位置に、1対(2つ)の開口111が形成されている。 The cell body 110 is, for example, a cylindrical member, and at least the inner surface is formed of a material that does not transmit light. One or more openings 111 are formed in the wall surface of the cell body 110. In this example, a pair (two) of openings 111 are formed at positions facing each other across the central axis of the cell body 110.
 セル本体110内には、2つの反射鏡130,140の間に測定空間150が形成されている。すなわち、2つの反射鏡130,140は、測定空間150を挟んで、セル本体110の軸線方向に沿って互いに対向するように配置されている。反射鏡130における測定空間150側の面には、反射面131が形成されている。また、反射鏡140における測定空間150側の面には、反射面141が形成されている。反射鏡130,140は、反射面131,141が互いに間隔を隔てて対向するようにセル本体110内に配置されている。 In the cell main body 110, a measurement space 150 is formed between the two reflecting mirrors 130 and 140. That is, the two reflecting mirrors 130 and 140 are disposed so as to face each other along the axial direction of the cell body 110 with the measurement space 150 interposed therebetween. A reflecting surface 131 is formed on the surface of the reflecting mirror 130 on the measurement space 150 side. Further, a reflecting surface 141 is formed on the surface of the reflecting mirror 140 on the measurement space 150 side. The reflecting mirrors 130 and 140 are disposed in the cell body 110 so that the reflecting surfaces 131 and 141 face each other with a space therebetween.
 反射鏡130の反射面131は、反射鏡130の測定空間150側の面における一部分にのみ形成されている。例えば、反射鏡130は円板状に形成されており、その中央部にのみ反射面131が形成されている。これにより、反射鏡130は、反射面131で光を反射させることができるとともに、測定空間150側の面における反射面131以外の領域で光を透過させることができる。一方、反射鏡140の反射面141は、反射鏡140の測定空間150側の面における全面に形成されている。 The reflecting surface 131 of the reflecting mirror 130 is formed only on a part of the surface of the reflecting mirror 130 on the measurement space 150 side. For example, the reflecting mirror 130 is formed in a disc shape, and the reflecting surface 131 is formed only at the center thereof. Thereby, the reflecting mirror 130 can reflect light by the reflecting surface 131 and can transmit light in a region other than the reflecting surface 131 on the surface on the measurement space 150 side. On the other hand, the reflecting surface 141 of the reflecting mirror 140 is formed on the entire surface of the reflecting mirror 140 on the measurement space 150 side.
 上記開口111は、セル本体110の壁面における測定空間150を区画する領域の一部に形成されている。測定空間150は、例えば開口111が形成されている部分を除いて、セル本体110及び反射鏡130,140により密閉されている。これにより、セル本体110の外側のガスが、開口111を介して測定空間150内に流入可能となっている。多重反射セル101は、例えばエンジン内などの対象領域に挿入され、対象領域に存在すガスが、開口111を介して測定空間150内に取り込まれる。特に、開口111を複数形成することにより、測定空間150内にガスを流通させやすくすることができる。 The opening 111 is formed in a part of a region partitioning the measurement space 150 on the wall surface of the cell main body 110. The measurement space 150 is sealed by the cell main body 110 and the reflecting mirrors 130 and 140 except for a portion where the opening 111 is formed, for example. Thereby, the gas outside the cell body 110 can flow into the measurement space 150 through the opening 111. The multi-reflection cell 101 is inserted into a target area such as in an engine, for example, and gas existing in the target area is taken into the measurement space 150 through the opening 111. In particular, by forming a plurality of openings 111, it is possible to facilitate the circulation of gas in the measurement space 150.
 光源102は、多重反射セル101の軸線方向の一方側から、多重反射セル101に向けて光(測定光)を照射する。光源102は、例えばレーザ光源である。光源102から照射される光の波長は特に限定されるものではないが、例えば赤外域の波長の光が光源102から照射される。 The light source 102 irradiates light (measurement light) toward the multiple reflection cell 101 from one side in the axial direction of the multiple reflection cell 101. The light source 102 is, for example, a laser light source. The wavelength of light emitted from the light source 102 is not particularly limited. For example, light having a wavelength in the infrared region is emitted from the light source 102.
 光源102から照射される光は、例えば反射鏡130における反射面131に干渉しない部分を透過して測定空間150内に入射する。測定空間150内に入射した光は、反射鏡140の反射面141で反射し、その反射光が反射鏡130の反射面131で反射する。そして、反射面131からの反射光が、反射鏡140の反射面141で再び反射した後、反射鏡130における反射面131に干渉しない部分を透過して測定空間150内から出射する。このように、測定空間150内に入射した光は、測定空間150内で多重反射した後、測定空間150内から出射するようになっている。 The light emitted from the light source 102 passes through a portion of the reflecting mirror 130 that does not interfere with the reflecting surface 131 and enters the measurement space 150, for example. The light that has entered the measurement space 150 is reflected by the reflecting surface 141 of the reflecting mirror 140, and the reflected light is reflected by the reflecting surface 131 of the reflecting mirror 130. Then, after the reflected light from the reflecting surface 131 is reflected again by the reflecting surface 141 of the reflecting mirror 140, it passes through a portion of the reflecting mirror 130 that does not interfere with the reflecting surface 131 and is emitted from the measurement space 150. As described above, the light incident on the measurement space 150 is emitted from the measurement space 150 after being multiple-reflected in the measurement space 150.
 検出器103は、測定空間150から出射した光を受光する。すなわち、開口111から測定対象となるガスが取り込まれた測定空間150内で多重反射した光は、測定空間150から出射して検出器103により検出される。多重反射セル101内に入射した光は、測定空間150で多重反射する際、測定空間150内のガスに含まれる成分に応じた波長の光が吸収される。したがって、多重反射後の光を検出器103で検出することにより、その光の各波長における検出強度に基づいて、ガスに含まれる成分の濃度を測定することができる。測定空間150内にガスを流通させながら測定を行えば、ガスに含まれる成分の濃度の経時的変化をモニタすることが可能である。 The detector 103 receives light emitted from the measurement space 150. That is, the light that has been multiple-reflected in the measurement space 150 in which the gas to be measured is taken in from the opening 111 is emitted from the measurement space 150 and detected by the detector 103. When the light that has entered the multi-reflection cell 101 undergoes multiple reflections in the measurement space 150, light having a wavelength corresponding to the component contained in the gas in the measurement space 150 is absorbed. Therefore, by detecting the light after multiple reflection by the detector 103, the concentration of the component contained in the gas can be measured based on the detection intensity at each wavelength of the light. If the measurement is performed while flowing the gas in the measurement space 150, it is possible to monitor the change with time of the concentration of the component contained in the gas.
2.反射鏡の構成例
 図2は、図1の反射鏡140の断面図である。反射鏡140は、600℃以上の高温環境下で使用可能な耐熱性反射鏡である。反射鏡140は、基材142、接着層143、反射膜144及び保護膜145が一体的に形成された構成を有している。
2. Configuration Example of Reflecting Mirror FIG. 2 is a cross-sectional view of the reflecting mirror 140 of FIG. The reflecting mirror 140 is a heat resistant reflecting mirror that can be used in a high temperature environment of 600 ° C. or higher. The reflecting mirror 140 has a configuration in which a base material 142, an adhesive layer 143, a reflecting film 144, and a protective film 145 are integrally formed.
 基材133は、例えばSi、ガラス又はセラミックにより形成されている。ガラスとしては、合成石英などを例示することができるが、これらに限られるものではない。基材133は板状であり、例えば円板状に形成されている。この例では、基材133の両面が平坦面により形成されているが、基材133の少なくとも一方の面が凹湾曲面又は凸湾曲面などの平坦面以外で形成されていてもよい。 The base material 133 is made of, for example, Si, glass, or ceramic. Examples of the glass include synthetic quartz, but are not limited thereto. The base material 133 has a plate shape, for example, a disk shape. In this example, both surfaces of the base material 133 are formed as flat surfaces, but at least one surface of the base material 133 may be formed other than a flat surface such as a concave curved surface or a convex curved surface.
 反射膜144は、接着層143を挟んで基材133の一方の面に設けられている。すなわち、接着層143は、基材133と反射膜144との間に形成されており、基材133と反射膜144との密着性を向上させる機能を有する。反射膜144は、基材133上に形成された光を反射させるための膜であり、基材133側とは反対側の表面が反射面141を構成している。 The reflective film 144 is provided on one surface of the base material 133 with the adhesive layer 143 interposed therebetween. That is, the adhesive layer 143 is formed between the base material 133 and the reflective film 144 and has a function of improving the adhesion between the base material 133 and the reflective film 144. The reflective film 144 is a film for reflecting the light formed on the base material 133, and the surface opposite to the base material 133 constitutes the reflective surface 141.
 反射膜144は、白金族元素により形成されている。具体的には、反射膜144は、Pt、Rh、Ru又はIrにより形成された単層膜により構成されている。ただし、反射膜144は単層膜に限らず、例えばPt、Rh、Ru及びIrの少なくとも1つを含む多層膜であってもよいし、合金膜であってもよい。一方、接着層143は、例えばCr、Ti、Al、Ta、Cu又はNiにより形成されている。 The reflective film 144 is made of a platinum group element. Specifically, the reflection film 144 is configured by a single layer film formed of Pt, Rh, Ru, or Ir. However, the reflective film 144 is not limited to a single layer film, and may be a multilayer film including at least one of Pt, Rh, Ru, and Ir, or may be an alloy film. On the other hand, the adhesive layer 143 is formed of, for example, Cr, Ti, Al, Ta, Cu, or Ni.
 保護膜145は、反射膜144における基材142側とは反対側の面に設けられている。この保護膜145は、反射膜144上に形成されることにより、反射膜144を保護する機能を有する。保護膜145は、図2に矢印で示すように、反射膜144側とは反対側から入射する光の少なくとも一部を透過させ、反射膜144の表面(反射面141)で反射させる。 The protective film 145 is provided on the surface of the reflective film 144 opposite to the base material 142 side. The protective film 145 has a function of protecting the reflective film 144 by being formed on the reflective film 144. As shown by an arrow in FIG. 2, the protective film 145 transmits at least a part of light incident from the side opposite to the reflective film 144 side and reflects the light on the surface (reflective surface 141) of the reflective film 144.
 保護膜145は、金属酸化物により形成されている。具体的には、保護膜145は、SiO、Al、TiO又はHfOにより形成された単層膜により構成されている。ただし、保護膜145は単層膜に限らず、例えばSiO、Al、TiO及びHfOの少なくとも1つを含む多層膜であってもよい。 The protective film 145 is made of a metal oxide. Specifically, the protective film 145 is composed of a single layer film made of SiO 2 , Al 2 O 3 , TiO 2, or HfO 2 . However, the protective film 145 is not limited to a single layer film, and may be a multilayer film including at least one of SiO 2 , Al 2 O 3 , TiO 2, and HfO 2 , for example.
3.反射鏡の製造方法
 図3A~図3Dは、反射鏡140の製造方法の一例について説明するための断面図である。反射鏡140を製造する際には、まず、図3Aに示すように、洗浄された基材142が準備される。基材142は、例えば直径30mm、厚み1.5mmの円板状に形成されており、少なくとも一方の表面には光学研磨が施されている。
3. Manufacturing Method of Reflecting Mirror FIGS. 3A to 3D are cross-sectional views for explaining an example of a manufacturing method of the reflecting mirror 140. When the reflecting mirror 140 is manufactured, first, a cleaned base material 142 is prepared as shown in FIG. 3A. The base material 142 is formed in a disk shape with a diameter of 30 mm and a thickness of 1.5 mm, for example, and at least one surface is optically polished.
 次に、図3Bに示すように、基材142の一方の表面上に接着層143が形成される(接着層形成ステップ)。接着層143の膜厚は、例えば5nmである。接着層143は、例えばスパッタリング法を用いてCrにより形成される。このように、接着層143を形成する場合にはスパッタリング法を用いることができるが、材料によっては、蒸着法などの他の方法で接着層143を形成することもできる。 Next, as shown in FIG. 3B, an adhesive layer 143 is formed on one surface of the substrate 142 (adhesive layer forming step). The film thickness of the adhesive layer 143 is, for example, 5 nm. The adhesive layer 143 is formed of Cr using, for example, a sputtering method. As described above, when the adhesive layer 143 is formed, a sputtering method can be used. However, depending on the material, the adhesive layer 143 can be formed by another method such as an evaporation method.
 接着層143上には、図3Cに示すように、反射膜144が形成される(反射膜形成ステップ)。反射膜144の膜厚は、例えば200nmである。反射膜144は、例えばスパッタリング法を用いてPtにより形成される。このように、反射膜144を形成する場合にはスパッタリング法を用いることができるが、材料によっては、蒸着法などの他の方法で反射膜144を形成することもできる。 As shown in FIG. 3C, a reflective film 144 is formed on the adhesive layer 143 (reflective film forming step). The film thickness of the reflective film 144 is, for example, 200 nm. The reflective film 144 is formed of Pt using, for example, a sputtering method. As described above, when the reflective film 144 is formed, a sputtering method can be used. However, depending on the material, the reflective film 144 can be formed by another method such as an evaporation method.
 反射膜144上には、図3Dに示すように、保護膜145が形成される(保護膜形成ステップ)。保護膜145の膜厚は、例えば100nmである。保護膜145は、例えば蒸着法を用いてSiOにより形成される。このように、保護膜145を形成する場合には蒸着法を用いることができるが、材料によっては、スパッタリング法などの他の方法で保護膜145を形成することもできる。 A protective film 145 is formed on the reflective film 144 as shown in FIG. 3D (protective film forming step). The film thickness of the protective film 145 is, for example, 100 nm. The protective film 145 is formed of SiO 2 using, for example, a vapor deposition method. As described above, when the protective film 145 is formed, an evaporation method can be used. However, depending on the material, the protective film 145 can be formed by another method such as a sputtering method.
4.反射鏡の耐熱性評価
 図4A及び図4Bは、反射鏡140の耐熱性を評価した結果を示す図であり、図4AではSiOを保護膜145として用いた場合の膜厚ごとの反射率が波長に対応付けて示されており、図4BではAlを保護膜145として用いた場合の膜厚ごとの反射率が波長に対応付けて示されている。
4). 4A and 4B are diagrams showing the results of evaluating the heat resistance of the reflecting mirror 140. In FIG. 4A, the reflectance for each film thickness when SiO 2 is used as the protective film 145 is shown. In FIG. 4B, the reflectance for each film thickness when Al 2 O 3 is used as the protective film 145 is shown in association with the wavelength.
 図4A及び図4Bにおいて実線及び破線で示すように、保護膜145の膜厚が50nm及び100nmの場合には、赤外域(特に1100nm以上)において高い反射率が得られることが分かる。一方、図4A及び図4Bにおいて一点鎖線及び二点鎖線で示すように、保護膜145の膜厚が150nm及び200nmの場合には、赤外域(特に1100nm以上)において反射率が急激に低下している。 4A and 4B, it is understood that when the protective film 145 has a thickness of 50 nm and 100 nm, a high reflectance can be obtained in the infrared region (particularly, 1100 nm or more). On the other hand, as shown by the one-dot chain line and the two-dot chain line in FIGS. 4A and 4B, when the thickness of the protective film 145 is 150 nm and 200 nm, the reflectance is drastically decreased in the infrared region (especially 1100 nm or more). Yes.
 これらの図4A及び図4Bに示した結果によれば、赤外域(特に1100nm以上)においては、保護膜145の膜厚は50~100nmであることが好ましい。 According to the results shown in FIGS. 4A and 4B, the thickness of the protective film 145 is preferably 50 to 100 nm in the infrared region (especially 1100 nm or more).
 図5A~図5Cは、反射鏡140の耐熱性を評価した結果を示す図であり、Alを保護膜145として用いた場合の反射鏡140を加熱する前後における反射鏡140の反射率が波長に対応付けて示されている。図5A~図5Cでは、反射膜144としてPtが用いられ、接着層143としてCrが用いられた場合の実験結果が示されている。 5A to 5C are diagrams showing the results of evaluating the heat resistance of the reflecting mirror 140. The reflectance of the reflecting mirror 140 before and after heating the reflecting mirror 140 when Al 2 O 3 is used as the protective film 145 is shown. Is shown in correspondence with the wavelength. 5A to 5C show experimental results when Pt is used as the reflective film 144 and Cr is used as the adhesive layer 143. FIG.
 反射鏡140の加熱は、例えば電気炉内において800℃で1時間加熱することにより行った。図5A~図5Cでは、製造された反射鏡140が加熱される前の反射率が実線で示され、製造された反射鏡140が800℃で加熱された後の反射率が破線で示されている。 The heating of the reflecting mirror 140 was performed, for example, by heating at 800 ° C. for 1 hour in an electric furnace. In FIGS. 5A to 5C, the reflectance before the manufactured reflector 140 is heated is indicated by a solid line, and the reflectance after the manufactured reflector 140 is heated at 800 ° C. is indicated by a broken line. Yes.
 図5Aでは、反射膜144の膜厚が200nm、接着層143の厚みが30nmである。この図5Aに示した結果によれば、少なくとも波長が780nm以上の赤外域において、加熱の前後で反射鏡140の反射率が大きく変化している。 In FIG. 5A, the thickness of the reflective film 144 is 200 nm, and the thickness of the adhesive layer 143 is 30 nm. According to the result shown in FIG. 5A, the reflectance of the reflecting mirror 140 changes greatly before and after heating at least in the infrared region having a wavelength of 780 nm or more.
 図5Bでは、反射膜144の膜厚が200nm、接着層143の厚みが5~10nmである。この図5Bに示した結果によれば、少なくとも波長が780nm以上の赤外域において、加熱の前後で反射鏡140の反射率がほとんど変化していない。 In FIG. 5B, the thickness of the reflective film 144 is 200 nm, and the thickness of the adhesive layer 143 is 5 to 10 nm. According to the result shown in FIG. 5B, the reflectance of the reflecting mirror 140 hardly changes before and after heating at least in the infrared region having a wavelength of 780 nm or more.
 図5Cでは、反射膜144の膜厚が100nm、接着層143の厚みが5~10nmである。この図5Bに示した結果によれば、少なくとも波長が780nm以上の赤外域において、加熱の前後で反射鏡140の反射率がほとんど変化していない。 In FIG. 5C, the thickness of the reflective film 144 is 100 nm, and the thickness of the adhesive layer 143 is 5 to 10 nm. According to the result shown in FIG. 5B, the reflectance of the reflecting mirror 140 hardly changes before and after heating at least in the infrared region having a wavelength of 780 nm or more.
 これらの図5A~図5Cに示した結果によれば、Alを保護膜145として用いた場合、赤外域(特に780nm以上)においては、反射膜144の膜厚が100~200nm、接着層143の厚みが5~10nmであることが好ましい。 According to the results shown in FIGS. 5A to 5C, when Al 2 O 3 is used as the protective film 145, the thickness of the reflective film 144 is 100 to 200 nm in the infrared region (especially 780 nm or more). The thickness of the layer 143 is preferably 5 to 10 nm.
 図6A及び図6Bは、反射鏡140の耐熱性を評価した結果を示す図であり、SiOを保護膜145として用いた場合の反射鏡140を加熱する前後における反射鏡140の反射率が波長に対応付けて示されている。図6A及び図6Bでは、反射膜144としてPtが用いられ、接着層143としてCrが用いられた場合の実験結果が示されている。 6A and 6B are diagrams showing the results of evaluating the heat resistance of the reflecting mirror 140. The reflectance of the reflecting mirror 140 before and after heating the reflecting mirror 140 when SiO 2 is used as the protective film 145 is the wavelength. It is shown in association with. 6A and 6B show experimental results when Pt is used as the reflective film 144 and Cr is used as the adhesive layer 143. FIG.
 反射鏡140の加熱は、例えば電気炉内において800℃で1時間加熱することにより行った。図6A及び図6Bでは、製造された反射鏡140が加熱される前の反射率が実線で示され、製造された反射鏡140が800℃で加熱された後の反射率が破線で示されている。 The heating of the reflecting mirror 140 was performed, for example, by heating at 800 ° C. for 1 hour in an electric furnace. 6A and 6B, the reflectance before the manufactured reflector 140 is heated is indicated by a solid line, and the reflectance after the manufactured reflector 140 is heated at 800 ° C. is indicated by a broken line. Yes.
 図6Aでは、反射膜144の膜厚が200nm、接着層143の厚みが5~10nmである。この図6Bに示した結果によれば、少なくとも波長が780nm以上の赤外域において、加熱の前後で反射鏡140の反射率がほとんど変化していない。 In FIG. 6A, the thickness of the reflective film 144 is 200 nm, and the thickness of the adhesive layer 143 is 5 to 10 nm. According to the result shown in FIG. 6B, the reflectance of the reflecting mirror 140 hardly changes before and after heating at least in the infrared region having a wavelength of 780 nm or more.
 図6Bでは、反射膜144の膜厚が100nm、接着層143の厚みが5~10nmである。この図6Bに示した結果によれば、少なくとも波長が780nm以上の赤外域において、加熱の前後で反射鏡140の反射率がほとんど変化していない。 In FIG. 6B, the thickness of the reflective film 144 is 100 nm, and the thickness of the adhesive layer 143 is 5 to 10 nm. According to the result shown in FIG. 6B, the reflectance of the reflecting mirror 140 hardly changes before and after heating at least in the infrared region having a wavelength of 780 nm or more.
 これらの図6A及び図6Bに示した結果によれば、SiOを保護膜145として用いた場合にも、赤外域(特に780nm以上)においては、反射膜144の膜厚が100~200nm、接着層143の厚みが5~10nmであることが好ましい。 According to the results shown in FIGS. 6A and 6B, even when SiO 2 is used as the protective film 145, in the infrared region (particularly 780 nm or more), the thickness of the reflective film 144 is 100 to 200 nm. The thickness of the layer 143 is preferably 5 to 10 nm.
5.作用効果
(1)本実施形態では、耐熱性の高い白金族元素により基材142上に反射膜144が形成されるとともに、その反射膜144上に金属酸化膜により保護膜145が形成されるため、さらに耐熱性が高くなる。したがって、高温環境下においても反射膜144において安定して光を反射させることができる。
5). Action and Effect (1) In the present embodiment, the reflective film 144 is formed on the base material 142 by the platinum group element having high heat resistance, and the protective film 145 is formed on the reflective film 144 by the metal oxide film. Furthermore, heat resistance becomes high. Therefore, light can be stably reflected by the reflective film 144 even in a high temperature environment.
(2)特に、白金族元素の中でもPt、Rh、Ru及びIrの少なくとも1つにより反射膜144が形成されることで、耐熱性がさらに向上する。 (2) In particular, the heat resistance is further improved by forming the reflective film 144 from at least one of Pt, Rh, Ru, and Ir among the platinum group elements.
(3)この場合、反射膜144の膜厚を100~200nmとすることにより、反射膜144の熱膨張の影響が生じにくい適切な膜厚の範囲内で、効果的に耐熱性を向上させることができる。 (3) In this case, by setting the film thickness of the reflective film 144 to 100 to 200 nm, the heat resistance can be effectively improved within an appropriate film thickness range in which the influence of the thermal expansion of the reflective film 144 is less likely to occur. Can do.
(4)また、金属酸化物の中でもSiO、Al、TiO及びHfOの少なくとも1つにより保護膜145が形成されることで、耐熱性がさらに向上する。 (4) Moreover, heat resistance is further improved by forming the protective film 145 by at least one of SiO 2 , Al 2 O 3 , TiO 2, and HfO 2 among metal oxides.
(5)この場合、保護膜145の膜厚を50~100nmとすることにより、保護膜145の熱膨張の影響が生じにくい適切な膜厚の範囲内で、効果的に耐熱性を向上させることができる。 (5) In this case, by setting the thickness of the protective film 145 to 50 to 100 nm, the heat resistance can be effectively improved within an appropriate thickness range in which the thermal expansion of the protective film 145 is less likely to occur. Can do.
(6)さらに、熱膨張しにくいSi、ガラス又はセラミックにより基材142が形成されることで、耐熱性がさらに向上する。 (6) Furthermore, the heat resistance is further improved by forming the base material 142 from Si, glass, or ceramic that is difficult to thermally expand.
(7)また、本実施形態では、基材142と反射膜144との間に接着層143が形成されることにより、基材142に対して反射膜144が剥離しにくくなる。したがって、耐熱性がさらに向上する。 (7) In the present embodiment, the adhesive film 143 is formed between the base material 142 and the reflective film 144, so that the reflective film 144 is difficult to peel from the base material 142. Accordingly, the heat resistance is further improved.
(8)特に、接着層143がCr、Ti、Al、Ta、Cu又はNiにより形成されることで、基材142に対して反射膜144がさらに剥離しにくくなる。 (8) In particular, since the adhesive layer 143 is formed of Cr, Ti, Al, Ta, Cu, or Ni, the reflective film 144 is more difficult to peel from the base material 142.
(9)この場合、接着層143の膜厚を5~10nmとすることにより、寸法精度に影響を与えない範囲の膜厚で形成された接着層143により、基材142に対して反射膜144を剥離しにくくすることができる。 (9) In this case, by setting the thickness of the adhesive layer 143 to 5 to 10 nm, the reflective layer 144 is formed on the base material 142 by the adhesive layer 143 formed with a thickness that does not affect the dimensional accuracy. Can be made difficult to peel.
6.変形例
 以上の実施形態では、反射鏡140がガス濃度モニタの多重反射セル101に用いられる場合について説明した。しかし、このような構成に限らず、本発明に係る耐熱性反射鏡は、多重反射セル101以外にも用いることができ、その場合、ガス濃度モニタ以外の装置にも適用可能である。
6). In the above embodiment, the case where the reflecting mirror 140 is used for the multiple reflection cell 101 of the gas concentration monitor has been described. However, the heat-resistant reflecting mirror according to the present invention is not limited to such a configuration, and can be used for devices other than the multi-reflection cell 101. In that case, the heat-resistant reflecting mirror can be applied to devices other than the gas concentration monitor.
101 多重反射セル
102 光源
103 検出器
110 セル本体
111 開口
130 反射鏡
131 反射面
133 基材
140 反射鏡
141 反射面
142 基材
143 接着層
144 反射膜
145 保護膜
150 測定空間
DESCRIPTION OF SYMBOLS 101 Multiple reflection cell 102 Light source 103 Detector 110 Cell main body 111 Opening 130 Reflective mirror 131 Reflective surface 133 Base material 140 Reflective mirror 141 Reflective surface 142 Base material 143 Adhesive layer 144 Reflective film 145 Protective film 150 Measurement space

Claims (12)

  1.  基材と、
     白金族元素により前記基材上に形成された反射膜と、
     金属酸化物により前記反射膜上に形成された保護膜とを備えることを特徴とする耐熱性反射鏡。
    A substrate;
    A reflective film formed on the base material by a platinum group element;
    And a protective film formed on the reflective film with a metal oxide.
  2.  前記反射膜は、Pt、Rh、Ru及びIrの少なくとも1つにより形成された単層膜、多層膜又は合金膜であることを特徴とする請求項1に記載の耐熱性反射鏡。 2. The heat resistant reflector according to claim 1, wherein the reflective film is a single layer film, a multilayer film or an alloy film formed of at least one of Pt, Rh, Ru and Ir.
  3.  前記反射膜の膜厚は、100~200nmであることを特徴とする請求項1に記載の耐熱性反射鏡。 2. The heat resistant reflecting mirror according to claim 1, wherein the thickness of the reflecting film is 100 to 200 nm.
  4.  前記保護膜は、SiO、Al、TiO及びHfOの少なくとも1つにより形成された単層膜又は多層膜であることを特徴とする請求項1に記載の耐熱性反射鏡。 The heat-resistant reflecting mirror according to claim 1, wherein the protective film is a single layer film or a multilayer film formed of at least one of SiO 2 , Al 2 O 3 , TiO 2, and HfO 2 .
  5.  前記保護膜の膜厚は、50~100nmであることを特徴とする請求項1に記載の耐熱性反射鏡。 2. The heat resistant reflector according to claim 1, wherein the protective film has a thickness of 50 to 100 nm.
  6.  前記基材は、Si、ガラス又はセラミックにより形成されていることを特徴とする請求項1に記載の耐熱性反射鏡。 The heat-resistant reflecting mirror according to claim 1, wherein the substrate is made of Si, glass or ceramic.
  7.  前記基材と前記反射膜との間に形成された接着層をさらに備えることを特徴とする請求項1に記載の耐熱性反射鏡。 The heat-resistant reflecting mirror according to claim 1, further comprising an adhesive layer formed between the base material and the reflective film.
  8.  前記接着層は、Cr、Ti、Al、Ta、Cu又はNiにより形成されていることを特徴とする請求項7に記載の耐熱性反射鏡。 The heat-resistant reflecting mirror according to claim 7, wherein the adhesive layer is made of Cr, Ti, Al, Ta, Cu, or Ni.
  9.  前記接着層の膜厚は、5~10nmであることを特徴とする請求項7に記載の耐熱性反射鏡。 The heat resistant reflector according to claim 7, wherein the thickness of the adhesive layer is 5 to 10 nm.
  10.  請求項1に記載の耐熱性反射鏡と、
     測定光を照射する光源と、
     前記光源からの測定光を検出する検出器とを備え、
     前記反射鏡を用いて前記光源からの測定光を測定空間内で多重反射させ、当該測定空間から出射した測定光を前記検出器で検出することにより、前記測定空間内のガスの濃度をモニタすることを特徴とするガス濃度モニタ。
    The heat-resistant reflecting mirror according to claim 1;
    A light source that emits measurement light;
    A detector for detecting measurement light from the light source,
    The measurement light from the light source is subjected to multiple reflection in the measurement space using the reflecting mirror, and the concentration of the gas in the measurement space is monitored by detecting the measurement light emitted from the measurement space with the detector. A gas concentration monitor characterized by that.
  11.  白金族元素により基材上に反射膜を形成する反射膜形成ステップと、
     金属酸化物により前記反射膜上に保護膜を形成する保護膜形成ステップとを含むことを特徴とする耐熱性反射鏡の製造方法。
    A reflective film forming step of forming a reflective film on the substrate with a platinum group element;
    And a protective film forming step of forming a protective film on the reflective film with a metal oxide.
  12.  前記基材上に接着層を形成する接着層形成ステップをさらに含み、
     前記反射膜形成ステップでは、前記接着層上に前記反射膜を形成することを特徴とする請求項11に記載の耐熱性反射鏡の製造方法。
    An adhesive layer forming step of forming an adhesive layer on the substrate;
    The method for manufacturing a heat-resistant reflecting mirror according to claim 11, wherein in the reflecting film forming step, the reflecting film is formed on the adhesive layer.
PCT/JP2017/019290 2017-05-23 2017-05-23 Heat-resistant reflecting mirror, gas concentration monitor and method for producing heat-resistant reflecting mirror WO2018216122A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019519861A JPWO2018216122A1 (en) 2017-05-23 2017-05-23 Heat-resistant reflector, gas concentration monitor, and method of manufacturing heat-resistant reflector
PCT/JP2017/019290 WO2018216122A1 (en) 2017-05-23 2017-05-23 Heat-resistant reflecting mirror, gas concentration monitor and method for producing heat-resistant reflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019290 WO2018216122A1 (en) 2017-05-23 2017-05-23 Heat-resistant reflecting mirror, gas concentration monitor and method for producing heat-resistant reflecting mirror

Publications (1)

Publication Number Publication Date
WO2018216122A1 true WO2018216122A1 (en) 2018-11-29

Family

ID=64396378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019290 WO2018216122A1 (en) 2017-05-23 2017-05-23 Heat-resistant reflecting mirror, gas concentration monitor and method for producing heat-resistant reflecting mirror

Country Status (2)

Country Link
JP (1) JPWO2018216122A1 (en)
WO (1) WO2018216122A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962064A (en) * 2021-02-01 2021-06-15 国家纳米科学中心 High-temperature-resistant optical reflecting film and preparation method and application thereof
WO2022266693A1 (en) * 2021-06-25 2022-12-29 Avl List Gmbh Measuring unit for measuring a gaseous or solid material in a measurement volume
AT525197A1 (en) * 2021-06-25 2023-01-15 Avl List Gmbh Measuring unit and a method for measuring at least one gaseous or solid substance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148003A (en) * 1988-11-30 1990-06-06 Hoya Corp Surface reflecting mirror made of multilayered film
JP2002328329A (en) * 2001-04-27 2002-11-15 Ricoh Co Ltd Optical scanner and its manufacturing method, image forming device equipped with the optical scanner, and reader equipped with the optical scanner
WO2004100731A1 (en) * 2003-05-14 2004-11-25 Murakami Corporation Anti-fog mirror
JP2007040887A (en) * 2005-08-04 2007-02-15 Toyota Motor Corp Gas analyzer
US20070268603A1 (en) * 2006-05-16 2007-11-22 Mccabe Ian A Dental mirror with reflective coating
JP2008227001A (en) * 2007-03-09 2008-09-25 Rohm Co Ltd Infrared reflector and heating device
JP2011513801A (en) * 2008-03-11 2011-04-28 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Reflective goods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148003A (en) * 1988-11-30 1990-06-06 Hoya Corp Surface reflecting mirror made of multilayered film
JP2002328329A (en) * 2001-04-27 2002-11-15 Ricoh Co Ltd Optical scanner and its manufacturing method, image forming device equipped with the optical scanner, and reader equipped with the optical scanner
WO2004100731A1 (en) * 2003-05-14 2004-11-25 Murakami Corporation Anti-fog mirror
JP2007040887A (en) * 2005-08-04 2007-02-15 Toyota Motor Corp Gas analyzer
US20070268603A1 (en) * 2006-05-16 2007-11-22 Mccabe Ian A Dental mirror with reflective coating
JP2008227001A (en) * 2007-03-09 2008-09-25 Rohm Co Ltd Infrared reflector and heating device
JP2011513801A (en) * 2008-03-11 2011-04-28 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Reflective goods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962064A (en) * 2021-02-01 2021-06-15 国家纳米科学中心 High-temperature-resistant optical reflecting film and preparation method and application thereof
WO2022266693A1 (en) * 2021-06-25 2022-12-29 Avl List Gmbh Measuring unit for measuring a gaseous or solid material in a measurement volume
AT525197A1 (en) * 2021-06-25 2023-01-15 Avl List Gmbh Measuring unit and a method for measuring at least one gaseous or solid substance
AT525195A1 (en) * 2021-06-25 2023-01-15 Avl List Gmbh Measuring unit for measuring a gaseous or solid substance in a measuring volume
AT525197B1 (en) * 2021-06-25 2023-06-15 Avl List Gmbh Measuring unit and a method for measuring at least one gaseous or solid substance
AT525195B1 (en) * 2021-06-25 2023-06-15 Avl List Gmbh Measuring unit for measuring a gaseous or solid substance in a measuring volume

Also Published As

Publication number Publication date
JPWO2018216122A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2018216122A1 (en) Heat-resistant reflecting mirror, gas concentration monitor and method for producing heat-resistant reflecting mirror
JP4904287B2 (en) Thermally stable multilayer mirror for EUV spectral range
US20080212169A1 (en) Reflector for an Infrared Radiating Element
JP2004218639A5 (en)
EP2576988B1 (en) Measuring the damage to a turbine-blade thermal barrier
JP4568810B1 (en) Thin film type light absorption film
JP6235016B2 (en) Device and method for increasing infrared absorption in a MEMS bolometer
JP6994274B2 (en) Stacked radiant light source
JP5208671B2 (en) Infrared gas sensor
JP4885343B2 (en) Heating apparatus and method for welding work
JP2006228971A (en) Heating unit
JP2004211703A5 (en)
JP6263411B2 (en) Optical sensor chip
JPWO2018182013A1 (en) Heated light source
CN219625736U (en) Tunable middle infrared high-reflection film system
TWI402232B (en) Separated gray metal and titanium nitride solar control members
JP2019007885A (en) Reflector, multiple reflection cell, gas concentration monitor, and method for manufacturing reflector
JP6320510B2 (en) Optical measurement probe and optical measurement apparatus provided with the same
JP4701335B1 (en) Thin film type light absorption film
JP2001194526A (en) Multilayer film reflective mirror
JP2928784B2 (en) Multilayer reflector
KR20230140180A (en) Band-pass filter integrated mems-based infrared sensor, and manufacturing method thereof
JPH03107104A (en) Heat ray absorptive reflecting mirror
JPS61201202A (en) Reflection mirror
JP2018016859A (en) Reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519861

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910741

Country of ref document: EP

Kind code of ref document: A1