WO2018214766A1 - 一种变频空调器控制方法、控制设备和变频空调器 - Google Patents

一种变频空调器控制方法、控制设备和变频空调器 Download PDF

Info

Publication number
WO2018214766A1
WO2018214766A1 PCT/CN2018/086644 CN2018086644W WO2018214766A1 WO 2018214766 A1 WO2018214766 A1 WO 2018214766A1 CN 2018086644 W CN2018086644 W CN 2018086644W WO 2018214766 A1 WO2018214766 A1 WO 2018214766A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
fan speed
air conditioner
proportional coefficient
indoor fan
Prior art date
Application number
PCT/CN2018/086644
Other languages
English (en)
French (fr)
Inventor
王明强
李洪超
郭旭亮
付琳霞
王立刚
贺世权
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2018214766A1 publication Critical patent/WO2018214766A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements

Definitions

  • the invention relates to the technical field of air conditioning, in particular to an inverter air conditioner control method, a control device and an inverter air conditioner.
  • the refrigeration system used in the inverter air conditioner is to meet the requirements of indoor cooling and heating load by controlling the refrigerant circulation amount of the compressor and the refrigerant flow rate entering the indoor heat exchanger.
  • air conditioning systems use variable frequency compressors, multi-stage compressors, unloading compressors, or multiple compressor combinations to achieve compressor capacity control.
  • An electronic expansion valve and other auxiliary circuits are provided in the refrigeration system to regulate the flow of refrigerant entering the indoor unit, and the capacity of the heat exchanger is adjusted by controlling the fan speed of the indoor and outdoor heat exchangers.
  • the UPS and the battery are generally designed to supply power to the inverter air conditioner in the prior art.
  • the inverter air conditioner operates continuously under the power supply of the battery.
  • This situation has the following two drawbacks.
  • the prior art practice is to limit the frequency of the inverter air conditioner to a fixed value, which sacrifices The actual experience of the user.
  • the invention provides a control method of an inverter air conditioner, which solves the problem that the air conditioning effect and the power supply time are difficult to balance when the inverter air conditioner is powered by the UPS and the battery.
  • the invention provides a control method for an inverter air conditioner, comprising the following steps:
  • a power control mechanism of the utility power supply and an emergency control mechanism for the battery power supply are stored;
  • the utility power is interrupted, and the controller of the inverter air conditioner calls the emergency control mechanism, and the input variable of the emergency control mechanism is a battery power signal, and the output variable is a compressor frequency, an outdoor fan speed, and/or an indoor fan speed;
  • the battery power signal is divided into multiple stages, and the controller outputs a compressor frequency signal, an outdoor fan speed signal and/or an indoor fan speed signal corresponding to the battery power signal of each stage.
  • the battery power signal is sequentially decremented into four levels.
  • the controller When the battery power signal is the first stage, the controller outputs a first compressor frequency signal, and the compressor frequency is controlled as a product of a compressor upper limit frequency and a first compressor frequency proportional coefficient, and outputs a first outdoor
  • the fan speed signal controls the outdoor fan speed as the product of the maximum speed of the outdoor fan and the first outdoor fan speed proportional coefficient, and outputs the first indoor fan speed signal, and controls the indoor fan speed to be the indoor fan maximum speed and the first indoor fan The product of the speed proportionality factor;
  • the controller When the battery power signal is the second stage, the controller outputs a second compressor frequency signal, and the compressor frequency is controlled as a product of a compressor upper limit frequency and a second compressor frequency proportional coefficient, and outputs a second outdoor
  • the fan speed signal controls the outdoor fan speed as the product of the maximum speed of the outdoor fan and the second outdoor fan speed proportional coefficient, and outputs a second indoor fan speed signal, and controls the indoor fan speed to be the indoor fan maximum speed and the second indoor fan
  • the controller When the battery power signal is the third stage, the controller outputs a third compressor frequency signal, and the compressor frequency is controlled as a product of a compressor upper limit frequency and a third compressor frequency proportional coefficient, and outputs a third outdoor
  • the fan speed signal controls the outdoor fan speed as the product of the maximum speed of the outdoor fan and the third outdoor fan speed proportional coefficient, and outputs a third indoor fan speed signal, and controls the indoor fan speed to be the indoor fan maximum speed and the third indoor fan
  • the controller When the battery power signal is the fourth stage, the controller outputs a fourth compressor frequency signal, controls the compressor to stop, outputs a fourth outdoor fan speed signal, controls the outdoor fan to stop, and outputs the fourth indoor a fan speed signal for controlling the speed of the indoor fan to be the highest speed;
  • the first compressor frequency proportional coefficient, the second compressor frequency proportional coefficient, and the third compressor frequency proportional coefficient are sequentially decreased; the first outdoor fan speed proportional coefficient, the second outdoor fan speed proportional coefficient, and the third The outdoor fan speed proportional coefficient is successively decreased; the first indoor fan speed proportional coefficient, the second indoor fan speed proportional coefficient, and the third indoor fan speed proportional coefficient are successively decreased.
  • first compressor frequency proportional coefficient, the second compressor frequency proportional coefficient, and the third compressor frequency proportional coefficient are unequally decreasing; the first outdoor fan speed proportional coefficient and the second outdoor fan speed ratio The coefficient and the third outdoor fan speed proportional coefficient are successively decreased; the first indoor fan speed proportional coefficient, the second indoor fan speed proportional coefficient, and the third indoor fan speed proportional coefficient are successively decreased.
  • the UPS processor sends an emergency request signal for calling the emergency control mechanism.
  • the controller of the inverter air conditioner determines whether the emergency request signal meets the preset. If the emergency request signal satisfies the preset condition, the controller invokes the emergency control mechanism, and the first signal input path of the controller establishes communication with the first signal output path of the UPS processor, and receives a battery power signal sent by the first signal output path of the UPS processor, the controller uses the battery power signal as a set input variable of the emergency control mechanism, and the controller controls the inverter air conditioner compressor according to the emergency control mechanism The frequency, the outdoor fan speed, and the indoor fan speed; if the emergency request signal does not satisfy the preset condition, the first signal input path of the controller refuses to establish communication with the first signal output path of the UPS processor.
  • the method further includes the following steps: the utility power is restored, the UPS processor sends a power request signal for calling the power control mechanism, and after receiving the power request signal, the controller of the inverter air conditioner determines whether the power request signal is Meeting the preset condition; if the power signal satisfies the preset condition, the controller invokes the power control mechanism, and the first signal input path of the controller establishes communication with the room temperature sensor to receive the input of the room temperature sensor a temperature detecting signal, the controller uses a difference between the temperature detecting signal and the set temperature signal as a set input variable of the power control mechanism, and the controller controls the frequency of the inverter air conditioner compressor and the electronic expansion according to the power control mechanism The valve opening degree, the outdoor fan speed, and the indoor fan speed; if the power request signal does not satisfy the preset condition, the first signal path of the controller refuses to establish communication with the room temperature sensor.
  • the emergency control mechanism when invoked, if the emergency request signal satisfies the preset condition, the first signal output path of the controller sends a battery power signal to the air conditioner display device.
  • the compressor, the indoor fan and the outdoor fan continuously operate at different operating speeds according to the magnitude of the battery power, and the temperature fluctuation of the air-conditioned room during operation is small, the compressor does not stop, and the battery is avoided. Frequent output of starting current reduces battery run time while avoiding the impact on other appliances and the already weak grid.
  • An inverter air conditioner control device including:
  • a setting module for setting a power control mechanism of the utility power supply and an emergency control mechanism for the battery power supply
  • a sampling module for collecting a battery power signal
  • a grading module configured to classify the battery power signal
  • An input module for inputting a battery power classification signal
  • the output module is configured to output a compressor frequency, an outdoor fan speed, and/or an indoor fan speed according to each level of battery power classification signal.
  • a first determining module configured to determine whether the received emergency request signal meets a preset condition
  • the first communication module is configured to receive a battery power signal and output the battery power signal to the grading module if the emergency request signal meets a preset condition;
  • the first rejecting module rejects receiving the battery power signal if the emergency request signal does not meet the preset condition.
  • a second determining module configured to determine whether the received power request signal meets a preset condition
  • the second communication module is configured to receive the temperature detection signal if the power request signal meets a preset condition
  • the second rejection module rejects receiving the temperature detection signal if the power request signal does not meet the preset condition.
  • the inverter air conditioner control device disclosed by the invention has the problems of battery power, compressor operation and fan operation, and solves the problem that the air conditioning effect and the power supply time are difficult to balance when the inverter air conditioner is powered by the UPS and the battery, and has user comfort. High advantage.
  • An inverter air conditioner is also provided, which adopts an inverter air conditioner control method.
  • the inverter air conditioner control method comprises the following steps: storing a power control mechanism of a mains supply and an emergency control mechanism of a battery power supply in the inverter air conditioner; and interrupting the mains, the controller of the inverter air conditioner calls the emergency control Mechanism, the input variable of the emergency control mechanism is a battery power signal, and the output variable is a compressor frequency, an outdoor fan speed, and/or an indoor fan speed; wherein the battery power signal is divided into multiple levels, corresponding to each level The battery power signal, the controller outputs a compressor frequency signal, an outdoor fan speed signal and/or an indoor fan speed signal.
  • the inverter air conditioner disclosed by the invention provides a variable frequency air conditioner with good user experience according to the characteristics of battery power supply.
  • FIG. 1 is a flow chart of a first embodiment of a control method for an inverter air conditioner according to the present invention
  • FIG. 2 is a flow chart of a second embodiment of a control method for an inverter air conditioner according to the present invention
  • FIG. 3 is a flow chart of a third embodiment of a method for controlling an inverter air conditioner according to the present invention.
  • FIG. 4 is a flow chart of a fourth embodiment of a method for controlling an inverter air conditioner according to the present invention.
  • control method of the inverter air conditioner disclosed by the present invention comprises the following steps:
  • the power supply control mechanism of the mains supply and the emergency power supply mechanism of the battery supply are stored in the inverter air conditioner.
  • the inverter air conditioner receives the command from the remote controller through the indoor unit, compares the command with the temperature measured by the room temperature sensor, and obtains the operating frequency of the outdoor compressor by using the fuzzy control algorithm or the PID control algorithm.
  • the external communication circuit is sent to the outside to control the operating speed of the compressor.
  • the compressor When the load in the air-conditioned room is reduced, the compressor reduces the rotational speed according to the inference result of the fuzzy control algorithm or the PID control algorithm under the control of the controller, and the cooling capacity is reduced. If there is a sudden power outage or a power outage starts at a set time, the controller of the inverter air conditioner calls the emergency control mechanism.
  • the input variable is no longer the difference between the set temperatures corresponding to the remote control commands of the room temperature sensor, avoiding the complex coupling relationship between multiple components in the refrigeration system and the external environment and workload.
  • the purpose of the emergency control mechanism is to achieve a maximum balance between limited battery power and the cooling effect of the air conditioner.
  • the controller under the operation of the emergency control mechanism is a single-input, multi-output control system.
  • the battery power signal is selected as the input variable, and the compressor frequency, the outdoor fan speed, and the indoor fan speed are output variables. If the hardware data processing capability of the inverter air conditioner controller is weak, or the fixed power outage time is short, the controller under the emergency control mechanism can also be designed as a single-input single-output control system, and the battery power signal is selected as the input variable.
  • the compressor frequency is the output variable.
  • the control of each component of the inverter air conditioner has obvious hysteresis, and it takes a certain time to reach the control target.
  • the battery power signal needs to be divided into multiple levels.
  • the battery power signal is graded using laboratory data.
  • the controller calls the power control mechanism, it measures the consumption of the control target battery. Record the correspondence between power consumption and running time, as well as the number of compressor start-stops, time and continuous running time, and classify the battery power signal according to power consumption and compressor operating parameters.
  • the controller allocates a compressor frequency signal, an outdoor fan speed signal and an indoor fan speed signal corresponding to each level of battery power signal, and maintains the compressor frequency signal, the outdoor fan speed signal and the indoor when the battery power signal belongs to the classification.
  • the fan speed signal remains unchanged. If there is only one compressor frequency signal as the output variable, the compressor frequency signal remains unchanged when the battery charge signal belongs to the classification.
  • the operating frequency of the compressor is [15 Hz, 120 Hz].
  • the compressor frequency signal does not exceed this range.
  • the compressor, the indoor fan and the outdoor fan are continuously operated at different operating speeds according to the amount of battery power.
  • the temperature fluctuation is small, the compressor does not stop, the battery is frequently outputted, and the battery is reduced. Run time while avoiding the impact on other appliances and the already weak grid.
  • the preferred emergency control mechanism that is, the single-input and multi-output emergency control mechanism.
  • the battery power signal is successively decremented into four levels.
  • the four-level battery power signal can keep the air conditioner running smoothly, and will not change sharply at the boundary threshold, which will impact the battery power supply.
  • the controller outputs a first compressor frequency signal to control the compressor frequency.
  • the first outdoor fan speed signal is output, and the outdoor fan speed is controlled as the product of the outdoor fan maximum speed and the first outdoor fan speed proportional coefficient, and the first indoor fan speed is input.
  • the signal is used to control the indoor fan speed as the product of the maximum fan speed of the indoor fan and the first indoor fan speed ratio coefficient.
  • the first compressor frequency proportional coefficient is preferably 0.7
  • the first outdoor fan speed proportional coefficient is preferably 1
  • the first indoor fan speed proportional coefficient is preferably 1.
  • each collected battery signal needs to be compared with the upper limit and the lower limit respectively, in order to determine whether or not in the classification, in order to improve the operation speed of the emergency control mechanism, the following method is further adopted.
  • the physical signal range of the input variable and the output variable is always bounded. For example, the battery power will not exceed all of its power. In actual work, it is more desirable to start when the battery power is around 90%. Active intervention, of course, will not be lower than its protection value (usually set to 10%), while the output variable, the compressor frequency is [15Hz, 120Hz], the outdoor fan speed does not exceed 700 rev / min, the indoor fan speed does not exceed 1100 rpm.
  • the range of the battery's power can be converted to a centrally distributed symmetric number field (-n,...,0 ,...,n), further select a plurality of discrete points within the range of the battery power, and may select one every 0.2, that is, also convert the five discrete power data into a proportional relationship between the neutral point and the zero point.
  • the conversion number field is the selected factor and the number of selected discrete points can be adjusted.
  • the terminal voltage of the battery continuously decreases with the use process.
  • the controller outputs a second compressor frequency signal, and the control is performed.
  • the compressor frequency is the product of the compressor upper limit frequency and the second compressor frequency proportional coefficient, and outputs a second outdoor fan speed signal, and controls the outdoor fan speed to be the product of the outdoor fan maximum speed and the second outdoor fan speed proportional coefficient, and the output
  • the second indoor fan speed signal controls the indoor fan speed as the product of the maximum fan speed of the indoor fan and the speed coefficient of the second indoor fan.
  • the second compressor frequency proportional coefficient is preferably 0.5
  • the second outdoor fan speed proportional coefficient is preferably 0.84
  • the second indoor fan speed proportional coefficient is preferably 0.91.
  • the controller When the battery power signal is the third stage, preferably [30%, 50%), the controller outputs a third compressor frequency signal, and the compressor frequency is controlled to be the upper limit frequency of the compressor and the third compressor.
  • the product of the frequency proportional coefficient outputs a third outdoor fan speed signal, and controls the outdoor fan speed to be the product of the outdoor fan maximum speed and the third outdoor fan speed proportional coefficient, and outputs a third indoor fan speed signal to control the indoor fan speed
  • the controller When the battery power signal is the fourth stage, preferably [10%, 30%), the controller outputs a fourth compressor frequency signal, controls the compressor to stop, outputs a fourth outdoor fan speed signal, and controls The outdoor fan is stopped, and the fourth indoor fan speed signal is output, and the indoor fan speed is controlled to be the highest speed;
  • the first compressor frequency proportional coefficient, the second compressor frequency proportional coefficient, and the third compressor frequency proportional coefficient are sequentially decreased; the first outdoor fan speed proportional coefficient, the second outdoor fan speed proportional coefficient, and the third The outdoor fan speed proportional coefficient is successively decreased; the first indoor fan speed proportional coefficient, the second indoor fan speed proportional coefficient, and the third indoor fan speed proportional coefficient are successively decreased.
  • the above scale factor may be equal amplitude decreasing or unequal amplitude decreasing.
  • the above scale factors are stored independently and have consecutive addresses, which are convenient for the controller to call at any time.
  • the first compressor frequency proportional coefficient, the second compressor frequency proportional coefficient, and the third compressor frequency proportional coefficient are preferably sequentially decreased in unequal amplitude; the first outdoor fan speed proportional coefficient The second outdoor fan speed proportional coefficient and the third outdoor fan speed proportional coefficient are successively decreased; the first indoor fan speed proportional coefficient, the second indoor fan speed proportional coefficient, and the third indoor fan speed proportional coefficient are unequal Decrease in turn.
  • the preferred values as described above are employed.
  • the method of unequal amplitude reduction is because when the compressor frequency is reduced, the cooling capacity of the air-conditioned room is reduced, the indoor temperature difference is accelerated and the rate of change is gradually increased, and the indoor temperature drop is gradually slowed down as the cooling capacity decreases.
  • the control air circulation is kept at a relatively low level when the cooling capacity is high, and the air is raised when the cooling capacity is low.
  • the cycle maintains the temperature of the air-conditioned room.
  • control method of the inverter air conditioner disclosed in the present invention further includes the following steps:
  • the utility power is interrupted, and the UPS processor sends an emergency request signal for calling the emergency control mechanism.
  • the controller of the inverter air conditioner determines whether the emergency request signal meets a preset condition. Preset conditions include, but are not limited to, determination of the emergency request signal voltage and frequency to indicate whether the output of the inverter is in a normal state.
  • the controller invokes the emergency control mechanism, the first signal input path of the controller and the UPS processor a signal output path establishes communication, receives a battery power signal sent by the first signal output path of the UPS processor, and the controller uses the battery power signal as a set input variable of the emergency control mechanism, and the controller follows the emergency
  • the control mechanism controls the frequency of the inverter air conditioner compressor, the outdoor fan speed, and the indoor fan speed; if the emergency request signal does not satisfy the preset condition, the first signal input path of the controller is rejected and the UPS processor is first The signal output path establishes communication and shuts down.
  • the inverter air conditioner control method disclosed in the present invention further includes the following steps:
  • the utility power is restored, and the UPS processor sends a power request signal for calling the power control mechanism.
  • the controller of the inverter air conditioner determines whether the power request signal meets a preset condition. Preset conditions include, but are not limited to, a determination of the power request signal voltage and frequency to indicate whether the output of the utility is a normal state. If the power signal meets the preset condition, the controller invokes the power control mechanism, and the first signal input path of the controller establishes communication with the room temperature sensor, and receives a temperature detection signal input by the room temperature sensor.
  • the controller uses the difference between the temperature detection signal and the set temperature signal as a set input variable of the power control mechanism, and the controller controls the frequency of the inverter air conditioner compressor, the electronic expansion valve opening, and the outdoor according to the power control mechanism. Fan speed and indoor fan speed. If the power request signal does not satisfy the preset condition, the first signal path of the controller refuses to establish communication with the room temperature sensor. Then, it operates according to the emergency control mechanism until the power request signal meets the preset condition.
  • the emergency control mechanism In order to enable the user to know the current battery power, when the emergency control mechanism is invoked, if the emergency request signal satisfies the preset condition, the first signal output path of the controller sends a battery power signal to the air conditioner display device.
  • the invention also provides an inverter air conditioner control device, comprising:
  • a setting module for setting a power control mechanism of the utility power supply and an emergency control mechanism for the battery power supply
  • a sampling module for collecting a battery power signal
  • a grading module configured to classify the battery power signal
  • An input module for inputting a battery power classification signal
  • the output module is configured to output a compressor frequency, an outdoor fan speed, and/or an indoor fan speed according to each level of battery power classification signal.
  • the grading module divides the battery power signal into four levels in turn.
  • the four-level battery power signal can keep the air-conditioning equipment running smoothly for a period of time, and will not change sharply at the boundary threshold, which will impact the equipment.
  • the output module outputs the first compressor frequency signal.
  • the first indoor fan speed signal is input, and the indoor fan speed is controlled as the product of the maximum speed of the indoor fan and the first indoor fan speed proportional coefficient.
  • the first compressor frequency proportional coefficient is preferably 0.7, the first outdoor fan speed proportional coefficient is preferably 1, and the first indoor fan speed proportional coefficient is preferably 1.
  • the first outdoor fan speed proportional coefficient is 1, the outdoor fan speed is 700 rpm, and when the first indoor fan speed proportional coefficient is 1, the indoor fan speed is 1100 rpm.
  • the grading module needs to compare the battery signals collected by each sampling module with the upper limit and the lower limit respectively, in order to determine whether it is in the level, in order to improve the operation speed of the emergency control mechanism, the following method is further adopted.
  • the physical signal range of the input variable and the output variable is always bounded. For example, the battery power will not exceed all of its power. In actual work, it is more desirable to start when the battery power is around 90%. Proactive intervention to maintain adequate cooling, certainly not below its protection value (usually set at 10%).
  • the output variable, the compressor frequency is [15Hz, 120Hz], the outdoor fan speed does not exceed 700 rev / min, and the indoor fan speed does not exceed 1100 rev / min.
  • the grading module uses the proportional relationship between the median point and the zero point, which can convert the range of the battery's power to a centrally distributed symmetrical number field (-n,... , 0,...,n), further select a plurality of discrete points within the range of the battery power, and may select one every 0.2, that is, also convert the five discrete powers by the proportional relationship between the neutral point and the zero point.
  • An array of data, symmetrically distributed to get an array of ⁇ -2, -1, 0, 1, 2 ⁇ , m 2.
  • the conversion number field is the selected factor and the number of selected discrete points can be adjusted.
  • the terminal voltage of the battery continuously decreases with the use process.
  • the output module outputs a second compressor frequency signal, and the control is performed.
  • the compressor frequency is the product of the compressor upper limit frequency and the second compressor frequency proportional coefficient, and outputs a second outdoor fan speed signal, and controls the outdoor fan speed to be the product of the outdoor fan maximum speed and the second outdoor fan speed proportional coefficient, and the output
  • the second indoor fan speed signal controls the indoor fan speed as the product of the maximum fan speed of the indoor fan and the speed coefficient of the second indoor fan.
  • the second compressor frequency proportional coefficient is preferably 0.5
  • the second outdoor fan speed proportional coefficient is preferably 0.84
  • the second indoor fan speed proportional coefficient is preferably 0.91.
  • the output module When the battery power signal is the third stage, preferably [30%, 50%), the output module outputs a third compressor frequency signal, and the compressor frequency is controlled to be the upper limit frequency of the compressor and the third compressor.
  • the product of the frequency proportional coefficient outputs a third outdoor fan speed signal, and controls the outdoor fan speed to be the product of the outdoor fan maximum speed and the third outdoor fan speed proportional coefficient, and outputs a third indoor fan speed signal to control the indoor fan speed
  • the output module When the battery power signal is the fourth stage, preferably [10%, 30%), the output module outputs a fourth compressor frequency signal, controls the compressor to stop, outputs a fourth outdoor fan speed signal, and controls The outdoor fan is stopped, and the fourth indoor fan speed signal is output, and the indoor fan speed is controlled to be the highest speed;
  • the first compressor frequency proportional coefficient, the second compressor frequency proportional coefficient, and the third compressor frequency proportional coefficient are sequentially decreased; the first outdoor fan speed proportional coefficient, the second outdoor fan speed proportional coefficient, and the third The outdoor fan speed proportional coefficient is successively decreased; the first indoor fan speed proportional coefficient, the second indoor fan speed proportional coefficient, and the third indoor fan speed proportional coefficient are successively decreased.
  • the above scale factor may be equal amplitude decreasing or unequal amplitude decreasing.
  • the first compressor frequency proportional coefficient, the second compressor frequency proportional coefficient, and the third compressor frequency proportional coefficient are preferably sequentially decreased in unequal amplitude; the first outdoor fan speed proportional coefficient The second outdoor fan speed proportional coefficient and the third outdoor fan speed proportional coefficient are successively decreased; the first indoor fan speed proportional coefficient, the second indoor fan speed proportional coefficient, and the third indoor fan speed proportional coefficient are unequal Decrease in turn.
  • the preferred values as described above are employed.
  • the method of unequal amplitude reduction is because when the compressor frequency starts to decrease, the cooling capacity of the air-conditioned room decreases, the indoor temperature difference changes and the rate of change gradually increases, and the indoor temperature drop gradually decreases as the cooling capacity decreases.
  • the method further includes: a first determining module, configured to determine whether the received emergency request signal meets a preset condition; and the first communication module, if the emergency request signal meets a preset condition, is used for receiving The battery power signal and the battery power signal are output to the classifying module; the first rejecting module rejects receiving the battery power signal if the emergency request signal does not meet the preset condition.
  • the method further includes: a second determining module, configured to determine whether the received power request signal meets a preset condition; and the second communication module is configured to receive the temperature detection signal if the power request signal meets the preset condition; The module refuses to receive the temperature detection signal if the power request signal does not meet the preset condition.
  • the inverter air conditioner control device disclosed by the invention has the problems of battery power, compressor operation and fan operation, and solves the problem that the air conditioning effect and the power supply time are difficult to balance when the inverter air conditioner is powered by the UPS and the battery, and has user comfort. High advantage.
  • an air conditioner is disclosed, and the air conditioner adopts a control method as described in detail in the above embodiment, and details are not described herein again.
  • the air conditioner of the above embodiment control method can achieve the same technical effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种变频空调器控制方法,包括以下步骤:在变频空调器中存储有市电供电的电源控制机制和蓄电池供电的应急控制机制;市电中断,变频空调器的控制器调用应急控制机制,应急控制机制的输入变量为蓄电池电量信号,输出变量为压缩机频率、室外风机转速和/或室内风机转速;其中,蓄电池电量信号分为多级,对应每一级蓄电池电量信号,控制器输出一个压缩机频率信号,一个室外风机转速信号和/或一个室内风机转速信号。压缩机、室内风机和室外风机依据蓄电池电量的大小,在不同运转速度下连续运行,运行过程中空调房间的温度波动小,压缩机不停机,同时延长蓄电池为空调器供电的时间。还公开了一种控制设备和变频空调器。

Description

一种变频空调器控制方法、控制设备和变频空调器 技术领域
本发明涉及空气调节技术领域,尤其涉及一种变频空调器控制方法、控制设备和变频空调器。
背景技术
变频空调器中所采用的制冷系统,是通过控制压缩机的制冷剂循环量和进入室内换热器的制冷剂流量,达到适时地满足室内冷热负荷的要求。通常,这种空调系统采用变频压缩机、多级压缩机、卸载压缩机或者多台压缩机组合来实现压缩机容量控制。在制冷系统中设置电子膨胀阀及其它辅助回路,以调节进入室内机的制冷剂流量,通过控制室内外换热器的风扇速度,调节换热器的能力。
目前有些国家电网不稳定,经常停电。为了保证变频空调器的运行,现有技术中通常设计采用UPS和蓄电池给变频空调器供电。当电力中断时,变频空调器在蓄电池的供电下不间断运行。这种情况存在以下两个弊端,第一,由于蓄电池的蓄电量是固定的,如果一直维持根据空调热负荷调节压缩机频率,那么实际供电时间难以得到保证,用户不知道按照目前的电量以及空调房间的环境,变频空调器还可以工作多长时间。第一,对于某些停电时间固定的地区,为了达到维持空调器在该时间段内工作的目的,现有技术的做法是将变频空调器的频率限定在一个固定值,这种方式则牺牲了用户的实际体验。
技术问题
因此,现有技术存在当变频空调器采用UPS和蓄电池供电时,空气调节效果和供电时间难以达到平衡的问题。
技术解决方案
本发明提供一种变频空调器控制方法,以解决现有技术当变频空调器采用UPS和蓄电池供电时,空气调节效果和供电时间难以达到平衡的问题。
本发明提供一种变频空调器控制方法,包括以下步骤:
在变频空调器中存储有市电供电的电源控制机制和蓄电池供电的应急控制机制;
市电中断,所述变频空调器的控制器调用所述应急控制机制,所述应急控制机制的输入变量为蓄电池电量信号,输出变量为压缩机频率、室外风机转速和/或室内风机转速;
其中,所述蓄电池电量信号分为多级,对应每一级所述蓄电池电量信号,所述控制器输出一个压缩机频率信号,一个室外风机转速信号和/或一个室内风机转速信号。
进一步的,所述蓄电池电量信号依次递减分为四级,
当所述蓄电池电量信号为第一级时,所述控制器输出第一压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第一压缩机频率比例系数的乘积,输出第一室外风机转速信号,控制所述室外风机转速为室外风机最高转速与第一室外风机转速比例系数的乘积,输出第一室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第一室内风机转速比例系数的乘积;
当所述蓄电池电量信号为第二级时,所述控制器输出第二压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第二压缩机频率比例系数的乘积,输出第二室外风机转速信号,控制所述室外风机转速为室外风机最高转速与第二室外风机转速比例系数的乘积,输出第二室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第二室内风机转速比例系数的乘积;
当所述蓄电池电量信号为第三级时,所述控制器输出第三压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第三压缩机频率比例系数的乘积,输出第三室外风机转速信号,控制所述室外风机转速为室外风机最高转速与第三室外风机转速比例系数的乘积,输出第三室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第三室内风机转速比例系数的乘积;
当所述蓄电池电量信号为第四级时,所述控制器输出第四压缩机频率信号,控制所述压缩机停机,输出第四室外风机转速信号,控制所述室外风机停机,输出第四室内风机转速信号,控制所述室内风机转速为最高转速;
其中,所述第一压缩机频率比例系数、第二压缩机频率比例系数、第三压缩机频率比例系数依次递减;所述第一室外风机转速比例系数、第二室外风机转速比例系数、第三室外风机转速比例系数依次递减;所述第一室内风机转速比例系数、第二室内风机转速比例系数、第三室内风机转速比例系数依次递减。
进一步的,所述第一压缩机频率比例系数、第二压缩机频率比例系数、第三压缩机频率比例系数不等幅依次递减;所述第一室外风机转速比例系数、第二室外风机转速比例系数、第三室外风机转速比例系数不等幅依次递减;所述第一室内风机转速比例系数、第二室内风机转速比例系数、第三室内风机转速比例系数不等幅依次递减。
进一步的,市电中断,UPS处理器发送用于调用所述应急控制机制的应急请求信号,当接收到所述应急请求信号后,变频空调器的控制器判断所述应急请求信号是否符合预设条件;若所述应急请求信号满足所述预设条件,则所述控制器调用所述应急控制机制,所述控制器的第一信号输入通路和UPS处理器第一信号输出通路建立通信,接收UPS处理器第一信号输出通路发送的蓄电池电量信号,所述控制器将所述蓄电池电量信号作为所述应急控制机制的设定输入变量,控制器按照所述应急控制机制控制变频空调器压缩机频率、室外风机转速和室内风机转速;若所述应急请求信号不满足所述预设条件,则所述控制器的第一信号输入通路拒绝和UPS处理器第一信号输出通路建立通信。
进一步的,还包括以下步骤:市电恢复,UPS处理器发送用于调用电源控制机制的电源请求信号,当接收到所述电源请求信号后,变频空调器的控制器判断所述电源请求信号是否符合预设条件;若所述电源信号满足所述预设条件,则所述控制器调用所述电源控制机制,所述控制器的第一信号输入通路和室温传感器建立通信,接收室温传感器输入的温度检测信号,所述控制器将温度检测信号和设定温度信号的差值作为所述电源控制机制的设定输入变量,控制器按照所述电源控制机制控制变频空调器压缩机频率、电子膨胀阀开度、室外风机转速和室内风机转速;若所述电源请求信号不满足所述预设条件,则所述控制器的第一信号通路拒绝和室温传感器建立通信。
进一步的,调用所述应急控制机制时,若所述应急请求信号满足所述预设条件,控制器的第一信号输出通路发送蓄电池电量信号至空调器显示装置。
本发明所公开的变频空调器控制方法,压缩机、室内风机和室外风机依据蓄电池电量的大小,在不同运转速度下连续运行,运行过程中空调房间的温度波动小,压缩机不停机,避免蓄电池频繁输出启动电流,降低蓄电池的运行时间,同时避免对其它电器和本来就薄弱的电网的冲击。
还提供了一种变频空调器控制设备,包括:
设置模块,用于设置市电供电的电源控制机制和蓄电池供电的应急控制机制;
调用模块,用于在市电中断时调用所述应急控制机制;
采样模块,用于采集蓄电池电量信号;
分级模块,用于对所述蓄电池电量信号分级;
输入模块,用于输入蓄电池电量分级信号;
输出模块,用于根据每一级蓄电池电量分级信号,输出一个压缩机频率、一个室外风机转速和/或一个室内风机转速。
进一步的,还包括:
第一判断模块,用于判断接收的应急请求信号是否符合预设条件;
第一通信模块,若所述应急请求信号符合预设条件,则用于接收蓄电池电量信号并将蓄电池电量信号输出至分级模块;
第一拒绝模块,若所述应急请求信号不符合预设条件,则拒绝接收蓄电池电量信号。
进一步的,还包括:
第二判断模块,用于判断接收的电源请求信号是否符合预设条件;
第二通信模块,若所述电源请求信号符合预设条件,则用于接收温度检测信号;
第二拒绝模块,若所述电源请求信号不符合预设条件,则拒绝接收温度检测信号。
本发明所公开的变频空调器控制设备,兼顾蓄电池电量、压缩机运转和风机运转,解决了变频空调器采用UPS和蓄电池供电时,空气调节效果和供电时间难以达到平衡的问题,具有用户舒适度高的优点。
还提供一种变频空调器,采用变频空调器控制方法。所述变频空调器控制方法包括以下步骤:在变频空调器中存储有市电供电的电源控制机制和蓄电池供电的应急控制机制;市电中断,所述变频空调器的控制器调用所述应急控制机制,所述应急控制机制的输入变量为蓄电池电量信号,输出变量为压缩机频率、室外风机转速和/或室内风机转速;其中,所述蓄电池电量信号分为多级,对应每一级所述蓄电池电量信号,所述控制器输出一个压缩机频率信号,一个室外风机转速信号和/或一个室内风机转速信号。
有益效果
本发明所公开的变频空调器,根据蓄电池供电的特点,提供一种用户体验好的变频空调器。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所公开的变频空调器控制方法第一实施例的流程图;
图2为本发明所公开的变频空调器控制方法第二实施例的流程图;
图3为本发明所公开的变频空调器控制方法第三实施例的流程图;
图4为本发明所公开的变频空调器控制方法第四实施例的流程图。
本发明的实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明所公开的变频空调器控制方法包括以下步骤:
首先,为了应对突发或者定时的停电情况,在变频空调器中存储有市电供电的电源控制机制和蓄电池供电的应急供电机制。正常市电供电时,变频空调器通过室内机接收来自遥控器的指令,将指令和室温传感器测得的温度进行比较,利用模糊控制算法或者PID控制算法得到室外压缩机的运行频率,在通过室内外机通信电路送至室外,控制压缩机的运转速度。当电源控制机制工作时,如果空调房间内的负荷增大,压缩机在控制器的控制下按照模糊控制算法或者PID控制算法的推理结果提高转速,制冷量增加。当空调房间内的负荷减小时,压缩机在控制器的控制下按照模糊控制算法或者PID控制算法的推理结果降低转速,制冷量减小。如果突发停电情况,或者在设定的时间点开始停电,则变频空调器的控制器调用应急控制机制。对于应急控制机制来说,其输入变量不再是室温传感器的遥控器指令对应的设定温度之间的差值,避免制冷系统中多个部件与外部环境和工作负荷之间形成复杂的耦合关系,应急控制机制的目的是在有限的蓄电池电量和空调器的制冷效果之间达到最大程度的平衡。因此,优选设计应急控制机制工作下的控制器是一个单输入,多输出的控制系统。选取蓄电池电量信号作为输入变量,压缩机频率、室外风机转速和室内风机转速为输出变量。如果变频空调器的控制器的硬件数据处理能力较弱,或者固定停电时间较短,也可以设计应急控制机制工作下的控制器是一个单输入单输出的控制系统,选取蓄电池电量信号作为输入变量,压缩机频率为输出变量。
相对于普通的家用电器或者民用电器,变频空调器各个组成部分的控制具有明显的滞后性,需要一定时间达到控制目标。当控制系统选定输入、输出变量之后,需要先将蓄电池电量信号分为多级。蓄电池电量信号分级采用的是实验室数据。当控制器调用电源控制机制时,测算维持控制目标蓄电池电量的消耗情况。记录电量消耗和运行时间的对应关系,以及压缩机启停次数、时刻和连续运行时间,根据电量消耗和压缩机运行参数对蓄电池电量信号分级。控制器对应每一级蓄电池电量信号分配一个压缩机频率信号,一个室外风机转速信号和一个室内风机转速信号,并保持当蓄电池电量信号属于该分级时,压缩机频率信号、室外风机转速信号和室内风机转速信号保持不变。如果仅有一个压缩机频率信号作为输出变量,则保持当蓄电池电量信号属于该分级时,压缩机频率信号保持不变。
当工作在电源控制机制时,压缩机的运行频率为[15Hz,120Hz],当工作在应急控制机制下时,压缩机频率信号也不超出这一范围。
在上述控制方式下,压缩机、室内风机和室外风机依据蓄电池电量的大小,在不同运转速度下连续运行,运行过程中温度波动小,压缩机不停机,避免蓄电池频繁输出启动电流,降低蓄电池的运行时间,同时避免对其它电器和本来就薄弱的电网的冲击。
以下参照图2所示,具体介绍优选的应急控制机制,即单输入多输出的应急控制机制。根据实验数据和经验数据,蓄电池电量信号依次递减分为四级。四级蓄电池电量信号可以保持空调设备的运行平稳,不会在边界阈值发生剧烈的变化,对蓄电池供电形成冲击。具体来说,当蓄电池电量信号为第一级时,优选为[70%,90%)或[70%,100%), 所述控制器输出第一压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第一压缩机频率比例系数的乘积,输出第一室外风机转速信号,控制室外风机转速为室外风机最高转速与第一室外风机转速比例系数的乘积,输入第一室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第一室内风机转速比例系数的乘积。上述的第一压缩机频率比例系数优选为0.7,第一室外风机转速比例系数优选为1,第一室内风机转速比例系数优选为1。当第一室外风机转速比例系数为1时,室外风机转速为700转/分钟,当第一室内风机转速比例系数为1时,室内风机转速为1100转/分钟。
在上述控制过程中,每一个采集到的蓄电池信号都需要分别与上限和下限做比较,才能判定是否在该分级中,为了提高应急控制机制的运算速度,进一步采用了以下的方法。在设备的实际运行过程中,输入变量和输出变量的物理信号范围总是有界的,比如蓄电池电量不会超过其全部电量,实际工作中,也更希望在蓄电池电量在90%左右时才开始主动干预,当然不会低于其保护值(通常设置为10%),而输出变量,压缩机频率为[15Hz,120Hz],室外风机的转速不超过700转/分钟,室内风机的转速不超过1100转/分钟。上述界限只是优选的数值,并不是对方案的限制。对于(10%,90%)蓄电池电量来说,利用中位点和零点之间的比例关系,可以将蓄电池的电量的取值范围转换为呈中心分布的对称数域(-n,…,0,…,n),进一步在蓄电池电量的取值范围内选取多个离散点,可以每隔0.2选取一个,即同样以中位点和零点之间的比例关系,转换得到5个离散电量数据成的数组,对称分布得到{-2,-1,0,1,2}的数组,m=2。利用参数m和n可以进一步得到比例系数,k 1=m/n, 将比例系数存储在控制器中。将采集到的蓄电池电量与调用的比例系数k相乘,得到整数部分即为该信号对应的分级。转换数域是选取的因子以及选择离散点的个数都可以进行调整。
蓄电池的端电压随着使用过程不断下降,当所述蓄电池电量信号下降至为第二级时,优选为[50%,70%),所述控制器输出第二压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第二压缩机频率比例系数的乘积,输出第二室外风机转速信号,控制所述室外风机转速为室外风机最高转速与第二室外风机转速比例系数的乘积,输出第二室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第二室内风机转速比例系数的乘积。其中,第二压缩机频率比例系数优选为0.5,第二室外风机转速比例系数优选为0.84,第二室内风机转速比例系数优选为0.91。
当所述蓄电池电量信号为第三级时,优选为[30%,50%),所述控制器输出第三压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第三压缩机频率比例系数的乘积,输出第三室外风机转速信号,控制所述室外风机转速为室外风机最高转速与第三室外风机转速比例系数的乘积,输出第三室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第三室内风机转速比例系数的乘积,其中第三压缩机比例系数优选为0.3,第二室外风机转速比例系数优选为0.72,第三室内风机转速比例系数优选为0.82。
当所述蓄电池电量信号为第四级时,优选为[10%,30%),所述控制器输出第四压缩机频率信号,控制所述压缩机停机,输出第四室外风机转速信号,控制所述室外风机停机,输出第四室内风机转速信号,控制所述室内风机转速为最高转速;
其中,所述第一压缩机频率比例系数、第二压缩机频率比例系数、第三压缩机频率比例系数依次递减;所述第一室外风机转速比例系数、第二室外风机转速比例系数、第三室外风机转速比例系数依次递减;所述第一室内风机转速比例系数、第二室内风机转速比例系数、第三室内风机转速比例系数依次递减。上述比例系数可以是等幅递减,也可以是不等幅递减的。上述比例系数独立存储且具有连续的地址,便于控制器随时调用。
但是,在实际的使用过程中,所述第一压缩机频率比例系数、第二压缩机频率比例系数、第三压缩机频率比例系数优选不等幅依次递减;所述第一室外风机转速比例系数、第二室外风机转速比例系数、第三室外风机转速比例系数不等幅依次递减;所述第一室内风机转速比例系数、第二室内风机转速比例系数、第三室内风机转速比例系数不等幅依次递减。并采用如上所述的优选值。采用不等幅递减的方法是因为,当压缩机频率降低后,空调房间的制冷量降低,室内温差的变化加快且变化率逐渐增大,而室内温降随着制冷量的减少则逐渐减慢,同时还需要兼顾蓄电量的不断下降,考虑到空调房间中用户的使用舒适度,在制冷量较高时控制空气循环保持在相对较低的水平,在制冷量较低时,则通过提高空气循环维持空调房间的温度。
参见图3所示,用蓄电池进行供电时,为了起到对UPS和空调器的双重保护,本发明所公开的变频空调器控制方法还包括以下步骤:
市电中断,UPS处理器发送用于调用所述应急控制机制的应急请求信号,当接收到所述应急请求信号后,变频空调器的控制器判断所述应急请求信号是否符合预设条件。预设条件包括但不限于对应急请求信号电压和频率的判定,以表示逆变器的输出是否是正常状态。若所述应急请求信号满足所述预设条件,则表示逆变器输出属于正常状态,则所述控制器调用所述应急控制机制,所述控制器的第一信号输入通路和UPS处理器第一信号输出通路建立通信,接收UPS处理器第一信号输出通路发送的蓄电池电量信号,所述控制器将所述蓄电池电量信号作为所述应急控制机制的设定输入变量,控制器按照所述应急控制机制控制变频空调器压缩机频率、室外风机转速和室内风机转速;若所述应急请求信号不满足所述预设条件,则所述控制器的第一信号输入通路拒绝和UPS处理器第一信号输出通路建立通信并关机。
参见图4所示,市电刚回复时,有可能市电的电源质量较差,在对空调要求较高的使用场合,需要保证空调的持续正常运行,不能出现频繁地在市电电源和蓄电池电源之间切换的情况。所以,本发明所公开的变频空调器控制方法还包括以下步骤:
市电恢复,UPS处理器发送用于调用电源控制机制的电源请求信号,当接收到所述电源请求信号后,变频空调器的控制器判断所述电源请求信号是否符合预设条件。预设条件包括但不限于对电源请求信号电压和频率的判定,以表示市电的输出是否是正常状态。若所述电源信号满足所述预设条件,则所述控制器调用所述电源控制机制,所述控制器的第一信号输入通路和室温传感器建立通信,接收室温传感器输入的温度检测信号,所述控制器将温度检测信号和设定温度信号的差值作为所述电源控制机制的设定输入变量,控制器按照所述电源控制机制控制变频空调器压缩机频率、电子膨胀阀开度、室外风机转速和室内风机转速。若所述电源请求信号不满足所述预设条件,则所述控制器的第一信号通路拒绝和室温传感器建立通信。则维持按照应急控制机制运行直至电源请求信号符合预设条件。
为了使得用户了解目前的蓄电池电量,调用所述应急控制机制时,若所述应急请求信号满足所述预设条件,控制器的第一信号输出通路发送蓄电池电量信号至空调器显示装置。
本发明同时还提供了一种变频空调器控制设备,包括:
设置模块,用于设置市电供电的电源控制机制和蓄电池供电的应急控制机制;
调用模块,用于在市电中断时调用所述应急控制机制;
采样模块,用于采集蓄电池电量信号;
分级模块,用于对所述蓄电池电量信号分级;
输入模块,用于输入蓄电池电量分级信号;
输出模块,用于根据每一级蓄电池电量分级信号,输出一个压缩机频率、一个室外风机转速和/或一个室内风机转速。
分级模块将蓄电池电量信号依次递减分为四级。四级蓄电池电量信号可以保持空调设备在一段时间内的运行平稳,不会在边界阈值发生剧烈的变化,对设备形成冲击。具体来说,当分级模块将采样模块采集的蓄电池电量信号纳入第一级时,优选为[70%,90%)或[70%,100%), 所述输出模块输出第一压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第一压缩机频率比例系数的乘积,输出第一室外风机转速信号,控制室外风机转速为室外风机最高转速与第一室外风机转速比例系数的乘积,输入第一室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第一室内风机转速比例系数的乘积。上述的第一压缩机频率比例系数优选为0.7,第一室外风机转速比例系数优选为1,第一室内风机转速比例系数优选为1。当第一室外风机转速比例系数为1时,室外风机转速为700转/分钟,当第一室内风机转速比例系数为1时,室内风机转速为1100转/分钟。
在上述控制过程中,分级模块需要将每一个采样模块采集到的蓄电池信号分别与上限和下限做比较,才能判定是否在该级别中,为了提高应急控制机制的运算速度,进一步采用了以下的方法。在设备的实际运行过程中,输入变量和输出变量的物理信号范围总是有界的,比如蓄电池电量不会超过其全部电量,实际工作中,也更希望在蓄电池电量在90%左右时才开始主动干预,以保持制冷量充足,当然不会低于其保护值(通常设置为10%)。而输出变量,压缩机频率为[15Hz,120Hz],室外风机的转速不超过700转/分钟,室内风机的转速不超过1100转/分钟。上述界限只是优选的数值,并不是对方案的限制。对于(10%,90%)蓄电池电量来说,分级模块利用中位点和零点之间的比例关系,可以将蓄电池的电量的取值范围转换为呈中心分布的对称数域(-n,…,0,…,n),进一步在蓄电池电量的取值范围内选取多个离散点,可以每隔0.2选取一个,即同样以中位点和零点之间的比例关系,转换得到5个离散电量数据成的数组,对称分布得到{-2,-1,0,1,2}的数组,m=2。利用参数m和n可以进一步得到比例系数,k 1=m/n, 将比例系数存储在控制器中。将采集到的蓄电池电量与调用的比例系数k相乘,得到整数部分即为该信号对应的分级。转换数域是选取的因子以及选择离散点的个数都可以进行调整。
蓄电池的端电压随着使用过程不断下降,当所述蓄电池电量信号下降至为第二级时,优选为[50%,70%),所述输出模块输出第二压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第二压缩机频率比例系数的乘积,输出第二室外风机转速信号,控制所述室外风机转速为室外风机最高转速与第二室外风机转速比例系数的乘积,输出第二室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第二室内风机转速比例系数的乘积。其中,第二压缩机频率比例系数优选为0.5,第二室外风机转速比例系数优选为0.84,第二室内风机转速比例系数优选为0.91。
当所述蓄电池电量信号为第三级时,优选为[30%,50%),所述输出模块输出第三压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第三压缩机频率比例系数的乘积,输出第三室外风机转速信号,控制所述室外风机转速为室外风机最高转速与第三室外风机转速比例系数的乘积,输出第三室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第三室内风机转速比例系数的乘积,其中第三压缩机比例系数优选为0.2,第二室外风机转速比例系数优选为0.72,第三室内风机转速比例系数优选为0.82。
当所述蓄电池电量信号为第四级时,优选为[10%,30%),所述输出模块输出第四压缩机频率信号,控制所述压缩机停机,输出第四室外风机转速信号,控制所述室外风机停机,输出第四室内风机转速信号,控制所述室内风机转速为最高转速;
其中,所述第一压缩机频率比例系数、第二压缩机频率比例系数、第三压缩机频率比例系数依次递减;所述第一室外风机转速比例系数、第二室外风机转速比例系数、第三室外风机转速比例系数依次递减;所述第一室内风机转速比例系数、第二室内风机转速比例系数、第三室内风机转速比例系数依次递减。上述比例系数可以是等幅递减,也可以是不等幅递减的。
但是,在实际的使用过程中,所述第一压缩机频率比例系数、第二压缩机频率比例系数、第三压缩机频率比例系数优选不等幅依次递减;所述第一室外风机转速比例系数、第二室外风机转速比例系数、第三室外风机转速比例系数不等幅依次递减;所述第一室内风机转速比例系数、第二室内风机转速比例系数、第三室内风机转速比例系数不等幅依次递减。并采用如上所述的优选值。采用不等幅递减的方法是因为,当压缩机频率开始降低后,空调房间的制冷量降低,室内温差的变化加快且变化率逐渐增大,而室内温降随着制冷量的减少则逐渐减慢,同时还需要兼顾蓄电量的不断下降,考虑到空调房间中用户的使用舒适度,在制冷量较高时控制空气循环保持在相对较低的水平,在制冷量较低时,则通过提高空气循环维持空调房间的温度。
为了起到对设备的保护,还包括:第一判断模块,用于判断接收的应急请求信号是否符合预设条件;第一通信模块,若所述应急请求信号符合预设条件,则用于接收蓄电池电量信号并将蓄电池电量信号输出至分级模块;第一拒绝模块,若所述应急请求信号不符合预设条件,则拒绝接收蓄电池电量信号。
还进一步包括,第二判断模块,用于判断接收的电源请求信号是否符合预设条件;第二通信模块,若所述电源请求信号符合预设条件,则用于接收温度检测信号;第二拒绝模块,若所述电源请求信号不符合预设条件,则拒绝接收温度检测信号。
本发明所公开的变频空调器控制设备,兼顾蓄电池电量、压缩机运转和风机运转,解决了变频空调器采用UPS和蓄电池供电时,空气调节效果和供电时间难以达到平衡的问题,具有用户舒适度高的优点。
同时还公开了一种空调器,空调器采用如上述实施例所详细描述的控制方法,在此不再赘述。采用上述实施例控制方法的空调器可以达到同样的技术效果。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种变频空调器控制方法,其特征在于,包括以下步骤:
    在变频空调器中存储有市电供电的电源控制机制和蓄电池供电的应急控制机制;
    市电中断,所述变频空调器的控制器调用所述应急控制机制,所述应急控制机制的输入变量为蓄电池电量信号,输出变量为压缩机频率、室外风机转速和/或室内风机转速;
    其中,所述蓄电池电量信号分为多级,对应每一级所述蓄电池电量信号,所述控制器输出一个压缩机频率信号,一个室外风机转速信号和/或一个室内风机转速信号。
  2. 根据权利要求1所述的变频空调器控制方法,其特征在于:
    所述蓄电池电量信号依次递减分为四级,
    当所述蓄电池电量信号为第一级时,所述控制器输出第一压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第一压缩机频率比例系数的乘积,输出第一室外风机转速信号,控制所述室外风机转速为室外风机最高转速与第一室外风机转速比例系数的乘积,输出第一室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第一室内风机转速比例系数的乘积;
    当所述蓄电池电量信号为第二级时,所述控制器输出第二压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第二压缩机频率比例系数的乘积,输出第二室外风机转速信号,控制所述室外风机转速为室外风机最高转速与第二室外风机转速比例系数的乘积,输出第二室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第二室内风机转速比例系数的乘积;
    当所述蓄电池电量信号为第三级时,所述控制器输出第三压缩机频率信号,控制所述压缩机频率为压缩机上限频率与第三压缩机频率比例系数的乘积,输出第三室外风机转速信号,控制所述室外风机转速为室外风机最高转速与第三室外风机转速比例系数的乘积,输出第三室内风机转速信号,控制所述室内风机转速为室内风机最高转速与第三室内风机转速比例系数的乘积;
    当所述蓄电池电量信号为第四级时,所述控制器输出第四压缩机频率信号,控制所述压缩机停机,输出第四室外风机转速信号,控制所述室外风机停机,输出第四室内风机转速信号,控制所述室内风机转速为最高转速;
    其中,所述第一压缩机频率比例系数、第二压缩机频率比例系数、第三压缩机频率比例系数依次递减;所述第一室外风机转速比例系数、第二室外风机转速比例系数、第三室外风机转速比例系数依次递减;所述第一室内风机转速比例系数、第二室内风机转速比例系数、第三室内风机转速比例系数依次递减。
  3. 根据权利要求2所述的变频空调器控制方法,其特征在于:
    所述第一压缩机频率比例系数、第二压缩机频率比例系数、第三压缩机频率比例系数不等幅依次递减;所述第一室外风机转速比例系数、第二室外风机转速比例系数、第三室外风机转速比例系数不等幅依次递减;所述第一室内风机转速比例系数、第二室内风机转速比例系数、第三室内风机转速比例系数不等幅依次递减。
  4. 根据权利要求3所述的变频空调器控制方法,其特征在于:
    市电中断,UPS处理器发送用于调用所述应急控制机制的应急请求信号,当接收到所述应急请求信号后,变频空调器的控制器判断所述应急请求信号是否符合预设条件;若所述应急请求信号满足所述预设条件,则所述控制器调用所述应急控制机制,所述控制器的第一信号输入通路和UPS处理器第一信号输出通路建立通信,接收UPS处理器第一信号输出通路发送的蓄电池电量信号,所述控制器将所述蓄电池电量信号作为所述应急控制机制的设定输入变量,控制器按照所述应急控制机制控制变频空调器压缩机频率、室外风机转速和室内风机转速;若所述应急请求信号不满足所述预设条件,则所述控制器的第一信号输入通路拒绝和UPS处理器第一信号输出通路建立通信。
  5. 根据权利要求4所述的变频空调器控制方法,其特征在于,还包括以下步骤:
    市电恢复,UPS处理器发送用于调用电源控制机制的电源请求信号,当接收到所述电源请求信号后,变频空调器的控制器判断所述电源请求信号是否符合预设条件;若所述电源信号满足所述预设条件,则所述控制器调用所述电源控制机制,所述控制器的第一信号输入通路和室温传感器建立通信,接收室温传感器输入的温度检测信号,所述控制器将温度检测信号和设定温度信号的差值作为所述电源控制机制的设定输入变量,控制器按照所述电源控制机制控制变频空调器压缩机频率、电子膨胀阀开度、室外风机转速和室内风机转速;若所述电源请求信号不满足所述预设条件,则所述控制器的第一信号通路拒绝和室温传感器建立通信。
  6. 根据权利要求5所述的变频空调控制方法,其特征在于,调用所述应急控制机制时,若所述应急请求信号满足所述预设条件,控制器的第一信号输出通路发送蓄电池电量信号至空调器显示装置。
  7. 一种变频空调器控制设备,其特征在于,包括:
    设置模块,用于设置市电供电的电源控制机制和蓄电池供电的应急控制机制;
    调用模块,用于在市电中断时调用所述应急控制机制;
    采样模块,用于采集蓄电池电量信号;
    分级模块,用于对所述蓄电池电量信号分级;
    输入模块,用于输入蓄电池电量分级信号;
    输出模块,用于根据每一级蓄电池电量分级信号,输出一个压缩机频率、一个室外风机转速和/或一个室内风机转速。
  8. 根据权利要求7所述的变频空调器控制设备,其特征在于,还包括:
    第一判断模块,用于判断接收的应急请求信号是否符合预设条件;
    第一通信模块,若所述应急请求信号符合预设条件,则用于接收蓄电池电量信号并将蓄电池电量信号输出至分级模块;
    第一拒绝模块,若所述应急请求信号不符合预设条件,则拒绝接收蓄电池电量信号。
  9. 根据权利要求8所述的变频空调器控制设备,其特征在于,还包括:
    第二判断模块,用于判断接收的电源请求信号是否符合预设条件;
    第二通信模块,若所述电源请求信号符合预设条件,则用于接收温度检测信号;
    第二拒绝模块,若所述电源请求信号不符合预设条件,则拒绝接收温度检测信号。
  10. 一种变频空调器,其特征在于,应用如权利要求1至6任一项所述的变频空调器控制方法。
PCT/CN2018/086644 2017-05-22 2018-05-14 一种变频空调器控制方法、控制设备和变频空调器 WO2018214766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710364873.4 2017-05-22
CN201710364873.4A CN107202401A (zh) 2017-05-22 2017-05-22 一种变频空调器控制方法、控制设备和变频空调器

Publications (1)

Publication Number Publication Date
WO2018214766A1 true WO2018214766A1 (zh) 2018-11-29

Family

ID=59905656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086644 WO2018214766A1 (zh) 2017-05-22 2018-05-14 一种变频空调器控制方法、控制设备和变频空调器

Country Status (2)

Country Link
CN (1) CN107202401A (zh)
WO (1) WO2018214766A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107202401A (zh) * 2017-05-22 2017-09-26 青岛海尔空调器有限总公司 一种变频空调器控制方法、控制设备和变频空调器
CN109059186A (zh) * 2018-06-21 2018-12-21 深圳市赛亿科技开发有限公司 空调及其控制方法、计算机可读存储介质
CN109455056B (zh) * 2018-10-12 2021-02-23 珠海格力电器股份有限公司 一种分体空调的节能控制方法及装置
CN112297754B (zh) * 2019-07-31 2022-04-26 广东美的制冷设备有限公司 驻车空调的功率控制方法、驻车空调、存储介质及装置
CN111070999B (zh) * 2019-12-05 2021-04-09 珠海格力电器股份有限公司 一种汽车空调弱电负载的供电控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869615B2 (ja) * 2000-03-22 2007-01-17 三洋電機株式会社 補助電源を内蔵した空調装置
CN104197469A (zh) * 2014-08-22 2014-12-10 青岛海尔空调器有限总公司 一种太阳能空调的控制方法
CN105485809A (zh) * 2015-12-23 2016-04-13 广东美的制冷设备有限公司 空调系统以及空调系统的控制方法
US20160131378A1 (en) * 2014-11-07 2016-05-12 Daikin Industries, Ltd. Air conditioning system
CN105936202A (zh) * 2016-06-16 2016-09-14 美的集团武汉制冷设备有限公司 车载空调系统的控制方法及车载空调系统
CN106059005A (zh) * 2016-07-18 2016-10-26 广东美的制冷设备有限公司 供电控制电路、空调器的控制方法、控制装置及家电设备
CN107202401A (zh) * 2017-05-22 2017-09-26 青岛海尔空调器有限总公司 一种变频空调器控制方法、控制设备和变频空调器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101545668A (zh) * 2008-03-25 2009-09-30 北京恩湾科技有限公司 一种自动温控通风系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869615B2 (ja) * 2000-03-22 2007-01-17 三洋電機株式会社 補助電源を内蔵した空調装置
CN104197469A (zh) * 2014-08-22 2014-12-10 青岛海尔空调器有限总公司 一种太阳能空调的控制方法
US20160131378A1 (en) * 2014-11-07 2016-05-12 Daikin Industries, Ltd. Air conditioning system
CN105485809A (zh) * 2015-12-23 2016-04-13 广东美的制冷设备有限公司 空调系统以及空调系统的控制方法
CN105936202A (zh) * 2016-06-16 2016-09-14 美的集团武汉制冷设备有限公司 车载空调系统的控制方法及车载空调系统
CN106059005A (zh) * 2016-07-18 2016-10-26 广东美的制冷设备有限公司 供电控制电路、空调器的控制方法、控制装置及家电设备
CN107202401A (zh) * 2017-05-22 2017-09-26 青岛海尔空调器有限总公司 一种变频空调器控制方法、控制设备和变频空调器

Also Published As

Publication number Publication date
CN107202401A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2018214766A1 (zh) 一种变频空调器控制方法、控制设备和变频空调器
CN108375175B (zh) 空调系统控制方法及装置
CN107143979B (zh) 一拖多空调器的控制方法、控制装置和空调器
CN107228453B (zh) 一种定频空调器控制方法和定频空调器
CN108151250B (zh) 变频空调控制方法和装置
CN106705353B (zh) 一种多联机空调控制方法
CN113432257B (zh) 空调器新风功能控制方法、装置、空调器和存储介质
CN104566769B (zh) 空调节能控制方法和系统
CN110608476A (zh) 压缩机的控制方法、装置、设备和水多联空调系统
CN109237703B (zh) 用于多联机空调系统的控制方法
CN105318494A (zh) 空气调节器及其控制方法
CN113883673A (zh) 空调器的控制方法、装置、空调器和存储介质
CN111102691B (zh) 模块组合空调系统
CN114459133A (zh) 一种中央空调系统节能控制方法及节能控制系统
WO2022143757A1 (zh) 冰机冷却塔的运行控制系统及运行控制方法
CN113028571B (zh) 机房空调的压缩机控制方法、装置、空调及介质
CN102305450B (zh) 提高空调器制冷季节能源消耗效率方法、变频控制系统
CN112665246B (zh) 电子膨胀阀的调控方法、装置及热泵设备
US10935274B2 (en) Hybrid tandem compressor system and method of use
JPH0755225A (ja) 空気調和機のデマンド制御システム
US20150211762A1 (en) Heat source system control device
CN114484755B (zh) 空调的控制方法、装置、设备、空调及介质
CN113739350B (zh) 一种低温制热变频控制方法、装置、存储介质和空调器
US20220373206A1 (en) Chiller controller for optimized efficiency
WO2015186181A1 (ja) 冷凍空調装置用制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805502

Country of ref document: EP

Kind code of ref document: A1