WO2022143757A1 - 冰机冷却塔的运行控制系统及运行控制方法 - Google Patents

冰机冷却塔的运行控制系统及运行控制方法 Download PDF

Info

Publication number
WO2022143757A1
WO2022143757A1 PCT/CN2021/142427 CN2021142427W WO2022143757A1 WO 2022143757 A1 WO2022143757 A1 WO 2022143757A1 CN 2021142427 W CN2021142427 W CN 2021142427W WO 2022143757 A1 WO2022143757 A1 WO 2022143757A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
temperature
programmable logic
logic controller
operating frequency
Prior art date
Application number
PCT/CN2021/142427
Other languages
English (en)
French (fr)
Inventor
游文裕
薛峰
Original Assignee
昆山璟赫机电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山璟赫机电工程有限公司 filed Critical 昆山璟赫机电工程有限公司
Priority to US18/008,624 priority Critical patent/US20230221085A1/en
Publication of WO2022143757A1 publication Critical patent/WO2022143757A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/003Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus specially adapted for cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C2001/006Systems comprising cooling towers, e.g. for recooling a cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the embodiments of the present application relate to the technical field of ice machine cooling, for example, to an operation control system and an operation control method of a cooling tower of an ice machine.
  • the cooling water of the ice machine controls the opening and closing of the fans of the cooling towers through the outlet water temperature of the cooling towers.
  • This method has the following defects: 1) Controlling the switch of the cooling tower fan through the outlet water temperature of the cooling tower, or controlling the switches of the cooling tower fans one by one, the system will appear mixed water phenomenon. 2) Frequent opening or closing of the cooling tower fan will reduce the life of the motor and electrical components. 3) The outlet water temperature of the cooling tower fluctuates greatly, and the ice machine consumes a lot of energy, which will also increase the outlet water temperature. 4) The cooling capacity of the ice machine cannot be optimal.
  • Embodiments of the present application provide an operation control system and an operation control method for an ice machine cooling tower, so as to use the cooling tower's heat dissipation area to cool down, instead of controlling the start and stop of the fan through the outlet water temperature of the cooling tower, so as to avoid water mixing in the system
  • the occurrence of the phenomenon can avoid frequent start and stop of the cooling tower fan, increase the service life of the motor and electrical components, and ensure the stable operation of the system.
  • an embodiment of the present application provides an operation control system for an ice machine cooling tower, including a chiller, a first temperature sensor, a second temperature sensor, a programmable logic controller, and an artificial intelligence controller;
  • the chiller comprises an ice water machine and a cooling water tower, and a plurality of fans are arranged in the cooling water tower;
  • the first temperature sensor is configured to sense the outlet water temperature of the cooling water tower
  • the second temperature sensor is configured to sense the wet bulb temperature outside the chiller
  • the artificial intelligence controller is connected in communication with the first temperature sensor, and is configured to determine a temperature change value according to the outlet water temperature and the current operating frequency of the fan;
  • the programmable logic controller is configured to determine the operation mode of the fan according to the control output value of the programmable logic controller and the system setting output value of the operation control system, and the operation mode includes a first operation mode and a second operating mode, wherein the operating frequency of the fan in the second operating mode is greater than or equal to the operating frequency of the fan in the first operating mode, and the number of turns on of the fan in the second operating mode greater than or equal to the number of fans turned on in the first operating mode;
  • the programmable logic controller is respectively connected in communication with the first temperature sensor, the second temperature sensor and the artificial intelligence controller, and is set to be in the first operation mode and the second operation mode, according to the water outlet
  • the temperature, the wet bulb temperature, and the temperature change value determine adjustment information for the operating frequency.
  • an embodiment of the present application further provides an operation control method for an ice machine cooling tower, the method including the operation control system described in the first aspect above, including:
  • the operation mode of the fan is determined according to the control output value of the programmable logic controller and the system setting output value of the operation control system, and the operation mode includes a first operation mode and a second operation mode.
  • the operating frequency of the fan in the second operating mode is greater than or equal to the operating frequency of the fan in the first operating mode, and the number of fans turned on in the second operating mode is greater than or equal to the first operating mode The number of fans that are turned on;
  • the programmable logic controller receives the outlet water temperature, the wet bulb temperature and the temperature change value, and generates a value according to the outlet water temperature, the wet bulb temperature and the temperature
  • the change value determines adjustment information of the operating frequency
  • the programmable logic controller controls the fan to operate at a second frequency, and the second operating frequency is adjustable.
  • FIG. 1 is a schematic structural diagram of an operation control system of an ice machine cooling tower provided by an embodiment of the application;
  • FIG. 2 is a partially enlarged schematic diagram of an operation control system structure provided by an embodiment of the present application.
  • FIG. 3 is a partially enlarged schematic diagram of another operation control system structure provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an operation control method for an ice machine cooling tower provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an operation control system of an ice machine cooling tower provided by an embodiment of the present application.
  • the operation control system includes a chiller 10 , a first temperature sensor 11 , a second temperature sensor 12 , a programmable logic controller 13 and an artificial intelligence controller 14 .
  • the chiller 10 includes a chiller 15 and a cooling water tower 16.
  • the cooling water tower 16 is provided with a plurality of fans (not shown), the first temperature sensor 11 is configured to sense the outlet water temperature of the cooling water tower 16, and the second temperature sensor 12 is set to sense the wet bulb temperature outside the chiller 10, the artificial intelligence controller 14 is connected in communication with the first temperature sensor 11, and is set to determine the temperature change value according to the outlet water temperature and the current operating frequency of the fan (for example, it can be based on the outlet water temperature and The current operating frequency of the fan automatically resets the temperature change value), and the programmable logic controller 13 is set to determine the operating mode of the fan according to the control output value of the programmable logic controller 13 and the system setting output value of the operating control system.
  • the operating frequency of the fan in the second operating mode is greater than or equal to the operating frequency of the fan in the first operating mode
  • the number of fans turned on in the second operating mode is greater than or equal to the first operating mode
  • the number of fans turned on in the middle, the programmable logic controller 13 is respectively connected with the first temperature sensor 11, the second temperature sensor 12 and the artificial intelligence controller 14, and is set to be in the first operation mode and the second operation mode, according to the water outlet
  • the temperature, wet bulb temperature and temperature change values determine the adjustment information for the operating frequency.
  • the cooling water tower 16 in the chiller 10 is a device for cooling water, which is widely used in air-conditioning circulating systems and industrial circulating water systems.
  • the cooling water tower 16 utilizes the contact of water and air to disperse through evaporation. Heat generated in industry or in refrigeration and air conditioning.
  • the second temperature sensor 12 is a wet bulb temperature sensor, and is configured to obtain the wet bulb temperature of the air outside the chiller 10.
  • the wet bulb temperature sensor may be a wet bulb thermometer, and the measured temperature outside the chiller 10
  • the wet bulb temperature can be represented by WB.
  • the first temperature sensor 11 is used to obtain the temperature of the water outlet side of the cooling water tower 16, and the operating frequency of a plurality of fans in the cooling water tower 16 can be controlled according to the temperature of the outlet water of the cooling water tower 16, wherein T can be used to represent the outlet water temperature of the cooling tower.
  • the artificial intelligence controller 14 calculates a real-time dynamically adjustable temperature change value according to the increase or decrease of the outlet water temperature of the cooling water tower 16, which is represented by ⁇ T.
  • ⁇ T the outlet water temperature of the cooling water tower 16
  • the detailed calculation principles and steps for calculating the temperature change value according to the outlet water temperature of the cooling water tower 16 and the current operating frequency of the fan are well known to those skilled in the art and will not be explained here.
  • the set value is a set value which is based on the change of the air outside the chiller 10.
  • the wet bulb temperature change is dynamically set in real time (for example, the set value can be reset), so as to ensure the operating frequency of the fans in the cooling water tower 16 .
  • the programmable logic controller 13 in this embodiment is commonly used in a closed-loop system, and is equivalent to a regulator.
  • the programmable logic controller 13 sends a signal to adjust its own control output value (there is a corresponding relationship between the range of the control output value and the operating frequency range of the fan), which can quickly track the occurrence of the water temperature. change to eliminate steady-state errors.
  • the multiple fans in the cooling water tower 16 operate in two modes, and the operation modes of the multiple fans are determined according to the relationship between the control output value of the programmable logic controller 13 and the system setting output value of the operation control system.
  • the first operation mode is an ON-OFF mode
  • the second operation mode is a proportional-integral-differential (PID) mode.
  • the plurality of fans in the cooling water tower 16 operate in the first operation mode, that is, the ON-OFF mode, when the programmable logic controller
  • the plurality of fans in the cooling water tower 16 operate in the second operation mode, namely the PID mode, when the plurality of fans in the cooling water tower 16 operate in the first mode.
  • the running in the running mode it runs at the first preset frequency, and the frequency remains unchanged.
  • the plurality of fans in the cooling water tower 16 operate in the second operation mode, the fans operate at a second preset frequency (the second preset frequency increases or decreases simultaneously with the frequency calculated by the programmable logic controller 13).
  • FIG. 2 is a partial enlarged schematic diagram of the structure of an operation control system provided by an embodiment of the present application.
  • the first end a of the programmable logic controller 13 and the output water from the first temperature sensor 11 The output terminal b of the temperature T is connected, the second terminal c of the programmable logic controller 13 is connected to the output terminal d of the second temperature sensor 12 that outputs the wet bulb temperature WB, and the third terminal e of the programmable logic controller 13 is connected to the artificial
  • the output end f that outputs the temperature change value ⁇ T in the intelligent controller 14 is connected, and according to the obtained outlet water temperature T, wet bulb temperature WB and temperature change value ⁇ T, the adjustment information of the operating frequency of the fan in the cooling water tower is determined to ensure the cooling water tower.
  • the middle fan runs smoothly with energy saving.
  • the operation control system of the ice machine cooling tower includes a chiller, a first temperature sensor, a second temperature sensor, a programmable logic controller and an artificial intelligence controller.
  • the chiller includes an ice water machine and a cooling water tower.
  • the water tower is provided with a plurality of fans, the first temperature sensor is set to sense the outlet water temperature of the cooling water tower, the second temperature sensor is set to sense the wet bulb temperature outside the chiller, and the artificial intelligence controller is connected in communication with the first temperature sensor, It is set to determine the temperature change value according to the water outlet temperature and the current operating frequency of the fan, and the programmable logic controller is set to determine the operating mode of the fan according to the control output value of the programmable logic controller and the system setting output value of the operation control system.
  • the modes include a first operation mode and a second operation mode, the operation frequency of the fan in the second operation mode is greater than or equal to the operation frequency of the fan in the first operation mode, and the number of fans turned on in the second operation mode is greater than or equal to the first operation mode
  • the number of fans turned on in the mode, the programmable logic controller is respectively connected with the first temperature sensor, the second temperature sensor and the artificial intelligence controller, and is set to be in the second operation mode, according to the outlet water temperature, wet bulb temperature and temperature change Determine the adjustment information of the operating frequency by comparing the outlet water temperature of the cooling water tower with the wet bulb temperature outside the chiller, and determine the sum of the temperature change values according to the outlet water temperature and the current operating frequency of the fan, and control the frequency conversion of the cooling water tower fan.
  • the control output value of the programmable logic controller and the system setting output value of the operation control system determine the operation mode of the fan, use the area of the cooling tower to dissipate heat to the greatest extent, save energy, and save the energy consumption of the ice machine, thereby avoiding system confusion.
  • the occurrence of water phenomenon ensures the stable operation of the system.
  • the programmable logic controller When the control output value is less than the system set output value, the programmable logic controller is set to control the fan to run in the first operating mode, and in the first operating mode, the programmable logic controller is set to control the fan to run at the first operating frequency , the first operating frequency is fixed, the programmable logic controller is also set to control multiple fans to be turned on, and the number of fans turned on is adjustable.
  • the determination of the operation modes of the plurality of fans according to the magnitude relationship between the control output value of the programmable logic controller and the system setting output value of the operation control system can be exemplified.
  • the programmable logic controller is often used in a closed-loop system.
  • the programmable logic controller sends a signal to adjust its own control output value (the range of the control output value and the operating frequency range of the fan). There is a correspondence between them).
  • N is the number of fans turned on in the operation control system
  • DIFF is the number of fans in the programmable logic controller
  • the control output value of the programmable logic controller is 40% less than the system 4on. OFF mode. That is to say, in the whole closed-loop system, the control output value of the programmable logic controller takes 47% as the node to control the fan operation, that is, when the control output value of the programmable logic controller is less than 47%, the fan operation mode is the first One mode of operation, ie, ON-OFF mode. At this time, the fan operates at a fixed first preset frequency, and in this embodiment, the first preset frequency is 20 Hz.
  • the programmable logic controller can not only send a signal to adjust its own control output value (between the range of the control output value and the operating frequency range of the fan) when the temperature of the outlet water of the cooling water tower changes. There is a corresponding relationship) to quickly track the changes in water temperature, so as to control the opening of multiple fans in the cooling water tower. No explanation is given here.
  • the programmable logic controller is set to control N fans to turn on in sequence, where N ⁇ 2 and N is an integer, wherein the turn-on time of the ith fan is earlier than the turn-on time of the (i+1)th fan, and the The cumulative operating time of the i-th fan is less than the cumulative operating time of the (i+1)-th fan; wherein, 1 ⁇ i ⁇ N, and i is an integer.
  • the programmable logic controller controls the N fans in the cooling tower to start sequentially, and each time the fans are turned on or off, the cumulative running time of the fans needs to be judged.
  • the fan with a short cumulative operating time starts first, and the fan with a long cumulative operating time stops first, so that the programmable logic controller can control the fans to be turned on or the number of fans to be turned on to cool the entire system.
  • the cumulative running time of the N fans and the running time of each of the N fans are simultaneously timed, and the timed time of a single operation of each fan can be reset to zero.
  • the programmable logic controller When the control output value is greater than or equal to the system set output value, the programmable logic controller is set to control the fan to run in the second operating mode, and in the second operating mode, the programmable logic controller is set to control the fan to operate at the second frequency During operation, the second operation frequency is adjustable (for example, it can be adjusted automatically), and the programmable logic controller is further configured to control multiple fans to be turned on, and the number of fans to be turned on is fixed.
  • the control output value of the programmable logic controller is smaller than the system setting output value.
  • programmable logic controllers are often used in closed-loop systems.
  • the control output value of the programmable logic controller is 40%.
  • the control output value of the programmable logic controller is 40% less than the system 4on.
  • the control output value of the controller takes 47% as the node to control the fan operation.
  • the fan operation mode is the second operation mode, that is, the PID mode.
  • the second preset frequency runs, and the second preset frequency is a variable value that can be adjusted within a preset range. In this embodiment, the frequency adjustment range of the second preset frequency is 20-50 Hz.
  • the programmable logic controller When the sum of the wet bulb temperature and the temperature change value is less than the outlet water temperature, the programmable logic controller is set to increase the operating frequency of the fan. When the sum of the wet bulb temperature and the temperature variation value is greater than the outlet water temperature, the programmable logic controller sets To reduce the operating frequency of the fan.
  • the sum of the wet bulb temperature WB and the temperature change value ⁇ T is used as a set value, and the set value is compared with the outlet water temperature T of the cooling water tower, which can be controlled according to the change of the set value.
  • the water temperature of the cooling water tower is constant, and the stable operation of the control fan is controlled.
  • the operating frequency of the fan is reduced by the programmable logic controller, and the fan is controlled to run in the first operating mode.
  • the operating frequency of the fan is reduced to 20Hz to reduce the fluctuation of the outlet water temperature of the cooling water tower.
  • FIG. 3 is a partial enlarged schematic diagram of another operation control system structure provided by an embodiment of the present application.
  • the operation control system further includes a frequency converter 18 , the input end a of the frequency converter 18 is connected to the output end b of the programmable logic controller 13 , the output end c of the frequency converter 18 is connected to the fan 19 , and the programmable logic
  • the controller 13 is configured to output adjustment information of the operating frequency to the inverter 18
  • the inverter 18 is configured to adjust the operating frequency according to the adjustment information and send the adjusted operating frequency information to the fan 19 to control the operation of the fan 19 .
  • the frequency converter 18 is a power control component that converts its own operating frequency into another operating frequency by using the on-off function of the power semiconductor device.
  • the programmable logic controller 13 outputs the adjustment information of the operating frequency to the frequency converter 18 by comparing the sum of the wet bulb temperature and the temperature change value (WB+ ⁇ T) and the outlet water temperature T, and the frequency conversion After adjusting the operating frequency according to the adjustment information, the controller 18 sends the adjusted operating frequency information to the fan 19, and the fan 19 operates at the adjusted operating frequency.
  • the programmable logic controller 13 avoids this by increasing the operating frequency of the fan 19, wherein the programmable logic controller 18 will increase the fan 19
  • the frequency adjustment information is output to the inverter, and the inverter 18 sends the adjusted operating frequency information to the fan 19 according to the received adjustment information.
  • the fan 19 performs the current work with the received operating frequency information, and can control the water outlet of the cooling water tower The temperature is constant.
  • the operation control system further includes a human-computer interaction module 17.
  • the human-computer interaction module 17 is respectively connected to the first temperature sensing module 11, the second temperature sensing module 12 and the inverter in communication and connection.
  • the human-computer interaction module is set to Displays water temperature, wet bulb temperature and operating frequency.
  • the interaction of the human-computer interaction module is mainly realized through the user interface.
  • the human-computer interaction module may be an inductive liquid crystal display device, which uses its special display transparency characteristics to give the user feedback parameters from the visual effect.
  • the human-computer interaction module When running the human-computer interaction module in the control system, When all connected to the first temperature sensing module, the second temperature sensing module and the inverter, the user or operator can obtain the outlet water temperature of the cooling water tower, the wet bulb temperature outside the chiller, and the operating frequency of the fan in time. In the system, the temperature of the outlet water is high or the operating frequency of the fan is low, which can be adjusted in time through the human-computer interaction module to avoid damage to the motor.
  • FIG. 4 is a schematic flowchart of an operation control method for an ice machine cooling tower provided by an embodiment of the present application.
  • the method includes the operation control system provided by any of the above embodiments.
  • the operation control method may include the following:
  • the operation mode includes a first operation mode and a second operation mode, and the operation frequency of the fan in the second operation mode It is greater than or equal to the operating frequency of the fans in the first operating mode, and the number of fans turned on in the second operating mode is greater than or equal to the number of fans turned on in the first operating mode.
  • the fan operation mode is the second operation mode, that is, the PID mode.
  • the programmable logic controller outputs the adjustment information of the operating frequency to the inverter , after the inverter adjusts the operating frequency according to the adjustment information and sends the adjusted operating frequency information to the fan, the fan runs at the adjusted operating frequency, that is, the fan runs at the second frequency, and the second preset frequency is a
  • the change value that can be adjusted within the set range, in this embodiment, the frequency adjustment range of the second preset frequency is 20-50 Hz.
  • the sum of the wet bulb temperature WB and the temperature change value ⁇ T is used as a set value.
  • the fan runs at the second frequency, it is necessary to ensure that the set value is within a certain water temperature range. Assuming that the low limit value of the water temperature range is SP1 and the high limit value is SP2, if WB+ ⁇ T exceeds the set low limit SP1 and high limit SP2, the chiller needs to control the inlet water temperature of the cooling water of the chiller.
  • the operation control method further includes: in the first operation mode, controlling the fans to operate at a first operating frequency, the first operating frequency is fixed, and controlling N fans to turn on in sequence, where N ⁇ 2 and N is an integer, where the ith The turn-on time of the first fan is earlier than the turn-on time of the (i+1)th fan, and the cumulative operating time of the i-th fan is less than the cumulative operating time of the (i+1)-th fan; wherein, 1 ⁇ i ⁇ N, and i is an integer.
  • the operating frequency of the fan is reduced by the programmable logic controller, and the fan is controlled to run in the first operating mode.
  • the operating frequency of the fan is reduced to 20Hz, and the cooling tower fans are unloaded one by one when the outlet water temperature continues to drop, so as to reduce the fluctuation of the outlet water temperature of the cooling water tower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种冰机冷却塔(16)的运行控制系统及运行控制方法。运行控制系统包括冷水机组(10)、第一温度传感器(11)、第二温度传感器(12)、可编程逻辑控制器(13)和人工智能控制器(14)。通过比较冷却水塔(16)的出水温度与冷水机组(10)外部的湿球温度和根据出水温度和风扇的当前运行频率确定温度变化趋势的具体数值,进一步控制冷却水塔(16)的风扇的变频,通过可编程逻辑控制器(13)的控制输出值以及运行控制系统的系统设定输出值确定风扇的运行模式,使用冷却塔(16)的散热面积散热达到节约冰机的能耗的目的,进而避免系统混水现象的发生,确保系统稳定运行。

Description

冰机冷却塔的运行控制系统及运行控制方法
本申请要求在2020年12月29日提交中国专利局、申请号为202011593294.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及冰机冷却的技术领域,例如涉及一种冰机冷却塔的运行控制系统及运行控制方法。
背景技术
目前,大多数生产企业都会配有冰机和冷却塔来给高温设备或产品进行冷却。
相关技术中,冰机冷却水是通过冷却塔的出水温度来控制冷却塔的风扇的开启和关闭,当有多个冷却塔时,还需一台一台的开启或关闭每个冷却塔的风扇。该方法存在如下缺陷:1)通过冷却塔的出水温度控制冷却塔的风扇的开关,或一台一台的控制冷却塔风扇的开关,系统会出现混水现象。2)冷却塔的风扇频繁开启或关闭,会降低电机与电气元件的寿命。3)冷却塔的出水温度波动大,冰机能耗大,也会提高出水温度。4)冰机的制冷量无法做到最佳。
发明内容
本申请实施例提供一种冰机冷却塔的运行控制系统及运行控制方法,以实现利用冷却塔的散热面积降温,而不是通过冷却塔的出水温度控制风扇的启停,以此避免系统混水现象的发生,避免冷却塔的风扇的频繁启停,增长电机与电气元件的使用寿命,确保系统稳定运行。
第一方面,本申请实施例提供了一种冰机冷却塔的运行控制系统,包括冷水机组、第一温度传感器、第二温度传感器、可编程逻辑控制器和人工智能控制器;
所述冷水机组包括冰水机和冷却水塔,所述冷却水塔中设置有多个风扇;
所述第一温度传感器设置为感测所述冷却水塔的出水温度;
所述第二温度传感器设置为感测所述冷水机组外部的湿球温度;
所述人工智能控制器与所述第一温度传感器通信连接,设置为根据所述出水温度和所述风扇的当前运行频率确定温度变化值;
所述可编程逻辑控制器设置为根据所述可编程逻辑控制器的控制输出值以及所述运行控制系统的系统设定输出值确定所述风扇的运行模式,所述运行模式包括第一运行模式和第二运行模式,所述第二运行模式中所述风扇的运行频率大于或者等于所述第一运行模式中所述风扇的运行频率,且所述第二运行模式中所述风扇的开启数量大于或者等于所述第一运行模式中所述风扇的开启数量;
所述可编程逻辑控制器分别与所述第一温度传感器、所述第二温度传感器和所述人工智能控制器通信连接,设置为在第一运行模式和第二运行模式中,根据所述出水温度、所述湿球温度和所述温度变化值确定所述运行频率的调整信息。
第二方面,本申请实施例还提供了一种冰机冷却塔的运行控制方法,该方法包括上述第一方面所述的运行控制系统,包括:
根据所述可编程逻辑控制器的控制输出值以及所述运行控制系统的系统设定输出值确定所述风扇的运行模式,所述运行模式包括第一运行模式和第二运行模式,所述第二运行模式中所述风扇的运行频率大于或者等于所述第一运行模式中所述风扇的运行频率,且所述第二运行模式中所述风扇的开启数量大于或者等于所述第一运行模式中所述风扇的开启数量;
在所述第二运行模式下,所述可编程逻辑控制器接收所述出水温度、所述湿球温度和所述温度变化值,并根据所述出水温度、所述湿球温度和所述温度变化值确定所述运行频率的调整信息,所述可编程逻辑控制器控制所述风扇以第二频率运行,所述第二运行频率可调。
附图说明
图1为本申请实施例提供的一种冰机冷却塔的运行控制系统的结构示意图;
图2为本申请实施例提供的一种运行控制系统结构中的局部放大示意图;
图3为本申请实施例提供的又一种运行控制系统结构中的局部放大示意图;
图4本申请实施例提供的一种冰机冷却塔的运行控制方法的流程示意图。
具体实施方式
以下结合附图及示例实施例,对依据本申请提出的一种冰机冷却塔的运行控制系统及运行控制方法的具体实施方式、结构、特征及其功效,详细说明如后。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请还可以采用其他不同于在此描述的其他实施方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广,因此本申请不受下面公开的具体实施例的限制。
图1为本申请实施例提供的一种冰机冷却塔的运行控制系统的结构示意图。如图1所示,该运行控制系统包括冷水机组10、第一温度传感器11、第二温度传感器12、可编程逻辑控制器13和人工智能控制器14。其中,冷水机组10包括冰水机15和冷却水塔16,冷却水塔16中设置有多个风扇(未示出),第一温度传感器11设置为感测冷却水塔16的出水温度,第二温度传感器12设置为感测冷水机组10外部的湿球温度,人工智能控制器14与第一温度传感器11通信连接,设置为根据出水温度和风扇的当前运行频率确定温度变化值(例如可以根据出水温度和风扇的当前运行频率自动重置温度变化值),可编程逻辑控制器13设置为根据可编程逻辑控制器13的控制输出值以及运行控制系统的系统设定输出值确定风扇的运行模式,运行模式包括第一运行模式和第二运行模式,第二运行模式中风扇的运行频率大于或者等于第一运行模式中风扇的运行频率,且第二运行模式中风扇的开启数量大于或者等于第一运行模式中风扇的开启数量,可编程逻辑控制器13分别与第一温度传感器11、第二温度传感器12和人工智能控制器14通信连接,设置为在第一运行模式和第二运行模式中,根据出水温度、湿球温度和温度变化值确定运行频率的调整信息。
其中,冷水机组10中的冷却水塔16是一种将水冷却的装置,其广泛应用于空调循环系统和工业循环水系统中,冷却水塔16是利用水和空气的接触,通过蒸发作用来散去工业上或制冷空调中产生的热量。另外,第二温度传感器12为湿球温度传感器,设置为获取冷水机组10外部空气的湿球温度,在本实施例中,湿球温度传感器可以是一个湿球温度计,测得的冷水机组10外部的湿球温度可以用WB表示。第一温度传感器11用来获取冷却水塔16出水侧的温度,根据冷却水塔16的出水温度的高低可控制冷却水塔16中多个风扇的运行频率,其中,可以用T表示冷却塔的出水温度。
另外,人工智能控制器14根据冷却水塔16的出水温度的升高或降低计算 得到一个实时动态可调的温度变化值,以ΔT来表示,在本实施例中,在人工智能控制器14中,关于根据冷却水塔16的出水温度和风扇的当前运行频率计算温度变化值的详细计算原理及步骤为本领域技术人员公知,在此不做解释。以冷水机组10外部的湿球温度WB和由人工智能控制器14计算得到的动态可调的温度变化值ΔT的和值为一个设定值,该设定值是随着冷水机组10外部空气的湿球温度变化进行动态实时设置的(例如可以重置该设定值),以此可以确保冷却水塔16中风扇的运行频率。
需要说明的是,在本实施例中的可编程逻辑控制器13常用在闭环系统中,相当于一个调节器。当冷却水塔16的出水温度发生变化时,可编程逻辑控制器13发出信号调节自身的控制输出值(控制输出值的范围与风扇的运行频率范围之间存在对应关系),可以快速跟踪水温发生的变化,消除稳态误差。
冷却水塔16中的多个风扇分两种模式运行,根据可编程逻辑控制器13的控制输出值以及运行控制系统的系统设定输出值的大小关系确定多个风扇的运行模式。在本实施例中,第一运行模式为开-关(ON-OFF)模式,第二运行模式为比例-积分-微分(proportion integral differential,PID)模式。当可编程逻辑控制器13的控制输出值小于运行控制系统的系统设定输出值时,冷却水塔16中的多个风扇以第一运行模式运行,即ON-OFF模式,当可编程逻辑控制器13的控制输出值大于或等于运行控制系统的系统设定输出值时,冷却水塔16中的多个风扇以第二运行模式运行,即PID模式,当冷却水塔16中的多个风扇以第一运行模式运行时,以第一预设频率运行,且频率保持不变。当冷却水塔16中的多个风扇以第二运行模式运行时,风扇以第二预设频率运行(第二预设频率随可编程逻辑控制器13计算出的频率同时升高或同时降低)。
另外需要说明的是,图2为本申请实施例提供的一种运行控制系统结构中的局部放大示意图。如图2所示,为了方便理解冰机冷却塔的运行控制系统中多个部件的连接关系,现做如下描述:可编程逻辑控制器13的第一端a与第一温度传感器11中输出出水温度T的输出端b连接,可编程逻辑控制器13的第二端c与第二温度传感器12中输出湿球温度WB的输出端d连接,可编程逻辑控制器13的第三端e与人工智能控制器14中输出温度变化值ΔT的输出端f连接,根据获取到的出水温度T、湿球温度WB以及温度变化值ΔT,确定冷却水塔中风扇的运行频率的调整信息,以确保冷却水塔中风扇节能平稳运行。
本实施例提供的冰机冷却塔的运行控制系统,包括冷水机组、第一温度传 感器、第二温度传感器、可编程逻辑控制器和人工智能控制器,冷水机组包括冰水机和冷却水塔,冷却水塔中设置有多个风扇,第一温度传感器设置为感测冷却水塔的出水温度,第二温度传感器设置为感测冷水机组外部的湿球温度,人工智能控制器与第一温度传感器通信连接,设置为根据出水温度和风扇的当前运行频率确定温度变化值,可编程逻辑控制器设置为根据可编程逻辑控制器的控制输出值以及运行控制系统的系统设定输出值确定风扇的运行模式,运行模式包括第一运行模式和第二运行模式,第二运行模式中风扇的运行频率大于或者等于第一运行模式中风扇的运行频率,且第二运行模式中风扇的开启数量大于或者等于第一运行模式中风扇的开启数量,可编程逻辑控制器分别与第一温度传感器、第二温度传感器和人工智能控制器通信连接,设置为在第二运行模式中,根据出水温度、湿球温度和温度变化值确定运行频率的调整信息,通过比较冷却水塔的出水温度与冷水机组外部的湿球温度和根据出水温度和风扇的当前运行频率确定温度变化值的和值,控制冷却水塔的风扇的变频,通过可编程逻辑控制器的控制输出值以及运行控制系统的系统设定输出值确定风扇的运行模式,最大程度的使用冷却塔的面积散热,节约能源,同时节约冰机的能耗,进而避免系统混水现象的发生,确保系统稳定运行。
当控制输出值小于系统设定输出值时,可编程逻辑控制器设置为控制风扇运行在第一运行模式,在第一运行模式时,可编程逻辑控制器设置为控制风扇以第一运行频率运行,第一运行频率固定,可编程逻辑控制器还设置为控制多个风扇开启,风扇的开启数量可调。
其中,在上述实施例中,关于根据可编程逻辑控制器的控制输出值以及运行控制系统的系统设定输出值的大小关系确定多个风扇的运行模式可以举例说明。
示例性的,可编程逻辑控制器常用在闭环系统中,当冷却水塔的出水温度发生变化时,可编程逻辑控制器发出信号调节自身的控制输出值(控制输出值的范围与风扇的运行频率范围之间存在对应关系)。例如,此时可编程逻辑控制器的控制输出值为40%,运行控制系统中依次打开风扇时的系统设定输出值的计算公式:系统1on=系统1off+DIFF,系统2off=系统1on-DIFF/2,系统2on=系统1on+DIFF/2,系统Non=系统(N-1)on+DIFF/2,其中,N为运行控制系统中打开风扇的个数,DIFF为可编程逻辑控制器中的自定义值,DIFF=18%,另外,在冷却水塔中,关闭一台风扇,所需的控制值为系统1off=2%。
由上述公式,可计算得出:系统1on=20%,系统2on=29%,系统3on=38%,系统4on=47%。当运行控制系统中的风扇依次打开到第4个时,可编程逻辑控制器的控制输出值40%小于系统4on,此时,冷却水塔中的多个风扇以第一运行模式运行,即ON-OFF模式。也就是说明,在整个闭环系统中,可编程逻辑控制器的控制输出值以47%为节点控制风扇运行,即,当可编程逻辑控制器的控制输出值小于47%时,风扇运行模式为第一运行模式,即,ON-OFF模式。此时,风扇以固定的第一预设频率运行,在本实施例中,该第一预设频率为20Hz。
需要说明的是,在整个闭环系统中,可编程逻辑控制器不仅可以在冷却水塔的出水温度发生变化时,发出信号调节自身的控制输出值(控制输出值的范围与风扇的运行频率范围之间存在对应关系),以快速跟踪水温发生的变化,从而能控制冷却水塔中多个风扇的开启,具体开启风扇或控制开启风扇数量的控制方法由操作人员对可编程逻辑控制器设定后实现,此处不做解释。
可编程逻辑控制器设置为控制N个风扇顺次开启,其中,N≥2且N为整数,其中,第i个风扇的开启时间早于第(i+1)个风扇的开启时间,所述第i个风扇的累积运行时间小于所述第(i+1)个风扇的累积运行时间;其中,1≤i<N,且i为整数。
由可编程逻辑控制器控制冷却水塔中的N个风扇顺序启动,,在每次开启或关闭风扇时都需要判断风扇的累积运行时间。其中,在N个风扇中,累积运行时间短的风扇先启动,累积运行时间长的风扇先停止,以此可编程逻辑控制器可以控制开启风扇或控制开启风扇的数量为整个系统降温。
示例性的,在整个系统中,冷水机组中共有10个风扇,其中,在依次打开风扇的过程中,由于第5个风扇先于第6个风扇开启,则第5个风扇的累积运行时间是小于第6个风扇的运行时间的。
需要说明的是,整个系统中,将N个风扇的累计运行时间和N个风扇中每个风扇的运行时间同时计时,每个风扇的单次运行的计时时间可清零。
当控制输出值大于或者等于系统设定输出值时,可编程逻辑控制器设置为控制风扇运行在第二运行模式,在第二运行模式时,可编程逻辑控制器设置为控制风扇以第二频率运行,第二运行频率可调(例如可以自动调节),可编程逻辑控制器还设置为控制多个风扇开启,风扇的开启数量固定。
其中,在上述实施例中,针对可编程逻辑控制器的控制输出值小于系统设定输出值已做详细阐述。类似的,可编程逻辑控制器常用在闭环系统中,当冷 却水塔的出水温度发生变化时,可编程逻辑控制器发出信号调节自身的控制输出值(控制输出值的范围与风扇的运行频率范围之间存在对应关系)。例如,此时可编程逻辑控制器的控制输出值为40%,根据运行控制系统中依次打开风扇时的系统设定输出值的计算公式可计算得出系统1on=20%,系统2on=29%,系统3on=38%,系统4on=47%。当运行控制系统中的风扇依次打开到第4个时,可编程逻辑控制器的控制输出值40%小于系统4on,此时,冷却水塔中的多个风扇以第一运行模式运行,可编程逻辑控制器的控制输出值以47%为节点控制风扇运行,当可编程逻辑控制器的控制输出值大于或等于47%时,风扇运行模式为第二运行模式,即PID模式,此时,风扇以第二预设频率运行,该第二预设频率是一个在预设范围内可以调节的变化值,在本实施例中,第二预设频率的频率调节范围为20-50Hz。
当湿球温度与温度变化值之和小于出水温度时,可编程逻辑控制器设置为增大风扇的运行频率,当湿球温度与温度变化值之和大于出水温度时,可编程逻辑控制器设置为减小风扇的运行频率。
其中,在本实施例中,以湿球温度WB与温度变化值ΔT的和作为一个设定值,以该设定值与冷却水塔的出水温度T比较大小,可以根据该设定值的变化控制冷却水塔出水温度的恒定,控制风扇的稳定运行。
当WB+ΔT<T时,冷却水塔出水侧的温度较高,此时,若可编程逻辑控制器不增大风扇的运行频率,冷水机组中冰机的能耗会提高,进而会导致冰水侧的出水温度波动较大。当可编程逻辑控制器增大风扇的运行频率时,冷却水塔中的多个风扇以第二运行模式运行,即PID模式运行,在该模式下,风扇在20-50Hz的调节范围内随着可编程逻辑控制输出值的增大而正向增大,可以控制冷却水塔出水温度恒定。类似的,当WB+ΔT>T时,说明调整风扇运行频率时的设定温度值过大,此时,通过可编程逻辑控制器减小风扇的运行频率,控制风扇以第一运行模式运行,其中,将风扇的运行频率降低至20Hz运行,以降低冷却水塔的出水温度的波动。
图3为本申请实施例提供的又一种运行控制系统结构中的局部放大示意图。如图3所示,运行控制系统还包括变频器18,变频器18的输入端a与可编程逻辑控制器13的输出端b连接,变频器18的输出端c与风扇19连接,可编程逻辑控制器13设置为向变频器输18出运行频率的调整信息,变频器18设置为根据调整信息调整运行频率后并将调整后的运行频率信息发送至风扇19,以控制 风扇19运行。
其中,变频器18是一种利用电力半导体器件的通断作用将自身的工作频率变换为另一工作频率的电能控制部件。
在上述实施例的基础上,通过比较湿球温度与温度变化值的和值(WB+ΔT)与出水温度T的大小,可编程逻辑控制器13向变频器18输出运行频率的调整信息,变频器18根据调整信息调整运行频率后并将调整后的运行频率信息发送至风扇19,风扇19以调整后的运行频率运行。例如,当WB+ΔT<T时,冷却水塔出水侧的温度较高,可编程逻辑控制器13通过增大风扇19的运行频率避免该情况,其中,可编程逻辑控制器18将增大风扇19频率的调整信息输出至变频器,变频器18根据接收到的调整信息后将调整后的运行频率的信息发送至风扇19,风扇19以接收到的运行频率信息执行当前工作,可以控制冷却水塔出水温度恒定。
继续参照图1,运行控制系统还包括人机交互模块17,人机交互模块17分别与第一温度传感模块11、第二温度传感模块12与变频器通信连接,人机交互模块设置为显示出水温度、湿球温度和运行频率。
其中,人机交互模块的交互作用主要通过用户界面实现。
示例性的,在本实施中,人机交互模块可以是一种感应式液晶显示装置,利用其特殊的显示透明特性,从视觉效果上给用户反馈参数,当运行控制系统中的人机交互模块都与第一温度传感模块、第二温度传感模块及变频器连接时,用户或操作人员能够及时获取冷却水塔的出水温度、冷水机组外部的湿球温度以及风扇的运行频率,针对运行控制系统中出现的出水温度较高或风扇的运行频率较低等情况,通过人机交互模块可以及时调整,避免损害电机。
图4本申请实施例提供的一种冰机冷却塔的运行控制方法的流程示意图。该方法包括上述任一实施例提供的运行控制系统,如图3所示,该运行控制方法可以包括如下:
S410、根据可编程逻辑控制器的控制输出值以及运行控制系统的系统设定输出值确定风扇的运行模式,运行模式包括第一运行模式和第二运行模式,第二运行模式中风扇的运行频率大于或者等于第一运行模式中风扇的运行频率,且第二运行模式中风扇的开启数量大于或者等于第一运行模式中风扇的开启数量。
其中,关于根据可编程逻辑控制器的控制输出值以及运行控制系统的系统 设定输出值确定风扇的运行模式的相关内容已在上述实施例中解释说明,此处不再赘述。
S420、在第二运行模式时,接收出水温度、湿球温度和温度变化值,并根据出水温度、湿球温度和温度变化值确定运行频率的调整信息。
当可编程逻辑控制器的控制输出值大于或等于系统的输出值时,风扇运行模式为第二运行模式,即,PID模式,此时,可编程逻辑控制器向变频器输出运行频率的调整信息,变频器根据调整信息调整运行频率后并将调整后的运行频率信息发送至风扇,风扇以调整后的运行频率运行,即,风扇以第二频率运行,该第二预设频率是一个在预设范围内可以调节的变化值,在本实施例中,第二预设频率的频率调节范围为20-50Hz。
需要特别说明的是,在本实施例中,以湿球温度WB与温度变化值ΔT的和作为一个设定值,当风扇以第二频率运行时,需确保该设定值在一定的水温范围内,假设该水温范围的低限值为SP1,高限值为SP2,若WB+ΔT超出设定的低限SP1和高限SP2时,由于冷水机组需要控制冰水机冷却水的进水温度,要提高冰水机的能效比,由此需要根据冰水机的负载率实时重置冰水机冷却水水温范围的低限值SP1,这样才能实现冷却,进而提高整个冷水机组的能效比,在重置水温范围的低限值SP1后,以该低限值SP1作为当前设定的水温的低限值控制风扇的运行,高限值保持不变。
运行控制方法还包括:在第一运行模式时,控制风扇以第一运行频率运行,第一运行频率固定,控制N个风扇顺次开启,其中,N≥2且N为整数,其中,第i个风扇的开启时间早于第(i+1)个风扇的开启时间,所述第i个风扇的累积运行时间小于所述第(i+1)个风扇的累积运行时间;其中,1≤i<N,且i为整数。
其中,关于可编程逻辑控制器控制冷却水塔中的N个风扇顺序启动的相关描述已在上述实施例中解释,此处不再赘述。
根据出水温度、湿球温度和温度变化值确定运行频率的调整信息,包括:当湿球温度与温度变化值之和小于出水温度时,增大风扇的运行频率,当湿球温度与温度变化值之和大于出水温度时,减小风扇的运行频率。
当WB+ΔT<T时,冷却水塔出水侧的温度较高,此时,若可编程逻辑控制器不增大风扇的运行频率,冷水机组中冰机的能耗会提高,进而会导致冰水侧的出水温度波动较大。当可编程逻辑控制器增大风扇的运行频率时,冷却水塔中 的多个风扇以第二运行模式运行,即PID模式运行,在该模式下,风扇在20-50Hz调节范围内随着可编程逻辑控制输出值的增大而正向增大,可以控制冷却水塔出水温度恒定。类似的,当WB+ΔT>T时,说明调整风扇运行频率时的设定温度值过大,此时,通过可编程逻辑控制器减小风扇的运行频率,控制风扇以第一运行模式运行,其中,将风扇的运行频率降低至20Hz运行,出水温度继续下降时冷却塔风扇随之一台一台卸载,以降低冷却水塔的出水温度的波动。

Claims (10)

  1. 一种冰机冷却塔的运行控制系统,包括冷水机组、第一温度传感器、第二温度传感器、可编程逻辑控制器和人工智能控制器;
    所述冷水机组包括冰水机和冷却水塔,所述冷却水塔中设置有多个风扇;
    所述第一温度传感器设置为感测所述冷却水塔的出水温度;
    所述第二温度传感器设置为感测所述冷水机组外部的湿球温度;
    所述人工智能控制器与所述第一温度传感器通信连接,设置为根据所述出水温度和所述风扇的当前运行频率确定温度变化值;
    所述可编程逻辑控制器设置为根据所述可编程逻辑控制器的控制输出值以及所述运行控制系统的系统设定输出值确定所述风扇的运行模式,所述运行模式包括第一运行模式和第二运行模式,所述第二运行模式中所述风扇的运行频率大于或者等于所述第一运行模式中所述风扇的运行频率,且所述第二运行模式中所述风扇的开启数量大于或者等于所述第一运行模式中所述风扇的开启数量;
    所述可编程逻辑控制器分别与所述第一温度传感器、所述第二温度传感器和所述人工智能控制器通信连接,设置为在所述第一运行模式和第二运行模式中,根据所述出水温度、所述湿球温度和所述温度变化值确定所述运行频率的调整信息。
  2. 根据权利要求1所述的运行控制系统,其中,响应于确定所述控制输出值小于所述系统设定输出值,所述可编程逻辑控制器设置为控制所述风扇运行在所述第一运行模式;
    在所述第一运行模式下,所述可编程逻辑控制器设置为控制所述风扇以第一运行频率运行,所述第一运行频率固定;所述可编程逻辑控制器还设置为控制所述多个风扇开启,所述风扇的开启数量可调。
  3. 根据权利要求2所述的运行控制系统,其中,所述可编程逻辑控制器设置为控制N个所述风扇顺次开启,其中,N≥2且N为整数;
    其中,第i个风扇的开启时间早于第(i+1)个风扇的开启时间,所述第i个风扇的累积运行时间小于所述第(i+1)个风扇的累积运行时间;其中,1≤i<N,且i为整数。
  4. 根据权利要求1所述的运行控制系统,其中,响应于确定所述控制输出值大于或者等于所述系统设定输出值,所述可编程逻辑控制器设置为控制所述 风扇运行在所述第二运行模式;
    在所述第二运行模式下,所述可编程逻辑控制器设置为控制所述风扇以第二频率运行,所述第二运行频率可调;所述可编程逻辑控制器还设置为控制所述多个风扇开启,所述风扇的开启数量固定。
  5. 根据权利要求4所述的运行控制系统,其中,响应于确定所述湿球温度与所述温度变化值之和小于出水温度,所述可编程逻辑控制器设置为增大所述风扇的所述第二运行频率;
    响应于确定所述湿球温度与所述温度变化值之和大于出水温度,所述可编程逻辑控制器设置为减小所述风扇的所述第二运行频率。
  6. 根据权利要求1所述的运行控制系统,还包括变频器;
    所述变频器的输入端与所述可编程逻辑控制器的输出端连接,所述变频器的输出与所述风扇连接;所述可编程逻辑控制器设置为向所述变频器输出所述风扇的运行频率的调整信息;所述变频器设置为根据所述调整信息调整所述风扇的运行频率后并将调整后的运行频率信息发送至所述风扇,以控制所述风扇运行。
  7. 根据权利要求6所述的运行控制系统,还包括人机交互模块,所述人机交互模块分别与所述第一温度传感模块、所述第二温度传感模块与所述变频器通信连接;
    所述人机交互模块设置为显示所述出水温度、所述湿球温度和所述运行频率。
  8. 一种冰机冷却塔的运行控制方法,应用于权利要求1-7任一项所述的运行控制系统,包括:
    根据所述可编程逻辑控制器的控制输出值以及所述运行控制系统的系统设定输出值确定所述风扇的运行模式,所述运行模式包括第一运行模式和第二运行模式,所述第二运行模式中所述风扇的运行频率大于或者等于所述第一运行模式中所述风扇的运行频率,且所述第二运行模式中所述风扇的开启数量大于或者等于所述第一运行模式中所述风扇的开启数量;
    在所述第二运行模式下,所述可编程逻辑控制器接收所述出水温度、所述湿球温度和所述温度变化值,并根据所述出水温度、所述湿球温度和所述温度变化值确定所述运行频率的调整信息,所述可编程逻辑控制器控制所述风扇以第二频率运行,所述第二运行频率可调。
  9. 根据权利要求8所述的运行控制方法,还包括:
    在所述第一运行模式下,控制所述风扇以第一运行频率运行,所述第一运行频率固定;
    控制N个所述风扇顺次开启,其中,N≥2且N为整数;
    其中,第i个风扇的开启时间早于第(i+1)个风扇的开启时间,所述第i个风扇的累积运行时间小于所述第(i+1)个风扇的累积运行时间;其中,1≤i<N,且i为整数。
  10. 根据权利要求8所述的运行控制方法,其中,所述根据所述出水温度、所述湿球温度和所述温度变化值确定所述运行频率的调整信息,包括:
    响应于确定所述湿球温度与所述温度变化值之和小于出水温度,增大所述风扇的所述第二运行频率;
    响应于确定所述湿球温度与所述温度变化值之和大于出水温度,减小所述风扇的所述第二运行频率。
PCT/CN2021/142427 2020-12-29 2021-12-29 冰机冷却塔的运行控制系统及运行控制方法 WO2022143757A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/008,624 US20230221085A1 (en) 2020-12-29 2021-12-29 Operation control system and method for a chiller cooling tower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011593294.5A CN112556485A (zh) 2020-12-29 2020-12-29 一种冰机冷却塔的运行控制系统及运行控制方法
CN202011593294.5 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022143757A1 true WO2022143757A1 (zh) 2022-07-07

Family

ID=75032755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142427 WO2022143757A1 (zh) 2020-12-29 2021-12-29 冰机冷却塔的运行控制系统及运行控制方法

Country Status (3)

Country Link
US (1) US20230221085A1 (zh)
CN (1) CN112556485A (zh)
WO (1) WO2022143757A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112556485A (zh) * 2020-12-29 2021-03-26 昆山璟赫机电工程有限公司 一种冰机冷却塔的运行控制系统及运行控制方法
CN115355648B (zh) * 2022-07-08 2024-01-09 珠海格力电器股份有限公司 多模块冷水机组的控制方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1215156A (en) * 1983-01-31 1986-12-09 Babcock & Wilcox Company (The) Optimum control of cooling tower water temperature by function blocks
CN107388882A (zh) * 2017-08-02 2017-11-24 南京理工大学 冷却塔的多风机多喷淋协同模糊控制方法
CN111076602A (zh) * 2019-12-31 2020-04-28 北京世纪互联宽带数据中心有限公司 冷却塔风机控制方法和系统
CN112556485A (zh) * 2020-12-29 2021-03-26 昆山璟赫机电工程有限公司 一种冰机冷却塔的运行控制系统及运行控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202216363U (zh) * 2011-08-12 2012-05-09 东莞市中科机电安装工程有限公司 中央空调冷却水塔的节能控制装置
US10006685B2 (en) * 2014-06-03 2018-06-26 Trane International Inc. System and method for controlling a cooling system
CN107806695B (zh) * 2016-08-29 2019-12-10 广东迪奥技术有限公司 一种空调冷却水系统的节能控制装置及其控制方法
CN106871364B (zh) * 2017-03-09 2020-12-04 珠海格力电器股份有限公司 一种中央空调系统冷却塔出水温度的控制方法
CN211926629U (zh) * 2019-12-31 2020-11-13 北京世纪互联宽带数据中心有限公司 冷却塔风机控制系统
CN214950836U (zh) * 2020-12-29 2021-11-30 昆山璟赫机电工程有限公司 一种冰机冷却塔的运行控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1215156A (en) * 1983-01-31 1986-12-09 Babcock & Wilcox Company (The) Optimum control of cooling tower water temperature by function blocks
CN107388882A (zh) * 2017-08-02 2017-11-24 南京理工大学 冷却塔的多风机多喷淋协同模糊控制方法
CN111076602A (zh) * 2019-12-31 2020-04-28 北京世纪互联宽带数据中心有限公司 冷却塔风机控制方法和系统
CN112556485A (zh) * 2020-12-29 2021-03-26 昆山璟赫机电工程有限公司 一种冰机冷却塔的运行控制系统及运行控制方法

Also Published As

Publication number Publication date
US20230221085A1 (en) 2023-07-13
CN112556485A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2022143757A1 (zh) 冰机冷却塔的运行控制系统及运行控制方法
CN106871364B (zh) 一种中央空调系统冷却塔出水温度的控制方法
CN104101044A (zh) 一种变频空调器的运行控制方法及装置
CN107883553B (zh) 一种变频压缩机降频控制方法与装置
CN112377996B (zh) 空调系统和空调系统的控制方法
CN109708278B (zh) 一种压缩机差异运行的控制方法及系统
WO2018214767A1 (zh) 一种定频空调器控制方法和定频空调器
CN108507115A (zh) 一种机房或基站漫灌式空调适应性节能控制系统及方法
CN116294102A (zh) 一种中央空调冷却水供回水温差优化控制系统及方法
CN112665132B (zh) 空调系统及其冷却侧的节能控制方法、装置和控制器
WO2021175202A1 (zh) 变频空调的制热控制方法和变频空调
CN214950836U (zh) 一种冰机冷却塔的运行控制系统
CN110553369B (zh) 多风机冷却塔控制方法、冷却塔及空调器
CN111649490A (zh) 热泵热水机的控制系统及其控制方法
CN101363654A (zh) 中央空调节电装置
CN201322411Y (zh) 中央空调节电装置
JPH0544980A (ja) 空気調和機の制御方法
TW530123B (en) Frequency conversion controlling device of compressor
CN218526655U (zh) 数据中心机房精密空调节能设备
KR20030039243A (ko) 공기조화기의 전력제어 방법
CN113916044B (zh) 一种中央空调冷却塔风机实时变频控制方法及控制器
JP2000154931A (ja) 空気調和機の給気温度設定値演算装置
CN115900007B (zh) 一种机架式空调的调温除湿方法及装置
KR0177691B1 (ko) 인버터 공기조화기의 압축기 운전 제어방법
CN208952326U (zh) 一种水系统空调水泵节能控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914489

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.11.2023)