WO2018214096A1 - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
WO2018214096A1
WO2018214096A1 PCT/CN2017/085894 CN2017085894W WO2018214096A1 WO 2018214096 A1 WO2018214096 A1 WO 2018214096A1 CN 2017085894 W CN2017085894 W CN 2017085894W WO 2018214096 A1 WO2018214096 A1 WO 2018214096A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cooling device
heat pipe
fins
groove
Prior art date
Application number
PCT/CN2017/085894
Other languages
English (en)
French (fr)
Inventor
邓实
朱涛
Original Assignee
罗伯特·博世有限公司
邓实
朱涛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗伯特·博世有限公司, 邓实, 朱涛 filed Critical 罗伯特·博世有限公司
Priority to PCT/CN2017/085894 priority Critical patent/WO2018214096A1/zh
Priority to CN201780091199.5A priority patent/CN110679207B/zh
Publication of WO2018214096A1 publication Critical patent/WO2018214096A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the invention relates to a cooling device for cooling an electronic device.
  • the cooling devices currently used mainly include a heat sink assembly, a heat pipe radiator, a steam chamber radiator, a water cooling plate radiator, a thermoelectric radiator, a synthetic jet radiator, and an immersion cooling device to meet different cooling requirements.
  • the heat sink is widely used because of its simple manufacture and low cost.
  • the heat sink in the case where the heating power is high, if the heat sink is simply used for heat dissipation, the heat dissipation requirement may not be satisfied, because the heat dissipation capability of the heat sink itself is relatively limited.
  • the heat sink in order to meet the large heat dissipation requirements, the heat sink has to be designed to have a large fin density, a large volume, or a strong air flow associated with these designs, which can result in significant cost increases.
  • a heat pipe heat sink with improved heat dissipation efficiency than the heat sink is used, although the heat dissipation requirement can be met, it will bring about a significant cost increase because the heat pipe heat sink itself is relatively expensive.
  • a cooling apparatus assembled from at least one heat sink module and at least one heat pipe module, wherein the heat sink module has a substrate in thermal contact with the cooled device and A fin structure attached to the substrate, the heat pipe module having at least one heat pipe attached to the substrate in an assembled state of the cooling device. Also, the substrate has at least one groove for receiving an evaporation section of the heat pipe, the at least one groove opening on a surface of the substrate and extending within the surface.
  • the slot is open on a first surface of the substrate that is in thermal contact with the cooled device.
  • the groove is open on a second surface of the substrate opposite the first surface in thermal contact with the cooled device.
  • the evaporation section of the heat pipe having a circular cross section in the groove is machined to have a flat outer surface such that when the heat pipe is received in the groove The flat outer surface emerges from the slot and lies in a common plane with the first surface of the substrate.
  • the cooling device further includes a bottom plate attached to the substrate at the first surface, the bottom plate having a groove corresponding to the groove on a side thereof facing the substrate a groove portion such that when the bottom plate is attached to the substrate, the groove on the substrate and the groove portion on the bottom plate together form a substantially circular groove for receiving the evaporation section .
  • the substrate comprises a through hole extending from the groove to a second surface of the substrate opposite the first surface, when the heat pipe is attached to the substrate, An evaporation section of the heat pipe is received in the trough, and a condensation section of the heat pipe extends from the trough through the through hole through the base and extends substantially perpendicularly from the second surface of the base To the surrounding environment.
  • the substrate is configured as a rectangular plate-like structure, and a surface of the substrate that opens the groove and/or a surface to which the heat sink structure is attached is respectively a plate-like structure Any of the upper bottom surface and the lower bottom surface.
  • the cooling device comprises at least two fin modules, In the assembled state of the cooling device, the at least two fin modules are abutted side by side such that respective slots in the fin module are aligned with each other to form a continuous for receiving the evaporating section groove.
  • FIG. 1 shows a front perspective view of a cooling device 1 for cooling an electronic device or the like according to a first embodiment of the present invention
  • Figure 2 shows a bottom perspective view of the cooling device 1 shown in Figure 1;
  • Figure 3 shows a front view of the cooling device 1 shown in Figure 1;
  • Figure 4 shows a plan view of the cooling device 1 shown in Figure 1;
  • FIG. 5 is a front perspective view showing a cooling device 101 for cooling an electronic device or the like according to a second embodiment of the present invention
  • FIG. 6 is a perspective view showing a modification of the cooling device 1 shown in Figures 1-4;
  • Figure 7 is a perspective view showing a modification of the cooling device shown in Figure 5;
  • FIG. 8 is a perspective view showing a cooling device 401 for cooling an electronic device or the like according to a third embodiment of the present invention.
  • Figure 9 shows an exploded view of the cooling device 401 shown in Figure 8.
  • FIG 10 is a perspective view showing a heat sink module 402 in the cooling device 401 shown in Figure 8;
  • FIG 11 is a perspective view of a cooling device 501 for cooling an electronic device or the like according to a fourth embodiment of the present invention.
  • Figure 12 shows an exploded view of the cooling device 501 shown in Figure 11;
  • Figure 13 is a perspective view showing a heat sink module 502 in the cooling device 501 shown in Figure 11;
  • FIG. 14 is a perspective view of a cooling device 601 for cooling an electronic device or the like according to a fifth embodiment of the present invention.
  • FIG 15 is a perspective view showing a heat sink module 602 in the cooling device 601 shown in Figure 14;
  • Figure 16 shows a cooling device for cooling an electronic device or the like according to a sixth embodiment of the present invention. a front perspective view of the 701;
  • FIG 17 is a bottom perspective view of the cooling device 701 shown in Figure 16;
  • Figure 18 is a front perspective view showing the heat sink module 702 in the cooling device 701 shown in Figure 16;
  • FIG. 19 shows a bottom perspective view of the heat sink module 702 shown in FIG.
  • orientation terms used in the present application such as "front”, “back”, “left”, “right”, “upper”, “lower”, “top”, “bottom”, etc. are referred to in the drawings of the specification. The positioning and orientation of the components shown are described. These terms are used only to more clearly illustrate the relative position of the components and are not intended to define absolute positions.
  • FIG. 1 is a front perspective view showing a cooling device 1 for cooling an electronic device or the like according to a first embodiment of the present invention
  • FIG. 2 is a bottom perspective view of the cooling device 1 shown in FIG. 1
  • FIG. 3 is a view of FIG.
  • a front view of the illustrated cooling device 1 and FIG. 4 shows a top view of the cooling device 1 shown in FIG.
  • the cooling device 1 includes a heat sink module 2 and a heat pipe module 3, and the heat sink module 2 and the heat pipe module 3 are assembled to form a cooling device 1.
  • the fin module 2 has a substrate 4 that is in direct or indirect thermal contact with the device being cooled and a fin attached to the substrate 4.
  • the heat pipe module 3 includes at least one heat pipe 8 and at least one fin 9 disposed on the condensation section 10 of the heat pipe 8 for assisting heat dissipation from the condensation section of the heat pipe.
  • the substrate 4 is constructed as a plate-like structure, in particular a rectangular (see Figure 4) plate-like structure, one surface thereof, in particular the lower surface 17 shown in Figure 2, in thermal contact with the device being cooled, Two sets of fins, namely a first set of fins 18 and a second set of fins 19, are attached to the opposite surface of the surface in thermal contact with the device being cooled, i.e., the upper surface 15 shown in FIG.
  • the heat sink includes a plurality of fins 5 extending upwardly generally perpendicular to the upper surface 15 of the substrate 4.
  • the two sets of fins 18 and 19 have a spaced arrangement on the upper surface 15 of the substrate 4, in particular a left side region and an upper surface 15 respectively disposed adjacent the left boundary of the upper surface 15 of the upper surface 15.
  • the right border is adjacent to the right side of the area.
  • a space 23 for receiving the condensation section 10 and its fins 9 is defined between the first set of fins 18 and the second set of fins 19.
  • the fins 5 extend over the entire width of the upper surface 15 of the substrate 4, that is, the fins 5 have an extent in the width direction of the substrate 4 equal to the width of the upper surface 15 of the substrate 4.
  • first set of fins 18 and the second set of fins 19 may have exactly the same or symmetrical structure as illustrated, but may be arranged to have different structures depending on the specific situation.
  • the number, shape, size, and/or distribution of the fins 5 in the two sets of fins may vary.
  • the fin module 2 has a groove 11 formed in the lower surface 17 of the substrate 4 in thermal contact with the cooled device, and a through hole 13 connecting the groove 11 and the upper surface 15 of the substrate 4.
  • the evaporation section 12 of the heat pipe 8 is received in the groove 11, and the condensation section 10 of the heat pipe 8 projects upwardly from the upper surface 15 of the substrate 4 through the through hole 13.
  • the through hole 13 is formed in the intermediate section 16 of the substrate 4 between the first set of fins 18 and the second set of fins 19.
  • the fins 9 can be abutted or connected to the outer walls of the first set of fins 18 and the second set of fins 19 adjacent to the fins 9, so that a fin 9 can be formed between the fins 9 and the fins 5.
  • the thermally conductive connection thereby helps to establish an overall relatively uniform temperature field within the cooling device 1 to avoid the formation of significant "hot spots” or "cold spots”.
  • the fins 9 are configured to extend above the upper surface 15 of the substrate 4 in the assembled state of the cooling device 1 over the entire width of the upper surface 15 in parallel with the upper surface 15 .
  • the shape and size of the fins 9 are substantially equivalent to the shape and size of the space bounded by the first set of fins 18 and the second set of fins 19 directly above the substrate 4, thereby, as shown in FIG.
  • the fins 9 completely obstruct the intermediate section 16 of the substrate 4.
  • the fins 9 can be joined to the outer side walls of the first set of fins 18 and the second set of fins 19 and/or the condensation section 10 of the heat pipe 8 by means of a thermally conductive adhesive, mechanically tight fit, sintered or by welding.
  • the outer side wall is a thermally conductive adhesive, mechanically tight fit, sintered or by welding.
  • the geometry of the array of first set of fins 18, second set of fins 19 and/or fins 9 is a cube or a cuboid.
  • the first set of fins 18, the second set of fins 19 and/or the fins 9 can also be designed in other shapes as appropriate.
  • the shape of the heat pipe 8 is designed to be U-shaped. Wherein the two end sections of the U-shaped heat pipe form a condensation section 10 and the bottom section between the end sections forms an evaporation section 12.
  • the evaporation section 12 extends horizontally along the groove 11 in the groove 11 and the condensation section 10 extends vertically upward through the through hole 13.
  • the heat pipe 8 can also be designed in other shapes as known to those skilled in the art.
  • the evaporation section 12 of the heat pipe 8 is not limited to a straight line extension, and may be arranged to extend in a meandering manner.
  • the evaporation section 12 of the heat pipe 8 extends only at the intermediate section 16 of the substrate 4. Additionally or alternatively, the evaporation section 12 may also extend over a section of the substrate 4 that is directly below the first set of fins 18 and the second set of fins 19. Further, the number of the heat pipes 8 included in the cooling device 1 may be set as the case may be, and is not limited to the two illustrated.
  • the structure and number of the grooves 11 can be set correspondingly depending on the structure and the number of the evaporation sections 12 to be mounted.
  • the lower surface 17 of the substrate 4 defines two linearly extending slots 11 for receiving the linearly extending evaporation sections 12 of the two heat pipes 8.
  • the grooves 11 are configured to pass to the two-way through grooves of the front and rear outer sides of the substrate 4 as shown in FIG. 1, which simplifies the processing of the grooves as compared with the non-through grooves.
  • the heat pipe 8 is fixed to the heat sink module 2 by using one or more of the following connection means: the heat pipe 8 is welded to the substrate 4 at the evaporation section 12; in the groove 11 and/or in the through hole 13 Filling a heat conductive adhesive between the heat pipe 8 and the substrate 4; the heat pipe 8 is force-fitted or form-fitted in the groove 11 and/or in the through hole 13; by connecting the fins 9 to the first set of heat sinks 18 and/or The second set of fins 19 secures the heat pipe 8 to the fin module 2.
  • an advantageous design of the cooling device 1 consists in machining the evaporation section 12 of the heat pipe 8 located in the groove 11 into a flat bottom surface 14 such that the lower surface 17 of the substrate 4 and the evaporation section 12
  • the flat bottom surface 14 lies in a common plane (see Fig. 3) whereby both the lower surface 17 of the substrate 4 and the evaporation section 12 of the heat pipe can be in full ground thermal contact with the cooled device.
  • each set of fins is provided with a closure 6 on the side remote from the substrate 4, the closure 6 being attached to each of the heat sinks of the set of fins
  • the opposite end to the substrate 4 (the upper end in Figs. 1-4) and the air flow path 7 between each of the two fins 5 of one of the fins is closed from the upper side.
  • an air flow generating device such as a fan or a fan may be provided.
  • the substrate 4 of the fin module 2 and at least one heat pipe 8 of the heat pipe module 3 are provided; then, the heat pipe 8 is installed from below the substrate 4 such that the condensation section 10 of the heat pipe 8 extends from the groove 11 through the through hole 13 and extends To the space above the substrate 4, until the evaporation section 12 of the heat pipe 8 is received in the groove 11.
  • the heat pipe 8 can then be secured to the substrate 4 using the appropriate attachment means described above.
  • the heat sink 5 may have been attached to the substrate 4 before assembling the heat pipe 8 to the substrate 4, for example, may be integrally formed with the substrate 4, or may be attached to the substrate 4 after assembling the heat pipe 8 to the substrate 4.
  • the fins 9 may have been attached to the heat sink 5 before assembling the heat pipe 8 to the substrate 4, or may be attached to the heat pipe 8 after assembling the heat pipe 8 to the substrate 4.
  • a welded connection may be employed between the heat pipe 8 and the heat sink 5.
  • the heat dissipated by the cooled device is introduced into the substrate 4 and the evaporation section 12 from the lower surface 17 of the substrate 4 and the flat bottom surface 14 of the evaporation section 12 of the heat pipe 8, and further, the heat introduced into the substrate 4 is conducted to the first group of fins 18 And the second set of fins 19 are radiated from the first set of fins 18 and the second set of fins 19 to the surrounding environment, and the heat introduced into the evaporation section 12 of the heat pipe 8 is transported to the heat pipe by the movement of the phase change medium in the heat pipe.
  • the condensation section 10 of 8 is released by the condensing phase change of the phase change medium at the condensation section 10 and diverge outwardly by means of the fins 9.
  • the cooling device 1 cools the cooled device through at least two ways, solid heat conduction and fluid phase change, and compensates for the insufficient heat dissipation power of the heat sink with a heat pipe with high heat dissipation power, and at the same time, a low-cost heat sink It compensates for the economic disadvantage of the heat pipe, and thus obtains a cooling device with high heat dissipation power and high cost efficiency.
  • Fig. 5 shows a front perspective view of a cooling device 101 for cooling an electronic device or the like according to a second embodiment of the present invention.
  • the cooling device 101 has a base 120 attached to the lower surface 117 of the substrate 104 of the heat sink module 102 in addition to the heat sink module 102 and the heat pipe module 103. Thereby, the lower surface 122 of the base 120 is in thermal contact with the cooled device as the introduction surface of the cooling device 102.
  • the base 104 is provided with the upper groove portion 111 similarly to the substrate 4 in the above embodiment, and the lower groove portion 121 is correspondingly formed on the surface of the base 120 opposite to the base 104.
  • the upper groove portion 111 of the substrate 104 and the lower groove portion 121 of the base 120 are formed together for receiving heat A groove of the evaporation section (not shown) of the tube 108.
  • This configuration has the advantage that it not only simplifies the manufacturing process because it is no longer necessary to additionally machine a flat bottom surface 14 (Fig. 3) for thermal contact with the cooled device on the evaporation section of the heat pipe 108.
  • the possible damage or damage to the heat pipe 108 caused by this additional processing step is further reduced, while the robustness of the heat pipe 108 is improved.
  • both the upper groove portion 111 and the lower groove portion 121 may be provided as a two-way through groove like the groove 11 of FIG. 1, that is, provided on the front and rear sides as shown in FIG. 5 to the base 104.
  • the evaporation section and the groove portions 111, 121 may be sufficiently in direct contact (for example, the evaporation section is fitted in the groove portion 111, 121). Further, a thermal interface material such as a thermal paste for increasing the contact area may be filled between the heat pipe 108 and the groove portions 111, 121 in the groove portions 111, 121.
  • the heat pipe 108 may be welded to the substrate 104 and/or the base 120, or the heat pipe 108 may be force-fitted to the groove portions 111, 121 by the closing force between the substrate 104 and the base 120. Inside.
  • Fig. 6 is a perspective view showing a modification of the cooling device 1 shown in Figs.
  • the cooling device 201 shown in Fig. 6 differs from the cooling device 1 according to the first embodiment mainly in that the closing portion 6 shown in Figs. 1-4 is not provided for the heat sink. Thereby, the air flow path 207 between the fins 205 in each of the fins is opened upward.
  • This design not only reduces the volume of the cooling device 201 due to the elimination of the closing portion 6, but is also particularly suitable for the case where the heat sink 205 in each set of fins has a large distribution density and/or a large aspect ratio, It is difficult to machine the heat sink module 202 with the closure or it is difficult to stably attach the closure, such as bonding or welding to the heat sink 205; or such processing or attachment will result in high scrap rate or need to pay Great energy and cost.
  • the cooling device 201 without the closing portion 6 is also particularly suitable for the case where after the cooling device 201 is mounted in position, the upper end of its fin 205 will be associated with a larger heat dissipating surface, such as a cooled device. The housing wall is in contact or close. At this time, the larger heat dissipating surface has the same or similar effect as the closing portion 6, so that it is no longer necessary to specifically provide the closing portion 6.
  • Fig. 7 is a perspective view showing a modification of the cooling device shown in Fig. 5.
  • the cooling device 301 shown in Fig. 7 differs from the cooling device 101 shown in Fig. 5 mainly in that the closing portion described above is not provided.
  • the advantages and applicability of this design have been described in the description of the embodiment of Figure 6. Detailed description will not be repeated here.
  • FIG. 8 shows a perspective view of a cooling device 401 for cooling an electronic device or the like according to a third embodiment of the present invention
  • FIG. 9 shows an exploded view of the cooling device 401 shown in FIG. 8
  • FIG. 10 shows FIG. A perspective view of one of the fins modules 402 in the illustrated cooling device 401.
  • the cooling device 401 differs from the foregoing cooling devices mainly in that a groove 411 on the substrate 404 for receiving the evaporation section 412 of the heat pipe 408 is opened on the substrate 404. Upper surface 415.
  • the evaporation section and the condensation section of the heat pipe 408 are located on the same side of the substrate 404, so that it is not necessary to open the above-mentioned through hole for the condensation section to pass through the substrate.
  • the cooling device 401 can be manufactured in such a manner that the heat sink module 402 including the substrate 404 and the heat sink 405 and the heat pipe module 403 including the heat pipe 408 and the fins 409 are separately processed, and then the heat pipe module 403 is assembled from above to
  • the fin module 402 is such that the evaporation section 412 of the heat pipe 408 of the heat pipe module 403 is received within the slot 411 of the fin module 402.
  • This open position of the groove 411 enables a modular manufacturing method for the cooling device, thereby greatly simplifying the manufacturing process of the cooling device.
  • the cooling device 401 shown in FIGS. 8-10 is different from the cooling device including only one heat sink module and one heat pipe module described above, and has two identical heat sink modules 402-1 and 402. -2 and a heat pipe module 403. This provides a technical idea that the number of heat sink modules and heat pipe modules in the cooling device can be specifically selected according to specific needs, and even the same heat sink device can be provided with a plurality of differently configured heat sink modules and/or multiple structures. Different heat pipe modules.
  • the groove 411 may be provided as a two-way through groove like the groove in each of the above embodiments, that is, the front side and the rear side shown in FIG. 10 which are provided to the substrate 404.
  • the groove 411-1 of the heat sink module 402-1 and the heat sink module 402-2 are used.
  • the two fin modules 402-1 and 402-2 are arranged side by side with each other in such a manner that the slots 411-2 are aligned with each other, whereby the slots 411-1 and 411-2 collectively form an evaporation section 412 for receiving the heat pipe 408. Continuous groove.
  • the space between the two sets of fins 418-1 and 419-1 of the heat sink module 402-1 and the two sets of heat sinks 418-2 and 419-2 of the heat sink module 402-2 423-2 is formed to receive the condensation section 410 and the wing after the two fin modules 402-1 and 402-2 are arranged side by side with each other
  • the heat pipe module 403 is then assembled from above to the fin modules 402-1 and 402-2 such that the evaporation section 412 is received within the continuous trough.
  • the size of the fins 409 in the width direction of the substrate 404 can be set to twice the width of the heat sink module 402, which is clear in the exploded view of FIG. Observed. This size design significantly increases the heat sink area of the heat pipe.
  • FIG 11 is a perspective view of a cooling device 501 for cooling an electronic device or the like according to a fourth embodiment of the present invention
  • Figure 12 is an exploded view of the cooling device 501 shown in Figure 11
  • Figure 13 is shown in Figure 11
  • the cooling device 501 according to this embodiment is structurally different from the cooling device according to the third embodiment mainly in that the groove 511 is not provided as a bidirectional through groove leading to the circumferential side of the substrate 504 at both ends thereof, Rather, it is provided as a one-way channel that leads to the circumferential side of the substrate 504 only at one end thereof.
  • the following steps can be taken to assemble the cooling device: the two fin modules 502-1 and 502-2 are arranged side by side in such a manner that the sides each of which is penetrated by the grooves 511 face each other, thereby causing the fin module 502-
  • the slot 511-1 of 1 and the slot 511-2 of the heat sink module 502-2 together form a continuous slot for receiving the evaporation section 512 of the heat pipe 508.
  • the groove 511 is not designed as a two-way groove, the heat quality of the substrate for heat conduction is increased, so that the heat quality is required to be large. The occasion.
  • FIG 14 is a perspective view of a cooling device 601 for cooling an electronic device or the like according to a fifth embodiment of the present invention
  • Figure 15 is a perspective view showing one of the cooling device 601 of the cooling device 601 shown in Figure 14.
  • An important feature of the cooling device 601 according to this embodiment is that the condensation section 610 of the heat pipe 608 and the fins 609 are completely surrounded by the fins 605 of the fin module 602 in the circumferential direction.
  • This embodiment provides a technical idea that the layout of the fins and the condensation section on the surface of the substrate is not limited to the manner described in the above embodiments, that is, the condensation section occupies the middle section of the surface of the substrate.
  • the heat sink occupies both side sections of the surface of the substrate. Rather, the condensation section and fins can occupy the surface of the substrate in a variety of suitable ways.
  • condensation section of the heat pipe is not limited to the arrangement of the above embodiments, i.e., directly exposed to the surrounding environment on the opposite two lateral sides. Rather, it may be exposed to the surrounding environment in a variety of suitable manners, for example, as in this embodiment, may be arranged without direct exposure to the surrounding environment on all four lateral sides, or may be arranged in one, three, or even Four or two adjacent lateral sides or a portion of one lateral side are directly exposed to the surrounding environment.
  • each of the heat sink modules 602 is disposed with a first set of heat sinks 618 and a second set of heat sinks 619 in addition to the first set of heat sinks 618 and the second set of heat sinks 619 .
  • a third set of fins 630 are connected between the first set of fins 618 and the second set of fins 619.
  • the third set of fins 630 have the same height as the first set of fins 618 and the second set of fins 619, but without the entire width of the substrate 604 as the first set of fins 619 and the second set of fins 618 Extending upwardly, but extending over a portion of the width of the substrate 604 only at a location near one of the front and back sides of the substrate 604, thereby forming a "concave” with the first set of fins 618 and the second set of fins 618 "Glyph structure (looking down).
  • the groove 611 is located in a region of the upper surface 615 of the substrate 604 that is not covered by the three sets of fins 618, 619, and 630, that is, in the recess of the "concave" structure, and leads to the front and rear sides of the substrate 604. On the other side.
  • the two heat sink modules 602-1 and 602-2 may be first placed on the side each being penetrated by the groove 611.
  • the face-to-face arrangement is arranged side by side such that the slot 611 of the heat sink module 602-1 and the slot 611 of the heat sink module 602-2 together form an evaporation section for receiving the heat pipe 608 (illustrated in the figure, thus not shown)
  • the continuous slots, while the three sets of fins of the fin module 602-1 and the three sets of fins of the fin module 602-2 enclose a space 623 for accommodating the condensation section 610 and the fins 609.
  • Heat pipe 608 with fins 609 is then inserted into space 623 from above until the evaporation section of heat pipe 608 is positioned within the continuous grooves.
  • the horizontal cross section of the space is rectangular in shape.
  • FIG. 16 is a front perspective view of a cooling device 701 for cooling an electronic device or the like according to a sixth embodiment of the present invention
  • Figure 17 is a bottom perspective view of the cooling device 701 shown in Figure 16
  • Figure 18 is shown in Figure 16
  • FIG. 19 shows a bottom perspective view of the heat sink module 702 shown in FIG.
  • the cooling device 701 according to this embodiment and the cooling device of the foregoing embodiments is that the layout of the condensation section 710 of the heat sink 705 and the heat pipe 708 is different on the surface of the substrate 704.
  • the heat sink module 702 has only one set of heat sinks 718.
  • the set of fins 718 are positioned on the upper surface 715 of the substrate 704 between the one side condensation section 710-1 of the U-shaped heat pipe 708 and the other side condensation section 710-2.
  • the set of fins 718 occupies an intermediate section of the upper surface 715 of the substrate 704, while the two sides of the heat pipe 708 condensing sections 710-1 and 710-2 occupy the upper section 715 of the substrate 704 in the middle section. Side sections on the side.
  • the heights of the fins 705 in one of the fins 718 are set to be different. Accordingly, the set of fins 718 described above are accordingly not provided with the closures described above.
  • the height profile of the fins 705 in the fin set is designed to accommodate an airflow generating device (not shown) such as a fan or fan. More specifically, the heat sink 705 in the center position of the heat sink group has the highest height, and the height of the heat sink gradually decreases from the center position to the outside (as shown in FIGS. 16-18).
  • the groove 711 for receiving the evaporation section 712 of the heat pipe 708 is formed on the surface of the substrate 704 opposite to the surface to which the heat sink 705 is attached, that is, the lower surface 717 shown in FIG.
  • one side condensation section 710-1 of heat pipe 708 extends through substrate 704 at one side of heat sink set 718, while the other side condensation section 710-2 of heat pipe 708 is opposite on heat sink set 718. The side extends through the substrate 704.
  • the groove 711 can be designed as a two-way channel, in particular a straight two-way channel extending over the entire length of the substrate.

Abstract

一种冷却装置(1),所述冷却装置(1)由至少一个散热片模块(2)和至少一个热管模块(3)组装而成,其中,所述散热片模块(2)具有与被冷却的装置热接触的基底(4)和附接至所述基底(4)的散热片结构,所述热管模块(3)具有在冷却装置(1)的组装状态下附接至所述基底(4)的至少一个热管(8)。并且,所述基底(4)具有用于接收所述热管(8)的蒸发段(12,412,512,712)的至少一个槽(11),所述至少一个槽(11)开设在所述基底(4)的表面上并在该表面内延伸。

Description

冷却装置 技术领域
本发明涉及一种用于冷却电子设备的冷却装置。
背景技术
随着电子技术的迅速发展,具有高功率密度的电子器件被广泛使用。而越是高功率密度的电子器件,其稳定高效的运行越依赖于优越的冷却方案。冷却方案的优越性不仅体现在其高效的冷却能力,还要体现在对体积和成本的有效控制。尤其是,在电子装置的高密度、高集成、高频、小型化发展是不可逆转的趋势的大背景下,寻求高性能、小型化并且低成本的冷却系统尤为具有意义。
目前采用的冷却装置主要包括散热片组件、热管散热器、蒸气室散热器、水冷却板散热器、热电式散热器、合成射流散热器、以及浸没式冷却装置等,以满足不同的冷却需求。在这些冷却装置中,散热片由于制造简单且成本低廉而被广泛使用。
但是,在发热功率偏高的场合,倘若单纯采用散热片散热,则可能无法满足散热需求,这是因为散热片自身的散热能力比较有限。或者,为了满足较大的散热要求,散热片不得不设计成具有大鳍片密度、大体积或者关联有强空气流,这些设计会带来显著的成本增加。在另一方面,倘若采用散热效率比散热片改善的热管散热器,虽然可以满足散热要求,但是却会带来显著的成本增加,这是因为热管散热器本身造价比较昂贵。
因此,期待提供一种既能满足高发热功率场合下的散热需求,又具有小体积和经济效益,同时与已有的电子装置兼容的冷却装置。
发明内容
本发明的目的在于提供一种用于冷却电子设备的冷却装置,这种冷却装置不仅相对于单纯的散热片具有显著提高的散热性能,而且结构紧凑且 相对于单纯的散热片没有显著的成本增加,同时还能与已有的电子装置兼容,即无需改变电子装置的已有的结构和布局就可以直接替代散热片安装于电子装置中。
根据本发明的一方面提供了一种冷却装置,所述冷却装置由至少一个散热片模块和至少一个热管模块组装而成,其中,所述散热片模块具有与被冷却的装置热接触的基底和附接至所述基底的散热片结构,所述热管模块具有在冷却装置的组装状态下附接至所述基底的至少一个热管。并且,所述基底具有用于接收所述热管的蒸发段的至少一个槽,所述至少一个槽开设在所述基底的表面上并在该表面内延伸。
根据一优选的实施例,所述槽开设在所述基底的与所述被冷却的装置热接触的第一表面上。
根据另一优选的实施例,所述槽开设在所述基底的与所述被冷却的装置热接触的第一表面相反设置的第二表面上。
根据再一优选的实施例,所述热管的接收在所述槽中的具有圆形横截面的蒸发段被加工成具有一平坦的外表面,以使得当所述热管接收在所述槽中时,所述平坦的外表面从所述槽露出并与所述基底的所述第一表面位于共同平面内。
根据又一优选的实施例,所述冷却装置还包括于所述第一表面处附接至所述基底的底板,所述底板在其面向所述基底的一侧上开设有与所述槽对应的槽部,以使得当所述底板附接至所述基底时,所述基底上的所述槽与所述底板上的所述槽部共同形成用于接收所述蒸发段的大致圆形槽。
根据另一优选的实施例,所述基底包括从所述槽延伸至所述基底的与所述第一表面相反设置的第二表面的通孔,当所述热管附接至所述基底时,所述热管的蒸发段接收在所述槽内,而所述热管的冷凝段从所述槽借助所述通孔延伸穿过所述基底并从所述基底的所述第二表面大致垂直地伸向周围环境。
根据另一优选的实施例,所述基底构造成矩形的板状结构,并且所述基底的开设所述槽的表面和/或附接所述散热片结构的表面分别是所述板状结构的上底面和下底面中的任一个。
根据另一优选的实施例,所述冷却装置包括至少两个散热片模块,其 中,在所述冷却装置的组装状态下,所述至少两个散热片模块并排贴靠在一起,以使得散热片模块中的相应的槽彼此对准从而形成用于接收所述蒸发段的连续槽。
附图说明
本发明的特征及其优点可以通过阅读下述参考附图的对一些示例性优选实施例的详细说明来进一步理解。所述附图为:
图1示出根据本发明的第一实施例的用于冷却电子设备等的冷却装置1的正视立体图;
图2示出图1所示的冷却装置1的仰视立体图;
图3示出图1所示的冷却装置1的正视图;
图4示出图1所示的冷却装置1的俯视图;
图5示出根据本发明的第二实施例的用于冷却电子设备等的冷却装置101的正视立体图;
图6示出图1-4所示的冷却装置1的变型例的立体图;
图7示出图5所示的冷却装置的变型例的立体图;
图8示出根据本发明的第三实施例的用于冷却电子设备等的冷却装置401的立体图;
图9示出图8所示的冷却装置401的分解图;
图10示出图8所示的冷却装置401中的一个散热片模块402的立体图;
图11出根据本发明的第四实施例的用于冷却电子设备等的冷却装置501的立体图;
图12示出图11所示的冷却装置501的分解图;
图13示出图11所示的冷却装置501中的一个散热片模块502的立体图;
图14出根据本发明的第五实施例的用于冷却电子设备等的冷却装置601的立体图;
图15示出图14所示的冷却装置601中的一个散热片模块602的立体图;
图16出根据本发明的第六实施例的用于冷却电子设备等的冷却装置 701的正视立体图;
图17示出图16所示的冷却装置701的仰视立体图;
图18示出图16所示的冷却装置701中的散热片模块702的正视立体图;并且
图19示出图18所示的散热片模块702的仰视立体图。
具体实施方式
在本申请文件中,相同的附图标记指代相同或类似的部件或元件。
本申请文件中所使用的方位术语、如“前”、“后”、“左”、“右”、“上”、“下”、“顶”、“底”等均是参考说明书附图中所展示的部件的定位和定向来描述的。这些术语的使用只是为了更清楚地说明部件的相对位置,而并非用来限定绝对位置。
图1示出根据本发明的第一实施例的用于冷却电子设备等的冷却装置1的正视立体图,图2示出图1所示的冷却装置1的仰视立体图,图3示出图1所示的冷却装置1的正视图,并且图4示出图1所示的冷却装置1的俯视图。
如图1-4所示,该冷却装置1包括散热片模块2和热管模块3,散热片模块2与热管模块3组装在一起形成了冷却装置1。其中,散热片模块2具有与被冷却的装置直接或间接热接触的基底4和附接至基底4的散热片。热管模块3包括至少一个热管8和设置在热管8的冷凝段10上的用于帮助热管的冷凝段向外散热的至少一个翅片9。
在该实施例中,基底4构造成板状结构,尤其是矩形的(参见图4)板状结构,其一个表面、尤其是图2所示的下表面17与被冷却的装置热接触,而在与被冷却的装置热接触的表面相反的表面、即图1所示的上表面15上附接有两组散热片、即第一组散热片18和第二组散热片19,并且每组散热片包含多个大致垂直于基底4的上表面15向上延伸的散热片5。特别地,这两组散热片18和19在基底4的上表面15上具有间隔的布置,尤其是分别布置在上表面15的与上表面15的左边界毗邻的左侧区域和与上表面15的右边界毗邻的右侧区域中。由此,第一组散热片18与第二组散热片19之间限定出用于接收冷凝段10及其翅片9的空间23。
特别地,散热片5在基底4的上表面15的整个宽度上延伸,即,散热片5在基底4的宽度方向上的延伸尺寸等于基底4的上表面15的宽度。
在此需要说明的是,第一组散热片18和第二组散热片19可以如图示那样具有完全相同或对称的结构,但是,也可以根据具体情况设置成具有不同的结构。比如,两组散热片中的散热片5的数量、形状、大小和/或分布方式可以具有差别。
进一步而言,散热片模块2具有开设在基底4的与被冷却的装置热接触的下表面17上的槽11以及连通槽11与基底4的上表面15的通孔13。在冷却装置1的组装状态下,热管8的蒸发段12接收在槽11内,而热管8的冷凝段10穿过通孔13从基底4的上表面15向上伸出。
特别地,通孔13开设在基底4的位于第一组散热片18与第二组散热片19之间的中间区段16上。由此,在冷却装置1的组装状态下,经由通孔13从基底4向上伸出的冷凝段10定位在第一组散热片18与第二组散热片19之间的空间23内。
特别地,翅片9可以贴靠或连接至第一组散热片18和第二组散热片19的与翅片9相邻的外侧壁上,从而可以在翅片9与散热片5之间形成导热连接,由此有助于在冷却装置1内建立整体上较为均衡的温度场,以避免明显的“热点”或“冷点”的形成。
特别地,所述翅片9构造成在冷却装置1的组装状态下于基底4的上表面15的上方、在该上表面15的整个宽度上、与上表面15平行地延伸.
优选地,翅片9的形状和大小大致上等同于基底4正上方由第一组散热片18与第二组散热片19所限界的空间的形状和大小,由此,如图4所示,当从上方观察组装好的冷却装置1时,翅片9刚好完全遮挡住基底4的中间区段16。
优选地,翅片9可以借助导热性粘结剂、机械紧配合、烧结或利用焊接方式连接至第一组散热片18和第二组散热片19的外侧壁和/或热管8的冷凝段10的外侧壁。
优选地,第一组散热片18、第二组散热片19和/或翅片9的阵列的几何外形为立方体或长方体。当然,如本领域技术人员所知晓的,第一组散热片18、第二组散热片19和/或翅片9也可以根据情况设计成其它形状。
在根据该实施例的冷却装置1中,热管8的形状设计为U形。其中,该U形热管的两端部区段形成冷凝段10而位于两端部区段之间的底部区段形成蒸发段12。由此,当将热管模块3组装至散热片模块2时,蒸发段12在槽11内沿着槽11水平延伸而冷凝段10穿过通孔13竖直向上延伸。当然,如本领域技术人员所知晓的,热管8也可以设计成其它形状。特别地,热管8的蒸发段12不局限于直线延伸,还可以设置成蜿蜒地延伸。在图示的实施例中,热管8的蒸发段12仅在基底4的中间区段16处延伸。附加地或替代地,蒸发段12还可以在基底4的位于第一组散热片18与第二组散热片19正下方的区段上延伸。此外,冷却装置1所包含的热管8的数量可以根据具体情况来设置,而不局限于图示的两个。
此外,槽11的结构和数量可以根据要安装的蒸发段12的结构和数量来相应地设置。例如,在图2所示的实施例中,基底4的下表面17开设两个直线延伸的槽11以容置两个热管8的直线延伸的蒸发段12。而且,在该实施例中,槽11构造成通到基底4的如图1所示的前后两外侧面的双向通槽,这种双向通槽与非通槽相比简化了槽的加工。
此外,以采用下述连接方式中的一种或多种来将热管8固定至散热片模块2:使热管8在蒸发段12处焊接至基底4;在槽11内和/或通孔13内于热管8与基底4之间填充导热性粘结剂;热管8力配合或形状配合在槽11内和/或通孔13内;通过将翅片9连接至第一组散热片18和/或第二组散热片19而使热管8固定至散热片模块2。
进一步而言,根据该实施例的冷却装置1的一个有利设计在于:将热管8的位于槽11内的蒸发段12加工出一平坦的底面14,以使得基底4的下表面17与蒸发段12的平坦的底面14位于共同的平面内(参见图3),由此基底4的下表面17与热管的蒸发段12均可以与被冷却的装置充分地面式热接触。
根据该实施例的冷却装置1的另一个有利设计在于:每组散热片在远离基底4的一侧上设置有闭合部6,该闭合部6附接至一组散热片中每个散热片的与基底4相反的一端(图1-4中为上端)并将一组散热片中每两个散热片5之间的空气流道7从上侧闭合。由此实现了:不仅扩大了每组散热片的散热面积,而且有利于形成稳定、一致的冷却空气流路。
此外,为了形成流向一致的冷却空气流,可以设置气流发生装置(图中未示出)、如风扇或风机。
下面来说明冷却装置1的组装过程。首先,提供散热片模块2的基底4和热管模块3的至少一个热管8;然后,从基底4的下方安装热管8,以使得热管8的冷凝段10从槽11延伸穿过通孔13并伸向基底4上方的空间,直至热管8的蒸发段12接收在槽11内。然后,可以采用上文所述的适当的连接方式将热管8固定至基底4。其中,散热片5可以在将热管8组装至基底4之前已经附接至基底4,例如可以与基底4一体形成,也可以在将热管8组装至基底4之后再附接至基底4。同样,翅片9可以在将热管8组装至基底4之前已经附接至散热片5,也可以在将热管8组装至基底4之后再附接至热管8。热管8与散热片5之间可以采用例如焊接连接。
下面来说明冷却装置1的工作方式。被冷却的装置所散发的热量从基底4的下表面17和热管8的蒸发段12的平坦的底面14导入基底4和蒸发段12,进而,导入基底4的热量传导至第一组散热片18和第二组散热片19,并从第一组散热片18和第二组散热片19向周围环境散发,而导入热管8的蒸发段12的热量借助热管内的相变介质的运动运送至热管8的冷凝段10,并通过相变介质在冷凝段10处的冷凝相变释放出来并借助翅片9向外发散。由此,冷却装置1通过至少两种途径——固体导热和流体相变来冷却被冷却的装置,并以高散热功率的热管补偿了散热片的散热功率的不足,同时以低成本的散热片补偿了热管在经济效益上的劣势,从而得到兼具高散热功率和高成本效益的冷却装置。
图5示出根据本发明的第二实施例的用于冷却电子设备等的冷却装置101的正视立体图。为了简化起见,冷却装置101与冷却装置1的结构的相同之处不再予以赘述,下面仅说明两者之间的区别。根据该实施例的冷却装置101除了散热片模块102和热管模块103之外还具有附接至散热片模块102的基底104的下表面117的底座120。由此,底座120的下表面122作为冷却装置102的导入面与被冷却的装置热接触。并且,基底104与上述实施例中的基底4类似地开设有上槽部111,而底座120的与基底104相对设置的表面上相应地开设有下槽部121。当将底座120附接至基底104时,基底104的上槽部111与底座120的下槽部121共同形成用于接收热 管108的蒸发段(图中未示出)的槽。
这种结构具有下述优点:由于不再需要在热管108的蒸发段上额外地加工出用于与被冷却的装置面式热接触的平坦的底面14(图3),因此不仅简化了制造工艺,更减少了由该额外的加工步骤所导致的对热管108可能的损伤或损坏,同时提高了热管108的稳健性。
特别地,上槽部111和下槽部121都可以像图1的槽11那样设置为双向通槽,即设置成通向基底104的如图5所示的前、后两侧面。
此外,为了强化热管108的蒸发段与基底104、底座120之间的传热,可以使蒸发段与槽部111、121之间充分地直接接触(例如使蒸发段形状配合在槽部111、121内),也可以在槽部111、121内于热管108与槽部111、121之间填充用以增加接触面积的热界面材料、如导热膏。此外,为了将热管108固定至基底104,可以将热管108焊接至基底104和/或底座120,或者可以借助基底104和底座120之间的闭合力而使热管108力配合在槽部111、121内。这些增强热接触的方式和机械固定方式可以根据情况来灵活地组合使用。
图6示出图1-4所示的冷却装置1的变型例的立体图。图6所示的冷却装置201与根据第一实施例的冷却装置1的不同之处主要在于:没有为散热片设置图1-4所示的闭合部6。由此,每组散热片中的散热片205之间的空气流道207向上敞开。这种设计不仅由于省去闭合部6而减小了冷却装置201的体积,而且尤其适用于下述情况:由于每组散热片中的散热片205分布密度大和/或长宽比大等原因,造成难以加工出带有闭合部的散热片模块202或者难以将闭合部稳定地附接、比如粘结或焊接至散热片205;或者这种加工或附接会带来高废品率或需要付出极大的精力和成本。此外,不带有闭合部6的冷却装置201还尤其适用于下述情况:在冷却装置201安装就位后,其散热片205的上端会与一较大的散热面、例如被冷却的装置的壳体壁接触或靠近。此时,该较大的散热面与闭合部6具有相同或类似的作用,因此不再需要专门设置闭合部6。
图7示出图5所示的冷却装置的变型例的立体图。图7所示的冷却装置301与图5所示的冷却装置101的不同之处主要在于:没有设置上文所述的闭合部。这种设计的优点和适用情况在描述图6的实施例时已经予以 详细说明,在此不再予以赘述。
图8示出根据本发明的第三实施例的用于冷却电子设备等的冷却装置401的立体图,图9示出图8所示的冷却装置401的分解图,并且图10示出图8所示的冷却装置401中的一个散热片模块402的立体图。
如图8-10所示,根据该实施例的冷却装置401与前述各冷却装置的不同之处主要在于:位于基底404上的用于接收热管408的蒸发段412的槽411开设在基底404的上表面415上。由此,在冷却装置401的组装状态下,热管408的蒸发段和冷凝段位于基底404的同一侧,从而无需在基底上开设上文所述的供冷凝段穿过的通孔。
因此,可以以下述方式来制造冷却装置401:先分别加工出包括基底404和散热片405的散热片模块402和包括热管408和翅片409的热管模块403,然后从上方将热管模块403组装至散热片模块402,以使得热管模块403的热管408的蒸发段412接收在散热片模块402的槽411内。槽411的这种开设位置能够实现一种用于冷却装置的模块化制造方式,从而极大地简化了冷却装置的制造工艺。
进一步而言,图8-10所示的冷却装置401不同于上文所描述的只包括一个散热片模块和一个热管模块的冷却装置,而具有两个结构相同的散热片模块402-1和402-2和一个热管模块403。这提供了这样的一种技术思路:冷却装置中散热片模块和热管模块的数量可以根据具体需要来具体选择,甚至,同一散热装置可以设置多个结构不同的散热片模块和/或多个结构不同的热管模块。
更进一步而言,槽411可以如上文各实施例中的槽那样设置为双向通槽,即设置成通向基底404的在图10中所示的前侧面和后侧面。由此,在由两个散热片模块402-1和402-2和一个热管模块403组装冷却装置的过程中,首先,以散热片模块402-1的槽411-1和散热片模块402-2和槽411-2彼此对准的方式来将两散热片模块402-1和402-2彼此并排布置在一起,由此槽411-1和411-2共同形成用于接收热管408的蒸发段412的连续槽。同时,散热片模块402-1的两组散热片418-1和419-1之间的空间423-1与散热片模块402-2的两组散热片418-2和419-2之间的空间423-2在两散热片模块402-1和402-2彼此并排布置在一起后形成用于接收冷凝段410以及翅 片409的连续空间。然后,从上方将热管模块403组装至散热片模块402-1和402-2,以使得蒸发段412接收在所述连续槽内。
由于一个热管模块关联有两个散热片模块,因此可以将翅片409在基底404的宽度方向上的尺寸设置成散热片模块402的宽度的两倍,这点在图9的分解图中可以清楚地观察到。这种尺寸设计显著增大了热管的散热面积。
图11出根据本发明的第四实施例的用于冷却电子设备等的冷却装置501的立体图,图12示出图11所示的冷却装置501的分解图,图13示出图11所示的冷却装置501中的一个散热片模块502的立体图。根据该实施例的冷却装置501与根据第三实施例的冷却装置在结构上的不同之处主要在于:槽511没有设置成在其两端处通向基底504的周向侧面的双向通槽,而是设置成只在其一端处通向基底504周向侧面的单向通槽。由此,可以采取下述步骤来组装冷却装置:将两散热片模块502-1和502-2以各自被槽511贯通的那侧彼此面对面的方式并排布置在一起,从而使散热片模块502-1的槽511-1和散热片模块502-2的槽511-2共同形成用于接收热管508的蒸发段512的连续槽。
这种结构与根据第三实施例的具有双向通槽的结构相比,由于槽511没有设计成双向通槽,因此增加了基底的用于热传导的热质量,从而适用于对热质量需求较大的场合。
图14出根据本发明的第五实施例的用于冷却电子设备等的冷却装置601的立体图,并且图15示出图14所示的冷却装置601中的一个散热片模块602的立体图。根据该实施例的冷却装置601的一个重要特点在于:热管608的冷凝段610和翅片609在周向上被散热片模块602的散热片605完全包围。
该实施例提供了这样的一种技术思路:散热片和冷凝段在基底的表面上的布局不局限于上文各实施例所描述的那种方式,即冷凝段占据基底的表面的中间区段而散热片占据基底的表面的两侧区段。而是,冷凝段和散热片可以以各种适合的方式来占据基底的表面。
该实施例还提供了这样的一种技术思路:热管的冷凝段不局限于上文各实施例的那种布置方式,即在相反的两个横向侧直接暴露向周围环境。 而是,可以以各种适合的方式相对于周围环境暴露,例如可以如该实施例那样布置成在四个横向侧均没有直接暴露向周围环境,或者也可以布置成以一个、三个、甚至四个或者以两个相邻的横向侧或者以一个横向侧的一部分直接暴露向周围环境。
具体而言,如图15所示,每个散热片模块602除了第一组散热片618和第二组散热片619之外,还设置有位于第一组散热片618与第二组散热片619之间、将第一组散热片618与第二组散热片619连接的第三组散热片630。第三组散热片630与第一组散热片618和第二组散热片619具有相同的高度,但是,却没有像第一组散热片619和第二组散热片618那样在基底604的整个宽度上延伸,而是只在靠近基底604的前侧和后侧中的一侧的位置处在基底604的部分宽度上延伸,从而与第一组散热片618和第二组散热片618形成“凹”字形结构(俯视)。槽611位于基底604的上表面615的没有被三组散热片618、619和630覆盖的区域中,即位于所述“凹”字形结构的凹口内,并且通向基底604的前侧和后侧中的另一侧。
在由两散热片模块602-1和602-2和一个热管模块603组装冷却装置601的过程中,可以首先将两散热片模块602-1和602-2以各自被槽611贯通的那侧彼此面对面的方式并排布置在一起,从而散热片模块602-1的槽611和散热片模块602-2的槽611共同形成用于接收热管608的蒸发段(图中被遮挡住,因此未示出)的连续槽,同时散热片模块602-1的三组散热片和散热片模块602-2的三组散热片围出用于容置冷凝段610和翅片609的空间623。然后,将带有翅片609的热管608从上方插入空间623直至热管608的蒸发段定位在所述连续槽内。
在一优选的实施例中,所述空间的水平横截面的形状为矩形。
图16出根据本发明的第六实施例的用于冷却电子设备等的冷却装置701的正视立体图,图17示出图16所示的冷却装置701的仰视立体图,图18示出图16所示的冷却装置701中的散热片模块702的正视立体图,并且图19示出图18所示的散热片模块702的仰视立体图。
根据该实施例的冷却装置701与前述各实施例的冷却装置的一个重要区别在于散热片705和热管708的冷凝段710在基底704的表面上的布局不同。具体而言,在该实施例中,散热片模块702只具有一组散热片718, 而该组散热片718在基底704的上表面715上定位在U形热管708的一侧冷凝段710-1和另一侧冷凝段710-2之间。也即,该组散热片718占据了基底704的上表面715的中间区段,而热管708的两侧冷凝段710-1和710-2占据了基底704的上表面715的位于中间区段两侧的两侧区段。
此外,该实施例的与前述各实施例的冷却装置的另一个重要区别在于:一组散热片718中的各散热片705的高度设置成不尽相同。由此,也相应地没有为该组散热片718提供上文所述的闭合部。
特别地,散热片组中散热片705的高度分布设计成与气流发生装置(图中未示出)如风扇或风机相适应。更特别地,散热片组中处于中心位置的散热片705的高度最高,并且散热片的高度从该中心位置向外侧逐渐降低(如图16-18所示)。
此外,用于接收热管708的蒸发段712的槽711开设的基底704的与附接散热片705的表面相反的表面上,即图16所示的下表面717上。由此,热管708的一侧冷凝段710-1在散热片组718的一侧处延伸穿过基底704,而热管708的另一侧冷凝段710-2在散热片组718的相反的另一侧处延伸穿过基底704。
特别地,槽711可以设计成双向通槽,尤其是在基底的整个长度方向上延伸的笔直的双向通槽。
此外需要说明的是,上文各实施例中所说明的各特征可以互相组合出新的技术方案,这些新的技术方案也落在本发明的范畴内。
尽管一些实施例已经被说明,但是这些实施例仅仅是以示例的方式予以呈现,而没有旨在限定本发明的范围。所附的权利要求和它们的等价形式旨在覆盖落在本发明范围和精神内的所有改型、替代和改变。
附图标记列表
1冷却装置
2散热片模块
3热管模块
4基底
5散热片
6闭合部
7空气流道
8热管
9翅片
10冷凝段
11槽
12蒸发段
13通孔
14蒸发段的底面
15基底的上表面
16基底的中间区段
17基底的下表面
18第一组散热片
19第二组散热片
23空间
101冷却装置
102散热片模块
103热管模块
104基底
108热管
111上槽部
117下表面
120底座
121下槽部
122底座的下底面
201冷却装置
202散热片模块
205散热片
207空气流道
301冷却装置
401冷却装置
402、402-1和402-2散热片模块
403热管模块
404基底
405散热片
408热管
409翅片
410冷凝段
411、411-1和411-2槽
412蒸发段
415基底的上表面
418-1、418-2、419-1和419-2散热片组
423-1和423-2空间
501冷却装置
502、502-1和502-2散热片模块
504基底
508热管
511、511-1和511-2槽
512蒸发段
601冷却装置
602、602-1和602-2散热片模块
603热管模块
604基底
605散热片
608热管
609翅片
610冷凝段
611槽
615基底的上表面
618第一组散热片
619第二组散热片
623空间
630第三组散热片
701冷却装置
702散热片模块
703热管模块
704基底
705散热片
708热管
710、710-1和710-2冷凝段
711槽
712蒸发段
715基底的上表面
717基底的下表面
718散热片组

Claims (10)

  1. 一种冷却装置,所述冷却装置由至少一个散热片模块和至少一个热管模块组装而成,其中,所述散热片模块具有与被冷却的装置热接触的基底和附接至所述基底的散热片结构,所述热管模块具有至少一个热管,所述至少一个热管在冷却装置的组装状态下附接至所述基底,
    其特征在于,
    所述基底具有用于接收所述热管的蒸发段的至少一个槽,所述至少一个槽开设在所述基底的表面上并在该表面内延伸。
  2. 根据权利要求1所述的冷却装置,其特征在于,
    所述槽开设在所述基底的与所述被冷却的装置热接触的第一表面上。
  3. 根据权利要求1所述的冷却装置,其特征在于,
    所述槽开设在所述基底的第二表面上,所述第二表面与所述基底的与所述被冷却的装置热接触的第一表面相反设置。
  4. 根据权利要求2所述的冷却装置,其特征在于,
    所述热管的接收在所述槽中的具有大致圆形横截面的蒸发段被加工成具有一平坦的外表面,以使得当所述热管接收在所述槽中时,所述平坦的外表面从所述槽露出并与所述基底的所述第一表面位于共同平面内。
  5. 根据权利要求2所述的冷却装置,其特征在于,
    所述冷却装置还包括于所述第一表面附接至所述基底的底板,所述底板在其面向所述基底的一侧上开设有与所述槽对应的槽部,以使得当所述底板附接至所述基底时,所述基底上的所述槽与所述底板上的所述槽部共同形成用于接收所述蒸发段的槽。
  6. 根据权利要求2所述的冷却装置,其特征在于,
    所述基底包括从所述槽延伸至所述基底的与所述第一表面相反设置的 第二表面的通孔,当所述热管附接至所述基底时,所述热管的蒸发段接收在所述槽内,而所述热管的冷凝段借助所述通孔延伸穿过所述基底并从所述基底的所述第二表面大致垂直地伸向周围环境。
  7. 根据权利要求2-6中任一项所述的冷却装置,其特征在于,
    -所述散热片结构于所述基底的与所述第一表面相反设置的第二表面附接至所述基底;和/或
    -所述散热片结构包括至少一组从所述基底的表面大致垂直地延伸的散热片;和/或
    -所述散热片结构包括至少一组散热片,所述至少一组散热片包括闭合部,所述闭合部用于在散热片的与所述基底相反的一侧处将散热片之间的空气流道闭合;和/或
    -所述热管模块还具有附接至所述热管的冷凝段的翅片,并且在所述冷却装置的组装状态下,所述翅片贴靠或连接至所述散热片结构的外侧;和/或
    -在所述冷却装置的组装状态下,所述热管的冷凝段与所述散热片结构定位在所述基底的同一侧;和/或
    -所述散热片结构包括至少两组在所述基底上间隔布置的散热片,并且,所述槽位于相邻的两组散热片之间和/或相邻的两组散热片之间限定出用于接收所述热管的冷凝段的空间;和/或
    -所述槽构造成在其两端处分别通向所述基底的周向侧的笔直的通槽;和/或
    -所述热管构造成U形热管。
  8. 根据前述权利要求中任一项所述的冷却装置,其特征在于,
    所述基底构造成矩形的板状结构,并且所述基底的开设所述槽的表面和/或附接所述散热片结构的表面是所述板状结构的底面。
  9. 根据权利要求8所述的冷却装置,其特征在于,
    -所述散热片结构包括至少一组散热片,其中,所述至少一组散热片 在所述板状结构的底面的整个宽度或长度上延伸;和/或
    -所述热管模块还具有附接至所述热管的冷凝段的翅片,在所述冷却装置的组装状态下,所述翅片于所述板状结构的一底面上方、在该底面的整个宽度或长度上、与该底面平行地延伸;和/或
    -所述散热片结构包括两组散热片,其中,这两组散热片具有相同或对称的结构并以下述方式在所述基底的一底面上具有间隔地布置:这两组散热片占据了该底面在长度或宽度方向上相反的两端部区域;并且,在所述冷却装置的组装状态下,所述热管的冷凝段于这两组散热片之间延伸穿过所述基底;和/或
    -所述散热片结构包括位于所述基底的一底面的中间区域上的一组散热片,并且,在所述冷却装置的组装状态下,所述热管的冷凝段于该组散热片的相反的两侧处延伸穿过所述基底。
  10. 根据前述权利要求中任一项所述的冷却装置,其特征在于,
    -所述冷却装置包括至少两个散热片模块,其中,在所述冷却装置的组装状态下,所述至少两个散热片模块并排贴靠在一起,以使得散热片模块中的相应的槽彼此对准从而形成用于接收所述蒸发段的连续槽;和/或
    -所述冷却装置包括至少两个散热片模块,其中,在所述冷却装置的组装状态下,所述至少两个散热片模块并排贴靠在一起,以使得所述至少两个散热片模块中的散热结构共同限定出用于接收所述热管的冷凝段的空间。
PCT/CN2017/085894 2017-05-25 2017-05-25 冷却装置 WO2018214096A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/085894 WO2018214096A1 (zh) 2017-05-25 2017-05-25 冷却装置
CN201780091199.5A CN110679207B (zh) 2017-05-25 2017-05-25 冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/085894 WO2018214096A1 (zh) 2017-05-25 2017-05-25 冷却装置

Publications (1)

Publication Number Publication Date
WO2018214096A1 true WO2018214096A1 (zh) 2018-11-29

Family

ID=64395148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085894 WO2018214096A1 (zh) 2017-05-25 2017-05-25 冷却装置

Country Status (2)

Country Link
CN (1) CN110679207B (zh)
WO (1) WO2018214096A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213907324U (zh) * 2020-07-20 2021-08-06 双鸿电子科技工业(昆山)有限公司 具有防电磁波干扰的散热装置
CN112752478B (zh) * 2020-12-14 2023-08-01 中车永济电机有限公司 一体式双面风冷散热功率模块

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2691054Y (zh) * 2004-02-07 2005-04-06 鸿富锦精密工业(深圳)有限公司 热管散热装置
US20050092465A1 (en) * 2003-11-05 2005-05-05 Kuo-Len Lin Dual-layer heat dissipating structure
CN2792116Y (zh) * 2005-03-29 2006-06-28 富准精密工业(深圳)有限公司 热管散热装置
CN1873961A (zh) * 2005-06-04 2006-12-06 富准精密工业(深圳)有限公司 热管散热装置
CN1913136A (zh) * 2005-08-08 2007-02-14 富准精密工业(深圳)有限公司 热管散热装置
CN1967437A (zh) * 2005-11-16 2007-05-23 富准精密工业(深圳)有限公司 散热器
TW200725234A (en) * 2005-12-16 2007-07-01 Foxconn Tech Co Ltd Heat dissipation device
CN201282616Y (zh) * 2008-09-22 2009-07-29 富准精密工业(深圳)有限公司 散热装置
US20120305221A1 (en) * 2011-06-02 2012-12-06 Tsung-Hsien Huang Heat pipe-attached heat sink

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2664187Y (zh) * 2003-09-16 2004-12-15 珍通科技股份有限公司 长型中央处理器的散热器
CN100464279C (zh) * 2005-11-17 2009-02-25 富准精密工业(深圳)有限公司 散热装置
CN201207787Y (zh) * 2008-06-06 2009-03-11 珍通能源技术股份有限公司 均布排列热管蒸发端的散热装置
EP2280236B1 (en) * 2009-07-31 2013-05-01 Cpumate Inc. Heat-dissipating fins, large-area heat sink having such heat-dissipating fins and method for manufacturing the same
CN105258539B (zh) * 2015-10-09 2018-07-31 东莞汉旭五金塑胶科技有限公司 散热器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050092465A1 (en) * 2003-11-05 2005-05-05 Kuo-Len Lin Dual-layer heat dissipating structure
CN2691054Y (zh) * 2004-02-07 2005-04-06 鸿富锦精密工业(深圳)有限公司 热管散热装置
CN2792116Y (zh) * 2005-03-29 2006-06-28 富准精密工业(深圳)有限公司 热管散热装置
CN1873961A (zh) * 2005-06-04 2006-12-06 富准精密工业(深圳)有限公司 热管散热装置
CN1913136A (zh) * 2005-08-08 2007-02-14 富准精密工业(深圳)有限公司 热管散热装置
CN1967437A (zh) * 2005-11-16 2007-05-23 富准精密工业(深圳)有限公司 散热器
TW200725234A (en) * 2005-12-16 2007-07-01 Foxconn Tech Co Ltd Heat dissipation device
CN201282616Y (zh) * 2008-09-22 2009-07-29 富准精密工业(深圳)有限公司 散热装置
US20120305221A1 (en) * 2011-06-02 2012-12-06 Tsung-Hsien Huang Heat pipe-attached heat sink

Also Published As

Publication number Publication date
CN110679207A (zh) 2020-01-10
CN110679207B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
US10215504B2 (en) Flexible cold plate with enhanced flexibility
EP3405733B1 (en) Multi-level oscillating heat pipe implementation in an electronic circuit card module
EP3550947B1 (en) Heat sink and communication product
WO2022007721A1 (zh) 一种散热器及通信设备
JP3179086U (ja) 流体熱交換システム
CN104661494A (zh) 冷却元件
US20200029466A1 (en) Liquid-heat-transmission device
CN112188792A (zh) 散热器
US20090277614A1 (en) Heat dissipating device and heat conduction structure thereof
WO2018214096A1 (zh) 冷却装置
TWI795873B (zh) 整合式冷卻模組及具有該整合式冷卻模組的電子裝置
WO2012161002A1 (ja) 平板型冷却装置及びその使用方法
US20230354557A1 (en) Heat sink and communication device
CN105514064A (zh) 散热器
CN112584671A (zh) 用于冷却电子构件的均温板
JP2011220620A (ja) プレート型ヒートパイプモジュール及びこれを用いたパワー半導体の冷却装置。
KR20070115312A (ko) 냉각장치용 히트파이프 모듈
WO2023010836A1 (zh) 散热模组和电子设备
WO2022025250A1 (ja) 冷却部材
CN214014800U (zh) 散热模组
US20220214112A1 (en) Internal circulation water cooling heat dissipation device
CN116686082A (zh) 芯片散热盖、芯片封装结构及设备互连系统
KR100736814B1 (ko) 써멀싸이폰 일체형 히트싱크 제조방법
JP2016205745A (ja) ヒートパイプ式ヒートシンク
US11885534B2 (en) Cooling device and vehicle including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911280

Country of ref document: EP

Kind code of ref document: A1