WO2018211928A1 - レーザアニール装置及びレーザアニール方法 - Google Patents

レーザアニール装置及びレーザアニール方法 Download PDF

Info

Publication number
WO2018211928A1
WO2018211928A1 PCT/JP2018/016722 JP2018016722W WO2018211928A1 WO 2018211928 A1 WO2018211928 A1 WO 2018211928A1 JP 2018016722 W JP2018016722 W JP 2018016722W WO 2018211928 A1 WO2018211928 A1 WO 2018211928A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
line beam
projection mask
homogenizer
laser light
Prior art date
Application number
PCT/JP2018/016722
Other languages
English (en)
French (fr)
Inventor
良勝 柳川
裕也 藤森
梶山 康一
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2018211928A1 publication Critical patent/WO2018211928A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to a laser annealing apparatus for annealing a substrate with a laser.
  • a laser annealing technique is known as a technique for converting amorphous silicon of a silicon substrate into polysilicon.
  • Laser annealing is generally a technique for forming a polysilicon film by heating a silicon film at a low temperature by irradiation with a laser, and is known as a technique for producing a substrate such as a liquid crystal panel.
  • Patent Document 1 discloses an example of such a laser annealing technique.
  • the intensity distribution of a laser oscillated from a light source that emits a laser is made uniform by a homogenizer, and then a beam is formed to perform annealing.
  • the homogenizer is composed of, for example, a fly-eye lens, but highly coherent lasers that have passed through each of the plurality of lenses constituting the fly-eye lens interfere with each other, resulting in interference unevenness on the substrate. There is a problem of generating. Needless to say, it is not preferable that such interference unevenness is formed on the substrate.
  • an object of the present invention is to provide a laser annealing apparatus and method for reducing interference unevenness due to laser interference through a homogenizer.
  • a laser annealing apparatus includes a light source that generates laser light, a homogenizer that makes the intensity distribution of laser light emitted from the light source substantially uniform, and an intensity distribution using the homogenizer.
  • a laser annealing apparatus comprising: a projection mask that is provided and that reduces interference unevenness due to a line beam that may be generated on an irradiation target due to interference of laser light that has passed through a homogenizer.
  • the projection mask may have a transmittance corresponding to the intensity of the line beam due to interference unevenness.
  • the projection mask has a transmittance that lowers the transmittance of a portion through which a strong line beam passes due to interference unevenness and increases the transmittance of a portion through which a weak line beam passes. It is good as well.
  • the projection mask may be made of chromium or a chromium alloy.
  • the projection mask may be provided on the optical path from the cylindrical lens to the irradiation target and separated from the cylindrical lens by a distance that does not damage the projection mask with the line beam.
  • a laser annealing method includes an irradiation step of irradiating laser light from a light source, and uniformizing an intensity distribution of the laser light irradiated from the light source by using a homogenizer.
  • the laser annealing apparatus can suppress interference unevenness that may occur due to interference of laser light that has passed through a homogenizer, by using a projection mask corresponding to the intensity of the laser light.
  • (A) is a top view of a laser annealing apparatus
  • (b) is a side view of a laser annealing apparatus. It is a figure for demonstrating the interference nonuniformity formed in a panel. It is a figure explaining the structural example of a projection mask. It is a figure which shows the mode of the laser annealing through a projection mask.
  • (A) is a figure which shows the relationship between the energy intensity of the laser with respect to a panel, and the transmittance
  • (B) is a figure which shows energy distribution through a projection mask. It is a flowchart which shows operation
  • FIG. 1 is a diagram showing a configuration of a laser annealing apparatus 100, (a) is a plan view of the laser annealing apparatus 100 viewed from the top, and (b) is a side view of the laser annealing apparatus 100 viewed from the side.
  • FIG. 1 is a diagram showing a configuration of a laser annealing apparatus 100, (a) is a plan view of the laser annealing apparatus 100 viewed from the top, and (b) is a side view of the laser annealing apparatus 100 viewed from the side.
  • the laser annealing apparatus 100 includes a light source 101 that generates laser light, a homogenizer 111 that makes the intensity distribution of the laser light emitted from the light source substantially uniform, and a condenser that collects the laser light whose intensity distribution is made uniform by the homogenizer
  • a lens 112 a cylindrical lens 113 that converts the laser light condensed by the condenser lens into a line beam, and an optical path between the cylindrical lens 113 and the irradiation target (panel) 200 of the line beam are provided.
  • a projection mask 114 for reducing interference unevenness that may occur in the irradiation target due to the interference of the laser beam that has passed.
  • the light source 101 is a light source for irradiating laser light for laser annealing, for example, a laser oscillator that oscillates a UV pulse laser.
  • the homogenizer 111 makes the intensity distribution of the laser beam 201 oscillated from the light source 101 substantially uniform.
  • the homogenizer 111 can be realized by, for example, two fly-eye lenses facing each other.
  • the intensity distribution of the laser beam 202 that has passed through the homogenizer 111 is not completely uniform because the laser beams that have passed through a plurality of lenses constituting the homogenizer interfere with each other.
  • the homogenizer 111 may use an aspherical lens or a diffraction optical element.
  • the condenser lens 112 condenses the laser light 202 that has passed through the homogenizer 111 and has a substantially uniform intensity distribution.
  • the cylindrical lens 113 converts the laser beam 203 collected by the condenser lens 112 into a line beam.
  • the projection mask 114 masks the line beam 204 output from the cylindrical lens 113 and outputs a line beam 205 having a uniform energy distribution. Details of the projection mask 114 will be described later.
  • the mirror 115 is a mirror that reflects the line beam 205 that has passed through the projection mask 114 toward the panel 200 to be irradiated.
  • the cylindrical lens 116 converts the line beam 205 reflected by the mirror 115 into a line beam having a width suitable for irradiating the panel 200 to be irradiated.
  • the panel 200 to be irradiated is a substrate on which a silicon film is formed, and is placed on the stage 300.
  • the stage 300 is a mounting table for mounting the panel 200 to be laser annealed.
  • the stage 300 is driven by a driving device (not shown). Thereby, the panel 200 moves and the surface of the panel 200 is made into polysilicon.
  • the stage 300 moves toward the light source 101.
  • the moving direction may be referred to as a scanning direction.
  • the homogenizer 111, the condenser lens 112, the cylindrical lens 113, the projection mask 114, the mirror 115, and the cylindrical lens 116 are combined to form a uniform line beam optical system 110.
  • the intensity distribution of the laser light 201 oscillated from the light source 101 is made substantially uniform by the homogenizer 111.
  • the laser beam 201 laser beams that have passed through a plurality of lenses constituting the homogenizer 111 interfere with each other, and the intensity distribution of the laser beam 202 is not completely uniform. Therefore, when this laser beam 202 is converted into a line beam as it is and laser annealing is performed, as shown in the panel 200 of FIG. 2, a polysilicon film having interference unevenness (interference fringes) is formed. .
  • the lower part shows the energy intensity distribution of the line beam at that time.
  • the line beam has a substantially periodic energy intensity distribution. Due to the strength of this energy distribution, interference fringes are formed on the panel 200. 2 indicate the same direction as the x direction and the y direction shown in FIG. That is, interference fringes in the same direction as the scanning direction are formed on the panel 200.
  • a projection mask 114 having a transmittance as shown in the lower part of FIG. 3 is used in view of the energy distribution of the line beam in the lower part of FIG. More specifically, the projection mask 114 is configured such that the transmittance of the portion where the energy intensity of the line beam is high is low and the transmittance of the portion where the energy intensity of the line beam is low. Then, as shown in FIG. 4, a portion where the transmittance of the projection mask 114 is high corresponds to a portion where the energy distribution of the line beam is high when the projection mask 114 is not passed, and a portion where the transmittance of the projection mask 114 is low. When the projection mask 114 is not passed, a portion where the energy distribution of the line beam is lowered is provided.
  • the projection mask 114 can be generated, for example, by depositing a material having a property of shielding a laser such as chromium on a substrate such as quartz glass. In the projection mask 114, a small amount of chromium is deposited on quartz glass at locations with high transmittance, and a large amount of chromium is deposited at locations with low transmittance.
  • the projection mask 114 is formed, for example, with 2 ⁇ m ⁇ 2 ⁇ m of chromium approximately randomly so that the transmittance within a predetermined range (for example, 10 ⁇ m ⁇ 10 ⁇ m) is set. For example, when the transmittance is 80%, the projection mask 114 in which five chrome dots are formed in the range of 10 ⁇ m ⁇ 10 ⁇ m is formed.
  • the panel 200 can be polysiliconized (annealed) with a line beam in which the energy intensity of the line beam reaching the panel 200 is substantially uniform (flat). Therefore, the use of the projection mask 114 in the laser annealing apparatus 100 can suppress the formation of interference fringes on the panel 200.
  • the projection mask 114 is disposed after the cylindrical lens 113 and at a position separated from the light source 101 to the extent that the projection mask 114 is not damaged by the laser oscillated from the light source 101.
  • the projection mask 114 may be disposed anywhere between the optical path from the cylindrical lens 113 to the panel 200 as long as the above-described conditions are satisfied.
  • the laser beam can be arranged as a line beam at a position before diffusing, so that the projection mask 114 can be formed in a small size.
  • the cost of creating the projection mask 114 can be suppressed.
  • the projection mask 114 is disposed at a position close to the panel 200, masking with higher accuracy can be performed than when the projection mask 114 is disposed at a position close to the cylindrical lens 113.
  • the operator inputs the conditions of the light source 101 and the uniform line beam optical system to the simulator, and calculates a generation distribution in which interference unevenness occurs on the panel 200 (step S601).
  • the specification is synonymous with specifying the energy distribution of the line beam.
  • the conditions of the light source 101 and the uniform line beam optical system refer to the frequency and intensity of the laser oscillated from the light source 101, the arrangement position, curvature, and characteristics of various lenses constituting the optical system.
  • the location where the interference unevenness is generated is specified by the simulator, but the location where the interference unevenness is actually generated may be specified.
  • step S602 the operator generates a projection mask 114 according to the occurrence distribution of the interference unevenness by using a mask generation device or the like.
  • the operator places the projection mask 114 generated in step S602 on the optical path in the rear stage of the cylindrical lens 113 of the laser annealing apparatus 100 (the rear stage of the homogenizer 111) and in front of the panel 200 (step S603).
  • the operator drives the laser annealing apparatus 100 to irradiate the laser from the light source 101.
  • the laser annealing apparatus 100 drives the driving device to perform laser annealing while moving the stage 300 (step S604).
  • the laser annealing apparatus 100 can provide the panel 200 in which amorphous silicon having no interference unevenness is made into polysilicon.
  • steps S601 and S602 is not an operation of the laser annealing apparatus 100 but a preparation process for laser annealing, and an operator using the laser annealing apparatus 100, a simulator used by the operator, and a projection mask 114 are generated. This is processing by the generation device.
  • the projection mask 114 configured to pass through a portion having a high transmittance of the projection mask 114, it is possible to provide the polysiliconized panel 200 having no interference fringes due to the homogenizer.
  • the above-described interference fringes are suppressed by moving an optical system including a homogenizer using a low-speed laser (for example, about 600 Hz).
  • a low-speed laser for example, about 600 Hz
  • the inventors have found that there is a limit to the suppression of interference fringes by moving the optical system when annealing is performed by shooting a higher-speed line beam (for example, about 6 kHz). Therefore, as shown in the above embodiment, the inventors mask the line beam having interference that has passed through the homogenizer using the configured projection mask 114 so that the interference fringes are not generated, and the interference fringes are generated. It came to the invention of suppressing doing.
  • the present invention has been described based on the drawings and embodiments, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention.
  • the interference is generated by the homogenizer 111, the interference is reduced by the projection mask 114, and the panel 200 is irradiated with the line beam.
  • the arrangement of the parts constituting the optical system may be changed back and forth.

Abstract

レーザアニール装置は、レーザ光を発生させる光源と、光源から照射されたレーザ光の強度分布を略均一にするホモジナイザと、ホモジナイザにより強度分布が均一にされたレーザ光を集光するコンデンサレンズと、コンデンサレンズにより集光されたレーザ光をラインビームに変換するシリンドリカルレンズと、シリンドリカルレンズと、ラインビームの照射対象との間の光路上に設けられ、ホモジナイザを通過したレーザ光の干渉により照射対象に発生し得るラインビームによる干渉ムラを低減するための投影マスクと、を備える。

Description

レーザアニール装置及びレーザアニール方法
 本発明は、レーザにより基板をアニールするレーザアニール装置に関する。
 従来、シリコン基板のアモルファスシリコンをポリシリコン化する技術として、レーザアニール技術が知られている。レーザアニールは、一般に、シリコン膜を、レーザを照射して低温で加熱し、ポリシリコン化する技術であり、液晶パネル等の基板の生成技術として知られている。特許文献1には、そのようなレーザアニール技術の一例が開示されている。
特開2012-182348号公報
 ところで、このようなレーザアニールにおいては、レーザを発信する光源から発振されたレーザの強度分布を、ホモジナイザにより均一化したうえで、ビームを形成して、アニールを行うことが知られている。当該ホモジナイザは、例えば、フライアイレンズにより構成されているが、このフライアイレンズを構成する複数のレンズ各々を通過した干渉性の高いレーザが互いに干渉しあうため、結果的に基板に干渉ムラを生成するという問題がある。基板上にこのような干渉ムラが形成されることが、好ましくないことは言うまでもない。
 そこで、本発明は、上記問題に鑑みて成されたものであり、ホモジナイザを通したレーザの干渉による干渉ムラを低減することができるレーザアニール装置及びその方法を提供することを目的とする。
 上記課題を解決するために、本発明の一態様に係るレーザアニール装置は、レーザ光を発生させる光源と、光源から照射されたレーザ光の強度分布を略均一にするホモジナイザと、ホモジナイザにより強度分布が均一にされたレーザ光を集光するコンデンサレンズと、コンデンサレンズにより集光されたレーザ光をラインビームに変換するシリンドリカルレンズと、シリンドリカルレンズと、ラインビームの照射対象との間の光路上に設けられ、ホモジナイザを通過したレーザ光の干渉により照射対象に発生し得るラインビームによる干渉ムラを低減するための投影マスクと、を備えるレーザアニール装置。
 上記レーザアニール装置において、投影マスクは、干渉ムラによるラインビームの強度に応じた透過率を有することとしてもよい。
 また、上記レーザアニール装置において、投影マスクは、干渉ムラにより強度の強いラインビームが通過する箇所の透過率を低くし、強度の弱いラインビームが通過する箇所の透過率を高くした透過率を有することとしてもよい。
 また、上記レーザアニール装置において、投影マスクは、クロムまたはクロム合金から成ることとしてもよい。
 また、上記レーザアニール装置において、投影マスクは、シリンドリカルレンズから照射対象までの光路上であって、ラインビームが投影マスクを損傷させない距離だけシリンドリカルレンズから離間して設けられていることとしてもよい。
 上記課題を解決するために、本発明の一態様に係るレーザアニール方法は、光源からレーザ光を照射する照射ステップと、光源から照射されたレーザ光の強度分布をホモジナイザにより略均一にする均一化ステップと、ホモジナイザにより強度分布が均一にされたレーザ光をコンデンサレンズにより集光する集光ステップと、コンデンサレンズにより集光されたレーザ光をシリンドリカルレンズによりラインビームに変換する変換ステップと、シリンドリカルレンズと、ラインビームの照射対象との間の光路上に設けられた投影マスクにより、ホモジナイザを通過したレーザ光の干渉により照射対象に発生し得るラインビームによる干渉ムラを低減する低減ステップと、を含む。
 本発明の一態様に係るレーザアニール装置は、ホモジナイザを通過したレーザ光の干渉により発生し得る干渉ムラを、レーザ光の強度に応じた投影マスクを用いることで、抑制することができる。
(a)は、レーザアニール装置の平面図であり、(b)は、レーザアニール装置の側面図である。 パネルに形成される干渉ムラを説明するための図である。 投影マスクの構成例を説明する図である。 投影マスクを通したレーザアニールの様子を示す図である。 (a)は、パネルに対するレーザのエネルギー強度と、投影マスクによる透過率の関係を示す図である。(b)は、投影マスクを通したエネルギー分布を示す図である。 レーザアニール装置の動作を示すフローチャートである。
 本発明に係るレーザアニール装置について、図面を参照しながら、詳細に説明する。
<実施の形態>
<構成>
 図1は、レーザアニール装置100の構成を示す図であり、(a)は、レーザアニール装置100を上面から見た平面図であり、(b)は、レーザアニール装置100を側面から見た側面図である。
 レーザアニール装置100は、レーザ光を発生させる光源101と、光源から照射されたレーザ光の強度分布を略均一にするホモジナイザ111と、ホモジナイザにより強度分布が均一にされたレーザ光を集光するコンデンサレンズ112と、コンデンサレンズにより集光されたレーザ光をラインビームに変換するシリンドリカルレンズ113と、シリンドリカルレンズ113とラインビームの照射対象(パネル)200との間の光路上に設けられ、ホモジナイザ111を通過したレーザ光の干渉により照射対象に発生し得る干渉ムラを低減するための投影マスク114と、を備える。
 光源101は、レーザアニールのためのレーザ光を照射するための光源であり、例えば、UVパルスレーザを発振するレーザ発振器である。
 ホモジナイザ111は、光源101から発振されたレーザ光201の強度分布を略均一にする。ホモジナイザ111は、例えば、互いに対向した2枚のフライアイレンズにより実現することができる。ホモジナイザ111を通過したレーザ光202は、ホモジナイザを構成する複数のレンズを通過した各レーザ光が互いに干渉しあうため、完全には、その強度分布が均一にはならない。ホモジナイザ111は、他には、非球面レンズや回析光学素子を用いることもある。
 コンデンサレンズ112は、ホモジナイザ111を通過して、強度分布が略均一になったレーザ光202を、集光する。
 シリンドリカルレンズ113は、コンデンサレンズ112により集光されたレーザ光203を、ラインビームに変換する。
 投影マスク114は、シリンドリカルレンズ113から出力されたラインビーム204をマスキングして、エネルギー分布を均一にしたラインビーム205を出力する。投影マスク114の詳細については後述する。
 ミラー115は、投影マスク114を通過したラインビーム205を、照射対象のパネル200に向けて反射する鏡体である。
 シリンドリカルレンズ116は、ミラー115により反射されたラインビーム205を、照射対象であるパネル200に照射するのに適した幅のラインビームに変換する。
 照射対象であるパネル200は、シリコン膜が形成された基板であり、ステージ300の上に載置される。
 ステージ300は、レーザアニールの対象となるパネル200を載置するための載置台である。ステージ300は、図示しない駆動装置により駆動する。これにより、パネル200が移動し、パネル200の表面がポリシリコン化される。図1(b)の例では、ステージ300は、光源101の方に向かって移動する。当該移動方向をスキャン方向と呼称することもある。
 また、ホモジナイザ111、コンデンサレンズ112、シリンドリカルレンズ113、投影マスク114、ミラー115、シリンドリカルレンズ116と、を併せて、均一ラインビーム光学系110とする。
<投影マスク114の構成>
 ここで、投影マスク114について詳細に説明する。投影マスク114の説明にあたって、まず、投影マスク114を、ホモジナイザ111を通過させたレーザ光を通過させなかった場合に、パネル200に発生し得る干渉ムラについて説明する。
 光源101から発振されたレーザ光201は、ホモジナイザ111により、その強度分布が略均一にされる。レーザ光201は、ホモジナイザ111を構成する複数のレンズ各々を通過したレーザが互いに干渉しあい、レーザ光202は、完全には強度分布が均一にならない。そのため、このレーザ光202をそのままラインビームに変換して、レーザアニールを行った場合、図2のパネル200に示すように、干渉ムラ(干渉縞)のあるポリシリコン膜が形成されることになる。
 図2の上段には、干渉縞が形成されたパネル200の一例を示しており、下段には、そのときのラインビームのエネルギー強度分布を示している。図2下段のグラフに示されるように、ラインビームは略周期的なエネルギー強度分布を有する。このエネルギー分布の強弱のため、パネル200には、干渉縞が形成されることになる。なお、図2のx方向、y方向は、図1に示すx方向とy方向と同じ方向を示している。即ち、パネル200には、スキャン方向と同方向の干渉縞が形成される。
 そこで、レーザアニール装置100において、投影マスク114には、図2下段のラインビームのエネルギー分布例に鑑みて、図3の下段に示すように透過率を有するものを用いる。より具体的には、投影マスク114は、ラインビームのエネルギー強度の高い箇所の透過率が低く、ラインビームのエネルギー強度の低い箇所の透過率が高くなるように構成される。そして、図4に示すように、投影マスク114の透過率の高い箇所が、投影マスク114を通さない場合にラインビームのエネルギー分布が高い箇所が対応し、投影マスク114の透過率の低い箇所が、投影マスク114を通さない場合にラインビームのエネルギー分布が低くなる箇所が対応するように設けられる。
 投影マスク114は、例えば、石英ガラスなどの基板に、クロムなどレーザを遮蔽する性質を有する材質を成膜することにより生成することができる。投影マスク114においては、石英ガラスに、透過率の高い箇所には少量のクロムを成膜し、透過率の低い箇所には多量のクロムを成膜する。投影マスク114は、例えば、2μm×2μmのクロムを、所定範囲内(例えば、10μm×10μm)の透過率が設定した透過率になるように、略ランダムに成膜する。例えば、透過率を80%としたときには、10μm×10μmの範囲内に、5個のクロムのドットが形成された投影マスク114が形成される。
 したがって、図5(a)に示すように、ホモジナイザ111を経由して生成されるラインビームのエネルギー分布の強弱を打ち消すように、透過率が設定された投影マスク114を通過させることで、図5(b)に示すように、パネル200に達するラインビームのエネルギー強度がほぼ均一(平らか)になったラインビームによりパネル200をポリシリコン化する(アニールする)ことができる。よって、レーザアニール装置100において投影マスク114を用いることにより、パネル200上に干渉縞が形成されることを抑制することができる。
 なお、投影マスク114は、シリンドリカルレンズ113の後段であって、光源101から発振されたレーザにより投影マスク114が損傷しない程度に光源101から離された位置に配される。ここでは、シリンドリカルレンズ113の後段としているが、これは、ホモジナイザ111の後段、即ち、干渉が発生した後の光路上のどこかに配されればよい。投影マスク114は、シリンドリカルレンズ113から、パネル200までの光路の間であって、上述の条件を満たせば、どこに配してもよい。シリンドリカルレンズ113に近い方に配した場合に、レーザ光がラインビームとして、拡散する前の位置に配することができるので、投影マスク114を小さいサイズで作成することができる。よって、投影マスク114の作成のコストを抑制することができる。一方で、投影マスク114をパネル200に近い位置に配した場合には、投影マスク114をシリンドリカルレンズ113に近い位置に配した場合よりも、より精度の高いマスキングを行うことができる。
<動作>
 ここから、レーザアニール装置100によるアニールの動作について説明する。
 まず、オペレータは、光源101、均一ラインビーム光学系の条件をシミュレータに入力して、パネル200上において、干渉ムラが発生する発生分布を算出する(ステップS601)。当該特定は、ラインビームのエネルギー分布を特定することと同義である。なお、光源101、均一ラインビーム光学系の条件とは、光源101から発振されるレーザの周波数や強度、光学系を構成する各種レンズの配置位置や曲率、特性などのことをいう。なお、ここでは、シミュレータにより、干渉ムラが発生する箇所を特定することとしているが、実際にアニールを行った、干渉ムラが発生する箇所を特定することとしてもよい。
 次にオペレータは、干渉ムラの発生分布に応じた投影マスク114をマスク生成装置などにより生成する(ステップS602)。
 オペレータは、ステップS602において生成した投影マスク114をレーザアニール装置100のシリンドリカルレンズ113の後段(ホモジナイザ111の後段)であって、パネル200の前段の光路上に配置する(ステップS603)。
 そして、オペレータは、レーザアニール装置100を駆動して、光源101からレーザを照射させる。レーザアニール装置100は、駆動装置を駆動して、ステージ300を移動させながら、レーザアニールを実行する(ステップS604)。
 これにより、レーザアニール装置100は、干渉ムラのないアモルファスシリコンがポリシリコン化されたパネル200を提供することができる。
 なお、ステップS601、S602の処理は、レーザアニール装置100の動作ではなく、レーザアニールのための準備処理であり、レーザアニール装置100を利用するオペレータ及びオペレータが利用するシミュレータ、投影マスク114を生成する生成装置による処理である。
<まとめ>
 上述したように、本発明に係るレーザアニール装置100によれば、ラインビームのエネルギー分布の高い箇所が、投影マスク114の透過率が低い箇所を通過するように、ラインビームのエネルギー分布の低い箇所が、投影マスク114の透過率が高い箇所を通過するように構成された投影マスク114を用いることで、ホモジナイザによる干渉縞がないポリシリコン化されたパネル200を提供することができる。
 レーザアニールにおいて、従来では、低速のレーザ(例えば、600Hz程度)を用いてホモジナイザを含む光学系を移動させることで、上述の干渉縞を抑制するようにしていた。しかしながら、今後より高速のラインビームをショット(例えば、6kHz程度)してアニールする場合には、光学系を移動させることによる干渉縞の抑制は限界があることを発明者らは知見した。そこで、発明者らは、上記実施形態に示すように、干渉縞が発生しないように、構成した投影マスク114を用いて、ホモジナイザを通過した干渉のあるラインビームをマスキングして、干渉縞が発生することを抑制するという発明をするに至った。
 なお、本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、均一ラインビーム光学系110において、結果的にホモジナイザ111により干渉が発生しているビームを、投影マスク114により当該干渉を低減する構成になって、パネル200にラインビームが照射されれば、光学系を構成する部品の配置は前後することとしてもよい。
100 レーザアニール装置
101 UVパルスレーザ照射装置
110 均一ラインビーム光学系
111 ホモジナイザ
112 コンデンサレンズ
113 シリンドリカルレンズ
114 投影マスク
115 ミラー
116 シリンドリカルレンズ
200 パネル
300 ステージ

Claims (6)

  1.  レーザ光を発生させる光源と、
     前記光源から照射されたレーザ光の強度分布を略均一にするホモジナイザと、
     前記ホモジナイザにより強度分布が均一にされたレーザ光を集光するコンデンサレンズと、
     前記コンデンサレンズにより集光されたレーザ光をラインビームに変換するシリンドリカルレンズと、
     前記シリンドリカルレンズと、前記ラインビームの照射対象との間の光路上に設けられ、前記ホモジナイザを通過したレーザ光の干渉により前記照射対象に発生し得る干渉ムラを低減するための投影マスクと、
     を備えるレーザアニール装置。
  2.  前記投影マスクは、前記干渉ムラによる前記ラインビームの強度に応じた透過率を有することを特徴とする請求項1に記載のレーザアニール装置。
  3.  前記投影マスクは、前記干渉ムラにより強度の強いラインビームが通過する箇所の透過率を低くし、強度の弱いラインビームが通過する箇所の透過率を高くした透過率を有することを特徴とする請求項2に記載のレーザアニール装置。
  4.  前記投影マスクは、クロムまたはクロム合金から成ることを特徴とする請求項1に記載のレーザアニール装置。
  5.  前記投影マスクは、前記シリンドリカルレンズから前記照射対象までの光路上であって、前記ラインビームが前記投影マスクを損傷させない距離だけ前記シリンドリカルレンズから離間して設けられていることを特徴とする請求項1に記載のレーザアニール装置。
  6.  光源からレーザ光を照射する照射ステップと、
     前記光源から照射されたレーザ光の強度分布をホモジナイザにより略均一にする均一化ステップと、
     前記ホモジナイザにより強度分布が均一にされたレーザ光をコンデンサレンズにより集光する集光ステップと、
     前記コンデンサレンズにより集光されたレーザ光をシリンドリカルレンズによりラインビームに変換する変換ステップと、
     前記シリンドリカルレンズと、前記ラインビームの照射対象との間の光路上に設けられた投影マスクにより、前記ホモジナイザを通過したレーザ光の干渉により前記照射対象に発生し得る前記ラインビームによる干渉ムラを低減する低減ステップと、
     を含むレーザアニール方法。
PCT/JP2018/016722 2017-05-16 2018-04-25 レーザアニール装置及びレーザアニール方法 WO2018211928A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-097559 2017-05-16
JP2017097559A JP2018195676A (ja) 2017-05-16 2017-05-16 レーザアニール装置及びレーザアニール方法

Publications (1)

Publication Number Publication Date
WO2018211928A1 true WO2018211928A1 (ja) 2018-11-22

Family

ID=64273654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016722 WO2018211928A1 (ja) 2017-05-16 2018-04-25 レーザアニール装置及びレーザアニール方法

Country Status (2)

Country Link
JP (1) JP2018195676A (ja)
WO (1) WO2018211928A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213352A1 (ja) * 2019-04-18 2020-10-22 株式会社ブイ・テクノロジー レーザリフトオフ用装置及びレーザリフトオフ方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11212021A (ja) * 1998-01-27 1999-08-06 Toshiba Corp レーザ光照射装置
JPH11251261A (ja) * 1998-03-04 1999-09-17 Seiko Epson Corp 半導体膜の製造方法、およびアニール装置及び薄膜トランジスタの製造方法及び液晶表示装置用アクティブマトリクス基板
JP2003124136A (ja) * 2001-10-10 2003-04-25 Hitachi Ltd レーザアニール方法およびレーザアニール装置並びにtft基板
JP2004012757A (ja) * 2002-06-06 2004-01-15 Ishikawajima Harima Heavy Ind Co Ltd レーザ照射装置
JP2004063924A (ja) * 2002-07-31 2004-02-26 Mitsubishi Heavy Ind Ltd レーザアニール方法及び装置
JP2004172605A (ja) * 2002-11-01 2004-06-17 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置および結晶化方法
JP2005161372A (ja) * 2003-12-03 2005-06-23 Ricoh Co Ltd レーザ加工装置、構造体、光学素子、及びレーザ加工法
JP2006339630A (ja) * 2005-05-02 2006-12-14 Semiconductor Energy Lab Co Ltd レーザ照射装置、およびレーザ照射方法
JP2008124149A (ja) * 2006-11-09 2008-05-29 Advanced Lcd Technologies Development Center Co Ltd 光学装置および結晶化装置
JP2009094329A (ja) * 2007-10-10 2009-04-30 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置、結晶化方法、およびデバイス
JP2011230159A (ja) * 2010-04-28 2011-11-17 V Technology Co Ltd レーザ加工装置
JP2017510975A (ja) * 2014-01-29 2017-04-13 シャンハイ マイクロ エレクトロニクス イクイプメント カンパニー リミティド レーザアニールのためのビームホモジナイザ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11212021A (ja) * 1998-01-27 1999-08-06 Toshiba Corp レーザ光照射装置
JPH11251261A (ja) * 1998-03-04 1999-09-17 Seiko Epson Corp 半導体膜の製造方法、およびアニール装置及び薄膜トランジスタの製造方法及び液晶表示装置用アクティブマトリクス基板
JP2003124136A (ja) * 2001-10-10 2003-04-25 Hitachi Ltd レーザアニール方法およびレーザアニール装置並びにtft基板
JP2004012757A (ja) * 2002-06-06 2004-01-15 Ishikawajima Harima Heavy Ind Co Ltd レーザ照射装置
JP2004063924A (ja) * 2002-07-31 2004-02-26 Mitsubishi Heavy Ind Ltd レーザアニール方法及び装置
JP2004172605A (ja) * 2002-11-01 2004-06-17 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置および結晶化方法
JP2005161372A (ja) * 2003-12-03 2005-06-23 Ricoh Co Ltd レーザ加工装置、構造体、光学素子、及びレーザ加工法
JP2006339630A (ja) * 2005-05-02 2006-12-14 Semiconductor Energy Lab Co Ltd レーザ照射装置、およびレーザ照射方法
JP2008124149A (ja) * 2006-11-09 2008-05-29 Advanced Lcd Technologies Development Center Co Ltd 光学装置および結晶化装置
JP2009094329A (ja) * 2007-10-10 2009-04-30 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置、結晶化方法、およびデバイス
JP2011230159A (ja) * 2010-04-28 2011-11-17 V Technology Co Ltd レーザ加工装置
JP2017510975A (ja) * 2014-01-29 2017-04-13 シャンハイ マイクロ エレクトロニクス イクイプメント カンパニー リミティド レーザアニールのためのビームホモジナイザ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213352A1 (ja) * 2019-04-18 2020-10-22 株式会社ブイ・テクノロジー レーザリフトオフ用装置及びレーザリフトオフ方法
JP2020175412A (ja) * 2019-04-18 2020-10-29 株式会社ブイ・テクノロジー レーザリフトオフ用装置及びレーザリフトオフ方法
CN113710409A (zh) * 2019-04-18 2021-11-26 株式会社V技术 激光剥离用装置和激光剥离方法

Also Published As

Publication number Publication date
JP2018195676A (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
JP7045372B2 (ja) 非球面集束手段およびビーム拡大器を用いて脆性材料を切断するためのレーザ装置
US20170115449A1 (en) Grating manufacturing device and grating manufacturing method
US7663734B2 (en) Pattern writing system and pattern writing method
JP4647965B2 (ja) レーザ加工方法及びレーザ加工装置及びにこれよって作製された構造体
JP2008126283A (ja) 微細構造体の製造方法、露光方法
KR101026356B1 (ko) 레이저 스캐닝 장치
JP3969197B2 (ja) レーザ照射装置
JP6533644B2 (ja) ビーム整形マスク、レーザ加工装置及びレーザ加工方法
JP4610201B2 (ja) レーザ照射装置
JP2008093710A (ja) レーザ加工装置
JP6632203B2 (ja) レーザー加工装置及びレーザー加工方法
US20200171602A1 (en) Laser annealing device and laser annealing method
WO2018211928A1 (ja) レーザアニール装置及びレーザアニール方法
US6570124B2 (en) Laser processing method
JP2007029959A (ja) レーザ加工機
JP5021258B2 (ja) レーザによる溝加工方法
JP2006007257A (ja) レーザ加工装置
JP5126547B2 (ja) Cvd薄膜の形成方法及び装置
JP2016042550A (ja) レーザ照射装置、およびレーザ照射方法
JP2021030249A (ja) レーザー加工装置、及びレーザー加工方法
JP5357790B2 (ja) レーザ加工装置
JP2018195675A (ja) レーザアニール装置及びレーザアニール方法
JP4818958B2 (ja) ビーム照射装置、及び、ビーム照射方法
US20230311245A1 (en) Laser processing of a partly transparent workpiece using a quasi-non-diffractive laser beam
WO2018074282A1 (ja) レーザアニール方法およびレーザアニール装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802637

Country of ref document: EP

Kind code of ref document: A1