WO2018211580A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2018211580A1
WO2018211580A1 PCT/JP2017/018290 JP2017018290W WO2018211580A1 WO 2018211580 A1 WO2018211580 A1 WO 2018211580A1 JP 2017018290 W JP2017018290 W JP 2017018290W WO 2018211580 A1 WO2018211580 A1 WO 2018211580A1
Authority
WO
WIPO (PCT)
Prior art keywords
bracket
terminal
resistor
phase
fastened
Prior art date
Application number
PCT/JP2017/018290
Other languages
English (en)
French (fr)
Inventor
聖二 畑中
友洋 海野
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2019518626A priority Critical patent/JP6713246B2/ja
Priority to PCT/JP2017/018290 priority patent/WO2018211580A1/ja
Publication of WO2018211580A1 publication Critical patent/WO2018211580A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conversion device.
  • the conventional inverter device requires an area for providing a discharge resistor in addition to an area for providing a semiconductor module and a smoothing capacitor. For this reason, there exists a problem that the size of an inverter apparatus will be expanded by at least one direction by planar view of an inverter apparatus.
  • This disclosure has been made paying attention to the above problem, and aims to reduce the size of the power conversion device.
  • a power conversion device of the present disclosure includes a power conversion module, a smoothing capacitor, and a discharge resistor.
  • the power conversion module includes switching elements that constitute a power conversion circuit.
  • the smoothing capacitor suppresses voltage fluctuation.
  • the discharge resistor is electrically connected to the smoothing capacitor, and discharges the smoothing capacitor when the operation is stopped. Further, the power conversion module has a high voltage terminal portion. The discharge resistor is disposed at the high voltage terminal portion of the power conversion module.
  • the size of the power conversion device can be reduced.
  • FIG. 3 is a circuit diagram of a drive system for an electric vehicle to which the inverter device according to the first to third embodiments is applied. It is a top view of the inverter apparatus in Example 1.
  • FIG. 1 is a schematic cross-sectional view of an inverter device in Example 1.
  • FIG. It is explanatory drawing explaining the fastening of the discharge resistance unit in Example 1.
  • FIG. It is a top view of the inverter apparatus in a prior art example.
  • FIG. 6 is a relationship diagram between a terminal part temperature and a discharge resistance temperature in an operation scene of a DC power source in Examples 1 to 3. It is explanatory drawing explaining the fastening of the discharge resistance unit in Example 2.
  • FIG. 1 is a schematic cross-sectional view of an inverter device in Example 1.
  • FIG. It is explanatory drawing explaining the fastening of the discharge resistance unit in Example 1.
  • FIG. It is a top view of the inverter apparatus in a prior art example.
  • FIG. 6 is a relationship diagram
  • FIG. 1 It is a schematic end view when the discharge resistance unit in Example 2 is fastened, and is a schematic end view taken along the line II-II in FIG. It is explanatory drawing explaining the fastening of the discharge resistance unit in Example 3.
  • FIG. It is a schematic end view when the discharge resistance unit in Example 3 is fastened, and is a schematic end view taken along line III-III in FIG.
  • the power conversion device according to the first embodiment is applied to an inverter device (an example of a power conversion device) of a motor generator mounted on an electric vehicle (an example of an electric vehicle) as a driving source for traveling.
  • an inverter device an example of a power conversion device
  • an electric vehicle an example of an electric vehicle
  • the configuration of the first embodiment will be described by dividing it into “circuit configuration of drive system”, “configuration of inverter device”, and “detailed configuration of discharge resistance unit”.
  • FIG. 1 is a circuit diagram of a drive system for an electric vehicle to which the inverter device according to the first embodiment is applied.
  • the circuit configuration of the drive system according to the first embodiment will be described with reference to FIG.
  • the drive system 1 includes a DC power supply 2 (high-power battery), an inverter device 3A, and a motor generator 11.
  • DC power supply 2 is a high-voltage battery for driving an electric vehicle, and includes a battery (not shown) in which a plurality of secondary batteries are connected in series or in parallel.
  • the DC power source 2 outputs a DC voltage between the P bus bar 12 (plus, positive) and the N bus bar 13 (minus, negative).
  • the inverter device 3 ⁇ / b> A converts DC power supplied from the DC power source 2 into AC power, and outputs the converted power to the motor generator 11. Further, the inverter device 3 ⁇ / b> A converts AC power generated by the motor generator 11 into DC power, and outputs the converted power to the DC power source 2.
  • the inverter device 3A includes a power module 4 (power conversion module), a smoothing capacitor 5, a discharge resistance unit 6A, and a three-phase line 7.
  • the power module 4 has a plurality of switch groups including a plurality of modularized switching elements 4a such as IGBT (Insulated Gate Bipolar Transistor) or MOSFET (metal-oxide-semiconductor field-effect transistor) on a substrate. Based on a control signal from a controller (not shown), the switching element is turned on and off to convert DC power from the DC power supply 2 and output AC power to the motor generator 11 through the three-phase line 7. Further, the power module 4 converts the regenerative power (AC power) of the motor generator 11 into DC power by the regenerative operation of the motor generator 11, and is supplied to the DC power supply 2. The DC power supply 2 is supplied to the regenerative power of the motor generator 11. Is charged by.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • the motor generator 11 is electrically connected to the AC side of the power module 4 through a three-phase line 7.
  • a smoothing capacitor 5 is electrically connected to the DC side of the power module 4.
  • the power module 4 includes a plurality of switching elements 4a and a plurality of diodes 4b.
  • As the switching element 4a a transistor such as IGBT or MOSFET is used.
  • the diode 4b is a reflux diode.
  • the switching element 4a and the diode 4b are connected in parallel while the current conduction directions are opposite to each other.
  • a circuit in which a plurality of parallel circuits of the switching element 4a and the diode 4b are connected in series becomes the U, V, W phase arm circuits 40U, 40V, 40W (power conversion circuit).
  • the plurality of arm circuits 40U, 40V, 40W are connected in parallel between the P bus bar 12 and the N bus bar 13.
  • Smoothing capacitor 5 smoothes voltage fluctuations.
  • the smoothing capacitor 5 stores electricity when the voltage is high, and discharges when the voltage is low to suppress voltage fluctuation. That is, the smoothing capacitor 5 smoothes the input / output voltages on the DC side of the U, V, and W phase arm circuits 40U, 40V, and 40W. Smoothing capacitor 5 is connected between P bus bar 12 and N bus bar 13.
  • the discharge resistance unit 6A discharges the electric charge accumulated in the smoothing capacitor 5 when the operation of the inverter device 3A is stopped. Discharge resistance unit 6A is connected between P bus bar 12 and N bus bar 13.
  • the three-phase line 7 includes conductive U, V, and W-phase bus bars 7U, 7V, and 7W.
  • the U, V, and W phase bus bars 7U, 7V, and 7W are electrically connected between the terminals of the U, V, and W phase arm circuits 40U, 40V, and 40W and the terminals of each phase of the motor generator 11, respectively. Connecting.
  • the motor generator 11 is, for example, a synchronous motor in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the motor generator 11 is connected to the axle of the vehicle and operates by an electromagnetic action to generate a rotational force by the electric power supplied from the inverter device 3A.
  • FIG. 2 is a plan view of the inverter device according to the first embodiment
  • FIG. 3 is a schematic cross-sectional view of the inverter device according to the first embodiment.
  • illustration of the drive substrate and the like is omitted.
  • FIG.2 and FIG.3 the structure of 3 A of inverter apparatuses in Example 1 is demonstrated.
  • the inverter device 3A has a case 30 for housing the power module 4 and the like.
  • FIG. 2 shows only the bottom surface of the case 30.
  • the case 30 is disposed, for example, above the motor generator 11. Inside the case 30 are a power module 4, a smoothing capacitor 5, a discharge resistor unit 6A, a P bus bar 12, an N bus bar 13, a three-phase line 7, a cooler 8, and a drive board 9 (circuits). Substrate).
  • the case 30 is made of metal, for example.
  • the power module 4 is obtained by integrating a switching element and the like by resin molding. As shown in FIG. 2, the power module 4 is disposed in front of the smoothing capacitor 5 and is fixed to the case 30 by PM fixing bolts 101. In addition, a cooler 8 is provided below the power module 4 as shown in FIG. The cooler 8 has a refrigerant flow path 8a. A refrigerant (for example, cooling water) flows through the refrigerant flow path 8a. The power module 4 is cooled by heat exchange between the refrigerant and the heat generated when the power module 4 is driven. That is, the cooling method of the power module 4 is a direct cooling type (direct water cooling structure). The cooling method of the power module 4 may be an indirect cooling type (indirect water cooling structure) or a cooler integrated type.
  • direct cooling type direct water cooling structure
  • the cooling method of the power module 4 may be an indirect cooling type (indirect water cooling structure) or a cooler integrated type.
  • the power module 4 has a PM main body 41 at the center in the front-rear direction, and has a PM high-voltage terminal 42 at the front and rear. Further, among the PM high-voltage terminal portions 42, the front side in the front-rear direction is a front high-voltage terminal portion 43 and the rear side is a rear-side high-voltage terminal portion 44.
  • the drive substrate 9 is disposed above the PM body 41 (in a direction orthogonal to the paper surface of FIG. 2).
  • the drive substrate 9 has an electric circuit wiring formed on the surface or inside of an integral plate made of an insulator.
  • the drive substrate 9 is, for example, a multilayer substrate in which a plurality of substrates are stacked.
  • the drive substrate 9 is disposed with a space from the power module 4.
  • a U-phase terminal 4U, a V-phase terminal 4V, and a W-phase terminal 4W are arranged in order from the left. That is, the front high-voltage terminal portion 43 is an area where terminals are provided.
  • the U, V, and W phase terminals 4U, 4V, and 4W are connected to the power module 4.
  • One end of each of the U, V, and W phase terminals 4U, 4V, and 4W and the U, V, and W phase bus bars 7U, 7V, and 7W are fastened by a bolt 102.
  • the U-phase terminal 4U, one end of the U-phase bus bar 7U, and the second bracket 6Ae of the discharge resistance unit 6A are fastened together by the bolts 102.
  • the V-phase terminal 4V, one end of the V-phase bus bar 7V, and the first bracket 6Ad of the discharge resistance unit 6A are fastened together by bolts 102.
  • the discharge resistance unit 6 ⁇ / b> A is disposed in the front high-voltage terminal portion 43.
  • the other ends of the U, V, and W-phase bus bars 7U, 7V, and 7W are connected to U-phase, V-phase, and W-phase phases of a stator coil of the motor generator 11 (not shown). Thereby, the power module 4 and the motor generator 11 are connected.
  • PN terminals 4P and 4N corresponding to the U, V, and W phases are arranged in order from the left in the rear high-voltage terminal portion 44.
  • the rear high-voltage terminal portion 44 is an area where terminals are provided.
  • These PN terminals 4P and 4N are connected to the power module 4.
  • the smoothing capacitor 5 is disposed behind the power module 4 as shown in FIG.
  • the smoothing capacitor 5 is provided between the power module 4 and a DC power source 2 (not shown).
  • the smoothing capacitor 5 includes a DC P bus bar 121, a DC N bus bar 131, a power supply P bus bar 122, and a power supply N bus bar 132.
  • the DC P bus bar 121 and the DC N bus bar 131 are fastened by bolts 102 and PN terminals 4P and 4N corresponding to the U, V, and W phases. Thereby, the power module 4 and the smoothing capacitor 5 are connected.
  • the direct current P bus bar 121, the U-phase P terminal 4P, and the first harness 6Ab extending from the discharge resistance unit 6A are fastened together by the bolts 102.
  • the second harness 6Ac extending from the DC N bus bar 131, the U-phase N terminal 4N, and the discharge resistance unit 6A is fastened together by a bolt 102.
  • the power supply P bus bar 122 and the power supply N bus bar 132 are connected to the DC power supply 2.
  • the DC P bus bar 121 and the power supply P bus bar 122 constitute the P bus bar 12, and the DC N bus bar 131 and the power supply N bus bar 132 constitute the N bus bar 13.
  • FIG. 4 is an explanatory diagram illustrating fastening of the discharge resistance unit in the first embodiment.
  • illustration of a smoothing capacitor and the like is omitted.
  • FIG. 4 the detailed structure of 6 A of discharge resistance units in Example 1 is demonstrated.
  • the discharge resistance unit 6A includes a resistance main body 6Aa (discharge resistance), a first harness 6Ab, a second harness 6Ac, a first bracket 6Ad, and a second bracket 6Ae.
  • a resistor for example, a winding resistance element (not shown) is built in the resistor main body 6Aa.
  • the periphery of the resistor is molded with a sealing material (for example, cement).
  • 1st harness 6Ab and 2nd harness 6Ac are electrically connected with the terminal of the resistor incorporated in resistance main-body part 6Aa.
  • the first bracket 6Ad and the second bracket 6Ae hold the resistance main body 6Aa.
  • the first bracket 6Ad and the second bracket 6Ae are made of resin.
  • An insertion hole 6Af through which the bolt 102 is inserted is formed in each of the first bracket 6Ad and the second bracket 6Ae.
  • the first bracket 6Ad and the second bracket 6Ae are fastened (connected) to the front high-voltage terminal portion 43. That is, the bolt 102 is inserted into the insertion hole 6Af of the first bracket 6Ad, and the first bracket 6Ad is fastened together with one end of the V-phase terminal 4V and the V-phase bus bar 7V by the bolt 102. The bolt 102 is inserted into the insertion hole 6Af of the second bracket 6Ae, and the second bracket 6Ae is fastened together with one end of the U-phase terminal 4U and the U-phase bus bar 7U by the bolt 102.
  • the resistor built in the resistor body 6Aa by the first bracket 6Ad and the second bracket 6Ae made of resin is used for the power module 4, U, V, and W phase terminals 4U, 4V, 4W, U, It is not electrically connected to the V and W phase bus bars 7U, 7V, 7W.
  • the first harness 6Ab and the second harness 6Ac are connected to the smoothing capacitor 5 as described above. That is, the first harness 6Ab is fastened together by the DC P bus bar 121, the U-phase P terminal 4P, and the bolt 102.
  • the second harness 6Ac is fastened together with a DC N bus bar 131, a U-phase N terminal 4N and a bolt 102.
  • the resistor incorporated in the resistor main body 6Aa is electrically connected to the smoothing capacitor 5 through a resistor terminal (not shown), the first harness 6Ab, and the second harness 6Ac.
  • the resistor discharges the electric charge accumulated in the smoothing capacitor 5 when the operation of the inverter device 3A is stopped. That is, the resistor consumes the electric charge accumulated in the smoothing capacitor 5 by heat. For this reason, the resistance main body 6Aa generates heat.
  • the operation of the inverter device 3A according to the first embodiment will be described by dividing it into “problem generating operation”, “relationship operation between terminal portion temperature and discharge resistance temperature”, and “characteristic operation of the inverter device”.
  • FIG. 5 is a plan view of an inverter device according to a conventional example. Hereinafter, the problem generating operation will be described with reference to FIG.
  • a semiconductor module, a smoothing capacitor, and a discharge resistor are attached to an inverter device as a power conversion device. That is, the conventional inverter device requires an area for providing a discharge resistor in addition to an area for providing a semiconductor module and a smoothing capacitor. For this reason, there exists a subject that the size of a case will be expanded in at least one direction by planar view of an inverter apparatus. For example, in FIG. 5, the size (size Y ⁇ b> 1) of the inverter device is increased in the Y direction in a plan view of the inverter device. In addition, even if the arrangement of the discharge resistors is changed in FIG.
  • the size of the inverter device is expanded in the X direction or both the X direction and the Y direction in a plan view of the inverter device. Actually, since it is necessary to secure a tool space for attaching the discharge resistor, a space is required in the Z direction (direction perpendicular to the paper surface of FIG. 5).
  • the discharge resistor is mounted as a chip component on a circuit board different from the semiconductor module or the smoothing capacitor, the size of the inverter device need not be increased.
  • the discharge resistor is a chip component, the discharge resistor becomes small, so that the temperature of the chip component itself is higher than that of the conventional discharge resistor.
  • the board area is occupied by the chip parts.
  • the heat of the chip component affects other semiconductor components of the inverter device, a heat-sensitive electrolytic capacitor, a substrate element having low heat resistance, and the like.
  • FIG. 6 shows the relationship between the terminal portion temperature and the discharge resistance temperature in the operation scene of the DC power source in the first embodiment.
  • the relational action between the terminal portion temperature and the discharge resistance temperature will be described with reference to FIG.
  • the remaining amount of the DC power source 2 is small (for example, when the remaining amount is less than half of the maximum amount), DC power is output with a large current and a low voltage.
  • the temperatures of the PN terminals 4P, 4N and the U, V, and W phase terminals 4U, 4V, and 4W are increased, and the terminal temperature of the PM high voltage terminal section 42 is increased.
  • the temperature of the discharge resistor 6A hardly increases, and the discharge resistance temperature of the resistor main body 6Aa serving as the discharge resistor is lower than the terminal temperature of the PM high voltage terminal portion 42.
  • the remaining amount of the DC power source 2 when the remaining amount of the DC power source 2 is large (for example, when the remaining amount is almost the maximum amount), DC power is output with a low current and a high voltage. At this time, the temperature of the resistance main body 6Aa rises and the discharge resistance temperature rises. On the other hand, the temperatures of the PN terminals 4P, 4N and the U, V, and W phase terminals 4U, 4V, and 4W hardly increase, and the terminal temperature of the PM high voltage terminal portion 42 becomes lower than the discharge resistance temperature.
  • the terminal temperature of the PM high voltage terminal section 42 is higher than the discharge resistance 6A temperature if the current is large, and the terminal temperature of the PM high voltage terminal section 42 if the voltage is high.
  • the discharge resistance temperature becomes higher than that.
  • the resistance main body 6Aa serving as the discharge resistance is disposed in the PM high-voltage terminal portion 42 (front high-voltage terminal portion 43).
  • the size of the inverter device is enlarged in at least one direction in a plan view of the inverter device.
  • the resistance main body 6Aa is disposed on the front high-voltage terminal portion 43 of the power module 4. That is, the resistor main body 6Aa is disposed in an empty space above the front high-voltage terminal portion 43. For this reason, the size of the inverter device 3A is reduced by not providing the resistance main body 6Aa in the vertical and horizontal directions in the plan view of the inverter device 3A. As a result, the size of the inverter device 3A can be reduced.
  • the resistance main body 6Aa is separated from the substrate element having low heat resistance by the first bracket 6Ad and the second bracket 6Ae. For this reason, it is difficult for the components around the discharge resistance unit 6A to be damaged by the heat of the resistance main body 6Aa.
  • the power conversion device (inverter device 3A) includes a power conversion module (power module 4), a smoothing capacitor 5, and a discharge resistor (resistance main body 6Aa).
  • the power conversion module (power module 4) includes a switching element 4a that constitutes a power conversion circuit (U, V, W phase arm circuits 40U, 40V, 40W).
  • the smoothing capacitor 5 suppresses voltage fluctuation.
  • the discharge resistor (resistor body 6Aa) is electrically connected to the smoothing capacitor, and discharges the charge of the smoothing capacitor 5 when the operation is stopped.
  • the power conversion module (power module 4) has a high voltage terminal part (front high voltage terminal part 43).
  • the discharge resistor (resistor body 6Aa) is disposed in the high voltage terminal (front high voltage terminal 43). For this reason, the power converter device (inverter device 3A) which reduces the size of the power converter device (inverter device 3A) can be provided.
  • Example 2 is an example in which a conductive bracket is used, and the bracket is fastened to the PN terminal.
  • the power conversion device in the second embodiment is applied to a motor generator inverter device (an example of a power conversion device) mounted on an electric vehicle (an example of an electric vehicle) as a driving source for driving. It is.
  • the configuration of the second embodiment will be described by dividing it into “a configuration of the inverter device” and “a detailed configuration of the discharge resistance unit”.
  • the “circuit configuration of the drive system” of the second embodiment is the same as that of the first embodiment, and thus illustration and description thereof are omitted.
  • FIG. 7 is an explanatory diagram illustrating fastening of the discharge resistance unit in the second embodiment.
  • the smoothing capacitor and the like are not shown.
  • the structure of the inverter apparatus 3B in Example 2 is demonstrated.
  • the discharge resistance unit 6B is accommodated in the case 30 of the inverter device 3B.
  • the U, V, W phase terminals 4U, 4V, 4W and one end of each of the U, V, W phase bus bars 7U, 7V, 7W are fastened by bolts 102.
  • the first bracket 6Bd (first holding portion) and the second bracket 6Be (second holding portion) of the discharge resistance unit 6B are not fastened together by the bolt 102.
  • DC P bus bar 121 and DC N bus bar 131 are fastened by PN terminals 4P, 4N and bolts 102 corresponding to the U, V, and W phases. Thereby, the power module 4 and the smoothing capacitor 5 are connected. At this time, the DC P bus bar 121, the W-phase P terminal 4P (positive high voltage terminal), and the first bracket 6Bd of the discharge resistance unit 6B are fastened together by the bolts 102. Further, the DC N bus bar 131, the V-phase N terminal 4N (negative high voltage terminal), and the second bracket 6Be of the discharge resistance unit 6B are fastened together by bolts 102. Thereby, the discharge resistance unit 6 ⁇ / b> B is disposed in the rear high-voltage terminal portion 44.
  • FIG. 8 is a schematic end view when the discharge resistance unit according to the second embodiment is fastened. Hereinafter, based on FIG.7 and FIG.8, the detailed structure of the discharge resistance unit in Example 2 is demonstrated.
  • the discharge resistance unit 6B includes a resistance body 6Ba, a first resistance terminal 6Bb, a second resistance terminal 6Bc, a first bracket 6Bd, and a second bracket 6Be.
  • a resistor for example, a winding resistance element (not shown) is incorporated in the resistor main body 6Ba.
  • the periphery of the resistor is molded with a sealing material (for example, cement).
  • the first resistor terminal 6Bb and the second resistor terminal 6Bc are formed integrally with a resistor built in the resistor body 6Ba.
  • the first resistor terminal 6Bb and the second resistor terminal 6Bc are electrically connected to a resistor built in the resistor body 6Ba, and are exposed to the outside of the resistor body 6Ba.
  • the resistor body 6Ba, the first resistor terminal 6Bb, and the second resistor terminal 6Bc are discharge resistors.
  • the discharge resistance unit 6B of the second embodiment does not have the first harness 6Ab and the second harness 6Ac.
  • the first bracket 6Bd and the second bracket 6Be are made of a conductive material (for example, copper). That is, the first bracket 6Bd and the second bracket 6Be have conductivity. As shown in FIG. 8, each of the first bracket 6Bd and the second bracket 6Be is integrally formed from one end portion 6Bg, an intermediate portion 6Bh, and the other end portion 6Bj. The intermediate part 6Bh extends in the vertical direction. The one end portion 6Bg and the other end portion 6Bj are bent in the left-right direction around the intermediate portion 6Bh. The one end 6Bg is bent to the opposite side to the other end 6Bj.
  • a conductive material for example, copper. That is, the first bracket 6Bd and the second bracket 6Be have conductivity.
  • each of the first bracket 6Bd and the second bracket 6Be is integrally formed from one end portion 6Bg, an intermediate portion 6Bh, and the other end portion 6Bj.
  • the intermediate part 6Bh extends in the vertical direction.
  • the one end portion 6Bg and the intermediate portion 6Bh are separated from the PN terminals 4P, 4N, etc., and thus do not contact the PN terminals 4P, 4N, etc. Thereby, conduction of an unintended electric signal can be suppressed.
  • One end 6Bg of the first bracket 6Bd is fixed to the first resistance terminal 6Bb, and one end 6Bg of the second bracket 6Be is fixed to the second resistance terminal 6Bc. Thereby, the first bracket 6Bd and the second bracket 6Be hold the resistance main body 6Ba.
  • insertion holes 6Bf through which the bolts 102 are inserted are formed in the other end portions 6Bj of the first bracket 6Bd and the second bracket 6Be.
  • the first bracket 6Bd and the second bracket 6Be are fastened (connected) to the rear high-voltage terminal portion 44 as shown in FIGS. That is, the bolt 102 is inserted into the insertion hole 6Bf of the first bracket 6Bd, and the first bracket 6Bd is fastened together with the W terminal P and the DC P bus bar 121 and the bolt 102. Thus, the first bracket 6Bd and the W-phase P terminal 4P are fastened.
  • the bolt 102 is inserted into the insertion hole 6Bf of the second bracket 6Be, and the second bracket 6Be is fastened together by the V-phase N terminal 4N, the DC N bus bar 131 and the bolt 102.
  • the second bracket 6Be and the V-phase N terminal 4N are fastened.
  • the resistor built in the resistor body 6Ba is electrically connected to the smoothing capacitor 5 through the first resistor terminal 6Bb, the second resistor terminal 6Bc, the first bracket 6Bd, and the second bracket 6Be.
  • the resistor discharges the electric charge accumulated in the smoothing capacitor 5 when the operation of the inverter device 3B is stopped. That is, the resistor consumes the electric charge accumulated in the smoothing capacitor 5 by heat.
  • the resistance main body 6Ba generates heat
  • the first resistance terminal 6Bb and the second resistance terminal 6Bc connected to the resistance main body 6Ba also generate heat.
  • the operation of the inverter device 3B in the second embodiment shows a “problem generating operation”, a “relationship operation between the terminal portion temperature and the discharge resistance temperature”, and a “characteristic operation of the inverter device”.
  • the discharge resistance becomes the resistance body 6Ba, the first resistance terminal 6Bb, and the second resistance terminal 6Bc.
  • illustration and description are omitted.
  • action of the following Example 2 is shown.
  • the resistance main body 6Ba, the first resistance terminal 6Bb, and the second resistance terminal 6Bc as discharge resistors are provided with the first bracket 6Bd and the second bracket 6Be having conductivity.
  • the first bracket 6Bd is fastened to the W-phase P terminal 4P
  • the second bracket 6Be is fastened to the V-phase N terminal 4N. That is, the first bracket 6Bd and the second bracket 6Be have a holding function for holding the resistor body 6Ba, the first resistor terminal 6Bb, and the second resistor terminal 6Bc.
  • first bracket 6Bd and the second bracket 6Be have conductivity, they have a conduction function for transmitting an electrical signal to the resistance main body 6Ba, the first resistance terminal 6Bb, and the second resistance terminal 6Bc. Therefore, the first bracket 6Bd and the second bracket 6Be have two functions of a holding function and a conduction function. Thereby, it is possible to reduce the harness connecting the discharge resistor (the resistor main body 6Ba, the first resistor terminal 6Bb, and the second resistor terminal 6Bc) and the smoothing capacitor 5. Furthermore, since the number of harnesses can be reduced, the space for harness handling and harness connection work are not required. Therefore, since the first bracket 6Bd and the second bracket 6Be have a holding function and a conduction function, the cost can be reduced.
  • the effect described in (1) of the first embodiment can be obtained.
  • the following effect (2) can be obtained.
  • the high voltage terminals (PN terminals 4P and 4N corresponding to the U, V, and W phases) of the high voltage terminal section (rear high voltage terminal section 44) are the positive high voltage terminal (P terminal 4P) and the negative high voltage terminal. (N terminal 4N).
  • the discharge resistor (resistor body 6Ba, first resistor terminal 6Bb, and second resistor terminal 6Bc) is provided with a first holding portion (first bracket 6Bd) and a second holding portion (second bracket 6Be) having conductivity. .
  • the first holding portion (first bracket 6Bd) is fastened to the positive high voltage terminal (W-phase P terminal 4P).
  • the second holding portion (second bracket 6Be) is fastened to the negative high-voltage terminal (V-phase N terminal 4N).
  • Example 3 is an example in which a conductive bracket is used and the bracket is fastened to the PN terminal.
  • the power conversion device in the third embodiment is applied to an inverter device (an example of a power conversion device) of a motor generator mounted on an electric vehicle (an example of an electric vehicle) as a driving source for traveling. It is.
  • the configuration of the third embodiment will be described by dividing it into “a configuration of the inverter device” and “a detailed configuration of the discharge resistance unit”.
  • the “circuit configuration of the drive system” of the third embodiment is the same as that of the first embodiment, and thus illustration and description thereof are omitted.
  • FIG. 9 is an explanatory view illustrating fastening of the discharge resistance unit in the third embodiment.
  • the smoothing capacitor and the like are not shown.
  • the structure of the inverter apparatus 3C in Example 3 is demonstrated.
  • the discharge resistance unit 6C is accommodated in the case 30 of the inverter device 3C.
  • the U, V, W phase terminals 4U, 4V, 4W and one end of each of the U, V, W phase bus bars 7U, 7V, 7W are fastened by bolts 102.
  • the first bracket 6Cd (first holding portion) and the second bracket 6Ce (second holding portion) of the discharge resistance unit 6B are not fastened together by the bolt 102.
  • DC P bus bar 121 and DC N bus bar 131 are fastened by PN terminals 4P, 4N (positive and negative terminals) and bolts 102 corresponding to the U, V, and W phases. Thereby, the power module 4 and the smoothing capacitor 5 are connected. At this time, the DC P bus bar 121, the W phase P terminal 4P (positive high voltage terminal, positive terminal), and the first bracket 6Cd of the discharge resistance unit 6C are fastened together by the bolt 102. Further, the DC N bus bar 131, the U-phase N terminal 4N (negative high voltage terminal, negative terminal), and the second bracket 6Ce of the discharge resistance unit 6C are fastened together by the bolt 102. Thereby, the discharge resistance unit 6 ⁇ / b> C is arranged in the rear high-voltage terminal portion 44.
  • FIG. 10 is a schematic end view when the discharge resistance unit according to the third embodiment is fastened. Hereinafter, based on FIG.9 and FIG.10, the detailed structure of the discharge resistance in Example 3 is demonstrated.
  • the discharge resistor unit 6C includes a resistor body 6Ca, a first resistor terminal 6Cb, a second resistor terminal 6Cc, a first bracket 6Cd, and a second bracket 6Ce.
  • a resistor for example, a winding resistance element (not shown) is built in the resistor main body 6Ca.
  • the periphery of the resistor is molded with a sealing material (for example, cement).
  • the first resistor terminal 6Cb and the second resistor terminal 6Cc are formed integrally with a resistor built in the resistor body 6Ca.
  • the first resistor terminal 6Cb and the second resistor terminal 6Cc are electrically connected to a resistor built in the resistor body 6Ca, and are exposed to the outside of the resistor body 6Ca.
  • the resistor body 6Ca, the first resistor terminal 6Cb, and the second resistor terminal 6Cc are discharge resistors.
  • the discharge resistance unit 6C of the third embodiment does not have the first harness 6Ab and the second harness 6Ac.
  • the first bracket 6Cd and the second bracket 6Ce are formed of a conductive material (for example, copper). That is, the first bracket 6Cd and the second bracket 6Ce have conductivity. As shown in FIG. 10, each of the first bracket 6Cd and the second bracket 6Ce is integrally formed from one end portion 6Cg, an intermediate portion 6Ch, and the other end portion 6Cj.
  • the intermediate part 6Ch extends in the vertical direction.
  • the one end portion 6Cg and the other end portion 6Cj are bent in the left-right direction around the intermediate portion 6Ch.
  • the one end 6Cg is bent to the opposite side to the other end 6Cj.
  • the one end portion 6Cg and the intermediate portion 6Ch are separated from the PN terminals 4P, 4N, etc., and thus do not contact the PN terminals 4P, 4N, etc. Thereby, conduction of an unintended electric signal can be suppressed.
  • One end 6Cg of the first bracket 6Cd is fixed to the first resistance terminal 6Cb, and one end 6Cg of the second bracket 6Ce is fixed to the second resistance terminal 6Cc. Thereby, the first bracket 6Cd and the second bracket 6Ce hold the resistance main body 6Ca.
  • insertion holes 6Cf through which the bolts 102 are inserted are formed in the other end portions 6Cj of the first bracket 6Cd and the second bracket 6Ce.
  • the first bracket 6Cd and the second bracket 6Ce are fastened (connected) to the rear high-voltage terminal portion 44 as shown in FIGS. That is, the bolt 102 is inserted into the insertion hole 6Cf of the first bracket 6Cd, and the first bracket 6Cd is fastened together with the W terminal P and the DC P bus bar 121 and the bolt 102. Thus, the first bracket 6Cd and the W-phase P terminal 4P are fastened.
  • the bolt 102 is inserted into the insertion hole 6Cf of the second bracket 6Ce, and the second bracket 6Ce is fastened together with the U terminal N terminal 4N and the DC N bus bar 131 and the bolt 102. As a result, the second bracket 6Ce and the U-phase N terminal 4N are fastened.
  • the resistor built in the resistor body 6Ca is electrically connected to the smoothing capacitor 5 through the first resistor terminal 6Cb, the second resistor terminal 6Cc, the first bracket 6Cd, and the second bracket 6Ce.
  • the resistor discharges the electric charge accumulated in the smoothing capacitor 5 when the operation of the inverter device 3C is stopped. That is, the resistor consumes the electric charge accumulated in the smoothing capacitor 5 by heat.
  • the resistance body 6Ca generates heat
  • the first resistance terminal 6Cb and the second resistance terminal 6Cc connected to the resistance body 6Ca also generate heat.
  • the operation of the inverter device 3C in the third embodiment shows a “problem generating operation”, a “relationship operation between the terminal portion temperature and the discharge resistance temperature”, and a “characteristic operation of the inverter device”.
  • the discharge resistance becomes the resistance body 6Ca, the first resistance terminal 6Cb, and the second resistance terminal 6Cc.
  • illustration and description are omitted.
  • the operation of the third embodiment shows the characteristic operation of the second embodiment as in the second embodiment. Therefore, the description is omitted.
  • the characteristic operation of the following third embodiment is shown.
  • a first bracket 6Cd and a second bracket 6Ce having conductivity are provided in the resistance main body 6Ca, the first resistance terminal 6Cb, and the second resistance terminal 6Cc as discharge resistors.
  • the power module 4 has PN terminals 4P and 4N for each of the three phases.
  • the first bracket 6Cd and the second bracket 6Ce are fastened to the W-phase P terminal 4P and the U-phase N terminal 4N in the outer two phases of the three phases, respectively.
  • the phase arranged in the center of the semiconductor module receives thermal interference from both adjacent phases. For this reason, the phase arrange
  • the first bracket 6Cd is fastened to the outer W-phase P terminal 4P of the three phases
  • the second bracket 6Ce is fastened to the outer U-phase N terminal 4N of the three phases.
  • first bracket 6Cd and the second bracket 6Ce are configured to straddle the V phase disposed at the center of the power module 4 and to extend to the outside of the three phases. For this reason, when the operation scene of the DC power supply 2 is a large current and a low voltage, the heat of the PM high-voltage terminal section 42 passes through the first bracket 6Cd and the second bracket 6Ce, and the resistance main body section 6Ca and the first resistance terminal 6Cb. Conducted to the second resistance terminal 6Cc. However, the heat of the PM high voltage terminal portion 42 is radiated by the first bracket 6Cd and the second bracket 6Ce.
  • the heat of the resistor main body 6Ca, the first resistor terminal 6Cb, and the second resistor terminal 6Cc passes through the first bracket 6Cd and the second bracket 6Ce, and PM. Conducted to the high voltage terminal portion 42.
  • the heat of the resistor body 6Ca, the first resistor terminal 6Cb, and the second resistor terminal 6Cc is radiated by the first bracket 6Cd and the second bracket 6Ce. In this way, the first bracket 6Cd and the second bracket 6Ce have a heat dissipation function, so that heat management can be easily performed.
  • the effects described in the first embodiment (1) and the second embodiment (2) can be obtained.
  • the following effect (3) can be obtained.
  • Discharge resistance (resistor body 6Ca, first resistor terminal 6Cb, and second resistor terminal 6Cc) is electrically connected to a first holding portion (first bracket 6Cd) and a second holding portion (second bracket 6Ce).
  • the power conversion module (power module 4) has positive and negative terminals (PN terminals 4P and 4N) in each of three or more phases (U, V, and W phases).
  • the first holding part (first bracket 6Cd) and the second holding part (second bracket 6Ce) are composed of two outer phases (U, W phase) among three or more phases (U, V, W phase). Are respectively fastened to the positive terminal (W-phase P terminal 4P) and the negative terminal (U-phase N terminal 4N). For this reason, it is possible to reduce the influence of thermal interference from the adjacent phases.
  • the power conversion device according to the present disclosure has been described based on the first to third embodiments.
  • the specific configuration is not limited to these embodiments, and the claims relate to each claim in the claims. Design changes and additions are allowed without departing from the scope of the invention.
  • Example 1 shows an example in which the first bracket 6Ad is fastened to the V-phase terminal 4V and the second bracket 6Ae is fastened to the U-phase terminal 4U.
  • the first bracket may be fastened to the V-phase P terminal, and the second bracket may be fastened to the W-phase N terminal.
  • the first bracket may be fastened to the PM fixing bolt, and the second bracket may be fastened to another PM fixing bolt.
  • the discharge resistor is arranged at the high voltage terminal (PM high voltage terminal).
  • the first harness 6Ab is fastened to the U-phase P terminal 4P
  • the second harness 6Ac is fastened to the U-phase N terminal 4N.
  • the first harness may be fastened to the W-phase P terminal
  • the second harness may be fastened to the V-phase N terminal.
  • the discharge resistor is electrically connected to the smoothing capacitor.
  • Example 2 the first bracket 6Bd is fastened to the W-phase P terminal 4P, and the second bracket 6Be is fastened to the V-phase N terminal 4N.
  • the first bracket may be fastened to the V-phase P terminal, and the second bracket may be fastened to the W-phase N terminal.
  • the first bracket may be fastened to the U-phase P terminal, and the second bracket may be fastened to the V-phase N terminal. In short, it is only necessary that the first bracket is fastened to the positive high voltage terminal and the second bracket is fastened to the negative high voltage terminal.
  • Example 3 the first bracket 6Cd is fastened to the W-phase P terminal 4P, and the second bracket 6Ce is fastened to the U-phase N terminal 4N.
  • the first bracket may be fastened to the U-phase P terminal, and the second bracket may be fastened to the W-phase N terminal.
  • the first bracket and the second bracket may be fastened to the positive terminal and the negative terminal in the outer two phases of the three phases, respectively.
  • Example 2 and Example 3 show examples in which the first holding part and the second holding part are the first bracket and the second bracket.
  • the first holding unit and the second holding unit are not limited to the bracket, and may have at least two functions of a holding function and a conduction function.
  • Examples 1 to 3 the example in which the discharge resistance units 6A to 6C are arranged on the PM high voltage terminal portion 42 via the brackets is shown.
  • the discharge resistor may not have a harness or a bracket, and the discharge resistor only needs to be disposed at the high voltage terminal (PM high voltage terminal).
  • the discharge resistor is electrically connected to the smoothing capacitor, and discharges the smoothing capacitor when operation is stopped.
  • Example 1 an example in which the power module 4 has three phases (U, V, and W phases) has been described.
  • the fifth and seventh phases are also acceptable. That is, it may be more than three phases.
  • the first bracket and the second bracket are respectively fastened to the positive terminal and the negative terminal in the outer two phases of the five phases. It only has to be done.
  • Examples 1 to 3 an example in which the power conversion module is the power module 4 has been described.
  • the present invention is not limited to this, and the power conversion module only needs to include a switching element that constitutes a power conversion circuit.
  • the power converter of the present disclosure is applied to the inverter devices 3A to 3C used as the AC / DC converter of the motor generator 11.
  • the power conversion device of the present disclosure can be applied to various power conversion devices other than the inverter device as long as the power conversion device includes at least a power conversion module, a smoothing capacitor, and a discharge resistor.
  • the inverter apparatus mounted in electric vehicles, such as an electric vehicle (an example of an electric vehicle).

Abstract

電力変換装置のサイズを小型化すること。 インバータ装置(3A)は、パワーモジュール(4)と、平滑用コンデンサ(5)と、放電抵抗(6A)と、を備える。パワーモジュール(4)は、U、V、W相の各アーム回路(40U,40V,40W)を構成するスイッチング素子(4a)を備えている。平滑用コンデンサ(5)は、電圧変動を抑制する。放電抵抗としての抵抗本体部(6Aa)は、平滑用コンデンサ(5)と電気的に接続され、動作停止時に平滑用コンデンサ(5)の電荷を放電する。このインバータ装置(3A)では、パワーモジュール(4)は、強電端子部(前側強電端子部43)を有する。抵抗本体部(6Aa)は、強電端子部(前側強電端子部43)に配置される。

Description

電力変換装置
 本開示は、電力変換装置に関する。
 従来、電力変換装置としてのインバータ装置に、半導体モジュールと平滑コンデンサと放電抵抗が取り付けられている(例えば、特許文献1参照)。
特開2010-124523号公報
 しかし、従来のインバータ装置では、半導体モジュールや平滑コンデンサを設けるエリアの他に、放電抵抗を設けるエリアが必要になる。このため、インバータ装置の平面視で少なくとも一方向にインバータ装置のサイズが拡大されてしまう、という問題がある。
 本開示は、上記問題に着目してなされたもので、電力変換装置のサイズを小型化することを目的とする。
 上記目的を達成するため、本開示の電力変換装置は、電力変換モジュールと、平滑用コンデンサと、放電抵抗と、を備える。
電力変換モジュールは、電力変換回路を構成するスイッチング素子を備えている。
平滑用コンデンサは、電圧変動を抑制する。
放電抵抗は、前記平滑用コンデンサと電気的に接続され、動作停止時に平滑用コンデンサの電荷を放電する。
また、電力変換モジュールは、強電端子部を有する。放電抵抗は、電力変換モジュールの強電端子部に配置される。
 このように、放電抵抗は強電端子部に接続されることで、電力変換装置のサイズを小型化することができうる。
実施例1~実施例3のインバータ装置が適用された電気自動車の駆動システムの回路図である。 実施例1におけるインバータ装置の平面図である。 実施例1におけるインバータ装置の概略断面図である。 実施例1における放電抵抗ユニットの締結を説明する説明図である。 従来例におけるインバータ装置の平面図である。 実施例1~実施例3における直流電源の動作シーンの端子部温度と放電抵抗温度との関係図である。 実施例2における放電抵抗ユニットの締結を説明する説明図である。 実施例2における放電抵抗ユニットを締結したときの概略端面図であって、図7のII-II線の概略端面図である。 実施例3における放電抵抗ユニットの締結を説明する説明図である。 実施例3における放電抵抗ユニットを締結したときの概略端面図であって、図9のIII-III線の概略端面図である。
 以下、本発明の電力変換装置を実現する最良の形態を、図面に示す実施例1~実施例3に基づいて説明する。
 まず、構成を説明する。
実施例1における電力変換装置は、走行用駆動源などとして電気自動車(電動車両の一例)に搭載されるモータジェネレータのインバータ装置(電力変換装置の一例)に適用したものである。以下、実施例1の構成を、「駆動システムの回路構成」と、「インバータ装置の構成」と、「放電抵抗ユニットの詳細構成」に分けて説明する。
 [駆動システムの回路構成]
  図1は、実施例1のインバータ装置が適用された電気自動車の駆動システムの回路図を示す。以下、図1に基づいて、実施例1の駆動システムの回路構成を説明する。
 駆動システム1は、直流電源2(強電バッテリ)と、インバータ装置3Aと、モータジェネレータ11と、を備える。
 直流電源2は、電気自動車の駆動用高電圧バッテリであり、複数の二次電池を直列又は並列に接続した電池(不図示)等を備える。直流電源2は、Pバスバー12(プラス、正)とNバスバー13(マイナス、負)との間に直流電圧を出力する。
 インバータ装置3Aは、直流電源2から供給される直流電力を交流電力に変換し、変換された電力をモータジェネレータ11に出力する。また、インバータ装置3Aは、モータジェネレータ11で発電した交流電力を直流電力に変換し、変換された電力を直流電源2に出力する。インバータ装置3Aは、パワーモジュール4(電力変換モジュール)と、平滑用コンデンサ5と、放電抵抗ユニット6Aと、三相ライン7と、を備える。
 パワーモジュール4は、IGBT(Insulated Gate Bipolar Transistor)又はMOSFET(metal-oxide-semiconductor field-effect transistor)等のモジュール化された複数のスイッチング素子4aからなるスイッチ群を基板上に複数有する。そして、不図示のコントローラからの制御信号に基づき、スイッチング素子をオン及びオフさせることで直流電源2からの直流電力を変換して、三相ライン7を通じてモータジェネレータ11に交流電力を出力する。また、パワーモジュール4は、モータジェネレータ11の回生動作によって、モータジェネレータ11の回生電力(交流電力)を直流電力に変換して、直流電源2に供給され、直流電源2がモータジェネレータ11の回生電力によって充電される。
 パワーモジュール4の交流側には、三相ライン7を通じてモータジェネレータ11が電気的に接続される。パワーモジュール4の直流側には、平滑用コンデンサ5が電気的に接続される。パワーモジュール4は、複数のスイッチング素子4aと複数のダイオード4bを有する。スイッチング素子4aには、IGBT又はMOSFET等のトランジスタが用いられる。ダイオード4bは還流用のダイオードである。スイッチング素子4aとダイオード4bは、互いに電流の導通方向を逆向きにしつつ、並列に接続される。スイッチング素子4aとダイオード4bとの並列回路を複数直列に接続した回路が、U、V、W相の各アーム回路40U,40V,40W(電力変換回路)となる。複数のアーム回路40U,40V,40WはPバスバー12とNバスバー13との間に並列に接続される。
 平滑用コンデンサ5は、電圧変動を平滑にする。平滑用コンデンサ5は、電圧が高いときに蓄電し、電圧が低いときに放電して電圧の変動を抑える。即ち、平滑用コンデンサ5は、U、V、W相の各アーム回路40U,40V,40Wの直流側の入出力電圧を平滑する。平滑用コンデンサ5は、Pバスバー12とNバスバー13との間に接続される。
 放電抵抗ユニット6Aは、インバータ装置3Aの動作停止時に、平滑用コンデンサ5に溜まっている電荷を放電する。放電抵抗ユニット6Aは、Pバスバー12とNバスバー13との間に接続される。
 三相ライン7は、導電性を有するU、V、W相の各バスバー7U,7V,7Wを備える。U、V、W相の各バスバー7U,7V,7Wは、U、V、W相の各アーム回路40U,40V,40Wの端子と、モータジェネレータ11の各相の端子との間を電気的に接続する。
 モータジェネレータ11は、例えば、ロータに永久磁石を埋設し、ステータにステータコイルが巻き付けられた同期型モータである。モータジェネレータ11は、車両の車軸に連結され、インバータ装置3Aから供給される電力により、電磁気的な作用で動作して回転力を発生する。
 [インバータ装置の構成]
  図2は、実施例1におけるインバータ装置の平面図を示し、図3は、実施例1におけるインバータ装置の概略断面図を示す。なお、図3において、駆動基板等の図示を省略している。以下、図2及び図3に基づいて、実施例1におけるインバータ装置3Aの構成を説明する。
 インバータ装置3Aは、パワーモジュール4等を収容するためのケース30を有する。なお、図2にはケース30の底面のみを示す。ケース30は、例えば、モータジェネレータ11の上方位置に配置される。このケース30の内部には、パワーモジュール4と、平滑用コンデンサ5と、放電抵抗ユニット6Aと、Pバスバー12と、Nバスバー13と、三相ライン7と、冷却器8、駆動基板9(回路基板)と、が収容される。なお、ケース30は、例えば金属製である。
 パワーモジュール4は、スイッチング素子等を樹脂モールド成形して一体化したものである。パワーモジュール4は、図2に示すように、平滑用コンデンサ5よりも前方に配置され、PM固定ボルト101によりケース30に固定される。また、パワーモジュール4の下方には、図3に示すように、冷却器8が設けられている。冷却器8は、冷媒流路8aを有する。冷媒流路8aには、冷媒(例えば冷却水)が流れる。この冷媒と、パワーモジュール4の駆動時に発生する熱と、が熱交換することにより、パワーモジュール4が冷却される。即ち、パワーモジュール4の冷却方式は、直接冷却型(直接水冷構造)である。なお、パワーモジュール4の冷却方式は、間接冷却型(間接水冷構造)や冷却器一体型でも良い。ここで、パワーモジュール4は、前後方向において中央部にPM本体部41を有し、前部と後部にPM強電端子部42を有する。また、PM強電端子部42のうち、前後方向において前側を前側強電端子部43とし、後側を後側強電端子部44とする。
 PM本体部41の上方(図2の紙面に直交する方向)には、駆動基板9が配置される。駆動基板9は、絶縁体からなる一体の板の表面や内部に電気回路配線が形成されたものである。駆動基板9は、例えば、複数枚の基板が積層された多層基板である。駆動基板9は、パワーモジュール4とスペースを空けて配置される。
 前側強電端子部43には、左方から順にU相端子4U,V相端子4V、W相端子4Wが配置される。即ち、前側強電端子部43は、端子が設けられるエリアである。このU、V、W相の各端子4U,4V,4Wはパワーモジュール4と繋がっている。このU、V、W相の各端子4U,4V,4WとU、V、W相の各バスバー7U,7V,7Wの一端が、ボルト102により締結される。このとき、U相端子4UとU相バスバー7Uの一端と放電抵抗ユニット6Aの第2ブラケット6Aeがボルト102により共締めされる。また、V相端子4VとV相バスバー7Vの一端と放電抵抗ユニット6Aの第1ブラケット6Adがボルト102により共締めされる。これにより、放電抵抗ユニット6Aは、前側強電端子部43に配置される。U、V、W相の各バスバー7U,7V,7Wの他端は、不図示のモータジェネレータ11が有するステータコイルのU相・V相・W相の各相に接続される。これにより、パワーモジュール4とモータジェネレータ11とが接続される。
 後側強電端子部44には、左方から順にU、V、W相の各相に対応するPN端子4P,4Nが配置される。即ち、後側強電端子部44は、端子が設けられるエリアである。これらのPN端子4P,4Nはパワーモジュール4と繋がっている。
 平滑用コンデンサ5は、図2に示すように、パワーモジュール4より後方に配置される。平滑用コンデンサ5は、パワーモジュール4と不図示の直流電源2との間に設けられる。この平滑用コンデンサ5は、直流Pバスバー121と、直流Nバスバー131と、電源Pバスバー122と、電源Nバスバー132と、を有する。直流Pバスバー121と直流Nバスバー131は、U、V、W相の各相に対応するPN端子4P,4Nとボルト102により締結される。これにより、パワーモジュール4と平滑用コンデンサ5とが接続される。このとき、直流Pバスバー121とU相のP端子4Pと放電抵抗ユニット6Aから延びる第1ハーネス6Abがボルト102により共締めされる。また、直流Nバスバー131とU相のN端子4Nと放電抵抗ユニット6Aから延びる第2ハーネス6Acがボルト102により共締めされる。また、電源Pバスバー122と電源Nバスバー132は、直流電源2に接続される。なお、直流Pバスバー121と電源Pバスバー122は、Pバスバー12を構成するものであり、直流Nバスバー131と電源Nバスバー132は、Nバスバー13を構成するものである。
 [放電抵抗ユニットの詳細構成]
  図4は、実施例1における放電抵抗ユニットの締結を説明する説明図を示す。なお、図4において、平滑用コンデンサ等の図示を省略している。以下、図4に基づいて、実施例1における放電抵抗ユニット6Aの詳細構成を説明する。
 放電抵抗ユニット6Aは、抵抗本体部6Aa(放電抵抗)と、第1ハーネス6Abと、第2ハーネス6Acと、第1ブラケット6Adと、第2ブラケット6Aeと、を備える。抵抗本体部6Aaには、不図示の抵抗器(例えば巻線抵抗素子)が内蔵されている。抵抗器の周囲は、封止材(例えばセメント)でモールドされている。第1ハーネス6Abと第2ハーネス6Acは、抵抗本体部6Aaに内蔵された抵抗器の端子と電気的に接続されている。第1ブラケット6Adと第2ブラケット6Aeは、抵抗本体部6Aaを保持している。第1ブラケット6Adと第2ブラケット6Aeは、樹脂で形成されている。第1ブラケット6Adと第2ブラケット6Aeのそれぞれには、ボルト102を挿通する挿通孔6Afが形成されている。
 第1ブラケット6Adと第2ブラケット6Aeは、前側強電端子部43に締結(接続)される。即ち、第1ブラケット6Adの挿通孔6Afにボルト102が挿通され、第1ブラケット6AdはV相端子4V及びV相バスバー7Vの一端とボルト102により共締めされる。第2ブラケット6Aeの挿通孔6Afにボルト102が挿通され、第2ブラケット6AeはU相端子4U及びU相バスバー7Uの一端とボルト102により共締めされる。このため、樹脂製の第1ブラケット6Adと第2ブラケット6Aeにより、抵抗本体部6Aaに内蔵された抵抗器は、パワーモジュール4やU、V、W相の各端子4U,4V,4WやU、V、W相の各バスバー7U,7V,7Wと電気的に接続されない。
 また、第1ハーネス6Abと第2ハーネス6Acは、上述したとおり、平滑用コンデンサ5と接続される。即ち、第1ハーネス6Abは、直流Pバスバー121及びU相のP端子4Pとボルト102により共締めされる。第2ハーネス6Acは、直流Nバスバー131及びU相のN端子4Nとボルト102により共締めされる。このため、抵抗本体部6Aaに内蔵された抵抗器は、不図示の抵抗器の端子と第1ハーネス6Abと第2ハーネス6Acを通じて平滑用コンデンサ5と電気的に接続される。これにより、抵抗器は、インバータ装置3Aの動作停止時に、平滑用コンデンサ5に溜まっている電荷を放電する。つまり、抵抗器は、平滑用コンデンサ5に溜まっている電荷を熱により消費する。このため、抵抗本体部6Aaは熱を発する。
 次に、作用を説明する。
実施例1のインバータ装置3Aにおける作用を、「課題発生作用」、「端子部温度と放電抵抗温度との関係作用」、「インバータ装置の特徴作用」に分けて説明する。
 [課題発生作用]
  図5は、従来例におけるインバータ装置の平面図を示す。以下、図5に基づいて、課題発生作用を説明する。
 従来、電力変換装置としてのインバータ装置に、半導体モジュールと平滑コンデンサと放電抵抗が取り付けられている。即ち、従来のインバータ装置では、半導体モジュールや平滑コンデンサを設けるエリアの他に、放電抵抗を設けるエリアが必要になる。このため、インバータ装置の平面視で少なくとも一方向にケースのサイズが拡大されてしまう、という課題がある。例えば、図5において、インバータ装置の平面視でY方向にインバータ装置のサイズ(大きさY1)が拡大されてしまう。この他、図5において、放電抵抗の配置を変更しても、インバータ装置の平面視でX方向やX方向とY方向の両方にインバータ装置のサイズが拡大されてしまう。なお、実際には、放電抵抗を取り付けるためのツールスペースを確保する必要があるため、Z方向(図5の紙面に直交する方向)にスペースが必要になる。
 これに対し、放電抵抗をチップ部品として、半導体モジュールや平滑コンデンサとは別の回路基板に搭載すれば、インバータ装置のサイズを拡大しなくて良い。しかし、放電抵抗をチップ部品とすると、放電抵抗が小型になるので、チップ部品自体の温度が、従来の放電抵抗よりも高温になる。また、この高温対策として、複数のチップ部品を使用すると、チップ部品で基板面積を占有してしまう。その他、インバータ装置の他の半導体部品や熱に弱い電解コンデンサや耐熱性の低い基板素子等に対し、チップ部品の熱による害が及んでしまう、という課題がある。
 このような対策を取ることにより、インバータ装置のサイズを縮小できても、別の課題が発生する。従って、別の構成により、インバータ装置のサイズを小型化する必要がある。
 [端子部温度と放電抵抗温度との関係作用]
  図6は、実施例1における直流電源の動作シーンの端子部温度と放電抵抗温度との関係を示す。以下、図6に基づいて、端子部温度と放電抵抗温度との関係作用を説明する。
 直流電源2から同じ直流電力を出力するとき、直流電源2の残量によって電圧と電流の大きさが異なる。
 例えば、直流電源2の残量が少ないとき(例えば残量が最大量の半分未満のとき)、大電流かつ低電圧により直流電力が出力される。このとき、PN端子4P,4NやU、V、W相の各端子4U,4V,4Wの温度は上昇して、PM強電端子部42の端子部温度が上昇する。一方、放電抵抗6Aの温度はほとんど上昇せず、放電抵抗としての抵抗本体部6Aaの放電抵抗温度はPM強電端子部42の端子部温度よりも低くなる。
 また、例えば、直流電源2の残量が多いとき(例えば残量がほぼ最大量のとき)、低電流かつ高電圧により直流電力が出力される。このとき、抵抗本体部6Aaの温度が上昇して、放電抵抗温度が上昇する。一方、PN端子4P,4NやU、V、W相の各端子4U,4V,4Wの温度はほとんど上昇せず、PM強電端子部42の端子部温度は放電抵抗温度よりも低くなる。
 このように、同じ直流電力を出力するとき、大電流であれば放電抵抗6A温度よりもPM強電端子部42の端子部温度が高くなり、高電圧であればPM強電端子部42の端子部温度よりも放電抵抗温度が高くなる。このため、同じ直流電力を出力するとき、PM強電端子部42と放電抵抗としての抵抗本体部6Aaでは発熱シーンが異なるので、互いの耐熱の余力を活用できる。これにより、冷却器8等を用いてインバータ装置3Aの冷却機能を高めなくても良い。このような温度の関係が、放電抵抗としての抵抗本体部6AaをPM強電端子部42(前側強電端子部43)に配置する理由である。
 [インバータ装置の特徴作用]
  上記のように、放電抵抗を設けるエリアが必要になるため、インバータ装置の平面視で少なくとも一方向にインバータ装置のサイズが拡大されてしまう。これに対し、実施例1では、抵抗本体部6Aaを、パワーモジュール4の前側強電端子部43に配置する。即ち、前側強電端子部43の上方の空きスペースに抵抗本体部6Aaが配置される。このため、インバータ装置3Aの平面視で縦横方向に、抵抗本体部6Aaを設けない分、インバータ装置3Aのサイズが縮小される。この結果、インバータ装置3Aのサイズを小型化することができる。加えて、抵抗本体部6Aaは、第1ブラケット6Adと第2ブラケット6Aeにより、耐熱性の低い基板素子等から離れている。このため、放電抵抗ユニット6A周辺の部品に対し、抵抗本体部6Aaの熱による害が及びにくい。
 次に、効果を説明する。
実施例1におけるインバータ装置3Aにあっては、下記に列挙する効果が得られる。
 (1) 電力変換装置(インバータ装置3A)は、電力変換モジュール(パワーモジュール4)と、平滑用コンデンサ5と、放電抵抗(抵抗本体部6Aa)と、を備える。
  電力変換モジュール(パワーモジュール4)は、電力変換回路(U、V、W相の各アーム回路40U,40V,40W)を構成するスイッチング素子4aを備えている。
  平滑用コンデンサ5は、電圧変動を抑制する。
  放電抵抗(抵抗本体部6Aa)は、平滑用コンデンサと電気的に接続され、動作停止時に平滑用コンデンサ5の電荷を放電する。
  電力変換モジュール(パワーモジュール4)は、強電端子部(前側強電端子部43)を有する。
  放電抵抗(抵抗本体部6Aa)は、強電端子部(前側強電端子部43)に配置される。
  このため、電力変換装置(インバータ装置3A)のサイズを小型化する電力変換装置(インバータ装置3A)を提供することができる。
 実施例2は、導電性を有するブラケットにして、ブラケットをPN端子に共締めした例である。
 まず、構成を説明する。
実施例2における電力変換装置は、実施例1と同様に、走行用駆動源などとして電気自動車(電動車両の一例)に搭載されるモータジェネレータのインバータ装置(電力変換装置の一例)に適用したものである。以下、実施例2の構成を、「インバータ装置の構成」と、「放電抵抗ユニットの詳細構成」に分けて説明する。なお、実施例2の「駆動システムの回路構成」については、実施例1と同様であるので、図示並びに説明を省略する。
 [インバータ装置の構成]
  図7は、実施例2における放電抵抗ユニットの締結を説明する説明図を示す。なお、図7において、平滑用コンデンサ等の図示を省略している。以下、図7に基づいて、実施例2におけるインバータ装置3Bの構成を説明する。
 インバータ装置3Bのケース30の内部には、放電抵抗ユニット6Bが収容される。
 U、V、W相の各端子4U,4V,4WとU、V、W相の各バスバー7U,7V,7Wの一端が、ボルト102により締結される。このとき、放電抵抗ユニット6Bの第1ブラケット6Bd(第1保持部)と第2ブラケット6Be(第2保持部)は、ボルト102により共締めされない。
 直流Pバスバー121と直流Nバスバー131は、U、V、W相の各相に対応するPN端子4P,4Nとボルト102により締結される。これにより、パワーモジュール4と平滑用コンデンサ5とが接続される。このとき、直流Pバスバー121とW相のP端子4P(正極強電端子)と放電抵抗ユニット6Bの第1ブラケット6Bdがボルト102により共締めされる。また、直流Nバスバー131とV相のN端子4N(負極強電端子)と放電抵抗ユニット6Bの第2ブラケット6Beがボルト102により共締めされる。これにより、放電抵抗ユニット6Bは、後側強電端子部44に配置される。
 なお、他の構成は、実施例1と同様であるので、対応する構成に同一符号を付して説明を省略する。また、図7に図示されない構成については、図示並びに説明を省略する。
 [放電抵抗ユニットの詳細構成]
  図8は、実施例2における放電抵抗ユニットを締結したときの概略端面図を示す。以下、図7及び図8に基づいて、実施例2における放電抵抗ユニットの詳細構成を説明する。
 放電抵抗ユニット6Bは、抵抗本体部6Baと、第1抵抗端子6Bbと、第2抵抗端子6Bcと、第1ブラケット6Bdと、第2ブラケット6Beと、を備える。抵抗本体部6Baには、不図示の抵抗器(例えば巻線抵抗素子)が内蔵されている。抵抗器の周囲は、封止材(例えばセメント)でモールドされている。第1抵抗端子6Bbと第2抵抗端子6Bcは、抵抗本体部6Baに内蔵された抵抗器と一体に形成されている。第1抵抗端子6Bbと第2抵抗端子6Bcは、抵抗本体部6Baに内蔵された抵抗器と電気的に接続され、抵抗本体部6Baの外部に露出している。ここで、抵抗本体部6Baと第1抵抗端子6Bbと第2抵抗端子6Bcが放電抵抗である。なお、実施例2の放電抵抗ユニット6Bは、実施例1とは異なり、第1ハーネス6Abと第2ハーネス6Acを有していない。
 第1ブラケット6Bdと第2ブラケット6Beは、導電材(例えば銅)で形成されている。即ち、第1ブラケット6Bdと第2ブラケット6Beは、導電性を有する。第1ブラケット6Bdと第2ブラケット6Beのそれぞれは、図8に示すように、一端部6Bgと中間部6Bhと他端部6Bjとから一体に形成される。中間部6Bhは、上下方向に延びている。一端部6Bgと他端部6Bjは、中間部6Bhを中心として左右方向に屈曲されている。一端部6Bgは、他端部6Bjとは反対側に屈曲されている。このため、一端部6Bgと中間部6Bhは、PN端子4P,4N等と離間されるので、PN端子4P,4N等と接触しない。これにより、意図しない電気信号の伝導を抑えられる。また、第1ブラケット6Bdの一端部6Bgは第1抵抗端子6Bbと固定され、第2ブラケット6Beの一端部6Bgは第2抵抗端子6Bcと固定されている。これにより、第1ブラケット6Bdと第2ブラケット6Beは、抵抗本体部6Baを保持している。第1ブラケット6Bdと第2ブラケット6Beの他端部6Bjのそれぞれには、図7に示すように、ボルト102を挿通する挿通孔6Bfが形成されている。
 第1ブラケット6Bdと第2ブラケット6Beは、図7及び図8に示すように、後側強電端子部44に締結(接続)される。即ち、第1ブラケット6Bdの挿通孔6Bfにボルト102が挿通され、第1ブラケット6BdはW相のP端子4P及び直流Pバスバー121とボルト102により共締めされる。これにより、第1ブラケット6BdとW相のP端子4Pとが締結される。第2ブラケット6Beの挿通孔6Bfにボルト102が挿通され、第2ブラケット6BeはV相のN端子4N及び直流Nバスバー131とボルト102により共締めされる。これにより、第2ブラケット6BeとV相のN端子4Nとが締結される。このため、抵抗本体部6Baに内蔵された抵抗器は、第1抵抗端子6Bbと第2抵抗端子6Bcと第1ブラケット6Bdと第2ブラケット6Beを通じて平滑用コンデンサ5と電気的に接続される。これにより、抵抗器は、インバータ装置3Bの動作停止時に、平滑用コンデンサ5に溜まっている電荷を放電する。つまり、抵抗器は、平滑用コンデンサ5に溜まっている電荷を熱により消費する。このため、抵抗本体部6Baは熱を発し、抵抗本体部6Baに接続されている第1抵抗端子6Bbと第2抵抗端子6Bcも熱を発する。
 次に、作用を説明する。
実施例2におけるインバータ装置3Bの作用は、実施例1と同様に、「課題発生作用」と「端子部温度と放電抵抗温度との関係作用」と「インバータ装置の特徴作用」を示す。なお、両方の作用において、放電抵抗は、抵抗本体部6Baと第1抵抗端子6Bbと第2抵抗端子6Bcになる。このため、図示並びに説明を省略する。また、実施例2におけるインバータ装置3Bにあっては、下記の実施例2の特徴作用を示す。
 実施例2では、放電抵抗としての抵抗本体部6Baと第1抵抗端子6Bbと第2抵抗端子6Bcに、導電性を有する第1ブラケット6Bdと第2ブラケット6Beが設けられる。そして、第1ブラケット6BdはW相のP端子4Pに締結され、第2ブラケット6BeはV相のN端子4Nに締結される。即ち、第1ブラケット6Bdと第2ブラケット6Beは、抵抗本体部6Baと第1抵抗端子6Bbと第2抵抗端子6Bcを保持する保持機能を備える。また、第1ブラケット6Bdと第2ブラケット6Beは、導電性を有するため、抵抗本体部6Baと第1抵抗端子6Bbと第2抵抗端子6Bcに電気信号を伝える伝導機能を備える。このため、第1ブラケット6Bdと第2ブラケット6Beは、保持機能と伝導機能の2つの機能を備える。これにより、放電抵抗(抵抗本体部6Baと第1抵抗端子6Bbと第2抵抗端子6Bc)と平滑用コンデンサ5とを接続するハーネスを削減することが可能である。さらに、ハーネスを削減することが可能であるので、ハーネス取り回し分のスペースと、ハーネス接続作業が不要となる。従って、第1ブラケット6Bdと第2ブラケット6Beが保持機能と伝導機能を備えることにより、費用を低減することができる。
 次に、効果を説明する。
実施例2におけるインバータ装置3Bにあっては、実施例1の(1)に記載した効果が得られる。また、実施例2のインバータ装置3Bにあっては、下記(2)の効果を得ることができる。
 (2) 強電端子部(後側強電端子部44)の強電端子(U、V、W相の各相に対応するPN端子4P,4N)は、正極強電端子(P端子4P)と負極強電端子(N端子4N)を備える。
  放電抵抗(抵抗本体部6Baと第1抵抗端子6Bbと第2抵抗端子6Bc)に、導電性を有する第1保持部(第1ブラケット6Bd)と第2保持部(第2ブラケット6Be)が設けられる。
  第1保持部(第1ブラケット6Bd)は、正極強電端子(W相のP端子4P)に締結される。
  第2保持部(第2ブラケット6Be)は、負極強電端子(V相のN端子4N)に締結される。
  このため、第1保持部(第1ブラケット6Bd)と第2保持部(第2ブラケット6Be)が保持機能と伝導機能を備えることにより、費用を低減することができる。
 実施例3は、導電性を有するブラケットにして、ブラケットをPN端子に共締めした例である。
 まず、構成を説明する。
実施例3における電力変換装置は、実施例1と同様に、走行用駆動源などとして電気自動車(電動車両の一例)に搭載されるモータジェネレータのインバータ装置(電力変換装置の一例)に適用したものである。以下、実施例3の構成を、「インバータ装置の構成」と、「放電抵抗ユニットの詳細構成」に分けて説明する。なお、実施例3の「駆動システムの回路構成」については、実施例1と同様であるので、図示並びに説明を省略する。
 [インバータ装置の構成]
  図9は、実施例3における放電抵抗ユニットの締結を説明する説明図を示す。なお、図9において、平滑用コンデンサ等の図示を省略している。以下、図9に基づいて、実施例3におけるインバータ装置3Cの構成を説明する。
 インバータ装置3Cのケース30の内部には、放電抵抗ユニット6Cが収容される。
 U、V、W相の各端子4U,4V,4WとU、V、W相の各バスバー7U,7V,7Wの一端が、ボルト102により締結される。このとき、放電抵抗ユニット6Bの第1ブラケット6Cd(第1保持部)と第2ブラケット6Ce(第2保持部)は、ボルト102により共締めされない。
 直流Pバスバー121と直流Nバスバー131は、U、V、W相の各相に対応するPN端子4P,4N(正負端子)とボルト102により締結される。これにより、パワーモジュール4と平滑用コンデンサ5とが接続される。このとき、直流Pバスバー121とW相のP端子4P(正極強電端子、正端子)と放電抵抗ユニット6Cの第1ブラケット6Cdがボルト102により共締めされる。また、直流Nバスバー131とU相のN端子4N(負極強電端子、負端子)と放電抵抗ユニット6Cの第2ブラケット6Ceがボルト102により共締めされる。これにより、放電抵抗ユニット6Cは、後側強電端子部44に配置される。
 なお、他の構成は、実施例1と同様であるので、対応する構成に同一符号を付して説明を省略する。また、図9に図示されない構成については、図示並びに説明を省略する。
 [放電抵抗ユニットの詳細構成]
  図10は、実施例3における放電抵抗ユニットを締結したときの概略端面図を示す。以下、図9及び図10に基づいて、実施例3における放電抵抗の詳細構成を説明する。
 放電抵抗ユニット6Cは、抵抗本体部6Caと、第1抵抗端子6Cbと、第2抵抗端子6Ccと、第1ブラケット6Cdと、第2ブラケット6Ceと、を備える。抵抗本体部6Caには、不図示の抵抗器(例えば巻線抵抗素子)が内蔵されている。抵抗器の周囲は、封止材(例えばセメント)でモールドされている。第1抵抗端子6Cbと第2抵抗端子6Ccは、抵抗本体部6Caに内蔵された抵抗器と一体に形成されている。第1抵抗端子6Cbと第2抵抗端子6Ccは、抵抗本体部6Caに内蔵された抵抗器と電気的に接続され、抵抗本体部6Caの外部に露出している。ここで、抵抗本体部6Caと第1抵抗端子6Cbと第2抵抗端子6Ccが放電抵抗である。なお、実施例3の放電抵抗ユニット6Cは、実施例1とは異なり、第1ハーネス6Abと第2ハーネス6Acを有していない。
 第1ブラケット6Cdと第2ブラケット6Ceは、導電材(例えば銅)で形成されている。即ち、第1ブラケット6Cdと第2ブラケット6Ceは、導電性を有する。第1ブラケット6Cdと第2ブラケット6Ceのそれぞれは、図10に示すように、一端部6Cgと中間部6Chと他端部6Cjとから一体に形成される。中間部6Chは、上下方向に延びている。一端部6Cgと他端部6Cjは、中間部6Chを中心として左右方向に屈曲されている。一端部6Cgは、他端部6Cjとは反対側に屈曲されている。このため、一端部6Cgと中間部6Chは、PN端子4P,4N等と離間されるので、PN端子4P,4N等と接触しない。これにより、意図しない電気信号の伝導を抑えられる。また、第1ブラケット6Cdの一端部6Cgは第1抵抗端子6Cbと固定され、第2ブラケット6Ceの一端部6Cgは第2抵抗端子6Ccと固定されている。これにより、第1ブラケット6Cdと第2ブラケット6Ceは、抵抗本体部6Caを保持している。第1ブラケット6Cdと第2ブラケット6Ceの他端部6Cjのそれぞれには、図9に示すように、ボルト102を挿通する挿通孔6Cfが形成されている。
 第1ブラケット6Cdと第2ブラケット6Ceは、図9及び図10に示すように、後側強電端子部44に締結(接続)される。即ち、第1ブラケット6Cdの挿通孔6Cfにボルト102が挿通され、第1ブラケット6CdはW相のP端子4P及び直流Pバスバー121とボルト102により共締めされる。これにより、第1ブラケット6CdとW相のP端子4Pとが締結される。第2ブラケット6Ceの挿通孔6Cfにボルト102が挿通され、第2ブラケット6CeはU相のN端子4N及び直流Nバスバー131とボルト102により共締めされる。これにより、第2ブラケット6CeとU相のN端子4Nとが締結される。このため、抵抗本体部6Caに内蔵された抵抗器は、第1抵抗端子6Cbと第2抵抗端子6Ccと第1ブラケット6Cdと第2ブラケット6Ceを通じて平滑用コンデンサ5と電気的に接続される。これにより、抵抗器は、インバータ装置3Cの動作停止時に、平滑用コンデンサ5に溜まっている電荷を放電する。つまり、抵抗器は、平滑用コンデンサ5に溜まっている電荷を熱により消費する。このため、抵抗本体部6Caは熱を発し、抵抗本体部6Caに接続されている第1抵抗端子6Cbと第2抵抗端子6Ccも熱を発する。
 次に、作用を説明する。
実施例3におけるインバータ装置3Cの作用は、実施例1と同様に、「課題発生作用」と「端子部温度と放電抵抗温度との関係作用」と「インバータ装置の特徴作用」を示す。なお、両方の作用において、放電抵抗は、抵抗本体部6Caと第1抵抗端子6Cbと第2抵抗端子6Ccになる。このため、図示並びに説明を省略する。また、実施例3の作用は、実施例2と同様に、実施例2の特徴作用を示す。このため、説明を省略する。さらに、実施例3におけるインバータ装置3Cにあっては、下記の実施例3の特徴作用を示す。
 実施例3では、放電抵抗としての抵抗本体部6Caと第1抵抗端子6Cbと第2抵抗端子6Ccに、導電性を有する第1ブラケット6Cdと第2ブラケット6Ceが設けられる。パワーモジュール4は、三相の各々でPN端子4P,4Nを有する。第1ブラケット6Cdと第2ブラケット6Ceは、三相のうち外側の2つの相におけるW相のP端子4PとU相のN端子4Nにそれぞれ締結される。
 例えば、一般的に、半導体モジュールの中心に配置される相が、両隣の相からの熱干渉を受ける。このため、半導体モジュールの中心に配置される相は、両隣の相よりも、高温となる。
 これに対し、実施例3では、第1ブラケット6Cdは三相のうち外側のW相のP端子4Pに締結され、第2ブラケット6Ceは三相のうち外側のU相のN端子4Nに締結される。
即ち、第1ブラケット6Cdと第2ブラケット6Ceは、パワーモジュール4の中心に配置されるV相を避けて、三相のうち外側の相のP端子4PとN端子4Nにそれぞれ締結される。
従って、両隣の相からの熱干渉の影響を軽減することが可能である。
 加えて、第1ブラケット6Cdと第2ブラケット6Ceは、パワーモジュール4の中心に配置されるV相を跨ぎ、三相のうち外側に延びる構成となっている。このため、直流電源2の動作シーンが大電流かつ低電圧のときは、PM強電端子部42の熱が、第1ブラケット6Cdと第2ブラケット6Ceを通じて、抵抗本体部6Caと第1抵抗端子6Cbと第2抵抗端子6Ccへ伝導される。しかし、第1ブラケット6Cdと第2ブラケット6Ceにより、PM強電端子部42の熱が放熱される。一方、直流電源2の動作シーンが低電流かつ高電圧のときは、抵抗本体部6Caと第1抵抗端子6Cbと第2抵抗端子6Ccの熱が、第1ブラケット6Cdと第2ブラケット6Ceを通じて、PM強電端子部42へ伝導される。しかし、第1ブラケット6Cdと第2ブラケット6Ceにより、抵抗本体部6Caと第1抵抗端子6Cbと第2抵抗端子6Ccの熱が放熱される。このように、第1ブラケット6Cdと第2ブラケット6Ceは放熱機能を備えるので、熱管理を容易に行うことができる。
 次に、効果を説明する。
実施例3におけるインバータ装置3Cにあっては、実施例1の(1)と実施例2の(2)に記載した効果が得られる。また、実施例3のインバータ装置3Cにあっては、下記(3)の効果を得ることができる。
 (3)放電抵抗(抵抗本体部6Caと第1抵抗端子6Cbと第2抵抗端子6Cc)に、導電性を有する第1保持部(第1ブラケット6Cd)と第2保持部(第2ブラケット6Ce)が設けられる。
  電力変換モジュール(パワーモジュール4)は、三相以上(U、V、W相の三相)の各々で正負端子(PN端子4P,4N)を有する。
  第1保持部(第1ブラケット6Cd)と第2保持部(第2ブラケット6Ce)は、三相以上(U、V、W相の三相)のうち外側の2つの相(U、W相)における正端子(W相のP端子4P)と負端子(U相のN端子4N)にそれぞれ締結される。
  このため、両隣の相からの熱干渉の影響を軽減することが可能である。
 以上、本開示の電力変換装置を実施例1~実施例3に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、第1ブラケット6AdをV相端子4Vに締結し、第2ブラケット6AeをU相端子4Uに締結する例を示した。しかし、これに限られない。例えば、第1ブラケットをV相のP端子に締結し、第2ブラケットをW相のN端子に締結しても良い。また、第1ブラケットをPM固定ボルトに締結し、第2ブラケットを他のPM固定ボルトに締結しても良い。要するに、放電抵抗が、強電端子部(PM強電端子部)に配置されていれば良い。
 実施例1では、第1ハーネス6AbをU相のP端子4Pに締結し、第2ハーネス6AcをU相のN端子4Nに締結する例を示した。しかし、これに限れない。例えば、第1ハーネスをW相のP端子に締結し、第2ハーネスをV相のN端子に締結しても良い。要するに、放電抵抗が、平滑用コンデンサと電気的に接続されていれば良い。
 実施例2では、第1ブラケット6BdをW相のP端子4Pに締結し、第2ブラケット6BeをV相のN端子4Nに締結する例を示した。しかし、これに限られない。例えば、第1ブラケットをV相のP端子に締結し、第2ブラケットをW相のN端子に締結しても良い。また、第1ブラケットをU相のP端子に締結し、第2ブラケットをV相のN端子に締結しても良い。要するに、第1ブラケットが正極強電端子に締結され、第2ブラケットが負極強電端子)に締結さえていれば良い。
 実施例3では、第1ブラケット6CdをW相のP端子4Pに締結し、第2ブラケット6CeをU相のN端子4Nに締結する例を示した。しかし、第1ブラケットをU相のP端子に締結し、第2ブラケットをW相のN端子に締結しても良い。要するに、第1ブラケットと第2ブラケットは、三相のうち外側の2つの相における正端子と負端子にそれぞれ締結されていれば良い。
 実施例2及び実施例3では、第1保持部と第2保持部を、第1ブラケットと第2ブラケットとする例を示した。しかし、第1保持部と第2保持部は、ブラケットに限らず、少なくとも保持機能と伝導機能の2つの機能を備えていれば良い。
 実施例1~実施例3では、放電抵抗ユニット6A~6Cがブラケットを介してPM強電端子部42に配置されている例を示した。しかし、これに限られない。即ち、放電抵抗はハーネスやブラケットを有さなくても良く、放電抵抗は強電端子部(PM強電端子部)に配置されていれば良い。但し、放電抵抗は、平滑用コンデンサと電気的に接続され、動作停止時に平滑用コンデンサの電荷を放電する。
 実施例1~実施例3では、パワーモジュール4を三相(U、V、W相)とする例を示した。しかし、五相や七相でも良い。即ち、三相以上であれば良い。なお、例えば、パワーモジュールは、五相の各々で正負端子を有する場合、実施例3において第1ブラケットと第2ブラケットは、五相のうち外側の2つの相における正端子と負端子にそれぞれ締結されていれば良い。
 実施例1~実施例3では、電力変換モジュールを、パワーモジュール4とする例を示した。しかし、これに限らず、電力変換モジュールは、電力変換回路を構成するスイッチング素子を備えたものであれば良い。
 実施例1~実施例3では、本開示の電力変換装置を、モータジェネレータ11の交流/直流の変換装置として用いられるインバータ装置3A~3Cに適用する例を示した。しかし、本開示の電力変換装置は、少なくとも電力変換モジュールと平滑用コンデンサと放電抵抗とを備える電力変換装置であれば、インバータ装置以外の様々な電力変換装置に対しても適用することができる。また、電気自動車(電動車両の一例)等の電動車両に搭載されるインバータ装置に限られない。
 

Claims (3)

  1.  電力変換回路を構成するスイッチング素子を備えた電力変換モジュールと、
     電圧変動を抑制する平滑用コンデンサと、
     前記平滑用コンデンサと電気的に接続され、動作停止時に前記平滑用コンデンサの電荷を放電する放電抵抗と、を備え、
     前記電力変換モジュールは、強電端子部を有し、
     前記放電抵抗は、前記強電端子部に配置される
     ことを特徴とする電力変換装置。
  2.  請求項1に記載された電力変換装置において、
     前記強電端子部の強電端子は、正極強電端子と負極強電端子を備え、
     前記放電抵抗に、導電性を有する第1保持部と第2保持部が設けられ、
     前記第1保持部は、前記正極強電端子に締結され、
     前記第2保持部は、前記負極強電端子に締結される
     ことを特徴とする電力変換装置。
  3.  請求項1又は請求項2に記載された電力変換装置において、
     前記放電抵抗に、導電性を有する第1保持部と第2保持部が設けられ、
     前記電力変換モジュールは、三相以上の各々で正負端子を有し、
     前記第1保持部と前記第2保持部は、前記三相以上のうち外側の2つの相における正端子と負端子にそれぞれ締結される
     ことを特徴とする電力変換装置。
PCT/JP2017/018290 2017-05-16 2017-05-16 電力変換装置 WO2018211580A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019518626A JP6713246B2 (ja) 2017-05-16 2017-05-16 電力変換装置
PCT/JP2017/018290 WO2018211580A1 (ja) 2017-05-16 2017-05-16 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018290 WO2018211580A1 (ja) 2017-05-16 2017-05-16 電力変換装置

Publications (1)

Publication Number Publication Date
WO2018211580A1 true WO2018211580A1 (ja) 2018-11-22

Family

ID=64274429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018290 WO2018211580A1 (ja) 2017-05-16 2017-05-16 電力変換装置

Country Status (2)

Country Link
JP (1) JP6713246B2 (ja)
WO (1) WO2018211580A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022515802A (ja) * 2018-12-29 2022-02-22 広東美的制冷設備有限公司 高集積パワーモジュール及び電気器具
JP7363722B2 (ja) 2020-09-02 2023-10-18 株式会社デンソー 電力変換装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211827A (ja) * 2008-02-29 2009-09-17 Nissan Motor Co Ltd 電子ユニット
JP2013126360A (ja) * 2011-12-16 2013-06-24 Denso Corp 電力変換装置の放電およびノイズ低減装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370448B2 (ja) * 2011-09-19 2013-12-18 株式会社デンソー 電力変換装置
JP2016220360A (ja) * 2015-05-19 2016-12-22 日産自動車株式会社 電力変換装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211827A (ja) * 2008-02-29 2009-09-17 Nissan Motor Co Ltd 電子ユニット
JP2013126360A (ja) * 2011-12-16 2013-06-24 Denso Corp 電力変換装置の放電およびノイズ低減装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022515802A (ja) * 2018-12-29 2022-02-22 広東美的制冷設備有限公司 高集積パワーモジュール及び電気器具
JP7174856B2 (ja) 2018-12-29 2022-11-17 広東美的制冷設備有限公司 高集積パワーモジュール及び電気器具
JP7363722B2 (ja) 2020-09-02 2023-10-18 株式会社デンソー 電力変換装置

Also Published As

Publication number Publication date
JP6713246B2 (ja) 2020-07-01
JPWO2018211580A1 (ja) 2020-03-12

Similar Documents

Publication Publication Date Title
EP2006987B1 (en) Power converter device
US8274807B2 (en) Power conversion device
CN101960706B (zh) 半导体装置及使用半导体装置的电力变换装置
US9425707B2 (en) Inverter device capable of appropriately fixing a power module having a switching element and a smoothing capacitor in a limited region
US6327165B1 (en) Power conversion apparatus for interchangeably converting alternating current and direct current
WO2012035933A1 (ja) インバータ装置
JP5488540B2 (ja) 半導体モジュール
JP5815063B2 (ja) 電力変換装置
US8902582B2 (en) Coldplate for use with a transformer in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
JP2019033587A (ja) 電力変換装置および電力変換装置を搭載した車両
JP2014036145A (ja) 抵抗装置
WO2018211580A1 (ja) 電力変換装置
JP6648859B2 (ja) 電力変換装置
JP4487962B2 (ja) インバータ装置
US11297744B2 (en) Power conversion device
JP7167328B2 (ja) 電力変換装置
JP5919424B1 (ja) コンデンサモジュール
JP2019103247A (ja) 電力変換器用冷却構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518626

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910028

Country of ref document: EP

Kind code of ref document: A1