WO2018210101A1 - 无人机通信系统以及无人机服务器的通信系统 - Google Patents

无人机通信系统以及无人机服务器的通信系统 Download PDF

Info

Publication number
WO2018210101A1
WO2018210101A1 PCT/CN2018/083964 CN2018083964W WO2018210101A1 WO 2018210101 A1 WO2018210101 A1 WO 2018210101A1 CN 2018083964 W CN2018083964 W CN 2018083964W WO 2018210101 A1 WO2018210101 A1 WO 2018210101A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
communication
communication network
server
data
Prior art date
Application number
PCT/CN2018/083964
Other languages
English (en)
French (fr)
Other versions
WO2018210101A9 (zh
Inventor
张文凯
王亚莉
Original Assignee
北京京东尚科信息技术有限公司
北京京东世纪贸易有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东尚科信息技术有限公司, 北京京东世纪贸易有限公司 filed Critical 北京京东尚科信息技术有限公司
Priority to US16/500,030 priority Critical patent/US11429094B2/en
Priority to RU2019137096A priority patent/RU2752645C2/ru
Publication of WO2018210101A1 publication Critical patent/WO2018210101A1/zh
Publication of WO2018210101A9 publication Critical patent/WO2018210101A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Definitions

  • the present disclosure relates to the field of drone technology, and in particular, to a drone communication system, a communication system of a drone server, a communication system, a communication method of a drone, and a communication method of a drone server.
  • the logistics drone is a kind of unmanned aircraft.
  • the navigation feature is fixed on the route.
  • the height range during cruise is about 80-120 meters.
  • the logistics drone needs to use the onboard wireless communication equipment to maintain instant contact with the ground station, and the air navigation is completed by the control of the ground station, which is a fixed base station located on the ground.
  • Current data communication link methods include digital radio, wifi network, and Bluetooth.
  • This communication method is to deploy the transmitting and receiving modules on the airborne end and the ground end of the drone, and the communication distance is about 1-10 km. Therefore, it is suitable for aircrafts such as consumer-grade aircraft, aerial cameras, and plant protection machines that do not require high communication distances.
  • the wifi network forms a signal coverage to a certain range in the vicinity by deploying wifi at a certain site. At present, the communication distance of the industrial-grade wifi can reach 30 kilometers under the orientation condition, but the occlusion is easy, the signal is unstable, and the communication distance is limited. problem. Bluetooth communication distance is relatively shorter, and it is even more difficult to meet the communication distance requirements of logistics drones.
  • the logistics drone needs to complete the whole process of the distribution of the goods from the township distribution site to the rural promoters. Therefore, the safety requirements of the logistics drone are very high, which raises the communication reliability of the logistics drone. Claim. If the logistics drone has multiple communication failures such as signal interruption during the air flight, the performance form is that the ground station and the drone lose contact instantaneously, and the original UAV trajectory disappears on the display of the ground station. There are major safety hazards in which the logistics drone crashed due to loss of control. Therefore, how to improve the communication reliability of logistics drones is an urgent problem to be solved.
  • One technical problem solved by the present disclosure is how to improve the communication reliability of the drone.
  • a communication system for a drone includes: a drone processor; a first communication module; and a second communication module; wherein the drone processor respectively The first communication module and the second communication module are electrically connected; the UAV processor is configured to: send and receive heartbeat data packets and communication data through the first communication module and the first communication network, so as to communicate with the first communication port of the server Communicating; transmitting and receiving communication data through the second communication module and the second communication network to communicate with the second communication port of the server; the reception condition of the heartbeat data packet is used to determine whether to adopt the first communication network or the second communication network Received communication data.
  • the drone processor is electrically coupled to the flight control system; the drone processor is configured to: receive the drone heartbeat data packet from the flight control system and the drone flight status data; The heartbeat data packet and the drone flight state data are sent to the first communication module, and the drone flight state data is sent to the second communication module; the first communication module is configured to: receive from the drone processor The drone heartbeat data packet and the drone flight state data, and the drone heartbeat data packet and the drone flight state data are sent to the first communication port of the server through the first communication network; the second communication module is configured The method is: receiving the drone flight state data from the drone processor, and transmitting the drone flight state data to the second communication port of the server through the second communication network; the receiving condition of the drone heartbeat data packet is used by the server It is determined whether the UAV flight state data received by the first communication port or the second communication port is used for the drone scheduling.
  • the first communication module is configured to: receive the server heartbeat data packet and the drone instruction data from the first communication port of the server through the first communication network, and connect the server heartbeat data packet and the drone command
  • the data is sent to the drone processor
  • the second communication module is configured to: receive the drone command data from the second communication port of the server through the second communication network, and send the drone command data to the drone processing
  • the UAV processor is configured to: according to the reception condition of the server heartbeat data packet, determine whether the UAV command data received by the first communication module or the second communication module is used for data processing.
  • the first communication network and the second communication network respectively have a line blocking flag bit and a line interruption flag bit, the line blocking flag bit is used to identify a usage state of the communication network, and the line interruption flag bit is used to identify the communication network.
  • An interrupted state the drone processor is configured to: if the server heartbeat packet is not received for the first predetermined number of consecutive times, if the line blocking flag of the second communication network identifies that the second communication network is not used, and The line interruption flag of the second communication network identifies that the second communication network is not interrupted, and the line blocking flag of the first communication network is modified to be unused, and the line interruption flag of the first communication network is modified to be interrupted, and the second communication is performed.
  • the line blocking flag of the network is modified to be in use, and the data of the drone command data received by the second communication module is used for data processing; if the server receives the heartbeat packet of the server for the second consecutive preset number of times, if A line blocking flag of a communication network identifies that the first communication network is not used, then the first communication network.
  • the line interruption flag of the network is modified to be in use, the line blocking flag of the second communication network is modified to be unused, and the data is processed by using the drone command data received by the first communication module.
  • a communication system of a drone server including: a first communication port; a second communication port; and a server processor; wherein the server processor and the first communication port respectively The second communication port is electrically connected; the server processor is configured to: transmit and receive heartbeat data packets and communication data through the first communication port and the first communication network to communicate with the first communication module of the communication system of the drone; Communicating and transmitting communication data through the second communication port and the second communication network to communicate with the second communication module of the communication system of the drone; the reception condition of the heartbeat data packet is used to determine whether to adopt the first communication network or the second Communication data received by the communication network.
  • the server processor is electrically coupled to the drone scheduling platform; the first communication port is configured to: receive the drone heartbeat data packet from the first communication module of the drone through the first communication network, and Man-machine flight state data, and transmitting the drone heartbeat data packet and the drone flight state data to the server processor; the second communication port is configured to: access the second communication module of the drone through the second communication network Receiving drone flight state data, and transmitting the drone flight state data to the server processor; the server processor is configured to: determine whether to utilize the first communication port or the second according to the receiving condition of the drone heartbeat data packet The UAV flight status data received by the communication port is used for drone scheduling.
  • the server processor is configured to: receive the server heartbeat data packet and the drone command data from the drone dispatching platform; send the server heartbeat data packet and the drone command data to the first communication port, and Sending the drone command data to the second communication port;
  • the first communication port is configured to: receive the server heartbeat data packet and the drone command data from the server processor, and send the server heartbeat data packet and the first through the first communication network
  • the man-machine instruction data is sent to the first communication module of the drone;
  • the second communication port is further configured to: receive the drone command data from the server processor, and send the drone command data to the second communication network to The second communication module of the drone; the receiving condition of the server heartbeat data packet is used by the communication system of the drone to determine whether the data is transmitted by using the first communication module or the second communication module receiving the drone command data. deal with.
  • the first communication network and the second communication network respectively have a line blocking flag bit and a line interruption flag bit, the line blocking flag bit is used to identify a usage state of the communication network, and the line interruption flag bit is used to identify the communication network.
  • Interrupt state the server processor is configured to: if the server heartbeat packet is not received for the first predetermined number of consecutive times, if the line blocking flag of the second communication network identifies that the second communication network is not in use, and the second communication The line interruption identifier of the network identifies that the second communication network is not interrupted, and the line blocking flag of the first communication network is modified to be unused, and the line interruption flag of the first communication network is modified to be interrupted, and the second communication network is The line blocking flag is modified to be in use, and the UAV flight state data received by the first communication port is used to perform the drone scheduling; if the server heartbeat data packet is recovered for the second consecutive preset number of times, if The line blocking flag of a communication network identifies that the first communication network is not used
  • a communication system including the aforementioned drone communication system and the aforementioned communication system of the drone server.
  • a communication method of a drone including: the drone processor transmits and receives a heartbeat data packet and communication data through the first communication module and the first communication network, so as to communicate with the server The first communication port communicates; the drone processor transmits and receives communication data through the second communication module and the second communication network to communicate with the second communication port of the server; the reception of the heartbeat data packet is used to determine Whether the first communication network or the communication data received by the second communication network is used.
  • the drone processor receives the drone heartbeat data packet and the drone flight state data from the flight control system; the drone processor transmits the drone heartbeat data packet and the drone flight state data Go to the first communication module, and send the drone flight state data to the second communication module; the first communication module receives the drone heartbeat data packet and the drone flight state data from the processor, and the unmanned The heartbeat data packet and the drone flight state data are sent to the first communication port of the server through the first communication network; the second communication module receives the flight state data of the drone from the processor, and passes the flight state data of the drone The second communication network sends to the second communication port of the server; the receiving condition of the drone heartbeat data packet is used by the server to determine whether the drone flight state data received by the first communication port or the second communication port is used to perform unmanned Machine scheduling.
  • the first communication module receives the server heartbeat data packet and the drone instruction data from the first communication port of the server through the first communication network, and sends the server heartbeat data packet and the drone instruction data to the processing.
  • the second communication module receives the drone command data from the second communication port of the server through the second communication network, and transmits the drone command data to the processor; the drone processor receives the data packet according to the server heartbeat In the case, it is determined whether the data is processed by using the first communication module or the drone command data received by the second communication module.
  • the first communication network and the second communication network respectively have a line blocking flag bit and a line interruption flag bit, the line blocking flag bit is used to identify a usage state of the communication network, and the line interruption flag bit is used to identify the communication network.
  • Interrupt state if the server heartbeat data packet is not received for the first predetermined number of consecutive times, if the line congestion flag bit of the second communication network identifies that the second communication network is not used, and the line interruption flag bit identifier of the second communication network If the second communication network is not interrupted, the UAV processor modifies the line blocking flag of the first communication network to be unused, and changes the line interruption flag of the first communication network to an interrupt, blocking the line of the second communication network.
  • the flag bit is modified to be in use, and the UAV command data received by the second communication module is used for data processing; if the server heartbeat data packet is recovered for the second consecutive preset number of times, if the first communication network is The line blocking flag identifies that the first communication network is not in use, and the drone processor will communicate with the first The line interruption flag of the network is modified to be in use, the line blocking flag of the second communication network is modified to be unused, and the data is processed by using the drone command data received by the first communication module.
  • a communication method of a drone server including: a server processor transmitting and receiving a heartbeat data packet and communication data through a first communication port and a first communication network, so as to communicate with a drone
  • the first communication module of the communication system communicates;
  • the server processor transmits and receives communication data through the second communication port and the second communication network to communicate with the second communication module of the communication system of the drone;
  • the heartbeat data packet The reception condition is used to determine whether the communication data received by the first communication network or the second communication network is used.
  • the first communication port receives the drone heartbeat data packet and the drone flight state data from the first communication module of the drone through the first communication network, and the drone heartbeat data packet and The man-machine flight state data is sent to the server processor; the second communication port receives the drone flight state data from the second communication module of the drone through the second communication network, and sends the drone flight state data to the server for processing The server processor determines whether the drone flight state data received by the first communication port or the second communication port is used for the drone scheduling according to the reception condition of the drone heartbeat data packet.
  • the server processor receives the server heartbeat data packet and the drone command data from the drone dispatching platform; transmits the server heartbeat data packet and the drone command data to the first communication port, and transmits the drone
  • the command data is sent to the second communication port; the first communication port receives the server heartbeat data packet and the drone command data from the server processor, and sends the server heartbeat data packet and the drone command data to the unmanned person through the first communication network
  • the second communication port receives the drone command data from the server processor, and transmits the drone command data to the second communication module of the drone through the second communication network; the server heartbeat data
  • the receiving condition of the packet is used by the drone to determine whether the data is processed using the drone command data received by the first communication module or the second communication module.
  • the first communication network and the second communication network respectively have a line blocking flag bit and a line interruption flag bit, the line blocking flag bit is used to identify a usage state of the communication network, and the line interruption flag bit is used to identify the communication network.
  • Interrupt state if the server heartbeat data packet is not received for the first predetermined number of consecutive times, if the line congestion flag bit of the second communication network identifies that the second communication network is not used, and the line interruption flag bit identifier of the second communication network If the second communication network is not interrupted, the server processor modifies the line blocking flag of the first communication network to be unused, and changes the line interruption flag of the first communication network to an interrupt, and blocks the line blocking flag of the second communication network.
  • a communication device for a drone comprising: a memory; and a processor coupled to the memory, the processor being configured to perform the foregoing based on an instruction stored in the memory
  • the communication method of the drone, or the communication method of the aforementioned drone server comprising: a processor; and a processor coupled to the memory, the processor being configured to perform the foregoing based on an instruction stored in the memory
  • the communication method of the drone, or the communication method of the aforementioned drone server comprising: a memory; and a processor coupled to the memory, the processor being configured to perform the foregoing based on an instruction stored in the memory
  • the communication method of the drone, or the communication method of the aforementioned drone server comprising: a processor coupled to the memory, the processor being configured to perform the foregoing based on an instruction stored in the memory
  • a computer readable storage medium wherein the computer readable storage medium stores computer instructions that, when executed by a processor, implement the aforementioned communication method of the drone, or The aforementioned communication method of the drone server.
  • the inventor has devised a scheme of a dual communication link, and establishes a dual link mechanism by adding a device module, and uses the backup link to transmit data when the current communication link signal is interrupted, so that the logistics drone and the ground station The data transmitted between the two maintains continuity and stability, thereby reducing the probability of the logistics drone breaking the network in a fixed area under the condition of controlling cost, and increasing the communication reliability of the logistics drone.
  • FIG. 1 shows a block diagram of some embodiments of a communication system of the present disclosure.
  • Figure 2 shows the working process of the drone transmitting data to the drone dispatching platform through the communication system.
  • Figure 3 shows a schematic diagram of the line decision process of the server processor.
  • Figure 4 shows the working process of the drone dispatching platform transmitting data to the drone through the communication system.
  • Figure 5 is a block diagram showing some embodiments of a communication device of the disclosed drone.
  • Figure 6 is a block diagram showing further embodiments of the communication device of the disclosed drone.
  • the inventor analyzed the working scene of the logistics drone.
  • Logistics UAVs generally work in rural scenes.
  • the rural base stations are sparsely distributed and the coverage area is uneven.
  • the antenna layout is less reasonable, and there may even be signal blind spots.
  • the signal receiving efficiency of the logistics drones is low. If the logistics drone enters a signal dead zone or a signal weak area, the probability of disconnection will increase significantly, thus losing ground. If you try to change the signal distribution in the cruise route area, cooperate with the operator to increase the signal strength and range of the cruise area by installing antenna equipment covering the sky at the base station, which can reduce the probability of the networked UAV disconnecting the network, but the cost is higher. .
  • the flight control system is the core control device, and its function is to complete the real-time control of the drone.
  • the logistics drone communicates with the ground station by means of 3G or 4G wireless network, if the flight control system and the ground station use the communication transmission mode of the single communication link to exchange data in real time, once the communication link is interrupted, This will cause the drone and the ground station to lose contact, thus making the display on the ground station unable to track the trajectory of the drone in time, increasing the risk.
  • the inventor designed a dual communication link design, making full use of the cruise area base station, and using different operators' antennas, and adding a device module to establish a dual link mechanism, in the case of current communication link signal interruption.
  • the use of the backup link to transmit data so that the data transmitted between the logistics drone and the ground station maintains continuity and stability, thereby reducing the probability of the logistics drone breaking the network in a fixed area under the control of the cost, increasing Communication reliability of logistics drones.
  • the communication system 10 of this embodiment includes a drone communication system 102 and a communication system 104 of the drone server.
  • the UAV communication system 102 includes a UAV processor 1022, a first communication module 1024, and a second communication module 1026.
  • the UAV processor 1022 communicates with the first communication module 1024 through a serial interface.
  • the two communication modules 1026 and the flight control system are electrically connected, and the drone processor 1022 can adopt an ARM chip.
  • the communication system 104 of the drone server includes a first communication port 1042, a second communication port 1044, and a server processor 1046; wherein the server processor 1046 is scheduled with the first communication port 1042, the second communication port 1044, and the drone, respectively
  • the platform is electrically connected.
  • the role of communication system 10 is to enable data communication between the flight control system and the drone scheduling platform.
  • the working process of the communication system 10 will be described below in two aspects.
  • FIG 2 shows an operation process in which the drone transmits data to the drone dispatching platform via the communication system 10, and the process includes steps S201 to S207.
  • step S201 the processor 1022 receives the drone heartbeat data packet and the drone flight state data from the flight control system.
  • the receiving condition of the drone heartbeat data packet is used by the server to determine whether the drone flight state data received by the first communication port or the second communication port is used for the drone scheduling.
  • step S202 the processor 1022 transmits the drone heartbeat data packet and the drone flight state data to the first communication module 1024, and transmits the drone flight state data to the second communication module 1026.
  • the heartbeat data packet is transmitted in the heartbeat data frame
  • the drone flight state data is transmitted in the flight state data frame
  • the heartbeat data frame and the flight state data frame are separated from each other, and the frequency of the heartbeat data frame is smaller than the flight.
  • the frequency of the status data frame is smaller than the flight.
  • the first communication module 1024 receives the drone heartbeat data packet and the drone flight state data from the processor 1022, and passes the drone heartbeat data packet and the drone flight state data through the first communication network. Sent to the first communication port 1042.
  • the first communication module 1024 can package the drone heartbeat data packet and the drone flight state data into a TCP data packet, and then send the data to the first communication port 1042 through the first communication network.
  • step S204 the second communication module 1025 receives the drone flight state data from the processor 1022 and transmits the drone flight state data to the second communication port 1044 via the second communication network.
  • the communication module can adopt the full network communication mode, and flexibly according to the distribution of the base station of a certain regional operator, and the carrier network with a better coverage of the designated area is used as a backup.
  • Step S205 the first communication port 1042 receives the drone heartbeat data packet and the flight state data of the drone from the first communication module 1024 through the first communication network, and transmits the drone data packet of the drone and the flight state data of the drone. Sent to server processor 1046.
  • step S206 the second communication port 1044 receives the drone flight state data from the second communication module 1026 via the second communication network, and transmits the drone flight state data to the server processor 1046.
  • step S207 the server processor 1046 determines whether the drone flight state data received by the first communication port 1042 or the second communication port 1046 is used for the drone scheduling according to the reception condition of the server heartbeat data packet.
  • the flight status data of the drone includes related operating parameters such as position data and attitude data of the drone.
  • the detailed process of the server processor 1046 determining whether to use the first communication port or the second communication port to receive the UAV flight state data for UAV scheduling is described below with reference to FIG.
  • the first communication network and the second communication network respectively have a line blocking flag bit and a line interruption flag bit, the line blocking flag bit is used to identify the usage state of the communication network, and the line interruption flag bit is used to identify the interruption state of the communication network.
  • the server heartbeat data packet is not received for the first predetermined number of consecutive times, if the line blocking flag of the second communication network identifies that the second communication network is not used, and the line interruption flag of the second communication network identifies the second communication If the network is not interrupted, the line blocking flag of the first communication network is modified to be unused, the line interruption flag of the first communication network is modified to be interrupted, and the line blocking flag of the second communication network is modified to be used, and Using the UAV command data received by the second communication module for data processing; if the server heartbeat data packet is recovered for the second consecutive preset number of times, if the line congestion flag bit of the first communication network identifies the first communication If the network is not used, the line interruption flag of the first communication network is modified to be used, the line blocking flag of the second communication network is modified to be unused, and the drone command data received by the first communication module is used. Perform data processing.
  • the server heartbeat data packet is not received for the first predetermined number of consecutive times, if the line blocking flag of the second communication network identifies that the second communication network is not used, and the line interruption flag of the second communication network identifies the second communication If the network is not interrupted, the line blocking flag of the first communication network is modified to be unused, the line interruption flag of the first communication network is modified to be interrupted, and the line blocking flag of the second communication network is modified to be used, and UAV scheduling is performed by using the UAV flight status data received by the first communication port; if the server heartbeat data packet is recovered for the second consecutive preset number of times, if the line jam flag of the first communication network is identified If a communication network is not used, the line interruption flag of the first communication network is modified to be in use, the line blocking flag of the second communication network is modified to be unused, and the drone received by the second communication port is used. Status data is used for drone scheduling.
  • FIG. 3 shows a schematic diagram of the line decision process of the server processor 1046.
  • the thread of each communication link has two flag bits: the line blocking flag bit and the line interrupt flag bit.
  • the original communication connection needs to be released, the corresponding data storage space is released, and the signal is re-captured. Therefore, it takes a long time to apply for reconnection.
  • the time interval is about 30s, if it is about 30 seconds in practical application. Since the dispatching platform needs to schedule a large number of unmanned aerial vehicles at the same time, if each drone intermittently appears to be disconnected for about 30 seconds, it will have a significant negative impact on the scheduling work of the dispatching platform.
  • the above embodiment adopts the dual-channel dual-pass working mode, that is, the same data is copied and transmitted simultaneously, and when a communication link fails, the communication link is switched immediately, and the switching time can be controlled in 3 seconds to 5 seconds, which ensures The continuity and stability of the data transmission of the drone during the flight, so as to maintain the synchronization between the ground station and the drone and the function of real-time flight control.
  • FIG 4 shows the operation of the drone dispatching platform transmitting data to the drone through the communication system 10, the process including steps S401 to S407.
  • step S401 the server processor 1046 receives the server heartbeat packet and the drone command data from the drone scheduling platform.
  • the receiving condition of the server heartbeat data packet is used by the drone processor to determine whether the data is processed by using the first communication module or the second communication module receiving the drone command data.
  • step S402 the server processor 1046 transmits the server heartbeat packet and the drone command data to the first communication port 1042, and transmits the drone command data to the second communication port 1044.
  • the heartbeat packet is transmitted in the heartbeat data frame
  • the drone command data is transmitted in the drone command data frame
  • the heartbeat data frame and the drone command data frame are separated from each other
  • the heartbeat data frame is The frequency is less than the frequency of the drone command data.
  • the first communication port 1042 receives the server heartbeat data packet and the drone command data from the server processor 1046, and transmits the server heartbeat data packet and the drone command data to the drone through the first communication network.
  • the first communication module 1024 receives the server heartbeat data packet and the drone command data from the server processor 1046, and transmits the server heartbeat data packet and the drone command data to the drone through the first communication network.
  • step S404 the second communication port 1044 receives the drone command data from the server processor 1046, and transmits the drone command data to the second communication module 1026 of the drone through the second communication network.
  • step S405 the first communication module 1024 receives the server heartbeat data packet and the drone command data from the first communication port 1042 through the first communication network, and sends the server heartbeat data packet and the drone command data to the processor. 1022.
  • step S406 the second communication module 1026 receives the drone command data from the second communication port 1044 via the second communication network, and transmits the drone command data to the processor 1022.
  • step S407 the drone processor 1022 determines whether the data is processed by the drone command data received by the first communication module 1024 or the second communication module 1026 based on the reception status of the server heartbeat data packet.
  • the drone command data may specifically include drone track data and a drone request command.
  • the UAV determines whether the UAV command data received by the first communication module 1024 or the second communication module 1026 is used for data processing by receiving the server heartbeat data packet, and the process shown in FIG. Similarly, the specific steps are not described.
  • the probability of disconnecting the network by the Unicom base station is P(A)
  • the probability of disconnection of the mobile base station is P(B)
  • the probability of disconnecting the network of the base station is P(C)
  • A, B, and C are mutually independent events.
  • the above embodiment can control the cost to a certain extent while increasing the communication reliability of the logistics drone. Compared with a single communication link, the hardware cost of the above embodiment only needs to add one communication module and one SIM card chip. In the communication process, the operating traffic used to transmit data is less expensive.
  • Figure 5 is a block diagram showing some embodiments of a communication device of the disclosed drone.
  • the communication device 50 of the drone of this embodiment includes a memory 510 and a processor 520 coupled to the memory 510, and the processor 520 is configured to execute based on an instruction stored in the memory 510.
  • the communication method of the drone in any of the foregoing embodiments, or the communication method of the drone server in any of the foregoing embodiments.
  • the memory 510 may include, for example, a system memory, a fixed non-volatile storage medium, or the like.
  • the system memory stores, for example, an operating system, an application, a boot loader, and other programs.
  • FIG. 6 is a block diagram showing further embodiments of the communication device of the disclosed drone.
  • the communication device 60 of the drone of this embodiment includes a memory 510 and a processor 520, and may further include an input/output interface 630, a network interface 640, a storage interface 650, and the like. These interfaces 630, 640, 650 and the memory 510 and the processor 520 can be connected, for example, via a bus 650.
  • the input/output interface 630 provides a connection interface for input and output devices such as a display, a mouse, a keyboard, and a touch screen.
  • Network interface 640 provides a connection interface for various networked devices.
  • the storage interface 650 provides a connection interface for an external storage device such as an SD card or a USB flash drive.
  • the present disclosure also includes a computer readable storage medium having stored thereon computer instructions for executing a communication method of a drone in any of the foregoing embodiments, or performing an unmanned embodiment of any of the foregoing embodiments The communication method of the machine server.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code. .
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Astronomy & Astrophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Game Theory and Decision Science (AREA)
  • Evolutionary Computation (AREA)
  • Business, Economics & Management (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提供了一种无人机的通信系统以及无人机服务器的通信系统,涉及无人机领域。其中的无人机的通信系统包括:无人机处理器;第一通信模组;以及第二通信模组;其中,无人机处理器分别与第一通信模组以及第二通信模组电连接;无人机处理器被配置为:通过第一通信模组以及第一通信网络收发心跳数据包以及通信数据,以便与服务器的第一通信端口进行通信;通过第二通信模组以及第二通信网络收发通信数据,以便与服务器的第二通信端口进行通信;心跳数据包的接收情况被用来判断是采用第一通信网络还是第二通信网络接收到的通信数据。本公开提升了无人机的通信可靠性。

Description

无人机通信系统以及无人机服务器的通信系统
相关申请的交叉引用
本申请是以CN申请号为201710342625.X,申请日为2017年5月16日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及无人机技术领域,特别涉及一种无人机通信系统、无人机服务器的通信系统、通信系统、无人机通信方法以及无人机服务器的通信方法。
背景技术
物流无人机是一种无人驾驶飞机,航行特点是航线固定,巡航时高度区间约为80-120米。在航行过程中,物流无人机需要利用机载无线通信设备与地面站保持即时联络,由地面站的控制来完成的空中航行,地面站是位于地面的固定基站。目前的数据通信链路方式包括数传电台、wifi网络以及蓝牙。
发明内容
发明人研究发现,数传电台的工作频率在433兆或915兆,这种通信方式是通过在无人机机载端以及地面端分别部署发送和接受模块,通信距离为1-10千米左右,因此适用于消费级飞机、航拍机、植保机等对通信距离要求不高的飞行器。wifi网络是通过在某个站点部署wifi的形式对周边一定范围形成信号覆盖,目前工业级wifi在定向情况下通信距离可以达到30千米,但存在容易受遮挡、信号不稳定以及通信距离有限等问题。蓝牙的通信距离相对更短,更加无法达到物流无人机对于通信距离的要求。
物流无人机需要完成乡镇配送站点至乡村推广员间货物的全流程自主配送,因此物流无人机对安全性的要求非常高,这就对物流无人机的通信可靠性提出了较高的要求。如果物流无人机在空中飞行过程中多次出现信号中断等通信故障,表现形式为地面站与无人机瞬间失去联络,地面站的显示屏上原有的无人机的轨迹消失,这样的故障存在着物流无人机因失控而坠毁的重大安全隐患。因此,如何提升物流无人机的通信可靠性,是目前亟待解决的问题。
本公开解决的一个技术问题是,如何提升无人机的通信可靠性。
根据本公开实施例的一个方面,提供了一种无人机的通信系统,包括:无人机处理器;第一通信模组;以及第二通信模组;其中,无人机处理器分别与第一通信模组以及第二通信模组电连接;无人机处理器被配置为:通过第一通信模组以及第一通信网络收发心跳数据包以及通信数据,以便与服务器的第一通信端口进行通信;通过第二通信模组以及第二通信网络收发通信数据,以便与服务器的第二通信端口进行通信;心跳数据包的接收情况被用来判断是采用第一通信网络还是第二通信网络接收到的通信数据。
在一些实施例中,无人机处理器与飞行控制系统电连接;无人机处理器被配置为:从飞行控制系统接收无人机心跳数据包以及无人机飞行状态数据;将无人机心跳数据包以及无人机飞行状态数据发送至第一通信模组,并将无人机飞行状态数据发送至第二通信模组;第一通信模组被配置为:从无人机处理器接收无人机心跳数据包以及无人机飞行状态数据,并将无人机心跳数据包以及无人机飞行状态数据通过第一通信网络发送至服务器的第一通信端口;第二通信模组被配置为:从无人机处理器接收无人机飞行状态数据,并将无人机飞行状态数据通过第二通信网络发送至服务器的第二通信端口;无人机心跳数据包的接收情况被服务器用来判断是利用第一通信端口还是第二通信端口接收到的无人机飞行状态数据进行无人机调度。
在一些实施例中,第一通信模组被配置为:通过第一通信网络从服务器的第一通信端口接收服务器心跳数据包以及无人机指令数据,并将服务器心跳数据包以及无人机指令数据发送至无人机处理器;第二通信模组被配置为:通过第二通信网络从服务器的第二通信端口接收无人机指令数据,并将无人机指令数据发送至无人机处理器;无人机处理器被配置为:根据服务器心跳数据包的接收情况,判断是利用第一通信模组还是第二通信模组接收到的无人机指令数据进行数据处理。
在一些实施例中,第一通信网络以及第二通信网络分别具有线路阻塞标志位以及线路中断标志位,线路阻塞标志位用于标识通信网络的使用状态,线路中断标志位用于标识通信网络的中断状态;无人机处理器被配置为:在连续第一预设次数没有接收到服务器心跳数据包的情况下,如果第二通信网络的线路阻塞标志位标识第二通信网络未使用,且第二通信网络的线路中断标识位标识第二通信网络未中断,则将第一通信网络的线路阻塞标志位修改为未使用,将第一通信网络的线路中断标志位修改为中断,将第二通信网络的线路阻塞标志位修改为使用中,并利用第二通信模组接收到的 无人机指令数据进行数据处理;在连续第二预设次数恢复接收到服务器心跳数据包的情况下,如果第一通信网络的线路阻塞标志位标识第一通信网络未使用,则将第一通信网络的线路中断标志位修改为使用中,将第二通信网络的线路阻塞标志位修改为未使用,并利用第一通信模组接收到的无人机指令数据进行数据处理。
根据本公开实施例的另一个方面,提供了一种无人机服务器的通信系统,包括:第一通信端口;第二通信端口;以及服务器处理器;其中,服务器处理器分别与第一通信端口、第二通信端口电连接;服务器处理器被配置为:通过第一通信端口以及第一通信网络收发心跳数据包以及通信数据,以便与无人机的通信系统的第一通信模组进行通信;通过第二通信端口以及第二通信网络收发通信数据,以便与无人机的通信系统的第二通信模组进行通信;心跳数据包的接收情况被用来判断是采用第一通信网络还是第二通信网络接收到的通信数据。
在一些实施例中,服务器处理器与无人机调度平台电连接;第一通信端口被配置为:通过第一通信网络从无人机的第一通信模组接收无人机心跳数据包以及无人机飞行状态数据,并将无人机心跳数据包以及无人机飞行状态数据发送至服务器处理器;第二通信端口被配置为:通过第二通信网络从无人机的第二通信模组接收无人机飞行状态数据,并将无人机飞行状态数据发送至服务器处理器;服务器处理器被配置为:根据无人机心跳数据包的接收情况,判断是利用第一通信端口还是第二通信端口接收到的无人机飞行状态数据进行无人机调度。
在一些实施例中,服务器处理器被配置为:从无人机调度平台接收服务器心跳数据包以及无人机指令数据;将服务器心跳数据包以及无人机指令数据发送至第一通信端口,并将无人机指令数据发送至第二通信端口;第一通信端口被配置为:从服务器处理器接收服务器心跳数据包以及无人机指令数据,并通过第一通信网络将服务器心跳数据包以及无人机指令数据发送至无人机的第一通信模组;第二通信端口还被配置为:从服务器处理器接收无人机指令数据,并通过第二通信网络将无人机指令数据发送至无人机的第二通信模组;服务器心跳数据包的接收情况被无人机的通信系统用来判断是利用第一通信模组还是第二通信模组接收到的无人机指令数据进行数据处理。
在一些实施例中,第一通信网络以及第二通信网络分别具有线路阻塞标志位以及线路中断标志位,线路阻塞标志位用于标识通信网络的使用状态,线路中断标志位用于标识通信网络的中断状态;服务器处理器被配置为:在连续第一预设次数没有接收到服务器心跳数据包的情况下,如果第二通信网络的线路阻塞标志位标识第二通信网 络未使用,且第二通信网络的线路中断标识位标识第二通信网络未中断,则将第一通信网络的线路阻塞标志位修改为未使用,将第一通信网络的线路中断标志位修改为中断,将第二通信网络的线路阻塞标志位修改为使用中,并利用第一通信端口接收到的无人机飞行状态数据进行无人机调度;在连续第二预设次数恢复接收到服务器心跳数据包的情况下,如果第一通信网络的线路阻塞标志位标识第一通信网络未使用,则将第一通信网络的线路中断标志位修改为使用中,将第二通信网络的线路阻塞标志位修改为未使用,并利用第二通信端口接收到的无人机飞行状态数据进行无人机调度。
根据本公开实施例的又一个方面,提供了一种通信系统,包括前述的无人机通信系统以及前述的无人机服务器的通信系统。
根据本公开实施例的另一个方面,提供了一种无人机的通信方法,包括:无人机处理器通过第一通信模组以及第一通信网络收发心跳数据包以及通信数据,以便与服务器的第一通信端口进行通信;无人机处理器通过第二通信模组以及第二通信网络收发通信数据,以便与服务器的第二通信端口进行通信;心跳数据包的接收情况被用来判断是采用第一通信网络还是第二通信网络接收到的通信数据。
在一些实施例中,无人机处理器从飞行控制系统接收无人机心跳数据包以及无人机飞行状态数据;无人机处理器将无人机心跳数据包以及无人机飞行状态数据发送至第一通信模组,并将无人机飞行状态数据发送至第二通信模组;第一通信模组从处理器接收无人机心跳数据包以及无人机飞行状态数据,并将无人机心跳数据包以及无人机飞行状态数据通过第一通信网络发送至服务器的第一通信端口;第二通信模组从处理器接收无人机飞行状态数据,并将无人机飞行状态数据通过第二通信网络发送至服务器的第二通信端口;无人机心跳数据包的接收情况被服务器用来判断是利用第一通信端口还是第二通信端口接收到的无人机飞行状态数据进行无人机调度。
在一些实施例中,第一通信模组通过第一通信网络从服务器的第一通信端口接收服务器心跳数据包以及无人机指令数据,并将服务器心跳数据包以及无人机指令数据发送至处理器;第二通信模组通过第二通信网络从服务器的第二通信端口接收无人机指令数据,并将无人机指令数据发送至处理器;无人机处理器根据服务器心跳数据包的接收情况,判断是利用第一通信模组还是第二通信模组接收到的无人机指令数据进行数据处理。
在一些实施例中,第一通信网络以及第二通信网络分别具有线路阻塞标志位以及线路中断标志位,线路阻塞标志位用于标识通信网络的使用状态,线路中断标志位用 于标识通信网络的中断状态;在连续第一预设次数没有接收到服务器心跳数据包的情况下,如果第二通信网络的线路阻塞标志位标识第二通信网络未使用,且第二通信网络的线路中断标识位标识第二通信网络未中断,则无人机处理器将第一通信网络的线路阻塞标志位修改为未使用,将第一通信网络的线路中断标志位修改为中断,将第二通信网络的线路阻塞标志位修改为使用中,并利用第二通信模组接收到的无人机指令数据进行数据处理;在连续第二预设次数恢复接收到服务器心跳数据包的情况下,如果第一通信网络的线路阻塞标志位标识第一通信网络未使用,则无人机处理器将第一通信网络的线路中断标志位修改为使用中,将第二通信网络的线路阻塞标志位修改为未使用,并利用第一通信模组接收到的无人机指令数据进行数据处理。
根据本公开实施例的又一个方面,提供了一种无人机服务器的通信方法,包括:服务器处理器通过第一通信端口以及第一通信网络收发心跳数据包以及通信数据,以便与无人机的通信系统的第一通信模组进行通信;服务器处理器通过第二通信端口以及第二通信网络收发通信数据,以便与无人机的通信系统的第二通信模组进行通信;心跳数据包的接收情况被用来判断是采用第一通信网络还是第二通信网络接收到的通信数据。
在一些实施例中,第一通信端口通过第一通信网络从无人机的第一通信模组接收无人机心跳数据包以及无人机飞行状态数据,并将无人机心跳数据包以及无人机飞行状态数据发送至服务器处理器;第二通信端口通过第二通信网络从无人机的第二通信模组接收无人机飞行状态数据,并将无人机飞行状态数据发送至服务器处理器;服务器处理器根据无人机心跳数据包的接收情况,判断是利用第一通信端口还是第二通信端口接收到的无人机飞行状态数据进行无人机调度。
在一些实施例中,服务器处理器从无人机调度平台接收服务器心跳数据包以及无人机指令数据;将服务器心跳数据包以及无人机指令数据发送至第一通信端口,并将无人机指令数据发送至第二通信端口;第一通信端口从服务器处理器接收服务器心跳数据包以及无人机指令数据,并通过第一通信网络将服务器心跳数据包以及无人机指令数据发送至无人机的第一通信模组;第二通信端口从服务器处理器接收无人机指令数据,并通过第二通信网络将无人机指令数据发送至无人机的第二通信模组;服务器心跳数据包的接收情况被无人机用来判断是利用第一通信模组还是第二通信模组接收到的无人机指令数据进行数据处理。
在一些实施例中,第一通信网络以及第二通信网络分别具有线路阻塞标志位以及 线路中断标志位,线路阻塞标志位用于标识通信网络的使用状态,线路中断标志位用于标识通信网络的中断状态;在连续第一预设次数没有接收到服务器心跳数据包的情况下,如果第二通信网络的线路阻塞标志位标识第二通信网络未使用,且第二通信网络的线路中断标识位标识第二通信网络未中断,则服务器处理器将第一通信网络的线路阻塞标志位修改为未使用,将第一通信网络的线路中断标志位修改为中断,将第二通信网络的线路阻塞标志位修改为使用中,并利用第一通信端口接收到的无人机飞行状态数据进行无人机调度;在连续第二预设次数恢复接收到服务器心跳数据包的情况下,如果第一通信网络的线路阻塞标志位标识第一通信网络未使用,则服务器处理器将第一通信网络的线路中断标志位修改为使用中,将第二通信网络的线路阻塞标志位修改为未使用,并利用第二通信端口接收到的无人机飞行状态数据进行无人机调度。
根据本公开实施例的再一个方面,提供了一种无人机的通信装置,包括:存储器;以及耦接至存储器的处理器,处理器被被配置为基于存储在存储器中的指令,执行前述的无人机的通信方法,或执行前述的无人机服务器的通信方法。
根据本公开实施例的再一个方面,提供了一种计算机可读存储介质,其中,计算机可读存储介质存储有计算机指令,指令被处理器执行时实现前述的无人机的通信方法,或实现前述的无人机服务器的通信方法。
本公开中,发明人设计了双通信链路的方案,通过增设备份模块建立双链路机制,在当前通信链路信号中断的情况下利用备份链路传输数据,使得物流无人机与地面站之间传输的数据保持连续性和稳定性,从而在控制成本的条件下降低了物流无人机在固定区域断网的概率,增加物流无人机的通信可靠性。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出本公开通信系统的一些实施例的结构示意图。
图2示出无人机通过通信系统向无人机调度平台发送数据的工作过程。
图3示出服务器处理器的线路决策流程示意图。
图4示出无人机调度平台通过通信系统向无人机发送数据的工作过程。
图5示出了本公开无人机的通信装置的一些实施例的结构图。
图6示出了本公开无人机的通信装置的另一些实施例的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
发明人对物流无人机的工作场景进行了分析。物流无人机一般工作在农村场景,农村的基站分布稀疏且覆盖区域不均匀,天线布局的合理性较低,甚至可能存在信号盲区的情况,因此导致物流无人机的信号接收效率较低。如果物流无人机进入信号盲区或者信号极弱的区域,断网概率就会大幅增加,从而与地面失连。如果尝试改变巡航线路区域信号分布,与运营商合作,通过在基站上安装覆盖高空的天线设备,增大巡航区域信号强度及范围,可以减小物流无人机断网的概率,但成本较高。
对于无人机来讲,飞行控制系统是核心控制装置,其功能是完成对无人机的实时控制。当物流无人机与地面站采用3G或4G无线网络的方式进行通信时,如果飞行控制系统与地面站之间采用单通信链路的通信传输模式实时交换数据,一旦通信链路出现信号中断,将导致无人机和地面站失去联络,从而使地面站上的显示器无法及时跟踪到无人机的轨迹,增加了风险。
基于以上分析,发明人设计了双通信链路的设计方案,充分利用巡航区域基站, 同时采用不同运营商的天线,通过增设备份模块,建立双链路机制,在当前通信链路信号中断的情况下利用备份链路传输数据,使得物流无人机与地面站之间传输的数据保持连续性和稳定性,从而在控制成本的条件下降低了物流无人机在固定区域断网的概率,增加物流无人机的通信可靠性。
下面结合图1描述本公开提供的通信系统的一些实施例。
图1示出本公开通信系统的一些实施例的结构示意图。如图1所示,该实施例的通信系统10包括无人机通信系统102以及无人机服务器的通信系统104。
无人机通信系统102包括无人机处理器1022、第一通信模组1024以及第二通信模组1026;其中,无人机处理器1022分别通过串行接口与第一通信模组1024、第二通信模组1026以及飞行控制系统电连接,无人机处理器1022可以采用ARM芯片。无人机服务器的通信系统104包括第一通信端口1042、第二通信端口1044以及服务器处理器1046;其中,服务器处理器1046分别与第一通信端口1042、第二通信端口1044以及无人机调度平台电连接。
通信系统10的作用是实现飞行控制系统与无人机调度平台之间的数据通信。下面从两个方面介绍通信系统10的工作过程。
图2示出无人机通过通信系统10向无人机调度平台发送数据的工作过程,该过程包括步骤S201~S207。
在步骤S201中,处理器1022从飞行控制系统接收无人机心跳数据包以及无人机飞行状态数据。
无人机心跳数据包的接收情况被服务器用来判断是利用第一通信端口还是第二通信端口接收到的无人机飞行状态数据进行无人机调度。
在步骤S202中,处理器1022将无人机心跳数据包以及无人机飞行状态数据发送至第一通信模组1024,并将无人机飞行状态数据发送至第二通信模组1026。
例如,心跳数据包在心跳数据帧中进行发送,无人机飞行状态数据在飞行状态数据帧中进行发送,心跳数据帧与飞行状态数据帧之间相互隔开,且心跳数据帧的频率小于飞行状态数据帧的频率。
在步骤S203中,第一通信模组1024从处理器1022接收无人机心跳数据包以及无人机飞行状态数据,并将无人机心跳数据包以及无人机飞行状态数据通过第一通信网络发送至第一通信端口1042。
例如,第一通信模组1024可以将无人机心跳数据包以及无人机飞行状态数据打 包为TCP数据包后,通过第一通信网络发送至第一通信端口1042。
在步骤S204中,第二通信模组1025从处理器1022接收无人机飞行状态数据,并将无人机飞行状态数据通过第二通信网络发送至第二通信端口1044。
本领域技术人员应理解,通信模组可以采用全网通方式,灵活根据某区域运营商基站分布,指定区域信号覆盖较好的运营商网络作为备份。
步骤S205,第一通信端口1042通过第一通信网络从第一通信模组1024接收无人机心跳数据包以及无人机飞行状态数据,并将无人机心跳数据包以及无人机飞行状态数据发送至服务器处理器1046。
在步骤S206中,第二通信端口1044通过第二通信网络从第二通信模组1026接收无人机飞行状态数据,并将无人机飞行状态数据发送至服务器处理器1046。
在步骤S207中,服务器处理器1046根据服务器心跳数据包的接收情况,判断是利用第一通信端口1042还是第二通信端口1046接收到的无人机飞行状态数据进行无人机调度。
无人机飞行状态数据包括无人机的位置数据、姿态数据等相关运行参数。下面结合图3描述服务器处理器1046判断是利用第一通信端口还是第二通信端口接收到的无人机飞行状态数据进行无人机调度的详细过程。
第一通信网络以及第二通信网络分别具有线路阻塞标志位以及线路中断标志位,线路阻塞标志位用于标识通信网络的使用状态,线路中断标志位用于标识通信网络的中断状态。
在连续第一预设次数没有接收到服务器心跳数据包的情况下,如果第二通信网络的线路阻塞标志位标识第二通信网络未使用,且第二通信网络的线路中断标识位标识第二通信网络未中断,则将第一通信网络的线路阻塞标志位修改为未使用,将第一通信网络的线路中断标志位修改为中断,将第二通信网络的线路阻塞标志位修改为使用中,并利用第二通信模组接收到的无人机指令数据进行数据处理;在连续第二预设次数恢复接收到服务器心跳数据包的情况下,如果第一通信网络的线路阻塞标志位标识第一通信网络未使用,则将第一通信网络的线路中断标志位修改为使用中,将第二通信网络的线路阻塞标志位修改为未使用,并利用第一通信模组接收到的无人机指令数据进行数据处理。
在连续第一预设次数没有接收到服务器心跳数据包的情况下,如果第二通信网络的线路阻塞标志位标识第二通信网络未使用,且第二通信网络的线路中断标识位标识 第二通信网络未中断,则将第一通信网络的线路阻塞标志位修改为未使用,将第一通信网络的线路中断标志位修改为中断,将第二通信网络的线路阻塞标志位修改为使用中,并利用第一通信端口接收到的无人机飞行状态数据进行无人机调度;在连续第二预设次数恢复接收到服务器心跳数据包的情况下,如果第一通信网络的线路阻塞标志位标识第一通信网络未使用,则将第一通信网络的线路中断标志位修改为使用中,将第二通信网络的线路阻塞标志位修改为未使用,并利用第二通信端口接收到的无人机飞行状态数据进行无人机调度。
图3示出服务器处理器1046的线路决策流程示意图。如图3所示,每个通信链路的线程有两个标志位:线路阻塞标志位以及线路中断标志位。其中,线路阻塞标志位表示通信链路的使用状态:flag=0表示通信链路畅通正在使用;flag=1表示线路阻塞未使用。线路中断标志位表示通信链路实际的中断状态:abort=0表示通信链路状态未中断,abort=1表示通信链路中断状态。正常情况下,第一通信链路状态为flag1=0,abort1=0,表示第一通信链路正在使用没有阻塞,同时第一通信链路信号正常没有中断。第二通信链路状态为flag2=1,abort2=0,表示第二通信链路没有使用,阻塞状态,通信信号正常没有中断。当第一通信链路连续3次没有收到飞行控制系统的心跳数据包后,认为第一通信链路阻塞,同时发送中断标志给第二通信链路,启用第二通信链路,此时第二通信链路状态位flag2=0,abort2=0。当第一通信链路连续20次收到心跳后,认为第一通信链路恢复正常,则第一通信链路发送abort1=0标志位,通知第二通信链路第一通信链路通畅,采用第一通信链路的通信数据,此时第二通信链路阻塞但不中断,状态为flag2=1,abort2=0。
传统技术中采用的单通信链路出现掉线后,需要解除原有通信连接、释放相应的数据存储空间、重新捕捉信号等工作,因此申请重连所需时间较长。如果采用双路单通的设计,即一个通信链路故障另一个通信链路才开始连通,时间间隔约30s左右,如果在实际应用中要30秒左右。由于调度平台需要同时对数量较多的无人机进行调度,如果每个无人机都间歇性出现30秒左右的失连情况,对于调度平台的调度工作将产生重大的负面影响。因此,上述实施例采用双路双通的工作方式,即同一个数据复制两份同时传送,当一个通信链路故障时立即切换通信链路,切换时间可控制在3秒~5秒,保证了无人机在飞行过程中数据传输的连续性和稳定性,从而保持地面站与无人机之间同步通以及即时飞行控制的功能。
图4示出无人机调度平台通过通信系统10向无人机发送数据的工作过程,该过 程包括步骤S401~S407。
在步骤S401中,服务器处理器1046从无人机调度平台接收服务器心跳数据包以及无人机指令数据。
服务器心跳数据包的接收情况,被无人机处理器用来判断是利用第一通信模组还是第二通信模组接收到的无人机指令数据进行数据处理。
在步骤S402中,服务器处理器1046将服务器心跳数据包以及无人机指令数据发送至第一通信端口1042,并将无人机指令数据发送至第二通信端口1044。
例如,心跳数据包在心跳数据帧中进行发送,无人机指令数据在无人机指令数据帧中进行发送,心跳数据帧与无人机指令数据帧之间相互隔开,且心跳数据帧的频率小于无人机指令数据的频率。
在步骤S403中,第一通信端口1042从服务器处理器1046接收服务器心跳数据包以及无人机指令数据,并通过第一通信网络将服务器心跳数据包以及无人机指令数据发送至无人机的第一通信模组1024。
在步骤S404中,第二通信端口1044从服务器处理器1046接收无人机指令数据,并通过第二通信网络将无人机指令数据发送至无人机的第二通信模组1026。
在步骤S405中,第一通信模组1024通过第一通信网络从第一通信端口1042接收服务器心跳数据包以及无人机指令数据,并将服务器心跳数据包以及无人机指令数据发送至处理器1022。
在步骤S406中,第二通信模组1026通过第二通信网络从第二通信端口1044接收无人机指令数据,并将无人机指令数据发送至处理器1022。
在步骤S407中,无人机处理器1022根据服务器心跳数据包的接收情况,判断是利用第一通信模组1024还是第二通信模组1026接收到的无人机指令数据进行数据处理。
无人机指令数据具体可以包括无人机航迹数据以及无人机请求指令。无人机通过服务器心跳数据包的接收情况来判断是利用第一通信模组1024还是第二通信模组1026接收到的无人机指令数据进行数据处理的过程,与图2示出的过程相类似,具体步骤不作赘述。
举例来说,假设某区域存在A、B、C三大运营商基站,设单独采用联通基站断网概率为P(A),移动基站断网概率为P(B),电信基站断网概率为P(C),且A,B,C为相互独立事件。同时采用A、B基站,断网概率P(AB)=P(A)·P(B)。 若设P(A)=0.1,P(B)=0.1,则P(AB)=0.1×0.1=0.01,断网概率会降低一个数量级。
此外,上述实施例在增加物流无人机的通信可靠性的同时,可以在一定程度上控制成本。相对于单通信链路,上述实施例的硬件成本仅需要增加一个通信模组和1个sim卡芯片。在通信过程中,用于传输数据的运营流量费用较少。
图5示出了本公开无人机的通信装置的一些实施例的结构图。如图5所示,该实施例的无人机的通信装置50包括:存储器510以及耦接至该存储器510的处理器520,处理器520被被配置为基于存储在存储器510中的指令,执行前述任意一些实施例中的无人机的通信方法,或执行前述任意一些实施例中的无人机服务器的通信方法。
其中,存储器510例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。
图6示出了本公开无人机的通信装置的另一些实施例的结构图。如图6所示,该实施例的无人机的通信装置60包括:存储器510以及处理器520,还可以包括输入输出接口630、网络接口640、存储接口650等。这些接口630,640,650以及存储器510和处理器520之间例如可以通过总线650连接。其中,输入输出接口630为显示器、鼠标、键盘、触摸屏等输入输出设备提供连接接口。网络接口640为各种联网设备提供连接接口。存储接口650为SD卡、U盘等外置存储设备提供连接接口。
本公开还包括一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行前述任意一些实施例中的无人机的通信方法,或执行前述任意一些实施例中的无人机服务器的通信方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处 理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (19)

  1. 一种无人机的通信系统,包括:
    无人机处理器;
    第一通信模组;以及
    第二通信模组;
    其中,所述无人机处理器分别与所述第一通信模组以及所述第二通信模组电连接;
    所述无人机处理器被配置为:通过第一通信模组以及第一通信网络收发心跳数据包以及通信数据,以便与服务器的第一通信端口进行通信;通过第二通信模组以及第二通信网络收发通信数据,以便与服务器的第二通信端口进行通信;所述心跳数据包的接收情况被用来判断是采用第一通信网络还是第二通信网络接收到的通信数据。
  2. 如权利要求1所述的无人机通信系统,其中,所述无人机处理器与飞行控制系统电连接;
    所述无人机处理器被配置为:从飞行控制系统接收无人机心跳数据包以及无人机飞行状态数据;将无人机心跳数据包以及无人机飞行状态数据发送至所述第一通信模组,并将无人机飞行状态数据发送至所述第二通信模组;
    所述第一通信模组被配置为:从所述无人机处理器接收无人机心跳数据包以及无人机飞行状态数据,并将无人机心跳数据包以及无人机飞行状态数据通过第一通信网络发送至服务器的第一通信端口;
    所述第二通信模组被配置为:从所述无人机处理器接收无人机飞行状态数据,并将无人机飞行状态数据通过第二通信网络发送至服务器的第二通信端口;
    所述无人机心跳数据包的接收情况被所述服务器用来判断是利用第一通信端口还是第二通信端口接收到的无人机飞行状态数据进行无人机调度。
  3. 如权利要求1所述的无人机通信系统,其中,
    所述第一通信模组被配置为:通过第一通信网络从服务器的第一通信端口接收服务器心跳数据包以及无人机指令数据,并将服务器心跳数据包以及无人机指令数据发送至所述无人机处理器;
    所述第二通信模组被配置为:通过第二通信网络从服务器的第二通信端口接收无人机指令数据,并将无人机指令数据发送至所述无人机处理器;
    所述无人机处理器被配置为:根据所述服务器心跳数据包的接收情况,判断是利用第一通信模组还是第二通信模组接收到的无人机指令数据进行数据处理。
  4. 如权利要求3所述的无人机通信系统,其中,所述第一通信网络以及所述第二通信网络分别具有线路阻塞标志位以及线路中断标志位,所述线路阻塞标志位用于标识通信网络的使用状态,所述线路中断标志位用于标识通信网络的中断状态;
    所述无人机处理器被配置为:
    在连续第一预设次数没有接收到所述服务器心跳数据包的情况下,如果第二通信网络的线路阻塞标志位标识第二通信网络未使用,且第二通信网络的线路中断标识位标识第二通信网络未中断,则将第一通信网络的线路阻塞标志位修改为未使用,将第一通信网络的线路中断标志位修改为中断,将第二通信网络的线路阻塞标志位修改为使用中,并利用第二通信模组接收到的无人机指令数据进行数据处理;
    在连续第二预设次数恢复接收到所述服务器心跳数据包的情况下,如果第一通信网络的线路阻塞标志位标识第一通信网络未使用,则将第一通信网络的线路中断标志位修改为使用中,将第二通信网络的线路阻塞标志位修改为未使用,并利用第一通信模组接收到的无人机指令数据进行数据处理。
  5. 一种无人机服务器的通信系统,包括:
    第一通信端口;
    第二通信端口;以及
    服务器处理器;
    其中,所述服务器处理器分别与所述第一通信端口、所述第二通信端口电连接;
    所述服务器处理器被配置为:通过第一通信端口以及第一通信网络收发心跳数据包以及通信数据,以便与无人机的通信系统的第一通信模组进行通信;通过第二通信端口以及第二通信网络收发通信数据,以便与无人机的通信系统的第二通信模组进行通信;所述心跳数据包的接收情况被用来判断是采用第一通信网络还是第二通信网络接收到的通信数据。
  6. 如权利要求5所述的无人机服务器的通信系统,其中,所述服务器处理器与无人机调度平台电连接;
    所述第一通信端口被配置为:通过第一通信网络从无人机的第一通信模组接收无人机心跳数据包以及无人机飞行状态数据,并将无人机心跳数据包以及无人机飞行状态数据发送至服务器处理器;
    所述第二通信端口被配置为:通过第二通信网络从无人机的第二通信模组接收无人机飞行状态数据,并将无人机飞行状态数据发送至服务器处理器;
    所述服务器处理器被配置为:根据所述无人机心跳数据包的接收情况,判断是利用第一通信端口还是第二通信端口接收到的无人机飞行状态数据进行无人机调度。
  7. 如权利要求5所述的无人机服务器的通信系统,其中,
    所述服务器处理器被配置为:从无人机调度平台接收服务器心跳数据包以及无人机指令数据;将服务器心跳数据包以及无人机指令数据发送至第一通信端口,并将无人机指令数据发送至第二通信端口;
    所述第一通信端口被配置为:从所述服务器处理器接收服务器心跳数据包以及无人机指令数据,并通过第一通信网络将服务器心跳数据包以及无人机指令数据发送至无人机的第一通信模组;
    所述第二通信端口还被配置为:从所述服务器处理器接收无人机指令数据,并通过第二通信网络将无人机指令数据发送至无人机的第二通信模组;
    所述服务器心跳数据包的接收情况被所述无人机的通信系统用来判断是利用第一通信模组还是第二通信模组接收到的无人机指令数据进行数据处理。
  8. 如权利要求6所述的无人机服务器的通信系统,其中,所述第一通信网络以及所述第二通信网络分别具有线路阻塞标志位以及线路中断标志位,所述线路阻塞标志位用于标识通信网络的使用状态,所述线路中断标志位用于标识通信网络的中断状态;
    所述服务器处理器被配置为:
    在连续第一预设次数没有接收到所述服务器心跳数据包的情况下,如果第二通信网络的线路阻塞标志位标识第二通信网络未使用,且第二通信网络的线路中断标识位标识第二通信网络未中断,则将第一通信网络的线路阻塞标志位修改为未使用,将第一通信网络的线路中断标志位修改为中断,将第二通信网络的线路阻塞标志位修改为使用中,并利用第一通信端口接收到的无人机飞行状态数据进行无人机调度;
    在连续第二预设次数恢复接收到所述服务器心跳数据包的情况下,如果第一通信网络的线路阻塞标志位标识第一通信网络未使用,则将第一通信网络的线路中断标志位修改为使用中,将第二通信网络的线路阻塞标志位修改为未使用,并利用第二通信端口接收到的无人机飞行状态数据进行无人机调度。
  9. 一种通信系统,包括如权利要求1至4中任一项所述的无人机通信系统以及如 权利要求5至8中任一项所述的无人机服务器的通信系统。
  10. 一种无人机的通信方法,包括:
    无人机处理器通过第一通信模组以及第一通信网络收发心跳数据包以及通信数据,以便与服务器的第一通信端口进行通信;
    无人机处理器通过第二通信模组以及第二通信网络收发通信数据,以便与服务器的第二通信端口进行通信;
    所述心跳数据包的接收情况被用来判断是采用第一通信网络还是第二通信网络接收到的通信数据。
  11. 如权利要求10所述的通信方法,其中,
    无人机处理器从飞行控制系统接收无人机心跳数据包以及无人机飞行状态数据;
    无人机处理器将无人机心跳数据包以及无人机飞行状态数据发送至所述第一通信模组,并将无人机飞行状态数据发送至所述第二通信模组;
    第一通信模组从所述处理器接收无人机心跳数据包以及无人机飞行状态数据,并将无人机心跳数据包以及无人机飞行状态数据通过第一通信网络发送至服务器的第一通信端口;第二通信模组从所述处理器接收无人机飞行状态数据,并将无人机飞行状态数据通过第二通信网络发送至服务器的第二通信端口;
    所述无人机心跳数据包的接收情况被所述服务器用来判断是利用第一通信端口还是第二通信端口接收到的无人机飞行状态数据进行无人机调度。
  12. 如权利要求10所述的通信方法,其中,
    第一通信模组通过第一通信网络从服务器的第一通信端口接收服务器心跳数据包以及无人机指令数据,并将服务器心跳数据包以及无人机指令数据发送至所述处理器;
    第二通信模组通过第二通信网络从服务器的第二通信端口接收无人机指令数据,并将无人机指令数据发送至所述处理器;
    无人机处理器根据所述服务器心跳数据包的接收情况,判断是利用第一通信模组还是第二通信模组接收到的无人机指令数据进行数据处理。
  13. 如权利要求12所述的通信方法,其中,所述第一通信网络以及所述第二通信网络分别具有线路阻塞标志位以及线路中断标志位,所述线路阻塞标志位用于标识通信网络的使用状态,所述线路中断标志位用于标识通信网络的中断状态;
    在连续第一预设次数没有接收到所述服务器心跳数据包的情况下,如果第二通信 网络的线路阻塞标志位标识第二通信网络未使用,且第二通信网络的线路中断标识位标识第二通信网络未中断,则无人机处理器将第一通信网络的线路阻塞标志位修改为未使用,将第一通信网络的线路中断标志位修改为中断,将第二通信网络的线路阻塞标志位修改为使用中,并利用第二通信模组接收到的无人机指令数据进行数据处理;
    在连续第二预设次数恢复接收到所述服务器心跳数据包的情况下,如果第一通信网络的线路阻塞标志位标识第一通信网络未使用,则无人机处理器将第一通信网络的线路中断标志位修改为使用中,将第二通信网络的线路阻塞标志位修改为未使用,并利用第一通信模组接收到的无人机指令数据进行数据处理。
  14. 一种无人机服务器的通信方法,包括:
    服务器处理器通过第一通信端口以及第一通信网络收发心跳数据包以及通信数据,以便与无人机的通信系统的第一通信模组进行通信;
    服务器处理器通过第二通信端口以及第二通信网络收发通信数据,以便与无人机的通信系统的第二通信模组进行通信;
    所述心跳数据包的接收情况被用来判断是采用第一通信网络还是第二通信网络接收到的通信数据。
  15. 如权利要求14所述的通信方法,其中,
    第一通信端口通过第一通信网络从无人机的第一通信模组接收无人机心跳数据包以及无人机飞行状态数据,并将无人机心跳数据包以及无人机飞行状态数据发送至服务器处理器;
    第二通信端口通过第二通信网络从无人机的第二通信模组接收无人机飞行状态数据,并将无人机飞行状态数据发送至服务器处理器;
    服务器处理器根据所述无人机心跳数据包的接收情况,判断是利用第一通信端口还是第二通信端口接收到的无人机飞行状态数据进行无人机调度。
  16. 如权利要求14所述的通信方法,其中,
    服务器处理器从无人机调度平台接收服务器心跳数据包以及无人机指令数据;将服务器心跳数据包以及无人机指令数据发送至第一通信端口,并将无人机指令数据发送至第二通信端口;
    第一通信端口从所述服务器处理器接收服务器心跳数据包以及无人机指令数据,并通过第一通信网络将服务器心跳数据包以及无人机指令数据发送至无人机的第一通信模组;
    第二通信端口从所述服务器处理器接收无人机指令数据,并通过第二通信网络将无人机指令数据发送至无人机的第二通信模组;
    所述服务器心跳数据包的接收情况被所述无人机用来判断是利用第一通信模组还是第二通信模组接收到的无人机指令数据进行数据处理。
  17. 如权利要求14所述的通信方法,其中,所述第一通信网络以及所述第二通信网络分别具有线路阻塞标志位以及线路中断标志位,所述线路阻塞标志位用于标识通信网络的使用状态,所述线路中断标志位用于标识通信网络的中断状态;
    在连续第一预设次数没有接收到所述服务器心跳数据包的情况下,如果第二通信网络的线路阻塞标志位标识第二通信网络未使用,且第二通信网络的线路中断标识位标识第二通信网络未中断,则服务器处理器将第一通信网络的线路阻塞标志位修改为未使用,将第一通信网络的线路中断标志位修改为中断,将第二通信网络的线路阻塞标志位修改为使用中,并利用第一通信端口接收到的无人机飞行状态数据进行无人机调度;
    在连续第二预设次数恢复接收到所述服务器心跳数据包的情况下,如果第一通信网络的线路阻塞标志位标识第一通信网络未使用,则服务器处理器将第一通信网络的线路中断标志位修改为使用中,将第二通信网络的线路阻塞标志位修改为未使用,并利用第二通信端口接收到的无人机飞行状态数据进行无人机调度。
  18. 一种无人机的通信装置,其中,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被被配置为基于存储在所述存储器中的指令,执行如权利要求10至13中任一项所述的无人机的通信方法,或执行如权利要求14至17中任一项所述的无人机服务器的通信方法。
  19. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如权利要求10至13中任一项所述的无人机的通信方法,或实现如权利要求14至17中任一项所述的无人机服务器的通信方法。
PCT/CN2018/083964 2017-05-16 2018-04-20 无人机通信系统以及无人机服务器的通信系统 WO2018210101A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/500,030 US11429094B2 (en) 2017-05-16 2018-04-20 Drone communication system and communication system of drone server
RU2019137096A RU2752645C2 (ru) 2017-05-16 2018-04-20 Система связи беспилотных летательных аппаратов и система связи сервера беспилотных летательных аппаратов

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710342625.XA CN106998270B (zh) 2017-05-16 2017-05-16 无人机通信系统以及无人机服务器的通信系统
CN201710342625.X 2017-05-16

Publications (2)

Publication Number Publication Date
WO2018210101A1 true WO2018210101A1 (zh) 2018-11-22
WO2018210101A9 WO2018210101A9 (zh) 2019-08-29

Family

ID=59434488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083964 WO2018210101A1 (zh) 2017-05-16 2018-04-20 无人机通信系统以及无人机服务器的通信系统

Country Status (4)

Country Link
US (1) US11429094B2 (zh)
CN (1) CN106998270B (zh)
RU (1) RU2752645C2 (zh)
WO (1) WO2018210101A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106998270B (zh) 2017-05-16 2019-12-31 北京京东尚科信息技术有限公司 无人机通信系统以及无人机服务器的通信系统
SG10201704555VA (en) * 2017-06-05 2019-01-30 Arete M Pte Ltd Secure and encrypted heartbeat protocol
CN109861736B (zh) * 2017-11-30 2021-06-29 北京京东乾石科技有限公司 飞行器服务器群组以及飞行器通信方法、服务器和系统
CN108200167B (zh) * 2017-12-29 2021-07-30 南京奇蛙智能科技有限公司 一种基于云端的无人机远程多途径组合控制方法
CN108521466B (zh) * 2018-04-20 2021-04-06 广州亿航智能技术有限公司 无人机及其通信链路数据处理方法及计算机可读存储介质
CN108809405B (zh) * 2018-04-20 2023-02-14 广州亿航智能技术有限公司 用于无人机的通信方法、服务器、存储介质及计算机设备
WO2019204997A1 (zh) * 2018-04-24 2019-10-31 深圳市大疆创新科技有限公司 一种自主移动平台、控制端以及自主移动平台系统
CN110557263B (zh) * 2018-05-31 2021-08-03 华为技术有限公司 待机控制方法、系统、终端设备和中继设备
CN108965124A (zh) * 2018-07-31 2018-12-07 合肥职业技术学院 一种无人机控制系统
CN111386675B (zh) * 2018-11-30 2023-02-17 深圳市大疆创新科技有限公司 无人机、通信系统及其测试方法、装置及系统
US11757978B2 (en) * 2019-09-09 2023-09-12 Apple Inc. Multi-path connection management
US11582690B2 (en) * 2021-01-19 2023-02-14 Qualcomm Incorporated Cell selection, network selection, tracking area management, and paging for aerial operation
CN114460930B (zh) * 2021-12-22 2023-12-26 深圳市富斯科技有限公司 一种可移动端以及控制系统
CN114554250B (zh) * 2022-01-17 2023-06-27 北京理工大学重庆创新中心 一种无人机或无人车的视频和位置同步方法
CN114363937B (zh) * 2022-03-18 2022-05-31 安徽云翼航空技术有限公司 一种分布式无人机遥控遥测综合系统及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487534A (zh) * 2014-10-09 2016-04-13 深圳光启空间技术有限公司 用于飞行器的测控系统和方法
CN106656683A (zh) * 2017-02-27 2017-05-10 北京中船信息科技有限公司 一种无人机通信链路故障检测装置及方法
CN106998270A (zh) * 2017-05-16 2017-08-01 北京京东尚科信息技术有限公司 无人机通信系统以及无人机服务器的通信系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2390815C1 (ru) 2008-10-13 2010-05-27 ООО "Фирма "НИТА" Способ управления беспилотным летательным аппаратом и устройство для его реализации
US8515609B2 (en) * 2009-07-06 2013-08-20 Honeywell International Inc. Flight technical control management for an unmanned aerial vehicle
US8478455B2 (en) * 2010-04-01 2013-07-02 Raytheon Company Vehicle control station with back-up VSM for remotely controlling an unmanned vehicle, and method
CN102694713B (zh) * 2011-03-21 2015-08-05 鸿富锦精密工业(深圳)有限公司 网络通信多通路选择方法及系统
US9405005B1 (en) * 2012-04-24 2016-08-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Automatic dependent surveillance broadcast (ADS-B) system for ownership and traffic situational awareness
US9384668B2 (en) * 2012-05-09 2016-07-05 Singularity University Transportation using network of unmanned aerial vehicles
US9613536B1 (en) * 2013-09-26 2017-04-04 Rockwell Collins, Inc. Distributed flight management system
CN204316545U (zh) * 2015-01-13 2015-05-06 东莞极飞无人机科技有限公司 基于移动通信网络的无人机数据链路系统
CN107615822B (zh) * 2015-04-10 2021-05-28 深圳市大疆创新科技有限公司 向无人飞行器提供通信覆盖范围的方法、设备和系统
US9505494B1 (en) * 2015-04-30 2016-11-29 Allstate Insurance Company Enhanced unmanned aerial vehicles for damage inspection
US9836047B2 (en) * 2015-06-10 2017-12-05 Kespry, Inc. Aerial vehicle data communication system
CN204904034U (zh) * 2015-09-02 2015-12-23 杨珊珊 一种紧急医疗救助系统及其急救中心和急救无人机
CN105487543A (zh) * 2016-01-13 2016-04-13 浙江瓦力泰克智能机器人科技有限公司 移动机器人归位充电系统
CN106406189A (zh) * 2016-11-28 2017-02-15 中国农业大学 一种无人机植保作业的电子围栏监控方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487534A (zh) * 2014-10-09 2016-04-13 深圳光启空间技术有限公司 用于飞行器的测控系统和方法
CN106656683A (zh) * 2017-02-27 2017-05-10 北京中船信息科技有限公司 一种无人机通信链路故障检测装置及方法
CN106998270A (zh) * 2017-05-16 2017-08-01 北京京东尚科信息技术有限公司 无人机通信系统以及无人机服务器的通信系统

Also Published As

Publication number Publication date
CN106998270B (zh) 2019-12-31
RU2752645C2 (ru) 2021-07-29
US20200174466A1 (en) 2020-06-04
US11429094B2 (en) 2022-08-30
WO2018210101A9 (zh) 2019-08-29
RU2019137096A (ru) 2021-05-19
RU2019137096A3 (zh) 2021-05-19
CN106998270A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2018210101A1 (zh) 无人机通信系统以及无人机服务器的通信系统
CN105007115B (zh) 无人直升机中继数据链系统及其控制方法
CN106788677B (zh) 一种基于移动数据网络的无人机数据中继装置及其方法
CN104503456B (zh) 基于4g通信的无人机控制装置与方法
CN105867181A (zh) 无人机的控制方法和装置
CN204595221U (zh) 一种通用航空飞行器机载通信导航系统
CN107454945B (zh) 无人机的导航系统
CN108429576B (zh) 无人机通信方法、控制终端及无人机控制系统
US11077942B2 (en) Method and system for providing an aerial display
EP3654126B1 (en) Control channel allocation method, flight management server
WO2019080053A1 (zh) 一种控制方法、设备、无人机、充电基站及系统
CN103413465A (zh) 一种机载防撞与近地告警监视系统及监视方法
US20230174235A1 (en) Mobile device alternate network channels
CN113433975B (zh) 一种无人机起降无人机机场的方法及系统
WO2017185651A1 (zh) 一种无人机图像传输方式切换方法、装置及其无人机
CN111091333A (zh) 快递投放方法、装置及存储介质
EP3327529A1 (en) Control station for unmanned air vehicles and working procedure
CN107483169A (zh) 数据传输方法、系统及计算机可读存储介质
CN104820209B (zh) 一种民航用多点定位的询问发射机及其询问方法
WO2020133259A1 (zh) 通信控制方法及装置
CN218416377U (zh) 一种无人机组网通信系统
WO2019003990A1 (ja) 情報処理装置、プログラム、通信端末、及び通信システム
CN112803991B (zh) 靶场测控系统和方法
CN115047916A (zh) 一种无人机控制方法、机载终端、电子设备及存储介质
CN115214884A (zh) 远程识别信息的发送方法、装置、存储介质和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.3.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18802987

Country of ref document: EP

Kind code of ref document: A1