WO2019080053A1 - 一种控制方法、设备、无人机、充电基站及系统 - Google Patents

一种控制方法、设备、无人机、充电基站及系统

Info

Publication number
WO2019080053A1
WO2019080053A1 PCT/CN2017/107837 CN2017107837W WO2019080053A1 WO 2019080053 A1 WO2019080053 A1 WO 2019080053A1 CN 2017107837 W CN2017107837 W CN 2017107837W WO 2019080053 A1 WO2019080053 A1 WO 2019080053A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
drone
base station
location information
location
Prior art date
Application number
PCT/CN2017/107837
Other languages
English (en)
French (fr)
Inventor
周琦
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/107837 priority Critical patent/WO2019080053A1/zh
Priority to CN201780004746.1A priority patent/CN108473209B/zh
Publication of WO2019080053A1 publication Critical patent/WO2019080053A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • B64U50/38Charging when not in flight by wireless transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the technical field of drone control, in particular to a control method, device, drone, charging base station and system.
  • the mooring drone is a drone system that combines a drone and a charging cable. It can ensure long-term work by uninterrupted power supply of the charging cable, such as long-term security. monitor.
  • the mooring drone is connected to the ground power supply device via a charging tie line to charge the tethered drone in real time.
  • the mooring drone is generally connected to the ground power supply device through a charging cable. After the connection is completed, the mooring drone carries the charging cable to fly for a long time within a fixed range.
  • the embodiment of the invention provides a control method, a device, a drone, a charging base station and a system, which can realize the purpose of charging the drone in the air and charging the drone to achieve long-distance flight work.
  • an embodiment of the present invention provides a control method applied to a drone, the method comprising:
  • the search determines the target charging base station
  • the charging drone is equipped with the unmanned aerial vehicle of the target charging base station, and after the target charging base station sends a control command for carrying the charging location information, it flies to the location area indicated by the charging location information.
  • the charging drone is equipped with a charging tie provided by the target charging base station And charging the mooring line with the charging port of the drone to charge the drone.
  • an embodiment of the present invention provides another control method, which is applied to a charging drone, and the method includes:
  • the charging drone is equipped with a charging cable provided by the target charging base station, and the charging cable stays with the charging port of the drone to charge the drone.
  • the embodiment of the present invention provides another control method, which is applied to a charging base station, and the method includes:
  • the charging drone is equipped with a charging cable provided by the charging base station, and the charging cable is charged with the charging port of the drone to charge the drone.
  • an embodiment of the present invention provides a control device, including a memory and a processor;
  • the memory is configured to store program instructions
  • the processor calls a program instruction stored in the memory to perform the following steps:
  • the search determines the target charging base station
  • the charging drone is equipped with the unmanned aerial vehicle of the target charging base station, and after the target charging base station sends a control command for carrying the charging location information, it flies to the location area indicated by the charging location information.
  • the charging drone is equipped with a charging cable provided by the target charging base station, and the charging cable stays with the charging port of the drone to charge the drone.
  • an embodiment of the present invention provides another control device, including a memory and a processor;
  • the memory is configured to store program instructions
  • the processor calls a program instruction stored in the memory to perform the following steps:
  • the charging drone is equipped with a charging cable provided by the target charging base station, and the charging cable stays with the charging port of the drone to charge the drone.
  • the embodiment of the present invention provides another control device, including a memory and a processor;
  • the memory is configured to store program instructions
  • the processor calls a program instruction stored in the memory to perform the following steps:
  • the charging drone is equipped with a charging cable provided by the charging base station, and the charging cable is charged with the charging port of the charging drone to charge the drone.
  • an embodiment of the present invention provides a drone, including:
  • a power system disposed on the fuselage for providing flight power
  • an embodiment of the present invention provides a charging drone, including:
  • a power system disposed on the fuselage for providing flight power
  • a charging cable that is mounted on the body for charging the drone with the charging port of the drone;
  • a ninth aspect, an embodiment of the present invention provides a charging base station, including:
  • a charging cable attached to the charging base station for charging the charging drone with the drone The electrical port cooperates to charge the drone;
  • an embodiment of the present invention provides a drone air charging system, including: a drone to be charged, a charging drone, and a charging base station;
  • the UAV to be charged is configured to search for a target charging base station if the charging requirement of the UAV to be charged during flight is detected;
  • the charging drone for controlling the charging cable of the charging drone to be docked with the to-be-charged drone in the location area indicated by the charging location information, to the unmanned charging machine Charge
  • the charging base station is configured to send a control instruction carrying the charging location information to the to-be-charged drone to cause the to-be-charged drone to fly to the charging location information after receiving the control instruction a location area; instructing the charging drone to fly to a location area indicated by the charging location information; controlling a charging cable of the charging drone in a location area indicated by the charging location information and the to-be-charged
  • the human machine performs docking to charge the unmanned charging machine to be charged;
  • the UAV to be charged is further configured to acquire charging location information and fly to a location area indicated by the charging location information; and control a location area indicated by the charging location information by the to-be-charged drone
  • the charging cable line carried by the charging drone is docked to enable the target charging base station to charge the to-be-charged drone.
  • an embodiment of the present invention provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements any one of the foregoing first to third aspects.
  • the control method described in the item
  • the embodiment of the present invention can search for and determine the target charging base station when the drone detects the charging demand, and the target charging base station sends a control instruction for carrying the charging position information to the unmanned aerial vehicle and the charging drone equipped with the charging cable. So that the drone and the charging drone fly to the location area indicated by the charging location information, and control the charging port of the drone and the charging cable to cooperate to charge the drone. Therefore, the drone is connected to the charging drone in the air for charging, and the purpose of long-distance flight work is met, and the user's automation, intelligent charging and long-distance flight demand for the drone are satisfied.
  • FIG. 1 is a schematic structural diagram of a system for charging an airborne unit of an unmanned aerial vehicle according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of interaction between a drone and a charging base station according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a control method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of another control method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of still another control method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of still another control method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another control device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of still another control device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of still another control device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of still another control device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of still another control device according to an embodiment of the present invention.
  • the control method provided by the embodiment of the invention can be applied to an unmanned aerial charging system, which comprises a drone to be charged, a charging drone and a charging base station.
  • the control method can be applied to the air charging task of the drone. In other embodiments, it can also be applied to the charging task of the flying device such as an aircraft with charging requirements.
  • the following is an unmanned aerial charging system provided by the embodiment of the present invention. And a control method applied to the airborne charging system of the drone is exemplified.
  • FIG. 1 is a schematic structural diagram of an unmanned aerial vehicle charging system according to an embodiment of the present invention.
  • the system The utility model comprises: a charging unmanned aerial vehicle 11 , a charging unmanned aerial vehicle 12 , a charging base station 13 and a charging and tying line 14 , the charging unmanned aerial vehicle 11 includes a charging port, and the charging base station 13 can include a plurality of charging positions, so that The charging base station 13 can be connected to a plurality of charging drones 12, and the area of each charging base station 13 can include a plurality of aprons for the drone to be charged, and the charging base station 13 provides a charging cable line 14, the charging The mooring line 14 is mounted on the charging drone 12.
  • the to-be-charged drone 11 and the charging base station 13 can communicate via Software Defined Radio (SDR) communication, wherein the SDR communication is a radio broadcast communication technology based on a software-defined wireless communication protocol. Rather than being hardwired.
  • SDR Software Defined Radio
  • the to-be-charged drone 11 can also communicate with the charging base station 13 by establishing a communication connection with the cloud server.
  • the unmanned aerial vehicle 11 to be charged in the system establishes a communication connection with the charging base station 13 through SDR communication, and if the unmanned charging machine 11 detects that the power is insufficient (eg, less than a preset power threshold) Then, the target charging base station can be determined by searching from a plurality of charging base stations on the ground.
  • the target charging base station may send a control command carrying the charging position information to the to-be-charged drone 11 to enable the to-be-charged drone 11 to obtain the charging position information from the control command after receiving the control instruction. And flying to the location area indicated by the charging location information.
  • the target charging base station instructs the charging drone 12 to fly to the location area indicated by the charging location information, and controls the charging cable of the charging drone 12 to be in the location area indicated by the charging location information.
  • the charging port of the unmanned aerial vehicle 11 is docked to charge the unmanned aerial vehicle 11 to be charged, so that the drone can be charged in the air.
  • the UAV 11 to be charged in the system when the UAV 11 to be charged in the system establishes a communication connection with the charging base station 13, if the UAV 11 to be charged in the system detects that the signal strength of the SDR communication in the current environment is poor,
  • the to-be-charged drone 11 can establish a connection with the cloud server, and the charging base station 13 also establishes a communication connection with the cloud platform server, thereby implementing the to-be-charged drone 11 and the charging base station 13 through the cloud server as a relay station.
  • the communication connection between the unmanned unmanned aerial vehicle 11 and the charging base station 13 is realized by acquiring location information or control commands from the cloud server, etc., so as to establish the to-be-charged drone 11 when the communication signal is weak.
  • the communication connection with the charging base station 13 improves the efficiency of the communication connection, thereby avoiding the problem that the charging base station 13 cannot charge the charging drone 11 when the communication signal is weak.
  • the UAV air charging system provided by the embodiment of the present invention needs to realize the cooperation between the UAV to be charged, the charging base station and the charging UAV in the system, and the following is respectively for the UAV and the charging base station.
  • the interaction method embodiments are respectively described, and the control methods for the unmanned charging machine, the charging base station, and the charging drone are respectively described in detail.
  • FIG. 2 is a schematic flowchart of interaction between a drone and a charging base station according to an embodiment of the present invention.
  • the interaction method can be applied to the drone air charging system, and the specific explanation of the system is as described above.
  • the method implementation of the embodiment of the present invention includes the following steps.
  • the drone can fly in an unrestricted manner in the air, and the drone establishes a communication connection with the charging base station through the SDR communication method or through the cloud server, and if charging is detected during the flight, charging is required, A target charging base station is searched for from the charging base stations on the ground, and a charging request can be sent to the target charging base station.
  • the drone can detect whether the current power of the drone during the flight is less than a preset power threshold during the process of searching for the target charging base station from the charging base stations on the ground. If the detection result is yes, the at least one charging base station on the ground is searched for, and the target charging base station is determined from each charging base station. Specifically, it can be exemplified that, when the drone is flying in the air, it detects that its current power is less than 10% (preset power threshold), if the drone is searching for the ground charging base station and ten charging base stations in the ground. When a communication connection is established, the drone can search for the target charging base station from the ten charging base stations on the ground.
  • the drone may communicate with the at least one charging base station via software defined radio SDR communications during the search for at least one charging base station on the ground and confirm the location of each charging base station. If the drone detects that the SDR communication signal is weak during searching for at least one charging base station on the ground, and cannot establish SDR communication or cannot search for each charging base station through a weak signal SDR communication, the drone And the charging base station can establish a communication connection with the cloud server respectively, and each charging base station can send the respective location information to the cloud server, and the drone can obtain the location information of each charging base station from the cloud server.
  • the implementation manner can realize that when the communication signal is weak, the drone establishes a communication connection with the cloud server to obtain the location information of each charging base station, thereby avoiding the problem that the charging base station cannot be searched when the communication signal is weak. , improving the effectiveness of the search charging base station.
  • the charging base station sends a control instruction carrying the charging location information to the drone according to the obtained charging request.
  • the charging base station may receive the charging request sent by the drone, and after receiving the charging request, the charging base station may send a control instruction for carrying the charging location information to the drone.
  • the charging base station can communicate with the drone through software-defined radio SDR communication, and The machine sends a control command carrying the charging position information.
  • the charging base station can establish a communication connection with the cloud server through the 4th Generation mobile communication (4G) network, and pass the cloud.
  • the server sends a control command carrying the charging location information to the drone. It can be seen that the implementation manner can improve the reliability and effectiveness of establishing a communication connection between the charging base station and the drone.
  • S203 The drone flies to the location area indicated by the charging location information according to the received control command.
  • the drone can receive the control command carrying the charging location information sent by the target charging base station, and obtain the charging location information indicated by the target charging base station according to the control instruction, if the drone detects its own The current power content satisfies the power condition of the location area indicated by the charging location information carried by the drone to the control command, and may fly to the location area indicated by the charging location information according to the charging location information. For example, if the drone receives the control command carrying the charging location information sent by the target charging base station, the detected current power of the drone is 15%, and the drone flies to the charging location information carried by the control command. The power required in the location area is 10%. Therefore, the current power of the drone meets the power condition of the location area indicated by the drone to the charging location information carried by the control command, and may be based on the charging location information. Flying to the location area indicated by the charging location information.
  • the drone when receiving the control command sent by the target charging base station and carrying the charging location information, the drone can detect whether the current power of the drone meets the charging carried by the drone to the control command.
  • the power condition of the location area indicated by the location information if not satisfied, sending a new charging location request to the target charging base station, wherein the charging location request carries the location of the drone that can fly to the current power information.
  • the location information may be determined as the charging location information, and the charging location information carried according to the charging location request is flighted to the location area indicated by the charging location information. For example, it is assumed that the drone detects when receiving a control command from the target charging base station carrying the charging position information.
  • the current power of the drone is 10%, and the power required by the drone to the location area indicated by the charging location information carried by the control command is 12%. Therefore, the current power of the drone does not satisfy the drone.
  • the drone may send a new charging location request to the target charging base station, wherein the charging location request carries the drone.
  • the location information that can be flowed under the current power, if the drone receives the confirmation command returned by the target charging base station, the location information may be determined as the charging location information, and the charging location information carried according to the charging location request is flighted to The location area indicated by the charging location information. It can be seen that the implementation can negotiate the charging position between the UAV and the charging base station, and prevent the UAV from being unable to reach the location area indicated by the charging location information for charging, thereby enhancing the flexibility of determining the charging location information.
  • the charging base station instructs the charging drone provided by the charging base station to fly to the location area indicated by the charging location information.
  • the charging base station may instruct the charging drone provided by the charging base station to fly to the location area indicated by the charging location information.
  • the charging drone is provided by the charging base station, and the charging drone can be connected to the charging base station by mounting a charging cable, and the charging base station establishes an electrical connection with the charging cable.
  • the location information corresponding to the charging location request may be determined as charging location information, and the charging base station may instruct the charging drone to The charging location requests the location area indicated by the corresponding charging location information to fly.
  • the drone opens the docking controller, and controls the drone to dock with the charging cable line mounted on the charging drone in the location area indicated by the charging location information.
  • the drone can open the docking controller, and control the drone to interface with the charging cable line carried by the charging drone provided by the target charging base station in the location area indicated by the charging location information.
  • the drone can open the docking controller, and if it is detected that the drone and the charging drone reach the location area indicated by the charging location information, the docking controller of the drone can be turned on, The docking controller controls the drone to interface with the charging cable line carried by the charging drone in the location area indicated by the charging location information, wherein the controller is configured to control the charging port of the drone through magnetic attraction And mechanically engaged with the charging of the charging drone The tethered line is docked.
  • the drone will close the docking controller to prevent the magnetic attraction of the docking controller. Or mechanical snap capability affects the flight of the drone.
  • the docking controller of the drone is a docking controller with magnetic attraction capability. If it is detected that the drone and the charging drone reach the location area indicated by the charging location information, the The docking controller of the drone controls the charging port of the drone to be electrically coupled to the charging line of the charging drone by means of magnetic attraction in a position indicated by the charging position information. The docking is performed, and after the docking is successful, the docking controller is closed.
  • the charging base station charges the drone through a charging cable.
  • the charging base station when the charging base station detects that the charging cable provided by the charging base station is successfully connected to the charging port of the drone, the charging base station can charge the drone through the charging cable.
  • the unmanned aerial vehicle when detecting the charging demand of the unmanned unmanned aerial vehicle during flight, searches for and determines the target charging base station, and can receive the carrying of the target charging base station to the drone. And charging a control command of the position information, so that after receiving the control command, the drone flies to a location area indicated by the charging position information, instructing the charging drone to fly to the location area indicated by the charging position information,
  • the charging cable that controls the charging drone is docked with the to-be-charged drone in the location area indicated by the charging location information to charge the to-be-charged drone.
  • FIG. 3 is a schematic flowchart of a control method according to an embodiment of the present invention. The method is applied to a drone. Specifically, the method includes the following steps.
  • the unmanned aerial vehicle can fly in an unrestricted manner in the air. If the drone needs to charge if it detects insufficient power during the flight, the communication connection can be established with the charging base station through the SDR communication method or through the cloud server. And searching for a target charging base station from each charging base station on the ground, and sending a charging request to the target charging base station. Specifically, it can be exemplified that if the drone detects that its current power is less than 10% when flying in the air, charging is required. If the drone establishes a communication connection with ten charging base stations on the ground, the drone can The target charging base station is determined by searching from the ten charging base stations on the ground.
  • the drone can detect the distance (eg, altitude) between each charging base station on the ground and the drone, the drone The charging base station having the shortest detected distance can be determined as the target charging base station.
  • the drone can establish a communication connection with ten charging base stations on the ground, so that the drone The height distance between each of the ten charging base stations on the ground and the drone can be detected, and the drone can determine the charged base station with the shortest detected height distance as the target charging base station. It can be seen that this embodiment can determine the target charging base station by detecting the distance between the drone and the charging base station.
  • the drone may search for at least one charging base station on the ground to see whether there is an idle charging bit. If the determination result is yes, there will be idle.
  • the charging base station of the charging bit is determined to be the target charging base station.
  • the drone when the drone detects that its current power is less than 10% when flying in the air, and needs to be charged, the drone can establish a communication connection with ten charging base stations on the ground, so that the drone It is possible to search for whether there is an idle charging bit on each of the ten charging base stations on the ground, and if so, the drone can determine the charging base station having the idle charging bit as the target charging base station. It can be seen that this embodiment can select the target charging base station by detecting whether there is an idle charging bit in each charging base station.
  • the drone when the drone determines the target charging base station from each charging base station, the drone can search for the drone with the drone when detecting that the distance between the charging base station and the drone is the shortest. Whether the charging base station with the shortest distance has an idle charging bit. If it does not exist, it can detect whether the current power of the drone is enough to fly to other charging base stations if the current capacity of the drone is insufficient to fly to other charging base stations.
  • the drone can be controlled to fly to the charging base station that is the shortest distance from the drone and land on the tarmac of the charging base station. Specifically, it can be exemplified that if the drone detects that its current power is less than 10% when flying in the air, charging is required.
  • the drone can When detecting that the distance between a charging base station and the drone is the shortest, searching for the charging base station with the shortest distance between the charging base station and the idle charging station, if not, the current power of the drone can be detected. Is it enough to fly to other charging base stations? If the current power of the drone is 5%, the charging base station with the shortest distance but no charging position needs 4% of the power, and the power to fly to other charging base stations needs at least 8%. The current power of the drone is not enough to fly to other charging base stations, so the drone can be controlled to fly to the drone The shortest charging base station is located and landed on the tarmac of the charging base station.
  • the embodiment can control the unmanned aerial vehicle that is not enough to fly to the target charging base station to fly to the charging base station that is the shortest distance from the drone, and land on the tarmac of the charging base station, thereby avoiding the drone.
  • the crash caused by flying to the target charging base station ensures the safety of the drone.
  • S302 Acquire charging location information, and fly to the location area indicated by the charging location information.
  • the drone may acquire the charging location information sent by the target charging base station according to the control instruction of the charging location information sent by the target charging base station, and fly to the location area indicated by the charging location information.
  • the drone may detect whether the current power of the drone meets the location area indicated by the drone to the acquired control command, and if so, Then, the charging position information is acquired from the control command, and the position is indicated by the charging position information. If not, the base station can send a new charging location request to the target charging base station, wherein the charging location request carries the location information that the drone can fly under the current power, and if the target charging base station receives the return
  • the confirmation information can be used to determine the location information as the charging location information. For details, please refer to the above embodiment.
  • S303 Control the drone to dock with the charging cable line mounted on the charging drone in the location area indicated by the charging location information.
  • the drone can control the drone to dock with the charging cable line carried by the charging drone in the location area indicated by the charging location information, so that the target charging base station is connected to the drone Charge it.
  • the charging drone is a drone equipped with the target charging base station, and after the target charging base station sends a control command carrying the charging position information, the drone can fly to the location area indicated by the charging position information.
  • the charging drone is equipped with a charging cable provided by the target charging base station, and the charging cable is matched with the charging port of the drone to charge the drone.
  • the unmanned aerial vehicle detects and determines the charging demand of the unmanned aerial vehicle during the flight, searches for the target charging base station, and obtains the charging location information according to the control command of the target charging base station carrying the charging location information.
  • the location area indicated by the charging location information flies, and controls the drone to dock with the charging cable line carried by the charging drone in the location area, so that the target charging base station charges the drone, thereby
  • the drone is connected to the charging drone in the air for charging, and the purpose of long-distance flight work is met, and the user's automation, intelligent charging and long-distance flight demand for the drone are satisfied.
  • FIG. 4 is a schematic flowchart diagram of another control method according to an embodiment of the present invention.
  • the method is applied to a drone.
  • the difference between the method and the embodiment shown in FIG. 3 is that the drone passes The current power is detected to confirm whether the drone needs to be charged, and the docking controller is turned on to connect the drone to the charging drone.
  • the method includes the following steps.
  • S401 Detect whether the current power of the drone during the flight is less than a preset power threshold.
  • the drone can detect whether the current power of the drone during the flight is less than a preset power threshold. For example, if the preset power threshold is 10%, the drone can detect whether the current power of the drone during flight is less than 10%. It can be seen that this embodiment realizes the judgment of the current power of the drone by setting the power threshold in advance.
  • the UAV if the UAV detects that the current power is less than the preset power threshold, the UAV needs to be charged, and may establish a communication connection with at least one charging base station on the ground to search for at least one charging on the ground. Base station.
  • S403 Determine a target charging base station from each charging base station.
  • the UAV when detecting the charging demand, can establish a communication connection with each charging base station on the ground, thereby searching for each charging base station on the ground, and determining the target charging base station from each base station.
  • S404 Receive a control instruction sent by the target charging base station to carry the charging location information.
  • the drone may receive a control command sent by the target charging base station to carry the charging location information.
  • S405 Acquire charging location information, and fly to the location area indicated by the charging location information.
  • the drone can acquire the charging location information according to the received control command, and fly to the location area indicated by the charging location information.
  • the drone if the drone detects that the drone reaches the location area indicated by the charging location information, and searches for the charging drone to reach the location area indicated by the charging location information, the The drone can turn on the docking controller of the drone.
  • the docking controller controls the drone to dock with the charging cable line mounted on the charging drone in the location area indicated by the charging position information.
  • the drone can control the drone to interface with the charging cable line carried by the charging drone in the location area indicated by the charging location information by the docking controller, wherein the control The device is configured to control the charging port of the drone to be docked with the charging cable line of the charging drone by magnetic attraction or mechanical clamping.
  • the drone can control the drone to carry the charging unmanned after controlling the drone to dock with the charging cable line carried by the charging drone in the location area indicated by the charging location information.
  • the aircraft flies within a preset range; wherein the preset range is the flight range limited by the charging cable.
  • the drone controls the drone to charge the charging drone in the location indicated by the charging position information.
  • the drone carrying the charging drone can be controlled to fly within a space of a radius of 6 meters (preset range).
  • the drone determines whether charging is required by detecting whether the current electric quantity of the self is less than a preset threshold. If it is detected that the drone needs to be charged, the U.S. can establish a communication connection with the ground charging base station to Determining a target charging base station in each of the searched charging base stations, and receiving a control command for carrying the charging position information sent by the target charging base station, acquiring charging position information according to the control command, and flying to the position indicated by the charging position information In the area, the docking controller of the drone is turned on, thereby controlling the drone to dock with the charging cable line mounted on the charging drone in the location area indicated by the charging position information. It can be seen that the embodiment of the invention realizes that the drone is connected to the charging drone in the air for charging, and satisfies the user's automation, intelligent charging and long-distance flight demand for the drone.
  • FIG. 5 is a schematic flowchart diagram of still another control method according to an embodiment of the present invention. The method is applied to a charging drone, and the specific implementation steps of the method are as follows.
  • S501 Acquire a control instruction for carrying the charging location information sent by the target charging base station.
  • the charging drone can acquire a control instruction for carrying the charging location information sent by the target charging base station.
  • the charging drone can acquire a control command issued by the target charging base station to a position of 10 m altitude.
  • S502 Flying to the location area indicated by the charging location information in response to the control instruction.
  • the charging drone may fly to the location area indicated by the charging location information in response to the control command. For example, after receiving the control command sent by the target charging base station and carrying the height position of 10 m, the drone can fly to the charging location information in response to the control command.
  • the indicated 10 m height position area For example, after receiving the control command sent by the target charging base station and carrying the height position of 10 m, the drone can fly to the charging location information in response to the control command.
  • the indicated 10 m height position area For example, after receiving the control command sent by the target charging base station and carrying the height position of 10 m, the drone can fly to the charging location information in response to the control command.
  • the indicated 10 m height position area is an example, after receiving the control command sent by the target charging base station and carrying the height position of 10 m.
  • S503 Control the charging cable of the charging drone to dock with the drone in the location area indicated by the charging location information to charge the drone.
  • the charging drone is equipped with a charging mooring line provided by the target charging base station, and the drone can control the charging mooring line of the charging drone in the position area indicated by the charging position information and The charging port of the human machine is mated to achieve charging of the drone.
  • the charging drone controls the charging cable to dock with the drone in the location area indicated by the charging location information, if the charging cable is detected as indicated by the charging location information If the location area is successfully docked with the drone, the propeller of the charging drone can be turned off to stop the flight, so that the drone carries the charging drone to fly within the range allowed by the charging cable.
  • the charging drone can control the charging drone to disconnect the charging cable and the charging port of the drone. Docking, when detecting that the charging cable is disconnected from the charging port of the drone, restarting the propeller of the charging drone and flying back to the target charging base station.
  • the charging drone after charging the drone, the charging drone detects that the charging cable of the drone is disconnected from the charging port of the drone, and the If the electrical connection between the charging cable and the target charging base station is disconnected, it can be considered that the charging drone and the drone have unexpected disconnection, and the charging drone can immediately restart the adjusting posture to start flying. And fly back to the target charging base station.
  • the charging drone flies to the location area indicated by the charging location information in response to the acquired control command of the charging location information sent by the target charging base station, and controls the charging system of the charging drone.
  • the remaining line is docked with the drone in the location area indicated by the charging location information to enable air charging of the drone.
  • FIG. 6 is a schematic flowchart of still another control method according to an embodiment of the present invention. The method is applied to a charging base station, and the specific implementation steps of the method are as follows.
  • S601 Send a control instruction carrying the charging position information to the drone.
  • the charging base station may send a control instruction carrying the charging location information to the drone to notify the drone of the charging location information indicated by the charging base station, so that the drone receives the control instruction. After that, it flies to the location area indicated by the charging location information.
  • the charging base station can establish a communication connection with the UAV through software defined radio SDR communication, communicate, and send a control instruction carrying the charging location information to the drone; or establish a communication connection with the cloud server. And sending, by the cloud server, a control instruction carrying the charging location information to the drone.
  • S602 Instruct the charging drone to fly to the location area indicated by the charging location information.
  • the charging base station may instruct the charging drone to fly to the location area indicated by the charging location information.
  • the charging base station may determine the location information corresponding to the received charging location request as charging location information, indicating the The charging drone provided by the charging base station requests the charging location to fly in the location area indicated by the corresponding charging location information.
  • the charging station receives the charging position request sent by the drone, and the position information carried by the charging position request is a height position of 8 m.
  • the charging base station may determine the location area where the height position of the new location information 8m is received as the charging location area, and may instruct the charging drone provided by the charging base station to request the charging location information corresponding to the charging location. Flight at a height of 8m.
  • S603 Control the charging cable of the charging drone to dock with the drone in a location area indicated by the charging location information to charge the drone.
  • the charging base station can control the charging cable of the charging drone to cooperate with the charging port of the drone in the location area indicated by the charging location information, so as to perform docking on the drone.
  • Charging wherein the charging drone is equipped with a charging cable provided by the charging base station.
  • the charging base station sends a control command carrying the charging position information to the drone to notify the location area indicated by the charging position information of the drone, and instructs the charging drone provided by the charging base station to carry the charging.
  • the charging cable provided by the base station flies to the location area indicated by the charging location information to interface with the charging port of the drone to control charging the drone.
  • FIG. 7 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • the device in the embodiment of the present invention includes: a determining unit 701, a first acquiring unit 702, and a first a control unit 703, wherein
  • a determining unit 701 configured to: if the charging requirement of the drone during the flight is detected, search for the target charging base station;
  • the first obtaining unit 702 is configured to acquire charging location information, and fly to a location area indicated by the charging location information;
  • the first control unit 703 is configured to control the drone to interface with the charging cable line carried by the charging drone in the location area indicated by the charging location information, so that the target charging base station is Man-machine charging;
  • the charging drone is equipped with the unmanned aerial vehicle of the target charging base station, and after the target charging base station sends a control command for carrying the charging location information, it flies to the location area indicated by the charging location information.
  • the charging drone is equipped with a charging cable provided by the target charging base station, and the charging cable stays with the charging port of the drone to charge the drone.
  • the acquiring unit 702 is specifically configured to receive a control command sent by the target charging base station to carry the charging location information, and detect whether the current power of the drone satisfies the drone flying to the Controlling the power condition of the location area indicated by the charging location information carried by the command; if the detection result is no, transmitting a charging location request to the target charging base station, the charging location requesting to carry the drone under current power Location information of the flight; receiving an acknowledgement command returned by the target charging base station, and determining the location information as charging location information.
  • the obtaining unit 702 is configured to: if it is detected that the current power of the drone meets the power condition of the location area indicated by the charging location information carried by the drone to the control command, The charging position information is obtained in the control command.
  • the determining unit 701 is specifically configured to detect whether the current power of the drone during the flight is less than a preset power threshold; if the detection result is yes, search for at least one charging base station on the ground; A target charging base station is determined in the charging base station.
  • the determining unit 701 is configured to communicate with the at least one charging base station by using a software-defined radio SDR communication, and confirm the location of each charging base station; or establish a communication connection with the cloud server, and pass the cloud server. Searching for the location of at least one charging base station on the ground.
  • the determining unit 701 is configured to detect a distance between the at least one charging base station and the drone, and determine the charging base station with the shortest distance as a target charging base station.
  • the determining unit 701 is further configured to search whether the at least one charging base station has an idle charging bit; if the determination result is yes, determine the charging base station that has an idle charging bit as the target charging base station.
  • the determining unit 701 is configured to detect whether the current power of the UAV is sufficient to fly to other charging base stations if the charging base station that is the shortest distance from the UAV is found to have no idle charging bit; If the detection result is no, the drone is controlled to fly to the charging base station that is the shortest distance from the drone, and falls on the tarmac of the charging base station.
  • control unit 703 is configured to: if it is detected that the drone and the charging drone reach the location area indicated by the charging location information, turn on the docking controller of the drone;
  • the docking controller controls the drone to interface with a charging cable line carried by the charging drone in a location area indicated by the charging location information; wherein the controller is configured to control the drone
  • the charging port is docked with the charging cable line carried by the charging drone by magnetic suction or mechanical clamping.
  • control unit 703 is configured to control the drone to carry the charging drone to fly within a preset range; wherein the preset range is a flight range limited by the charging cable .
  • the control device when the control unit detects the charging demand, the control device searches for the target charging base station, obtains the charging location information by using the first acquiring unit 702, and controls the drone to be controlled by the first control unit 703.
  • the location area indicated by the charging location information is docked with the charging cable line mounted on the charging drone to cause the target charging base station to charge the drone.
  • FIG. 8 is a schematic structural diagram of another control device according to an embodiment of the present invention.
  • the device in the embodiment of the present invention includes: a second acquiring unit 801, an executing unit 802, and a second control unit. 803, wherein
  • the second obtaining unit 801 is configured to acquire a control instruction that carries the charging location information sent by the target charging base station;
  • the executing unit 802 is configured to fly to the location area indicated by the charging location information in response to the control instruction;
  • a second control unit 803 configured to control a charging cable of the charging drone to dock with the drone in a location area indicated by the charging location information, to charge the drone;
  • the charging drone is equipped with a charging cable provided by the target charging base station, and the charging cable stays with the charging port of the drone to charge the drone.
  • the second control unit 803 is configured to: if it is detected that the charging cable line is successfully docked with the drone in the location area indicated by the charging location information, shutting down the charging drone Propeller to stop flying.
  • the second control unit 803 is configured to control the charging drone to disconnect the charging cable from the charging port of the drone if the charging is detected to be completed; detecting the charging system When the line is disconnected from the charging port of the drone, the charging drone is restarted and flies back to the target charging base station.
  • the second control unit 803 is further configured to: if it is detected that the charging cable is disconnected from the charging port of the drone, and the charging cable is charged with the target The electrical connection between the base stations is disconnected. At this time, it can be considered that the charging drone and the drone have unexpected disconnection, and then the charging drone is restarted and flew back to the target charging base station.
  • the control device acquires a control instruction for carrying the charging location information sent by the target charging base station by using the second acquiring unit 801, and the execution unit 802, in response to the control command, flies to the location area indicated by the charging location information, and passes the
  • the second control unit 803 controls the charging cable of the charging drone to dock with the drone in the location area indicated by the charging location information to charge the drone.
  • FIG. 9 is a schematic structural diagram of still another control device according to an embodiment of the present invention.
  • the device in the embodiment of the present invention includes: a sending unit 901, an indicating unit 902, and a third control unit 903. among them,
  • the sending unit 901 is configured to send a control instruction for carrying the charging location information to the drone to enable the drone to fly to the location area indicated by the charging location information after receiving the control instruction;
  • the indicating unit 902 is configured to instruct the charging drone to fly to the location area indicated by the charging location information
  • a third control unit 903 configured to control a charging cable of the charging drone to interface with the drone in a location area indicated by the charging location information, to charge the drone;
  • the charging drone is equipped with a charging cable provided by the charging base station, and the charging cable is charged with the charging port of the drone to charge the drone.
  • the indicating unit 902 is configured to receive a charging location request sent by the drone, determine location information corresponding to the charging location request as charging location information, and indicate that the charging is unmanned The machine requests the charging location to fly in the location area indicated by the corresponding charging location information.
  • the sending unit 901 is configured to communicate with the drone through software defined radio SDR communication, and send a control instruction carrying the charging location information to the drone; or establish a communication connection with the cloud server, and A control instruction carrying the charging location information is sent to the drone through the cloud server.
  • the control device sends a control instruction carrying the charging location information to the drone through the sending unit 901, and instructs the charging drone to fly to the location area indicated by the charging location information through the indicating unit 902, and passes the third
  • the control unit 903 controls the charging cable of the charging drone to interface with the drone in a location area indicated by the charging location information to charge the drone.
  • FIG. 10 is a schematic structural diagram of still another control device according to an embodiment of the present invention.
  • the control device in this embodiment as shown in FIG. 10 is applied to a drone, and the device may include: one or more processors 1001; one or more input devices 1002, one or more output devices 1003 And memory 1004.
  • the above-described processor 1001, input device 1002, output device 1003, and memory 1004 are connected by a bus 1005.
  • the memory 1004 is for storing instructions
  • the processor 1001 is for executing instructions stored by the memory 1004.
  • the processor 1001 is configured to perform the following steps:
  • the search determines the target charging base station
  • the charging drone is equipped with the unmanned aerial vehicle of the target charging base station, and after the target charging base station sends a control command for carrying the charging location information, it flies to the location area indicated by the charging location information.
  • the charging drone is equipped with a charging cable provided by the target charging base station, and the charging cable stays with the charging port of the drone to charge the drone.
  • processor 1001 calls a program instruction stored in the memory 1004 for performing the following steps:
  • processor 1001 calls a program instruction stored in the memory 1004 for performing the following steps:
  • the charging location information is acquired from the control instruction.
  • processor 1001 calls a program instruction stored in the memory 1004 for performing the following steps:
  • a target charging base station is determined from each of the charging base stations.
  • processor 1001 calls a program instruction stored in the memory 1004 for performing the following steps:
  • processor 1001 calls a program instruction stored in the memory 1004 for performing the following steps:
  • the charging base station having the shortest distance is determined as the target charging base station.
  • processor 1001 calls a program instruction stored in the memory 1004 for performing the following steps:
  • the charging base station having the idle charging bit is determined as the target charging base station.
  • processor 1001 calls a program instruction stored in the memory 1004 for performing the following steps:
  • the charging base station having the shortest distance from the drone has no idle charging bit, it is detected whether the current power of the drone is sufficient to fly to other charging base stations;
  • the drone is controlled to fly to the charging base station that is the shortest distance from the drone, and falls on the tarmac of the charging base station.
  • processor 1001 calls a program instruction stored in the memory 1004 for performing the following steps:
  • the controller is configured to control the charging port of the drone to be docked with the charging cable line mounted on the charging drone by magnetic suction or mechanical clamping.
  • processor 1001 calls a program instruction stored in the memory 1004 for performing the following steps:
  • the preset range is a flight range limited by the charging cable.
  • the memory 1004 may include a volatile memory; the memory 1004 may also include a non-volatile memory; the memory 1004 may also include a combination of the above types of memory.
  • the processor 1001 may be a central processing unit (CPU).
  • the processor 1001 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can It is a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), or any combination thereof.
  • the control device searches for the target charging base station by detecting the charging demand of the drone during the flight, and obtains the charging location information according to the control instruction of the charging base station that carries the charging position information.
  • the location area indicated by the charging location information flies, and controls the drone to dock with the charging cable line carried by the charging drone in the location area, so that the target charging base station charges the drone, thereby
  • the drone is connected to the charging drone in the air for charging, which satisfies the user's automation, intelligent charging and long-distance flight demand for the drone.
  • FIG. 11 is a schematic structural diagram of still another control device according to an embodiment of the present invention.
  • the control device in this embodiment as shown in FIG. 11 is applied to a charging drone, and the device may include: one or more processors 1101; one or more input devices 1102, one or more memories 1103 .
  • the above processor 1101, input device 1102, and memory 1103 are connected by a bus 1104.
  • the memory 1103 is for storing instructions
  • the processor 1101 is for executing instructions stored by the memory 1103.
  • the processor 1101 is configured to perform the following steps:
  • the charging drone is equipped with a charging cable provided by the target charging base station, and the charging cable stays with the charging port of the drone to charge the drone.
  • processor 1101 calls a program instruction stored in the memory 1103 for performing the following steps:
  • the propeller of the charging drone is turned off to stop the flight.
  • processor 1101 calls a program instruction stored in the memory 1103 for performing the following steps:
  • the charging drone When it is detected that the charging cable is disconnected from the charging port of the drone, the charging drone is restarted and flies back to the target charging base station.
  • processor 1101 calls a program instruction stored in the memory 1103 for performing the following steps:
  • the charging can be considered The UAV and the UAV have unexpected disconnection. At this time, the charging drone can immediately restart the adjustment attitude to start the flight and fly back to the target charging base station.
  • the memory 1103 may include a volatile memory; the memory 1103 may also include a non-volatile memory; the memory 1103 may also include a combination of the above types of memories.
  • the processor 1101 may be a central processing unit (CPU).
  • the processor 1101 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), or any combination thereof.
  • control device flies to the location area indicated by the charging location information by controlling the acquired control command of the charging location information sent by the target charging base station, and controls the charging system of the charging drone.
  • the line is docked with the drone in the location area indicated by the charging location information to enable air charging of the drone.
  • FIG. 12 is a schematic structural diagram of still another control device according to an embodiment of the present invention.
  • the control device in this embodiment as shown in FIG. 12 is applied to a charging base station, and the device may include: one or more processors 1201; one or more input devices 1202, one or more output devices 1203, and Memory 1204.
  • the above processor 1201, input device 1202, output device 1203, and memory 1204 are connected by a bus 1205.
  • the memory 1204 is for storing instructions
  • the processor 1201 is for executing instructions stored by the memory 1204.
  • the processor 1201 is configured to perform the following steps:
  • the charging drone is equipped with a charging cable provided by the charging base station, and the charging cable is charged with the charging port of the drone to charge the drone.
  • processor 1201 calls a program instruction stored in the memory 1204 for performing the following steps:
  • processor 1201 calls a program instruction stored in the memory 1204 for performing the following steps:
  • the memory 1204 may include a volatile memory; the memory 1204 may also include a non-volatile memory; the memory 1204 may also include a combination of the above types of memory.
  • the processor 1201 may be a central processing unit (CPU).
  • the processor 1201 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), or any combination thereof.
  • the control device sends a charging command carrying the charging location information to the drone, and instructs the charging drone provided by the charging base station to carry the charging cable provided by the charging base station, and flies to the charging position.
  • the location area indicated by the information is docked with the charging port of the drone to control charging the drone.
  • the embodiment of the invention further provides a drone, comprising: a fuselage; a power system disposed on the fuselage for providing flight power; and the control device as described in the corresponding embodiment of FIG. 7.
  • the drone can be four Rotor drones, six-rotor drones, multi-rotor drones and other types of aircraft.
  • the power system may include a motor, an ESC, a propeller, etc., wherein the motor is responsible for driving the aircraft propeller, and the ESC is responsible for controlling the speed of the motor of the aircraft.
  • the embodiment of the invention further provides a charging drone, comprising: a fuselage; a power system disposed on the fuselage for providing flight power; and a charging cable line mounted on the body for use with the unmanned
  • the charging port of the machine cooperates to charge the drone; as shown in FIG. 8, the control device corresponding to the embodiment.
  • the charging drone may be a four-rotor UAV, a six-rotor UAV, a multi-rotor UAV, and the like.
  • the power system may include a motor, an ESC, a propeller, etc., wherein the motor is responsible for driving the aircraft propeller, and the ESC is responsible for controlling the speed of the motor of the aircraft.
  • the embodiment of the invention further provides a charging base station, comprising: a charging cable line connected to the charging base station, configured to be mounted on the charging drone to cooperate with the charging port of the drone to charge the drone;
  • a charging base station comprising: a charging cable line connected to the charging base station, configured to be mounted on the charging drone to cooperate with the charging port of the drone to charge the drone;
  • the control device according to the embodiment of FIG. 9 is used.
  • the embodiment of the invention further provides an unmanned aerial charging system, comprising: a drone to be charged, a charging drone and a charging base station;
  • the UAV to be charged is configured to search for a target charging base station if the charging requirement of the UAV to be charged during flight is detected;
  • the charging drone for controlling the charging cable of the charging drone to be docked with the to-be-charged drone in the location area indicated by the charging location information, to the unmanned charging machine Charge
  • the charging base station is configured to send a control instruction carrying the charging location information to the to-be-charged drone to cause the to-be-charged drone to fly to the charging location information after receiving the control instruction a location area; instructing the charging drone to fly to a location area indicated by the charging location information; controlling a charging cable of the charging drone in a location area indicated by the charging location information and the to-be-charged
  • the human machine performs docking to charge the unmanned charging machine to be charged;
  • the UAV to be charged is further configured to acquire charging location information and fly to a location area indicated by the charging location information; and control a location area indicated by the charging location information by the to-be-charged drone
  • the charging cable line carried by the charging drone is docked to enable the target charging base station to charge the to-be-charged drone.
  • the charging base station is connected to a plurality of charging drones
  • the area where the charging base station is located includes a plurality of aprons for the drone to be charged to land.
  • the unmanned charging machine and the charging base station communicate through SDR communication; or
  • the to-be-charged drone and the charging base station communicate by establishing a communication connection with the cloud server.
  • the embodiment of the present invention further provides a computer readable storage medium storing a computer program, when the computer program is executed by the processor, implements the present invention, FIG. 2, FIG. 3, FIG. 4, FIG. Or the control method described in the embodiment corresponding to FIG. 6, the control device of the embodiment corresponding to the present invention shown in FIG. 7, FIG. 8, FIG. 9, FIG. 10, FIG. 11, FIG. 12 can also be implemented, and no longer Narration.
  • the computer readable storage medium may be an internal storage unit of the device described in any of the preceding embodiments, such as a hard disk or a memory of the device.
  • the computer readable storage medium may also be an external storage device of the device, such as a plug-in hard disk equipped on the device, a smart memory card (SMC), and a secure digital (SD) card. , Flash Card, etc.
  • the computer readable storage medium may also include both an internal storage unit of the device and an external storage device.
  • the computer readable storage medium is for storing the computer program and other programs and data required by the terminal.
  • the computer readable storage medium can also be used to temporarily store data that has been output or is about to be output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种控制方法、设备、无人机、充电基站及系统,该方法包括:如果检测到无人机在飞行过程中的充电需求,搜索确定出目标充电基站(13);获取充电位置信息,并向所述充电位置信息所指示的位置区域飞行;控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机(12)搭载的充电系留线(14)进行对接,以使所述目标充电基站(13)对所述无人机进行充电;其中,所述充电无人机(12)为所述目标充电基站(13)配备的无人机,所述充电无人机(12)搭载所述目标充电基站提供的充电系留线(14),所述充电系留线(14)与所述无人机的充电端口配合。实现了无人机在空中与充电无人机(12)对接进行充电,满足用户对无人机的自动化、智能化充电以及远距离飞行需求。

Description

一种控制方法、设备、无人机、充电基站及系统 技术领域
本发明涉及无人机控制技术领域,尤其涉及一种控制方法、设备、无人机、充电基站及系统。
背景技术
随着计算机技术的发展以及用户的需求,类似无人机等飞行器的应用越来越广泛,系留无人机就是其中一种。系留无人机是一种将无人机和充电系留线结合起来实现的无人机系统,其可以通过充电系留线的不间断供电来保证长时间的工作,如实现长时间的安防监控。目前,系留无人机通过充电系留线与地面供电设备连接,以实时地对该系留无人机进行充电。系留无人机一般都是通过一根充电系留线与地面供电设备连接,连接完成之后,该系留无人机携带该充电系留线在固定的范围内长时间飞行。
然而,这样的充电方法仅适用于一定范围内的安防监控的应用,无人机只能在固定的范围内飞行,不能实现远距离飞行,从而限制了无人机的活动范围。
因此,如何实现无人机远距离地飞行成为研究的热点。
发明内容
本发明实施例提供了一种控制方法、设备、无人机、充电基站及系统,可实现无人机在空中与充电无人机对接进行充电,达到远距离飞行工作的目的。
第一方面,本发明实施例提供了一种控制方法,应用于无人机,该方法包括:
如果检测到无人机在飞行过程中的充电需求,搜索确定出目标充电基站;
获取充电位置信息,并向所述充电位置信息所指示的位置区域飞行;
控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,以使所述目标充电基站对所述无人机进行充电;
其中,所述充电无人机为所述目标充电基站配备的无人机,在所述目标充电基站发出携带所述充电位置信息的控制指令后,飞行至所述充电位置信息所指示的位置区域,所述充电无人机搭载有所述目标充电基站提供的充电系留 线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
第二方面,本发明实施例提供了另一种控制方法,应用于充电无人机,该方法包括:
获取目标充电基站发出的携带充电位置信息的控制指令;
响应所述控制指令,飞行至所述充电位置信息所指示的位置区域;
控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与无人机进行对接,以对所述无人机进行充电;
其中,所述充电无人机搭载所述目标充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
第三方面,本发明实施例提供了又一种控制方法,应用于充电基站,该方法包括:
向无人机发送携带充电位置信息的控制指令,以使所述无人机在接收到所述控制指令后,飞行至所述充电位置信息所指示的位置区域;
指示充电无人机向所述充电位置信息所指示的位置区域飞行;
控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与所述无人机进行对接,以对所述无人机进行充电;
其中,所述充电无人机搭载所述充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
第四方面,本发明实施例提供了一种控制设备,包括存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,调用存储器中存储的程序指令,用于执行如下步骤:
如果检测到无人机在飞行过程中的充电需求,搜索确定出目标充电基站;
获取充电位置信息,并向所述充电位置信息所指示的位置区域飞行;
控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,以使所述目标充电基站对所述无人机进行充电;
其中,所述充电无人机为所述目标充电基站配备的无人机,在所述目标充电基站发出携带所述充电位置信息的控制指令后,飞行至所述充电位置信息所指示的位置区域,所述充电无人机搭载有所述目标充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
第五方面,本发明实施例提供了另一种控制设备,包括存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,调用存储器中存储的程序指令,用于执行如下步骤:
获取目标充电基站发出的携带充电位置信息的控制指令;
响应所述控制指令,飞行至所述充电位置信息所指示的位置区域;
控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与无人机进行对接,以对所述无人机进行充电;
其中,所述充电无人机搭载所述目标充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
第六方面,本发明实施例提供了又一种控制设备,包括存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,调用存储器中存储的程序指令,用于执行如下步骤:
向无人机发送携带充电位置信息的控制指令,以使所述无人机在接收到所述控制指令后,飞行至所述充电位置信息所指示的位置区域;
指示充电无人机向所述充电位置信息所指示的位置区域飞行;
控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与所述无人机进行对接,以对所述无人机进行充电;
其中,所述充电无人机搭载所述充电基站提供的充电系留线,所述充电系留线与所述充电无人机的充电端口配合对所述无人机进行充电。
第七方面,本发明实施例提供了一种无人机,包括:
机身;
设置在机身上的动力系统,用于提供飞行动力;
如上述第四方面所述的控制设备。
第八方面,本发明实施例提供了一种充电无人机,包括:
机身;
设置在机身上的动力系统,用于提供飞行动力;
搭载在机身上的充电系留线,用于与无人机的充电端口配合对所述无人机进行充电;
如上述第五方面所述的控制设备。
第九方面,本发明实施例提供了一种充电基站,包括:
连接在充电基站上的充电系留线,用于搭载在充电无人机上与无人机的充 电端口配合对所述无人机进行充电;
如上述第六方面所述的控制设备。
第十方面,本发明实施例提供了一种无人机空中充电系统,包括:待充电无人机、充电无人机及充电基站;
所述待充电无人机,用于如果检测到所述待充电无人机在飞行过程中的充电需求,搜索确定出目标充电基站;
所述充电无人机,用于控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与待充电无人机进行对接,以对所述待充电无人机进行充电;
所述充电基站,用于向待充电无人机发送携带充电位置信息的控制指令,以使所述待充电无人机在接收到所述控制指令后,飞行至所述充电位置信息所指示的位置区域;指示充电无人机向所述充电位置信息所指示的位置区域飞行;控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与所述待充电无人机进行对接,以对所述待充电无人机进行充电;
所述待充电无人机,还用于获取充电位置信息,并向所述充电位置信息所指示的位置区域飞行;控制所述待充电无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,以使所述目标充电基站对所述待充电无人机进行充电。
第十一方面,本发明实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现如上述第一方面至第三方面任一项所述的控制方法。
本发明实施例能够在无人机检测到充电需求时,搜索确定出目标充电基站,该目标充电基站向该无人机和搭载充电系留线的充电无人机发出携带充电位置信息的控制指令,以使该无人机和充电无人机飞至该充电位置信息所指示的位置区域,并控制该无人机的充电端口和充电系留线配合对无人机进行充电。从而实现无人机在空中与充电无人机对接进行充电,达到远距离飞行工作的目的,满足用户对无人机的自动化、智能化充电以及远距离飞行需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种无人机空中充电的系统结构示意图;
图2是本发明实施例提供的一种无人机与充电基站交互的流程示意图;
图3是本发明实施例提供的一种控制方法的流程示意图;
图4是本发明实施例提供的另一种控制方法的流程示意图;
图5是本发明实施例提供的又一种控制方法的流程示意图;
图6是本发明实施例提供的又一种控制方法的流程示意图;
图7是本发明实施例提供的一种控制设备的结构示意图;
图8是本发明实施例提供的另一种控制设备的结构示意图;
图9是本发明实施例提供的又一种控制设备的结构示意图;
图10是本发明实施例提供的又一种控制设备的结构示意图;
图11是本发明实施例提供的又一种控制设备的结构示意图;
图12是本发明实施例提供的再一种控制设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供的控制方法可应用于一种无人机空中充电系统,该系统包括待充电无人机、充电无人机及充电基站。该控制方法可应用于无人机的空中充电任务,在其他实施例中,也可以应用于具有充电需求的飞行器等可飞行设备的充电任务,下面对本发明实施例提供的无人机空中充电系统以及应用于无人机空中充电系统的控制方法进行举例说明。
本发明实施例提供了一种无人机空中充电系统,如图1所示,图1是本发明实施例提供的一种无人机空中充电的系统结构示意图。如图1所示,该系统 包括:待充电无人机11、充电无人机12、充电基站13以及充电系留线14,该待充电无人机11包括一个充电端口,该充电基站13可以包括多个充电位,从而该充电基站13可以与多个充电无人机12相连,各充电基站13所在区域可包括多个停机坪,以供待充电无人机11降落,该充电基站13提供充电系留线14,该充电系留线14搭载在该充电无人机12上。该待充电无人机11与该充电基站13之间可以通过软件定义的无线电(Software Defination Radio,SDR)通讯进行通信,其中,该SDR通讯是无线电广播通信技术,它基于软件定义的无线通信协议而非通过硬连线实现。或者,该待充电无人机11还可以与该充电基站13之间通过与云端服务器建立通信连接进行通信。
在一个实施例中,该系统中待充电无人机11通过SDR通讯建立与充电基站13之间的通信连接,如果该待充电无人机11检测到电量不足(如小于预设的电量阈值),则可以从地面上多个充电基站中搜索确定出目标充电基站。该目标充电基站可以向该待充电无人机11发送携带充电位置信息的控制指令,以使该待充电无人机11在接收到所述控制指令后,从该控制指令中获取充电位置信息,并飞行至该充电位置信息所指示的位置区域。同时,该目标充电基站指示该充电无人机12向该充电位置信息所指示的位置区域飞行,并控制该充电无人机12的充电系留线在该充电位置信息所指示的位置区域与该待充电无人机11的充电端口进行对接,以对该待充电无人机11进行充电,从而可以实现无人机在空中进行充电。
在一个实施例中,该系统中待充电无人机11与充电基站13建立通信连接时,如果该系统中待充电无人机11检测到当前所处环境的SDR通讯的信号强度较差时,该待充电无人机11可以通过与云端服务器建立连接,该充电基站13也与该云台服务器建立通信连接,从而通过该云端服务器作为中转站,实现该待充电无人机11与充电基站13之间的通信连接,该待充电无人机11与充电基站13分别通过从该云端服务器中获取位置信息或控制指令等实现通信,实现在通信信号较弱的情况下建立待充电无人机11与充电基站13之间的通信连接,提高通信连接的效率,从而避免在通信信号较弱的时候,充电基站13无法对待充电无人机11进行充电的问题。
本发明实施例提供的无人机空中充电系统需要该系统中的待充电无人机、充电基站以及充电无人机之间相互协作来实现,下面分别对无人机和充电基站 之间的交互方法实施例,以及分别对应用于待充电无人机、充电基站、充电无人机的控制方法进行详细说明。
具体请参见图2,图2是本发明实施例提供的一种无人机与充电基站交互的流程示意图。该交互方法可以应用于该无人机空中充电系统,该系统的具体解释如前所述。具体的,本发明实施例的方法实现包括如下步骤。
S201:无人机在飞行过程中如果检测到充电需求,则搜索确定出目标充电基站,并向该目标充电基站发送充电请求。
本发明实施例中,无人机可以在空中不受限制的飞行,无人机通过SDR通讯方式或者通过云端服务器与充电基站建立通信连接,在飞行过程中如果检测到电量不足需要充电,则可以从地面的各充电基站中搜索确定出目标充电基站,并可以向该目标充电基站发送充电请求。
在一个实施例中,无人机在从地面的各充电基站中搜索确定目标充电基站的过程中,无人机可以通过检测该无人机在飞行过程中的当前电量是否小于预设的电量阈值,如果检测结果为是,则搜索地面的至少一个充电基站,并从各充电基站中确定出目标充电基站。具体可举例说明,假设无人机在空中飞行的时候检测到自身的当前电量小于10%(预设的电量阈值),如果无人机在搜索地面充电基站的过程中与地面的十个充电基站建立了通信连接,则该无人机可以从地面的这十个充电基站中搜索确定出目标充电基站。
在一个实施例中,无人机在搜索地面的至少一个充电基站的过程中,可以通过软件定义的无线电SDR通讯与所述至少一个充电基站进行通信,并确认各充电基站的位置。如果该无人机在搜索地面的至少一个充电基站的过程中,检测到SDR通信信号较弱,且无法建立SDR通讯或者无法通过信号较弱的SDR通讯搜索到各充电基站时,该无人机和充电基站可以分别与云端服务器建立通信连接,各充电基站可以将各自的位置信息发送给该云端服务器,无人机可以从该云端服务器中获取到各充电基站的位置信息。可见,该实施方式可以实现在通讯信号较弱的时候,无人机通过与云端服务器建立通信连接,来获取各充电基站的位置信息,从而避免了通讯信号较弱时无法搜索到充电基站的问题,提高了搜索充电基站的有效性。
S202:充电基站根据获取到的充电请求,向该无人机发送携带充电位置信息的控制指令。
本发明实施例中,充电基站可以接收到无人机发出的充电请求,充电基站在接收到该充电请求后,可以向该无人机发送携带充电位置信息的控制指令。具体地,该充电基站在接收到无人机发出的充电请求之后,如果检测到当前的SDR通讯信号较强时,可以通过软件定义无线电SDR通讯与所述无人机进行通信,并向无人机发送携带充电位置信息的控制指令。如果检测到当前的SDR通讯信号较弱,且无法建立通信连接时,该充电基站可以通过第四代移动通信技术(the 4th Generation mobile communication,4G)网络与云端服务器建立通信连接,并通过该云端服务器向无人机发送携带充电位置信息的控制指令。可见,该实施方式可以提高充电基站与无人机之间建立通信连接可靠性及有效性。
S203:无人机根据接收到的该控制指令,飞行至该充电位置信息所指示的位置区域。
本发明实施例中,无人机可以接收到目标充电基站发出的携带充电位置信息的控制指令,并根据该控制指令获取到目标充电基站指示的充电位置信息,该无人机如果检测到自身的当前电量满足该无人机飞往该控制指令携带的充电位置信息所指示的位置区域的电量条件,则可以根据该充电位置信息,飞行至该充电位置信息所指示的位置区域。例如,假设无人机在接收到目标充电基站发出的携带充电位置信息的控制指令时,检测到的自身的当前电量为15%,该无人机飞往该控制指令携带的充电位置信息所指示的位置区域所需的电量为10%,因此,该无人机的当前电量满足该无人机飞往该控制指令携带的充电位置信息所指示的位置区域的电量条件,可以根据该充电位置信息,飞行至该充电位置信息所指示的位置区域。
在一个实施例中,无人机在接收到目标充电基站发出的携带充电位置信息的控制指令时,可以检测该无人机的当前电量是否满足该无人机飞往所述控制指令携带的充电位置信息所指示的位置区域的电量条件,如果不满足,则发送一个新的充电位置请求给该目标充电基站,其中,该充电位置请求携带了该无人机在当前电量下能飞往的位置信息。如果无人机接收该目标充电基站返回的确认指令,则可以将该位置信息确定为充电位置信息,并根据该充电位置请求携带的充电位置信息,飞行至该充电位置信息所指示的位置区域。例如,假设无人机在接收到目标充电基站发出的携带充电位置信息的控制指令时,检测到 自身的当前电量为10%,该无人机飞往该控制指令携带的充电位置信息所指示的位置区域所需的电量为12%,因此,该无人机的当前电量不满足该无人机飞往该控制指令携带的充电位置信息所指示的位置区域的电量条件,该无人机可以发送一个新的充电位置请求给该目标充电基站,其中,该充电位置请求携带了该无人机在当前电量下能飞往的位置信息,如果无人机接收该目标充电基站返回的确认指令,则可以将该位置信息确定为充电位置信息,并根据该充电位置请求携带的充电位置信息,飞行至该充电位置信息所指示的位置区域。可见,该实施方式可以实现对无人机和充电基站之间充电位置的协商,避免无人机无法到达充电位置信息所指示的位置区域进行充电,增强了确定充电位置信息的灵活性。
S204:充电基站指示该充电基站提供的充电无人机向该充电位置信息所指示的位置区域飞行。
本发明实施例中,充电基站在向无人机发送携带充电位置信息的控制指令之后,可以指示该充电基站提供的充电无人机向该充电位置信息所指示的位置区域飞行。需要说明的是,该充电无人机是该充电基站提供的,该充电无人机可以通过搭载充电系留线与充电基站连接,该充电基站与该充电系留线建立电连接。
在一个实施例中,如果充电基站接收到该无人机发送的充电位置请求,则可以将该充电位置请求对应的位置信息确定为充电位置信息,该充电基站可以指示该充电无人机向该充电位置请求对应的充电位置信息所指示的位置区域飞行。
S205:无人机开启对接控制器,控制该无人机在该充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接。
本发明实施例中,无人机可以开启对接控制器,控制该无人机在该充电位置信息所指示的位置区域与目标充电基站提供的充电无人机搭载的充电系留线进行对接。具体地,无人机可以开启对接控制器,如果检测到该无人机与该充电无人机到达该充电位置信息所指示的位置区域,则可以开启该无人机的对接控制器,通过该对接控制器,控制该无人机在该充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,其中,该控制器用于控制该无人机的充电端口通过磁性吸和或机械卡合的方式与该充电无人机搭载的充电 系留线进行对接。
需要说明的是,在该无人机的充电端口与充电无人机携带的充电系留线对接成功后,该无人机将关闭该对接控制器,以防止该对接控制器的磁性吸和能力或机械卡合能力影响无人机的飞行。例如,假设无人机的对接控制器是一个具有磁性吸和能力的对接控制器,如果检测到该无人机与该充电无人机到达该充电位置信息所指示的位置区域,则可以开启该无人机的对接控制器,通过该对接控制器,控制该无人机的充电端口在该充电位置信息所指示的位置区域通过磁性吸和的方式与该充电无人机搭载的充电系留线进行配合对接,并在对接成功之后,关闭该对接控制器。
S206:充电基站通过充电系留线对该无人机进行充电。
本发明实施例中,充电基站在检测到该充电基站提供的充电系留线与无人机的充电端口对接成功时,该充电基站可以通过该充电系留线对该无人机进行充电。
本发明实施例,无人机在检测到所述待充电无人机在飞行过程中的充电需求时,搜索确定出目标充电基站,并可以接收到该目标充电基站向该无人机发送的携带充电位置信息的控制指令,以使该无人机在接收到该控制指令后,飞行至该充电位置信息所指示的位置区域,指示充电无人机向该充电位置信息所指示的位置区域飞行,控制该充电无人机的充电系留线在该充电位置信息所指示的位置区域与该待充电无人机进行对接,以对该待充电无人机进行充电。
请参见图3,图3是本发明实施例提供的一种控制方法的流程示意图,该方法应用于无人机,具体的,该方法包括如下步骤。
S301:如果检测到无人机在飞行过程中的充电需求,搜索确定出目标充电基站。
本发明实施例中,无人机可以在空中不受限制的飞行,无人机如果在飞行过程中如果检测到电量不足需要充电,则可以通过SDR通讯方式或者通过云端服务器与充电基站建立通信连接,从地面的各充电基站中搜索确定出目标充电基站,并可以向该目标充电基站发送充电请求。具体可举例说明,假设无人机在空中飞行的时候检测到自身的当前电量小于10%,需要进行充电,如果无人机与地面的十个充电基站建立了通信连接,则该无人机可以从地面的这十个充电基站中搜索确定出目标充电基站。
在一个实施例中,无人机从各充电基站确定出目标充电基站的过程中,无人机可以检测地面上各个充电基站与该无人机之间的距离(如高度),该无人机可以将检测到的距离最短的充电基站确定为目标充电基站。具体可举例说明,假设无人机在空中飞行的时候检测到自身的当前电量小于10%,需要进行充电,则无人机可以与地面的十个充电基站建立了通信连接,从而该无人机可以检测地面上十个充电基站中各个充电基站与该无人机之间的高度距离,该无人机可以将检测到的高度距离最短的充电基站确定为目标充电基站。可见,该实施方式可以通过检测无人机与充电基站的距离,来确定目标充电基站。
在一个实施例中,无人机从各充电基站确定出目标充电基站的过程中,无人机可以搜索地面上的至少一个充电基站是否存在闲置充电位,如果判断结果为是,则将存在闲置充电位的充电基站确定为目标充电基站。具体可举例说明,假设无人机在空中飞行的时候检测到自身的当前电量小于10%,需要进行充电,则无人机可以与地面的十个充电基站建立了通信连接,从而该无人机可以搜索地面上的十个充电基站中各充电基站上是否存在闲置充电位,如果存在,则该无人机可以将存在闲置充电位的充电基站确定为目标充电基站。可见,该实施方式可以通过检测各充电基站是否存在闲置充电位,来选取目标充电基站。
在另一个实施例中,无人机从各充电基站确定出目标充电基站的过程中,无人机可以在检测到某充电基站与该无人机的距离最短时,搜索与该无人机之间距离最短的充电基站是否存在闲置的充电位,如果不存在,则可以检测该无人机的当前电量是否足以飞至其它充电基站,如果该无人机的当前电量不足以飞往其它充电基站,则可以控制该无人机飞往与该无人机距离最短的充电基站,并降落在该充电基站的停机坪上。具体可举例说明,假设无人机在空中飞行的时候检测到自身的当前电量小于10%,需要进行充电,如果无人机与地面的十个充电基站建立了通信连接,则该无人机可以在检测到某充电基站与该无人机的距离最短时,搜索与该无人机之间距离最短的充电基站是否存在闲置的充电位,如果不存在,则可以检测该无人机的当前电量是否足以飞至其它充电基站,如果该无人机的当前电量为5%,飞往距离最短但没有充电位的充电基站需要的电量为4%,而飞往其他充电基站的电量至少需要8%,则该无人机的当前电量不足以飞往其它充电基站,因此可以控制该无人机飞往与该无人机 距离最短的充电基站,并降落在该充电基站的停机坪上。可见,该实施例可以控制当前电量不足以飞往目标充电基站的无人机飞往与该无人机距离最短的充电基站,并降落在该充电基站的停机坪上,从而避免该无人机飞往目标充电基站导致的坠机,保证了无人机的安全。
S302:获取充电位置信息,并向该充电位置信息所指示的位置区域飞行。
本发明实施例中,无人机可以根据目标充电基站发送的携带充电位置信息的控制指令,获取目标充电基站发出的充电位置信息,并向所述充电位置信息所指示的位置区域飞行。
在一个实施例中,该无人机可以在获取到充电位置信息后,检测该无人机的当前电量是否满足该无人机飞往该获取到的控制指令所指示的位置区域,如果满足,则从该控制指令中获取该充电位置信息,并向该充电位置信息所指示的位置区域飞行。如果不满足,则该基站可以发送一个新的充电位置请求给目标充电基站,其中,该充电位置请求携带该无人机在当前电量下能飞往的位置信息,如果接收到该目标充电基站返回的确认指令,则可以将该位置信息确定为充电位置信息,具体请参考上述实施例。
S303:控制该无人机在该充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接。
本发明实施例中,无人机可以控制该无人机在该充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,以使该目标充电基站对该无人机进行充电。其中,该充电无人机是该目标充电基站配备的无人机,在该目标充电基站发出携带该充电位置信息的控制指令后,该无人机可以飞行至该充电位置信息所指示的位置区域,该充电无人机搭载有该目标充电基站提供的充电系留线,该充电系留线与该无人机的充电端口配合,对该无人机进行充电。
本发明实施例,无人机通过检测该无人机在飞行过程中的充电需求,搜索确定出目标充电基站,根据该目标充电基站发出的携带充电位置信息的控制指令,获取充电位置信息,向该充电位置信息所指示的位置区域飞行,并控制该无人机在该位置区域与充电无人机搭载的充电系留线进行对接,以实现该目标充电基站对该无人机进行充电,从而实现无人机在空中与充电无人机对接进行充电,达到远距离飞行工作的目的,满足用户对无人机的自动化、智能化充电以及远距离飞行需求。
请参见图4,图4是本发明实施例提供的另一种控制方法的流程示意图,该方法应用于无人机,具体的,该方法与图3所述实施例的区别在于无人机通过检测当前电量来确认该无人机是否需要充电,并通过开启对接控制器来实现该无人机与充电无人机的对接,具体该方法包括如下步骤。
S401:检测无人机在飞行过程中的当前电量是否小于预设的电量阈值。
本发明实施例中,无人机可以检测该无人机在飞行过程中的当前电量是否小于预设的电量阈值。例如,假设该预设的电量阈值为10%,则无人机可以检测该无人机在飞行过程中的当前电量是否小于10%。可见,该实施方式通过预先设定电量阈值,来实现对无人机当前电量的判断。
S402:如果检测结果为是,则搜索地面的至少一个充电基站。
本发明实施例中,该无人机如果检测到当前电量小于预设的电量阈值,则说明该无人机需要充电,可以与地面上的至少一个充电基站建立通信连接,搜索地面的至少一个充电基站。
S403:从各充电基站中确定出目标充电基站。
本发明实施例中,无人机在检测到充电需求时,可以与地面上的各个充电基站建立通信连接,从而搜索到地面的各个充电基站,并从各基站中确定出目标充电基站。
S404:接收该目标充电基站发出的携带所述充电位置信息的控制指令。
本发明实施例中,无人机可以接收该目标充电基站发出的携带所述充电位置信息的控制指令。
S405:获取充电位置信息,并向该充电位置信息所指示的位置区域飞行。
本发明实施例中,无人机可以根据接收到的控制指令,获取充电位置信息,并向该充电位置信息所指示的位置区域飞行。
S406:如果检测到该无人机与该充电无人机到达该充电位置信息所指示的位置区域,开启该无人机的对接控制器。
本发明实施例中,该无人机如果检测到该无人机到达该充电位置信息所指示的位置区域,且搜索到该充电无人机也到达该充电位置信息所指示的位置区域,则该无人机可以开启该无人机的对接控制器。
S407:通过该对接控制器,控制该无人机在该充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接。
本发明实施例中,该无人机可以通过该对接控制器,控制该无人机在该充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,其中,该控制器用于控制该无人机的充电端口通过磁性吸和或机械卡合的方式与该充电无人机搭载的充电系留线进行对接。
在一个实施例中,该无人机在控制无人机在该充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接之后,可以控制该无人机携带充电无人机在预设范围内飞行;其中,该预设范围为该充电系留线所限制的飞行范围。例如,假设该充电系留线所限制的飞行范围为以6m为半径的空间范围,则该无人机在控制无人机在该充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接之后,可以控制该无人机携带充电无人机在半径为6米(预设范围)的空间范围内飞行。
本发明实施例中,无人机通过检测自身的当前电量是否小于预设的阈值来确定是否需要充电,如果检测到无人机需要充电,则可与地面的充电基站建立通信连接,以从地面搜索到的各充电基站中确定出目标充电基站,并接收该目标充电基站发出的携带充电位置信息的控制指令,根据该控制指令获取充电位置信息,并在飞至该充电位置信息所指示的位置区域时开启无人机的对接控制器,从而控制该无人机在该充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接。可见,本发明实施例实现了无人机在空中与充电无人机对接进行充电,满足了用户对无人机的自动化、智能化充电以及远距离飞行需求。
请参见图5,图5是本发明实施例提供的又一种控制方法的流程示意图,该方法应用于充电无人机,该方法的具体实施步骤如下。
S501:获取目标充电基站发出的携带充电位置信息的控制指令。
本发明实施例中,充电无人机可以获取到目标充电基站发出的携带充电位置信息的控制指令。例如,充电无人机可以获取到目标充电基站发出的飞行至10m高度位置的控制指令。
S502:响应该控制指令,飞行至该充电位置信息所指示的位置区域。
本发明实施例中,充电无人机可以响应该控制指令,飞行至所述充电位置信息所指示的位置区域。例如,该无人机在接收到目标充电基站发送的携带10m高度位置的控制指令后,可以响应该控制指令,飞行至该充电位置信息所 指示的10m高度的位置区域。
S503:控制该充电无人机的充电系留线在该充电位置信息所指示的位置区域与无人机进行对接,以对该无人机进行充电。
本发明实施例中,充电无人机搭载了目标充电基站提供的充电系留线,该无人机可以控制该充电无人机的充电系留线在该充电位置信息所指示的位置区域与无人机的充电端口配合进行对接,以实现对该无人机进行充电。
在一个实施例中,该充电无人机在控制充电系留线在充电位置信息所指示的位置区域与无人机进行对接之后,如果检测到该充电系留线在该充电位置信息所指示的位置区域与该无人机对接成功,则可以关闭该充电无人机的螺旋桨,以停止飞行,以使该无人机携带该充电无人机在充电系留线允许的范围内飞行。
在一个实施例中,该充电无人机在对无人机进行充电之后,如果检测到充电完成,则可以控制该充电无人机断开充电系留线与所述无人机的充电端口的对接,在检测到该充电系留线脱离该无人机的充电端口时,重新启动该充电无人机的螺旋桨,并飞回该目标充电基站。
在一个实施例中,该充电无人机在对无人机进行充电之后,如果检测到该无人机挂载的充电系留线与该无人机的充电端口的机械连接断开,且该充电系留线与该目标充电基站之间的电连接断开,则可以认为该充电无人机与无人机出现了意外断连,此时充电无人机可以立即重新启动调整姿态开始飞行,并飞回该目标充电基站。
本发明实施例中,充电无人机通过响应获取到的目标充电基站发出的携带充电位置信息的控制指令,飞行至该充电位置信息所指示的位置区域,并控制该充电无人机的充电系留线在该充电位置信息所指示的位置区域与无人机进行对接,以实现对该无人机进行空中充电。
请参见图6,图6是本发明实施例提供的又一种控制方法的流程示意图,该方法应用于充电基站,该方法的具体实施步骤如下。
S601:向无人机发送携带充电位置信息的控制指令。
本发明实施例中,充电基站可以向无人机发送携带充电位置信息的控制指令,以通知无人机该充电基站指示的充电位置信息,以使所述无人机在接收到所述控制指令后,飞行至所述充电位置信息所指示的位置区域。
在一个实施例中,该充电基站可以通过软件定义无线电SDR通讯与该无人机建立通信连接,进行通信,并向无人机发送携带充电位置信息的控制指令;或者,与云端服务器建立通信连接,并通过所述云端服务器向无人机发送携带充电位置信息的控制指令。
S602:指示充电无人机向该充电位置信息所指示的位置区域飞行。
本发明实施例中,该充电基站可以在确定充电位置信息后,指示充电无人机向该充电位置信息所指示的位置区域飞行。
在一个实施例中,如果充电基站在向无人机发送携带充电位置信息的控制指令后,如果接收到该无人机发送的充电位置请求,说明该无人机对于飞往该充电基站指示的充电位置信息所指示的位置区域有困难,因此发送一个新的充电位置请求给该充电基站进行协商,该充电基站可以将接收到的充电位置请求所对应的位置信息确定为充电位置信息,指示该充电基站提供的充电无人机向该充电位置请求对应的充电位置信息所指示的位置区域飞行。具体可举例说明,假设充电基站在向无人机发送携带5m高度的充电位置信息的控制指令后,接收到该无人机发送的充电位置请求,该充电位置请求携带的位置信息为8m高度位置,该充电基站可以将接收到该新的位置信息8m高度位置所在位置区域确定为充电位置区域,并可以指示该充电基站提供的充电无人机向该充电位置请求对应的充电位置信息所指示的8m高度的位置区域飞行。
S603:控制该充电无人机的充电系留线在该充电位置信息所指示的位置区域与该无人机进行对接,以对该无人机进行充电。
本发明实施例中,该充电基站可以控制该充电无人机的充电系留线在该充电位置信息所指示的位置区域与该无人机的充电端口配合进行对接,以对该无人机进行充电,其中,该充电无人机搭载了该充电基站提供的充电系留线。
本发明实施例中,充电基站通过向无人机发送携带充电位置信息的控制指令,以通知无人机充电位置信息所指示的位置区域,并指示该充电基站提供的充电无人机搭载该充电基站提供的充电系留线,飞行至该充电位置信息所指示的位置区域与该无人机的充电端口进行对接,以实现对该无人机进行控制充电。
请参见图7,图7是本发明实施例提供的一种控制设备的结构示意图,具体的,本发明实施例的所述设备包括:确定单元701、第一获取单元702、第 一控制单元703,其中,
确定单元701,用于如果检测到无人机在飞行过程中的充电需求,搜索确定出目标充电基站;
第一获取单元702,用于获取充电位置信息,并向所述充电位置信息所指示的位置区域飞行;
第一控制单元703,用于控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,以使所述目标充电基站对所述无人机进行充电;
其中,所述充电无人机为所述目标充电基站配备的无人机,在所述目标充电基站发出携带所述充电位置信息的控制指令后,飞行至所述充电位置信息所指示的位置区域,所述充电无人机搭载有所述目标充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
进一步地,所述获取单元702,具体用于接收所述目标充电基站发出的携带所述充电位置信息的控制指令;检测所述无人机的当前电量是否满足所述无人机飞往所述控制指令携带的充电位置信息所指示的位置区域的电量条件;如果检测结果为否,则发送充电位置请求给所述目标充电基站,所述充电位置请求携带所述无人机在当前电量下能飞往的位置信息;接收所述目标充电基站返回的确认指令,将所述位置信息确定为充电位置信息。
进一步地,所述获取单元702,用于如果检测到所述无人机的当前电量满足所述无人机飞往所述控制指令携带的充电位置信息所指示的位置区域的电量条件,从所述控制指令中获取所述充电位置信息。
进一步地,所述确定单元701,具体用于检测所述无人机在飞行过程中的当前电量是否小于预设的电量阈值;如果检测结果为是,则搜索地面的至少一个充电基站;从各充电基站中确定出目标充电基站。
进一步地,所述确定单元701,用于通过软件定义无线电SDR通讯与所述至少一个充电基站进行通信,并确认各充电基站的位置;或者,与云端服务器建立通信连接,并通过所述云端服务器搜索地面的至少一个充电基站的位置。
进一步地,所述确定单元701,用于检测所述至少一个充电基站与所述无人机之间的距离;将所述距离最短的充电基站,确定为目标充电基站。
进一步地,所述确定单元701,还用于搜索所述至少一个充电基站是否存在闲置充电位;如果判断结果为是,则将存在闲置充电位的充电基站确定为目标充电基站。
进一步地,所述确定单元701,用于如果搜索到与所述无人机之间距离最短的充电基站不存在闲置充电位,检测所述无人机的当前电量是否足以飞至其他充电基站;如果检测结果为否,则控制所述无人机飞往与所述无人机距离最短的充电基站,并降落在所述充电基站的停机坪上。
进一步地,所述控制单元703,用于如果检测到所述无人机与所述充电无人机到达所述充电位置信息所指示的位置区域,开启所述无人机的对接控制器;通过所述对接控制器,控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接;其中,所述控制器用于控制所述无人机的充电端口通过磁性吸和或机械卡合的方式与所述充电无人机搭载的充电系留线进行对接。
进一步地,所述控制单元703,用于控制所述无人机携带所述充电无人机在预设范围内飞行;其中,所述预设范围为所述充电系留线所限制的飞行范围。
在本发明实施例中,控制设备通过确定单元701在检测到充电需求时,搜索确定出目标充电基站,通过第一获取单元702获取充电位置信息,通过第一控制单元703控制无人机在该充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,以使该目标充电基站对该无人机进行充电。
请参见图8,图8是本发明实施例提供的另一种控制设备的结构示意图,具体的,本发明实施例的所述设备包括:第二获取单元801、执行单元802、第二控制单元803,其中,
第二获取单元801,用于获取目标充电基站发出的携带充电位置信息的控制指令;
执行单元802,用于响应所述控制指令,飞行至所述充电位置信息所指示的位置区域;
第二控制单元803,用于控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与无人机进行对接,以对所述无人机进行充电;
其中,所述充电无人机搭载所述目标充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
进一步地,所述第二控制单元803,用于如果检测到所述充电系留线在所述充电位置信息所指示的位置区域与所述无人机对接成功,关闭所述充电无人机的螺旋桨,以停止飞行。
进一步地,所述第二控制单元803,用于如果检测到充电完成,控制所述充电无人机断开充电系留线与所述无人机的充电端口的对接;检测到所述充电系留线脱离所述无人机的充电端口时,重新启动所述充电无人机,并飞回所述目标充电基站。
进一步地,所述第二控制单元803,还用于如果检测到所述充电系留线与所述无人机的充电端口的机械连接断开,且所述充电系留线与所述目标充电基站之间的电连接断开,此时可以认为该充电无人机与无人机出现了意外断连,则重新启动所述充电无人机,并飞回所述目标充电基站。
本发明实施例中,控制设备通过第二获取单元801获取目标充电基站发出的携带充电位置信息的控制指令,通过执行单元802响应该控制指令,飞行至该充电位置信息所指示的位置区域,通过第二控制单元803控制该充电无人机的充电系留线在该充电位置信息所指示的位置区域与无人机进行对接,以对该无人机进行充电。
请参见图9,图9是本发明实施例提供的又一种控制设备的结构示意图,具体的,本发明实施例的所述设备包括:发送单元901、指示单元902、第三控制单元903,其中,
发送单元901,用于向无人机发送携带充电位置信息的控制指令,以使所述无人机在接收到所述控制指令后,飞行至所述充电位置信息所指示的位置区域;
指示单元902,用于指示充电无人机向所述充电位置信息所指示的位置区域飞行;
第三控制单元903,用于控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与所述无人机进行对接,以对所述无人机进行充电;其中,所述充电无人机搭载所述充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
进一步地,所述指示单元902,用于接收所述无人机发送的充电位置请求;将所述充电位置请求对应的位置信息确定为充电位置信息;指示所述充电无人 机向所述充电位置请求对应的充电位置信息所指示的位置区域飞行。
进一步地,所述发送单元901,用于通过软件定义无线电SDR通讯与所述无人机进行通信,并向无人机发送携带充电位置信息的控制指令;或者,与云端服务器建立通信连接,并通过所述云端服务器向无人机发送携带充电位置信息的控制指令。
本发明实施例中,控制设备通过发送单元901向无人机发送携带充电位置信息的控制指令,通过指示单元902指示充电无人机向所述充电位置信息所指示的位置区域飞行,通过第三控制单元903控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与所述无人机进行对接,以对所述无人机进行充电。
请参见图10,图10是本发明实施例提供的又一种控制设备的结构示意图。具体的,如图10所示的本实施例中的控制设备应用于无人机,该设备可以包括:一个或多个处理器1001;一个或多个输入设备1002,一个或多个输出设备1003和存储器1004。上述处理器1001、输入设备1002、输出设备1003和存储器1004通过总线1005连接。存储器1004用于存储指令,处理器1001用于执行存储器1004存储的指令。其中,当程序指令被执行时,处理器1001用于执行如下步骤:
如果检测到无人机在飞行过程中的充电需求,搜索确定出目标充电基站;
获取充电位置信息,并向所述充电位置信息所指示的位置区域飞行;
控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,以使所述目标充电基站对所述无人机进行充电;
其中,所述充电无人机为所述目标充电基站配备的无人机,在所述目标充电基站发出携带所述充电位置信息的控制指令后,飞行至所述充电位置信息所指示的位置区域,所述充电无人机搭载有所述目标充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
进一步地,所述处理器1001调用存储器1004中存储的程序指令,用于执行如下步骤:
接收所述目标充电基站发出的携带所述充电位置信息的控制指令;
检测所述无人机的当前电量是否满足所述无人机飞往所述控制指令携带的充电位置信息所指示的位置区域的电量条件;
如果检测结果为否,则发送充电位置请求给所述目标充电基站,所述充电位置请求携带所述无人机在当前电量下能飞往的位置信息;
接收所述目标充电基站返回的确认指令,将所述位置信息确定为充电位置信息。
进一步地,所述处理器1001调用存储器1004中存储的程序指令,用于执行如下步骤:
如果检测到所述无人机的当前电量满足所述无人机飞往所述控制指令携带的充电位置信息所指示的位置区域的电量条件,从所述控制指令中获取所述充电位置信息。
进一步地,所述处理器1001调用存储器1004中存储的程序指令,用于执行如下步骤:
检测所述无人机在飞行过程中的当前电量是否小于预设的电量阈值;
如果检测结果为是,则搜索地面的至少一个充电基站;
从各充电基站中确定出目标充电基站。
进一步地,所述处理器1001调用存储器1004中存储的程序指令,用于执行如下步骤:
通过软件定义无线电SDR通讯与所述至少一个充电基站进行通信,并确认各充电基站的位置;或者,
与云端服务器建立通信连接,并通过所述云端服务器搜索地面的至少一个充电基站的位置。
进一步地,所述处理器1001调用存储器1004中存储的程序指令,用于执行如下步骤:
检测所述至少一个充电基站与所述无人机之间的距离;
将所述距离最短的充电基站,确定为目标充电基站。
进一步地,所述处理器1001调用存储器1004中存储的程序指令,用于执行如下步骤:
搜索所述至少一个充电基站是否存在闲置充电位;
如果判断结果为是,则将存在闲置充电位的充电基站确定为目标充电基站。
接收所述目标充电基站发出的携带所述充电位置信息的控制指令;
检测所述无人机的当前电量是否满足所述无人机飞往所述控制指令携带的充电位置信息所指示的位置区域的电量条件;
如果检测结果为否,则发送充电位置请求给所述目标充电基站,所述充电位置请求携带所述无人机在当前电量下能飞往的位置信息;
接收所述目标充电基站返回的确认指令,将所述位置信息确定为充电位置信息。
进一步地,所述处理器1001调用存储器1004中存储的程序指令,用于执行如下步骤:
如果搜索到与所述无人机之间距离最短的充电基站不存在闲置充电位,检测所述无人机的当前电量是否足以飞至其他充电基站;
如果检测结果为否,则控制所述无人机飞往与所述无人机距离最短的充电基站,并降落在所述充电基站的停机坪上。
进一步地,所述处理器1001调用存储器1004中存储的程序指令,用于执行如下步骤:
如果检测到所述无人机与所述充电无人机到达所述充电位置信息所指示的位置区域,开启所述无人机的对接控制器;
通过所述对接控制器,控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接;
其中,所述控制器用于控制所述无人机的充电端口通过磁性吸和或机械卡合的方式与所述充电无人机搭载的充电系留线进行对接。
进一步地,所述处理器1001调用存储器1004中存储的程序指令,用于执行如下步骤:
控制所述无人机携带所述充电无人机在预设范围内飞行;
其中,所述预设范围为所述充电系留线所限制的飞行范围。
所述存储器1004可以包括易失性存储器(volatile memory);存储器1004也可以包括非易失性存储器(non-volatile memory);存储器1004还可以包括上述种类的存储器的组合。所述处理器1001可以是中央处理器(central processing unit,CPU)。所述处理器1001还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以 是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或其任意组合。
本发明实施例中,控制设备通过检测该无人机在飞行过程中的充电需求,搜索确定出目标充电基站,根据该目标充电基站发出的携带充电位置信息的控制指令,获取充电位置信息,向该充电位置信息所指示的位置区域飞行,并控制该无人机在该位置区域与充电无人机搭载的充电系留线进行对接,以实现该目标充电基站对该无人机进行充电,从而实现无人机在空中与充电无人机对接进行充电,满足用户对无人机的自动化、智能化充电以及远距离飞行需求。
请参见图11,图11是本发明实施例提供的又一种控制设备的结构示意图。具体的,如图11所示的本实施例中的控制设备应用于充电无人机,该设备可以包括:一个或多个处理器1101;一个或多个输入设备1102,一个或多个存储器1103。上述处理器1101、输入设备1102和存储器1103通过总线1104连接。存储器1103用于存储指令,处理器1101用于执行存储器1103存储的指令。其中,当程序指令被执行时,处理器1101用于执行如下步骤:
获取目标充电基站发出的携带充电位置信息的控制指令;
响应所述控制指令,飞行至所述充电位置信息所指示的位置区域;
控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与无人机进行对接,以对所述无人机进行充电;
其中,所述充电无人机搭载所述目标充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
进一步地,所述处理器1101调用存储器1103中存储的程序指令,用于执行如下步骤:
如果检测到所述充电系留线在所述充电位置信息所指示的位置区域与所述无人机对接成功,关闭所述充电无人机的螺旋桨,以停止飞行。
进一步地,所述处理器1101调用存储器1103中存储的程序指令,用于执行如下步骤:
如果检测到充电完成,控制所述充电无人机断开充电系留线与所述无人机的充电端口的对接;
检测到所述充电系留线脱离所述无人机的充电端口时,重新启动所述充电无人机,并飞回所述目标充电基站。
进一步地,所述处理器1101调用存储器1103中存储的程序指令,用于执行如下步骤:
如果检测到所述充电系留线与所述无人机的充电端口的机械连接断开,且所述充电系留线与所述目标充电基站之间的电连接断开,则可以认为该充电无人机与无人机出现了意外断连,此时充电无人机可以立即重新启动调整姿态开始飞行,并飞回所述目标充电基站。
所述存储器1103可以包括易失性存储器(volatile memory);存储器1103也可以包括非易失性存储器(non-volatile memory);存储器1103还可以包括上述种类的存储器的组合。所述处理器1101可以是中央处理器(central processing unit,CPU)。所述处理器1101还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或其任意组合。
本发明实施例中,该控制设备通过响应获取到的目标充电基站发出的携带充电位置信息的控制指令,飞行至该充电位置信息所指示的位置区域,并控制该充电无人机的充电系留线在该充电位置信息所指示的位置区域与无人机进行对接,以实现对该无人机进行空中充电。
请参见图12,图12是本发明实施例提供的再一种控制设备的结构示意图。具体的,如图12所示的本实施例中的控制设备应用于充电基站,该设备可以包括:一个或多个处理器1201;一个或多个输入设备1202,一个或多个输出设备1203和存储器1204。上述处理器1201、输入设备1202、输出设备1203和存储器1204通过总线1205连接。存储器1204用于存储指令,处理器1201用于执行存储器1204存储的指令。其中,当程序指令被执行时,处理器1201用于执行如下步骤:
向无人机发送携带充电位置信息的控制指令,以使所述无人机在接收到所述控制指令后,飞行至所述充电位置信息所指示的位置区域;
指示充电无人机向所述充电位置信息所指示的位置区域飞行;
控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与所述无人机进行对接,以对所述无人机进行充电;
其中,所述充电无人机搭载所述充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
进一步地,所述处理器1201调用存储器1204中存储的程序指令,用于执行如下步骤:
接收所述无人机发送的充电位置请求;
将所述充电位置请求对应的位置信息确定为充电位置信息;
指示所述充电无人机向所述充电位置请求对应的充电位置信息所指示的位置区域飞行。
进一步地,所述处理器1201调用存储器1204中存储的程序指令,用于执行如下步骤:
通过软件定义无线电SDR通讯与所述无人机进行通信,并向无人机发送携带充电位置信息的控制指令;或者,
与云端服务器建立通信连接,并通过所述云端服务器向无人机发送携带充电位置信息的控制指令。
所述存储器1204可以包括易失性存储器(volatile memory);存储器1204也可以包括非易失性存储器(non-volatile memory);存储器1204还可以包括上述种类的存储器的组合。所述处理器1201可以是中央处理器(central processing unit,CPU)。所述处理器1201还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA)或其任意组合。
本发明实施例中,该控制设备通过向无人机发送携带充电位置信息的控制指令,并指示该充电基站提供的充电无人机搭载该充电基站提供的充电系留线,飞行至该充电位置信息所指示的位置区域与该无人机的充电端口进行对接,以实现对该无人机进行控制充电。
本发明实施例还提供了一种无人机,包括:机身;设置在机身上的动力系统,用于提供飞行动力;如图7对应实施例所述的控制设备。
所述无人机中如图7对应实施例所述的控制设备的具体实现可参考上述图3或图4所对应实施例的控制方法,在此不再赘述。其中,无人机可以是四 旋翼无人机、六旋翼无人机、多旋翼无人机等类型的飞行器。所述动力系统可以包括电机、电调、螺旋桨等结构,其中,电机负责带动飞行器螺旋桨,电调负责控制飞行器的电机的转速。
本发明实施例还提供了一种充电无人机,包括:机身;设置在机身上的动力系统,用于提供飞行动力;搭载在机身上的充电系留线,用于与无人机的充电端口配合对所述无人机进行充电;如图8对应实施例所述的控制设备。
所述充电无人机中如图8对应实施例所述的控制设备的具体实现可参考上述图5所对应实施例的控制方法,在此不再赘述。其中,该充电无人机可以是四旋翼无人机、六旋翼无人机、多旋翼无人机等类型的飞行器。所述动力系统可以包括电机、电调、螺旋桨等结构,其中,电机负责带动飞行器螺旋桨,电调负责控制飞行器的电机的转速。
本发明实施例还提供了一种充电基站,包括:连接在充电基站上的充电系留线,用于搭载在充电无人机上与无人机的充电端口配合对所述无人机进行充电;如图9对应实施例所述的控制设备。
本发明实施例还提供了一种无人机空中充电系统,包括:待充电无人机、充电无人机及充电基站;
所述待充电无人机,用于如果检测到所述待充电无人机在飞行过程中的充电需求,搜索确定出目标充电基站;
所述充电无人机,用于控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与待充电无人机进行对接,以对所述待充电无人机进行充电;
所述充电基站,用于向待充电无人机发送携带充电位置信息的控制指令,以使所述待充电无人机在接收到所述控制指令后,飞行至所述充电位置信息所指示的位置区域;指示充电无人机向所述充电位置信息所指示的位置区域飞行;控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与所述待充电无人机进行对接,以对所述待充电无人机进行充电;
所述待充电无人机,还用于获取充电位置信息,并向所述充电位置信息所指示的位置区域飞行;控制所述待充电无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,以使所述目标充电基站对所述待充电无人机进行充电。
进一步地,所述充电基站与多个充电无人机相连;
所述充电基站所在区域包括多个停机坪,以供待充电无人机降落。
进一步地,所述待充电无人机与充电基站之间通过SDR通讯进行通信;或者,
所述待充电无人机与充电基站之间通过与云端服务器建立通信连接进行通信。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明图2、图3、图4、图5或图6所对应实施例中描述的控制方法方式,也可实现图7、图8、图9、图10、图11、图12所述本发明所对应实施例的控制设备,在此不再赘述。
所述计算机可读存储介质可以是前述任一实施例所述的设备的内部存储单元,例如设备的硬盘或内存。所述计算机可读存储介质也可以是所述设备的外部存储设备,例如所述设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述计算机可读存储介质还可以既包括所述设备的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机程序以及所述终端所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (41)

  1. 一种控制方法,其特征在于,应用于无人机,该方法包括:
    如果检测到无人机在飞行过程中的充电需求,搜索确定出目标充电基站;
    获取充电位置信息,并向所述充电位置信息所指示的位置区域飞行;
    控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,以使所述目标充电基站对所述无人机进行充电;
    其中,所述充电无人机为所述目标充电基站配备的无人机,在所述目标充电基站发出携带所述充电位置信息的控制指令后,飞行至所述充电位置信息所指示的位置区域,所述充电无人机搭载有所述目标充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
  2. 根据权利要求1所述的方法,其特征在于,所述获取充电位置信息,包括:
    接收所述目标充电基站发出的携带所述充电位置信息的控制指令;
    检测所述无人机的当前电量是否满足所述无人机飞往所述控制指令携带的充电位置信息所指示的位置区域的电量条件;
    如果检测结果为否,则发送充电位置请求给所述目标充电基站,所述充电位置请求携带所述无人机在当前电量下能飞往的位置信息;
    接收所述目标充电基站返回的确认指令,将所述位置信息确定为充电位置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述获取充电位置信息,包括:
    如果检测到所述无人机的当前电量满足所述无人机飞往所述控制指令携带的充电位置信息所指示的位置区域的电量条件,从所述控制指令中获取所述充电位置信息。
  4. 根据权利要求1所述的方法,其特征在于,所述如果检测到无人机在飞行过程中的充电需求,搜索确定出目标充电基站,包括:
    检测所述无人机在飞行过程中的当前电量是否小于预设的电量阈值;
    如果检测结果为是,则搜索地面的至少一个充电基站;
    从各充电基站中确定出目标充电基站。
  5. 根据权利要求4所述的方法,其特征在于,所述搜索地面的至少一个充电基站,包括:
    通过软件定义无线电SDR通讯与所述至少一个充电基站进行通信,并确认各充电基站的位置;或者,
    与云端服务器建立通信连接,并通过所述云端服务器搜索地面的至少一个充电基站的位置。
  6. 根据权利要求4或5所述的方法,其特征在于,所述从各充电基站中确定出目标充电基站,包括:
    检测所述至少一个充电基站与所述无人机之间的距离;
    将所述距离最短的充电基站,确定为目标充电基站。
  7. 根据权利要求4或5所述的方法,其特征在于,所述从各充电基站中确定出目标充电基站,还包括:
    搜索所述至少一个充电基站是否存在闲置充电位;
    如果判断结果为是,则将存在闲置充电位的充电基站确定为目标充电基站。
  8. 根据权利要求6或7所述的方法,其特征在于,所述从各充电基站中确定出目标充电基站,包括:
    如果搜索到与所述无人机之间距离最短的充电基站不存在闲置充电位,检测所述无人机的当前电量是否足以飞至其他充电基站;
    如果检测结果为否,则控制所述无人机飞往与所述无人机距离最短的充电基站,并降落在所述充电基站的停机坪上。
  9. 根据权利要求1所述的方法,其特征在于,所述控制所述无人机在所 述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,包括:
    如果检测到所述无人机与所述充电无人机到达所述充电位置信息所指示的位置区域,开启所述无人机的对接控制器;
    通过所述对接控制器,控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接;
    其中,所述控制器用于控制所述无人机的充电端口通过磁性吸和或机械卡合的方式与所述充电无人机搭载的充电系留线进行对接。
  10. 根据权利要求9所述的方法,其特征在于,所述控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接之后,包括:
    控制所述无人机携带所述充电无人机在预设范围内飞行;
    其中,所述预设范围为所述充电系留线所限制的飞行范围。
  11. 一种控制方法,其特征在于,应用于充电无人机,该方法包括:
    获取目标充电基站发出的携带充电位置信息的控制指令;
    响应所述控制指令,飞行至所述充电位置信息所指示的位置区域;
    控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与无人机进行对接,以对所述无人机进行充电;
    其中,所述充电无人机搭载所述目标充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
  12. 根据权利要求11所述的方法,其特征在于,所述控制所述充电无人机搭载的充电系留线在所述充电位置信息所指示的位置区域与无人机的充电端口配合对接之后,包括:
    如果检测到所述充电系留线在所述充电位置信息所指示的位置区域与所述无人机对接成功,关闭所述充电无人机的螺旋桨,以停止飞行。
  13. 根据权利要求11所述的方法,其特征在于,所述对所述无人机进行 充电之后,包括:
    如果检测到充电完成,控制所述充电无人机断开充电系留线与所述无人机的充电端口的对接;
    检测到所述充电系留线脱离所述无人机的充电端口时,重新启动所述充电无人机,并飞回所述目标充电基站。
  14. 根据权利要求11所述的方法,其特征在于,所述对所述无人机进行充电之后,还包括:
    如果检测到所述充电系留线与所述无人机的充电端口的机械连接断开,且所述充电系留线与所述目标充电基站之间的电连接断开,则重新启动所述充电无人机,并飞回所述目标充电基站。
  15. 一种控制方法,其特征在于,应用于充电基站,该方法包括:
    向无人机发送携带充电位置信息的控制指令,以使所述无人机在接收到所述控制指令后,飞行至所述充电位置信息所指示的位置区域;
    指示充电无人机向所述充电位置信息所指示的位置区域飞行;
    控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与所述无人机进行对接,以对所述无人机进行充电;
    其中,所述充电无人机搭载所述充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
  16. 根据权利要求15所述的方法,其特征在于,所述指示充电无人机向所述充电位置信息所指示的位置区域飞行,包括:
    接收所述无人机发送的充电位置请求;
    将所述充电位置请求对应的位置信息确定为充电位置信息;
    指示所述充电无人机向所述充电位置请求对应的充电位置信息所指示的位置区域飞行。
  17. 根据权利要求15所述的方法,其特征在于,所述向无人机发送携带充电位置信息的控制指令,包括:
    通过软件定义无线电SDR通讯与所述无人机进行通信,并向无人机发送携带充电位置信息的控制指令;或者,
    与云端服务器建立通信连接,并通过所述云端服务器向无人机发送携带充电位置信息的控制指令。
  18. 一种控制设备,其特征在于,包括存储器和处理器;
    所述存储器,用于存储程序指令;
    所述处理器,调用存储器中存储的程序指令,用于执行如下步骤:
    如果检测到无人机在飞行过程中的充电需求,搜索确定出目标充电基站;
    获取充电位置信息,并向所述充电位置信息所指示的位置区域飞行;
    控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,以使所述目标充电基站对所述无人机进行充电;
    其中,所述充电无人机为所述目标充电基站配备的无人机,在所述目标充电基站发出携带所述充电位置信息的控制指令后,飞行至所述充电位置信息所指示的位置区域,所述充电无人机搭载有所述目标充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
  19. 根据权利要求18所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    接收所述目标充电基站发出的携带所述充电位置信息的控制指令;
    检测所述无人机的当前电量是否满足所述无人机飞往所述控制指令携带的充电位置信息所指示的位置区域的电量条件;
    如果检测结果为否,则发送充电位置请求给所述目标充电基站,所述充电位置请求携带所述无人机在当前电量下能飞往的位置信息;
    接收所述目标充电基站返回的确认指令,将所述位置信息确定为充电位置信息。
  20. 根据权利要求19所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    如果检测到所述无人机的当前电量满足所述无人机飞往所述控制指令携 带的充电位置信息所指示的位置区域的电量条件,从所述控制指令中获取所述充电位置信息。
  21. 根据权利要求18所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    检测所述无人机在飞行过程中的当前电量是否小于预设的电量阈值;
    如果检测结果为是,则搜索地面的至少一个充电基站;
    从各充电基站中确定出目标充电基站。
  22. 根据权利要求21所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    通过软件定义无线电SDR通讯与所述至少一个充电基站进行通信,并确认各充电基站的位置;或者,
    与云端服务器建立通信连接,并通过所述云端服务器搜索地面的至少一个充电基站的位置。
  23. 根据权利要求21或22所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    检测所述至少一个充电基站与所述无人机之间的距离;
    将所述距离最短的充电基站,确定为目标充电基站。
  24. 根据权利要求21或22所述的设备,其特征在于,所述处理器还用于执行如下步骤:
    搜索所述至少一个充电基站是否存在闲置充电位;
    如果判断结果为是,则将存在闲置充电位的充电基站确定为目标充电基站。
  25. 根据权利要求23或24所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    如果搜索到与所述无人机之间距离最短的充电基站不存在闲置充电位,检 测所述无人机的当前电量是否足以飞至其他充电基站;
    如果检测结果为否,则控制所述无人机飞往与所述无人机距离最短的充电基站,并降落在所述充电基站的停机坪上。
  26. 根据权利要求18所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    如果检测到所述无人机与所述充电无人机到达所述充电位置信息所指示的位置区域,开启所述无人机的对接控制器;
    通过所述对接控制器,控制所述无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接;
    其中,所述控制器用于控制所述无人机的充电端口通过磁性吸和或机械卡合的方式与所述充电无人机搭载的充电系留线进行对接。
  27. 根据权利要求26所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    控制所述无人机携带所述充电无人机在预设范围内飞行;
    其中,所述预设范围为所述充电系留线所限制的飞行范围。
  28. 一种控制设备,其特征在于,包括存储器和处理器;
    所述存储器,用于存储程序指令;
    所述处理器,调用存储器中存储的程序指令,用于执行如下步骤:
    获取目标充电基站发出的携带充电位置信息的控制指令;
    响应所述控制指令,飞行至所述充电位置信息所指示的位置区域;
    控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与无人机进行对接,以对所述无人机进行充电;
    其中,所述充电无人机搭载所述目标充电基站提供的充电系留线,所述充电系留线与所述无人机的充电端口配合对所述无人机进行充电。
  29. 根据权利要求28所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    如果检测到所述充电系留线在所述充电位置信息所指示的位置区域与所述无人机对接成功,关闭所述充电无人机的螺旋桨,以停止飞行。
  30. 根据权利要求28所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    如果检测到充电完成,控制所述充电无人机断开充电系留线与所述无人机的充电端口的对接;
    检测到所述充电系留线脱离所述无人机的充电端口时,重新启动所述充电无人机,并飞回所述目标充电基站。
  31. 根据权利要求28所述的设备,其特征在于,所述处理器具体还用于执行如下步骤:
    如果检测到所述充电系留线与所述无人机的充电端口的机械连接断开,且所述充电系留线与所述目标充电基站之间的电连接断开,则重新启动所述充电无人机,并飞回所述目标充电基站。
  32. 一种控制设备,其特征在于,包括存储器和处理器;
    所述存储器,用于存储程序指令;
    所述处理器,调用存储器中存储的程序指令,用于执行如下步骤:
    向无人机发送携带充电位置信息的控制指令,以使所述无人机在接收到所述控制指令后,飞行至所述充电位置信息所指示的位置区域;
    指示充电无人机向所述充电位置信息所指示的位置区域飞行;
    控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与所述无人机进行对接,以对所述无人机进行充电;
    其中,所述充电无人机搭载所述充电基站提供的充电系留线,所述充电系留线与所述充电无人机的充电端口配合对所述无人机进行充电。
  33. 根据权利要求32所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    接收所述无人机发送的充电位置请求;
    将所述充电位置请求对应的位置信息确定为充电位置信息;
    指示所述充电无人机向所述充电位置请求对应的充电位置信息所指示的位置区域飞行。
  34. 根据权利要求32所述的设备,其特征在于,所述处理器具体用于执行如下步骤:
    通过软件定义无线电SDR通讯与所述无人机进行通信,并向无人机发送携带充电位置信息的控制指令;或者,
    与云端服务器建立通信连接,并通过所述云端服务器向无人机发送携带充电位置信息的控制指令。
  35. 一种无人机,其特征在于,包括:
    机身;
    设置在机身上的动力系统,用于提供飞行动力;
    如权利要求18-27任一项所述的控制设备。
  36. 一种充电无人机,其特征在于,包括:
    机身;
    设置在机身上的动力系统,用于提供飞行动力;
    搭载在机身上的充电系留线,用于与无人机的充电端口配合对所述无人机进行充电;
    如权利要求28-31任一项所述的控制设备。
  37. 一种充电基站,其特征在于,包括:
    连接在充电基站上的充电系留线,用于搭载在充电无人机上与无人机的充电端口配合对所述无人机进行充电;
    如权利要求32-34任一项所述的控制设备。
  38. 一种无人机空中充电系统,其特征在于,包括:待充电无人机、充电无人机及充电基站;
    所述待充电无人机,用于如果检测到所述待充电无人机在飞行过程中的充电需求,搜索确定出目标充电基站;
    所述充电无人机,用于控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与待充电无人机进行对接,以对所述待充电无人机进行充电;
    所述充电基站,用于向待充电无人机发送携带充电位置信息的控制指令,以使所述待充电无人机在接收到所述控制指令后,飞行至所述充电位置信息所指示的位置区域;指示充电无人机向所述充电位置信息所指示的位置区域飞行;控制所述充电无人机的充电系留线在所述充电位置信息所指示的位置区域与所述待充电无人机进行对接,以对所述待充电无人机进行充电;
    所述待充电无人机,还用于获取充电位置信息,并向所述充电位置信息所指示的位置区域飞行;控制所述待充电无人机在所述充电位置信息所指示的位置区域与充电无人机搭载的充电系留线进行对接,以使所述目标充电基站对所述待充电无人机进行充电。
  39. 根据权利要求38所述的系统,其特征在于,
    所述充电基站与多个充电无人机相连;
    所述充电基站所在区域包括多个停机坪,以供待充电无人机降落。
  40. 根据权利要求38所述的系统,其特征在于,
    所述待充电无人机与充电基站之间通过SDR通讯进行通信;或者,
    所述待充电无人机与充电基站之间通过与云端服务器建立通信连接进行通信。
  41. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至17任一项所述方法。
PCT/CN2017/107837 2017-10-26 2017-10-26 一种控制方法、设备、无人机、充电基站及系统 WO2019080053A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/107837 WO2019080053A1 (zh) 2017-10-26 2017-10-26 一种控制方法、设备、无人机、充电基站及系统
CN201780004746.1A CN108473209B (zh) 2017-10-26 2017-10-26 一种控制方法、设备、无人机、充电基站及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/107837 WO2019080053A1 (zh) 2017-10-26 2017-10-26 一种控制方法、设备、无人机、充电基站及系统

Publications (1)

Publication Number Publication Date
WO2019080053A1 true WO2019080053A1 (zh) 2019-05-02

Family

ID=63266513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107837 WO2019080053A1 (zh) 2017-10-26 2017-10-26 一种控制方法、设备、无人机、充电基站及系统

Country Status (2)

Country Link
CN (1) CN108473209B (zh)
WO (1) WO2019080053A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279481B2 (en) 2017-05-12 2022-03-22 Phirst Technologies, Llc Systems and methods for tracking, evaluating and determining a response to emergency situations using unmanned airborne vehicles

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2577335B (en) * 2018-09-24 2022-05-11 Leonardo Mw Ltd Flying apparatus
CN110143141B (zh) * 2019-06-05 2020-03-24 湖南大学 一种可提升中转续航能力的物流无人机
CN112272957B (zh) * 2019-11-19 2024-06-18 深圳市大疆创新科技有限公司 一种降落控制方法、设备、基站、无人机及存储介质
CN111942188B (zh) * 2020-08-11 2022-04-12 北京京东乾石科技有限公司 一种无人机空中充电系统、充电方法、装置、设备和介质
CN116710943A (zh) * 2021-03-17 2023-09-05 深圳市大疆创新科技有限公司 无人机调度方法、服务器、基站、系统及可读存储介质
CN114248640A (zh) * 2021-12-14 2022-03-29 楚山(深圳)新能源科技有限公司 一种无人机充电方法、装置、无人机及系统
CN116844381B (zh) * 2023-06-06 2024-06-14 广州思谋信息科技有限公司 一种基于人工智能的无人机停机管理系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101373850B1 (ko) * 2014-02-07 2014-03-26 주식회사 네스앤텍 유선 비행체의 전원공급시스템
CN106160160A (zh) * 2016-08-11 2016-11-23 任雪峰 一种用于系留无人机的双通路供电系统
CN106573684A (zh) * 2014-08-08 2017-04-19 深圳市大疆创新科技有限公司 多区的电池更换系统
CN107140229A (zh) * 2017-04-27 2017-09-08 陶霖密 一种系留无人机能源供给系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101643718B1 (ko) * 2014-07-16 2016-07-28 한국항공우주연구원 지주형 무인비행체 격납충전장치 및 이를 이용한 무인비행체의 격납 및 충전방법
CN105048533B (zh) * 2015-06-26 2017-11-24 南京衡创天伟无人机技术有限公司 小型多旋翼无人机自动充电系统
WO2017035841A1 (zh) * 2015-09-06 2017-03-09 深圳市大疆创新科技有限公司 无人机及其空中补给方法、以及浮空平台及其控制方法
CN106130104B (zh) * 2016-07-12 2019-09-27 上海与德通讯技术有限公司 一种无人机充电方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101373850B1 (ko) * 2014-02-07 2014-03-26 주식회사 네스앤텍 유선 비행체의 전원공급시스템
CN106573684A (zh) * 2014-08-08 2017-04-19 深圳市大疆创新科技有限公司 多区的电池更换系统
CN106160160A (zh) * 2016-08-11 2016-11-23 任雪峰 一种用于系留无人机的双通路供电系统
CN107140229A (zh) * 2017-04-27 2017-09-08 陶霖密 一种系留无人机能源供给系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279481B2 (en) 2017-05-12 2022-03-22 Phirst Technologies, Llc Systems and methods for tracking, evaluating and determining a response to emergency situations using unmanned airborne vehicles

Also Published As

Publication number Publication date
CN108473209B (zh) 2021-08-24
CN108473209A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2019080053A1 (zh) 一种控制方法、设备、无人机、充电基站及系统
US11776413B2 (en) Aerial vehicle flight control method and device thereof
US10007272B2 (en) Midair tethering of an unmanned aerial vehicle with a docking station
WO2018210101A1 (zh) 无人机通信系统以及无人机服务器的通信系统
WO2019119201A1 (zh) 一种云台控制方法、无人机、云台及存储介质
WO2020191647A1 (zh) 一种无人机的降落控制方法、飞行控制设备及无人机
CN114531194A (zh) 无线通信方法、装置、无人机以及无人机控制系统
WO2019127478A1 (zh) 无人机的控制方法、飞行控制器及无人机
US20180319494A1 (en) Unmanned aerial roadside assist system
CN106325300A (zh) 一种基于gsm‑4g通信的无人机远程状态监测与控制系统
US20210018938A1 (en) Computation load distribution
CN111552279B (zh) 向被控制的设备传送指令数据项的方法和装置
CN107992077A (zh) 飞行器故障救援方法及装置
EP3793259A1 (en) Information transmission method and apparatus
US11161607B2 (en) Flying body and system
JP2017212528A (ja) 撮像システム、撮像制御方法、撮像制御システム、移動体、制御方法、及びプログラム
CN109995117B (zh) 基于机器人的充电系统及方法
CN111752296A (zh) 无人机航线控制方法及相关装置
CN110134133A (zh) 一种多旋翼自动控制无人机系统
EP3813443A1 (en) Control device, program, and control method
EP3500021A1 (en) Electronic device for performing wireless device to device communication
WO2018090494A1 (zh) 无人机停机坪的控制方法及装置
US11137777B2 (en) Control apparatus, program, system and control method
WO2020133259A1 (zh) 通信控制方法及装置
EP4040251A1 (en) Drone controlling device and a drone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929485

Country of ref document: EP

Kind code of ref document: A1