WO2018209955A1 - 静子叶片、压缩机结构和压缩机 - Google Patents

静子叶片、压缩机结构和压缩机 Download PDF

Info

Publication number
WO2018209955A1
WO2018209955A1 PCT/CN2017/118110 CN2017118110W WO2018209955A1 WO 2018209955 A1 WO2018209955 A1 WO 2018209955A1 CN 2017118110 W CN2017118110 W CN 2017118110W WO 2018209955 A1 WO2018209955 A1 WO 2018209955A1
Authority
WO
WIPO (PCT)
Prior art keywords
benefit
compressor
compressor structure
stator
impeller
Prior art date
Application number
PCT/CN2017/118110
Other languages
English (en)
French (fr)
Inventor
刘增岳
钟瑞兴
雷连冬
陈玉辉
蒋楠
欧阳鑫望
蒋彩云
周义
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Priority to US16/613,978 priority Critical patent/US11408440B2/en
Priority to EP17909993.2A priority patent/EP3626975B1/en
Priority to ES17909993T priority patent/ES2968232T3/es
Publication of WO2018209955A1 publication Critical patent/WO2018209955A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/025Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal comprising axial flow and radial flow stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/56Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/563Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/124Fluid guiding means, e.g. vanes related to the suction side of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/291Three-dimensional machined; miscellaneous hollowed

Definitions

  • the present application relates to the field of compressors, and in particular to a stator vane, a compressor structure and a compressor.
  • the two-stage compression refrigeration cycle mixes the flash steam separated from the economizer with the exhaust gas from the low-stage compression, reduces the secondary compression intake air temperature, reduces the refrigerant gas specific volume, and reduces the compressor energy consumption.
  • the refrigerant needs to be diffused by a diffuser, and then returned to the second impeller inlet after being deflected by the reflux stage of the refluxer.
  • the refrigerant flow is long and the friction loss is large.
  • the inter-stage air supply is often inconsistent with the mainstream speed direction and size, resulting in a large blending loss.
  • a stator blade, a compressor structure and a compressor are provided to solve the problem of high airflow mixing loss caused by the supplemental gas in the prior art.
  • an embodiment of the present application provides a stator blade, including: a blade body, a cavity is formed inside the blade body, and a plenum is formed on the blade body.
  • the air supply hole is provided on a suction side of the blade body.
  • the blade body is made by casting or machining.
  • the present application also provides a compressor structure including the above-described stator blades.
  • the compressor structure further includes a housing on which a gas supply passage is formed in communication with the cavity of the stator vane.
  • the compressor structure further includes a rotor wheel and a secondary impeller, the output airflow of the rotor wheel passing through the stator vanes into the secondary impeller.
  • the input side of the rotor wheel is provided with an adjustable vane.
  • the output of the secondary impeller is fitted with a diffuser.
  • the diffuser vanes are provided in the diffuser flow passage of the diffuser.
  • stator vanes are axial vanes.
  • the rotor wheel is an axial flow impeller.
  • the application also provides a compressor comprising the compressor structure described above.
  • the application forms a jet on the suction surface of the stator blade by qi, thereby blowing off the low-speed low-energy region formed by the suction surface, reducing the airflow mixing loss caused by the supplemental gas, thereby improving the aerodynamic efficiency of the centrifugal compressor.
  • FIG. 1 is a schematic view showing an axial force balance structure of a compressor rotor according to an embodiment of the present application
  • FIG. 2 is a cross-sectional structural view of a stator blade of an embodiment of the present application.
  • the centrifugal refrigeration compressor of the prior art is compressed by a two-stage centrifugal impeller, and the middle is supplemented with air. After the refrigerant is compressed by the first stage impeller, it needs to be diffused by the diffuser, and then returned to the secondary impeller inlet after the reflux stage of the reflux guide.
  • the refrigerant flow is long, the friction loss is large, and the inter-stage air supply is often The mainstream speed direction and size are inconsistent, resulting in a large blending loss.
  • the embodiment of the present application provides a stator blade, comprising: a blade body 1 , a cavity 2 is formed inside the blade body 1 , and a gas filling hole 3 is formed on the blade body 1 .
  • the air supply hole 3 is provided on a suction side of the blade body 1.
  • stator blade in the present application is designed to be hollow (for example, the blade body 1 is made by casting or machining), and a micro air hole 3 is provided on the back of the stator blade, the suction surface of the stator blade can be made by the air supply.
  • the jet is formed to blow off the low-speed low-energy region formed by the suction surface, reduce the airflow separation loss, and improve the aerodynamic efficiency of the compressor.
  • the suction surface separation of the stator blade can be effectively suppressed.
  • the present application also provides a compressor structure including the stator blade 4 described above.
  • the compressor structure further includes a housing on which a gas supply passage 5 communicating with the cavity 2 of the stator blade 4 is formed.
  • the above technical solution forms a jet on the suction surface of the stator blade 4 by qi, thereby blowing out the low-speed low-energy region formed by the suction surface, reducing the airflow mixing loss caused by the supplemental air, thereby improving the aerodynamic efficiency of the centrifugal compressor.
  • the compressor structure further comprises a rotor wheel 6 and a secondary impeller 7, through which the output airflow of the rotor wheel 6 enters the secondary impeller 7.
  • the back jet of the stator blade 4 liquefies the air, which can effectively reduce the temperature and specific volume of the outlet refrigerant of the first stage impeller (ie, the rotor impeller 6), and improve the aerodynamic efficiency of the secondary impeller 7.
  • the present application replaces the primary centrifugal impeller with the axial flow impeller (ie, the rotor impeller 6), the primary diffuser and the returnor with the axial flow stator blade (ie, the stator blade 4), thereby
  • the two-stage centrifugal impeller is compressed and replaced by an axial-centrifugal combination, and the axial flow rotor blade has the characteristics of small size and high efficiency. Therefore, the flow between the two-stage compression of the gas refrigerant is reduced, the friction and the like are reduced, and the aerodynamic efficiency of the centrifugal compressor is further improved.
  • the input side of the rotor wheel 6 is provided with an adjustable vane 8.
  • the output of the secondary impeller 7 is fitted with a diffuser.
  • a diffuser vane 10 is disposed in the diffuser flow passage 9 of the diffuser.
  • the output side of the diffuser vane 10 is provided with a volute 11.
  • the jet plenum at the back of the stator vane 4 can effectively reduce the temperature and specific volume of the primary impeller outlet refrigerant, improve the aerodynamic efficiency of the secondary impeller, and the diffuser of the stator vane reduces the stroke of the airflow in the diffuser flow passage. , reduce friction and other losses.
  • the low-speed low-energy region formed by the suction surface can be blown off, the airflow separation loss can be reduced, and the aerodynamic efficiency of the compressor can be improved.
  • the application also provides a compressor comprising the compressor structure described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Architecture (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

静子叶片、压缩机结构以及压缩机。静子叶片包括:叶片本体(1),叶片本体(1)的内部形成有空腔(2),叶片本体(1)上形成有补气孔(3)。通过补气在静子叶片的吸力面形成射流,从而吹除吸力面形成的低速低能区,降低了补气带来的气流掺混损失,进而提高了离心压缩机的气动效率。

Description

静子叶片、压缩机结构和压缩机
相关申请
本申请要求2017年05月16日申请的,申请号为201710344335.9,名称为“静子叶片、压缩机结构和压缩机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及压缩机领域,具体而言,涉及一种静子叶片、压缩机结构和压缩机。
背景技术
在离心式制冷压缩机中,由于冷媒经压缩后,温度会急剧上升,在高温下,气体比容很大,在保证相同制冷量的情况下,压缩机能耗将会急剧增大。为了降低压缩机耗功,提高制冷能力,常用多级压缩制冷循环。
目前使用最为广泛的是带有闪发蒸汽分离器(俗称经济器)的“双级压缩中间不完全冷却制冷循环”。双级压缩制冷循环,是将从经济器分离出来的闪发蒸汽与来自低级压缩的排气相混合,降低了二级压缩的进气温度,使制冷剂气体比容下降,压缩机能耗降低。
但是,冷媒经过一级叶轮压缩后需经过扩压器扩压,再经过回流器导流级消旋后回到二级叶轮进口,冷媒流程较长,摩擦损失较大。而且级间补气气流往往与主流速度方向及大小不一致,导致较大的掺混损失。
发明内容
本申请实施例中提供一种静子叶片、压缩机结构和压缩机,以解决现有技术中补气带来的气流掺混损失高的问题。
为实现上述目的,本申请实施例提供一种静子叶片,包括:叶片本体,所述叶片本体的内部形成有空腔,所述叶片本体上形成有补气孔。
作为优选,所述补气孔设置在所述叶片本体的吸力面。
作为优选,所述叶片本体通过铸造或机加工制成。
本申请还提供了一种压缩机结构,其特征在于,包括上述的静子叶片。
作为优选,所述压缩机结构还包括壳体,所述壳体上形成与所述静子叶片的所述空腔连通的补气通道。
作为优选,所述压缩机结构还包括转子叶轮和二级叶轮,所述转子叶轮的输出气流经过所述静子叶片进入所述二级叶轮。
作为优选,所述转子叶轮的输入侧设置有可调导叶。
作为优选,所述二级叶轮的输出端安装有扩压器。
作为优选,所述扩压器的扩压器流道中设置有扩压器叶片。
作为优选,所述静子叶片为轴流叶片。
作为优选,所述转子叶轮为轴流叶轮。
本申请还提供了一种压缩机,包括上述的压缩机结构。
本申请通过补气在静子叶片的吸力面形成射流,从而吹除吸力面形成的低速低能区,降低了补气带来的气流掺混损失,进而提高了离心压缩机的气动效率。
附图说明
图1是本申请实施例的压缩机转子轴向力平衡结构示意图;
图2是本申请实施例的静子叶片的剖视结构示意图。
附图标记说明:
1-叶片本体;
2-空腔;
3-补气孔;
4-静子叶片;
5-补气通道;
6-转子叶轮;
7-二级叶轮;
8-可调导叶;
9-扩压器流道;
10-扩压器叶片;
11-蜗壳。
具体实施方式
下面结合附图和具体实施例对本申请作进一步详细描述,但不作为对本申请的限定。
现有技术中的离心式制冷压缩机采用两级离心叶轮压缩,中间补气。冷媒经过一级叶轮压缩后需经过扩压器扩压,再经过回流器导流级消旋后回到二级叶轮进口,冷媒流程较长,摩擦损失较大,且级间补气气流往往与主流速度方向及大小不一致,导致较大的掺混损失。
本申请实施例提供一种静子叶片,包括:叶片本体1,所述叶片本体1的内部形成有空腔2,所述叶片本体1上形成有补气孔3。优选地,所述补气孔3设置在所述叶片本体1的吸力面。
由于本申请中的静子叶片设计为中空(例如,叶片本体1通过铸造或机加工制成),并在静子叶片的背部设置微型的补气孔3,因此,通过补气可在静子叶片的吸力面形成射流,从 而吹除吸力面形成的低速低能区,减小气流分离损失,提高压缩机气动效率。
进一步地,通过合理设计补气孔3的位置、角度及孔径大小,即合理组织射流的位置、角度及射流速度,能够有效抑制静子叶片吸力面分离。
本申请还提供了一种压缩机结构,包括上述的静子叶片4。优选地,所述压缩机结构还包括壳体,所述壳体上形成与所述静子叶片4的所述空腔2连通的补气通道5。
上述技术方案通过补气在静子叶片4的吸力面形成射流,从而吹除吸力面形成的低速低能区,降低了补气带来的气流掺混损失,进而提高了离心压缩机的气动效率。
优选地,所述压缩机结构还包括转子叶轮6和二级叶轮7,所述转子叶轮6的输出气流经过所述静子叶片4进入所述二级叶轮7。静子叶片4的背部射流补气,可以有效降低一级叶轮(即转子叶轮6)出口冷媒的温度及比容,提高二级叶轮7的气动效率。在此技术方案中,本申请通过将一级离心叶轮更换为轴流叶轮(即转子叶轮6),一级扩压器及回流器更换为轴流静子叶片(即静子叶片4),从而将传统的两级离心叶轮压缩更换为轴流—离心组合形式,且轴流转子叶片具有尺寸小,效率高的特点。因此,减小气体冷媒在两级压缩之间的流程,降低摩擦等损失,进而提高了离心压缩机的气动效率。
优选地,所述转子叶轮6的输入侧设置有可调导叶8。优选地,所述二级叶轮7的输出端安装有扩压器。所述扩压器的扩压器流道9中设置有扩压器叶片10。扩压器叶片10的输出侧设置有蜗壳11。
通过上述设计,静子叶片4背部的射流补气可以有效降低一级叶轮出口冷媒的温度及比容,提高二级叶轮气动效率,此外静子叶片的扩压降低了气流在扩压器流道的行程,降低摩擦等损失。
通过补气在静子叶片吸力面形成射流,可吹除吸力面形成的低速低能区,减小气流分离损失,提高压缩机气动效率。
本申请还提供了一种压缩机,包括上述的压缩机结构。
当然,以上是本申请的优选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请基本原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (12)

  1. 一种静子叶片,其特征在于,包括:叶片本体(1),所述叶片本体(1)的内部形成有空腔(2),所述叶片本体(1)上形成有补气孔(3)。
  2. 根据权利要求1所述的静子叶片,其特征在于,所述补气孔(3)设置在所述叶片本体(1)的吸力面。
  3. 根据权利要求1所述的静子叶片,其特征在于,所述叶片本体(1)通过铸造或机加工制成。
  4. 一种压缩机结构,其特征在于,包括权利要求1至3中任一项所述的静子叶片(4)。
  5. 根据权利要求4所述的压缩机结构,其特征在于,所述压缩机结构还包括壳体,所述壳体上形成与所述静子叶片(4)的空腔(2)连通的补气通道(5)。
  6. 根据权利要求4所述的压缩机结构,其特征在于,所述压缩机结构还包括转子叶轮(6)和二级叶轮(7),所述转子叶轮(6)的输出气流经过所述静子叶片(4)进入所述二级叶轮(7)。
  7. 根据权利要求6所述的压缩机结构,其特征在于,所述转子叶轮(6)的输入侧设置有可调导叶(8)。
  8. 根据权利要求7所述的压缩机结构,其特征在于,所述二级叶轮(7)的输出端安装有扩压器。
  9. 根据权利要求8所述的压缩机结构,其特征在于,所述扩压器的扩压器流道(9)中设置有扩压器叶片(10)。
  10. 根据权利要求4所述的压缩机结构,其特征在于,所述静子叶片(4)为轴流叶片。
  11. 根据权利要求6所述的压缩机结构,其特征在于,所述转子叶轮(6)为轴流叶轮。
  12. 一种压缩机,其特征在于,包括权利要求4至11中任一项所述的压缩机结构。
PCT/CN2017/118110 2017-05-16 2017-12-22 静子叶片、压缩机结构和压缩机 WO2018209955A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/613,978 US11408440B2 (en) 2017-05-16 2017-12-22 Stator blade, compressor structure and compressor
EP17909993.2A EP3626975B1 (en) 2017-05-16 2017-12-22 Stator vane, compressor structure, and compressor
ES17909993T ES2968232T3 (es) 2017-05-16 2017-12-22 Alabe de estátor, estructura de compresor y compresor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710344335.9A CN107120315A (zh) 2017-05-16 2017-05-16 静子叶片、压缩机结构和压缩机
CN201710344335.9 2017-05-16

Publications (1)

Publication Number Publication Date
WO2018209955A1 true WO2018209955A1 (zh) 2018-11-22

Family

ID=59727669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118110 WO2018209955A1 (zh) 2017-05-16 2017-12-22 静子叶片、压缩机结构和压缩机

Country Status (6)

Country Link
US (1) US11408440B2 (zh)
EP (1) EP3626975B1 (zh)
CN (1) CN107120315A (zh)
ES (1) ES2968232T3 (zh)
HU (1) HUE064781T2 (zh)
WO (1) WO2018209955A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107013497B (zh) * 2017-05-11 2024-03-19 珠海格力电器股份有限公司 回流器叶片、压缩机结构和压缩机
CN107120315A (zh) * 2017-05-16 2017-09-01 珠海格力电器股份有限公司 静子叶片、压缩机结构和压缩机
CN107542675A (zh) * 2017-09-20 2018-01-05 北京航空航天大学 一种轴流离心串联式自冷却制冷压缩机
CN107725481B (zh) * 2017-10-10 2024-05-17 山东大学 一种提高离心式蒸汽压缩机压缩比的结构及方法
CN111271322B (zh) * 2018-12-05 2020-12-29 中国航发商用航空发动机有限责任公司 可调静叶以及压气机
CN110425158A (zh) * 2019-09-04 2019-11-08 大连天孚环境科技有限公司 一种蒸发器用蒸汽压缩机及工作方法
CN113389741A (zh) * 2021-07-29 2021-09-14 深圳飞磁科技有限公司 一种两级高速空气悬浮离心鼓风机涡轮装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101021179A (zh) * 2007-03-06 2007-08-22 中国兵器工业集团第七○研究所 一种涡轮增压器轴径流压气机结构
CN101092978A (zh) * 2007-07-30 2007-12-26 北京航空航天大学 多级轴流压气机静子内引气增效防喘扩稳装置
JP2008274818A (ja) * 2007-04-27 2008-11-13 Hitachi Ltd ガスタービン
CN102588303A (zh) * 2011-01-13 2012-07-18 李吉光 一种带补气增压的轴流式压气机
CN107120315A (zh) * 2017-05-16 2017-09-01 珠海格力电器股份有限公司 静子叶片、压缩机结构和压缩机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1280464C2 (de) * 1956-06-11 1974-03-14 Snecma Luftverdichter mit einer Radialstufe und einer vorgeschalteten Axialstufe
US5383766A (en) * 1990-07-09 1995-01-24 United Technologies Corporation Cooled vane
JP3110205B2 (ja) * 1993-04-28 2000-11-20 株式会社日立製作所 遠心圧縮機及び羽根付ディフューザ
JP2004300929A (ja) * 2003-03-28 2004-10-28 Tokyo Electric Power Co Inc:The 多段圧縮機、ヒートポンプ、並びに熱利用装置
CN104632646A (zh) * 2014-03-12 2015-05-20 珠海格力电器股份有限公司 离心式压缩机及具有其的离心机组
CN104595247A (zh) * 2015-01-05 2015-05-06 珠海格力电器股份有限公司 一种具有再冷却结构的离心压缩机
DE102015002025A1 (de) * 2015-02-17 2016-08-18 Daimler Ag Verdichter für einen Abgasturbolader einer Verbrennungskraftmaschine
CN107013497B (zh) * 2017-05-11 2024-03-19 珠海格力电器股份有限公司 回流器叶片、压缩机结构和压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101021179A (zh) * 2007-03-06 2007-08-22 中国兵器工业集团第七○研究所 一种涡轮增压器轴径流压气机结构
JP2008274818A (ja) * 2007-04-27 2008-11-13 Hitachi Ltd ガスタービン
CN101092978A (zh) * 2007-07-30 2007-12-26 北京航空航天大学 多级轴流压气机静子内引气增效防喘扩稳装置
CN102588303A (zh) * 2011-01-13 2012-07-18 李吉光 一种带补气增压的轴流式压气机
CN107120315A (zh) * 2017-05-16 2017-09-01 珠海格力电器股份有限公司 静子叶片、压缩机结构和压缩机

Also Published As

Publication number Publication date
EP3626975A4 (en) 2020-05-06
CN107120315A (zh) 2017-09-01
EP3626975A1 (en) 2020-03-25
US20210332829A1 (en) 2021-10-28
US11408440B2 (en) 2022-08-09
EP3626975B1 (en) 2023-10-25
ES2968232T3 (es) 2024-05-08
HUE064781T2 (hu) 2024-04-28

Similar Documents

Publication Publication Date Title
WO2018209955A1 (zh) 静子叶片、压缩机结构和压缩机
US11187244B2 (en) Reflux device blade compressor
WO2018205632A1 (zh) 扩压器叶片、压缩机结构和压缩机
US10731664B2 (en) Centrifugal compressors with integrated intercooling
US11306734B2 (en) Centrifugal compressor
WO2016019689A1 (zh) 多级压缩机和空调器
CN109162934B (zh) 压缩机及空调系统
CN105247223A (zh) 具有轮叶的径流式或混流式压缩机扩散器
CN101092976A (zh) 离心压气机扩压器叶片内引气流动控制增效装置
JP2017133498A (ja) インペラ、遠心圧縮機及び冷凍サイクル装置
JP6651404B2 (ja) ターボ機械
CN109973154A (zh) 一种带有冷却结构的航空发动机涡轮叶片
KR20110125717A (ko) 사류형 압축기
CN109555685B (zh) 双级压缩单涡旋压缩水冷泵体
Chang et al. Numerical investigation of base-setting of stator’s stagger angles for a 15-stage axial-flow compressor
JP6594019B2 (ja) 入口案内羽根及び遠心圧縮機
KR20110083363A (ko) 임펠러 및 압축기
JP2019007383A (ja) 遠心式流体機械
US20140321992A1 (en) Volute
RU2064067C1 (ru) Турбореактивный двухконтурный двигатель
GB622394A (en) Improvements in and relating to centrifugal compressors
CN117345690A (zh) 一种适用于超音速来流的径向c型扩压结构
JP2013092124A (ja) ガスタービンエンジンの多段圧縮機の可変抽気弁構造
CN114542515A (zh) 一种串联进口可调导叶机构
WO2015067105A1 (zh) 一种风机及其应用的空调室内机热交换系统、冷交换系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017909993

Country of ref document: EP

Effective date: 20191216