WO2018207886A1 - 液化ガス燃料船 - Google Patents

液化ガス燃料船 Download PDF

Info

Publication number
WO2018207886A1
WO2018207886A1 PCT/JP2018/018187 JP2018018187W WO2018207886A1 WO 2018207886 A1 WO2018207886 A1 WO 2018207886A1 JP 2018018187 W JP2018018187 W JP 2018018187W WO 2018207886 A1 WO2018207886 A1 WO 2018207886A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied gas
gas fuel
fuel
fuel tank
tank
Prior art date
Application number
PCT/JP2018/018187
Other languages
English (en)
French (fr)
Inventor
寿 芳賀
鈴木 宏始
弘睦 船越
貴士 渡邉
Original Assignee
三井E&S造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井E&S造船株式会社 filed Critical 三井E&S造船株式会社
Publication of WO2018207886A1 publication Critical patent/WO2018207886A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B11/00Interior subdivision of hulls
    • B63B11/04Constructional features of bunkers, e.g. structural fuel tanks, or ballast tanks, e.g. with elastic walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/02Ventilation; Air-conditioning
    • B63J2/08Ventilation; Air-conditioning of holds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a liquefied gas fuel ship that uses liquefied gas as fuel for a main engine or the like.
  • SOx emission regulations are regulated by the sulfur concentration (mass percent (%)) of the fuel oil.
  • the emission control area The regulation value of the sulfur concentration of fuel oil in the sea area designated by ECA
  • ECA The regulation value of the sulfur concentration of fuel oil in the sea area designated by ECA
  • the regulation value in the general sea area outside the emission regulation sea area is 3.5%.
  • a dual fuel-fired diesel engine is adopted for the main engine, and the fuel of the main engine for each sea area is heavy oil with high sulfur content but high loading efficiency, and sulfur. It is conceivable to maintain transportation efficiency and operational costs by switching between natural gas with low concentration but low loading efficiency.
  • the liquefied gas fuel tank has a cylinder made of a special material with measures such as pressure resistance, heat expansion and contraction, and heat prevention.
  • a self-supporting tank with a shape is used. Therefore, the liquefied gas fuel tank cannot be arranged in the gap of the hull structure like the conventional fuel oil tank, and the space used as the conventional cargo compartment is occupied by the liquefied gas fuel tank, and the cargo loading capacity Is significantly reduced.
  • LNG and the like have a small specific gravity, so a large-capacity fuel tank is required, and the cargo space is further narrowed.
  • Patent Document 1 a configuration in which a liquefied gas fuel tank is arranged on an exposed deck above an engine room has been proposed.
  • the liquefied gas fuel ship is an automobile carrier, RO-RO ship or passenger ship
  • the upper part of the engine room is used as a cargo space
  • liquid fuel for example, fuel oil
  • liquefied gas fuel are co-fired
  • both liquid fuel and liquefied gas fuel tanks need to be arranged, and the cargo compartment is further reduced.
  • the present invention is a liquefied gas fuel capable of securing a wide cargo section while reducing both SOx emission and carrying out co-firing by mounting both liquefied gas fuel and liquid fuel, and burning liquid fuel such as fuel oil alone.
  • the purpose is to provide a ship.
  • the liquefied gas fuel ship of the present invention includes a liquid fuel tank that stores liquid fuel, a liquefied gas fuel tank that stores liquefied gas fuel, an engine that can be operated by co-firing of liquid fuel and liquefied gas fuel, and a liquid fuel in the engine. And / or fuel supply means for supplying liquefied gas fuel in a desired ratio, and a liquid fuel tank is arranged along the ship side and / or along the bottom of the ship.
  • the liquefied gas fuel tank has a cylindrical shape with a radius r, and at least one of the liquid fuel tanks is located inside a position separated from the outer shell of the liquefied gas fuel tank by the radius r, and the liquefied gas fuel tank and the ship side It is preferable to be located in the space between the outer plates.
  • At least one pair of liquefied gas fuel tanks is provided in the ship width direction, and at least one of the liquid fuel tanks is disposed between the pair of liquefied gas fuel tanks.
  • the liquid fuel tank is positioned above a deck on which a support structure for the liquefied gas fuel tank is installed. Further, the liquid fuel tank is positioned below the center of the liquefied gas fuel tank, for example. A part of the liquid fuel tank is adjacent to a part from the front end to the rear end of the liquefied gas fuel tank, for example.
  • the liquefied gas fuel tank has a cylindrical shape, and the side wall of the liquid fuel tank facing the liquefied gas fuel tank has an inclined surface along the cylindrical surface of the liquefied gas fuel tank.
  • the liquid fuel is, for example, fuel oil.
  • the volume ratio of the liquid fuel tank to the liquefied gas fuel tank is preferably ((S ⁇ S2) / ⁇ 1): ((S1 ⁇ S) / ⁇ 2).
  • the ratio of the volume of the liquefied gas fuel tank to the volume of the liquid fuel tank is preferably in the range of 2 to 13.
  • both liquefied gas fuel and liquid fuel are mounted and co-fired, and liquefaction that can secure a wide cargo compartment while reducing SOx emissions compared to the case where liquid fuel such as fuel oil is burned alone.
  • a gas fuel ship can be provided.
  • FIG. 3 is an enlarged view of FIG. It is a modification of FIG.
  • FIG. 1 is a block diagram showing a configuration of a fuel supply system for a liquefied gas fuel ship according to an embodiment of the present invention.
  • the liquefied gas fuel ship 10 (see FIG. 2) of the present embodiment is, for example, an automobile carrier ship, a container ship, an RO-RO ship, a cargo ship, a passenger ship, etc., which employs a dual fuel-fired diesel engine for the main engine 12, and is located below the exposed deck. It is a ship with a large space for placing cargo and personnel in a closed compartment.
  • the fuel of the main engine 12 includes a liquid fuel such as fuel oil (eg, light oil, A to C heavy oil, etc.) as the first fuel, and a liquefied gas (LNG, liquefied ethane, LPG) as the second fuel. Or the like, and the liquid fuel and / or the liquefied gas fuel is supplied to the main engine 12 through the fuel supply system 11.
  • the fuel oil is stored in the fuel oil tank (first fuel tank) 14, and the fuel oil stored in the fuel oil tank 14 is sent to the fuel oil heater 18 by the fuel supply pump 16, and the fuel oil heater 18 After being warmed, the fuel oil injection valve 20 injects each cylinder of the main engine 12 at a predetermined timing.
  • the liquefied gas fuel is stored in the liquefied gas fuel tank (second fuel tank) 22, and the liquefied gas in the liquefied gas fuel tank 22 is pressurized and vaporized in the gas fuel supply system 24 and passes through the gas valve train 26.
  • the fuel is injected from the gas fuel injection valve 28 into each cylinder of the main engine 12 at a predetermined timing.
  • the fuel injection time of the fuel oil injection valve 20 and the gas fuel injection valve 28 is controlled by the fuel supply control unit 30, whereby the supply amounts of fuel oil and liquefied gas fuel to the main engine 12 X, Y [kg / h] Are controlled respectively. That is, the fuel supply control unit 30 determines the main engine required value Z [kJ / h], the sulfur content concentration S1 [%] of the fuel oil, the calorific value A [kJ / kg], and the sulfur content concentration S2 of the liquefied gas fuel. Based on [%], calorific value B [kJ / kg] and target sulfur concentration S [%], fuel supply amounts X and Y are calculated, respectively, and based on these values, the fuel oil injection valve 20 and the gas fuel injection are calculated. The fuel injection time of the valve 28 is controlled. In addition, the sulfur content concentration here is a mass percent.
  • the sulfur content concentration S1 [%], the calorific value A [kJ / kg] of the fuel oil, the sulfur content concentration S2 [%] and the calorific value B [kJ / kg] of the liquefied gas fuel are obtained at the time of purchasing each fuel.
  • the target sulfur concentration S [%] is a value set by a regulation value for each sea area. These values are set in the fuel supply control unit 30 before the main engine is operated, for example.
  • the main engine required value Z [kJ / h] is a value determined from the output of the main engine 12 in the main engine control, and is input from the control unit of the main engine 12, for example.
  • the output of the main engine 12 includes heat quantity per unit time supplied by fuel oil: A [kJ / kg] ⁇ X [kg / h], and heat quantity per unit time supplied by liquefied gas fuel: B [kJ / Kg] ⁇ Y [kg / h]. Therefore, in order to satisfy the main engine required value Z [kJ / h] by supplying both fuels, the fuel oil supply amount X and the liquefied gas fuel supply amount Y need to satisfy the following equation (1).
  • Z A ⁇ X + B ⁇ Y (1)
  • ⁇ 1 is the specific gravity of the fuel oil
  • ⁇ 2 is the specific gravity of the liquefied gas fuel.
  • the optimal volume ratio of the fuel oil tank and the liquefied gas fuel tank is as follows. Fuel oil tanks capable of loading heavy oil (density approximately 980 kg / m 3 , sulfur content concentration 3.5%) and liquefied gas fuel tanks capable of loading LNG fuel (density approximately 450 kg / m 3 , sulfur content concentration 0%) The optimum volume ratio is about 1:13. In addition, a tank capable of loading heavy oil (density about 900 kg / m 3 , sulfur concentration 1.0%) and a liquefied gas fuel tank capable of loading LNG fuel (density about 450 kg / m 3 , sulfur concentration 0%). The optimum volume ratio is about 1: 2. Therefore, the ratio of “liquefied gas fuel tank volume” to “fuel oil tank volume” (liquefied gas fuel tank volume / fuel oil tank volume) is preferably in the range of 2 to 13.
  • FIG. 2 is a side view (FIG. 2A), a cross-sectional view (FIG. 2B), and a plan view (FIG. 2C) of the liquefied gas fuel ship 10.
  • 2B is a cross-sectional view taken along the line II in FIG. 2A passing through the approximate center of the liquefied gas fuel tank 22, and
  • FIG. 2 is a plan view of the II-II cross section of FIG.
  • An enlarged view of FIG. 2B is shown in FIG.
  • FIG. 4 shows a modification.
  • the liquefied gas fuel ship 10 will be described by taking an automobile carrier as an example.
  • an engine room 34 in which the main engine 12 is installed is provided below the freeboard deck 32 at the stern part, and a hull section 36 ⁇ / b> A above the freeboard deck 32.
  • 36B and the hull section 36C in front of the liquefied gas fuel tank 22 are almost all used as the automobile-mounted section 36.
  • a living section 38 is arranged on the bow side at the top of the hull.
  • the engine room 34 is provided with facilities such as a power generation engine and a boiler that consume fuel oil and / or liquefied gas as fuel.
  • the liquefied gas fuel tank 22 is disposed, for example, in a section 40 on the bow side adjacent to the engine room 34, and is disposed symmetrically with respect to the hull in FIG.
  • a cylindrical tank having a radius r is employed for each liquefied gas fuel tank 22 .
  • the fuel oil tank 14 (141, 142) is shown in the space between the liquefied gas fuel tank 22 and the void space (or cofferdam) 42 provided along the ship side outer plate, or in the modification of FIG. It arrange
  • the fuel oil tank 142 to be disposed is disposed between the liquefied gas fuel tanks 22 along the ship bottom. Note that both the fuel oil tank 141 in FIG. 3 and the fuel oil tank 142 in FIG. 4 may be provided together.
  • the left and right fuel oil tanks 141 are located on the inner side of the position separated from the outer shell of the liquefied gas fuel tank 22 by the radius r, and between the liquefied gas fuel tank 22 and the ship side skin. It is desirable to be located in the space between. As shown in FIGS. 3 and 4, the left and right and center fuel oil tanks 141 and 142 are both positioned above the deck on which the support structure 44 of the liquefied gas fuel tank 22 is installed, and the liquefied gas. It is desirable to be positioned below the center of the fuel tank 22. Further, a part of the fuel oil tank 14 is adjacent to a part from the front end to the rear end of the liquefied gas fuel tank 22.
  • the volume of the fuel oil tanks 141, 142 is increased, and the space is further effective. Can be used.
  • the fuel oil is heavy oil (DO) (a calorific value of 42.7 MJ / kg, a density of about 980 kg / m 3 , a sulfur content concentration of 1.0 If this is mixed with the above LNG fuel (calorific value 50 MJ / kg, density approximately 450 kg / m 3 , sulfur concentration 0%) at a ratio of approximately 1: 1, the exhaust sulfur concentration will be 0.5%
  • the volume required for the fuel oil tank 14 is about 1,900 m 3
  • the volume required for the liquefied gas fuel tank 22 is about 3,800 m 3 .
  • the fuel oil tank 14 is reduced from about 4,000 m 3, which uses only heavy oil, to about 1,900 m 3 or less, and the liquefied gas fuel tank 22 is also about 7,100 m when using only LNG. It is about half from 3 to about 3,800 m 3 .
  • a tank capacity about twice that of the liquefied gas fuel tank 22 of FIG. 2 is required. Therefore, a pair of cylindrical liquefied gas fuel is further provided on the bow side of the liquefied gas fuel tank 22. It is necessary to arrange a tank and to increase the diameter of the stern-side cylindrical tank corresponding to the liquefied gas fuel tank 22 (the bow side is narrower than the stern side and cannot have a larger diameter on the stern side) .
  • sections 36 ⁇ / b> B and 36 ⁇ / b> C indicate sections that cannot be used as cargo sections due to an increased liquefied gas fuel tank when only liquefied gas is used as fuel.
  • the liquefied gas fuel tank 22 is disposed only on the stern side by adopting mixed combustion of fuel oil and liquefied gas fuel so that the volume of the liquefied gas fuel tank is reduced to half or less.
  • the hull section 36C in front of the tank is secured as an automobile mounting section (cargo section), and further, by reducing the diameter of the liquefied fuel tank 22, the hull section 36B above the tank is also secured as an automobile mounting section (cargo section). ing.
  • the volume of the fuel oil tank is halved compared with the conventional ship which used only heavy oil as a fuel, the space for the liquefied gas fuel tank 22 can be ensured easily.
  • fuel oil is liquid at normal temperature, there is no restriction on the shape and arrangement of the fuel oil tank 14 and it can be made of the same material as the hull, so it can be placed in a vacant space in the hull. A large cargo compartment can be secured easily.
  • the liquid fuel having a relatively high volumetric efficiency and a high sulfur content concentration and the liquefied gas fuel having a relatively low volumetric efficiency and a low sulfur content concentration are co-fired.
  • the supply amount of liquid fuel and the supply amount of liquefied gas fuel it can be adjusted to the required value of the main engine, and the total sulfur concentration is specified by co-firing liquid fuel and liquefied gas fuel. It can be less than (target) value.
  • an empty space can be reduced as much as possible by arranging the liquid fuel tank along the liquefied gas fuel tank between the cylindrical liquefied gas fuel tank and the hull structure.
  • only the fuel oil loaded in the fuel oil tank can be used until the SOx emission regulation is started.
  • the LNG fuel has been described as an example of the liquefied gas fuel that is the second fuel.
  • an alternative fuel such as methanol or ethanol may be used as the second fuel.
  • one type of liquid fuel and one type of liquefied gas fuel are used.
  • two or more types of fuels can be used for each of them, and some of the three or more types of fuels can be used. It can also be set as the structure which uses several types simultaneously. For example, by loading both low-sulfur fuel oil and high-sulfur fuel oil, it is possible to preferentially use a cheaper fuel.
  • the operation of the fuel injection device such as the fuel oil injection valve and the gas fuel injection valve is automatically controlled by the fuel supply control unit.
  • the control parameters of each fuel injection device are output to an output device such as a display.
  • the worker referring to the output inputs the fuel ratio of the fuel oil or the liquefied gas fuel to the engine control apparatus according to the configuration in which the control parameter of each fuel injection device is set or the fuel ratio obtained by calculation It can also be configured.
  • the liquefied gas fuel tank has been described as a cylindrical tank, but the tank is not limited to a cylinder, and may be a multi-cylinder tank.
  • the liquefied gas fuel tank can be arranged away from the engine room. In that case, a fuel oil tank or a cargo compartment may be arranged between the liquefied gas fuel tank and the engine room.
  • Fuel supply control unit Free board deck 34 Engine room 36 Car compartment (cargo compartment) 38 Living area 42 Void space (or Cofadam)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

重油などの燃料油を貯留する燃料油タンク14と、LNGなどの液化ガス燃料を貯留する液化ガス燃料タンク22を設ける。燃料油および液化ガス燃料の混焼により主機関を運転可能とする。主機関に燃料油および/または液化ガス燃料を所望の割合で供給し、排出硫黄分を規制値以下にする。燃料油タンク14を液化ガス燃料タンク22と船体構造の隙間に沿って配置する。

Description

液化ガス燃料船
 本発明は、液化ガスを主機関などの燃料として使用する液化ガス燃料船に関する。
 近年では、船舶に関しても国際海事機関によりSOx排出規制が海域毎に段階的に進められている。SOxの排出量は燃料油の硫黄分濃度に比例するためSOx排出規制は、燃料油の硫黄分濃度(質量パーセント(%))により規制され、例えば、2015年1月1日から排出規制海域(ECA)に指定された海域での燃料油の硫黄分濃度の規制値は0.1%であり、同排出規制海域外の一般海域での規制値は3.5%である。このような海域毎のSOx排出規制への対応としては、主機関に2元燃料焚きディーゼルエンジンを採用し、海域毎に主機関の燃料を硫黄分濃度は高いが積載効率が高い重油と、硫黄分濃度が低いが積載効率が低い天然ガスとの間で切り換えることで、輸送効率や運航コストを維持することが考えられる。
 しかし、2020年または2025年以降には、一般海域(全海域)の燃料油の硫黄分濃度の規制値も0.5%にまで強化されるため、燃料の切り換えでは対応ができない。将来においては硫黄分を含まない燃料油、あるいは硫黄分濃度が規定値以下の燃料油を主機関や発電機関などの燃料とする必要があり、硫黄分を含まないLNG、液化エタン、LPGなどの液化ガス燃料や、メタノール、エタノールなどの代替燃料、または低硫黄燃料油を使用しなければならない。低硫黄燃料油は価格が高く供給量も不足する可能性があるため、硫黄分を含まないLNG、液化エタン、LPGなどの液化ガス燃料やメタノール、エタノールなどの代替燃料の利用が検討されている。
 一方、液化ガス燃料を貯蔵するには、タンク内を低温・高圧に維持する必要があるため、液化ガス燃料タンクには、耐圧、熱伸縮、防熱等の対策を施した特殊材料を用いた円筒形状の自立タンクが用いられる。そのため、液化ガス燃料タンクは、従来の燃料油タンクのように船体構造の隙間に配置することができず、従来貨物区画として利用していた空間が液化ガス燃料タンクによって占有され、貨物の積載能力が著しく低下する。特にLNG等は、比重が小さいため大きな容積の燃料タンクが必要になり貨物空間はさらに狭くなる。このような問題に対して、液化ガス燃料タンクをエンジンルームの上方の暴露甲板に配置する構成が提案されている(特許文献1参照)。
特表2016-508916号公報
 しかし、液化ガス燃料船が自動車運搬船やRO-RO船や客船の場合、エンジンルームの上部は貨物空間として利用しており、またその他の船種でも、エンジンルーム上方の暴露甲板上に居住区やエンジンケーシングがあり、燃料タンク設置スペースとして利用できる面積は限られる。そのため依然暴露甲板下に液化ガス燃料タンクのための広い空間を確保する必要があり、貨物区画を十分に確保できるとは言えない。また、液体燃料(例えば燃料油)と液化ガス燃料を混焼する場合、液体燃料と液化ガス燃料の両方のタンクを配置する必要があり、貨物区画はさらに減少する。
 本発明は、液化ガス燃料と液体燃料の両方を搭載して混焼させ、燃料油等の液体燃料を単独で燃焼させる場合よりもSOx排出量を低減しつつ、広い貨物区画を確保できる液化ガス燃料船を提供することを目的としている。
 本発明の液化ガス燃料船は、液体燃料を貯留する液体燃料タンクと、液化ガス燃料を貯留する液化ガス燃料タンクと、液体燃料および液化ガス燃料の混焼により運転可能なエンジンと、エンジンに液体燃料および/または液化ガス燃料を所望の割合で供給する燃料供給手段とを備え、液体燃料タンクが船側および/または船底に沿って配置されることを特徴としている。
 液化ガス燃料タンクは、半径rの円筒形状を呈し、液体燃料タンクの少なくとも1つが、液化ガス燃料タンクの外殻から半径r分離れた位置よりも内側であって、かつ液化ガス燃料タンクと船側外板との間の空間に位置することが好ましい。
 例えば、液化ガス燃料タンクは船幅方向に少なくとも一対設けられ、液体燃料タンクの少なくとも1つが、一対の液化ガス燃料タンクの間に配置される。液体燃料タンクは、例えば液化ガス燃料タンクの支持構造が設置されるデッキよりも上方に位置する。また、液体燃料タンクは、例えば液化ガス燃料タンクの中心よりも下方に位置する。液体燃料タンクの一部は、例えば液化ガス燃料タンクの前端から後端までの一部に隣接する。
 液化ガス燃料タンクは円筒形状を呈し、液化ガス燃料タンクに対面する液体燃料タンクの側壁が、液化ガス燃料タンクの円筒面に沿った傾斜面を有する。液体燃料は、例えば燃料油である。
 また、液体燃料の硫黄分濃度をS1[%]、比重をγ1、液化ガス燃料の硫黄分濃度をS2[%]、比重をγ2、排出目標とする硫黄分濃度をS[%]とするとき、液体燃料タンクの容積と液化ガス燃料タンクの容積比が((S-S2)/γ1):((S1-S)/γ2)であることが好ましい。また、液化ガス燃料タンクの容積と液体燃料タンクの容積の比率(液化ガス燃料タンク容積/液体燃料タンク容積)が、2~13の範囲にあることが好ましい。
 本発明によれば、液化ガス燃料と液体燃料の両方を搭載して混焼させ、燃料油等の液体燃料を単独で燃焼させる場合よりもSOx排出量を低減しつつ、広い貨物区画を確保できる液化ガス燃料船を提供できる。
本発明の一実施形態である液化ガス燃料船の燃料供給システムの構成を示すブロック図である。 本実施形態の液化ガス燃料船の側面図(a)、横断面図(b)、平面図(c)である。 図2(b)の拡大図である。 図3の変形例である。
 以下、本発明の実施形態について添付図面を参照して説明する。
 図1は、本発明の一実施形態である液化ガス燃料船の燃料供給システムの構成を示すブロック図である。
 本実施形態の液化ガス燃料船10(図2参照)は、例えば主機関12に2元燃料焚きディーゼルエンジンを採用する自動車運搬船やコンテナ船、RO-RO船、貨物船、客船など暴露甲板下の閉鎖区画に積荷や人員を配置するスペースを広く設けた船舶である。主機関12の燃料には、第1燃料として燃料油(例えば、軽油、A~C重油など)などの液体燃料(常温で液体の燃料)、第2燃料として液化ガス(LNG、液化エタン、LPGなど)などの液化ガス燃料が用いられ、燃料供給システム11を通して液体燃料および/または液化ガス燃料が主機関12へと供給される。
 燃料油は、燃料油タンク(第1燃料タンク)14に蓄えられ、燃料油タンク14内に貯蔵される燃料油は、燃料供給ポンプ16により燃料油ヒータ18へと送出され、燃料油ヒータ18において温められた後、燃料油噴射バルブ20から主機関12の各気筒内に所定のタイミングで噴射される。一方、液化ガス燃料は、液化ガス燃料タンク(第2燃料タンク)22に蓄えられ、液化ガス燃料タンク22内の液化ガスは、ガス燃料供給システム24において加圧・気化され、ガスバルブトレイン26を介して、ガス燃料噴射バルブ28から主機関12の各気筒内へと所定のタイミングで噴射される。
 燃料油噴射バルブ20およびガス燃料噴射バルブ28の燃料噴射時間は、燃料供給制御部30により制御され、これにより主機関12への燃料油および液化ガス燃料の供給量X、Y[kg/h]がそれぞれ制御される。すなわち、燃料供給制御部30は、主機関要求値Z[kJ/h]と、燃料油の硫黄分濃度S1[%]、発熱量A[kJ/kg]と、液化ガス燃料の硫黄分濃度S2[%]、発熱量B[kJ/kg]と、目標硫黄分濃度S[%]とに基づき、燃料供給量X、Yをそれぞれ算出し、同値に基づいて燃料油噴射バルブ20およびガス燃料噴射バルブ28の燃料噴射時間を制御する。なお、ここでの硫黄分濃度は質量パーセントである。
 ここで、燃料油の硫黄分濃度S1[%]、発熱量A[kJ/kg]と液化ガス燃料の硫黄分濃度S2[%]、発熱量B[kJ/kg]は、各燃料購入時に入手される値であり、目標硫黄分濃度S[%]は、海域毎の規制値等により設定される値である。これらの値は、例えば主機関運転前に燃料供給制御部30に設定される。また、主機関要求値Z[kJ/h]は、主機関制御における主機関12の出力から決定される値であり、例えば主機関12の制御部から入力される。
 主機関12の出力は、燃料油により供給される単位時間当たりの熱量:A[kJ/kg]・X[kg/h]と、液化ガス燃料により供給される単位時間当たりの熱量:B[kJ/kg]・Y[kg/h]の和になる。したがって、両燃料の供給により主機関要求値Z[kJ/h]を満たすには、燃料油の供給量Xおよび液化ガス燃料の供給量Yは、次の(1)式を満たす必要がある。
 Z=A・X+B・Y              (1)
 また、主機関要求値Z[kJ/h]に対応する出力において、規制値である目標硫黄分濃度S[%]を満たすには、燃料油の供給量Xおよび液化ガス燃料の供給量Yが、次の(2)式を満たす必要がある。
 S≧(混合燃料硫黄分質量)/(混合燃料全質量)
  ≧(S1・X+S2・Y)/(X+Y)      (2)
 ここでS2<S<S1とすると、(1)、(2)式から、
 X≦Z・(S-S2)/(B・(S1-S)+A・(S-S2))   (3)
 Y≧Z・(S1-S)/(B・(S1-S)+A・(S-S2))   (4)
となる。
 例えば(3)、(4)式において等号が成り立つとき、すなわち硫黄分濃度を規制値ぎりぎりに設定する場合、燃料油と液化ガス燃料の供給量比X:Yは、
 X:Y=S-S2:S1-S
となる。また、このときに必要な燃料油と液化ガス燃料の容積比V1:V2は、
 V1:V2=((S-S2)/γ1):((S1-S)/γ2)   (5)
となる。ここでγ1は燃料油の比重、γ2は液化ガス燃料の比重である。
 燃料油タンクと液化ガス燃料タンクの容積比を(5)式にすると、両タンク容積は、両燃料にとって過不足のない最適な割合となる。
 例えば、(5)式を用いると、目標硫黄分濃度を0.5%とする場合、燃料油タンクと液化ガス燃料タンクの最適な容積割合は次の通りとなる。重油(密度約980kg/m、硫黄分濃度3.5%)が積載可能な燃料油タンクとLNG燃料(密度約450kg/m、硫黄分濃度0%)が積載可能な液化ガス燃料タンクの最適な容積比は約1:13となる。また、重油(密度約900kg/m、硫黄分濃度1.0%)が積載可能なタンクとLNG燃料(密度約450kg/m、硫黄分濃度0%)が積載可能な液化ガス燃料タンクの最適な容積比は約1:2となる。これらのことから「液化ガス燃料タンク容積」と「燃料油タンク容積の比率(液化ガス燃料タンク容積/燃料油タンク容積)は、概ね2~13の範囲にあることが好ましい。
 次に図2を参照して、燃料油タンク14および液化ガス燃料タンク22の配置およびその容積について説明する。なお図2は、液化ガス燃料船10の側面図(図2(a))、横断面図(図2(b))、平面図(図2(c))である。図2(b)は、液化ガス燃料タンク22の略中心を通る図2(a)のI-I横断面図、図2(c)は液化ガス燃料タンク22の略中心を通る図2(a)のII-II断面の平面図である。なお、図2(b)の拡大図を図3に示す。また、図4に変形例を示す。
 図2では、液化ガス燃料船10として自動車運搬船を例に説明を行なう。図2に示されるように、自動車運搬船10では、船尾部のフリーボードデッキ32の下方に、主機関12が設置された機関室34が設けられ、フリーボードデッキ32よりも上方の船体区画36A、36B、および液化ガス燃料タンク22の前方の船体区画36Cは、略全て自動車搭載区画36として使用される。また船体の最上部の船首側に居住区画38が配置される。なお機関室34には、主機関12の他にも、燃料油および/または液化ガスを燃料として消費する発電機関やボイラなどの設備が配置される。
 液化ガス燃料タンク22は、例えば機関室34に隣接する船首側の区画40に配置され、図3では、船体に対して左右対称に配置されている。各液化ガス燃料タンク22には、例えば半径rの円筒タンクが採用される。一方、燃料油タンク14(141、142)は、液化ガス燃料タンク22と船側外板に沿って設けられたボイドスペース(あるいはコファダム)42との間の空間、または、図4の変形例に示されるように一対の液化ガス燃料タンク22の間の空間に配置される。すなわち、図3のように船体の左右に配置される燃料油タンク141は、ビルジ近傍の両船側に沿って左右の液化ガス燃料タンク22の斜め下に配置され、図4のように船体中央に配置される燃料油タンク142は、船底に沿って液化ガス燃料タンク22の間に配置される。なお、図3の燃料油タンク141、図4の燃料油タンク142の両者を共に設ける構成とすることもできる。
 図3に示されるように、左右の燃料油タンク141は、液化ガス燃料タンク22の外殻から半径r分離れた位置よりも内側にあって、かつ液化ガス燃料タンク22と船側外板との間の空間に位置することが望ましい。また、図3、図4に示されるように、左右および中央の燃料油タンク141、142は、共に液化ガス燃料タンク22の支持構造44が設置されるデッキよりも上方に位置するとともに、液化ガス燃料タンク22の中心よりも下方に位置することが望ましい。更に、燃料油タンク14の一部は、液化ガス燃料タンク22の前端から後端までの一部に隣接する。また、液化ガス燃料タンク22に対面する燃料油タンク14の側壁を液化ガス燃料タンク22の円筒面に沿った傾斜面とすることで燃料油タンク141、142の容積を拡大し、スペースを更に有効利用することができる。
 例えば、重油(HFO)(発熱量40.6MJ/kg、密度約980kg/m、硫黄分濃度3.5%)のみを燃料としたこれまで往復航海において約4,000mの重油を必要としていた場合、これを全て液化ガス燃料であるLNG燃料(発熱量50MJ/kg、密度約450kg/m、硫黄分濃度0%)に置き換えると、約7,100m(4000[m]×40.6[MJ/kg]/50[MJ/kg]×980[kg/m]/450[kg/m])のタンク容量が必要になる。しかし、本実施形態のように、燃料油と液化ガス燃料を混焼する場合、例えば燃料油として重油(DO)(発熱量42.7MJ/kg、密度約980kg/m、硫黄分濃度1.0%)を採用し、これを上記LNG燃料(発熱量50MJ/kg、密度約450kg/m、硫黄分濃度0%)と略1:1の割合で混焼すると排出硫黄分濃度は0.5%以下となり、このとき燃料油タンク14に必要な容積は約1,900m、液化ガス燃料タンク22に必要な容積は約3,800mとなる。
 これにより、燃料油タンク14は、重油のみを使用する従来の約4,000mから約1,900mと半分以下となり、液化ガス燃料タンク22も、LNGのみを使用する場合の約7,100mから約3,800mへと半分程度となる。また燃料油タンク14と液化ガス燃料タンク22を合せた燃料タンクの容積も、約5,700m(=約1,900m+約3,800m)と、LNGのみを使用する場合よりも約1,400m小さくなる。
 すなわち、燃料にLNGのみを使用する場合には、図2の液化ガス燃料タンク22に比べ倍程度のタンク容量が必要となるため、液化ガス燃料タンク22の船首側に更に一対の円筒液化ガス燃料タンクを配置するとともに、液化ガス燃料タンク22に対応する船尾側の円筒タンクの径も大きくする必要がある(船首側は船尾側に比べ船幅が狭く船尾側ほど径の大きなタンクを設置できない)。図2において、区画36B、36Cは、液化ガスのみを燃料とした場合に、増加する液化ガス燃料タンクにより貨物区画に使用できなくなる区画を示す。
 図2の例では、燃料油と液化ガス燃料の混焼を採用することにより、液化ガス燃料タンクの容積を半分以下とすることで、船尾側にのみ液化ガス燃料タンク22を配置し、液化ガス燃料タンクの前方の船体区画36Cを自動車搭載区画(貨物区画)として確保し、更に、液化燃料タンク22の径を小さくすることで、タンク上方の船体区画36Bも自動車搭載区画(貨物区画)として確保している。また、本実施形態では、重油のみを燃料としていた従来船舶に比べ燃料油タンクの容積も半減しているため、液化ガス燃料タンク22のためのスペースも簡単に確保できる。そして燃料油は、常温で液体であるため、燃料油タンク14の形状や配置に制限がなく、船体と同一材料で構成できるので、船体内の空いているスペースに配置することができるので、より広い貨物区画の確保が容易にできる。
 以上のように、本実施形態の液化ガス燃料船では、容積効率が相対的に高く硫黄分濃度が高い液体燃料と、容積効率が相対的に低く硫黄分濃度が低い液化ガス燃料を混焼して使用することで、SOx排出規制値以下に排出硫黄分濃度を抑えながらも、貨物区画を広く確保することができる。
 また、液体燃料の供給量と、液化ガス燃料の供給量を制御することで、主機関要求値に合わせることができ、更に、液体燃料と液化ガス燃料を混焼することで合計硫黄部濃度を規定(目標)値以下にすることができる。また、本実施形態によれば、円筒形の液化ガス燃料タンクと船体構造の間に、液体燃料タンクを液化ガス燃料タンクに沿って配置することで、空きスペースをできるだけ少なくすることができる。更に本実施形態では、前述のSOx排出規制が始まるまでの間は、燃料油タンクに積載した燃料油のみを使用することもできる。
 なお、本実施形態では第2燃料である液化ガス燃料としてLNG燃料を例に説明したが、これに代えてメタノールやエタノール等の代替燃料を第2燃料として用いてもよい。また、本実施形態では1種類の液体燃料、1種類の液化ガス燃料を利用したが、それぞれに対して2種以上の燃料を採用することもでき、3種以上の燃料の中の一部の複数種類を同時選択的に使用する構成とすることもできる。例えば低硫黄燃料油、高硫黄燃料油の両方を積載するなどすることで、より価格の安い燃料を優先して使用することも可能である。
 また、本発明では、燃料油噴射バルブやガス燃料噴射バルブなどの燃料噴射装置の動作を燃料供給制御部で自動制御したが、各燃料噴射装置の制御パラメータを表示器等の出力装置に出力し、同出力を参照した作業員が各燃料噴射装置の制御パラメータを設定する構成や、計算にて得られた燃料割合に応じてエンジンの制御装置に燃料油もしくは液化ガス燃料の燃料割合を入力する構成とすることもできる。
 本実施形態では、液化ガス燃料タンクを円筒タンクとして説明したが、タンクは円筒に限定されるものではなく、また多筒タンクであってもよい。また液化ガス燃料タンクを機関室から離れて配置することもでき、その場合、液化ガス燃料タンクと機関室との間に燃料油タンクや貨物区画を配置してもよい。
 10 液化ガス燃料船
 11 燃料供給システム
 12 主機関
 14 燃料油タンク(第1燃料タンク)
 16 燃料供給ポンプ
 20 燃料油噴射バルブ
 22 液化ガス燃料タンク(第2燃料タンク)
 24 ガス燃料供給システム
 26 ガスバルブトレイン
 28 ガス燃料噴射バルブ
 30 燃料供給制御部
 32 フリーボードデッキ
 34 機関室
 36 自動車搭載区画(貨物区画)
 38 居住区
 42 ボイドスペース(あるいはコファダム)

Claims (10)

  1.  液体燃料を貯留する液体燃料タンクと、
     液化ガス燃料を貯留する液化ガス燃料タンクと、
     前記液体燃料および前記液化ガス燃料の混焼により運転可能なエンジンと、
     前記エンジンに前記液体燃料および/または前記液化ガス燃料を所望の割合で供給する燃料供給手段とを備え、
     前記液体燃料タンクが船側および/または船底に沿って配置される
     ことを特徴とする液化ガス燃料船。
  2.  前記液化ガス燃料タンクが、半径rの円筒形状を呈し、前記液体燃料タンクの少なくとも1つが、前記液化ガス燃料タンクの外殻から前記半径r分離れた位置よりも内側であって、かつ前記液化ガス燃料タンクと船側外板との間の空間に位置することを特徴とする請求項1に記載の液化ガス燃料船。
  3.  前記液化ガス燃料タンクが船幅方向に少なくとも一対設けられ、前記液体燃料タンクの少なくとも1つが、前記一対の液化ガス燃料タンクの間に配置されることを特徴とする請求項1~2の何れか一項に記載の液化ガス燃料船。
  4.  前記液体燃料タンクが、前記液化ガス燃料タンクの支持構造が設置されるデッキよりも上方に位置することを特徴とする請求項1~3の何れか一項に記載の液化ガス燃料船。
  5.  前記液体燃料タンクが、前記液化ガス燃料タンクの中心よりも下方に位置することを特徴とする請求項1~4の何れか一項に記載の液化ガス燃料船。
  6.  前記液体燃料タンクの一部が、前記液化ガス燃料タンクの前端から後端までの一部に隣接することを特徴とする請求項1~5の何れか一項に記載の液化ガス燃料船。
  7.  前記液化ガス燃料タンクが円筒形状を呈し、前記液化ガス燃料タンクに対面する前記液体燃料タンクの側壁が、前記液化ガス燃料タンクの円筒面に沿った傾斜面を有することを特徴とする請求項1~6の何れか一項に記載の液化ガス燃料船。
  8.  前記液体燃料が燃料油であることを特徴とする請求項1~7の何れか一項に記載の液化ガス燃料船。
  9.  前記液体燃料の硫黄分濃度をS1[%]、比重をγ1、前記液化ガス燃料の硫黄分濃度をS2[%]、比重をγ2、排出目標とする硫黄分濃度をS[%]とするとき、前記液体燃料タンクの容積と前記液化ガス燃料タンクの容積比が((S-S2)/γ1):((S1-S)/γ2)であることを特徴とする請求項1~8の何れか一項に記載の液化ガス燃料船。
  10.  前記液ガス燃料タンクの容積と前記液体燃料タンクの容積の比率が2~13の範囲にあることを特徴とする請求項1~9の何れか一項に記載の液化ガス燃料船。
PCT/JP2018/018187 2017-05-10 2018-05-10 液化ガス燃料船 WO2018207886A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017094279A JP7078204B2 (ja) 2017-05-10 2017-05-10 液化ガス燃料船
JP2017-094279 2017-05-10

Publications (1)

Publication Number Publication Date
WO2018207886A1 true WO2018207886A1 (ja) 2018-11-15

Family

ID=64105400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018187 WO2018207886A1 (ja) 2017-05-10 2018-05-10 液化ガス燃料船

Country Status (2)

Country Link
JP (1) JP7078204B2 (ja)
WO (1) WO2018207886A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6775695B1 (ja) 2019-06-18 2020-10-28 日本郵船株式会社 タンク及び船舶
WO2020255255A1 (ja) * 2019-06-18 2020-12-24 日本郵船株式会社 燃料浄化システム及び船舶
JP2021123119A (ja) * 2020-01-31 2021-08-30 三菱造船株式会社 船舶
JP7408901B2 (ja) 2020-12-16 2024-01-09 三井E&S造船株式会社 液化ガスタンク、液化ガスタンク製造方法および船舶
JP2022146665A (ja) 2021-03-22 2022-10-05 ヤンマーホールディングス株式会社 エンジン

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203980A (ja) * 2006-02-06 2007-08-16 Shin Kurushima Dockyard Co Ltd 貨物船の凹部船底構造
JP2009541140A (ja) * 2006-06-27 2009-11-26 ワルトシラ フィンランド オサケユキチュア ガス駆動船舶用燃料システム
JP2012076561A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd 舶用燃料供給システム
JP2012121401A (ja) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd 船舶
JP2013210148A (ja) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd 船舶、燃料供給装置、推進用主機への液化燃料ガスの供給方法
US20140191499A1 (en) * 2011-08-22 2014-07-10 Tranzgaz Inc. Method of fabricating type 4 cylinders and arranging in transportation housings for transport of gaseous fluids
JP2015013494A (ja) * 2013-07-03 2015-01-22 信吉 森元 長大海上浮体設備
JP2016007972A (ja) * 2014-06-25 2016-01-18 三井造船株式会社 貨物倉防熱構造
US20170106948A1 (en) * 2014-06-11 2017-04-20 Sea Ng Corporation Ship for gas storage and transport

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203980A (ja) * 2006-02-06 2007-08-16 Shin Kurushima Dockyard Co Ltd 貨物船の凹部船底構造
JP2009541140A (ja) * 2006-06-27 2009-11-26 ワルトシラ フィンランド オサケユキチュア ガス駆動船舶用燃料システム
JP2012076561A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd 舶用燃料供給システム
JP2012121401A (ja) * 2010-12-07 2012-06-28 Mitsubishi Heavy Ind Ltd 船舶
US20140191499A1 (en) * 2011-08-22 2014-07-10 Tranzgaz Inc. Method of fabricating type 4 cylinders and arranging in transportation housings for transport of gaseous fluids
JP2013210148A (ja) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd 船舶、燃料供給装置、推進用主機への液化燃料ガスの供給方法
JP2015013494A (ja) * 2013-07-03 2015-01-22 信吉 森元 長大海上浮体設備
US20170106948A1 (en) * 2014-06-11 2017-04-20 Sea Ng Corporation Ship for gas storage and transport
JP2016007972A (ja) * 2014-06-25 2016-01-18 三井造船株式会社 貨物倉防熱構造

Also Published As

Publication number Publication date
JP2018188073A (ja) 2018-11-29
JP7078204B2 (ja) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2018207886A1 (ja) 液化ガス燃料船
Herdzik LNG as a marine fuel-possibilities and problem
KR101210916B1 (ko) 가스연료용 연료탱크를 가지는 부유식 구조물
KR100961867B1 (ko) 가스연료용 연료탱크를 가지는 부유식 구조물
JP6869353B2 (ja) ガス燃料推進コンテナ運搬船
JP7018976B2 (ja) 船舶用エンジンの運転方法
JP6704026B2 (ja) 船舶
KR20090018868A (ko) 해양용 선박
JP6901567B2 (ja) ガス燃料推進コンテナ運搬船
DK3095685T3 (en) Device and method for supplying fuel gas to a ship
JP2022522904A (ja) デュアルフューエルによるメガコンテナ船ガスの供給システム及びメガコンテナ船
KR20180071579A (ko) 가스연료 추진 컨테이너 운반선
Nagata et al. IHI-SPB tank for LNG-fueled ship
KR20140001569A (ko) 액화연료가스 추진 선박
KR20190054551A (ko) 가스연료 추진 컨테이너 운반선
KR101654203B1 (ko) 선박의 연료 가스 공급 장치
WO2018047747A1 (ja) 燃料供給システム
Van Tassel LNG as a vessel and general transportation fuel developing the required supply infrastructure
KR102129157B1 (ko) 가스연료 추진 컨테이너 운반선
KR102129158B1 (ko) 가스연료 추진 컨테이너 운반선
KR20170043033A (ko) 탈부착이 가능한 연료 탱크 및 이를 구비한 선박
KR20150081912A (ko) 선박의 연료 가스 공급 장치 및 방법
KR20150081911A (ko) 선박의 연료 가스 공급 장치 및 방법
Grimstad et al. Propelling ships for the future-gas engines today, fuel cells tomorrow
Osberg et al. Gas fuelled engine applications in ships-an overview

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799137

Country of ref document: EP

Kind code of ref document: A1