WO2018207788A1 - 電解銅箔及びその製造方法、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法 - Google Patents

電解銅箔及びその製造方法、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法 Download PDF

Info

Publication number
WO2018207788A1
WO2018207788A1 PCT/JP2018/017826 JP2018017826W WO2018207788A1 WO 2018207788 A1 WO2018207788 A1 WO 2018207788A1 JP 2018017826 W JP2018017826 W JP 2018017826W WO 2018207788 A1 WO2018207788 A1 WO 2018207788A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
treatment layer
layer
surface treatment
Prior art date
Application number
PCT/JP2018/017826
Other languages
English (en)
French (fr)
Inventor
賢二 犬飼
友一 岩崎
小林 洋介
一彦 飯田
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to JP2019517645A priority Critical patent/JPWO2018207788A1/ja
Priority to KR1020197032712A priority patent/KR20190131579A/ko
Publication of WO2018207788A1 publication Critical patent/WO2018207788A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers

Definitions

  • the present disclosure relates to an electrolytic copper foil and a manufacturing method thereof, a copper-clad laminate, a printed wiring board and a manufacturing method thereof, an electronic device, and a manufacturing method thereof.
  • a printed wiring board is generally manufactured through a process in which an insulating substrate (for example, a resin substrate) is bonded to a copper foil to form a copper-clad laminate, and then a conductor pattern is formed on the copper foil by etching.
  • an insulating substrate for example, a resin substrate
  • a conductor pattern is formed on the copper foil by etching.
  • Patent Document 1 adds an additive such as a sulfur-containing compound that acts as a brightening agent to the electrolytic solution so that the surface on the deposition surface side is reduced. It has been proposed to form a circuit on an electrolytic copper foil after producing a smooth electrolytic copper foil.
  • the electrolytic copper foil when the surface of the electrolytic copper foil is smooth, there is a problem that sufficient adhesiveness cannot be obtained when bonding to the insulating substrate (resin substrate).
  • the electrolytic copper foil since printed wiring boards are often exposed to high temperatures, the electrolytic copper foil has little decrease in adhesion to an insulating substrate (resin substrate) under high temperature conditions (that is, excellent heat resistance). It has been demanded.
  • Some embodiments of the present invention have been made in order to solve the above-described problems, and circuit formation properties and heat resistance (especially, suppressing adhesion deterioration when bonded to an insulating substrate). It is an object of the present invention to provide an electrolytic copper foil excellent in effect) and a method for producing the same. In addition, some embodiments of the present invention provide a copper clad laminate using an electrolytic copper foil that is excellent in circuit formability and heat resistance (particularly, an effect of suppressing a decrease in adhesiveness when adhered to an insulating substrate). It is an object of the present invention to provide a printed wiring board and a manufacturing method thereof, and an electronic device and a manufacturing method thereof.
  • the present inventors have found that the surface roughness Sa and / or the root mean square height of the surface of the surface treatment layer in the electrolytic copper foil having the surface treatment layer on the glossy surface side.
  • the thickness Sq is related to circuit formability and the atomic concentration of Zn on the surface of the surface treatment layer is related to heat resistance
  • the surface roughness Sa and / or the root mean square height of the surface of the surface treatment layer It has been found that by controlling the Zn concentration on the surface of the surface treatment layer and the surface treatment layer within a specific range, it is possible to achieve both improvement in heat resistance and improvement in circuit formability.
  • the present embodiment has been completed.
  • the electrolytic copper foil according to the embodiment of the present invention has a surface treatment layer on the glossy surface side,
  • the root mean square height Sq of the surface of the surface treatment layer is 0.550 ⁇ m or less
  • the atomic concentration on the surface of the surface treatment layer is measured by Auger electron spectroscopy, and Si, S, Cl, C, N
  • the atomic concentration of Zn is 3.0 at% or more.
  • the electrolytic copper foil according to another embodiment of the present invention has a surface treatment layer on the glossy surface side,
  • the surface roughness Sa of the surface treatment layer is 0.470 ⁇ m or less
  • the atomic concentration on the surface of the surface treatment layer is measured by Auger electron spectroscopy, Si, S, Cl, C, N, O,
  • the total atomic concentration of Cr, Co, Ni, Cu and Zn is 100 at%
  • the atomic concentration of Zn is 3.0 at% or more.
  • the manufacturing method of the electrolytic copper foil which concerns on embodiment of this invention, after producing electrolytic copper foil using an electrolytic drum, surface-treats to the glossy surface of the said electrolytic copper foil, and forms a surface treatment layer,
  • the surface roughness Sa of the surface of the electrolytic drum is 0.270 ⁇ m or less
  • the atomic concentration on the surface of the surface treatment layer is measured by Auger electron spectroscopy, and Si, S, Cl, C, N, O, Cr
  • the atomic concentration of Zn is 3.0 at% or more.
  • the manufacturing method of the electrolytic copper foil which concerns on another embodiment of this invention is, after producing electrolytic copper foil using an electrolytic drum, surface-treating to the glossy surface of the said electrolytic copper foil, and forming a surface treatment layer And
  • the root mean square height Sq of the surface of the electrolytic drum is 0.315 ⁇ m or less
  • the atomic concentration on the surface of the surface treatment layer is measured by Auger electron spectroscopy, and Si, S, Cl, C, N,
  • the total atomic concentration of O, Cr, Co, Ni, Cu and Zn is 100 at%
  • the atomic concentration of Zn is 3.0 at% or more.
  • the copper clad laminated board which concerns on embodiment of this invention has the said electrolytic copper foil.
  • the printed wiring board which concerns on embodiment of this invention has the said electrolytic copper foil.
  • the manufacturing method of the printed wiring board which concerns on embodiment of this invention uses the said electrolytic copper foil.
  • a method for manufacturing a printed wiring board according to another embodiment of the present invention includes: producing a copper-clad laminate by laminating the electrolytic copper foil and an insulating substrate; then, a semi-additive method, a subtractive method, and a partial additive method. Forming a circuit by either a method or a modified semi-additive method.
  • the electronic device which concerns on embodiment of this invention has the said printed wiring board.
  • the electronic device manufacturing method according to the embodiment of the present invention uses a printed wiring board.
  • an electrolytic copper foil excellent in circuit formability and heat resistance and a method for producing the same can be provided.
  • a copper-clad laminate using an electrolytic copper foil excellent in circuit formability and heat resistance, a printed wiring board, a manufacturing method thereof, an electronic device, and a manufacturing method thereof are provided. can do.
  • (A) is the SEM image of the glossy surface of the electrolytic copper foil of Example 2 before forming a surface treatment layer
  • (b) is the electrolytic copper foil of Example 10 before forming a surface treatment layer. It is a SEM image of a glossy surface.
  • the electrolytic copper foil according to the embodiment of the present invention has a surface treatment layer on the glossy surface side, and the root mean square height Sq of the surface of the surface treatment layer is 0.550 ⁇ m or less and / or the surface of the surface treatment layer.
  • the surface roughness Sa is 0.470 ⁇ m or less
  • the atomic concentration on the surface of the surface treatment layer is measured by Auger electron spectroscopy, Si, S, Cl, C, N, O, Cr, Co, Ni, Cu and When the total atomic concentration of Zn is 100 at%, the atomic concentration of Zn is 3.0 at% or more.
  • the “glossy surface of the electrolytic copper foil” means the surface on the drum side (shiny surface: S surface) when the electrolytic copper foil is produced, and “deposition of electrolytic copper foil” “Surface” means the surface (matte surface: M surface) opposite to the drum when the electrolytic copper foil is produced.
  • the electrolytic copper foil according to the embodiment of the present invention has a surface treatment layer other than the roughening treatment layer on the glossy surface side, and the surface roughness Sa of the surface of the surface treatment layer is 0.270 ⁇ m or less. And / or the root mean square height Sq of the surface of the surface treatment layer is 0.315 ⁇ m or less, and the atomic concentration of Zn on the surface of the surface treatment layer is 3.0 at% or more.
  • the surface roughness Sa of the surface treatment layer is 0.270 ⁇ m or less and / or the root mean square height Sq of the surface of the surface treatment layer is 0.315 ⁇ m or less.
  • the surface roughness Sa of the surface treatment layer of the electrolytic copper foil is preferably 0.230 ⁇ m or less, more preferably 0.180 ⁇ m or less, further preferably 0.150 ⁇ m or less, from the viewpoint of enhancing the effect of fine pitch.
  • the lower limit of the surface roughness Sa of the surface treatment layer of the electrolytic copper foil is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, more preferably 0.050 ⁇ m or more, and further preferably It is 0.100 ⁇ m or more.
  • the root mean square height Sq of the surface treatment layer of the electrolytic copper foil is preferably 0.200 ⁇ m or less, more preferably 0.180 ⁇ m or less, from the viewpoint of enhancing the effect of fine pitch.
  • the lower limit of the root mean square height Sq of the surface treatment layer of the electrolytic copper foil is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, more preferably 0.050 ⁇ m or more, More preferably, it is 0.100 ⁇ m or more.
  • Heat resistance can be improved by controlling the atomic concentration of Zn on the surface of the surface treatment layer to 3.0 at% or more.
  • the atomic concentration of Zn on the surface of the surface treatment layer is measured by Auger electron spectroscopy (AES).
  • Auger electron spectroscopy (AES) performs depth direction composition analysis (depth profile) and can measure the ratio of elements present on the surface of a surface treatment layer.
  • the surface of the surface treatment layer is not particularly limited, but preferably means a depth of 50 nm, more preferably 10 nm or less, and further preferably 5 nm or less from the surface of the surface treatment layer (surface of the outermost layer). To do.
  • the atomic concentration of Zn is a relative atomic concentration when the total atomic concentration of Si, S, Cl, C, N, O, Cr, Co, Ni, Cu and Zn is 100 at%.
  • the atomic concentration of Zn is preferably 4.5 at% or more, more preferably 6.5 at% or more from the viewpoint of enhancing the above effect.
  • the upper limit of the Zn atomic concentration is not particularly limited, but is generally 20 at% or less, preferably 15 at% or less, more preferably 12 at% or less, and further preferably 10 at% or less.
  • the element other than Zn present in the vicinity of the surface of the surface treatment layer is not particularly limited, but is at least one selected from the group consisting of Si, S, Cl, C, N, O, Cr, Co, Ni, and Cu. It may contain seeds.
  • the electrolytic copper foil according to the embodiment of the present invention has a surface treatment layer including at least a roughening treatment layer on the glossy surface side, and the surface roughness Sa of the surface of the surface treatment layer is 0. .470 ⁇ m or less and / or the root mean square height Sq of the surface of the surface treatment layer is 0.550 ⁇ m or less, and the atomic concentration of Zn on the surface of the surface treatment layer is 3.0 at% or more.
  • the surface roughness Sa of the surface treatment layer of the electrolytic copper foil is preferably 0.385 ⁇ m or less, more preferably 0.380 ⁇ m or less, more preferably 0.355 ⁇ m or less, from the viewpoint of enhancing the effect of fine pitch. It is preferably 0.340 ⁇ m or less, more preferably 0.300 ⁇ m or less, still more preferably 0.295 ⁇ m or less, still more preferably 0.230 ⁇ m or less, and most preferably 0.200 ⁇ m or less.
  • the lower limit of the surface roughness Sa of the surface treatment layer of the electrolytic copper foil is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, more preferably 0.050 ⁇ m or more, and further preferably It is 0.100 ⁇ m or more.
  • the root mean square height Sq of the surface treatment layer of the electrolytic copper foil is preferably 0.490 ⁇ m or less, more preferably 0.450 ⁇ m or less, and more preferably 0 from the viewpoint of enhancing the effect of fine pitch formation. .435 ⁇ m or less, more preferably 0.400 ⁇ m or less, further preferably 0.395 ⁇ m or less, still more preferably 0.330 ⁇ m or less, and most preferably 0.290 ⁇ m or less.
  • the lower limit of the root mean square height Sq of the surface treatment layer of the electrolytic copper foil is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, more preferably 0.050 ⁇ m or more, More preferably, it is 0.100 ⁇ m or more.
  • the electrolytic copper foil according to the embodiment of the present invention having the surface roughness Sa and / or the root mean square height Sq of the surface treatment layer as described above is a gloss before the surface treatment layer is provided on the glossy surface side. It can be obtained by controlling the surface roughness Sa and / or the root mean square height Sq.
  • the surface roughness Sa of the glossy surface before providing the surface treatment layer on the glossy surface side is preferably 0.270 ⁇ m or less, more preferably 0. It may be controlled to 230 ⁇ m or less, more preferably 0.180 ⁇ m or less, further preferably 0.150 ⁇ m or less, further preferably 0.133 ⁇ m or less, still more preferably 0.130 ⁇ m or less, and most preferably 0.120 ⁇ m or less.
  • the lower limit of the surface roughness Sa of the glossy surface before providing the surface treatment layer on the glossy surface side is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, more preferably 0.050 ⁇ m or more.
  • the root mean square height Sq of the glossy surface before providing the surface treatment layer on the glossy surface side is preferably 0.315 ⁇ m or less, more preferably Is controlled to 0.292 ⁇ m or less, more preferably 0.230 ⁇ m or less, further preferably 0.200 ⁇ m or less, further preferably 0.180 ⁇ m or less, still more preferably 0.120 ⁇ m or less, and most preferably 0.115 ⁇ m or less.
  • the lower limit of the root mean square height Sq of the glossy surface before providing the surface treatment layer on the glossy surface side is not particularly limited, but is generally 0.001 ⁇ m or more, preferably 0.010 ⁇ m or more, more preferably 0.
  • the electrolytic copper foil according to the embodiment of the present invention in which the atomic concentration of Zn on the surface of the surface treatment layer is 3.0 at% or more is a condition for forming the surface treatment layer (for example, a heat-resistant layer, a rust prevention layer).
  • the Zn concentration, current density, treatment temperature, treatment time, etc. in the treatment solution (plating solution) when forming the chromate treatment layer and the like can be controlled.
  • the conditions at this time may be set as appropriate according to the type of the surface treatment layer to be formed, and are not particularly limited. Note that by increasing the Zn concentration in the plating solution, the atomic concentration of Zn on the surface of the surface treatment layer can be increased.
  • the normal temperature tensile strength of the electrolytic copper foil (raw foil) after surface treatment is 30 kg / mm ⁇ 2 > or more.
  • room temperature tensile strength refers to a tensile strength at room temperature, which is measured according to IPC-TM-650.
  • the normal temperature tensile strength is 30 kg / mm 2 or more, there is an effect that wrinkles are hardly generated during handling. From the viewpoint of stably obtaining this effect, the normal temperature tensile strength is more preferably 35 kg / mm 2 or more.
  • the electrolytic copper foil according to the embodiment of the present invention preferably has a normal temperature elongation of 3% or more of the surface-treated electrolytic copper foil (raw foil).
  • room temperature elongation in this specification is an elongation at room temperature and means a value measured according to IPC-TM-650.
  • the room temperature elongation is more preferably 4% or more.
  • the high temperature tensile strength of the electrolytic copper foil (raw foil) after surface treatment is 10 kg / mm ⁇ 2 > or more.
  • the “high temperature tensile strength” means a tensile strength at 180 ° C., which is measured according to IPC-TM-650.
  • the high temperature tensile strength is 10 kg / mm 2 or more, there is an effect that wrinkles are hardly generated when sticking to the resin. From the viewpoint of stably obtaining this effect, the high temperature tensile strength is more preferably 15 kg / mm 2 or more.
  • the high temperature elongation of the electrolytic copper foil (raw foil) after the surface treatment is preferably 2% or more.
  • “high temperature elongation” means elongation at 180 ° C., which is measured according to IPC-TM-650.
  • the high temperature elongation is 2% or more, there is an effect in preventing the occurrence of cracks in the circuit. From the viewpoint of stably obtaining this effect, the high temperature elongation is preferably 3% or more, more preferably 6% or more, and further preferably 15% or more.
  • the electrolytic copper foil according to the embodiment of the present invention preferably has a heat-resistant peel strength of 0.90 kg / cm or more.
  • heat-resistant peel strength refers to thermocompression bonding of an electrolytic copper foil and an insulating substrate (resin substrate) according to an embodiment of the present invention at 180 ° C. for 2 hours at a pressure of 20 kgf / cm 2. After forming a circuit having a circuit width of 10 mm by etching the electrolytic copper foil of the laminate, the laminate was heated at 190 ° C. for 1 hour in an air atmosphere and then heated to 270 ° C. It means the peel strength between the circuit and the insulating substrate after floating for 20 seconds.
  • the peel strength is a 90-degree peel strength performed in accordance with JIS C6471: 1995, and measures the strength when the insulating substrate (resin substrate) and the circuit are peeled off at a speed of 50 mm / min at an angle of 90 degrees. It is required by doing. The peel strength is measured twice and the average value is taken.
  • electrolytic copper foil (raw foil) before the surface treatment used for the electrolytic copper foil according to the embodiment of the present invention is not particularly limited as long as it has the above characteristics.
  • electrolytic copper foil (raw foil)” in the present specification means a copper foil and a copper alloy foil produced by using an electrolysis drum using the principle of electroplating.
  • copper and copper alloy that are copper foil and copper alloy foil include: pure copper; Sn-containing copper; Ag-containing copper; Ti, W, Mo, Cr, Zr, Mg, Ni, Sn, Ag, Co, Fe , Copper alloy to which As, P and the like are added.
  • Copper alloy foil is an alloy element (for example, Ti, W, Mo, Cr, Zr, Mg, Ni, Sn, Ag, Co, Fe, As) in the electrolytic solution used when producing the electrolytic copper foil. And one or more elements selected from the group consisting of P).
  • the thickness of the electrolytic copper foil (raw foil) is not particularly limited, but is typically 0.5 ⁇ m to 3000 ⁇ m, preferably 1.0 ⁇ m to 1000 ⁇ m, more preferably 1.0 ⁇ m to 300 ⁇ m, more preferably 1.
  • ⁇ m to 100 ⁇ m more preferably 3.0 ⁇ m to 75 ⁇ m, more preferably 4 ⁇ m to 40 ⁇ m, still more preferably 5 ⁇ m to 37 ⁇ m, still more preferably 6 ⁇ m to 28 ⁇ m, still more preferably 7 ⁇ m to 25 ⁇ m, most preferably 8 ⁇ m to 19 ⁇ m It is.
  • the electrolytic copper foil (raw foil) is produced by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath. Examples of electrolysis conditions are shown below.
  • Electrolyte composition 50 to 150 g / L Cu, 60 to 150 g / L H 2 SO 4 Current density: 30 to 120 A / dm 2
  • Electrolyte temperature 50-60 ° C
  • Additives 20 to 80 ppm chlorine ion, 0.01 to 10.0 ppm glue
  • the treatment liquid etching liquid, electrolytic liquid, etc.
  • the balance is water unless otherwise specified.
  • the electrolytic drum used has a surface roughness Sa of the drum surface in order to control the surface roughness Sa and / or the root mean square height Sq of the glossy surface of the formed electrolytic copper foil (raw foil) to a predetermined range.
  • Sa is 0.270 ⁇ m or less and / or the root mean square height Sq is 0.315 ⁇ m or less.
  • the surface roughness Sa of the drum surface is preferably 0.150 ⁇ m or less, and the root mean square height Sq of the drum surface is preferably 0.200 ⁇ m or less.
  • An electrolytic drum having a predetermined surface roughness Sa and / or root mean square height Sq on its surface can be manufactured as follows.
  • the surface of a drum made of titanium or stainless steel is polished by a polishing belt having a count of 300 (P300) to 500 (P500).
  • the polishing belt is wound by winding a predetermined width in the width direction of the drum, and rotating the drum while moving the polishing belt in the width direction of the drum at a predetermined speed.
  • the rotation speed of the drum surface during polishing is 130 m / min to 190 m / min.
  • the polishing time is the product of the time required to pass one point (position in the width direction) on the drum surface and the number of passes in one pass of the polishing belt.
  • the time for passing one point on the drum surface in one pass described above was a value obtained by dividing the width of the polishing belt by the moving speed of the polishing belt in the width direction of the drum.
  • the polishing time was 1.6 minutes to 3 minutes, but in the embodiment of the present invention, it is 3.5 minutes to 10 minutes. When wetting the drum surface with water during polishing, it should be 6 to 10 minutes.
  • the surface roughness Sa of the surface and the root mean square height Sq of the drum surface can be reduced.
  • the surface roughness Sa of the drum surface and the root mean square height Sq of the drum surface can be increased.
  • the polishing time the surface roughness Sa can be reduced, and the root mean square height Sq can be reduced to a greater extent than the extent that Sa is reduced.
  • the count of the above-described abrasive belt means the particle size of the abrasive used in the abrasive belt.
  • the particle size of the abrasive is in accordance with FEPA (Federation of European Producers of Abbreviations) -standard 43-1: 2006, 43-2: 2006.
  • the surface of the drum Sa can be reduced by increasing the root mean square height Sq to a smaller extent than by reducing the root mean square root height Sq by wetting the drum surface with water during polishing. it can.
  • the root mean square height Sq can be increased, and the surface roughness Sa can be increased to a greater extent than the extent that the root mean square height Sq is increased. it can.
  • the electrolytic drum having the predetermined surface roughness Sa and / or the root mean square height Sq produced on the surface as described above, the surface roughness Sa and / or the root mean square of the predetermined glossy surface is used.
  • An electrolytic copper foil (raw foil) having a square root height Sq can be produced.
  • the surface roughness Sa and the root mean square height Sq of the surface of the electrolytic drum can be measured as follows. -A resin film (polyvinyl chloride) is immersed in a solvent (acetone) to swell. -The swollen resin film is brought into contact with the surface of the electrolytic drum, acetone is volatilized from the resin film, the resin film is peeled off, and a replica of the electrolytic drum surface is collected. The replica is measured with a laser microscope, and the surface roughness Sa and the root mean square height Sq are measured. Then, the surface roughness Sa and the root mean square height Sq of the obtained replica are set as the surface roughness Sa and the root mean square height Sq of the electrolytic drum surface.
  • the surface treatment is not particularly limited, and examples thereof include roughening treatment, heat resistance treatment, rust prevention treatment, chromate treatment, and silane coupling treatment.
  • the layer formed by the roughening treatment is the “roughening treatment layer”
  • the layer formed by the heat treatment is the “heat resistant layer”
  • the layer formed by the rust prevention treatment is the “rust prevention layer”
  • chromate A layer formed by the treatment is referred to as a “chromate treatment layer”
  • a layer formed by the silane coupling treatment is referred to as a “silane coupling treatment layer”.
  • the electrolytic copper foil which concerns on embodiment of this invention contains 1 or more types of layers selected from the group which consists of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer in a surface treatment layer.
  • the roughening treatment is performed in order to improve the adhesion with the insulating substrate (resin substrate).
  • the roughening treatment is not particularly limited, and can be performed by electrodepositing roughened particles on the surface of the electrolytic copper foil.
  • roughened particles of copper or copper alloy may be electrodeposited on the surface of the electrolytic copper foil.
  • the roughened particles can be fine, and the shape thereof can be any of a needle shape, a rod shape, or a particle shape.
  • the roughening treatment layer is a layer made of any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, iron, vanadium, cobalt, and zinc, or an alloy containing at least one of them. Etc. Further, after electrodepositing the roughened particles of copper or copper alloy, it is possible to perform a roughening treatment in which secondary particles and tertiary particles are further electrodeposited with nickel, cobalt, copper, zinc alone or an alloy.
  • a heat-resistant layer or a rust prevention layer is formed on the surface of the roughening treatment layer, and a chromate treatment layer or a silane coupling treatment layer is further formed on the surface.
  • a heat-resistant layer or a rust-preventing layer is formed on the surface of the electrolytic copper foil, and a chromate treatment layer or a silane coupling treatment layer is further formed on the surface.
  • the above heat-resistant layer, rust prevention layer, chromate treatment layer and silane coupling treatment layer may all be a single layer, but may be formed of a plurality of layers (for example, two or more layers, 3 Layer or more).
  • the roughening treatment layer can be formed by using an electrolytic bath made of sulfuric acid / copper sulfate containing at least one kind of substances selected from alkyl sulfate salts, tungsten ions, and arsenic ions.
  • the roughening treatment layer is preferably plated with an electrolytic bath made of sulfuric acid and copper sulfate in order to prevent powder falling and improve peel strength.
  • Cobalt - - Copper as roughening layer when forming a nickel alloy plating layer by electrolytic plating, the content of 15mg / dm 2 ⁇ 40mg / dm 2 of copper, the content of 100 ⁇ g / dm 2 ⁇ 3000 ⁇ g / dm 2 cobalt, and it is preferable that the content is ternary alloy layer such that the nickel 100 ⁇ g / dm 2 ⁇ 1500 ⁇ g / dm 2.
  • the Co content is less than 100 ⁇ g / dm 2 , the heat resistance and the etching property may be lowered.
  • Co content exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching stains may occur, and acid resistance and chemical resistance may decrease. Moreover, heat resistance may fall that Ni content is less than 100 microgram / dm ⁇ 2 >.
  • the etching residue may increase.
  • Preferred Co content is 1000 ⁇ g / dm 2 ⁇ 2500 ⁇ g / dm 2, preferably Ni content is 500 ⁇ g / dm 2 ⁇ 1200 ⁇ g / dm 2.
  • etching spots in this specification means that Co remains without being dissolved when etched with copper chloride.
  • etching residue means that Ni remains without being dissolved when alkali etching is performed with ammonium chloride.
  • Plating bath composition 10-20 g / L Cu, 1-10 g / L Co, 1-10 g / L Ni pH: 1 to 4 Temperature: 30-50 ° C Current density: 20-30 A / dm 2 Plating time: 1-5 seconds
  • Plating bath composition 10-20 g / L Cu, 1-10 g / L Co, 1-10 g / L Ni pH: 1 to 4 Temperature: 30-50 ° C Current density: 30 to 45 A / dm 2 Plating time: 0.1 to 2.0 seconds
  • the surface roughness Sa and / or the root mean square height Sq of the surface treatment layer can be reduced by shortening the plating time. .
  • the surface roughness Sa and / or the root mean square height Sq of the surface of the surface-treated layer can be increased by increasing the plating time.
  • the surface roughness Sa and / or the root mean square height of the surface of the surface-treated layer is increased by increasing the current density and extremely shortening the plating time. Sq can be further reduced.
  • the surface roughness Sa and / or the root mean square height Sq of the surface treatment layer is increased by increasing the current density and lengthening the plating time. can do.
  • the electrolytic copper foil according to the embodiment of the present invention may have a surface treatment layer on the deposition surface side.
  • a surface treatment layer formed in the precipitation surface side One or more types selected from the group which consists of a roughening process layer, a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer.
  • a layer is preferred.
  • a heat-resistant layer or a rust-preventing layer is formed on the surface of the roughening treatment layer, and a chromate treatment layer or a silane coupling treatment layer is formed thereon.
  • the electrolytic copper foil according to the embodiment of the present invention may have a resin layer on one or both of the glossy surface side and the deposition surface side.
  • This resin layer is generally formed on the surface treatment layer. Although it does not specifically limit as a resin layer, It is preferable that it is an insulating resin layer.
  • the heat-resistant layer and / or rust-proof layer is made of, for example, nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • It can be a layer containing one or more elements selected from the group consisting of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum It may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of group elements, iron and tantalum.
  • the heat-resistant layer and / or rust-proof layer is made of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron and tantalum.
  • the heat-resistant layer and / or the rust preventive layer may be a copper-zinc alloy layer, a zinc-nickel alloy layer, a nickel-cobalt alloy layer, a copper-nickel alloy layer, or a chromium-zinc alloy layer. Further, the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy. Further, the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer.
  • the nickel-zinc alloy layer it is preferable to contain 50 mass% to 99 mass% of nickel and 50 mass% to 1 mass% of zinc, excluding inevitable impurities.
  • the total content of zinc and nickel in the nickel-zinc alloy layer is preferably 5 mg / m 2 to 1000 mg / m 2 , more preferably 10 mg / m 2 to 500 mg / m 2 , still more preferably 20 mg / m 2 to 100 mg / m 2. m 2 .
  • the ratio of the nickel content to the zinc content in the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 1.5 to 10.
  • the nickel content of the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , more preferably 1 mg / m 2 to 50 mg / m 2. preferable.
  • the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer having a content of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and a content of 1 mg / m 2.
  • a tin layer of 2 to 80 mg / m 2 , preferably 5 mg / m 2 to 40 mg / m 2 may be sequentially laminated.
  • the nickel alloy layer may be composed of any one of nickel-molybdenum, nickel-zinc, and nickel-molybdenum-cobalt.
  • the chromate treatment layer is a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate.
  • Chromate treatment layer can be any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic, titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included).
  • the chromate treatment layer examples include a chromate treatment layer treated with chromic anhydride or a potassium dichromate aqueous solution, a chromate treatment layer treated with a treatment solution containing anhydrous chromic acid or potassium dichromate and zinc, and the like. .
  • silane coupling agent used for the silane coupling treatment is not particularly limited, and known ones can be used.
  • silane coupling agents include amino silane coupling agents, epoxy silane coupling agents, methacryloxy silane coupling agents, mercapto silane coupling agents, and the like.
  • silane coupling agent vinyltrimethoxysilane, vinylphenyltrimethoxylane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, ⁇ -Aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, Triazinesilane, ⁇ -mercaptopropyltrimethoxysilane, and the like can be used.
  • a silane coupling agent can be used individually or in mixture of 2 or more types.
  • an amino silane coupling agent or an epoxy silane coupling agent is an amino silane coupling agent or an epoxy silane coupling agent
  • amino silane coupling agent examples include N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl) Trim
  • the silane coupling treatment layer is preferably 0.05 mg / m 2 to 200 mg / m 2 , more preferably 0.15 mg / m 2 to 20 mg / m 2 , still more preferably 0.3 mg / m 2 in terms of silicon atoms. It is appropriate that it is provided in a range of ⁇ 2.0 mg / m 2 . In this range, the adhesion between the insulating substrate (resin substrate) and the electrolytic copper foil can be further improved.
  • the resin layer may be an adhesive layer, or may be a semi-cured (B-stage) insulating resin layer for bonding.
  • the semi-cured state (B stage state) is a state where there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
  • the resin layer may be a layer containing a thermosetting resin or a thermoplastic resin.
  • thermosetting resin and thermoplastic resin is not specifically limited, For example, an epoxy resin, a polyimide resin, a polyfunctional cyanate ester compound, a maleimide compound, a polyvinyl acetal resin, a urethane resin etc. are mentioned. These can be used individually or in mixture of 2 or more types.
  • the resin layer may be made of any known dielectric such as a known resin, resin curing agent, compound, curing accelerator, dielectric (dielectric including an inorganic compound and / or organic compound, dielectric including a metal oxide). May be formed from a composition containing a reaction catalyst, a crosslinking agent, a polymer, a prepreg, a skeletal material, and the like.
  • the resin layer may be, for example, International Publication No. 2008/004399, International Publication No. 2008/053878, International Publication No. 2009/084533, Japanese Patent Application Laid-Open No. 11-5828, Japanese Patent Application Laid-Open No. 11-140281, Patent No. No. 3184485, International Publication No.
  • Japanese Patent No. 3676375 Japanese Patent Application Laid-Open No. 2000-43188, Japanese Patent No. 3612594, Japanese Patent Application Laid-Open No. 2002-179772, Japanese Patent Application Laid-Open No. 2002-359444, Japanese Patent Application Laid-Open No. 2002-359444, 2003-304068, Japanese Patent No. 3992225, Japanese Patent Laid-Open No. 2003-249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 40251177, Japanese Patent Application Laid-Open No. 2004-349654, and Japanese Patent No. 2004-349654.
  • Japanese Patent No. 4286060 Japanese Patent Laid-Open No.
  • JP2013-19056A resin curing agent, compound, curing accelerator, dielectric Body, reaction catalyst, cross-linking agent, polymer, prepreg, skeletal material, etc.
  • the resin is dissolved in a solvent such as methyl ethyl ketone (MEK) or toluene to form a resin liquid, which is applied onto the electrolytic copper foil or the surface treatment layer by a known method such as a roll coater method, and then heated as necessary.
  • B stage is obtained by drying and removing the solvent.
  • a hot air drying furnace may be used for drying, and the drying temperature may be 100 ° C. to 250 ° C., preferably 130 ° C. to 200 ° C.
  • An electrolytic copper foil having a resin layer is a mode in which a predetermined wiring pattern is formed after the resin layer is superposed on an insulating substrate (resin substrate), and the entire resin layer is thermocompressed to thermally cure the resin layer. used.
  • the electrolytic copper foil with the resin layer When the electrolytic copper foil with the resin layer is used, the number of prepreg materials used in the production of the multilayer printed wiring board can be reduced. In addition, the thickness of the resin layer can be set such that interlayer insulation can be ensured, or a copper-clad laminate can be produced even if no prepreg material is used. In addition, the surface smoothness can be further improved by undercoating an insulating resin on the surface of the substrate.
  • the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous.
  • the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 ⁇ m or less can be manufactured.
  • the thickness of the resin layer is not particularly limited, but is preferably 0.1 ⁇ m to 80 ⁇ m.
  • the thickness of the resin layer is less than 0.1 ⁇ m, the adhesive strength is reduced, and when the carrier-attached copper foil with the resin layer is laminated on the base material provided with the inner layer material without interposing the prepreg material, the inner layer material It may be difficult to ensure interlayer insulation with the circuit.
  • the thickness of the resin layer is greater than 80 ⁇ m, it is difficult to form a resin layer having a desired thickness in a single coating process, which is economically disadvantageous because of extra material costs and man-hours.
  • the formed resin layer is inferior in flexibility, cracks or the like are likely to occur during handling, and excessive resin flow may occur during thermocompression bonding with the inner layer material, making smooth lamination difficult. is there.
  • the electrolytic copper foil with a resin layer it is also possible to sell it in a form in which a semi-cured resin layer is formed on the glossy surface or the surface treatment layer.
  • a printed circuit board is completed by mounting electronic components on the printed wiring board.
  • the “printed wiring board” includes a printed wiring board on which electronic components are mounted, a printed circuit board, a printed board, a flexible printed wiring board, and a rigid printed wiring board.
  • an electronic device may be manufactured using a printed wiring board, an electronic device may be manufactured using a printed circuit board on which electronic components are mounted, and a printed circuit board on which electronic components are mounted is used.
  • An electronic device may be manufactured. Below, some examples of the manufacturing process of the printed wiring board using the electrolytic copper foil which concerns on embodiment of this invention are shown.
  • a method for manufacturing a printed wiring board according to an embodiment of the present invention includes forming a copper-clad laminate by laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention, then a semi-additive method, a modified semi-additive method, Forming a circuit by either a partial additive method or a subtractive method.
  • the insulating substrate may include an inner layer circuit.
  • the “semi-additive method” means a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductor pattern is formed using electroplating and etching.
  • the printed wiring board manufacturing method using the semi-additive method, A step of laminating an electrolytic copper foil and an insulating substrate (resin substrate) according to an embodiment of the present invention; Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid, Providing a through hole and / or a blind via in the resin exposed by removing the electrolytic copper foil by etching; Performing a desmear process on a region including through holes and / or blind vias; Providing an electroless plating layer for a region including resin and through-holes and / or blind vias; Providing a plating resist on the electroless plating layer; After exposing the plating resist, removing the plating resist in the region where the circuit is formed; A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist; Removing the plating resist; Removing an electroless plating layer in a
  • a step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate (resin substrate); Performing a desmear process on a region including through holes and / or blind vias; Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid, A step of providing an electroless plating layer for the resin exposed by removing the electrolytic copper foil by etching or the like and the region including the through hole and / or the blind via; Providing a plating resist on the electroless plating layer; After exposing the plating resist, removing the plating resist in the region where the circuit is formed; A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist; Remov
  • a step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate (resin substrate); Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid, Performing a desmear process on a region including through holes and / or blind vias;
  • a step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention Removing all the electrolytic copper foil by a method such as etching or plasma using a corrosive solution such as acid, Providing an electroless plating layer on the surface of the resin exposed by removing the electrolytic copper foil by etching; Providing a plating resist on the electroless plating layer; After exposing the plating resist, removing the plating resist in the region where the circuit is formed; A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist; Removing the plating resist; And a step of removing the electroless plating layer and the electrolytic copper foil in a region other than the region where the circuit is formed by flash etching or the like.
  • the “modified semi-additive method” means that an electrolytic copper foil is laminated on an insulating substrate, a non-circuit forming part is protected by a plating resist, and a copper thickening of the circuit forming part is performed by electrolytic plating. It means a method of forming a circuit on an insulating substrate by removing the resist and removing the electrolytic copper foil other than the circuit forming part by (flash) etching.
  • the method for manufacturing a printed wiring board according to the embodiment of the present invention using the modified semi-additive method A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention; Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate; Performing a desmear process on a region including through holes and / or blind vias; Providing an electroless plating layer for a region including through holes and / or blind vias; Providing a plating resist on the electrolytic copper foil; Forming a circuit by electrolytic plating after providing a plating resist; Removing the plating resist; Removing the electrolytic copper foil exposed by removing the plating resist by flash etching.
  • a step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention Providing a plating resist on the electrolytic copper foil; After exposing the plating resist, removing the plating resist in the region where the circuit is formed; A step of providing an electroplating layer in a region where a circuit is formed after removing the plating resist; Removing the plating resist; And a step of removing the electroless plating layer and the electrolytic copper foil in a region other than the region where the circuit is formed by flash etching or the like.
  • the “partial additive method” means that a conductive circuit is formed by applying a catalyst nucleus on a substrate provided with a conductor layer and, if necessary, a substrate provided with a hole for a through hole or a via hole, and etching it.
  • a method of manufacturing a printed wiring board by forming a solder resist or a plating resist as required, and then thickening the conductive circuit, through holes, via holes, etc. by electroless plating treatment means.
  • the printed wiring board manufacturing method using the partly additive method, in one aspect, A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention; Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate; Performing a desmear process on a region including through holes and / or blind vias; Providing catalyst nuclei for regions containing through holes and / or blind vias; Providing an etching resist on the electrolytic copper foil; Exposing the etching resist to form a circuit pattern; Removing the electrolytic copper foil and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit; Removing the etching resist; A step of providing a solder resist or a plating resist on the surface of the insulating substrate exposed by removing the electrolytic copper foil and the catalyst core by a method such as etching or plasma using a corros
  • the “subtractive method” means a method of forming a conductor pattern by selectively removing unnecessary portions of the copper foil on the copper-clad laminate by etching or the like.
  • the printed wiring board manufacturing method using the subtractive method, in one aspect, A step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention; Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate; Performing a desmear process on a region including through holes and / or blind vias; Providing an electroless plating layer for a region including through holes and / or blind vias; Providing an electroplating layer on the surface of the electroless plating layer; Providing an etching resist on the surface of the electrolytic plating layer and / or the electrolytic copper foil; Exposing the etching resist to form a circuit pattern; A step of forming a circuit by removing the electrolytic copper foil, the electroless plating layer and the electrolytic plating layer by a method such as etching or plasma using a corrosive solution such as an acid; And a step of removing the etching resist.
  • a step of laminating an electrolytic copper foil and an insulating substrate according to an embodiment of the present invention Providing a through hole and / or a blind via in the electrolytic copper foil and the insulating substrate; Performing a desmear process on a region including through holes and / or blind vias; Providing an electroless plating layer for a region including through holes and / or blind vias; Forming a mask on the surface of the electroless plating layer; Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed; Providing an etching resist on the surface of the electrolytic plating layer and / or the electrolytic copper foil; Exposing the etching resist to form a circuit pattern; Removing the electrolytic copper foil and the electroless plating layer by a method such as etching or plasma using a corrosive solution such as acid to form a circuit; And a step of removing
  • the process of providing a through hole and / or a blind via and the subsequent desmear process may not be performed.
  • the polishing time was the product of the time required to pass one point on the drum surface in one pass and the number of passes based on the width of the polishing belt and the moving speed of the polishing belt.
  • the above-described electrolytic drum and electrodes were disposed around the electrolytic drum with a predetermined distance between the electrodes.
  • electrolysis was performed in an electrolytic bath under the following conditions, and copper was deposited on the surface of the electrolytic drum while rotating the electrolytic drum until the thickness became 18 ⁇ m.
  • Electrolyte composition 100 g / L Cu, 100 g / L H 2 SO 4 Current density: 90 A / dm 2
  • Electrolyte temperature 60 ° C
  • Example 1 The surface treatment (glossy surface) on the electrolytic drum side of the electrolytic copper foil (raw foil) produced as described above was subjected to surface treatment in the following order (1) to (4).
  • (1) Roughening treatment After electrodepositing roughened particles on the glossy surface of an electrolytic copper foil (raw foil) using the plating solution 1 (pH 1 or less) having the following composition under the following plating condition 1, A roughening layer (Cu-As-W) was formed by further electrodepositing the roughened particles under the following plating condition 2 using the plating solution 2 (pH 0.3 or lower).
  • ⁇ Plating solution 2 composition CuSO 4 .5H 2 O: 240 g / L H 2 SO 4 : 120 g / L ⁇ Plating condition 2> Temperature: 55 ° C Current density: 20 A / dm 2 Plating time: 7 seconds
  • a heat-resistant layer (Ni—Zn) was formed by performing nickel-zinc alloy plating under the following plating conditions using a plating solution (pH 2) having the following composition.
  • ⁇ Plating solution composition Ni: 13 g / L Zn: 12 g / L
  • a zinc chromate treatment layer was formed by performing zinc chromate treatment under the following plating conditions using a plating solution (pH 4.8) having the following composition.
  • Silane coupling treatment A silane coupling treatment layer A was formed by spraying a silane coupling treatment liquid having a tetraethoxysilane content of 0.4 vol% and a pH of 7.5.
  • Example 2 The glossy surface of the electrolytic copper foil (raw foil) produced as described above was subjected to a surface treatment in the same manner as in Example 1 except that (2) the plating time in the heat treatment was changed to 2.96 seconds. It was.
  • Example 3 The glossy surface of the electrolytic copper foil (raw foil) produced as described above was subjected to a surface treatment in the same manner as in Example 1 except that (2) the plating time in the heat treatment was changed to 2.75 seconds. It was.
  • Example 4 The glossy surface of the electrolytic copper foil (raw foil) produced as described above was subjected to a surface treatment in the same manner as in Example 1 except that (2) the plating time in the heat treatment was changed to 2.82 seconds. It was.
  • Example 5 Surface treatment was performed in the order of the following (1) to (5) on the glossy surface of the electrolytic copper foil (raw foil) produced as described above.
  • (1) Roughening treatment Using a plating solution (pH 1 to 4) having the following composition, roughening is performed by electrodepositing roughened particles on the glossy surface of an electrolytic copper foil (raw foil) under the following plating conditions.
  • a treatment layer (Cu—Co—Ni (1)) was formed.
  • a heat-resistant layer (Co-Ni) was formed by performing Co-Ni alloy plating under the following plating conditions using a plating solution (pH 1.0 to 3.5) having the following composition. .
  • a plating solution pH 1.0 to 3.5
  • a rust prevention layer (Zn—Ni) was formed by performing Zn—Ni alloy plating under the following plating conditions using a plating solution (pH 3 to 4) having the following composition.
  • Silane coupling treatment is performed by spraying a silane coupling treatment liquid having an N- (2-aminoethyl) -3-aminopropyltrimethoxysilane content of 0.4 vol% and a pH of 7.5.
  • a treatment layer B was formed.
  • Example 6 For the glossy surface of the electrolytic copper foil (raw foil) produced as described above, the surface treatment was performed in the same manner as in Example 5 except that (3) the plating time in the rust prevention treatment was changed to 2.61 seconds. went.
  • Example 7 For the glossy surface of the electrolytic copper foil (raw foil) produced as described above, the surface treatment was performed in the same manner as in Example 5 except that (3) the plating time in the rust prevention treatment was changed to 2.32 seconds. went.
  • Example 8 The same surface treatment as in Example 5 was performed on the glossy surface of the electrolytic copper foil (raw foil) produced as described above.
  • Example 9 The surface treatment was performed in the order of the following (1) to (3) on the glossy surface of the electrolytic copper foil (raw foil) produced as described above.
  • Heat resistance treatment barrier treatment
  • a nickel-zinc alloy plating was performed under the same conditions as in Example 1 except that the plating time was changed to 2.82 seconds to form a heat-resistant layer (Ni—Zn).
  • Chromate treatment A zinc chromate treatment layer was formed under the same conditions as in Example 1.
  • Silane coupling treatment A silane coupling treatment layer A was formed under the same conditions as in Example 1.
  • Example 10 The same surface treatment as in Example 2 was performed on the glossy surface of the electrolytic copper foil (raw foil) produced as described above.
  • Example 11 Surface treatment was performed in the order of the following (1) to (5) on the glossy surface of the electrolytic copper foil (raw foil) produced as described above.
  • (1) Roughening treatment Using a plating solution (pH 1 to 4) having the following composition, roughening is performed by electrodepositing roughened particles on the glossy surface of an electrolytic copper foil (raw foil) under the following plating conditions.
  • a treatment layer (Cu—Co—Ni (2)) was formed.
  • Example 12 For the glossy surface of the electrolytic copper foil (raw foil) produced as described above, the surface treatment was performed in the same manner as in Example 11 except that (3) the plating time in the rust prevention treatment was changed to 2.55 seconds. went. (Example 13) The same surface treatment as in Example 11 was performed on the glossy surface of the electrolytic copper foil (raw foil) produced as described above.
  • Example 14 Surface treatment was performed in the order of the following (1) to (5) on the glossy surface of the electrolytic copper foil (raw foil) produced as described above.
  • (3) Rust prevention treatment A rust prevention layer (Zn—Ni) was formed under the same conditions as in Example 5 except that the plating time was 2.49 seconds.
  • Chromate treatment A zinc chromate treatment layer was formed under the same conditions as in Example 1.
  • Silane coupling treatment A silane coupling treatment layer B was formed under the same conditions as in Example 5.
  • Example 15 The glossy surface of the electrolytic copper foil (raw foil) produced as described above was subjected to a surface treatment in the same manner as in Example 1 except that (2) the plating time in the heat treatment was changed to 3.79 seconds. It was.
  • Example 16 The glossy surface of the electrolytic copper foil (raw foil) produced as described above was subjected to a surface treatment in the same manner as in Example 15 except that (2) the plating time in the heat treatment was changed to 4.89 seconds. It was.
  • Example 17 The glossy surface of the electrolytic copper foil (raw foil) produced as described above was subjected to a surface treatment in the same manner as in Example 15 except that (2) the plating time in the heat treatment was changed to 6.40 seconds. It was.
  • Example 18 The glossy surface of the electrolytic copper foil (raw foil) produced as described above was subjected to a surface treatment in the same manner as in Example 15 except that (2) the plating time in the heat treatment was changed to 6.88 seconds. It was.
  • Example 19 For the glossy surface of the electrolytic copper foil (raw foil) produced as described above, the surface treatment was performed in the same manner as in Example 5 except that (3) the plating time in the rust prevention treatment was changed to 6.66 seconds. went.
  • Example 20 For the glossy surface of the electrolytic copper foil (raw foil) produced as described above, the surface treatment was performed in the same manner as in Example 19 except that (3) the plating time in the rust prevention treatment was changed to 6.95 seconds. went.
  • Example 21 For the glossy surface of the electrolytic copper foil (raw foil) produced as described above, the surface treatment was performed in the same manner as in Example 19 except that (3) the plating time in the rust prevention treatment was changed to 8.17 seconds. went.
  • Example 22 For the glossy surface of the electrolytic copper foil (raw foil) produced as described above, the surface treatment was performed in the same manner as in Example 19 except that (3) the plating time in the rust prevention treatment was changed to 9.27 seconds. went.
  • Example 23 The glossy surface of the electrolytic copper foil (raw foil) produced as described above was subjected to a surface treatment in the same manner as in Example 9 except that (1) the plating time in the heat treatment was changed to 11.70 seconds. It was.
  • Example 24 The glossy surface of the electrolytic copper foil (raw foil) produced as described above was subjected to surface treatment in the same manner as in Example 1 except that (2) the plating time in the heat treatment was changed to 15.15 seconds. It was.
  • Example 25 For the glossy surface of the electrolytic copper foil (raw foil) produced as described above, the surface treatment was performed in the same manner as in Example 11 except that (3) the plating time in the rust prevention treatment was changed to 15.64 seconds. went.
  • Example 26 For the glossy surface of the electrolytic copper foil (raw foil) produced as described above, the surface treatment was performed in the same manner as in Example 11 except that (3) the plating time in the rust prevention treatment was changed to 16.16 seconds. went.
  • Example 27 For the glossy surface of the electrolytic copper foil (raw foil) produced as described above, the surface treatment was performed in the same manner as in Example 11 except that (3) the plating time in the rust prevention treatment was changed to 4.63 seconds. went.
  • Example 28 For the glossy surface of the electrolytic copper foil (raw foil) produced as described above, the surface treatment was performed in the same manner as in Example 5 except that (3) the plating time in the rust prevention treatment was changed to 18.53 seconds. went.
  • Example 29 Surface treatment was performed in the order of the following (1) to (5) on the glossy surface of the electrolytic copper foil (raw foil) produced as described above.
  • (1) Roughening treatment Using a plating solution (pH 1 to 4) having the following composition, roughening is performed by electrodepositing roughened particles on the glossy surface of an electrolytic copper foil (raw foil) under the following plating conditions.
  • a treatment layer (Cu—Co—Ni—Mo) was formed.
  • Example 30 Surface treatment was performed in the order of the following (1) to (4) on the glossy surface of the electrolytic copper foil (raw foil) produced as described above.
  • (1) Roughening treatment A roughening treatment layer (Cu—As—W) was formed under the same conditions as in Example 1.
  • Example 31 The glossy surface of the electrolytic copper foil (raw foil) produced as described above was subjected to a surface treatment in the same manner as in Example 30 except that (2) the plating time in the heat treatment was changed to 8.33 seconds. It was.
  • Example 32 The surface treatment was performed in the order of the following (1) to (3) on the glossy surface of the electrolytic copper foil (raw foil) produced as described above.
  • (1) Roughening treatment Using a plating solution (pH 1 to 4) having the following composition, roughening is performed by electrodepositing roughened particles on the glossy surface of an electrolytic copper foil (raw foil) under the following plating conditions.
  • a treatment layer (Cu—Co—Ni—Zn) was formed.
  • ⁇ Plating solution composition Cu: 10 to 20 g / L Co: 1-10g / L Ni: 1-10g / L Zn: 2-12 g / L ⁇ Plating conditions> Temperature: 30-50 ° C Current density: 30 to 45 A / dm 2 Roughening coulomb amount: 0.3 to 67.5 As / dm 2 Plating time: 0.1 to 1.5 seconds (2) Chromate treatment A zinc chromate treatment layer was formed under the same conditions as in Example 1. (3) Silane coupling treatment A silane coupling treatment layer B was formed under the same conditions as in Example 5.
  • Example 33 Surface treatment was performed in the same manner as in Example 1 except that the conditions in (2) heat treatment were changed as follows on the glossy surface of the electrolytic copper foil (raw foil) produced as described above.
  • (2) Heat-resistant treatment Using a plating solution (pH 10 to 13) having the following composition, Cu—Zn alloy plating was performed under the following plating conditions to form a heat-resistant layer (Cu—Zn).
  • ⁇ Plating solution composition > NaOH: 80-140 g / L NaCN: 100 to 150 g / L CuCN: 20-30g / L Zn (CN) 2: 15 to 20 g / L As 2 O 3 : 0.01 to 1 g / L ⁇ Plating conditions> Temperature: 40-90 ° C Current density: 5 A / dm 2 Plating time: 14.06 seconds
  • the arithmetic average values of the surface roughness Sa and the root mean square height Sq obtained at the three locations were taken as the values of the surface roughness Sa and the root mean square height Sq, respectively.
  • the surface roughness Sa and the root mean square height Sq were calculated after performing plane correction.
  • the environmental temperature at the time of measuring the surface roughness Sa with a laser microscope was set to 23 to 25 ° C.
  • ⁇ Atom concentration of Zn on the surface of the surface treatment layer The glossy surface of the electrolytic copper foil before and after the surface treatment was subjected to Si, S, Cl, C, N, O, Cr, Co using an Auger electron spectroscopic analyzer (model: JAMP-9500F) manufactured by JEOL Ltd.
  • the atomic concentrations of Ni, Cu and Zn were measured, and the atomic concentration of Zn was determined when the total of these elements was 100 at%. Measurement was performed at three locations, and the arithmetic average value of the results was taken as the atomic concentration of Zn.
  • the measurement of the normal peel strength and the measurement of the heat-resistant peel strength described later were performed twice, and the average values were taken as the values of the normal-state peel strength and the heat-resistant peel strength, respectively.
  • the heat-resistant peel strength is obtained by heating a laminate having a circuit formed at 190 ° C. for 1 hour in an air atmosphere, and then floating for 20 seconds in a solder plating bath heated to 270 ° C., and then measuring the peel strength. It was.
  • the surface-treated electrolytic copper foil was bonded to a bismaleimide triazine resin prepreg by thermocompression bonding from the glossy surface side. Thereafter, the electrolytic copper foil bonded to the prepreg was etched from the side opposite to the side bonded to the prepreg to a thickness of 9 ⁇ m. And the etching resist was provided in the surface of the electrolytic copper foil after etching, exposure and image development were performed, and the resist pattern was formed.
  • Fig.1 (a) is a SEM image of the glossy surface of the electrolytic copper foil of Example 2 before forming a surface treatment layer.
  • FIG.1 (b) is the SEM image of the glossy surface of the electrolytic copper foil of Example 10 before forming a surface treatment layer.
  • the root mean square height Sq of the surface of the surface treatment layer is 0.550 ⁇ m or less and / or the surface roughness Sa of the surface of the surface treatment layer is 0.470 ⁇ m or less.
  • the atomic concentration of Zn is 3.0 at% when the total atomic concentration of Si, S, Cl, C, N, O, Cr, Co, Ni, Cu and Zn is 100 at%.
  • the electrolytic copper foils of Examples 1 to 33 as described above had good circuit formability and heat resistance.
  • the surface roughness Sa of the surface treatment layer surface is 0.270 ⁇ m or less and the surface treatment layer surface
  • the root mean square height Sq was 0.315 ⁇ m or less, and the atomic concentration of Zn was 3.0 at% or more.
  • the surface roughness Sa of the surface of the surface treatment layer is 0.470 ⁇ m or less or the root mean square height. Sq was 0.550 ⁇ m or less, and the atomic concentration of Zn was 3.0 at% or more.
  • the root mean square height Sq and surface roughness Sa of the surface of the surface treatment layer exceed the above ranges
  • the atomic concentration on the surface of the surface treatment layer is measured by Auger electron spectroscopy, Si
  • the electrolytic copper of Comparative Example 1 in which the atomic concentration of Zn is less than 3.0 at% when the total atomic concentration of S, Cl, C, N, O, Cr, Co, Ni, Cu and Zn is 100 at%
  • the foil did not have sufficient circuit formability and heat resistance.
  • an electrolytic copper foil excellent in circuit formability and heat resistance and a method for producing the same can be provided.

Abstract

表面処理層を光沢面側に有する電解銅箔である。この電解銅箔において、表面処理層の表面の2乗平均平方根高さSqが0.550μm以下であり、表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である。あるいは、表面処理層の表面の面粗さSaが0.470μm以下であり、表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である。

Description

電解銅箔及びその製造方法、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法
 本開示は、電解銅箔及びその製造方法、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法に関する。
 プリント配線板は、銅箔に絶縁基板(例えば、樹脂基板)を接着させて銅張積層板とした後、エッチングによって銅箔に導体パターンを形成するという工程を経て一般的に製造される。
 近年、電子機器の小型化及び高性能化のニーズの増大に伴い、搭載部品の高密度実装化や信号の高周波化等が進展しており、プリント配線板に対しても導体パターンの微細化(ファインピッチ化)や高周波対応等が求められている。
 そこで、電解銅箔を用いて導体パターンの微細化を実現するために、特許文献1には、光沢剤として作用する硫黄含有化合物等の添加剤を電解液に添加して析出面側の表面が平滑な電解銅箔を作製した後、電解銅箔に回路を形成することが提案されている。
特開2004-162172号公報
 しかしながら、特許文献1の方法は、電解液に含まれる添加剤の影響で、電解銅箔の製造時に常温での再結晶及びそれに伴う収縮によって銅箔にシワが発生し易い。そして、このようなシワが発生した場合、その後の電解銅箔を絶縁基板(樹脂基板)と接着させるときにもシワが発生してしまう。このように電解銅箔にシワが発生してしまうと、電解銅箔に回路を形成する際にファインピッチ化が困難となるため、回路形成性が十分であるとは言えない。
 他方、電解銅箔の表面が平滑である場合、絶縁基板(樹脂基板)と接着させる際に十分な接着性が得られないという問題がある。特に、プリント配線板は高温にさらされることも多いため、電解銅箔には、高温条件下での絶縁基板(樹脂基板)に対する接着性の低下が少ないこと(すなわち、耐熱性に優れること)が求められている。
 電解銅箔と絶縁基板(樹脂基板)との接着性を向上させる方法としては、電解銅箔の表面に粗化処理等を行うことが知られているが、粗化処理はファインピッチ化(すなわち、回路形成性)に影響を与える場合がある。
 そのため、従来の技術では、耐熱性の向上と回路形成性の向上との両立を図ることが難しいという問題があった。
 本発明の幾つかの実施形態は、上記のような問題を解決するためになされたものであり、回路形成性及び耐熱性(特に、絶縁基板と接着させた際に接着性の低下を抑制する効果)に優れる電解銅箔及びその製造方法を提供することを課題とする。
 また、本発明の幾つかの実施形態は、回路形成性及び耐熱性(特に、絶縁基板と接着させた際に接着性の低下を抑制する効果)に優れる電解銅箔を用いた銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法を提供することを課題とする。
 本発明者らは、上記の問題を解決すべく鋭意研究した結果、表面処理層を光沢面側に有する電解銅箔において、表面処理層の表面の面粗さSa及び/又は2乗平均平方根高さSqが回路形成性に関係すると共に、表面処理層の表面におけるZnの原子濃度が耐熱性に関係することに着目し、表面処理層の表面の面粗さSa及び/又は2乗平均平方根高さSq、並びに表面処理層の表面におけるZnの原子濃度を特定の範囲に制御することにより、耐熱性の向上と回路形成性の向上との両立を図ることができることを見出し、本発明の幾つかの実施形態を完成するに至った。
 すなわち、本発明の実施形態に係る電解銅箔は、表面処理層を光沢面側に有し、
 前記表面処理層の表面の2乗平均平方根高さSqが0.550μm以下であり、前記表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である。
 また、本発明の別の実施形態に係る電解銅箔は、表面処理層を光沢面側に有し、
 前記表面処理層の表面の面粗さSaが0.470μm以下であり、前記表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である。
 また、本発明の実施形態に係る電解銅箔の製造方法は、電解ドラムを用いて電解銅箔を作製した後、前記電解銅箔の光沢面に表面処理を行って表面処理層を形成し、
 前記電解ドラムの表面の面粗さSaが0.270μm以下であり、前記表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である。
 また、本発明の別の実施形態に係る電解銅箔の製造方法は、電解ドラムを用いて電解銅箔を作製した後、前記電解銅箔の光沢面に表面処理を行って表面処理層を形成し、
 前記電解ドラムの表面の2乗平均平方根高さSqが0.315μm以下であり、前記表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である。
 また、本発明の実施形態に係る銅張積層板は、前記電解銅箔を有する。
 また、本発明の実施形態に係るプリント配線板は、前記電解銅箔を有する。
 また、本発明の実施形態に係るプリント配線板の製造方法は、前記電解銅箔を用いる。
 また、本発明の別の実施形態に係るプリント配線板の製造方法は、前記電解銅箔と絶縁基板とを積層して銅張積層板を作製した後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって回路を形成する工程を含む。
 また、本発明の実施形態に係る電子機器は、前記プリント配線板を有する。
 さらに、本発明の実施形態に係る電子機器の製造方法は、プリント配線板を用いる。
 本発明の幾つかの実施形態によれば、回路形成性及び耐熱性に優れる電解銅箔及びその製造方法を提供することができる。
 また、本発明の幾つかの実施形態によれば、回路形成性及び耐熱性に優れる電解銅箔を用いた銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法を提供することができる。
(a)は、表面処理層を形成する前の実施例2の電解銅箔の光沢面のSEM像であり、(b)は、表面処理層を形成する前の実施例10の電解銅箔の光沢面のSEM像である。
 本発明の実施形態に係る電解銅箔は、表面処理層を光沢面側に有し、表面処理層の表面の2乗平均平方根高さSqが0.550μm以下及び/又は表面処理層の表面の面粗さSaが0.470μm以下であり、表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である。
 ここで、本明細書において「電解銅箔の光沢面」とは、電解銅箔が作製されるときのドラム側の表面(シャイニー面:S面)を意味し、また、「電解銅箔の析出面」とは、電解銅箔が作製されるときのドラムとは反対側の表面(マット面:M面)を意味する。
 以下、本発明の実施形態に係る電解銅箔の好ましい態様について説明する。
<粗化処理層以外の表面処理層を光沢面側に有する電解銅箔>
 本発明の実施形態に係る電解銅箔は、一側面において、粗化処理層以外の表面処理層を光沢面側に有しており、表面処理層の表面の面粗さSaが0.270μm以下及び/又は表面処理層の表面の2乗平均平方根高さSqが0.315μm以下であり、表面処理層の表面におけるZnの原子濃度が3.0at%以上である。
 上記のような構成を有する電解銅箔では、表面処理層の表面の面粗さSaを0.270μm以下及び/又は表面処理層の表面の2乗平均平方根高さSqを0.315μm以下とすることにより、電解銅箔を用いて形成される回路のピッチについて、L/S(ライン/スペース)=22μm以下/22μm以下、好ましくは20μm以下/20μm以下のファインピッチ化が可能となる。
 電解銅箔の表面処理層の表面の面粗さSaは、ファインピッチ化の効果を高める観点から、好ましくは0.230μm以下、より好ましくは0.180μm以下、さらに好ましくは0.150μm以下、最も好ましくは0.133μm以下である。なお、電解銅箔の表面処理層の表面の面粗さSaの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。
 また、電解銅箔の表面処理層の表面の2乗平均平方根高さSqは、ファインピッチ化の効果を高める観点から、好ましくは0.200μm以下、より好ましくは0.180μm以下である。なお、電解銅箔の表面処理層の表面の2乗平均平方根高さSqの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。
 上記のように、電解銅箔の表面処理層の表面の面粗さSaが0.270μm以下及び/又は表面処理層の表面の2乗平均平方根高さSqを0.315μm以下に制御した場合、回路形成性は向上する一方、電解銅箔の表面処理層の表面の凹凸が低減するため、当該凹凸のアンカー効果による電解銅箔と絶縁基板(樹脂基板)との間の接着性が低下する恐れがある。特に、高温条件下における電解銅箔と絶縁基板(樹脂基板)との間の接着性の低下が懸念される。そのため、下記のように、表面処理層の表面におけるZnの原子濃度を3.0at%以上とすることにより、耐熱性を向上させることが重要である。
 表面処理層の表面におけるZnの原子濃度は、3.0at%以上に制御することにより、耐熱性を向上させることができる。
 ここで、本明細書において、表面処理層の表面におけるZnの原子濃度は、オージェ電子分光分析法(AES)によって測定される。オージェ電子分光分析法(AES)は、深さ方向組成分析(デプスプロファイル)を行うものであり、表面処理層の表面に存在する元素の割合を測定することができる。なお、表面処理層の表面とは、特に限定されないが、表面処理層の表面(最外層の表面)から、好ましくは50nm、より好ましくは10nm以下、さらに好ましくは5nm以下の深さのことを意味する。
 また、Znの原子濃度は、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合の相対的な原子濃度である。
 Znの原子濃度は、上記の効果を高める観点から、好ましくは4.5at%以上、より好ましくは6.5at%以上である。なお、Znの原子濃度の上限は、特に限定されないが、一般的に20at%以下、好ましくは15at%以下、より好ましくは12at%以下、さらに好ましくは10at%以下である。
 なお、表面処理層の表面付近に存在するZn以外の元素は、特に限定されないが、Si、S、Cl、C、N、O、Cr、Co、Ni及びCuからなる群から選択される少なくとも1種を含んでもよい。
<粗化処理層を少なくとも含む表面処理層を光沢面側に有する電解銅箔>
 本発明の実施形態に係る電解銅箔は、別の一側面において、粗化処理層を少なくとも含む表面処理層を光沢面側に有しており、表面処理層の表面の面粗さSaが0.470μm以下及び/又は表面処理層の表面の2乗平均平方根高さSqが0.550μm以下であり、表面処理層の表面におけるZnの原子濃度が3.0at%以上である。
 一般的に、粗化処理層を光沢面側に有する電解銅箔では、ファインピッチ化が低下することがあるが、上記のような構成を有する電解銅箔では、表面処理層の表面の面粗さSaを0.470μm以下及び/又は表面処理層の表面の2乗平均平方根高さSqを0.550μm以下とすることにより、電解銅箔を用いて形成される回路のピッチについて、L/S(ライン/スペース)=22μm以下/22μm以下、好ましくは20μm以下/20μm以下のファインピッチ化が可能となる。
 電解銅箔の表面処理層の表面の面粗さSaは、ファインピッチ化の効果を高める観点から、好ましくは0.385μm以下、より好ましくは0.380μm以下、より好ましくは0.355μm以下、さらに好ましくは0.340μm以下、さらに好ましくは0.300μm以下、またさらに好ましくは0.295μm以下、またさらに好ましくは0.230μm以下、最も好ましくは0.200μm以下である。なお、電解銅箔の表面処理層の表面の面粗さSaの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。
 また、電解銅箔の表面処理層の表面の2乗平均平方根高さSqは、ファインピッチ化の効果を高める観点から、好ましくは0.490μm以下、より好ましくは0.450μm以下、より好ましくは0.435μm以下、さらに好ましくは0.400μm以下、さらに好ましくは0.395μm以下、またさらに好ましくは0.330μm以下、最も好ましくは0.290μm以下である。なお、電解銅箔の表面処理層の表面の2乗平均平方根高さSqの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。
 上記のような表面処理層の表面の面粗さSa及び/又は2乗平均平方根高さSqを有する本発明の実施形態に係る電解銅箔は、光沢面側に表面処理層を設ける前の光沢面の面粗さSa及び/又は2乗平均平方根高さSqを制御することによって得ることができる。
 すなわち、本発明の実施形態に係る電解銅箔を得るためには、光沢面側に表面処理層を設ける前の光沢面の面粗さSaを、好ましくは0.270μm以下、より好ましくは0.230μm以下、より好ましくは0.180μm以下、さらに好ましくは0.150μm以下、さらに好ましくは0.133μm以下、またさらに好ましくは0.130μm以下、最も好ましくは0.120μm以下に制御すればよい。なお、光沢面側に表面処理層を設ける前の光沢面の面粗さSaの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。
 光沢面側に表面処理層を設ける前の光沢面の面粗さSaを上記の範囲に制御することにより、表面処理層を設けた後の表面処理層の表面の面粗さSa及び/又は2乗平均平方根高さSqを上記の範囲に制御することができるため、電解銅箔を用いて形成される回路のピッチについて、L/S(ライン/スペース)=22μm以下/22μm以下、より好ましくは20μm以下/20μm以下のファインピッチ化が可能となる。
 また、本発明の実施形態に係る電解銅箔を得るためには、光沢面側に表面処理層を設ける前の光沢面の2乗平均平方根高さSqを、好ましくは0.315μm以下、より好ましくは0.292μm以下、より好ましくは0.230μm以下、さらに好ましくは0.200μm以下、さらに好ましくは0.180μm以下、またさらに好ましくは0.120μm以下、最も好ましくは0.115μm以下に制御すればよい。なお、光沢面側に表面処理層を設ける前の光沢面の2乗平均平方根高さSqの下限は特に限定されないが、一般的に0.001μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.100μm以上である。
 光沢面側に表面処理層を設ける前の光沢面の2乗平均平方根高さSqを上記の範囲に制御することにより、表面処理層を設けた後の表面処理層の表面の面粗さSa及び/又は2乗平均平方根高さSqを上記の範囲に制御することができるため、電解銅箔を用いて形成される回路のピッチについて、L/S(ライン/スペース)=22μm以下/22μm以下、より好ましくは20μm以下/20μm以下のファインピッチ化が可能となる。
 また、表面処理層の表面におけるZnの原子濃度が3.0at%以上である本発明の実施形態に係る電解銅箔は、表面処理層を形成する際の条件(例えば、耐熱層、防錆層、クロメート処理層等を形成する際の処理液(めっき液)中のZn濃度、電流密度、処理温度、処理時間等)を制御することによって得ることができる。このときの条件は、形成する表面処理層の種類に応じて適宜設定すればよく特に限定されない。なお、めっき液中のZn濃度を高くすることで、表面処理層の表面におけるZnの原子濃度を増加させることができる。
 本発明の実施形態に係る電解銅箔は、表面処理後の電解銅箔(生箔)の常温抗張力が30kg/mm2以上であることが好ましい。ここで、本明細書において「常温抗張力」とは、室温での抗張力であり、IPC-TM-650に準じて測定されるものを意味する。常温抗張力が30kg/mm2以上であると、ハンドリング時にシワが発生し難いという効果がある。この効果を安定して得る観点から、常温抗張力は35kg/mm2以上であるのがより好ましい。
 本発明の実施形態に係る電解銅箔は、表面処理後の電解銅箔(生箔)の常温伸びが3%以上であることが好ましい。ここで、本明細書において「常温伸び」とは、室温での伸びであり、IPC-TM-650に準じて測定されるものを意味する。常温伸びが3%以上であると、破断し難いという効果がある。この効果を安定して得る観点から、常温伸びは4%以上であるのがより好ましい。
 本発明の実施形態に係る電解銅箔は、表面処理後の電解銅箔(生箔)の高温抗張力が10kg/mm2以上であることが好ましい。本明細書において「高温抗張力」とは、180℃での抗張力であり、IPC-TM-650に準じて測定されるものを意味する。高温抗張力が10kg/mm2以上であると、樹脂との張り付き時のシワが発生し難いという効果がある。この効果を安定して得る観点から、高温抗張力は15kg/mm2以上であるのがより好ましい。
 本発明の実施形態に係る電解銅箔は、表面処理後の電解銅箔(生箔)の高温伸びが2%以上であることが好ましい。本明細書において「高温伸び」とは、180℃での伸びであり、IPC-TM-650に準じて測定されるものを意味する。高温伸びが2%以上であると、回路のクラック発生防止に効果がある。この効果を安定して得る観点から、高温伸びは3%以上であるのが好ましく、6%以上であるのがより好ましく、15%以上であるのがさらに好ましい。
 本発明の実施形態に係る電解銅箔は、耐熱ピール強度が0.90kg/cm以上であることが好ましい。ここで、本明細書において「耐熱ピール強度」とは、本発明の実施形態に係る電解銅箔と絶縁基板(樹脂基板)とを20kgf/cm2の加圧力にて180℃で2時間加熱圧着して得られた積層体について、積層体の電解銅箔をエッチングによって回路幅10mmの回路を形成した後、大気雰囲気下、190℃で1時間加熱し、次いで270℃に加熱した半田めっき槽に20秒間浮かべた後の、回路と絶縁基板との間のピール強度を意味する。ピール強度は、JIS C6471:1995に準拠して行われる90度ピール強度であり、90度の角度で50mm/分の速度で絶縁基板(樹脂基板)と回路とを引き剥がしたときの強度を測定することによって求められる。ピール強度の測定は2回行い、その平均値とする。
 本発明の実施形態に係る電解銅箔に用いられる表面処理前の電解銅箔(生箔)としては、上記の特徴を有していれば特に限定されない。ここで、本明細書において「電解銅箔(生箔)」とは、電気めっきの原理を利用し、電解ドラムを用いて作製される銅箔及び銅合金箔を意味する。銅箔及び銅合金箔の素材である銅及び銅合金の例としては、純銅;Sn入り銅;Ag入り銅;Ti、W、Mo、Cr、Zr、Mg、Ni、Sn、Ag、Co、Fe、As、P等を添加した銅合金等が挙げられる。銅合金箔(生箔)は、電解銅箔を製造する際に用いる電解液中に合金元素(例えば、Ti、W、Mo、Cr、Zr、Mg、Ni、Sn、Ag、Co、Fe、As及びPからなる群から選択される一種以上の元素)を添加することによって製造することができる。
 電解銅箔(生箔)の厚みは、特に限定されないが、典型的には0.5μm~3000μmであり、好ましくは1.0μm~1000μm、より好ましくは1.0μm~300μm、より好ましくは1.0μm~100μm、さらに好ましくは3.0μm~75μm、さらに好ましくは4μm~40μm、またさらに好ましくは5μm~37μm、またさらに好ましくは6μm~28μm、またさらに好ましくは7μm~25μm、最も好ましくは8μm~19μmである。
<電解銅箔(生箔)の製造方法>
 電解銅箔(生箔)は、硫酸銅めっき浴からチタン又はステンレス製のドラム上に銅を電解析出して製造される。電解条件の例を以下に示す。
 (電解条件)
 電解液組成:50~150g/LのCu、60~150g/LのH2SO4
 電流密度:30~120A/dm2
 電解液温度:50~60℃
 添加物:20~80ppmの塩素イオン、0.01~10.0ppmのニカワ
 なお、本明細書に記載の電解、エッチング、表面処理又はめっき等に用いられる処理液(エッチング液、電解液等)の残部は特に明記しない限り水である。
 使用される電解ドラムは、形成される電解銅箔(生箔)の光沢面の面粗さSa及び/又は2乗平均平方根高さSqを所定の範囲に制御するために、ドラム表面の面粗さSaを0.270μm以下及び/又は2乗平均平方根高さSqを0.315μm以下とする。ドラム表面の面粗さSaは、好ましくは0.150μm以下であり、ドラム表面の2乗平均平方根高さSqは、好ましくは0.200μm以下である。
 所定の面粗さSa及び/又は2乗平均平方根高さSqを表面に有する電解ドラムは、次のようにして製造することができる。まず、チタン又はステンレス製のドラムの表面を、番手が300(P300)~500(P500)番の研磨ベルトによって研磨する。このとき、研磨ベルトを、ドラムの幅方向において所定幅だけ巻き付け、所定速度で研磨ベルトをドラムの幅方向へ移動させながらドラムを回転させることによって研磨する。研磨時のドラム表面の回転速度は130m/分~190m/分とする。また、研磨時間は、研磨ベルトの1回のパスでドラム表面の(幅方向の位置の)1点を通過する時間とパス回数との積とする。なお、前述の1回のパスでドラム表面の1点を通過する時間は、研磨ベルトの幅を、研磨ベルトのドラムの幅方向の移動速度で割った値とした。また、研磨ベルトの1回のパスとは、ドラムの周方向の表面を、ドラムの軸(幅)方向(電解銅箔の幅方向)の一方の端部からもう一方の端部まで1回研磨ベルトで研磨することを意味する。すなわち研磨時間は以下の式で表される。
 研磨時間(分)=1パス当たりの研磨ベルトの幅(cm/回)/研磨ベルトの移動速度(cm/分)×パス回数(回)
 従来の電解銅箔(生箔)の製造においては、研磨時間は1.6分~3分としていたが、本発明の実施形態では3.5分~10分、また、本発明の実施形態において研磨時にドラム表面を水で濡らす場合は6分~10分とする。上記研磨時間の算出の例として、例えば10cmの幅の研磨ベルトで移動速度を20cm/分としたとき、ドラム表面の1点の1パスの研磨時間は0.5分となる。これにトータルのパス回数を掛けることで算出することができる(例えば0.5分×10パス=5分)。研磨ベルトの番手を大きくすること、及び/又は、ドラム表面の回転速度を高くすること、及び/又は、研磨時間を長くすること、及び/又は、研磨時にドラム表面を水でぬらすこと、によりドラム表面の面粗さSa及びドラム表面の2乗平均平方根高さSqを小さくすることができる。逆に、研磨ベルトの番手を小さくすること、及び/又は、ドラム表面の回転速度を低くすること、及び/又は、研磨時間を短くすること、及び/又は、研磨時にドラム表面を乾燥させること、によりドラム表面の面粗さSa及びドラム表面の2乗平均平方根高さSqを大きくすることができる。なお、研磨時間を長くすることで、面粗さSaを小さくするとともに、Saが小さくなる程度よりも大きな程度で2乗平均平方根高さSqを小さくすることができる。逆に、研磨時間を短くすることで、面粗さSaを大きくするとともに、面粗さSaが大きくなる程度よりも大きな程度で2乗平均平方根高さSqを大きくすることができる。なお、前述の研磨ベルトの番手は、研磨ベルトに使用されている研磨材の粒度を意味する。そして、当該研磨材の粒度はFEPA(Federation of European Producers of Abrasives)-standard 43-1:2006、43-2:2006に準拠している。
 また、研磨時にドラム表面を水で濡らすことにより、2乗平均平方根高さSqを小さくするとともに、2乗平均平方根高さSqが小さくなる程度よりも大きな程度で面粗さSaを小さくすることができる。逆に、研磨時にドラム表面を乾燥させることで、2乗平均平方根高さSqを大きくするとともに、2乗平均平方根高さSqが大きくなる程度よりも大きな程度で面粗さSaを大きくすることができる。
 上記のようにして作製された所定の面粗さSa及び/又は2乗平均平方根高さSqを表面に有する電解ドラムを用いることにより、所定の光沢面の面粗さSa及び/又は2乗平均平方根高さSqを有する電解銅箔(生箔)を製造することができる。
 なお、電解ドラムの表面の面粗さSa及び2乗平均平方根高さSqは、以下のようにして測定することができる。
 ・樹脂フィルム(ポリ塩化ビニル)を溶剤(アセトン)に浸漬して膨潤させる。
 ・膨潤させた樹脂フィルムを電解ドラムの表面に接触させ、樹脂フィルムからアセトンを揮発させた後に樹脂フィルムを剥離し、電解ドラム表面のレプリカを採取する。
 ・レプリカをレーザー顕微鏡で測定し、面粗さSa及び2乗平均平方根高さSqの値を測定する。
 そして、得られたレプリカの面粗さSa及び2乗平均平方根高さSqの値を電解ドラム表面の面粗さSa及び2乗平均平方根高さSqとする。
 <表面処理>
 表面処理としては、特に限定されないが、粗化処理、耐熱処理、防錆処理、クロメート処理、シランカップリング処理等が挙げられる。本明細書では、粗化処理によって形成される層を「粗化処理層」、耐熱処理によって形成される層を「耐熱層」、防錆処理によって形成される層を「防錆層」、クロメート処理によって形成される層を「クロメート処理層」、シランカップリング処理によって形成される層を「シランカップリング処理層」という。
 本発明の実施形態に係る電解銅箔は、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を表面処理層に含むことが好ましい。
 粗化処理は、絶縁基板(樹脂基板)との接着性を向上させるために行われる。粗化処理としては、特に限定されず、粗化粒子を電解銅箔の表面に電着させることにより行うことができる。例えば、銅又は銅合金の粗化粒子を電解銅箔の表面に電着させればよい。粗化粒子は微細なものであることができ、また、その形状は、針状、棒状又は粒子状のいずれであってもよい。粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層等であってもよい。また、銅又は銅合金の粗化粒子を電着させた後、ニッケル、コバルト、銅、亜鉛の単体又は合金等で二次粒子や三次粒子をさらに電着させる粗化処理を行うこともできる。
 表面処理として粗化処理を行う場合、粗化処理層の表面に耐熱層又は防錆層が形成され、さらにその表面にクロメート処理層又はシランカップリング処理層が形成される。
 表面処理として粗化処理を行わない場合、電解銅箔の表面に耐熱層又は防錆層が形成され、さらにその表面にクロメート処理層又はシランカップリング処理層が形成される。
 なお、上述の耐熱層、防錆層、クロメート処理層及びシランカップリング処理層はいずれも、単層であってよいが、複数の層で形成されていてもよい(例えば、2層以上、3層以上等)。
 粗化処理層は、硫酸アルキルエステル塩、タングステンイオン、砒素イオンから選択した物質の少なくとも一種類以上を含む硫酸・硫酸銅からなる電解浴を用いて形成することができる。粗化処理層は、粉落ち防止及びピール強度向上のために、硫酸・硫酸銅からなる電解浴でかぶせめっきを行うことが好ましい。
 粗化処理の具体的な条件は、次の通りである。
 (めっき液組成1)
   CuSO4・5H2O:39.3~120g/L
   H2SO4:10~150g/L
   Na2WO4・2H2O:0~90mg/L
   W:0~50mg/L
   ドデシル硫酸ナトリウム:0~50mg
   As:0~2000mg/L
 (電気めっき条件1)
   温度:30~70℃
 (電流条件1)
   電流密度:25~110A/dm2
   粗化クーロン量:50~500As/dm2
   めっき時間:0.5~20秒
 (めっき液組成2)
   CuSO4・5H2O:78~314g/L
   H2SO4:50~200g/L
 (電気めっき条件2)
   温度:30~70℃
 (電流条件2)
   電流密度:5~50A/dm2
   粗化クーロン量:50~300As/dm2
   めっき時間:1~60秒
 粗化処理層として銅-コバルト-ニッケル合金めっき層を形成する場合、電解めっきにより、含有量が15mg/dm2~40mg/dm2の銅、含有量が100μg/dm2~3000μg/dm2のコバルト、及び含有量が100μg/dm2~1500μg/dm2のニッケルであるような3元系合金層であることが好ましい。Co含有量が100μg/dm2未満では、耐熱性及びエッチング性が低下することがある。一方、Co含有量が3000μg/dm2を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じると共に、耐酸性及び耐薬品性が低下することがある。また、Ni含有量が100μg/dm2未満であると、耐熱性が低下することがある。一方、Ni含有量が1500μg/dm2を超えると、エッチング残が多くなることがある。好ましいCo含有量は1000μg/dm2~2500μg/dm2であり、好ましいNi含有量は500μg/dm2~1200μg/dm2である。
 ここで、本明細書において「エッチングシミ」とは、塩化銅でエッチングした場合にCoが溶解せずに残ってしまうことを意味する。また、「エッチング残」とは、塩化アンモニウムでアルカリエッチングした場合にNiが溶解せずに残ってしまうことを意味する。
 このような3元系銅-コバルト-ニッケル合金めっきを形成するためのめっき浴及びめっき条件の一例は、次の通りである:
 めっき浴組成:10~20g/LのCu、1~10g/LのCo、1~10g/LのNi
 pH:1~4
 温度:30~50℃
 電流密度:20~30A/dm2
 めっき時間:1~5秒
 このような3元系銅-コバルト-ニッケル合金めっきを形成するためのめっき浴及びめっき条件の別の例は、次の通りである:
 めっき浴組成:10~20g/LのCu、1~10g/LのCo、1~10g/LのNi
 pH:1~4
 温度:30~50℃
 電流密度:30~45A/dm2
 めっき時間:0.1~2.0秒
 なお、上述の粗化処理層を形成する粗化処理において、めっき時間を短くすることで、表面処理層の表面の面粗さSa及び/又は2乗平均平方根高さSqを小さくすることができる。一方、上述の粗化処理層を形成する表面処理において、めっき時間を長くすることで、表面処理層の表面の面粗さSa及び/又は2乗平均平方根高さSqを大きくすることができる。
 また、上述の粗化処理層を形成する粗化処理において、電流密度を高く且つめっき時間を非常に短くすることで、表面処理層の表面の面粗さSa及び/又は2乗平均平方根高さSqをより小さくすることができる。一方、上述の粗化処理層を形成する処理において、電流密度を高く且つめっき時間を長くすることで、表面処理層の表面の面粗さSa及び/又は2乗平均平方根高さSqをより大きくすることができる。
 本発明の実施形態に係る電解銅箔は、析出面側に表面処理層を有していてもよい。析出面側に形成される表面処理層としては、特に限定されないが、粗化処理層、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層であることが好ましい。一般的には、粗化処理層の表面に、耐熱層又は防錆層が形成され、その上にクロメート処理層又はシランカップリング処理層が形成される。
 本発明の実施形態に係る電解銅箔は、光沢面側及び析出面側の一方又は両方に樹脂層を有していてもよい。この樹脂層は、表面処理層上に一般的に形成される。樹脂層としては、特に限定されないが、絶縁樹脂層であることが好ましい。
 耐熱層及び/又は防錆層としては、特に限定されず、公知のものを用いることができる。耐熱層及び/又は防錆層は、例えば、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄及びタンタルからなる群から選ばれる1種以上の元素を含む層であることができ、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄及びタンタルからなる群から選ばれる1種以上の元素からなる金属層又は合金層であってもよい。また、耐熱層及び/又は防錆層は、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄及びタンタルからなる群から選ばれる1種以上の元素を含む酸化物、窒化物又は珪化物を含んでもよい。また、耐熱層及び/又は防錆層は、銅-亜鉛合金層、亜鉛-ニッケル合金層、ニッケル-コバルト合金層、銅-ニッケル合金層、クロム-亜鉛合金層であってもよい。また、耐熱層及び/又は防錆層は、ニッケル-亜鉛合金を含む層であってもよい。また、耐熱層及び/又は防錆層は、ニッケル-亜鉛合金層であってもよい。ニッケル-亜鉛合金層の場合、不可避不純物を除き、ニッケルを50質量%~99質量%、亜鉛を50質量%~1質量%含有していることが好ましい。ニッケル-亜鉛合金層の亜鉛及びニッケルの合計含有量は、好ましくは5mg/m2~1000mg/m2、より好ましくは10mg/m2~500mg/m2、さらに好ましくは20mg/m2~100mg/m2である。また、ニッケル-亜鉛合金を含む層又はニッケル-亜鉛合金層のニッケル含有量と亜鉛含有量との比(=ニッケル含有量/亜鉛含有量)は1.5~10であることが好ましい。また、ニッケル-亜鉛合金を含む層又はニッケル-亜鉛合金層のニッケル含有は0.5mg/m2~500mg/m2であることが好ましく、1mg/m2~50mg/m2であることがより好ましい。
 例えば、耐熱層及び/又は防錆層は、含有量が1mg/m2~100mg/m2、好ましくは5mg/m2~50mg/m2のニッケル又はニッケル合金層と、含有量が1mg/m2~80mg/m2、好ましくは5mg/m2~40mg/m2のスズ層とを順次積層したものであってもよい。ニッケル合金層は、ニッケル-モリブデン、ニッケル-亜鉛、ニッケル-モリブデン-コバルトのいずれか一種により構成されてもよい。また、耐熱層及び/又は防錆層は、ニッケル又はニッケル合金とスズとの合計含有量が2mg/m2~150mg/m2であることが好ましく、10mg/m2~70mg/m2であることがより好ましい。また、耐熱層及び/又は防錆層は、[ニッケル又はニッケル合金中のニッケル含有量]/[スズ含有量]=0.25~10であることが好ましく、0.33~3であることがより好ましい。
 クロメート処理層は、無水クロム酸、クロム酸、二クロム酸、クロム酸塩又は二クロム酸塩を含む液で処理された層である。クロメート処理層は、コバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、砒素、チタン等の元素(金属、合金、酸化物、窒化物、硫化物等どのような形態でもよい)を含んでいてもよい。クロメート処理層の具体例としては、無水クロム酸又は二クロム酸カリウム水溶液で処理したクロメート処理層や、無水クロム酸又は二クロム酸カリウム及び亜鉛を含む処理液で処理したクロメート処理層等が挙げられる。
 シランカップリング処理に用いられるシランカップリング剤としては、特に限定されず公知のものを用いることができる。シランカップリング剤の例としては、アミノ系シランカップリング剤、エポキシ系シランカップリング剤、メタクリロキシ系シランカップリング剤、メルカプト系シランカップリング剤等が挙げられる。具体的には、シランカップリング剤として、ビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、4-グリシジルブチルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ-メルカプトプロピルトリメトキシシラン等を用いることができる。なお、シランカップリング剤は、単独又は2種以上混合して使用することができる。また、上記の各種シランカップリング剤の中でも、アミノ系シランカップリング剤又はエポキシ系シランカップリング剤を用いることが好ましい。
 アミノ系シランカップリング剤の具体例としては、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-フェニルアミノプロピルトリメトキシシラン、N-(3-アクリルオキシ-2-ヒドロキシプロピル)-3-アミノプロピルトリエトキシシラン、4-アミノブチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N-(2-アミノエチル-3-アミノプロピル)トリメトキシシラン、N-(2-アミノエチル-3-アミノプロピル)トリス(2-エチルヘキソキシ)シラン、6-(アミノヘキシルアミノプロピル)トリメトキシシラン、アミノフェニルトリメトキシシラン、3-(1-アミノプロポキシ)-3,3-ジメチル-1-プロペニルトリメトキシシラン、3-アミノプロピルトリス(メトキシエトキシエトキシ)シラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、ω-アミノウンデシルトリメトキシシラン、3-(2-N-ベンジルアミノエチルアミノプロピル)トリメトキシシラン、ビス(2-ヒドロキシエチル)‐3-アミノプロピルトリエトキシシラン、(N,N-ジエチル-3-アミノプロピル)トリメトキシシラン、(N,N-ジメチル-3-アミノプロピル)トリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-フェニルアミノプロピルトリメトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシラン等が挙げられる。
 シランカップリング処理層は、ケイ素原子換算で、好ましくは0.05mg/m2~200mg/m2、より好ましくは0.15mg/m2~20mg/m2、さらに好ましくは0.3mg/m2~2.0mg/m2の範囲で設けられていることが適切である。この範囲である場合、絶縁基板(樹脂基板)と電解銅箔との密着性をより向上させることができる。
 樹脂層は、接着剤の層であってもよく、接着用の半硬化状態(Bステージ状態)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、さらに加熱処理を受けると硬化反応が起こる状態のことを含む。
 また、樹脂層は、熱硬化性樹脂又は熱可塑性樹脂を含む層であってもよい。熱硬化性樹脂及び熱可塑性樹脂の種類は特に限定されないが、例えば、エポキシ樹脂,ポリイミド樹脂,多官能性シアン酸エステル化合物、マレイミド化合物、ポリビニルアセタール樹脂、ウレタン樹脂等が挙げられる。これらは、単独又は2種以上を混合して用いることができる。
 樹脂層は、公知の樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体(無機化合物及び/又は有機化合物を含む誘電体、金属酸化物を含む誘電体等どのような誘電体を用いてもよい)、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含む組成物から形成されてよい。また、樹脂層は、例えば、国際公開第2008/004399号、国際公開第2008/053878号、国際公開第2009/084533号、特開平11-5828号公報、特開平11-140281号公報、特許第3184485号公報、国際公開第97/02728号、特許第3676375号公報、特開2000-43188号公報、特許第3612594号公報、特開2002-179772号公報、特開2002-359444号公報、特開2003-304068号公報、特許第3992225号公報、特開2003-249739号公報、特許第4136509号公報、特開2004-82687号公報、特許第4025177号公報、特開2004-349654号公報、特許第4286060号公報、特開2005-262506号公報、特許第4570070号公報、特開2005-53218号公報、特許第3949676号公報、特許第4178415号公報、国際公開第2004/005588号、特開2006-257153号公報、特開2007-326923号公報、特開2008-111169号公報、特許第5024930号公報、国際公開第2006/028207号、特許第4828427号公報、特開2009-67029号公報、国際公開第2006/134868号、特許第5046927号公報、特開2009-173017号公報、国際公開第2007/105635号、特許第5180815号公報、国際公開第2008/114858号、国際公開第2009/008471号、特開2011-14727号公報、国際公開第2009/001850号、国際公開第2009/145179号、国際公開第2011/068157号、特開2013-19056号公報に記載されている物質(樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等)及び/又は樹脂層の形成方法、形成装置を用いて形成してもよい。
 例えば、樹脂をメチルエチルケトン(MEK)、トルエン等の溶剤に溶解して樹脂液とし、これを電解銅箔又は表面処理層上にロールコータ法等の公知の方法によって塗布し、次いで必要に応じて加熱乾燥して溶剤を除去することでBステージ状態にする。乾燥には、例えば熱風乾燥炉を用いればよく、乾燥温度は100℃~250℃、好ましくは130℃~200℃であればよい。
 樹脂層を有する電解銅箔は、その樹脂層を絶縁基板(樹脂基板)に重ね合わせた後、全体を熱圧着して樹脂層を熱硬化させた後、所定の配線パターンを形成するという態様で使用される。
 上記の樹脂層付きの電解銅箔を使用すると、多層プリント配線基板の製造時におけるプリプレグ材の使用枚数を減らすことができる。しかも、樹脂層の厚みを層間絶縁が確保できるような厚みにしたり、プリプレグ材を全く使用していなくても銅張り積層板を製造することができたりする。また、基材の表面に絶縁樹脂をアンダーコートして表面の平滑性をさらに改善することもできる。
 なお、プリプレグ材を使用しない場合には、プリプレグ材の材料コストが節約され、また積層工程も簡略になるので経済的に有利となり、しかも、プリプレグ材の厚み分だけ製造される多層プリント配線基板の厚みは薄くなり、1層の厚みが100μm以下である極薄の多層プリント配線基板を製造することができるという利点がある。
 樹脂層の厚みは、特に限定されないが、0.1μm~80μmであることが好ましい。樹脂層の厚みが0.1μmより薄くなると、接着力が低下し、プリプレグ材を介在させることなく樹脂層付きのキャリア付銅箔を、内層材を備えた基材に積層したときに、内層材の回路との間の層間絶縁を確保することが困難になる場合がある。一方、樹脂層の厚みを80μmより厚くすると、1回の塗布工程で目的厚みの樹脂層を形成することが困難となり、余分な材料費と工数がかかるため経済的に不利となる。さらに、形成された樹脂層はその可撓性が劣るので、ハンドリング時にクラック等が発生し易くなり、また内層材との熱圧着時に過剰な樹脂流れが起こって円滑な積層が困難になる場合がある。
 また、樹脂層付きの電解銅箔のもう一つの製品形態としては、光沢面又は表面処理層の上に半硬化状態の樹脂層を形成した形で販売することも可能である。
 さらに、プリント配線板に電子部品類を搭載することで、プリント回路板が完成する。本明細書において「プリント配線板」には、電子部品類が搭載されたプリント配線板、プリント回路板、プリント基板、フレキシブルプリント配線板及びリジッドプリント配線板が含まれる。
 また、プリント配線板を用いて電子機器を作製してもよく、電子部品類が搭載されたプリント回路板を用いて電子機器を作製してもよく、電子部品類が搭載されたプリント基板を用いて電子機器を作製してもよい。以下に、本発明の実施形態に係る電解銅箔を用いたプリント配線板の製造工程の例を幾つか示す。
 本発明の実施形態に係るプリント配線板の製造方法は、本発明の実施形態に係る電解銅箔と絶縁基板を積層して銅張積層板を形成した後、セミアディティブ法、モディファイドセミアディティブ法、パートリーアディティブ法又はサブトラクティブ法のいずれかの方法によって回路を形成する工程を含む。ここで、絶縁基板は、内層回路入りのものとすることも可能である。
 本明細書において「セミアディティブ法」とは、絶縁基板又は銅箔シード層上に薄い無電解めっきを行い、パターンを形成後、電気めっき及びエッチングを用いて導体パターンを形成する方法を意味する。
 従って、セミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板(樹脂基板)とを積層する工程と、
 電解銅箔を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって全て除去する工程と、
 電解銅箔をエッチングによって除去することで露出した樹脂にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 樹脂、並びにスルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 無電解めっき層の上にめっきレジストを設ける工程と、
 めっきレジストに対して露光した後、回路が形成される領域のめっきレジストを除去する工程と、
 めっきレジストが除去された、回路が形成される領域に、電解めっき層を設ける工程と、
 めっきレジストを除去する工程と、
 回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチング等によって除去する工程と
を含む。
 セミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、別の一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板(樹脂基板)にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 電解銅箔を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって全て除去する工程と、
 電解銅箔をエッチング等によって除去することで露出した樹脂、並びにスルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 無電解めっき層の上にめっきレジストを設ける工程と、
 めっきレジストに対して露光した後、回路が形成される領域のめっきレジストを除去する工程と、
 めっきレジストが除去された、回路が形成される領域に、電解めっき層を設ける工程と、
 めっきレジストを除去する工程と、
 回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチング等によって除去する工程と
を含む。
 セミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、別の一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板(樹脂基板)にスルーホール及び/又はブラインドビアを設ける工程と、
 電解銅箔を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって全て除去する工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 電解銅箔をエッチング等によって除去することで露出した樹脂、並びにスルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 無電解めっき層の上にめっきレジストを設ける工程と、
 めっきレジストに対して露光した後、回路が形成される領域のめっきレジストを除去する工程と、
 めっきレジストが除去された、回路が形成される領域に、電解めっき層を設ける工程と、
 めっきレジストを除去する工程と、
 回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチング等によって除去する工程と
を含む。
 セミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、別の一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって全て除去する工程と、
 電解銅箔をエッチングによって除去することで露出した樹脂の表面について無電解めっき層を設ける工程と、
 無電解めっき層の上にめっきレジストを設ける工程と、
 めっきレジストに対して露光した後、回路が形成される領域のめっきレジストを除去する工程と、
 めっきレジストが除去された、回路が形成される領域に、電解めっき層を設ける工程と、
 めっきレジストを除去する工程と、
 回路が形成される領域以外の領域にある無電解めっき層及び電解銅箔をフラッシュエッチング等によって除去する工程と
を含む。
 本明細書において「モディファイドセミアディティブ法」とは、絶縁基板上に電解銅箔を積層し、めっきレジストにより非回路形成部を保護し、電解めっきによって回路形成部の銅厚付けを行った後、レジストを除去し、回路形成部以外の電解銅箔を(フラッシュ)エッチングで除去することにより、絶縁基板上に回路を形成する方法を意味する。
 従って、モディファイドセミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 スルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 電解銅箔にめっきレジストを設ける工程と、
 めっきレジストを設けた後に、電解めっきにより回路を形成する工程と、
 めっきレジストを除去する工程と、
 めっきレジストを除去することによって露出した電解銅箔をフラッシュエッチングによって除去する工程と
を含む。
 モディファイドセミアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、別の一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔の上にめっきレジストを設ける工程と、
 めっきレジストに対して露光した後、回路が形成される領域のめっきレジストを除去する工程と、
 めっきレジストが除去された、回路が形成される領域に、電解めっき層を設ける工程と、
 めっきレジストを除去する工程と、
 回路が形成される領域以外の領域にある無電解めっき層及び電解銅箔をフラッシュエッチング等によって除去する工程と
を含む。
 本明細書において「パートリーアディティブ法」とは、導体層を設けてなる基板、必要に応じてスルーホールやバイアホール用の孔を穿けてなる基板上に触媒核を付与し、エッチングして導体回路を形成し、必要に応じてソルダレジスト又はめっきレジストを設けた後に、導体回路上や、スルーホール、バイアホール等に無電解めっき処理によって厚付けを行うことにより、プリント配線板を製造する方法を意味する。
 従って、パートリーアディティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 スルーホール及び/又はブラインドビアを含む領域について触媒核を付与する工程と、
 電解銅箔にエッチングレジストを設ける工程と、
 エッチングレジストに対して露光し、回路パターンを形成する工程と、
 電解銅箔及び前記触媒核を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって除去して回路を形成する工程と、
 エッチングレジストを除去する工程と、
 電解銅箔及び触媒核を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって除去して露出した前記絶縁基板表面に、ソルダレジスト又はめっきレジストを設ける工程と、
 ソルダレジスト又はめっきレジストが設けられていない領域に無電解めっき層を設ける工程と
を含む。
 本明細書において「サブトラクティブ法」とは、銅張積層板上の銅箔の不要部分を、エッチング等によって選択的に除去して導体パターンを形成する方法を意味する。
 従って、サブトラクティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 スルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 無電解めっき層の表面に電解めっき層を設ける工程と、
 電解めっき層及び/又は電解銅箔の表面にエッチングレジストを設ける工程と、
 エッチングレジストに対して露光し、回路パターンを形成する工程と、
 電解銅箔、無電解めっき層及び前記電解めっき層を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって除去して回路を形成する工程と、
 エッチングレジストを除去する工程と
を含む。
 サブトラクティブ法を用いた本発明の実施形態に係るプリント配線板の製造方法は、別の一側面において、
 本発明の実施形態に係る電解銅箔と絶縁基板とを積層する工程と、
 電解銅箔及び絶縁基板にスルーホール及び/又はブラインドビアを設ける工程と、
 スルーホール及び/又はブラインドビアを含む領域についてデスミア処理を行う工程と、
 スルーホール及び/又はブラインドビアを含む領域について無電解めっき層を設ける工程と、
 無電解めっき層の表面にマスクを形成する工程と、
 マスクが形成されていない無電解めっき層の表面に電解めっき層を設ける工程と、
 電解めっき層及び/又は電解銅箔の表面にエッチングレジストを設ける工程と、
 エッチングレジストに対して露光し、回路パターンを形成する工程と、
 電解銅箔及び無電解めっき層を酸等の腐食溶液を用いたエッチングやプラズマ等の方法によって除去して回路を形成する工程と、
 エッチングレジストを除去する工程と
を含む。
 なお、スルーホール及び/又はブラインドビアを設ける工程、及びその後のデスミア工程は行わなくてもよい。
 以下、実施例及び比較例により本発明の実施形態を詳細に説明するが、これらによって本発明が限定されるものではない。
1.電解銅箔の作製
(実施例1~33、比較例1)
 チタン製の回転ドラム(電解ドラム)を準備した。次に、電解ドラムの表面を表1に記載の条件にて研磨し、所定の面粗さSa及び2乗平均平方根高さSqを有する電解ドラムとした。具体的には、表1に記載の番手の研磨ベルトによって電解ドラムの表面を研磨した。このとき、研磨ベルトを、ドラムの幅方向において所定幅だけ巻き付け、研磨ベルトをドラムの幅方向へ移動させながらドラムを回転させることによって研磨した。研磨時のドラム表面の回転速度を表1に示す。また、研磨時間は、研磨ベルトの幅と研磨ベルトの移動速度から1回のパスでドラム表面の1点を通過する時間とパス回数との積とした。ここで、研磨ベルトの1回のパスとは、回転ドラムの周方向の表面を、軸方向(電解銅箔の幅方向)の一方の端部からもう一方の端部まで1回研磨ベルトで研磨することを意味する。すなわち研磨時間は以下の式で表される。
 研磨時間(分)=1パス当たりの研磨ベルトの幅(cm/回)/研磨ベルトの移動速度(cm/分)×パス回数(回)
Figure JPOXMLDOC01-appb-T000001
 次に、電解槽の中に、上記の電解ドラムと、電解ドラムの周囲に所定の極間距離を置いて電極を配置した。次に、電解槽において下記条件で電解を行い、電解ドラムを回転させながら電解ドラムの表面に銅を厚みが18μmとなるまで析出させた。
 <電解条件>
 電解液組成:100g/LのCu、100g/LのH2SO4
 電流密度:90A/dm2
 電解液温度:60℃
 添加物:60質量ppmの塩素イオン、ニカワ(実施例1、2、5、6、10~12、15、16、19、20及び24~26、並びに比較例1においては0.02ppmとし、実施例3、4、7~9、13、14、17、18、21~23、27~33においては、ニカワ濃度を4.5ppmとした。)
 次に、回転している電解ドラムの表面に析出した銅を剥ぎ取り、連続的に厚さ18μmの電解銅箔を製造した。
(実施例1)
 上記のようにして作製した電解銅箔(生箔)の電解ドラム側の表面(光沢面)に対し、下記の(1)~(4)の順で表面処理を行った。
 (1)粗化処理
 下記の組成を有するめっき液1(pH1以下)を用い、下記のめっき条件1にて粗化粒子を電解銅箔(生箔)の光沢面に電着させた後、下記のめっき液2(pH0.3以下)を用い、下記のめっき条件2にて粗化粒子をさらに電着させることにより、粗化処理層(Cu-As-W)を形成した。
  <めっき液1組成>
   CuSO4・5H2O:120g/L
   H2SO4:120g/L
   Na2WO4・2H2O:20mg/L
   ドデシル硫酸ナトリウム:30mg
   As:1mg/L
  <めっき条件1>
   温度:40℃
   電流密度:70A/dm2
   めっき時間:2秒
  <めっき液2組成>
   CuSO4・5H2O:240g/L
   H2SO4:120g/L
  <めっき条件2>
   温度:55℃
   電流密度:20A/dm2
   めっき時間:7秒
 (2)耐熱処理(バリヤー処理)
 下記の組成を有するめっき液(pH2)を用い、下記のめっき条件にてニッケル亜鉛合金めっきを行うことにより、耐熱層(Ni-Zn)を形成した。
  <めっき液組成>
   Ni:13g/L
   Zn:12g/L
  <めっき条件>
   温度:40℃
   電流密度:0.2A/dm2
   めっき時間:2.89秒
 (3)クロメート処理
 下記の組成を有するめっき液(pH4.8)を用い、下記のめっき条件にて亜鉛クロメート処理を行うことにより、亜鉛クロメート処理層を形成した。
  <めっき液組成>
   CrO3:2.5g/L
   Zn:2.0g/L
   Na2SO4:10g/L
  <めっき条件>
   温度:54℃
   電流密度:1.0A/dm2
 (4)シランカップリング処理
 テトラエトキシシラン含有量が0.4vol%、pHが7.5のシランカップリング処理液を噴霧することによってシランカップリング処理層Aを形成した。
(実施例2)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(2)耐熱処理におけるめっき時間を2.96秒に変更したこと以外は実施例1と同様にして表面処理を行った。
(実施例3)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(2)耐熱処理におけるめっき時間を2.75秒に変更したこと以外は実施例1と同様にして表面処理を行った。
(実施例4)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(2)耐熱処理におけるめっき時間を2.82秒に変更したこと以外は実施例1と同様にして表面処理を行った。
(実施例5)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、下記の(1)~(5)の順で表面処理を行った。
 (1)粗化処理
 下記の組成を有するめっき液(pH1~4)を用い、下記のめっき条件にて粗化粒子を電解銅箔(生箔)の光沢面に電着させることにより、粗化処理層(Cu-Co-Ni(1))を形成した。
  <めっき液組成>
   Cu:16g/L
   Co:10g/L
   Ni:10g/L
  <めっき条件>
   温度:30℃
   電流密度:30A/dm2
   めっき時間:2秒
 (2)耐熱処理
 下記の組成を有するめっき液(pH1.0~3.5)を用い、下記のめっき条件にてCo-Ni合金めっきを行うことにより、耐熱層(Co-Ni)を形成した。
  <めっき液組成>
   Co:10g/L
   Ni:20g/L
  <めっき条件>
   温度:35℃
   電流密度10A/dm2
   めっき時間:1秒
 (3)防錆処理
 下記の組成を有するめっき液(pH3~4)を用い、下記のめっき条件にてZn-Ni合金めっきを行うことにより、防錆層(Zn-Ni)を形成した。
  <めっき液組成>
   Ni:15g/L
   Zn:50g/L
  <めっき条件>
   温度:50℃
   電流密度:0.3A/dm2
   めっき時間:2.43秒
 (4)クロメート処理
 実施例1と同様の条件にて亜鉛クロメート処理層を形成した。
 (5)シランカップリング処理
 N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン含有量が0.4vol%、pHが7.5のシランカップリング処理液を噴霧することによってシランカップリング処理層Bを形成した。
(実施例6)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(3)防錆処理におけるめっき時間を2.61秒に変更したこと以外は実施例5と同様にして表面処理を行った。
(実施例7)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(3)防錆処理におけるめっき時間を2.32秒に変更したこと以外は実施例5と同様にして表面処理を行った。
(実施例8)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、実施例5と同様の表面処理を行った。
(実施例9)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、下記の(1)~(3)の順で表面処理を行った。
 (1)耐熱処理(バリヤー処理)
 めっき時間を2.82秒に変えたこと以外は実施例1と同様の条件にてニッケル亜鉛合金めっきを行うことにより、耐熱層(Ni-Zn)を形成した。
 (2)クロメート処理
 実施例1と同様の条件にて亜鉛クロメート処理層を形成した。
 (3)シランカップリング処理
 実施例1と同様の条件にてシランカップリング処理層Aを形成した。
(実施例10)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、実施例2と同様の表面処理を行った。
(実施例11)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、下記の(1)~(5)の順で表面処理を行った。
 (1)粗化処理
 下記の組成を有するめっき液(pH1~4)を用い、下記のめっき条件にて粗化粒子を電解銅箔(生箔)の光沢面に電着させることにより、粗化処理層(Cu-Co-Ni(2))を形成した。
  <めっき液組成>
   Cu:10~20g/L
   Co:1~10g/L
   Ni:1~10g/L
  <めっき条件>
   温度:30~50℃
   電流密度:35~45A/dm2
   めっき時間:0.1~1.5秒
 (2)耐熱処理
 実施例5と同様の条件にて耐熱層(Co-Ni)を形成した。
 (3)防錆処理
 実施例5と同様の条件にて防錆層(Zn-Ni)を形成した。
 (4)クロメート処理
 実施例1と同様の条件にて亜鉛クロメート処理層を形成した。
 (5)シランカップリング処理
 実施例5と同様の条件にてシランカップリング処理層Bを形成した。
(実施例12)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(3)防錆処理におけるめっき時間を2.55秒に変更したこと以外は実施例11と同様にして表面処理を行った。
(実施例13)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、実施例11と同様の表面処理を行った。
(実施例14)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、下記の(1)~(5)の順で表面処理を行った。
 (1)粗化処理
 実施例5と同様の条件にて粗化処理層(Cu-Co-Ni(1))を形成した。
 (2)耐熱処理
 実施例5と同様の条件にて耐熱層(Co-Ni)を形成した。
 (3)防錆処理
 めっき時間を2.49秒にしたこと以外は実施例5と同様の条件にて防錆層(Zn-Ni)を形成した。
 (4)クロメート処理
 実施例1と同様の条件にて亜鉛クロメート処理層を形成した。
 (5)シランカップリング処理
 実施例5と同様の条件にてシランカップリング処理層Bを形成した。
(実施例15)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(2)耐熱処理におけるめっき時間を3.79秒に変更したこと以外は実施例1と同様にして表面処理を行った。
(実施例16)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(2)耐熱処理におけるめっき時間を4.89秒に変更したこと以外は実施例15と同様にして表面処理を行った。
(実施例17)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(2)耐熱処理におけるめっき時間を6.40秒に変更したこと以外は実施例15と同様にして表面処理を行った。
(実施例18)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(2)耐熱処理におけるめっき時間を6.88秒に変更したこと以外は実施例15と同様にして表面処理を行った。
(実施例19)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(3)防錆処理におけるめっき時間を6.66秒に変更したこと以外は実施例5と同様にして表面処理を行った。
(実施例20)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(3)防錆処理におけるめっき時間を6.95秒に変更したこと以外は実施例19と同様にして表面処理を行った。
(実施例21)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(3)防錆処理におけるめっき時間を8.17秒に変更したこと以外は実施例19と同様にして表面処理を行った。
(実施例22)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(3)防錆処理におけるめっき時間を9.27秒に変更したこと以外は実施例19と同様にして表面処理を行った。
(実施例23)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(1)耐熱処理におけるめっき時間を11.70秒に変えたこと以外は実施例9と同様にして表面処理を行った。
(実施例24)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(2)耐熱処理におけるめっき時間を15.15秒に変えたこと以外は実施例1と同様にして表面処理を行った。
(実施例25)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(3)防錆処理におけるめっき時間を15.64秒に変えたこと以外は実施例11と同様にして表面処理を行った。
(実施例26)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(3)防錆処理におけるめっき時間を16.16秒に変えたこと以外は実施例11と同様にして表面処理を行った。
(実施例27)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(3)防錆処理におけるめっき時間を4.63秒に変えたこと以外は実施例11と同様にして表面処理を行った。
(実施例28)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(3)防錆処理におけるめっき時間を18.53秒に変更したこと以外は実施例5と同様にして表面処理を行った。
(実施例29)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、下記の(1)~(5)の順で表面処理を行った。
 (1)粗化処理
 下記の組成を有するめっき液(pH1~4)を用い、下記のめっき条件にて粗化粒子を電解銅箔(生箔)の光沢面に電着させることにより、粗化処理層(Cu-Co-Ni-Mo)を形成した。
  <めっき液組成>
   Cu:10~20g/L
   Co:1~10g/L
   Ni:1~10g/L
   Mo:1~5g/L
  <めっき条件>
   温度:30~50℃
   電流密度:20~30A/dm2
   めっき時間:1~5秒
 (2)耐熱処理
 実施例5と同様の条件にて耐熱層(Co-Ni)を形成した。
 (3)防錆処理
 実施例5と同様の条件にて防錆層(Zn-Ni)を形成した。
 (4)クロメート処理
 実施例1と同様の条件にて亜鉛クロメート処理層を形成した。
 (5)シランカップリング処理
 実施例5と同様の条件にてシランカップリング処理層Bを形成した。
(実施例30)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、下記の(1)~(4)の順で表面処理を行った。
 (1)粗化処理
 実施例1と同様の条件にて粗化処理層(Cu-As-W)を形成した。
 (2)耐熱処理
 下記の組成を有するめっき液(pH2)を用い、下記のめっき条件にてコバルト亜鉛合金めっきを行うことにより、耐熱層(Co-Zn)を形成した。
  <めっき液組成>
   Co:13g/L
   Zn:12g/L
  <めっき条件>
   温度:40℃
   電流密度:0.2A/dm2
   めっき時間:5.16秒
 (3)クロメート処理
 下記の組成を有するめっき液(pH4.8)を用い、下記のめっき条件にてクロメート処理を行うことにより、クロメート処理層を形成した。
  <めっき液組成>
   CrO3:2.5g/L
   Na2SO4:10g/L
  <めっき条件>
   温度:54℃
   電流密度:1.0A/dm2
 (4)シランカップリング処理
 実施例1と同様の条件にてシランカップリング処理層Aを形成した。
(実施例31)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(2)耐熱処理におけるめっき時間を8.33秒に変更したこと以外は実施例30と同様にして表面処理を行った。
(実施例32)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、下記の(1)~(3)の順で表面処理を行った。
 (1)粗化処理
 下記の組成を有するめっき液(pH1~4)を用い、下記のめっき条件にて粗化粒子を電解銅箔(生箔)の光沢面に電着させることにより、粗化処理層(Cu-Co-Ni-Zn)を形成した。
  <めっき液組成>
   Cu:10~20g/L
   Co:1~10g/L
   Ni:1~10g/L
   Zn:2~12g/L
  <めっき条件>
   温度:30~50℃
   電流密度:30~45A/dm2
   粗化クーロン量:0.3~67.5As/dm2
   めっき時間:0.1~1.5秒
 (2)クロメート処理
 実施例1と同様の条件にて亜鉛クロメート処理層を形成した。
 (3)シランカップリング処理
 実施例5と同様の条件にてシランカップリング処理層Bを形成した。
(実施例33)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(2)耐熱処理における条件を下記のように変更したこと以外は実施例1と同様にして表面処理を行った。
 (2)耐熱処理
 下記の組成を有するめっき液(pH10~13)を用い、下記のめっき条件にてCu-Zn合金めっきを行うことにより、耐熱層(Cu-Zn)を形成した。
  <めっき液組成>
   NaOH:80~140g/L
   NaCN:100~150g/L
   CuCN:20~30g/L
   Zn(CN)2:15~20g/L
   As23:0.01~1g/L
  <めっき条件>
   温度:40~90℃
   電流密度:5A/dm2
   めっき時間:14.06秒
(比較例1)
 上記のようにして作製した電解銅箔(生箔)の光沢面に対し、(2)耐熱処理におけるめっき時間を0.015秒に変更したこと以外は実施例1と同様にして表面処理を行った。
2.電解銅箔の評価
<光沢面及び表面処理層の表面の面粗さSa及び2乗平均平方根高さSq>
 表面処理前後の電解銅箔の光沢面に対し、ISO-25178-2:2012に準拠して、オリンパス社製レーザー顕微鏡OLS4100(LEXT OLS 4100)を用いて面粗さSa及び2乗平均平方根高さSqを測定した。このとき、レーザー顕微鏡において、対物レンズ50倍を使用して200μm×1000μm面積(具体的には200000μm2)の測定を3ヶ所行い、面粗さSa及び2乗平均平方根高さSqを算出した。3ヶ所で得られた面粗さSa及び2乗平均平方根高さSqの算術平均値をそれぞれ面粗さSa及び2乗平均平方根高さSqの値とした。なお、レーザー顕微鏡測定において、測定結果の測定面が平面でない場合(曲面になった場合)は、平面補正を行った後に、面粗さSa及び2乗平均平方根高さSqを算出した。また、レーザー顕微鏡による面粗さSaの測定時の環境温度は23~25℃とした。
<表面処理層の表面におけるZnの原子濃度>
 表面処理前後の電解銅箔の光沢面に対し、日本電子株式会社製のオージェ電子分光分析装置(型式:JAMP-9500F)を用いて、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度を測定し、それらの元素の合計を100at%とした場合のZnの原子濃度を求めた。測定箇所は3箇所で行い、その結果の算術平均値をZnの原子濃度とした。
<常態ピール強度、耐熱ピール強度>
 表面処理後の電解銅箔とガラスエポキシ基板(FR-4)とを20kgf/cm2の加圧力にて180℃で2時間加熱圧着して積層体を得た後、積層体の電解銅箔をエッチングによって回路幅10mmの回路を形成した。その後、JIS C6471:1995に準拠し、90度の角度で50mm/分の速度でガラスエポキシ基板と回路とを引き剥がしたときの強度(ピール強度)を測定することによって常態ピール強度を求めた。常態ピール強度の測定及び後述する耐熱ピール強度の測定は2回行い、その平均値をそれぞれ常態ピール強度の値及び耐熱ピール強度の値とした。
 耐熱ピール強度は、回路を形成した積層体を、大気雰囲気下、190℃で1時間加熱し、次いで270℃に加熱した半田めっき槽に20秒間浮かべた後、ピール強度の測定を行うことによって求めた。
 また、熱によるピール強度の劣化率を下記の式に基づいて評価した。
 熱によるピール強度の劣化率=(常態ピール強度-耐熱ピール強度)/常態ピール強度×100
<常温抗張力、高温抗張力>
 表面処理後の電解銅箔について、常温抗張力及び高温抗張力をIPC-TM-650に準じて測定した。
<常温伸び、高温伸び>
 表面処理後の電解銅箔について、常温伸び及び高温伸びをIPC-TM-650に準じて測定した。なお、上述の通り、「高温抗張力」とは180℃での抗張力を意味する。また、「高温伸び」とは180℃での伸びを意味する。
<回路形成性>
 表面処理後の電解銅箔を、それぞれ光沢面側から熱圧着によってビスマレイミドトリアジン樹脂プリプレグに貼り合わせた。その後、プリプレグに貼り合せた電解銅箔を、プリプレグと貼り合せた側とは反対側から厚みが9μmとなるまでエッチングした。そして、エッチングをした後の電解銅箔の表面にエッチングレジストを設け、露光及び現像を行ってレジストパターンを形成した。その後に、塩化第二鉄でエッチングを行い、L/S=25μm/25μm、L/S=22μm/22μm、L/S=20μm/20μm、及びL/S=15μm/15μmで長さ1mmの配線をそれぞれ20本形成した。続いて、回路上面から見た回路下端幅の最大値と最小値との差(μm)を測定し、5ヶ所を測定した平均値を結果とした。最大値と最小値との差が2μm以下であれば、良好な回路直線性を有すると判断して◎とした。また、最大値と最小値との差が2μm超え且つ4μm以下のときを〇とした。また、最大値と最小値との差が4μm超えのときを×とした。
 試験条件及び試験結果を表2~5に示す。また、図1(a)は、表面処理層を形成する前の実施例2の電解銅箔の光沢面のSEM像である。図1(b)は、表面処理層を形成する前の実施例10の電解銅箔の光沢面のSEM像である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<評価結果>
 表面処理層の表面の2乗平均平方根高さSqが0.550μm以下及び/又は表面処理層の表面の面粗さSaが0.470μm以下であり、表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である実施例1~33の電解銅箔は、回路形成性及び耐熱性が良好であった。特に、粗化処理層以外の表面処理層を光沢面側に有する実施例9及び23の電解銅箔は、表面処理層の表面の面粗さSaが0.270μm以下及び表面処理層の表面の2乗平均平方根高さSqが0.315μm以下であり、Znの原子濃度が3.0at%以上であった。
 また、粗化処理層を少なくとも含む表面処理層を光沢面側に有するその他の実施例の電解銅箔は、表面処理層の表面の面粗さSaが0.470μm以下又は2乗平均平方根高さSqが0.550μm以下であり、Znの原子濃度が3.0at%以上であった。
 これに対して、表面処理層の表面の2乗平均平方根高さSq及び面粗さSaが上記の範囲を超え、表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%未満である比較例1の電解銅箔は、回路形成性及び耐熱性が十分でなかった。
 以上の結果からわかるように、本発明の実施形態によれば、回路形成性及び耐熱性に優れる電解銅箔及びその製造方法を提供することができる。また、本発明の実施形態によれば、回路形成性及び耐熱性に優れる電解銅箔を用いた銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法を提供することができる。

Claims (37)

  1.  表面処理層を光沢面側に有する電解銅箔であって、
     前記表面処理層の表面の2乗平均平方根高さSqが0.550μm以下であり、前記表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である電解銅箔。
  2.  前記表面処理層の表面の面粗さSaが0.380μm以下である請求項1に記載の電解銅箔。
  3.  前記表面処理層の表面の面粗さSaが0.355μm以下である請求項1又は2に記載の電解銅箔。
  4.  前記表面処理層の表面の面粗さSaが0.300μm以下である請求項1~3のいずれか一項に記載の電解銅箔。
  5.  前記表面処理層の表面の面粗さSaが0.200μm以下である請求項1~4のいずれか一項に記載の電解銅箔。
  6.  前記表面処理層の表面の2乗平均平方根高さSqが0.490μm以下である請求項1~5のいずれか一項に記載の電解銅箔。
  7.  前記表面処理層の表面の2乗平均平方根高さSqが0.450μm以下である請求項1~6のいずれか一項に記載の電解銅箔。
  8.  前記表面処理層の表面の2乗平均平方根高さSqが0.400μm以下である請求項1~7のいずれか一項に記載の電解銅箔。
  9.  前記表面処理層の表面の2乗平均平方根高さSqが0.330μm以下である請求項1~8のいずれか一項に記載の電解銅箔。
  10.  表面処理層を光沢面側に有する電解銅箔であって、
     前記表面処理層の表面の面粗さSaが0.470μm以下であり、前記表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である電解銅箔。
  11.  前記表面処理層の表面の2乗平均平方根高さSqが0.550μm以下である請求項10に記載の電解銅箔。
  12.  前記光沢面側に前記表面処理層を設ける前の前記光沢面の面粗さSaが0.270μm以下である請求項1~11のいずれか一項に記載の電解銅箔。
  13.  前記光沢面側に前記表面処理層を設ける前の前記光沢面の面粗さSaが0.130μm以下である請求項1~12のいずれか一項に記載の電解銅箔。
  14.  前記光沢面側に前記表面処理層を設ける前の前記光沢面の2乗平均平方根高さSqが0.315μm以下である請求項1~13のいずれか一項に記載の電解銅箔。
  15.  前記光沢面側に前記表面処理層を設ける前の前記光沢面の2乗平均平方根高さSqが0.120μm以下である請求項1~14のいずれか一項に記載の電解銅箔。
  16.  常温抗張力が30kg/mm2以上である請求項1~15のいずれか一項に記載の電解銅箔。
  17.  常温伸びが3%以上である請求項1~16のいずれか一項に記載の電解銅箔。
  18.  高温抗張力が10kg/mm2以上である請求項1~17のいずれか一項に記載の電解銅箔。
  19.  高温伸びが2%以上である請求項1~18のいずれか一項に記載の電解銅箔。
  20.  耐熱ピール強度が0.90kg/cm以上である請求項1~19のいずれか一項に記載の電解銅箔。
  21.  前記光沢面側の前記表面処理層が、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を含む請求項1~20のいずれか一項に記載の電解銅箔。
  22.  析出面側にさらに表面処理層を有する請求項1~21のいずれか一項に記載の電解銅箔。
  23.  前記析出面側の前記表面処理層が、粗化処理層、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を含む請求項22に記載の電解銅箔。
  24.  前記表面処理層が、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、鉄、バナジウム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金からなる層である請求項1~23のいずれか一項に記載の電解銅箔。
  25.  前記光沢面側及び前記析出面側の一方又は両方に樹脂層を有する請求項1~24のいずれか一項に記載の電解銅箔。
  26.  前記樹脂層が、前記表面処理層上に設けられている請求項25に記載の電解銅箔。
  27.  電解ドラムを用いて電解銅箔を作製した後、前記電解銅箔の光沢面に表面処理を行って表面処理層を形成する電解銅箔の製造方法であって、
     前記電解ドラムの表面の面粗さSaが0.270μm以下であり、前記表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である、電解銅箔の製造方法。
  28.  電解ドラムを用いて電解銅箔を作製した後、前記電解銅箔の光沢面に表面処理を行って表面処理層を形成する電解銅箔の製造方法であって、
     前記電解ドラムの表面の2乗平均平方根高さSqが0.315μm以下であり、前記表面処理層の表面における原子濃度をオージェ電子分光分析法によって測定し、Si、S、Cl、C、N、O、Cr、Co、Ni、Cu及びZnの原子濃度の合計を100at%とした場合に、Znの原子濃度が3.0at%以上である、電解銅箔の製造方法。
  29.  前記電解ドラムの2乗平均平方根高さSqが0.315μm以下である請求項27に記載の電解銅箔の製造方法。
  30.  前記電解ドラムの前記表面の面粗さSaが0.150μm以下である請求項27~29のいずれか一項に記載の電解銅箔の製造方法。
  31.  前記電解ドラムの表面の2乗平均平方根高さSqが0.200μm以下である請求項27~30のいずれか一項に記載の電解銅箔の製造方法。
  32.  請求項1~26のいずれか一項に記載の電解銅箔を有する銅張積層板。
  33.  請求項1~26のいずれか一項に記載の電解銅箔を有するプリント配線板。
  34.  請求項1~26のいずれか一項に記載の電解銅箔を用いるプリント配線板の製造方法。
  35.  請求項1~26のいずれか一項に記載の電解銅箔と絶縁基板とを積層して銅張積層板を作製した後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって回路を形成する工程を含むプリント配線板の製造方法。
  36.  請求項33に記載のプリント配線板を有する電子機器。
  37.  請求項33に記載のプリント配線板を用いる電子機器の製造方法。
PCT/JP2018/017826 2017-05-09 2018-05-08 電解銅箔及びその製造方法、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法 WO2018207788A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019517645A JPWO2018207788A1 (ja) 2017-05-09 2018-05-08 電解銅箔及びその製造方法、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法
KR1020197032712A KR20190131579A (ko) 2017-05-09 2018-05-08 전해 구리박 및 그 제조 방법, 동장 적층판, 프린트 배선판 및 그 제조 방법, 그리고 전자 기기 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-093432 2017-05-09
JP2017093432 2017-05-09

Publications (1)

Publication Number Publication Date
WO2018207788A1 true WO2018207788A1 (ja) 2018-11-15

Family

ID=64105411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017826 WO2018207788A1 (ja) 2017-05-09 2018-05-08 電解銅箔及びその製造方法、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法

Country Status (4)

Country Link
JP (1) JPWO2018207788A1 (ja)
KR (1) KR20190131579A (ja)
TW (1) TWI691622B (ja)
WO (1) WO2018207788A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107786A (ja) * 2002-07-23 2004-04-08 Nikko Materials Co Ltd 特定骨格を有するアミン化合物及び有機硫黄化合物を添加剤として含む銅電解液並びにそれにより製造される電解銅箔
JP2010018885A (ja) * 2008-06-12 2010-01-28 Furukawa Electric Co Ltd:The 電解銅皮膜、その製造方法及び銅電解皮膜製造用の銅電解液
WO2012070589A1 (ja) * 2010-11-22 2012-05-31 三井金属鉱業株式会社 表面処理銅箔
JP2015061939A (ja) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いたキャリア付銅箔、積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2017061718A (ja) * 2015-09-24 2017-03-30 Jx金属株式会社 金属箔、離型層付き金属箔、積層体、プリント配線板、半導体パッケージ、電子機器及びプリント配線板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389061B1 (ko) 2002-11-14 2003-06-25 일진소재산업주식회사 전해 동박 제조용 전해액 및 이를 이용한 전해 동박 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107786A (ja) * 2002-07-23 2004-04-08 Nikko Materials Co Ltd 特定骨格を有するアミン化合物及び有機硫黄化合物を添加剤として含む銅電解液並びにそれにより製造される電解銅箔
JP2010018885A (ja) * 2008-06-12 2010-01-28 Furukawa Electric Co Ltd:The 電解銅皮膜、その製造方法及び銅電解皮膜製造用の銅電解液
WO2012070589A1 (ja) * 2010-11-22 2012-05-31 三井金属鉱業株式会社 表面処理銅箔
JP2015061939A (ja) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いたキャリア付銅箔、積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2017061718A (ja) * 2015-09-24 2017-03-30 Jx金属株式会社 金属箔、離型層付き金属箔、積層体、プリント配線板、半導体パッケージ、電子機器及びプリント配線板の製造方法

Also Published As

Publication number Publication date
JPWO2018207788A1 (ja) 2020-05-14
TWI691622B (zh) 2020-04-21
KR20190131579A (ko) 2019-11-26
TW201900938A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2018207786A1 (ja) 電解銅箔、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法
KR101851882B1 (ko) 표면 처리 동박, 캐리어가 형성된 동박, 기재, 수지 기재, 프린트 배선판, 구리 피복 적층판 및 프린트 배선판의 제조 방법
JP6514635B2 (ja) キャリア付銅箔、それを用いた銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法
TW201945598A (zh) 表面處理銅箔、覆銅積層板及印刷配線板
WO2015108191A1 (ja) 表面処理銅箔、キャリア付銅箔、プリント配線板、銅張積層板、積層体及びプリント配線板の製造方法
CN107018623B (zh) 电解铜箔及其制造方法、覆铜积层板、印刷配线板及其制造方法以及电子机器的制造方法
KR20160034915A (ko) 표면 처리 동박, 캐리어가 부착된 동박, 기재, 수지 기재, 프린트 배선판, 구리 피복 적층판 및 프린트 배선판의 제조 방법
WO2014084385A1 (ja) キャリア付銅箔
JP5470487B1 (ja) 銅箔、それを用いた半導体パッケージ用銅張積層体、プリント配線板、プリント回路板、樹脂基材、回路の形成方法、セミアディティブ工法、半導体パッケージ用回路形成基板及び半導体パッケージ
JP5997080B2 (ja) キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板、プリント回路板、銅張積層板、及び、プリント配線板の製造方法
JP6328821B2 (ja) 電解銅箔、電解銅箔の製造方法、銅張積層板、プリント配線板、プリント配線板の製造方法及び電子機器の製造方法
JP6396967B2 (ja) キャリア付銅箔及びキャリア付き銅箔を用いた銅張積層板
JP6821370B2 (ja) キャリア付金属箔、積層体、積層体の製造方法、プリント配線板の製造方法及び電子機器の製造方法
WO2018207788A1 (ja) 電解銅箔及びその製造方法、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法
WO2018207785A1 (ja) 電解銅箔及びその製造方法、銅張積層板、プリント配線板及びその製造方法、並びに電子機器及びその製造方法
JP5859078B1 (ja) キャリア付銅箔の製造方法、銅張積層板の製造方法、プリント配線板の製造方法、及び、電子機器の製造方法
JP6438208B2 (ja) キャリア付銅箔、それを用いた銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法
JP6178360B2 (ja) 表面処理銅箔、キャリア付銅箔、プリント回路板の製造方法、銅張積層板の製造方法及びプリント配線板の製造方法
JP6246486B2 (ja) キャリア付銅箔及びその製造方法、銅張積層板の製造方法及びプリント配線板の製造方法
JP2017013473A (ja) キャリア付銅箔、銅張積層板、積層体、プリント配線板、コアレス基板、電子機器及びコアレス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517645

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197032712

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799130

Country of ref document: EP

Kind code of ref document: A1