WO2018207533A1 - Glass plate, method for inspecting end surface of glass plate, and method for manufacturing glass plate - Google Patents
Glass plate, method for inspecting end surface of glass plate, and method for manufacturing glass plate Download PDFInfo
- Publication number
- WO2018207533A1 WO2018207533A1 PCT/JP2018/015024 JP2018015024W WO2018207533A1 WO 2018207533 A1 WO2018207533 A1 WO 2018207533A1 JP 2018015024 W JP2018015024 W JP 2018015024W WO 2018207533 A1 WO2018207533 A1 WO 2018207533A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass plate
- specific region
- cleaning
- observation
- polishing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
Definitions
- the present invention relates to a glass plate, a glass plate end surface inspection method, and a glass plate manufacturing method.
- FPD flat panel displays
- liquid crystal displays plasma displays
- organic EL displays organic EL displays
- the end surface of a glass plate for FPD is usually subjected to polishing (including grinding) using a grindstone, but the end surface has a microcrack (for example, a microcrack associated with polishing). Cracks often occur. These micro cracks grow with the passage of time, and can cause glass powder (particles) to be generated from the polished surface. Such glass powder has, for example, a particle size of about 0.1 to 10 ⁇ m. Further, the glass powder is often a hidden glass powder that does not exist at the end face inspection performed after the polishing process, and is easily overlooked in the end face inspection for the glass powder already attached to the end face.
- the FPD manufacturing defect may be caused by the glass powder generated from the microcracks.
- the electric circuit since it is necessary to form a dense electric circuit, the electric circuit is likely to cause disconnection or the like even with a small amount of minute glass powder, and it is likely to cause a manufacturing failure of the FPD.
- Patent Document 1 discloses a method for inspecting the end face of a glass plate in consideration of glass powder that may be generated from microcracks. Specifically, in this document, by sliding while pressing the tip of the resin tube against the end face of the glass plate, the end face of the glass plate is rubbed to scrape off the particles on the end face, and the scraped particles are resinated. It is disclosed that suction is performed from the tip of a tube and the number is counted by a particle counter.
- This invention makes it a technical subject to provide more reliably a glass plate with very little glass powder generated from the end surface by improving the accuracy of the end surface inspection of the glass plate.
- the present invention invented in order to solve the above problems is a glass plate end surface inspection method having a polished surface on an end surface of a glass plate, a first observation step of observing a specific region of the polished surface, and a glass plate External stimulus applying step for applying an external stimulus to the polished surface of the substrate, a cleaning step for cleaning the specific region, a second observation step for observing the specific region again, an observation result of the first observation step, and a second observation step And an evaluation step of counting the number of minute recesses newly formed in the specific region after the first observation step, in this order.
- the microcrack grows forcibly by an external stimulus applied in the external stimulus application step, It tends to appear as glass powder. And since the glass powder generated in this way is removed by cleaning from a specific region of the polishing surface in the cleaning process, in the portion corresponding to the glass powder generated from the micro cracks in the specific region of the polishing surface, A minute recess is formed.
- the number of minute recesses newly formed in the specific area after the first observation step can be accurately counted.
- the number of the minute recesses accurately reflects the number of glass powders generated from the microcracks. Therefore, the number of the microrecesses may be generated from the microcracks without directly counting the number of glass powders. It is possible to inspect the end face of the glass plate in consideration of the glass powder with a certain amount.
- the cleaning step also serves as an external stimulus applying step, and the specific region is cleaned while applying the external stimulus.
- the external stimulus applying process is also performed simultaneously in the cleaning process, so that the inspection efficiency is improved as compared with the case where both these processes are performed individually.
- the cleaning step that also serves as the external stimulus applying step may be ultrasonic cleaning. In this way, the specific region of the polishing surface is cleaned while being given an external stimulus by the vibration accompanying the ultrasonic cleaning.
- the cleaning step that also serves as the external stimulus applying step may be chemical cleaning.
- the chemical cleaning may be acid cleaning or alkali cleaning.
- chemical cleaning and ultrasonic cleaning may be used in combination by performing ultrasonic cleaning using a chemical cleaning solution.
- the specific region in the first observation step, the specific region is magnified to obtain the first magnified image, and in the second observation step, the specific region is magnified to obtain the second magnified image, and the evaluation step
- the present invention created in order to solve the above-mentioned problems is a method for manufacturing a glass plate, in which a glass plate is cut out from each of a plurality of original glass plates to obtain a plurality of glass plates, and a plurality of steps A polishing step for polishing the end surface of the glass plate, and a sampling inspection step for extracting the inspection glass plate from the plurality of glass plates, and inspecting the inspection glass plate by the end surface inspection method for the glass plate, It is characterized by having.
- the inspection glass plate includes a case where the glass plate obtained in the cutting step is used as it is and a case where a small piece obtained by cutting the glass plate is used. According to such a configuration, the accuracy of the end surface inspection of the glass plate can be improved for the reasons described above, and therefore, a glass plate with very little glass powder generated from the end surface can be provided.
- the present invention devised to solve the above problems is a glass plate having a polished surface on its end surface, and when the polished surface is ultrasonically cleaned for 15 minutes using an alkali cleaning solution at a temperature of 40 ° C.
- the surface is characterized in that the density of minute recesses newly formed by ultrasonic cleaning and having a size corresponding to glass powder is 0 to 1000 / mm 2 .
- it becomes a glass plate with very few glass powder generated from an end surface irrespective of progress of time. That is, for example, even if an external stimulus is received in a cleaning process included in the FPD manufacturing process, glass powder generated from the end face can be reduced as much as possible in the subsequent FPD manufacturing process.
- the glass plate end surface inspection method may be carried out independently from the glass plate manufacturing method. it can.
- the method for manufacturing a glass plate according to the present embodiment includes a cutting process, a polishing process, and a sampling inspection process.
- the original glass plate M is formed by the overflow downdraw method, but is not limited thereto.
- it may be formed by another downdraw method such as a slot downdraw method or a redraw method, or a float method.
- thermal stress cleaving for example, laser cleaving
- fusing for example, laser fusing
- the polishing includes grinding. Specifically, first, the first polishing tool 2 (for example, a grindstone) is run on the upstream stage 1 along the two opposing sides of the glass plate G, and the end faces G1 of the two opposing sides are polished. Next, after the glass plate G is turned 90 degrees on the turning stage 3, the second polishing tool 5 (for example, along the remaining two opposite sides of the turned glass plate G on the downstream stage 4). The grindstone is run, and the remaining two end faces G2 are polished. Thereby, each end surface G1, G2 of the four sides of the glass plate G is polished.
- the end faces G1 and G2 on the four sides of the glass plate G are polished, the moving procedure of the glass plate G and the polishing tools 2 and 5,
- the number of is not particularly limited.
- the end surface of one side of the glass plate G may be polished a plurality of times with a polishing tool having different eye roughness and binder, and finish polishing may be performed after the rough polishing.
- the first polishing tool 2 is provided on a cylindrical first processing surface 21 extending in the thickness direction of the glass plate G and both ends of the first processing surface 21. And a pair of conical second processing surfaces 22 having inclinations opposite to each other in the thickness direction. Therefore, the end face G1 of the glass plate G polished by the first polishing tool 2 is polished into a shape following the first processed surface 21 and the second processed surface 22 of the first polishing tool 2. That is, the end surface G1 of the glass plate G polished by the first polishing tool 2 is provided at both ends of the first polishing surface G1a extending in the plate thickness direction and the first polishing surface G1a, and is mutually opposite to the plate thickness direction.
- the second polishing tool 5 has the same configuration as the first polishing tool 2
- the end face G2 of the glass plate G polished by the second polishing tool 5 is also polished by the first polishing tool 2.
- the glass plate G has the same shape as the end face G1.
- subjected cross hatching has shown the glass part removed by grinding
- the cross-sectional shape of the end surfaces G1 and G2 of the polished glass plate G is not particularly limited, and may be a semicircular shape, an arc shape, a semielliptical shape, a shape constituted by a plurality of straight lines, or the like. .
- the cross-sectional shape of the end faces G1, G2 of the glass plate G may be a shape obtained by changing the cross-sectional shape of the second polishing surface G1b to an arc shape in the cross-sectional shape shown in FIG.
- the feeding speed of the polishing tools 2 and 5 is preferably 1 to 15 m / min, more preferably 1 to 10 m / min. That is, in general polishing of a glass plate, the feed rate of the polishing tool exceeds 15 m / min and is 60 m / min or less. Therefore, the preferable range of the feed rate of the polishing tools 2 and 5 is generally Slow compared to typical feed rate. Note that the feed rate of the polishing tools 2 and 5 means the relative speed of the polishing tools 2 and 5 with respect to the glass plate G when polishing while moving the glass plate G.
- one or a plurality of glass plates G are extracted as inspection glass plates S (see FIG. 4) from the plurality of glass plates G polished in the polishing step (in the same lot).
- the end face inspection is performed on the inspection glass plate S.
- the sampling may be performed at predetermined time intervals. Alternatively, it may be performed every time manufacturing conditions such as polishing conditions are changed. Further, the end face inspection of the inspection glass plate S corresponds to the end face inspection method of the glass plate.
- the end face inspection includes a first observation process, a cleaning process, a second observation process, and an evaluation process.
- the polished surface S1a (corresponding to the first polished surface of the glass plate G) and S1b (second polished glass plate G) formed on the end surface S1 of the inspection glass plate S.
- the specific region R corresponding to the surface is enlarged and observed with a scanning electron microscope (SEM), and a first enlarged image of the specific region R is acquired.
- SEM scanning electron microscope
- the glass plate S for inspection may use the extracted glass plate G as it is, but in the present embodiment, the glass plate G is made of small pieces that are cut to a smaller size so as to include the polished surface.
- the specific region R is provided on the first polishing surface S1a. This is because the first polishing surface S1a may be in contact with other members than the second polishing surface S1b, and it is considered that the risk of glass powder generation is high.
- the specific region R may be provided not on the first polishing surface S1a but on the second polishing surface S1b, or on both the first polishing surface S1a and the second polishing surface S1b.
- a marking portion serving as a setting reference for the specific region R on the first polishing surface S1a where the specific region R is provided.
- the marking part is formed, for example, by forming a concave groove (scratch) on the first polishing surface S1a or by forming a film (such as a sputtered film).
- a marking part is not limited to what was formed by these methods, what was formed by the method which is hard to be removed by a washing
- the marking part is formed along the rectangular outer edge of the specific region R, for example.
- the specific region R provided on the polished surfaces S1a and S1b of the inspection glass plate S is cleaned while being given an external stimulus.
- the portion to be cleaned in the cleaning step may be only the specific region R or a portion including the specific region R.
- the illustrated example is merely an example of the cleaning mode, in detail, the inspection glass plate S includes a specific region R provided on the first polishing surface S1a in a state of being supported suspended by the support member 6. A portion (about the lower half of the inspection glass plate S in the illustrated example) is immersed in the cleaning liquid 8 in the container 7. At this time, it is preferable that the first polishing surface S1a provided with the specific region R is not in contact with the container 7 in order to increase the contact efficiency with the cleaning liquid 8.
- the container 7 is disposed in an ultrasonic cleaning machine 10 in which water 9 as an ultrasonic transmission medium is stored, and the specific region R of the inspection glass plate S is moved by ultrasonic vibration propagated to the cleaning liquid 8 through the water 9.
- the containing part is ultrasonically cleaned.
- the ultrasonic cleaning time is preferably 1 to 60 minutes, and more preferably 3 to 30 minutes.
- the temperature for ultrasonic cleaning is preferably 15 to 80 ° C., more preferably 25 to 60 ° C.
- the frequency of ultrasonic cleaning is preferably 10 to 1000 kHz, more preferably 20 to 200 kHz.
- the cleaning liquid 8 examples include pure water mixed with an alkaline detergent (eg, (CH 3 ) 4 NOH, NaOH, KOH, etc.), or pure water with an acid detergent (eg, HCl, HNO 3 , H 2 SO 4, etc.). It is preferable to chemically clean the glass plate S for inspection using a mixture of the above. However, when ultrasonic cleaning is used, an external stimulus is applied to the polished surfaces S1a and S1b of the glass plate S for inspection by vibration during the ultrasonic cleaning, so that an external stimulus due to a chemical reaction is not further applied. May be. In other words, when ultrasonic cleaning is used, the cleaning liquid 8 may be pure water or the like that does not give an external stimulus due to a chemical reaction to the polishing surfaces S1a and S1b of the inspection glass plate S.
- an alkaline detergent eg, (CH 3 ) 4 NOH, NaOH, KOH, etc.
- an acid detergent eg, HCl, HNO 3 , H 2 SO 4, etc.
- the cleaning step may use high-pressure cleaning in which a specific region R of the inspection glass plate S or a portion including the specific region R is sprayed and cleaned with a high-pressure liquid such as high-pressure water. Also in this case, the polished surfaces S1a and S1b of the inspection glass plate S are cleaned while being externally stimulated by the high-pressure liquid.
- the specific region R of the inspection glass plate S observed in the first observation step is enlarged and observed again with the SEM, and a second enlarged image of the specific region R is acquired.
- the enlarged observation by SEM in a 2nd observation process is the same conditions (acceleration voltage, observation magnification, etc.) as the enlarged observation by SEM in a 1st observation process.
- the first enlarged image which is the observation result of the first observation process
- the second enlarged image which is the observation result of the second observation process
- the concave portion having a size corresponding to the glass powder in a plan view is determined as a fine concave portion and counted.
- the criterion for determining the minute recess may be set as appropriate according to the required quality. For example, a recess having a length of about 0.1 to 10 ⁇ m in a plan view may be determined as a minute recess. Alternatively, a recess having a length of about 0.1 to 5 ⁇ m in plan view may be determined as a minute recess.
- the number of minute recesses may be automatically counted by image processing or the like, or may be manually counted by an operator.
- the specific region R As for the size of the specific region R, the number of minute recesses on the entire first polishing surface G1a (and / or second polishing surface G1b) of the glass plate G can be predicted to some extent from the number of minute recesses counted in the evaluation process. Any size is acceptable. Therefore, the specific region R is preferably set to a rectangular region having a side of 10 to 500 ⁇ m.
- Magnification of magnification observation of specific area R is related to detection accuracy of minute recesses. Accordingly, the magnification for magnification observation is preferably 1000 to 50000 times, and more preferably 5000 to 50000 times.
- FIGS. FIGS. 6 and 7, FIGS. 8 and 9, FIGS. 10 and 11, and FIGS. 12 and 13 are observation results of the same specific region.
- FIG. 6 and FIG. 7 and FIG. 10 and FIG. 11 the first polishing surface S1a provided with the specific region R in order to artificially increase the possibility that glass powder is generated over time from the minute crack. The surface roughness is increased.
- the polished surface provided with the specific region R is a rough surface
- minute recesses that are not confirmed in the first enlarged image shown in FIG. (A portion surrounded by a circle C1 in FIG. 7).
- the polished surface provided with the specific region R is a smooth surface
- a minute concave portion that was not confirmed in the first enlarged image shown in FIG. 8 was newly confirmed in the second enlarged image shown in FIG. It never happened.
- the number of minute recesses tends to increase in a glass plate for inspection in which glass powder is likely to be generated from minute cracks. Therefore, according to the end face inspection according to the present embodiment, even if the number of glass powders is not directly counted, by counting the number of minute recesses in the evaluation process, a large amount of glass powder may be generated in the future. Whether it is a certain glass plate can be judged correctly. Moreover, the size of the glass powder generated from the size of the minute recesses can be predicted to some extent.
- the number of counted micro-recesses (preferably, (the number of micro-recesses) / (density of the micro-recesses) expressed by the area of the specific region) is a predetermined determination value (for example, 1000 / mm 2 , If it is preferably 500 pieces / mm 2 ) or less, the glass plate G included in the same lot as the inspection glass plate S can be evaluated as being less likely to generate glass powder in the future. Therefore, in this case, the quality of the glass plate G included in the same lot is determined as “accepted” and shipped as a product as it is.
- the glass plate G thus determined to be acceptable is newly formed by ultrasonic cleaning on the polished surface when the polished surface is ultrasonically cleaned for 15 minutes using an alkaline cleaning liquid at a temperature of 40 ° C., and
- the density of minute recesses having a size corresponding to the glass powder is 0 to 1000 / mm 2 (preferably 0 to 500 / mm 2 ).
- the evaluation of the above characteristics of the glass plate G determined to be acceptable is performed as follows. That is, the measurement of the density of the minute recesses is performed by the same method as the end face inspection. At this time, Quanta250 FEG manufactured by FEI is used for observation of the minute recesses (SEM observation). Further, the magnification is 10,000 times, and the specific region R is a rectangular region having a side of 10 ⁇ m. For ultrasonic cleaning, Ultrason VS-30 manufactured by VELVO-CLEAR is used, and the ultrasonic frequency is set to 35 kHz. As the alkaline cleaning liquid, an aqueous solution containing 0.2% by mass of KOH is used. In the determination of the minute recess, the recess having a length of about 0.1 to 5 ⁇ m in plan view is determined as the minute recess.
- the quality of the glass plate G included in the same lot as the inspection glass plate S is determined as “fail”, for example, in the polishing step Change the polishing conditions (feeding speed of polishing tool and type of polishing tool). Then, in the evaluation process, the end face inspection and the change of the polishing conditions are repeated until the number of counted minute recesses is equal to or less than the determination value.
- the feed rate of the polishing tools 2 and 5 is set in the range of 1 to 15 m / min as described above, it becomes easy to produce a glass plate G whose quality satisfies the acceptance criteria.
- the above-described end face inspection can be used to select a polishing tool if the point of focus is changed. That is, the polishing tool used when the number of minute recesses in the evaluation process is equal to or less than the determination value is “pass”, and the polishing tool used when the number of minute recesses exceeds the determination value in the evaluation process is By selecting “Fail”, the polishing tool can be selected.
- this invention is not limited to the structure of said embodiment, It is not limited to the above-mentioned effect.
- the present invention can be variously modified without departing from the gist of the present invention.
- the cleaning process of cleaning the polished surface of the glass plate while applying an external stimulus to the polished surface of the glass plate that is, the cleaning process that also serves as the external stimulus applying process has been described.
- an external stimulus may be applied to the polished surface of the glass plate by moving the contact made of a resin material or the like against the polished surface of the glass plate.
- the specific area is observed using the SEM.
- the specific area may be observed using an optical microscope, a laser microscope, an X-ray CT, or the like.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Mathematical Physics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Surface Treatment Of Glass (AREA)
- Liquid Crystal (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
The present invention is provided with, in said order: a first observation step for enlarging and observing a specific region (R) of a polished surface (S1a) formed on an end surface (S1) of a glass plate (S) to be inspected, and acquiring a first enlarged image; a cleaning step for cleaning the specific region (R) while applying an external stimulus to the specific region (R);
a second observation step for once again enlarging and observing the specific region (R), and acquiring a second enlarged image; and an evaluation step for comparing the first enlarged image and the second enlarged image and counting the number of fine recessed parts newly formed inside the specific region (R) after the first observation step.
Description
本発明は、ガラス板、ガラス板の端面検査方法及びガラス板の製造方法に関する。
The present invention relates to a glass plate, a glass plate end surface inspection method, and a glass plate manufacturing method.
液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなどのフラットパネルディスプレイ(FPD)は、高精細化が推進されている。これに伴い、FPD用の基板として用いられるガラス板には、FPDの製造工程で緻密な電気回路が形成される。
High-definition is being promoted for flat panel displays (FPD) such as liquid crystal displays, plasma displays, and organic EL displays. Accordingly, a dense electric circuit is formed in the FPD manufacturing process on the glass plate used as the FPD substrate.
FPD用のガラス板の端面には、砥石を用いて研磨加工(研削加工を含む)が施されるのが通例であるが、端面の研磨面には、研磨加工に伴う微小クラック(例えば、マイクロクラック)が発生する場合が多い。この微小クラックは、時間の経過と共に成長し、研磨面からガラス粉(パーティクル)が発生する原因となり得る。このようなガラス粉は、例えば、粒径が0.1~10μm程度である。また、ガラス粉は、研磨加工後に行われる端面検査時には存在しない隠れたガラス粉である場合が多く、端面に既に付着しているガラス粉を対象とした端面検査では見逃されやすい。その結果、端面検査をクリアしたガラス板を用いてFPDを製造した場合であっても、微小クラックから発生したガラス粉によってFPDの製造不良を招くことがあった。特に、高精細化されたFPDの場合、緻密な電気回路を形成する必要があるため、微量かつ微小のガラス粉でも電気回路が断線等を引き起こしやすく、FPDの製造不良を招きやすい。
The end surface of a glass plate for FPD is usually subjected to polishing (including grinding) using a grindstone, but the end surface has a microcrack (for example, a microcrack associated with polishing). Cracks often occur. These micro cracks grow with the passage of time, and can cause glass powder (particles) to be generated from the polished surface. Such glass powder has, for example, a particle size of about 0.1 to 10 μm. Further, the glass powder is often a hidden glass powder that does not exist at the end face inspection performed after the polishing process, and is easily overlooked in the end face inspection for the glass powder already attached to the end face. As a result, even when an FPD is manufactured using a glass plate that has cleared the end face inspection, the FPD manufacturing defect may be caused by the glass powder generated from the microcracks. In particular, in the case of a high-definition FPD, since it is necessary to form a dense electric circuit, the electric circuit is likely to cause disconnection or the like even with a small amount of minute glass powder, and it is likely to cause a manufacturing failure of the FPD.
そこで、特許文献1には、微小クラックから発生する可能性のあるガラス粉を考慮したガラス板の端面検査方法が開示されている。具体的には、同文献では、ガラス板の端面に樹脂チューブの先端を押し当てながらスライドさせることにより、ガラス板の端面に摩擦を加えて端面のパーティクルを擦り取り、その擦り取ったパーティクルを樹脂チューブの先端から吸引して、パーティクルカウンタでその数を計数することが開示されている。
Therefore, Patent Document 1 discloses a method for inspecting the end face of a glass plate in consideration of glass powder that may be generated from microcracks. Specifically, in this document, by sliding while pressing the tip of the resin tube against the end face of the glass plate, the end face of the glass plate is rubbed to scrape off the particles on the end face, and the scraped particles are resinated. It is disclosed that suction is performed from the tip of a tube and the number is counted by a particle counter.
特許文献1に開示の端面検査方法では、樹脂チューブの先端から空気中の微小異物も一緒に吸引してしまうため、微小異物もガラス粉として計数され、ガラス板の端面検査の精度が非常に悪くなるという問題がある。その結果、特許文献1に開示の端面検査をクリアしたガラス板であっても、微小クラックから発生したガラス粉に起因したFPDの製造不良を依然として引き起こすおそれがある。従って、端面から発生するガラス粉の極めて少ないガラス板をより確実に提供することが望まれている。
In the end surface inspection method disclosed in Patent Document 1, since minute foreign matter in the air is also sucked together from the tip of the resin tube, the minute foreign matter is also counted as glass powder, and the accuracy of the end face inspection of the glass plate is very poor. There is a problem of becoming. As a result, even a glass plate that has cleared the end face inspection disclosed in Patent Document 1 may still cause manufacturing failure of FPD due to glass powder generated from microcracks. Therefore, it is desired to provide a glass plate with very little glass powder generated from the end face more reliably.
本発明は、ガラス板の端面検査の精度向上を図ることによって、端面から発生するガラス粉の極めて少ないガラス板をより確実に提供することを技術的課題とする。
This invention makes it a technical subject to provide more reliably a glass plate with very little glass powder generated from the end surface by improving the accuracy of the end surface inspection of the glass plate.
上記の課題を解決するために創案された本発明は、ガラス板の端面に研磨面を有するガラス板の端面検査方法であって、研磨面の特定領域を観察する第一観察工程と、ガラス板の研磨面に外的刺激を付与する外的刺激付与工程と、特定領域を洗浄する洗浄工程と、特定領域を再び観察する第二観察工程と、第一観察工程の観察結果および第二観察工程の観察結果を比較して、第一観察工程後に新たに特定領域内に形成された微小凹部の数を計数する評価工程と、をこの順に備えていることを特徴とする。このような構成によれば、ガラス板の研磨面に設けられる特定領域に微小クラックが存在する場合でも、外的刺激付与工程で付与される外的刺激によって、微小クラックが強制的に成長し、ガラス粉として出現しやすい。そして、このようにして発生したガラス粉は、洗浄工程で研磨面の特定領域から洗浄により除去されるため、研磨面の特定領域のうち、微小クラックから発生したガラス粉に対応する部分には、微小凹部が形成される。従って、評価工程において、外的刺激付与工程及び洗浄工程よりも前の第一観察工程における研磨面の特定領域の観察結果と、外的刺激付与工程及び洗浄工程よりも後の第二観察工程における研磨面の特定領域の観察結果とを比較すれば、第一観察工程後に新たに特定領域内に形成された微小凹部の数を正確に計数することができる。この微小凹部の数は、上述のように、微小クラックから発生したガラス粉の数を正確に反映したものであるので、ガラス粉の数を直接計数しなくても、微小クラックから発生する可能性のあるガラス粉を正確に考慮したガラス板の端面検査を行うことができる。
The present invention invented in order to solve the above problems is a glass plate end surface inspection method having a polished surface on an end surface of a glass plate, a first observation step of observing a specific region of the polished surface, and a glass plate External stimulus applying step for applying an external stimulus to the polished surface of the substrate, a cleaning step for cleaning the specific region, a second observation step for observing the specific region again, an observation result of the first observation step, and a second observation step And an evaluation step of counting the number of minute recesses newly formed in the specific region after the first observation step, in this order. According to such a configuration, even when there is a microcrack in a specific region provided on the polished surface of the glass plate, the microcrack grows forcibly by an external stimulus applied in the external stimulus application step, It tends to appear as glass powder. And since the glass powder generated in this way is removed by cleaning from a specific region of the polishing surface in the cleaning process, in the portion corresponding to the glass powder generated from the micro cracks in the specific region of the polishing surface, A minute recess is formed. Therefore, in the evaluation process, the observation result of the specific area of the polished surface in the first observation process before the external stimulus applying process and the cleaning process, and the second observation process after the external stimulus applying process and the cleaning process Comparing the observation results of the specific area of the polished surface, the number of minute recesses newly formed in the specific area after the first observation step can be accurately counted. As described above, the number of the minute recesses accurately reflects the number of glass powders generated from the microcracks. Therefore, the number of the microrecesses may be generated from the microcracks without directly counting the number of glass powders. It is possible to inspect the end face of the glass plate in consideration of the glass powder with a certain amount.
上記の構成において、洗浄工程が、外的刺激付与工程を兼ねており、特定領域が外的刺激を付与されながら洗浄されることが好ましい。このようにすれば、洗浄工程の中で外的刺激付与工程も同時に行われることになるので、これら両工程を個別に行う場合に比べて検査効率が向上する。
In the above configuration, it is preferable that the cleaning step also serves as an external stimulus applying step, and the specific region is cleaned while applying the external stimulus. In this way, the external stimulus applying process is also performed simultaneously in the cleaning process, so that the inspection efficiency is improved as compared with the case where both these processes are performed individually.
上記の構成において、外的刺激付与工程を兼ねる洗浄工程は、超音波洗浄であってもよい。このようにすれば、超音波洗浄に伴う振動によって、研磨面の特定領域が外的刺激を付与されながら洗浄される。
In the above configuration, the cleaning step that also serves as the external stimulus applying step may be ultrasonic cleaning. In this way, the specific region of the polishing surface is cleaned while being given an external stimulus by the vibration accompanying the ultrasonic cleaning.
上記の構成において、外的刺激付与工程を兼ねる洗浄工程は、化学洗浄であってもよい。このようにすれば、化学洗浄に伴う化学反応によって、研磨面の特定領域が外的刺激を付与されながら洗浄される。ここで、化学洗浄は、酸洗浄であってもよいし、アルカリ洗浄であってもよい。また、化学洗浄液を用いて超音波洗浄を行うことにより、化学洗浄と超音波洗浄を併用してもよい。
In the above configuration, the cleaning step that also serves as the external stimulus applying step may be chemical cleaning. By doing so, a specific region of the polishing surface is cleaned while being given external stimulus by a chemical reaction accompanying chemical cleaning. Here, the chemical cleaning may be acid cleaning or alkali cleaning. Further, chemical cleaning and ultrasonic cleaning may be used in combination by performing ultrasonic cleaning using a chemical cleaning solution.
上記の構成において、第一観察工程で、特定領域を拡大観察して第一拡大画像を取得すると共に、第二観察工程で、特定領域を拡大観察して第二拡大画像を取得し、評価工程で、第一拡大画像および第二拡大画像を比較することが好ましい。このようにすれば、研磨面の特定領域の正確な情報を画像で取得することができるので、評価工程での微小欠陥の数の計数精度を高めることができる。
In the above configuration, in the first observation step, the specific region is magnified to obtain the first magnified image, and in the second observation step, the specific region is magnified to obtain the second magnified image, and the evaluation step Thus, it is preferable to compare the first enlarged image and the second enlarged image. In this way, accurate information on the specific area of the polished surface can be acquired as an image, so that the counting accuracy of the number of minute defects in the evaluation process can be increased.
上記の構成において、特定領域の設定基準となるマーキング部を研磨面に形成することが好ましい。このようにすれば、第一観察工程および第二観察工程の間での特定領域の設定ずれを可及的に低減することができる。従って、評価工程における微小欠陥の数の計数精度の向上にも繋がる。
In the above configuration, it is preferable to form a marking portion on the polished surface, which serves as a setting reference for the specific region. In this way, it is possible to reduce as much as possible the setting deviation of the specific region between the first observation process and the second observation process. Therefore, the accuracy of counting the number of micro defects in the evaluation process is also improved.
上記の課題を解決するために創案された本発明は、ガラス板の製造方法であって、複数枚の元ガラス板からそれぞれガラス板を切り出し、複数枚のガラス板を取得する切断工程と、複数枚のガラス板の端面を研磨する研磨工程と、複数枚のガラス板の中から検査用ガラス板を抜き取ると共に、検査用ガラス板を上記のガラス板の端面検査方法で検査する抜き取り検査工程と、を備えていることを特徴とする。ここで、検査用ガラス板には、切断工程で取得されたガラス板をそのまま使用する場合と、そのガラス板を小さく切断した小片を使用する場合とが含まれるものとする。このような構成によれば、上述の理由により、ガラス板の端面検査の精度向上を図ることができるので、端面から発生するガラス粉の極めて少ないガラス板を提供することができる。
The present invention created in order to solve the above-mentioned problems is a method for manufacturing a glass plate, in which a glass plate is cut out from each of a plurality of original glass plates to obtain a plurality of glass plates, and a plurality of steps A polishing step for polishing the end surface of the glass plate, and a sampling inspection step for extracting the inspection glass plate from the plurality of glass plates, and inspecting the inspection glass plate by the end surface inspection method for the glass plate, It is characterized by having. Here, the inspection glass plate includes a case where the glass plate obtained in the cutting step is used as it is and a case where a small piece obtained by cutting the glass plate is used. According to such a configuration, the accuracy of the end surface inspection of the glass plate can be improved for the reasons described above, and therefore, a glass plate with very little glass powder generated from the end surface can be provided.
上記の課題を解決するために創案された本発明は、端面に研磨面を有するガラス板であって、研磨面を、温度40℃のアルカリ洗浄液を用いて15分間超音波洗浄した場合に、研磨面において、超音波洗浄により新たに形成され、かつ、ガラス粉に対応する大きさの微小凹部の密度が0~1000個/mm2となることを特徴とする。このような構成によれば、時間の経過によらず、端面から発生するガラス粉の極めて少ないガラス板となる。すなわち、例えば、FPDの製造工程に含まれる洗浄工程等で外的刺激を受けたとしても、その後のFPDの製造工程で、端面から発生するガラス粉を可及的に低減することができる。
The present invention devised to solve the above problems is a glass plate having a polished surface on its end surface, and when the polished surface is ultrasonically cleaned for 15 minutes using an alkali cleaning solution at a temperature of 40 ° C. The surface is characterized in that the density of minute recesses newly formed by ultrasonic cleaning and having a size corresponding to glass powder is 0 to 1000 / mm 2 . According to such a structure, it becomes a glass plate with very few glass powder generated from an end surface irrespective of progress of time. That is, for example, even if an external stimulus is received in a cleaning process included in the FPD manufacturing process, glass powder generated from the end face can be reduced as much as possible in the subsequent FPD manufacturing process.
以上のような本発明によれば、ガラス板の端面検査の精度向上を図ることができる。従って、端面から発生するガラス粉の極めて少ないガラス板をより確実に提供することが可能となる。
According to the present invention as described above, it is possible to improve the accuracy of the end face inspection of the glass plate. Therefore, it becomes possible to provide a glass plate with very little glass powder generated from the end face more reliably.
以下、本発明に係るガラス板の製造方法の実施形態を説明する。なお、以下では、ガラス板の製造方法を説明する過程で、ガラス板の端面検査方法も併せて説明するが、ガラス板の端面検査方法はガラス板の製造方法から独立して単独実施することもできる。
Hereinafter, an embodiment of a method for producing a glass plate according to the present invention will be described. In the following, in the course of explaining the glass plate manufacturing method, the glass plate end surface inspection method will also be described. However, the glass plate end surface inspection method may be carried out independently from the glass plate manufacturing method. it can.
本実施形態に係るガラス板の製造方法は、切断工程と、研磨工程と、抜き取り検査工程と、を備えている。
The method for manufacturing a glass plate according to the present embodiment includes a cutting process, a polishing process, and a sampling inspection process.
切断工程では、図1に示すように、元ガラス板Mを切断予定線CLに沿って切断することで、一枚の元ガラス板Mから複数枚(図示例では四枚)のガラス板Gを取得する、いわゆる多面取りが行われる。なお、切断工程では、元ガラス板Mの周縁部をトリミングし、一枚の元ガラス板Mから一枚のガラス板Gを取得するようにしてもよい。
In the cutting process, as shown in FIG. 1, by cutting the original glass plate M along the planned cutting line CL, a plurality of (four in the illustrated example) glass plates G are formed from one original glass plate M. So-called multi-sided acquisition is performed. In the cutting step, the peripheral edge of the original glass plate M may be trimmed to obtain one glass plate G from one original glass plate M.
本実施形態では、元ガラス板Mは、オーバーフローダウンドロー法によって成形されたものであるが、これに限定されない。例えば、スロットダウンドロー法やリドロー法などの他のダウンドロー法や、フロート法によって成形されたものであってもよい。
In the present embodiment, the original glass plate M is formed by the overflow downdraw method, but is not limited thereto. For example, it may be formed by another downdraw method such as a slot downdraw method or a redraw method, or a float method.
元ガラス板Mの切断方法としては、元ガラス板Mの切断予定線CL上にスクライブ線を形成した後、そのスクライブ線に沿って折り割る、いわゆる曲げ応力割断が利用される。なお、元ガラス板Mの切断方法として、熱応力割断(例えばレーザー割断)、溶断(例えばレーザー溶断)等を利用してもよい。
As a method for cutting the original glass plate M, so-called bending stress cleaving is used, in which a scribe line is formed on the planned cutting line CL of the original glass plate M and then folded along the scribe line. In addition, as a cutting method of the original glass plate M, thermal stress cleaving (for example, laser cleaving), fusing (for example, laser fusing) or the like may be used.
研磨工程では、図2に示すように、切断工程で切断された複数枚のガラス板Gの端面(切断面)を研磨する。なお、本発明において、研磨には研削が含まれるものとする。詳細には、まず、上流側ステージ1の上で、ガラス板Gの対向二辺に沿って第一研磨工具2(例えば砥石)を走行させ、その対向二辺の端面G1を研磨する。次に、旋回ステージ3の上で、ガラス板Gを90度旋回させた後、下流側ステージ4の上で、旋回したガラス板Gの残りの対向二辺に沿って第二研磨工具5(例えば砥石)を走行させ、その残りの対向二辺の端面G2を研磨する。これにより、ガラス板Gの四辺の各端面G1,G2が研磨される。なお、図2に示す研磨手順はあくまで一例であり、ガラス板Gの四辺の各端面G1,G2が研磨される限り、ガラス板Gや研磨工具2,5の移動手順や、研磨工具2,5の数などは特に限定されない。例えば、ガラス板Gの一辺の端面を、目の粗さや結合材が異なる研磨工具で複数回に亘って研磨し、粗研磨の後に仕上げ研磨が行われるようにしてもよい。
In the polishing step, as shown in FIG. 2, the end surfaces (cut surfaces) of the plurality of glass plates G cut in the cutting step are polished. In the present invention, the polishing includes grinding. Specifically, first, the first polishing tool 2 (for example, a grindstone) is run on the upstream stage 1 along the two opposing sides of the glass plate G, and the end faces G1 of the two opposing sides are polished. Next, after the glass plate G is turned 90 degrees on the turning stage 3, the second polishing tool 5 (for example, along the remaining two opposite sides of the turned glass plate G on the downstream stage 4). The grindstone is run, and the remaining two end faces G2 are polished. Thereby, each end surface G1, G2 of the four sides of the glass plate G is polished. The polishing procedure shown in FIG. 2 is merely an example, and as long as the end faces G1 and G2 on the four sides of the glass plate G are polished, the moving procedure of the glass plate G and the polishing tools 2 and 5, The number of is not particularly limited. For example, the end surface of one side of the glass plate G may be polished a plurality of times with a polishing tool having different eye roughness and binder, and finish polishing may be performed after the rough polishing.
図3に示すように、第一研磨工具2は、ガラス板Gの板厚方向に延びる円筒面状の第一加工面21と、第一加工面21の両端部に設けられ、ガラス板Gの板厚方向に対して互いに逆向きの傾斜を有する一対の円錐面状の第二加工面22とを備えている。従って、第一研磨工具2によって研磨されたガラス板Gの端面G1は、第一研磨工具2の第一加工面21及び第二加工面22に倣った形状に研磨される。すなわち、第一研磨工具2によって研磨されたガラス板Gの端面G1は、板厚方向に延びる第一研磨面G1aと、第一研磨面G1aの両端部に設けられ、板厚方向に対して互いに逆向きの傾斜を有する一対の第二研磨面G1bとを備えている。図示は省略するが、第二研磨工具5も第一研磨工具2と同様の構成であるので、第二研磨工具5によって研磨されたガラス板Gの端面G2も、第一研磨工具2によって研磨されたガラス板Gの端面G1と同様の形状をなす。ここで、図3において、クロスハッチングを付した部分Xは、研磨によって除去されるガラス部分を示している。
As shown in FIG. 3, the first polishing tool 2 is provided on a cylindrical first processing surface 21 extending in the thickness direction of the glass plate G and both ends of the first processing surface 21. And a pair of conical second processing surfaces 22 having inclinations opposite to each other in the thickness direction. Therefore, the end face G1 of the glass plate G polished by the first polishing tool 2 is polished into a shape following the first processed surface 21 and the second processed surface 22 of the first polishing tool 2. That is, the end surface G1 of the glass plate G polished by the first polishing tool 2 is provided at both ends of the first polishing surface G1a extending in the plate thickness direction and the first polishing surface G1a, and is mutually opposite to the plate thickness direction. And a pair of second polishing surfaces G1b having opposite inclinations. Although illustration is omitted, since the second polishing tool 5 has the same configuration as the first polishing tool 2, the end face G2 of the glass plate G polished by the second polishing tool 5 is also polished by the first polishing tool 2. The glass plate G has the same shape as the end face G1. Here, in FIG. 3, the part X which attached | subjected cross hatching has shown the glass part removed by grinding | polishing.
なお、一つの第一研磨工具2で同時に、ガラス板Gの第一研磨面G1aと第二研磨面G1bとを形成する場合を説明したが、これらの研磨面G1a,G1bを別々の研磨工具で個別に形成してもよい。これは第二研磨工具5についても同様である。また、研磨されたガラス板Gの端面G1,G2の断面形状は特に限定されるものではなく、半円形状、円弧状、半楕円形状、複数の直線で構成される形状等であってもよい。あるいは、ガラス板Gの端面G1,G2の断面形状は、前記図3に示す断面形状において、第二研磨面G1bの断面形状を円弧状に変更した形状であってもよい。
In addition, although the case where the 1st grinding | polishing surface G1a and the 2nd grinding | polishing surface G1b of the glass plate G were formed simultaneously with the one 1st grinding | polishing tool 2 was demonstrated, these grinding | polishing surfaces G1a and G1b were used with separate grinding | polishing tools. You may form separately. The same applies to the second polishing tool 5. Moreover, the cross-sectional shape of the end surfaces G1 and G2 of the polished glass plate G is not particularly limited, and may be a semicircular shape, an arc shape, a semielliptical shape, a shape constituted by a plurality of straight lines, or the like. . Alternatively, the cross-sectional shape of the end faces G1, G2 of the glass plate G may be a shape obtained by changing the cross-sectional shape of the second polishing surface G1b to an arc shape in the cross-sectional shape shown in FIG.
研磨工具2,5の送り速度は、好ましくは1~15m/min、より好ましくは1~10m/minである。すなわち、一般的なガラス板の研磨では研磨工具の送り速度は、15m/minを上回り、かつ、60m/min以下であるので、上記の研磨工具2,5の送り速度の好適な範囲は、一般的な送り速度と比べて遅い。なお、研磨工具2,5の送り速度は、ガラス板Gを移動させながら研磨する場合には、ガラス板Gに対する研磨工具2,5の相対速度を意味するものとする。
The feeding speed of the polishing tools 2 and 5 is preferably 1 to 15 m / min, more preferably 1 to 10 m / min. That is, in general polishing of a glass plate, the feed rate of the polishing tool exceeds 15 m / min and is 60 m / min or less. Therefore, the preferable range of the feed rate of the polishing tools 2 and 5 is generally Slow compared to typical feed rate. Note that the feed rate of the polishing tools 2 and 5 means the relative speed of the polishing tools 2 and 5 with respect to the glass plate G when polishing while moving the glass plate G.
抜き取り検査工程では、研磨工程で研磨された複数枚のガラス板Gの中(同一ロットの中)から、一枚又は複数枚のガラス板Gを検査用ガラス板S(図4を参照)として抜き取り、その検査用ガラス板Sに対して端面検査を行う。なお、抜き取りは、所定の時間間隔ごとに行ってもよい。あるいは、研磨条件といった製造条件を変更する都度に行ってもよい。また、この検査用ガラス板Sの端面検査が、ガラス板の端面検査方法に相当する。
In the sampling inspection process, one or a plurality of glass plates G are extracted as inspection glass plates S (see FIG. 4) from the plurality of glass plates G polished in the polishing step (in the same lot). The end face inspection is performed on the inspection glass plate S. The sampling may be performed at predetermined time intervals. Alternatively, it may be performed every time manufacturing conditions such as polishing conditions are changed. Further, the end face inspection of the inspection glass plate S corresponds to the end face inspection method of the glass plate.
端面検査は、第一観察工程と、洗浄工程と、第二観察工程と、評価工程と、を備えている。
The end face inspection includes a first observation process, a cleaning process, a second observation process, and an evaluation process.
第一観察工程では、図4に示すように、検査用ガラス板Sの端面S1に形成された研磨面S1a(ガラス板Gの第一研磨面に相当),S1b(ガラス板Gの第二研磨面に相当)の特定領域RをSEM(走査型電子顕微鏡)により拡大観察し、特定領域Rの第一拡大画像を取得する。
In the first observation step, as shown in FIG. 4, the polished surface S1a (corresponding to the first polished surface of the glass plate G) and S1b (second polished glass plate G) formed on the end surface S1 of the inspection glass plate S. The specific region R corresponding to the surface is enlarged and observed with a scanning electron microscope (SEM), and a first enlarged image of the specific region R is acquired.
検査用ガラス板Sは、抜き取ったガラス板Gをそのまま用いてもよいが、本実施形態では、その抜き取ったガラス板Gをその研磨面を含むように更に小さく切断した小片からなる。
The glass plate S for inspection may use the extracted glass plate G as it is, but in the present embodiment, the glass plate G is made of small pieces that are cut to a smaller size so as to include the polished surface.
本実施形態では、特定領域Rは、第一研磨面S1aに設けられている。これは、第一研磨面S1aが第二研磨面S1bよりも他部材と接触する可能性があり、ガラス粉の発生リスクが高いと考えられるためである。なお、特定領域Rは、第一研磨面S1aではなく、第二研磨面S1bに設けてもよいし、第一研磨面S1a及び第二研磨面S1bの双方に設けてもよい。
In the present embodiment, the specific region R is provided on the first polishing surface S1a. This is because the first polishing surface S1a may be in contact with other members than the second polishing surface S1b, and it is considered that the risk of glass powder generation is high. The specific region R may be provided not on the first polishing surface S1a but on the second polishing surface S1b, or on both the first polishing surface S1a and the second polishing surface S1b.
特定領域Rが設けられる第一研磨面S1aには、特定領域Rの設定基準となるマーキング部(不図示)を形成することが好ましい。マーキング部は、例えば、第一研磨面S1aに凹状の溝(キズ)を形成したり、膜(スパッタ膜など)を成膜したりすることで形成する。なお、マーキング部は、これらの方法で形成されたものに限定されないが、洗浄工程で除去され難い方法で形成されたものが好ましい。マーキング部は、例えば、特定領域Rの矩形状の外縁に沿って形成する。
It is preferable to form a marking portion (not shown) serving as a setting reference for the specific region R on the first polishing surface S1a where the specific region R is provided. The marking part is formed, for example, by forming a concave groove (scratch) on the first polishing surface S1a or by forming a film (such as a sputtered film). In addition, although a marking part is not limited to what was formed by these methods, what was formed by the method which is hard to be removed by a washing | cleaning process is preferable. The marking part is formed along the rectangular outer edge of the specific region R, for example.
洗浄工程では、図5に示すように、検査用ガラス板Sの研磨面S1a,S1bに設けられた特定領域Rが外的刺激を付与されながら洗浄される。洗浄工程で洗浄する部分は、特定領域Rのみでもよいし、特定領域Rを含む部分でもよい。図示例は洗浄態様のあくまで一例であるが、詳細に説明すると、検査用ガラス板Sは、支持部材6によって吊り下げ支持された状態で、第一研磨面S1aに設けられた特定領域Rを含む部分(図示例では検査用ガラス板Sの約下半分)が容器7内の洗浄液8に浸漬される。この際、特定領域Rが設けられる第一研磨面S1aは、洗浄液8との接触効率を高めるために、容器7と接触しないようにすることが好ましい。容器7は超音波伝達媒体としての水9が貯留された超音波洗浄機10内に配置され、水9を介して洗浄液8に伝搬した超音波振動によって、検査用ガラス板Sの特定領域Rを含む部分が超音波洗浄される。
In the cleaning process, as shown in FIG. 5, the specific region R provided on the polished surfaces S1a and S1b of the inspection glass plate S is cleaned while being given an external stimulus. The portion to be cleaned in the cleaning step may be only the specific region R or a portion including the specific region R. Although the illustrated example is merely an example of the cleaning mode, in detail, the inspection glass plate S includes a specific region R provided on the first polishing surface S1a in a state of being supported suspended by the support member 6. A portion (about the lower half of the inspection glass plate S in the illustrated example) is immersed in the cleaning liquid 8 in the container 7. At this time, it is preferable that the first polishing surface S1a provided with the specific region R is not in contact with the container 7 in order to increase the contact efficiency with the cleaning liquid 8. The container 7 is disposed in an ultrasonic cleaning machine 10 in which water 9 as an ultrasonic transmission medium is stored, and the specific region R of the inspection glass plate S is moved by ultrasonic vibration propagated to the cleaning liquid 8 through the water 9. The containing part is ultrasonically cleaned.
超音波洗浄の時間は、1~60分が好ましく、3~30分がより好ましい。超音波洗浄の温度は、15~80℃が好ましく、25~60℃がより好ましい。超音波洗浄の周波数は、10~1000kHzが好ましく、20~200kHzがより好ましい。
The ultrasonic cleaning time is preferably 1 to 60 minutes, and more preferably 3 to 30 minutes. The temperature for ultrasonic cleaning is preferably 15 to 80 ° C., more preferably 25 to 60 ° C. The frequency of ultrasonic cleaning is preferably 10 to 1000 kHz, more preferably 20 to 200 kHz.
洗浄液8としては、純水にアルカリ洗剤(例えば、(CH3)4NOH、NaOH、KOHなど)を混ぜたものや、純水に酸洗剤(例えば、HCl、HNO3、H2SO4など)を混ぜたものを使用し、検査用ガラス板Sを化学洗浄することが好ましい。ただし、超音波洗浄を用いる場合には、超音波洗浄時の振動によって検査用ガラス板Sの研磨面S1a,S1bに外的刺激が付与されるので、化学反応による外的刺激を更に付与しなくてもよい。すなわち、超音波洗浄を用いる場合には、洗浄液8は、純水など、検査用ガラス板Sの研磨面S1a,S1bに化学反応による外的刺激を付与しないものを用いてもよい。
Examples of the cleaning liquid 8 include pure water mixed with an alkaline detergent (eg, (CH 3 ) 4 NOH, NaOH, KOH, etc.), or pure water with an acid detergent (eg, HCl, HNO 3 , H 2 SO 4, etc.). It is preferable to chemically clean the glass plate S for inspection using a mixture of the above. However, when ultrasonic cleaning is used, an external stimulus is applied to the polished surfaces S1a and S1b of the glass plate S for inspection by vibration during the ultrasonic cleaning, so that an external stimulus due to a chemical reaction is not further applied. May be. In other words, when ultrasonic cleaning is used, the cleaning liquid 8 may be pure water or the like that does not give an external stimulus due to a chemical reaction to the polishing surfaces S1a and S1b of the inspection glass plate S.
なお、洗浄工程は、検査用ガラス板Sの特定領域R又は特定領域Rを含む部分に高圧水等の高圧液体を噴射して洗浄する高圧洗浄を用いてもよい。この場合も、検査用ガラス板Sの研磨面S1a,S1bが、高圧液体によって外的刺激を付与されながら洗浄される。
Note that the cleaning step may use high-pressure cleaning in which a specific region R of the inspection glass plate S or a portion including the specific region R is sprayed and cleaned with a high-pressure liquid such as high-pressure water. Also in this case, the polished surfaces S1a and S1b of the inspection glass plate S are cleaned while being externally stimulated by the high-pressure liquid.
第二観察工程では、第一観察工程で観察した検査用ガラス板Sの特定領域Rを再びSEMにより拡大観察し、特定領域Rの第二拡大画像を取得する。なお、第二観察工程におけるSEMによる拡大観察は、第一観察工程におけるSEMによる拡大観察と同条件(加速電圧や観察倍率など)であることが好ましい。
In the second observation step, the specific region R of the inspection glass plate S observed in the first observation step is enlarged and observed again with the SEM, and a second enlarged image of the specific region R is acquired. In addition, it is preferable that the enlarged observation by SEM in a 2nd observation process is the same conditions (acceleration voltage, observation magnification, etc.) as the enlarged observation by SEM in a 1st observation process.
評価工程では、第一観察工程の観察結果である第一拡大画像と、第二観察工程の観察結果である第二拡大画像とを比較して、第一観察工程後に新たに特定領域R内に形成された微小凹部の数を計数する。
In the evaluation process, the first enlarged image, which is the observation result of the first observation process, is compared with the second enlarged image, which is the observation result of the second observation process, and newly in the specific region R after the first observation process. Count the number of micro-recesses formed.
本実施形態では、平面視(特定領域Rの垂線方向からの視野)でガラス粉に対応する大きさの凹部を微小凹部と判定し、計数する。微小凹部の判定基準は、要求される品質に応じて適宜設定すればよい。例えば、平面視で0.1~10μm程度の長さの凹部を微小凹部と判定すればよい。あるいは、平面視で0.1~5μm程度の長さの凹部を微小凹部と判定してもよい。微小凹部の数は、画像処理等によって微小凹部を自動で計数するようにしてもよいし、作業者が手動で計数するようにしてもよい。
In the present embodiment, the concave portion having a size corresponding to the glass powder in a plan view (view from the perpendicular direction of the specific region R) is determined as a fine concave portion and counted. The criterion for determining the minute recess may be set as appropriate according to the required quality. For example, a recess having a length of about 0.1 to 10 μm in a plan view may be determined as a minute recess. Alternatively, a recess having a length of about 0.1 to 5 μm in plan view may be determined as a minute recess. The number of minute recesses may be automatically counted by image processing or the like, or may be manually counted by an operator.
特定領域Rの大きさは、評価工程で計数された微小凹部の数から、ガラス板Gの第一研磨面G1a(及び/又は第二研磨面G1b)全体の微小凹部の数をある程度予想可能な大きさであればよい。従って、特定領域Rは、一辺が10~500μmの矩形状の領域に設定することが好ましい。
As for the size of the specific region R, the number of minute recesses on the entire first polishing surface G1a (and / or second polishing surface G1b) of the glass plate G can be predicted to some extent from the number of minute recesses counted in the evaluation process. Any size is acceptable. Therefore, the specific region R is preferably set to a rectangular region having a side of 10 to 500 μm.
特定領域Rの拡大観察の倍率は、微小凹部の検出精度に関係する。従って、拡大観察の倍率は、1000~50000倍であることが好ましく、5000~50000倍であることがより好ましい。
Magnification of magnification observation of specific area R is related to detection accuracy of minute recesses. Accordingly, the magnification for magnification observation is preferably 1000 to 50000 times, and more preferably 5000 to 50000 times.
ここで、第一拡大画像と第二拡大画像を図6~13に例示する。図6と図7、図8と図9、図10と図11、図12と図13がそれぞれ同じ特定領域の観察結果である。このうち、図6と図7、図10と図11では、微小クラックから時間の経過と共にガラス粉が発生する可能性を疑似的に高めるために、特定領域Rが設けられた第一研磨面S1aの面粗さを粗くしている。
Here, the first enlarged image and the second enlarged image are illustrated in FIGS. FIGS. 6 and 7, FIGS. 8 and 9, FIGS. 10 and 11, and FIGS. 12 and 13 are observation results of the same specific region. Among these, in FIG. 6 and FIG. 7 and FIG. 10 and FIG. 11, the first polishing surface S1a provided with the specific region R in order to artificially increase the possibility that glass powder is generated over time from the minute crack. The surface roughness is increased.
特定領域Rが設けられた研磨面が粗い面の場合には、拡大観察の倍率を上げてみると(10000倍)、図6に示す第一拡大画像では確認されなかった微小凹部が、図7に示す第二拡大画像において新たに確認された(図7において円C1で囲んだ部分)。一方、特定領域Rが設けられた研磨面が平滑な面の場合には、図8に示す第一拡大画像では確認されなかった微小凹部が、図9に示す第二拡大画像において新たに確認されることはなかった。
In the case where the polished surface provided with the specific region R is a rough surface, when the magnification of magnification observation is increased (10,000 times), minute recesses that are not confirmed in the first enlarged image shown in FIG. (A portion surrounded by a circle C1 in FIG. 7). On the other hand, when the polished surface provided with the specific region R is a smooth surface, a minute concave portion that was not confirmed in the first enlarged image shown in FIG. 8 was newly confirmed in the second enlarged image shown in FIG. It never happened.
また、拡大観察の倍率を下げてみると(1000倍)、特定領域Rが設けられた研磨面が粗い面の場合には、図10に示す第一拡大画像では確認されなかった微小凹部が、図11に示す第二拡大画像において新たに多数箇所で確認された(図11において円C2で囲んだ部分)。一方、特定領域Rが設けられた研磨面が平滑な面の場合には、図12に示す第一拡大画像では確認されなかった微小凹部が、図13に示す第二拡大画像において新たに確認されることはなかった。
Further, when the magnification of magnification observation is lowered (1000 times), when the polished surface provided with the specific region R is a rough surface, a minute recess that is not confirmed in the first enlarged image shown in FIG. In the second enlarged image shown in FIG. 11, it was confirmed at many new locations (portion surrounded by a circle C2 in FIG. 11). On the other hand, when the polished surface provided with the specific region R is a smooth surface, a minute concave portion that was not confirmed in the first enlarged image shown in FIG. 12 was newly confirmed in the second enlarged image shown in FIG. It never happened.
このような結果からも、微小クラックからガラス粉が発生する可能性が高い検査用ガラス板において、微小凹部の数が増加する傾向があることが確認できる。従って、本実施形態に係る端面検査によれば、ガラス粉の数を直接計数しなくても、評価工程で微小凹部の数を計数することにより、将来的にガラス粉が多く発生する可能性のあるガラス板であるか否かを正確に判断することができる。また、微小凹部の大きさから発生したガラス粉の大きさもある程度予想することができる。
From these results, it can be confirmed that the number of minute recesses tends to increase in a glass plate for inspection in which glass powder is likely to be generated from minute cracks. Therefore, according to the end face inspection according to the present embodiment, even if the number of glass powders is not directly counted, by counting the number of minute recesses in the evaluation process, a large amount of glass powder may be generated in the future. Whether it is a certain glass plate can be judged correctly. Moreover, the size of the glass powder generated from the size of the minute recesses can be predicted to some extent.
評価工程において、計数された微小凹部の数(好ましくは、(微小凹部の数)/(特定領域の面積)で表した微小凹部の密度)が所定の判定値(例えば、1000個/mm2、好ましくは500個/mm2)以下であれば、検査用ガラス板Sと同一ロットに含まれるガラス板Gも将来的にガラス粉が発生しにくいと評価することができる。従って、この場合には、同一ロットに含まれるガラス板Gの品質を「合格」と判定し、そのまま製品として出荷する。
In the evaluation step, the number of counted micro-recesses (preferably, (the number of micro-recesses) / (density of the micro-recesses) expressed by the area of the specific region) is a predetermined determination value (for example, 1000 / mm 2 , If it is preferably 500 pieces / mm 2 ) or less, the glass plate G included in the same lot as the inspection glass plate S can be evaluated as being less likely to generate glass powder in the future. Therefore, in this case, the quality of the glass plate G included in the same lot is determined as “accepted” and shipped as a product as it is.
このように合格と判断されたガラス板Gは、研磨面を、温度40℃のアルカリ洗浄液を用いて15分間超音波洗浄した場合に、研磨面において、超音波洗浄により新たに形成され、かつ、ガラス粉に対応する大きさの微小凹部の密度(微小凹部の個数/研磨面の面積)が0~1000個/mm2(好ましくは、0~500個/mm2)となる。このようなガラス板Gであれば、FPDの製造工程で洗浄やエッチング等を繰り返し行っても、各成膜工程でガラス粉による電極形成不良などが生じにくい。従って、IGZOなどの高精細FPD用のガラス基板として好適に利用できる。
The glass plate G thus determined to be acceptable is newly formed by ultrasonic cleaning on the polished surface when the polished surface is ultrasonically cleaned for 15 minutes using an alkaline cleaning liquid at a temperature of 40 ° C., and The density of minute recesses having a size corresponding to the glass powder (the number of minute recesses / the area of the polished surface) is 0 to 1000 / mm 2 (preferably 0 to 500 / mm 2 ). With such a glass plate G, defective electrode formation due to glass powder is unlikely to occur in each film forming process even if cleaning, etching, and the like are repeatedly performed in the FPD manufacturing process. Therefore, it can be suitably used as a glass substrate for high definition FPD such as IGZO.
ここで、合格と判断されたガラス板Gの上記特性の評価は、次のようにして行う。すなわち、微小凹部の密度の測定は、上記の端面検査と同様の方法で行う。この際、微小凹部の観察(SEM観察)には、FEI社製のQuanta250FEGを用いる。また、倍率は10000倍とし、特定領域Rは、一辺が10μmの矩形状の領域とする。超音波洗浄には、VELVO-CLEAR社のUltrason VS-30を用い、超音波の周波数は35kHzとする。アルカリ洗浄液には、KOHを0.2質量%で含有する水溶液を用いる。微小凹部の判定では、平面視で0.1~5μm程度の長さの凹部を微小凹部と判定する。
Here, the evaluation of the above characteristics of the glass plate G determined to be acceptable is performed as follows. That is, the measurement of the density of the minute recesses is performed by the same method as the end face inspection. At this time, Quanta250 FEG manufactured by FEI is used for observation of the minute recesses (SEM observation). Further, the magnification is 10,000 times, and the specific region R is a rectangular region having a side of 10 μm. For ultrasonic cleaning, Ultrason VS-30 manufactured by VELVO-CLEAR is used, and the ultrasonic frequency is set to 35 kHz. As the alkaline cleaning liquid, an aqueous solution containing 0.2% by mass of KOH is used. In the determination of the minute recess, the recess having a length of about 0.1 to 5 μm in plan view is determined as the minute recess.
一方、評価工程において、計数された微小凹部の数が判定値を超えれば、検査用ガラス板Sと同一ロットに含まれるガラス板Gの品質を「不合格」と判定し、例えば、研磨工程における研磨条件(研磨工具の送り速度や研磨工具の種類)を変更する。そして、評価工程において、計数される微小凹部の数が判定値以下となるまで、上記の端面検査と研磨条件の変更を繰り返す。ここで、研磨工具2,5の送り速度を、上述のように、1~15m/minの範囲に設定すれば、品質が合格基準を満たすガラス板Gを製造しやすくなる。
On the other hand, in the evaluation process, if the counted number of minute recesses exceeds the determination value, the quality of the glass plate G included in the same lot as the inspection glass plate S is determined as “fail”, for example, in the polishing step Change the polishing conditions (feeding speed of polishing tool and type of polishing tool). Then, in the evaluation process, the end face inspection and the change of the polishing conditions are repeated until the number of counted minute recesses is equal to or less than the determination value. Here, if the feed rate of the polishing tools 2 and 5 is set in the range of 1 to 15 m / min as described above, it becomes easy to produce a glass plate G whose quality satisfies the acceptance criteria.
上記の端面検査は、着眼点を変えれば、研磨工具の選定にも利用することができる。すなわち、評価工程で微小凹部の数が判定値以下となったときに利用された研磨工具は「合格」とし、評価工程で微小凹部の数が判定値を超えたときに利用された研磨工具は「不合格」とすることで、研磨工具の選定をすることができる。
The above-described end face inspection can be used to select a polishing tool if the point of focus is changed. That is, the polishing tool used when the number of minute recesses in the evaluation process is equal to or less than the determination value is “pass”, and the polishing tool used when the number of minute recesses exceeds the determination value in the evaluation process is By selecting “Fail”, the polishing tool can be selected.
なお、本発明は、上記の実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
In addition, this invention is not limited to the structure of said embodiment, It is not limited to the above-mentioned effect. The present invention can be variously modified without departing from the gist of the present invention.
上記の実施形態では、ガラス板の研磨面に外的刺激を付与しながらガラス板の研磨面を洗浄する洗浄工程、すなわち外的刺激付与工程を兼ねる洗浄工程を説明したが、ガラス板の研磨面に外的刺激を付与する外的刺激付与工程と、ガラス板の研磨面を洗浄する洗浄工程とは個別に行ってもよい。この場合、外的刺激付与工程において、ガラス板の研磨面に樹脂材等からなる接触子を押し当てながら移動させることで、ガラス板の研磨面に外的刺激を付与してもよい。また、ガラス板の研磨面に高圧ガスや微粒子を噴射することで、ガラス板の研磨面に外的刺激を付与してもよい。
In the above embodiment, the cleaning process of cleaning the polished surface of the glass plate while applying an external stimulus to the polished surface of the glass plate, that is, the cleaning process that also serves as the external stimulus applying process has been described. You may perform separately the external stimulus provision process which provides an external stimulus, and the washing | cleaning process which wash | cleans the grinding | polishing surface of a glass plate. In this case, in the external stimulus applying step, an external stimulus may be applied to the polished surface of the glass plate by moving the contact made of a resin material or the like against the polished surface of the glass plate. Moreover, you may give external irritation | stimulation to the grinding | polishing surface of a glass plate by injecting high pressure gas and microparticles | fine-particles on the grinding | polishing surface of a glass plate.
上記の実施形態では、SEMを用いて特定領域を観察する場合を説明したが、光学顕微鏡やレーザー顕微鏡、X線CT等を用いて特定領域を観察するようにしてもよい。
In the above embodiment, the case where the specific area is observed using the SEM has been described. However, the specific area may be observed using an optical microscope, a laser microscope, an X-ray CT, or the like.
1 上流側ステージ
2 第一研磨工具
3 旋回ステージ
4 下流側ステージ
5 第二研磨工具
8 洗浄液
10 超音波洗浄機
G ガラス板
G1,G2 端面
G1a 第一研磨面
G1b 第二研磨面
M 元ガラス板
R 特定領域
S 検査用ガラス板
S1 端面
S1a 第一研磨面
S1b 第二研磨面 DESCRIPTION OFSYMBOLS 1 Upstream stage 2 1st grinding | polishing tool 3 Turning stage 4 Downstream stage 5 2nd grinding | polishing tool 8 Cleaning liquid 10 Ultrasonic cleaner G Glass plate G1, G2 End surface G1a First grinding surface G1b Second grinding surface M Original glass plate R Specific area S Inspection glass plate S1 End surface S1a First polishing surface S1b Second polishing surface
2 第一研磨工具
3 旋回ステージ
4 下流側ステージ
5 第二研磨工具
8 洗浄液
10 超音波洗浄機
G ガラス板
G1,G2 端面
G1a 第一研磨面
G1b 第二研磨面
M 元ガラス板
R 特定領域
S 検査用ガラス板
S1 端面
S1a 第一研磨面
S1b 第二研磨面 DESCRIPTION OF
Claims (8)
- 端面に研磨面を有するガラス板の端面検査方法であって、
前記研磨面の特定領域を観察する第一観察工程と、
前記特定領域に外的刺激を付与する外的刺激付与工程と、
前記特定領域を洗浄する洗浄工程と、
前記特定領域を再び観察する第二観察工程と、
前記第一観察工程の観察結果および前記第二観察工程の観察結果を比較して、前記第一観察工程後に新たに前記特定領域内に形成された微小凹部の数を計数する評価工程と、をこの順に備えていることを特徴とするガラス板の端面検査方法。 An end surface inspection method for a glass plate having a polished surface on an end surface,
A first observation step of observing a specific region of the polished surface;
Providing an external stimulus to the specific region;
A cleaning step of cleaning the specific area;
A second observation step of observing the specific area again;
An evaluation step of comparing the observation result of the first observation step and the observation result of the second observation step, and counting the number of minute recesses newly formed in the specific region after the first observation step; A method for inspecting an end face of a glass plate, which is provided in this order. - 前記洗浄工程が、前記外的刺激付与工程を兼ねており、前記特定領域が前記外的刺激を付与されながら洗浄されることを特徴とする請求項1に記載のガラス板の端面検査方法。 2. The method for inspecting an end face of a glass plate according to claim 1, wherein the cleaning step also serves as the external stimulus applying step, and the specific region is cleaned while being applied with the external stimulus.
- 前記外的刺激付与工程を兼ねる前記洗浄工程が、超音波洗浄であることを特徴とする請求項2に記載のガラス板の端面検査方法。 The method for inspecting an end face of a glass plate according to claim 2, wherein the cleaning step that also serves as the external stimulus applying step is ultrasonic cleaning.
- 前記外的刺激付与工程を兼ねる前記洗浄工程が、化学洗浄であることを特徴とする請求項2又は3に記載のガラス板の端面検査方法。 4. The method for inspecting an end face of a glass plate according to claim 2, wherein the cleaning step serving also as the external stimulus applying step is chemical cleaning.
- 前記第一観察工程で、前記特定領域を拡大観察して第一拡大画像を取得すると共に、前記第二観察工程で、前記特定領域を拡大観察して第二拡大画像を取得し、前記評価工程で、前記第一拡大画像および前記第二拡大画像を比較することを特徴とする請求項1~4のいずれか1項に記載のガラス板の端面検査方法。 In the first observation step, the specific region is magnified to obtain a first magnified image, and in the second observation step, the specific region is magnified to obtain a second magnified image, and the evaluation step The method for inspecting an end face of a glass plate according to any one of claims 1 to 4, wherein the first enlarged image and the second enlarged image are compared.
- 前記特定領域の設定基準となるマーキング部を前記研磨面に形成することを特徴とする請求項1~5のいずれか1項に記載のガラス板の端面検査方法。 6. The method for inspecting an end face of a glass plate according to claim 1, wherein a marking portion serving as a setting reference for the specific region is formed on the polished surface.
- 複数枚の元ガラス板からそれぞれガラス板を切り出し、複数枚のガラス板を取得する切断工程と、
前記複数枚のガラス板の端面を研磨する研磨工程と、
前記複数枚のガラス板の中から検査用ガラス板を抜き取ると共に、前記検査用ガラス板を請求項1~6のいずれか1項に記載のガラス板の端面検査方法で検査する抜き取り検査工程と、を備えていることを特徴とするガラス板の製造方法。 Cutting a glass plate from each of a plurality of original glass plates, a cutting step of acquiring a plurality of glass plates,
A polishing step of polishing an end face of the plurality of glass plates;
A sampling inspection step of extracting an inspection glass plate from the plurality of glass plates, and inspecting the inspection glass plate by the edge surface inspection method of a glass plate according to any one of claims 1 to 6, The manufacturing method of the glass plate characterized by the above-mentioned. - 端面に研磨面を有するガラス板であって、
前記研磨面を、温度40℃のアルカリ洗浄液を用いて15分間超音波洗浄した場合に、前記研磨面において、前記超音波洗浄により新たに形成され、かつ、ガラス粉に対応する大きさの微小凹部の密度が0~1000個/mm2となることを特徴とするガラス板。 A glass plate having a polished surface on an end surface,
When the polished surface is ultrasonically cleaned using an alkaline cleaning liquid at a temperature of 40 ° C. for 15 minutes, a minute concave portion that is newly formed on the polished surface by the ultrasonic cleaning and has a size corresponding to glass powder. The glass plate is characterized by having a density of 0 to 1000 pieces / mm 2 .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017093229A JP2018189552A (en) | 2017-05-09 | 2017-05-09 | Glass plate, method for inspecting end surface of glass plate, and method for manufacturing glass plate |
JP2017-093229 | 2017-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018207533A1 true WO2018207533A1 (en) | 2018-11-15 |
Family
ID=64104486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015024 WO2018207533A1 (en) | 2017-05-09 | 2018-04-10 | Glass plate, method for inspecting end surface of glass plate, and method for manufacturing glass plate |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2018189552A (en) |
TW (1) | TW201901146A (en) |
WO (1) | WO2018207533A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114088729A (en) * | 2022-01-21 | 2022-02-25 | 潍坊佳昇光电科技有限公司 | Device and method for detecting quality of glass end face of carrier plate |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02151749A (en) * | 1988-12-05 | 1990-06-11 | Sumitomo Electric Ind Ltd | Analysis of very small part |
JP2001050907A (en) * | 1999-08-16 | 2001-02-23 | Asahi Glass Co Ltd | Method for inspecting substrate |
JP2009300313A (en) * | 2008-06-16 | 2009-12-24 | Asahi Glass Co Ltd | Inspection method for glass substrate, glass substrate inspected by the same method, inspection device for glass substrate, and manufacturing method for glass substrate |
JP2011002253A (en) * | 2009-06-16 | 2011-01-06 | Avanstrate Inc | Method for setting glass plate to device for measuring end face of glass plate, and measuring implement |
JP2012217909A (en) * | 2011-04-07 | 2012-11-12 | Asahi Glass Co Ltd | Latent scratch evaluation method, and latent scratch evaluation apparatus for optical glass |
WO2014103283A1 (en) * | 2012-12-25 | 2014-07-03 | Hoya株式会社 | Method for manufacturing glass substrate for information recording medium |
JP2015187042A (en) * | 2012-08-13 | 2015-10-29 | 旭硝子株式会社 | Glass substrate and method for manufacturing glass substrate |
-
2017
- 2017-05-09 JP JP2017093229A patent/JP2018189552A/en active Pending
-
2018
- 2018-04-10 WO PCT/JP2018/015024 patent/WO2018207533A1/en active Application Filing
- 2018-04-20 TW TW107113429A patent/TW201901146A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02151749A (en) * | 1988-12-05 | 1990-06-11 | Sumitomo Electric Ind Ltd | Analysis of very small part |
JP2001050907A (en) * | 1999-08-16 | 2001-02-23 | Asahi Glass Co Ltd | Method for inspecting substrate |
JP2009300313A (en) * | 2008-06-16 | 2009-12-24 | Asahi Glass Co Ltd | Inspection method for glass substrate, glass substrate inspected by the same method, inspection device for glass substrate, and manufacturing method for glass substrate |
JP2011002253A (en) * | 2009-06-16 | 2011-01-06 | Avanstrate Inc | Method for setting glass plate to device for measuring end face of glass plate, and measuring implement |
JP2012217909A (en) * | 2011-04-07 | 2012-11-12 | Asahi Glass Co Ltd | Latent scratch evaluation method, and latent scratch evaluation apparatus for optical glass |
JP2015187042A (en) * | 2012-08-13 | 2015-10-29 | 旭硝子株式会社 | Glass substrate and method for manufacturing glass substrate |
WO2014103283A1 (en) * | 2012-12-25 | 2014-07-03 | Hoya株式会社 | Method for manufacturing glass substrate for information recording medium |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114088729A (en) * | 2022-01-21 | 2022-02-25 | 潍坊佳昇光电科技有限公司 | Device and method for detecting quality of glass end face of carrier plate |
Also Published As
Publication number | Publication date |
---|---|
JP2018189552A (en) | 2018-11-29 |
TW201901146A (en) | 2019-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018171705A (en) | Glass edge finishing method | |
JP5035405B2 (en) | Method for manufacturing glass substrate for magnetic recording medium | |
JP5556800B2 (en) | Polishing brush, glass substrate end surface polishing method, and glass substrate manufacturing method | |
CN109095789B (en) | Method for producing chemically strengthened glass | |
WO2014027546A1 (en) | Glass substrate and method for manufacturing glass substrate | |
JP2010135368A (en) | Template cleaning method, cleaning system, and cleaning apparatus | |
WO2018207533A1 (en) | Glass plate, method for inspecting end surface of glass plate, and method for manufacturing glass plate | |
TW583149B (en) | Quartz article having sand blast-treated surface and method for cleaning the same | |
US20160067749A1 (en) | Ultrasonic cleaning apparatus and method for cleaning | |
JPWO2006134779A1 (en) | Quartz glass jig for heat treatment of silicon wafer and manufacturing method thereof | |
CN112701058A (en) | Method for testing wafer bonding force | |
JP7311842B2 (en) | GLASS SUBSTRATE FOR DISPLAY AND METHOD FOR MANUFACTURING GLASS SUBSTRATE FOR DISPLAY | |
KR102228820B1 (en) | Glass sheet, apparatus for producing glass sheet and method for producing glass sheet | |
JP2017196758A (en) | Scribe head unit | |
JP5152357B2 (en) | Method for manufacturing glass substrate for magnetic recording medium | |
TWI731884B (en) | Glass substrate for display and manufacturing method thereof | |
JP5120335B2 (en) | Silicon wafer processing method | |
TWI627142B (en) | Surface treatments for low electrostatic discharge fusion drawn glass | |
JP6666516B1 (en) | Quartz glass dummy wafer | |
JP2019012183A (en) | Substrate for photo-mask, and manufacturing method therefor | |
JPS63257756A (en) | Glass substrate for photomask | |
JP5838860B2 (en) | Method for producing mirror-finished aluminum material and mirror-finished aluminum material obtained by this method | |
CN109269435B (en) | Detection method for depth of removed material | |
KR101356400B1 (en) | Wafer contamination prevention method, inspection method and production method | |
JP2013075808A (en) | Method for producing glass substrate and glass substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18798086 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18798086 Country of ref document: EP Kind code of ref document: A1 |