WO2014027546A1 - Glass substrate and method for manufacturing glass substrate - Google Patents

Glass substrate and method for manufacturing glass substrate Download PDF

Info

Publication number
WO2014027546A1
WO2014027546A1 PCT/JP2013/069949 JP2013069949W WO2014027546A1 WO 2014027546 A1 WO2014027546 A1 WO 2014027546A1 JP 2013069949 W JP2013069949 W JP 2013069949W WO 2014027546 A1 WO2014027546 A1 WO 2014027546A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
face
less
end surface
glass
Prior art date
Application number
PCT/JP2013/069949
Other languages
French (fr)
Japanese (ja)
Inventor
正文 伊藤
祐介 今里
龍 山口
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014027546A1 publication Critical patent/WO2014027546A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • C03C15/02Surface treatment of glass, not in the form of fibres or filaments, by etching for making a smooth surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass

Definitions

  • the present invention relates to a glass substrate and a method for producing the glass substrate.
  • FPD flat panel displays
  • LCDs liquid crystal displays
  • PDPs plasma displays
  • OLEDs organic EL displays
  • FEDs field emission displays
  • the FPD has a configuration in which various wirings and elements are arranged on the main surface of a glass substrate. Since the manufacturing process of the glass substrate for FPD goes through processes such as polishing of the end face of the glass substrate, foreign matter such as minute glass pieces may adhere to the glass substrate, and the purpose of removing these deposits is A cleaning process has been applied. In recent years, a glass substrate is washed with a chemical solution having an etching property for the purpose of removing adhered substances that are firmly attached. JP 2007-102843 A
  • an object of the present embodiment is to provide a glass substrate that can suppress the generation of fine glass pieces after etching.
  • a glass substrate having a main surface and an end surface Provided is a glass substrate in which when the end face is etched with an etching amount of 0.5 ⁇ m or less, the level difference Rk of the core portion of the end face is 1.20 ⁇ m or less under the condition of a cutoff value of 0.8 mm.
  • the glass substrate of the present embodiment only needs to have an end surface.
  • a flat panel display such as a liquid crystal display (LCD), a plasma display (PDP), an organic EL display (OLED), a field emission display (FED), etc.
  • Various glass substrates such as (FPD), touch panel, and solar cell are targeted.
  • the glass base plate of the glass substrate of the present embodiment is produced by a method such as a float method, a fusion method, a redraw method, a press molding method, or a pulling method, but the present embodiment is not limited in this respect.
  • FIG. 1 shows a schematic diagram for explaining an example of the glass substrate of the present embodiment.
  • the glass substrate 1 of this embodiment has the main surface 2 (front surface and back surface) normally comprised so that an image may be displayed, and the end surface 3 chamfered and finished.
  • the end surface 3 is continuous with the main surface 2, but a structure in which a chamfered surface (not shown) is formed between the main surface 2 and the end surface 3 may be used.
  • an etching solution mainly containing any one of hydrofluoric acid, silicic hydrofluoric acid, ammonium fluoride, and sodium fluoride is usually used.
  • the etching solution may be a mixed acid solution (acidic solution) containing other acids such as hydrochloric acid, nitric acid, sulfuric acid, or an alkaline solution from the viewpoint of storage stability. good.
  • the main component refers to a component that is contained most in the etching solution.
  • the glass substrate When a glass substrate is cleaned using the above-mentioned chemical solution having etching properties, the glass substrate is about 0.01 to 0.1 ⁇ m (maximum of 0.5 ⁇ m or less depending on the cleaning time and the type of the chemical solution). ) Wet etching. However, when the glass substrate is washed with a chemical solution having an etching property, a crack on the surface of the glass substrate develops due to the etching. In particular, on the end surface of the glass substrate, there are many scratches due to the polishing treatment from the main surface of the glass substrate, so that a small glass piece may be separated from the end surface and generate dust when cracks develop. .
  • FIG. 2 is a schematic diagram for explaining the progress of cracks caused by etching. More specifically, FIG. 2 is an enlarged view around the end face 3 of the glass substrate 1 of FIG. 2A is an example of the glass substrate 1 before etching, and FIG. 2B is an example of the glass substrate 1 after etching. Further, in FIG. 2B, a schematic diagram of the end face 3 before etching shown in FIG.
  • the end surface 3 of the glass substrate 1 has micro-order cracks, scratches, and defects (collectively referred to as cracks 4) due to the polishing process.
  • cracks 4 micro-order cracks, scratches, and defects due to the polishing process.
  • the end surface of the glass substrate when the end surface of the glass substrate is washed with a chemical solution having an etching property, the end surface of the glass substrate is preliminarily polished so that the end surface of the glass substrate has a predetermined surface property. It was found that it can be suppressed.
  • the glass substrate after being etched with an etching amount of 0.5 ⁇ m or less using an etching solution mainly containing hydrofluoric acid, silicic hydrofluoric acid, ammonium fluoride, or sodium fluoride.
  • the generation of cracks is suppressed by polishing the end surface of the glass substrate in advance so that the end surface has a predetermined surface property.
  • the amount by which the end surface of the glass substrate is etched in the cleaning process using the chemical solution having an etching property is 0.5 ⁇ m or less at the maximum.
  • the polishing grindstone in the end surface polishing treatment usually has polishing abrasive grains and a bond for fixing the abrasive grains.
  • a soft grindstone having a diamond grain having a small grain size with an average grain size of 40 ⁇ m or less is used, or cubic boron nitride (CBN), silicon carbide (SiC), or alumina is used as the abrasive grain.
  • CBN cubic boron nitride
  • SiC silicon carbide
  • alumina alumina
  • the rotational speed is 3000 to 10000 rpm
  • the relative feed speed between the glass substrate and the polishing grindstone is 3 to 30 m / min.
  • the polishing of the end surface can be performed using a known glass substrate end surface polishing apparatus (glass substrate end surface grinding apparatus).
  • the glass substrate end surface polishing apparatus is usually provided with a cylindrical polishing grindstone, and the polishing grindstone has a groove formed in the side surface along the circumferential direction.
  • the end face can be polished by pressing the end face against the groove while rotating the polishing grindstone. At this time, the end face is polished according to the shape of the groove.
  • the cross-sectional shape of the groove usually has a shape that gradually widens from the bottom side of the groove to the surface of the grinding wheel, but the size and detailed shape of the groove depends on the thickness of the glass substrate and the desired end face shape. Accordingly, those skilled in the art can select as appropriate.
  • the glass substrate end surface polishing apparatus may have a plurality of end surface polishing units such as a primary end surface polishing unit and a secondary end surface polishing unit from the upstream side in the glass substrate processing step.
  • a polishing grindstone having a larger average particle size (a larger grindstone count) than that used in the downstream end face polishing portion is usually used.
  • a method of finishing the polished surface to a smooth surface is employed.
  • the polishing grindstone used in the upstream end face polishing section has a larger average particle diameter than the polishing grindstone used in the downstream end face polishing section. It is preferable.
  • the above-described polishing method suppresses the generation of minute glass pieces generated during glass polishing; suppresses the attachment of minute glass pieces to the glass substrate; suppresses stress concentration, and destroys the glass substrate.
  • the pressure when the positioning pins contact when the glass substrate is transported is dispersed, damage to the glass substrate is reduced, and dust generation from the damaged portion is suppressed; Also has the effect of.
  • the cutoff value ⁇ c (reference length Lr) is 0.025 mm, 0.08 mm, 0.25 mm, and 0.8 mm
  • the evaluation length Ln is five times the cutoff value ⁇ c. It was the above length.
  • the stylus of the surface roughness measuring device was moved on the end surface of the glass substrate, and the locus of the center of the stylus tip was measured to obtain a measurement curve.
  • the obtained measurement curve was A / D converted to obtain a measurement cross section curve.
  • a low-pass filter having a predetermined cut-off value ⁇ c was applied to the obtained measurement cross-sectional curve to obtain a cross-sectional curve from which undulation was removed.
  • a smoothing roughness curve was obtained by subjecting the cross-sectional curve obtained above to the following filter processing.
  • the cross-sectional curve was filtered with a phase compensation filter, and the first average line was calculated.
  • a portion below the first average line was removed to calculate a second average line, and the second average line was filtered with a phase compensation filter to calculate a third average line.
  • a smoothed roughness curve was obtained by subtracting the third average line from the cross-sectional curve.
  • FIG. 3 is a schematic diagram for explaining the smoothed roughness curve 10 and the load curve 11.
  • the horizontal axis in the smoothed roughness curve 10 in FIG. 3 is the coordinate in the direction of the third average line, and the vertical axis is the coordinate in the depth direction of the end face.
  • the load curve 11 is a plot of the value of the load length rate tp on the horizontal axis and the height of the smoothed roughness curve 10 on the vertical axis.
  • the load length ratio tp means that the smoothed roughness curve 10 is extracted by the reference length Ln in the horizontal axis direction, and the smoothed roughness curve 10 is extracted from the upper end to the lower end along a cutting line parallel to the horizontal axis.
  • the sum of the cutting lengths at each cutting line obtained when cutting is expressed as a ratio in percentage to the reference length Ln.
  • the reference length Ln is usually set to 5 times or more of the aforementioned cut-off value.
  • the level difference Rk, the arithmetic average slope R ⁇ a, and the cutting level difference R ⁇ c of the core portion were obtained by the method described below using a smoothed roughness curve and / or a load curve.
  • Level difference Rk in the core In the load curve shown in FIG. 3, an equivalent straight line 12 having a length of 40% is drawn based on JIS B0671 (2002). The intersection between this equivalent line and 0% vertical line is the upper level of the core part, and the intersection of the equivalent line and 100% vertical line is the lower level of the core part, and the difference between the upper level and the lower level is obtained. Thus, the level difference Rk of the core portion was obtained.
  • the cutting level difference R ⁇ c in this embodiment was defined as a cutting level difference between a load length ratio of 35% and a load length ratio of 55% in the smoothed roughness curve.
  • the end surface of the glass substrate was polished using a known glass substrate end surface polishing apparatus provided with the following polishing grindstone.
  • polishing was performed using a soft grindstone having diamond abrasive grains having an average particle diameter of 40 ⁇ m or less, or a grindstone having silicon carbide as the abrasive grains.
  • polishing was performed using a polishing grindstone having diamond abrasive grains having an average particle diameter of about 50 ⁇ m.
  • the level difference Rk, arithmetic average slope R ⁇ a, and cutting level difference R ⁇ c of the core portion were determined by the method described above. Thereafter, the polished glass substrate was immersed in an etching solution containing a predetermined concentration of hydrofluoric acid for a predetermined time to be etched by about 0.1 ⁇ m. The surface properties described above were also obtained for the glass substrate after etching.
  • Table 1 and Table 2 show the parameters of each surface property in the glass substrate obtained in each Example or Comparative Example.
  • Table 1 shows the parameters of the surface properties when the cutoff value ⁇ c is 0.025 mm
  • Table 2 shows the parameters of the surface properties when the cutoff value ⁇ c is 0.8 mm.
  • the speed in Table 1 and Table 2 refers to the relative feed speed between the glass substrate and the polishing grindstone during polishing.
  • FIG. 4 shows an example of a laser microscope photograph of the glass substrate according to the present embodiment.
  • 4 (a) is a laser micrograph after etching on the end face of the glass substrate of Example 3 in Table 1
  • FIG. 4 (b) is on the end face of the glass substrate of Comparative Example 1 in Table 1. It is a laser micrograph after etching.
  • the photograph shown in FIG. 4 (a) has a larger white area than the photograph shown in FIG. 4 (b).
  • the white part is because the light reaching the glass substrate end face from the laser microscope is reflected and displayed, which indicates that the glass substrate end face is flat.
  • the black portion is because the light reaching the glass substrate end surface from the laser microscope is scattered and displayed, which indicates that the glass substrate end surface is not flat. Therefore, it can be seen that the end face of the glass substrate is flat even after etching. That is, the glass substrate of this embodiment can suppress dust generation even when it is etched.
  • the glass substrate of the comparative example shown in FIG. 4B is not flat and has large irregularities after etching. Therefore, when the glass substrate of the comparative example is etched, dust generation may occur, and in the subsequent process, there is a high possibility that the glass substrate will be broken due to contact with other structures.
  • the glass substrates obtained in the respective examples and comparative examples were evaluated by measuring the occupancy ratio at the end face of the glass substrate.
  • the occupation ratio is measured by pressing the glass end face against the adhesive tape, then observing the adhesive tape surface with a laser microscope and storing the image, and binarizing the area ratio of the glass particles. It went by.
  • a glass substrate with an end face occupation ratio of A or B has few glass particles adhering to the end face.
  • the glass substrate has a flat end surface and can suppress the generation of dust from a minute glass piece.
  • the glass substrate of the present embodiment is a glass substrate having a main surface and an end surface, and when etched with an etching amount of 0.5 ⁇ m or less, the surface property of the end surface is a predetermined value or less. By being, generation
  • Glass substrate manufacturing method An embodiment for inspecting a glass substrate will be described as one step of the method for producing the glass substrate.
  • a plurality of FPD glass substrates on which a main surface and end surfaces are formed in advance are prepared.
  • a plurality of (for example, 50) glass substrates can be obtained through a cutting process and an end face forming process using a glass base plate manufactured by, for example, a float process.
  • the end surfaces of the prepared plurality of glass substrates are polished by a polishing apparatus. Polishing is performed using, for example, a soft grindstone having diamond abrasive grains having an average particle diameter of 40 ⁇ m or less or a grindstone having silicon carbide or alumina as the abrasive grains. At a relative feed speed of 6 to 12 m / min.
  • wet etching is performed on the end surfaces of one or more glass substrates among the polished glass substrates with an etching amount of 0.5 ⁇ m or less.
  • the surface property for example, the level difference Rk of the core part is measured. If the measurement result regarding the measured surface texture is equal to or less than a predetermined value, it is determined that the remaining glass substrates of the plurality of glass substrates are non-defective products.
  • the glass substrate when the glass substrate has a main surface and an end surface and is etched with an etching amount of 0.5 ⁇ m or less, whether or not the surface property of the end surface is a predetermined value or less.
  • the process of determining is included. Except for the glass substrate determined to be less than or equal to a predetermined value, the remaining glass substrate, even when washed with a chemical solution having etching properties in the subsequent cleaning step, because the surface properties of the end face is less than or equal to a predetermined value, A non-defective glass substrate, that is, a glass substrate that generates little dust or does not affect subsequent processes.
  • the glass substrate may be determined by measuring the surface properties of the end surface of the glass substrate before etching in the same manner. Specifically, first, a plurality of FPD glass substrates on which a main surface and end surfaces are formed in advance are prepared. As described above, a plurality of (for example, 50) glass substrates can be obtained through a cutting process and an end face forming process using a glass base plate manufactured by, for example, a float process. The end surfaces of the prepared plurality of glass substrates are polished by a polishing apparatus.
  • Polishing is performed using, for example, a soft grindstone having diamond abrasive grains having an average particle diameter of 40 ⁇ m or less or a grindstone having silicon carbide or alumina as the abrasive grains. At a relative feed speed of 6 to 12 m / min.
  • the surface property for example, the level difference Rk of the core part is measured. If the measurement result regarding the measured surface texture is equal to or less than a predetermined value, it is determined that all of the plurality of glass substrates are non-defective products.
  • the glass substrate has a main surface and an end surface, and includes a step of determining whether or not the surface property of the end surface is equal to or less than a predetermined value before etching. All glass substrates, including glass substrates determined to be a predetermined value or less, even when washed with a chemical solution having an etching property in a subsequent cleaning step, because the surface properties of the end face are less than a predetermined value, A non-defective glass substrate, that is, a glass substrate that generates little dust or does not affect subsequent processes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Liquid Crystal (AREA)

Abstract

A glass substrate having a principal surface and an end face, wherein the level difference (Rk) of a core part of the end face, the arithmetic average inclination (RΔa) of the end face, and the cut level difference (Rδc) between a load length ratio of 35% and a load length ratio of 55% in the smoothed roughness curve of the end face are equal to or less than predetermined values.

Description

ガラス基板及びガラス基板の製造方法Glass substrate and method for manufacturing glass substrate
 本発明はガラス基板及びガラス基板の製造方法に関する。 The present invention relates to a glass substrate and a method for producing the glass substrate.
 近年、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、有機ELディスプレイ(OLED)、フィールドエミッションディスプレイ(FED)などのフラットパネルディスプレイ(FPD)が、画像表示装置の主流となっている。 In recent years, flat panel displays (FPD) such as liquid crystal displays (LCDs), plasma displays (PDPs), organic EL displays (OLEDs), field emission displays (FEDs) have become mainstream of image display devices.
 FPDは、ガラス基板の主表面に、各種配線や素子などが配置された構成となっている。FPD用のガラス基板の製造工程は、ガラス基板の端面の研磨処理などの工程を経るため、微小のガラス片などの異物がガラス基板に付着することがあり、それらの付着物の除去を目的に、洗浄工程が施されてきた。近年では、強固に付着した付着物の除去を目的に、エッチング性を有する薬液で、ガラス基板が洗浄される。
特開2007-102843号公報
The FPD has a configuration in which various wirings and elements are arranged on the main surface of a glass substrate. Since the manufacturing process of the glass substrate for FPD goes through processes such as polishing of the end face of the glass substrate, foreign matter such as minute glass pieces may adhere to the glass substrate, and the purpose of removing these deposits is A cleaning process has been applied. In recent years, a glass substrate is washed with a chemical solution having an etching property for the purpose of removing adhered substances that are firmly attached.
JP 2007-102843 A
 しかしながら、ガラス基板を、エッチング性を有する薬液で洗浄すると、エッチングによりガラス基板のクラックが進展する。特に、ガラス基板の端面においては、クラックが進展すると端面から微小のガラス片(カレット及びガラスパーティクル)の発塵が生じることがある。 However, if the glass substrate is washed with a chemical solution having an etching property, cracks of the glass substrate develop due to the etching. In particular, when cracks develop on the end face of the glass substrate, fine glass pieces (cullet and glass particles) may be generated from the end face.
 そこで、本実施形態では、エッチング後の微小のガラス片の発塵を抑制できるガラス基板を提供することを目的とする。 Therefore, an object of the present embodiment is to provide a glass substrate that can suppress the generation of fine glass pieces after etching.
 主表面と端面とを有するガラス基板であって、
 前記端面を0.5μm以下のエッチング量でエッチングした場合に、前記端面のコア部のレベル差Rkが、0.8mmのカットオフ値の条件で、1.20μm以下となる、ガラス基板が提供される。
A glass substrate having a main surface and an end surface,
Provided is a glass substrate in which when the end face is etched with an etching amount of 0.5 μm or less, the level difference Rk of the core portion of the end face is 1.20 μm or less under the condition of a cutoff value of 0.8 mm. The
 本実施の形態によれば、エッチング後の発塵を抑制できるガラス基板を提供できる。 According to the present embodiment, it is possible to provide a glass substrate that can suppress dust generation after etching.
本実施形態のガラス基板の例を説明するための概略図である。It is the schematic for demonstrating the example of the glass substrate of this embodiment. エッチングによるクラックの進展の様子を説明するための、概略図である。It is the schematic for demonstrating the mode of the progress of the crack by etching. 平滑化粗さ曲線及び負荷曲線を説明するための概略図である。It is the schematic for demonstrating a smoothing roughness curve and a load curve. 本実施形態に係るガラス基板のレーザー顕微鏡写真の例である。It is an example of the laser micrograph of the glass substrate which concerns on this embodiment.
1   ガラス基板
2   主表面
3   端面
4   クラック
10  平滑化粗さ曲線
11  負荷曲線
12  等価直線
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Main surface 3 End surface 4 Crack 10 Smoothing roughness curve 11 Load curve 12 Equivalent line
 以下、図面を参照することにより、本実施の形態をより詳細に説明する。 Hereinafter, the present embodiment will be described in more detail with reference to the drawings.
 (ガラス基板)
 本実施の形態のガラス基板は、端面を有していれば良く、例えば、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、有機ELディスプレイ(OLED)、フィールドエミッションディスプレイ(FED)などのフラットパネルディスプレイ(FPD)、タッチパネル、太陽電池などの各種ガラス基板を対象とする。
(Glass substrate)
The glass substrate of the present embodiment only needs to have an end surface. For example, a flat panel display such as a liquid crystal display (LCD), a plasma display (PDP), an organic EL display (OLED), a field emission display (FED), etc. Various glass substrates such as (FPD), touch panel, and solar cell are targeted.
 また、本実施形態のガラス基板のガラス素板は、フロート法、フュージョン法、リドロー法、プレス成形法、又は引き上げ法などの方法により作製されるが、本実施形態はこの点において限定されない。 Further, the glass base plate of the glass substrate of the present embodiment is produced by a method such as a float method, a fusion method, a redraw method, a press molding method, or a pulling method, but the present embodiment is not limited in this respect.
 図1に、本実施形態のガラス基板の例を説明するための概略図を示す。本実施形態のガラス基板1は、通常、画像を表示するよう構成される主表面2(表面及び裏面)と、面取り仕上げされた端面3と、を有する。図1において、端面3は、主表面2に連続しているが、主表面2と端面3との間に図示しない面取り面が形成された構造であっても良い。 FIG. 1 shows a schematic diagram for explaining an example of the glass substrate of the present embodiment. The glass substrate 1 of this embodiment has the main surface 2 (front surface and back surface) normally comprised so that an image may be displayed, and the end surface 3 chamfered and finished. In FIG. 1, the end surface 3 is continuous with the main surface 2, but a structure in which a chamfered surface (not shown) is formed between the main surface 2 and the end surface 3 may be used.
 従来から、ガラス基板の強度を高める目的などで、ガラス基板の端面3に各種研磨処理が行われてきた。研磨処理後のガラス基板の主表面2及び端面3(以下、ガラス基板表面ともいう。)には、微小のガラス片などの異物が付着残存するため、異物の除去などを目的に、洗浄工程が施されてきた。 Conventionally, various polishing treatments have been performed on the end surface 3 of the glass substrate for the purpose of increasing the strength of the glass substrate. Since foreign matters such as fine glass pieces remain attached to the main surface 2 and the end surface 3 (hereinafter also referred to as the glass substrate surface) of the glass substrate after the polishing treatment, a cleaning process is performed for the purpose of removing foreign matters. Has been applied.
 洗浄工程としては、ガラス基板表面に洗剤や純水を供給しながら、モータで回転するブラシローラやスポンジローラをガラス基板表面に押し付けて異物を除去するスクラブ洗浄などが、一般的に行われてきた。しかしながら、スクラブ洗浄では、ガラス基板表面に強固に付着した異物を除去できないことがある。そのため、近年では、エッチング性を有する薬液でガラス基板を洗浄して、異物を除去することがある。 As a cleaning process, scrub cleaning that removes foreign matters by pressing a brush roller or sponge roller that rotates with a motor against the glass substrate surface while supplying detergent or pure water to the glass substrate surface has been generally performed. . However, the scrub cleaning may not be able to remove the foreign matter firmly adhered to the glass substrate surface. Therefore, in recent years, foreign substances may be removed by cleaning the glass substrate with a chemical solution having etching properties.
 洗浄におけるエッチング性を有する薬液としては、通常、フッ酸、珪フッ酸、フッ化アンモニウム又はフッ化ナトリウムのいずれかを主成分とするエッチング溶液が使用される。また、エッチング溶液は、保存性の観点などから、上述したエッチング溶液に塩酸、硝酸、硫酸などの他の酸を含む混酸溶液(酸性溶液)であっても良いし、あるいはアルカリ性溶液であっても良い。本明細書において、主成分とは、エッチング溶液中に最も多く含まれている成分のことを指す。 As the chemical solution having etching properties in cleaning, an etching solution mainly containing any one of hydrofluoric acid, silicic hydrofluoric acid, ammonium fluoride, and sodium fluoride is usually used. Further, the etching solution may be a mixed acid solution (acidic solution) containing other acids such as hydrochloric acid, nitric acid, sulfuric acid, or an alkaline solution from the viewpoint of storage stability. good. In the present specification, the main component refers to a component that is contained most in the etching solution.
 上述のエッチング性を有する薬液を使用して、ガラス基板を洗浄する場合、洗浄時間や薬液の種類などに依存して、ガラス基板は、0.01~0.1μm程度(最大でも0.5μm以下)ウェットエッチングされる。しかしながら、ガラス基板を、エッチング性を有する薬液で洗浄すると、エッチングによりガラス基板表面のクラックが進展する。特に、ガラス基板端面においては、研磨処理による傷がガラス基板の主表面より数多く存在しているため、クラックが進展することにより、端面から微小のガラス片が分離して、発塵することがある。 When a glass substrate is cleaned using the above-mentioned chemical solution having etching properties, the glass substrate is about 0.01 to 0.1 μm (maximum of 0.5 μm or less depending on the cleaning time and the type of the chemical solution). ) Wet etching. However, when the glass substrate is washed with a chemical solution having an etching property, a crack on the surface of the glass substrate develops due to the etching. In particular, on the end surface of the glass substrate, there are many scratches due to the polishing treatment from the main surface of the glass substrate, so that a small glass piece may be separated from the end surface and generate dust when cracks develop. .
 図2に、エッチングによるクラックの進展の様子を説明するための、概略図を示す。より具体的には、図2は、図1のガラス基板1の端面3周辺の拡大図である。なお、図2(a)は、エッチング前のガラス基板1の例であり、図2(b)は、エッチング後のガラス基板1の例である。また、図2(b)には、図2(a)で示すエッチング前の端面3の概略図を破線で示している。 FIG. 2 is a schematic diagram for explaining the progress of cracks caused by etching. More specifically, FIG. 2 is an enlarged view around the end face 3 of the glass substrate 1 of FIG. 2A is an example of the glass substrate 1 before etching, and FIG. 2B is an example of the glass substrate 1 after etching. Further, in FIG. 2B, a schematic diagram of the end face 3 before etching shown in FIG.
 図2(a)より明らかであるように、ガラス基板1の端面3には、研磨処理によって、マイクロオーダーのクラック、傷及び欠陥(合わせてクラック4と称する)が存在する。図2(a)のガラス基板1に、引っ張り応力がかかった場合、このクラック4に応力集中が発生し、クラック4が進展してガラス基板1の破壊に至る。 2A, the end surface 3 of the glass substrate 1 has micro-order cracks, scratches, and defects (collectively referred to as cracks 4) due to the polishing process. When tensile stress is applied to the glass substrate 1 in FIG. 2A, stress concentration occurs in the crack 4, and the crack 4 progresses and the glass substrate 1 is broken.
 図2(a)で示されるガラス基板1が、例えば洗浄液中のエッチング性を有する薬液により、端面3の表面から等方的に数μmエッチングされると、図2(b)に示すように、クラック4が拡大する。この時、例えばAの領域において、隣接するクラックに由来して、微小のガラス片の発塵が生じることがある。 When the glass substrate 1 shown in FIG. 2 (a) is etched several μm isotropically from the surface of the end face 3 by, for example, an etching chemical in the cleaning liquid, as shown in FIG. 2 (b), Crack 4 expands. At this time, for example, in the region A, dusting of a small glass piece may occur due to an adjacent crack.
 本実施形態では、エッチング性を有する薬液でガラス基板の端面を洗浄した場合に、ガラス基板の端面が所定の表面性状を有するように、予めガラス基板の端面を研磨処理することによって、発塵を抑制できることを見出した。具体的には、本実施形態では、フッ酸、珪フッ酸、フッ化アンモニウムまたはフッ化ナトリウムを主成分とするエッチング溶液を使用して、0.5μm以下のエッチング量でエッチングした後のガラス基板の端面が、所定の表面性状を有するように、予めガラス基板の端面を研磨処理することによって、クラックの発生を抑制する。なお、エッチング性を有する薬液を用いた洗浄工程でガラス基板の端面がエッチングされる量は、最大でも0.5μm以下である。 In this embodiment, when the end surface of the glass substrate is washed with a chemical solution having an etching property, the end surface of the glass substrate is preliminarily polished so that the end surface of the glass substrate has a predetermined surface property. It was found that it can be suppressed. Specifically, in this embodiment, the glass substrate after being etched with an etching amount of 0.5 μm or less using an etching solution mainly containing hydrofluoric acid, silicic hydrofluoric acid, ammonium fluoride, or sodium fluoride. The generation of cracks is suppressed by polishing the end surface of the glass substrate in advance so that the end surface has a predetermined surface property. In addition, the amount by which the end surface of the glass substrate is etched in the cleaning process using the chemical solution having an etching property is 0.5 μm or less at the maximum.
 本実施形態の他の実施形態では、仮にエッチング性を有する薬液によってガラス基板の端面がエッチングされた場合においても発塵を抑制することができる、エッチング前のガラス基板の端面の表面性状の条件についても見出した。したがって、予めガラス基板の端面を、所定の表面性状を有するように研磨処理することで、その後の工程でエッチング性を有する薬液で洗浄されて端面がエッチングされた場合においても、微小ガラス片の発塵の発生を抑制することができる。 In another embodiment of the present embodiment, regarding the condition of the surface property of the end surface of the glass substrate before etching, which can suppress dust generation even when the end surface of the glass substrate is etched by a chemical solution having etching properties. I also found. Therefore, by polishing the end surface of the glass substrate in advance so as to have a predetermined surface property, even when the end surface is etched by a chemical solution having etching properties in the subsequent process, Generation of dust can be suppressed.
 端面の研磨処理における研磨砥石は、通常、研磨砥粒と該研磨砥粒を固定するボンドとを有する。本実施形態では、平均粒径が40μm以下の、粒径が小さいダイヤモンド砥粒を有する軟質砥石を使用して、又は、研磨砥粒として立方晶窒化ホウ素(CBN)、炭化シリコン(SiC)又はアルミナ(Al)を有する研磨砥石を使用して、下記に一例を示す研磨条件で、研磨砥石の側面をガラス基板の端面に当てて、ガラス基板の端面を研磨する。これにより、エッチング性を有する薬液で洗浄されて端面がエッチングされた場合においても、微小ガラス片の発塵の発生を抑制することがわかった。研磨条件としては、例えば、回転数が3000~10000rpmであり、ガラス基板と研磨砥石との相対送り速度が3~30m/分である。 The polishing grindstone in the end surface polishing treatment usually has polishing abrasive grains and a bond for fixing the abrasive grains. In the present embodiment, a soft grindstone having a diamond grain having a small grain size with an average grain size of 40 μm or less is used, or cubic boron nitride (CBN), silicon carbide (SiC), or alumina is used as the abrasive grain. Using the polishing wheel having (Al 2 O 3 ), the end surface of the glass substrate is polished by applying the side surface of the polishing wheel to the end surface of the glass substrate under the polishing conditions shown as an example below. Thus, it has been found that even when the end surface is etched by cleaning with a chemical solution having etching properties, the generation of dust on the minute glass pieces is suppressed. As polishing conditions, for example, the rotational speed is 3000 to 10000 rpm, and the relative feed speed between the glass substrate and the polishing grindstone is 3 to 30 m / min.
 端面の研磨は、公知のガラス基板端面研磨装置(ガラス基板端面研削装置)を使用して実施することができる。ガラス基板端面研磨装置は、通常、円柱形状の研磨砥石を備え、研磨砥石は、側面に円周方向に沿って溝が形成されている。研磨砥石を回転させながら、この溝に端面を押し当てることにより、端面の研磨処理を実施することができる。この際、溝の形状に合わせて、端面の研磨が行われる。溝の断面形状は、通常、溝の底部側から研磨砥石表面側に漸次広がった形状を有しているが、溝のサイズ及び詳細な形状は、ガラス基板の板厚及び所望の端面形状などに応じて、当業者が適宜選択することができる。 The polishing of the end surface can be performed using a known glass substrate end surface polishing apparatus (glass substrate end surface grinding apparatus). The glass substrate end surface polishing apparatus is usually provided with a cylindrical polishing grindstone, and the polishing grindstone has a groove formed in the side surface along the circumferential direction. The end face can be polished by pressing the end face against the groove while rotating the polishing grindstone. At this time, the end face is polished according to the shape of the groove. The cross-sectional shape of the groove usually has a shape that gradually widens from the bottom side of the groove to the surface of the grinding wheel, but the size and detailed shape of the groove depends on the thickness of the glass substrate and the desired end face shape. Accordingly, those skilled in the art can select as appropriate.
 また、ガラス基板端面研磨装置は、例えばガラス基板の加工工程における上流側から1次端面研磨部、2次端面研磨部といった、複数の端面研磨部を有していても良い。ガラス基板の加工工程における上流側の端面研磨部では、通常、下流側の端面研磨部で使用される研磨砥石よりも、平均粒径が大きい(研磨砥石の番手が大きい)研磨砥石を使用して、研磨面を滑らかな表面に仕上げる方法が採用されている。本実施形態においても、上述した平均粒径の範囲内において、上流側の端面研磨部で使用される研磨砥石は、下流側の端面研磨部で使用される研磨砥石よりも、平均粒径が大きいことが好ましい。 The glass substrate end surface polishing apparatus may have a plurality of end surface polishing units such as a primary end surface polishing unit and a secondary end surface polishing unit from the upstream side in the glass substrate processing step. In the upstream end face polishing portion in the glass substrate processing step, a polishing grindstone having a larger average particle size (a larger grindstone count) than that used in the downstream end face polishing portion is usually used. A method of finishing the polished surface to a smooth surface is employed. Also in the present embodiment, within the above-described range of the average particle diameter, the polishing grindstone used in the upstream end face polishing section has a larger average particle diameter than the polishing grindstone used in the downstream end face polishing section. It is preferable.
 また、上述の研磨方法により、ガラス研磨時に発生する微小のガラス片の発生が抑制される;ガラス基板への微小のガラス片の付着が抑制される;応力集中が抑制され、ガラス基板が破壊される可能性が低減する;ガラス基板を搬送する場合の、位置決めピンなどが接触する際の圧力が分散され、ガラス基板へのダメージが減少し、かつ、ダメージ部からの発塵が抑制される;などの効果も有する。 In addition, the above-described polishing method suppresses the generation of minute glass pieces generated during glass polishing; suppresses the attachment of minute glass pieces to the glass substrate; suppresses stress concentration, and destroys the glass substrate. The pressure when the positioning pins contact when the glass substrate is transported is dispersed, damage to the glass substrate is reduced, and dust generation from the damaged portion is suppressed; Also has the effect of.
 (表面性状)
 次に、微小ガラス片の発塵の発生を抑制することができる、端面についての好ましい表面性状について、説明する。
(Surface properties)
Next, the preferable surface property about an end surface which can suppress generation | occurrence | production of the dust of a minute glass piece is demonstrated.
 先ず、後述する各表面性状を求めるために使用される、断面曲線及び平滑化粗さ曲線の求め方について、簡単に説明する。なお、本実施形態においては、カットオフ値λc(基準長さLr)は、0.025mm、0.08mm、0.25mm、0.8mmとし、評価長さLnは、カットオフ値λcの5倍以上の長さとした。 First, how to obtain a cross-sectional curve and a smoothed roughness curve used for obtaining each surface property described later will be briefly described. In the present embodiment, the cutoff value λc (reference length Lr) is 0.025 mm, 0.08 mm, 0.25 mm, and 0.8 mm, and the evaluation length Ln is five times the cutoff value λc. It was the above length.
 ガラス基板の端面上を、表面粗さ測定装置の触針を移動させ、触針先端部の中心の軌跡を測定して、測定曲線を取得した。得られた測定曲線をA/D変換し、測定断面曲線を得た。得られた測定断面曲線に、所定のカットオフ値λcの低域フィルタをかけ、うねりを除去した断面曲線を得た。 The stylus of the surface roughness measuring device was moved on the end surface of the glass substrate, and the locus of the center of the stylus tip was measured to obtain a measurement curve. The obtained measurement curve was A / D converted to obtain a measurement cross section curve. A low-pass filter having a predetermined cut-off value λc was applied to the obtained measurement cross-sectional curve to obtain a cross-sectional curve from which undulation was removed.
 また、上述で得られた断面曲線を、以下のフィルタ処理することにより、平滑化粗さ曲線を得た。断面曲線に、位相補償フィルタでフィルタ処理し、第1平均線を算出した。この第1平均線の下の部分を除去して、第2平均線を算出し、この第2の平均線に位相補償フィルタでフィルタ処理し、第3平均線を算出した。最後に、断面曲線から第3平均線を差し引くことで、平滑化粗さ曲線を得た。 Also, a smoothing roughness curve was obtained by subjecting the cross-sectional curve obtained above to the following filter processing. The cross-sectional curve was filtered with a phase compensation filter, and the first average line was calculated. A portion below the first average line was removed to calculate a second average line, and the second average line was filtered with a phase compensation filter to calculate a third average line. Finally, a smoothed roughness curve was obtained by subtracting the third average line from the cross-sectional curve.
 図3に、平滑化粗さ曲線10及び負荷曲線11を説明するための概略図を示す。図3における平滑化粗さ曲線10における横軸は、前述の第3平均線の方向における座標であり、縦軸は、端面の深さ方向における座標である。また、負荷曲線11は、負荷長さ率tpの値を横軸に、平滑化粗さ曲線10の高さを縦軸に、プロットしたものである。負荷長さ率tpとは、平滑化粗さ曲線10から、その横軸方向に基準長さLnだけ抜き取り、抜き取った平滑化粗さ曲線10を、横軸に平行な切断線で上端から下端まで切断した際に得られる、各々の切断線での切断長さの和を、基準長さLnに対する百分率での比で表したものである。なお、基準長さLnは、通常、前述のカットオフ値の5倍以上とする。 FIG. 3 is a schematic diagram for explaining the smoothed roughness curve 10 and the load curve 11. The horizontal axis in the smoothed roughness curve 10 in FIG. 3 is the coordinate in the direction of the third average line, and the vertical axis is the coordinate in the depth direction of the end face. The load curve 11 is a plot of the value of the load length rate tp on the horizontal axis and the height of the smoothed roughness curve 10 on the vertical axis. The load length ratio tp means that the smoothed roughness curve 10 is extracted by the reference length Ln in the horizontal axis direction, and the smoothed roughness curve 10 is extracted from the upper end to the lower end along a cutting line parallel to the horizontal axis. The sum of the cutting lengths at each cutting line obtained when cutting is expressed as a ratio in percentage to the reference length Ln. In addition, the reference length Ln is usually set to 5 times or more of the aforementioned cut-off value.
 本実施形態では、平滑化粗さ曲線及び/又は負荷曲線を使用して、下記に記載の方法により、コア部のレベル差Rk、算術平均傾斜RΔa及び切断レベル差Rδcを求めた。 In the present embodiment, the level difference Rk, the arithmetic average slope RΔa, and the cutting level difference Rδc of the core portion were obtained by the method described below using a smoothed roughness curve and / or a load curve.
  [コア部のレベル差Rk]
 図3に示した負荷曲線において、JIS B0671(2002)に基づいて、40%長の等価直線12を引く。この等価直線と0%の縦線との交点をコア部の上部レベルとし、等価直線と100%の縦線との交点をコア部の下部レベルとし、上部レベルと下部レベルとの差を求めることにより、コア部のレベル差Rkを求めた。
[Level difference Rk in the core]
In the load curve shown in FIG. 3, an equivalent straight line 12 having a length of 40% is drawn based on JIS B0671 (2002). The intersection between this equivalent line and 0% vertical line is the upper level of the core part, and the intersection of the equivalent line and 100% vertical line is the lower level of the core part, and the difference between the upper level and the lower level is obtained. Thus, the level difference Rk of the core portion was obtained.
 本実施形態において、ガラス基板の端面を0.5μm以下のエッチング量でエッチングした場合に、コア部のレベル差Rkが、カットオフ値λc=0.8mmの条件で1.20μm以下となることが好ましく、1.00μm以下となることがより好ましく、カットオフ値λc=0.025mmの条件で0.48μm以下となることが好ましく、0.30μm以下となることがより好ましい。 In the present embodiment, when the end surface of the glass substrate is etched with an etching amount of 0.5 μm or less, the level difference Rk of the core part may be 1.20 μm or less under the condition of the cutoff value λc = 0.8 mm. Preferably, it is 1.00 μm or less, more preferably 0.48 μm or less, more preferably 0.30 μm or less under the condition of a cutoff value λc = 0.025 mm.
 また、本実施形態において、ガラス基板の端面のエッチングする前のコア部のレベル差Rkが、カットオフ値λc=0.8mmの条件で1.00μm以下となることが好ましく、0.70μm以下となることがより好ましく、カットオフ値λc=0.025mmの条件で0.40μm以下となることが好ましく、0.13μm以下となることがより好ましい。 In the present embodiment, the level difference Rk of the core part before etching the end face of the glass substrate is preferably 1.00 μm or less under the condition of the cutoff value λc = 0.8 mm, and 0.70 μm or less. More preferably, it is preferably 0.40 μm or less, more preferably 0.13 μm or less under the condition of a cutoff value λc = 0.025 mm.
  [算術平均傾斜RΔa]
 平滑化粗さ曲線の基準長さLrにおける算術平均傾斜を求め、本実施形態の算術平均傾斜RΔaとした。
[Arithmetic mean slope RΔa]
The arithmetic average gradient at the reference length Lr of the smoothed roughness curve was obtained and used as the arithmetic average gradient RΔa of this embodiment.
 本実施形態において、ガラス基板の端面を0.5μm以下のエッチング量でエッチングした場合に、算術平均傾斜RΔaが、カットオフ値λc=0.025mmの条件で0.13以下となることが好ましい。 In this embodiment, when the end surface of the glass substrate is etched with an etching amount of 0.5 μm or less, the arithmetic average gradient RΔa is preferably 0.13 or less under the condition of the cutoff value λc = 0.025 mm.
 また、本実施形態において、ガラス基板の端面のエッチングする前の算術平均傾斜RΔaが、カットオフ値λc=0.8mmの条件で0.10以下となることが好ましく、0.07以下となることがより好ましく、カットオフ値λc=0.025mmの条件で0.12以下となることが好ましく、0.07以下となることがより好ましい。 Moreover, in this embodiment, it is preferable that arithmetic mean inclination R (DELTA) a before etching the end surface of a glass substrate will be 0.10 or less on condition of cutoff value (lambda) c = 0.8mm, and will be 0.07 or less. Is more preferable, and is preferably 0.12 or less, more preferably 0.07 or less under the condition of a cutoff value λc = 0.025 mm.
  [切断レベル差Rδc]
 本実施形態における切断レベル差Rδcは、平滑化粗さ曲線の35%の負荷長さ率と55%の負荷長さ率との間の切断レベル差と定義した。
[Cutting level difference Rδc]
The cutting level difference Rδc in this embodiment was defined as a cutting level difference between a load length ratio of 35% and a load length ratio of 55% in the smoothed roughness curve.
 本実施形態において、ガラス基板の端面を0.5μm以下のエッチング量でエッチングした場合に、切断レベル差Rδcが、カットオフ値λc=0.8mmの条件で0.25μm以下となることが好ましく、0.19μm以下となることがより好ましく、カットオフ値λc=0.025mmの条件で0.09μm以下となることが好ましく、0.06μm以下となることがより好ましい。 In the present embodiment, when the end surface of the glass substrate is etched with an etching amount of 0.5 μm or less, the cutting level difference Rδc is preferably 0.25 μm or less under the condition of the cutoff value λc = 0.8 mm. More preferably, it is 0.19 μm or less, preferably 0.09 μm or less, more preferably 0.06 μm or less under the condition of a cutoff value λc = 0.025 mm.
 また、本実施形態において、ガラス基板の端面のエッチングする前の切断レベル差Rδcが、カットオフ値λc=0.8mmの条件で0.20μm以下となることが好ましく、0.14μm以下となることがより好ましく、カットオフ値λc=0.025mmの条件で0.08μm以下となることが好ましく、0.03μm以下となることがより好ましい。 In the present embodiment, the cutting level difference Rδc before etching the end face of the glass substrate is preferably 0.20 μm or less and 0.14 μm or less under the condition of the cutoff value λc = 0.8 mm. Is more preferably 0.08 μm or less, and more preferably 0.03 μm or less under the condition of a cutoff value λc = 0.025 mm.
 (実施例)
 次に、ガラス基板の端面を0.5μm以下のエッチング量でエッチングした場合に、ガラス基板の端面が所定の表面性状を有することの効果を確認した実施形態について、説明する。
(Example)
Next, an embodiment in which the effect of having a predetermined surface property on the end surface of the glass substrate when the end surface of the glass substrate is etched with an etching amount of 0.5 μm or less will be described.
 本実施形態においては、下記の研磨砥石を備える公知のガラス基板端面研磨装置を使用して、ガラス基板の端面の研磨を行った。本実施例においては、平均粒径が40μm以下のダイヤモンド砥粒を有する軟質砥石、又は、研磨砥粒として炭化シリコンを有する研磨砥石を用いて、研磨を行った。また、比較例として、平均粒径が約50μmのダイヤモンド砥粒を有する研磨砥石を用いて、研磨を行った。 In this embodiment, the end surface of the glass substrate was polished using a known glass substrate end surface polishing apparatus provided with the following polishing grindstone. In this example, polishing was performed using a soft grindstone having diamond abrasive grains having an average particle diameter of 40 μm or less, or a grindstone having silicon carbide as the abrasive grains. Further, as a comparative example, polishing was performed using a polishing grindstone having diamond abrasive grains having an average particle diameter of about 50 μm.
 各実施例又は比較例の研磨後のガラス基板について、上述した方法により、コア部のレベル差Rk、算術平均傾斜RΔa及び切断レベル差Rδcを求めた。その後、研磨後のガラス基板を、所定の濃度のフッ酸を含むエッチング液に所定の時間浸漬することで、約0.1μmエッチングした。エッチング後のガラス基板についても、上述の表面性状を求めた。 For the polished glass substrate of each example or comparative example, the level difference Rk, arithmetic average slope RΔa, and cutting level difference Rδc of the core portion were determined by the method described above. Thereafter, the polished glass substrate was immersed in an etching solution containing a predetermined concentration of hydrofluoric acid for a predetermined time to be etched by about 0.1 μm. The surface properties described above were also obtained for the glass substrate after etching.
 各実施例又は比較例で得られたガラス基板における、各表面性状のパラメータを表1及び表2に示す。 Table 1 and Table 2 show the parameters of each surface property in the glass substrate obtained in each Example or Comparative Example.
 なお、表1には、カットオフ値λcが0.025mmの場合の表面性状のパラメータを示し、表2には、カットオフ値λcが0.8mmの場合における表面性状のパラメータを示している。なお、表1及び表2における速度とは、研磨時における、ガラス基板と研磨砥石との相対送り速度を指す。 Table 1 shows the parameters of the surface properties when the cutoff value λc is 0.025 mm, and Table 2 shows the parameters of the surface properties when the cutoff value λc is 0.8 mm. In addition, the speed in Table 1 and Table 2 refers to the relative feed speed between the glass substrate and the polishing grindstone during polishing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (評価)
 各実施例及び比較例で得られたガラス基板の評価は、レーザー顕微鏡を用いたガラス基板端面の表面観察により行った。
Figure JPOXMLDOC01-appb-T000002
(Evaluation)
Evaluation of the glass substrate obtained by each Example and the comparative example was performed by surface observation of the glass substrate end surface using a laser microscope.
 図4に、本実施形態に係るガラス基板のレーザー顕微鏡写真例を示す。図4(a)は、表1における実施例3のガラス基板の端面における、エッチングした後のレーザー顕微鏡写真であり、図4(b)は、表1における比較例1のガラス基板の端面における、エッチングした後のレーザー顕微鏡写真である。 FIG. 4 shows an example of a laser microscope photograph of the glass substrate according to the present embodiment. 4 (a) is a laser micrograph after etching on the end face of the glass substrate of Example 3 in Table 1, and FIG. 4 (b) is on the end face of the glass substrate of Comparative Example 1 in Table 1. It is a laser micrograph after etching.
 図4(a)に示した写真は、図4(b)に示した写真よりも、白色の面積が大きい。白色の箇所は、レーザー顕微鏡からガラス基板端面に到達した光が反射して表示されているためで、これは、ガラス基板端面が平坦であることを示している。これに対して黒色の箇所は、レーザー顕微鏡からガラス基板端面に到達した光が散乱して表示されているためで、これは、ガラス基板端面が平坦ではないことを示している。したがって、エッチング後においても、ガラス基板端面が平坦であることがわかる。即ち、本実施形態のガラス基板は、エッチングした場合においても、発塵を抑制することができる。一方、図4(b)に示した比較例のガラス基板は、エッチング後の表面が平坦でなく、凹凸が大きい。そのため、比較例のガラス基板をエッチングした場合、発塵が発生することがあり、また、後の工程において、他の構造体との接触などにより破壊される可能性が高い。 The photograph shown in FIG. 4 (a) has a larger white area than the photograph shown in FIG. 4 (b). The white part is because the light reaching the glass substrate end face from the laser microscope is reflected and displayed, which indicates that the glass substrate end face is flat. On the other hand, the black portion is because the light reaching the glass substrate end surface from the laser microscope is scattered and displayed, which indicates that the glass substrate end surface is not flat. Therefore, it can be seen that the end face of the glass substrate is flat even after etching. That is, the glass substrate of this embodiment can suppress dust generation even when it is etched. On the other hand, the glass substrate of the comparative example shown in FIG. 4B is not flat and has large irregularities after etching. Therefore, when the glass substrate of the comparative example is etched, dust generation may occur, and in the subsequent process, there is a high possibility that the glass substrate will be broken due to contact with other structures.
 また、各実施例及び比較例で得られたガラス基板について、ガラス基板の端面における占有率を測定することにより、評価を行った。 In addition, the glass substrates obtained in the respective examples and comparative examples were evaluated by measuring the occupancy ratio at the end face of the glass substrate.
 占有率とは、ガラス端面に押しつけた粘着テープに付着したガラスパーティクルの面積比率(粘着テープの単位面積あたりのガラスパーティクル面積の割合=ガラスパーティクル面積/粘着テープの単位面積×100%)である。 Occupancy is the area ratio of glass particles adhering to the pressure-sensitive adhesive tape pressed against the glass end face (ratio of glass particle area per unit area of the pressure-sensitive adhesive tape = glass particle area / unit area of the pressure-sensitive adhesive tape × 100%).
 本実施形態において、占有率の測定は、粘着テープにガラス端面を押しつけた後、粘着テープ表面をレーザー顕微鏡で観察および画像を保存し、ガラスパーティクルの面積比率を、画像を二値化処理することにより行った。 In this embodiment, the occupation ratio is measured by pressing the glass end face against the adhesive tape, then observing the adhesive tape surface with a laser microscope and storing the image, and binarizing the area ratio of the glass particles. It went by.
 なお、占有率の判定基準としては、
A:占有率が4%未満
B:占有率が4%以上8%未満
C:占有率が8%以上
とした。
In addition, as a criterion for occupancy rate,
A: Occupancy rate is less than 4% B: Occupancy rate is 4% or more and less than 8% C: Occupancy rate is 8% or more.
 端面の占有率がA又はBを満たすガラス基板は、端面に付着するガラスパーティクルが少ない。即ち、端面が平坦であり、微小ガラス片の発塵の発生を抑制できるガラス基板であると言える。 A glass substrate with an end face occupation ratio of A or B has few glass particles adhering to the end face. In other words, it can be said that the glass substrate has a flat end surface and can suppress the generation of dust from a minute glass piece.
 以上、本実施形態のガラス基板は、主表面と端面とを有するガラス基板であって、0.5μm以下のエッチング量でエッチングした場合に、前記端面の表面性状が所定値以下となるガラス基板であることによって、発塵の発生を抑制することができる。 As described above, the glass substrate of the present embodiment is a glass substrate having a main surface and an end surface, and when etched with an etching amount of 0.5 μm or less, the surface property of the end surface is a predetermined value or less. By being, generation | occurrence | production of dust can be suppressed.
 (ガラス基板の製造方法)
 ガラス基板の製造方法の一工程として、ガラス基板を検査する実施形態について、説明する。
(Glass substrate manufacturing method)
An embodiment for inspecting a glass substrate will be described as one step of the method for producing the glass substrate.
 先ず、予め主表面及び端面が形成された複数のFPD用ガラス基板を用意する。前述した通り、例えばフロート法で製造されたガラス素板を、切断工程及び端面形成工程を経て、複数(例えば、50枚)のガラス基板を得ることができる。用意された複数のガラス基板の端面を、研磨装置により研磨する。研磨は、例えば、平均粒径が40μm以下のダイヤモンド砥粒を有する軟質砥石又は研磨砥粒として炭化シリコン又はアルミナを有する研磨砥石を使用して、研磨砥石の回転数3000rpm、ガラス基板と研磨砥石との相対送り速度6~12m/分で実行することができる。次に、研磨されたガラス基板のうちの1枚以上のガラス基板の端面について、0.5μm以下のエッチング量で、ウェットエッチングする。エッチングされたガラス基板の端面について、表面性状、例えば、コア部のレベル差Rkを測定する。測定された表面性状に関する測定結果が所定値以下であれば、複数のガラス基板の残りのガラス基板が良品であると判定する。 First, a plurality of FPD glass substrates on which a main surface and end surfaces are formed in advance are prepared. As described above, a plurality of (for example, 50) glass substrates can be obtained through a cutting process and an end face forming process using a glass base plate manufactured by, for example, a float process. The end surfaces of the prepared plurality of glass substrates are polished by a polishing apparatus. Polishing is performed using, for example, a soft grindstone having diamond abrasive grains having an average particle diameter of 40 μm or less or a grindstone having silicon carbide or alumina as the abrasive grains. At a relative feed speed of 6 to 12 m / min. Next, wet etching is performed on the end surfaces of one or more glass substrates among the polished glass substrates with an etching amount of 0.5 μm or less. About the end surface of the etched glass substrate, the surface property, for example, the level difference Rk of the core part is measured. If the measurement result regarding the measured surface texture is equal to or less than a predetermined value, it is determined that the remaining glass substrates of the plurality of glass substrates are non-defective products.
 本実施形態のガラス基板の製造方法によると、主表面と端面とを有するガラス基板であって、0.5μm以下のエッチング量でエッチングした場合に、前記端面の表面性状が所定値以下か否かを判定する工程を含んでいる。所定値以下であると判定されたガラス基板を除く、残りのガラス基板は、後の洗浄工程でエッチング性を有する薬液で洗浄された場合においても、端面の表面性状が所定値以下になるため、良品のガラス基板、即ち、発塵が少ない若しくは後の工程に影響を及ぼさないガラス基板となる。 According to the method for manufacturing a glass substrate of the present embodiment, when the glass substrate has a main surface and an end surface and is etched with an etching amount of 0.5 μm or less, whether or not the surface property of the end surface is a predetermined value or less. The process of determining is included. Except for the glass substrate determined to be less than or equal to a predetermined value, the remaining glass substrate, even when washed with a chemical solution having etching properties in the subsequent cleaning step, because the surface properties of the end face is less than or equal to a predetermined value, A non-defective glass substrate, that is, a glass substrate that generates little dust or does not affect subsequent processes.
 また、他の実施形態のガラス基板の製造方法の変形例として、エッチング前のガラス基板の端面について、同様に表面性状を測定することにより、ガラス基板の判定を行っても良い。具体的には、先ず、予め主表面及び端面が形成された複数のFPD用ガラス基板を用意する。前述した通り、例えばフロート法で製造されたガラス素板を、切断工程及び端面形成工程を経て、複数(例えば、50枚)のガラス基板を得ることができる。用意された複数のガラス基板の端面を、研磨装置により研磨する。研磨は、例えば、平均粒径が40μm以下のダイヤモンド砥粒を有する軟質砥石又は研磨砥粒として炭化シリコン又はアルミナを有する研磨砥石を使用して、研磨砥石の回転数3000rpm、ガラス基板と研磨砥石との相対送り速度6~12m/分で実行することができる。次に、研磨後のガラス基板の端面について、表面性状、例えば、コア部のレベル差Rkを測定する。測定された表面性状に関する測定結果が所定値以下であれば、複数のガラス基板が全て良品であると判定する。 Also, as a modification of the glass substrate manufacturing method according to another embodiment, the glass substrate may be determined by measuring the surface properties of the end surface of the glass substrate before etching in the same manner. Specifically, first, a plurality of FPD glass substrates on which a main surface and end surfaces are formed in advance are prepared. As described above, a plurality of (for example, 50) glass substrates can be obtained through a cutting process and an end face forming process using a glass base plate manufactured by, for example, a float process. The end surfaces of the prepared plurality of glass substrates are polished by a polishing apparatus. Polishing is performed using, for example, a soft grindstone having diamond abrasive grains having an average particle diameter of 40 μm or less or a grindstone having silicon carbide or alumina as the abrasive grains. At a relative feed speed of 6 to 12 m / min. Next, with respect to the end surface of the polished glass substrate, the surface property, for example, the level difference Rk of the core part is measured. If the measurement result regarding the measured surface texture is equal to or less than a predetermined value, it is determined that all of the plurality of glass substrates are non-defective products.
 本実施形態のガラス基板の製造方法によると、主表面と端面とを有するガラス基板であって、エッチング前に、前記端面の表面性状が所定値以下か否かを判定する工程を含んでいる。所定値以下であると判定されたガラス基板を含む、全てのガラス基板は、後の洗浄工程でエッチング性を有する薬液で洗浄された場合においても、端面の表面性状が所定値以下になるため、良品のガラス基板、即ち、発塵が少ない若しくは後の工程に影響を及ぼさないガラス基板となる。 According to the glass substrate manufacturing method of the present embodiment, the glass substrate has a main surface and an end surface, and includes a step of determining whether or not the surface property of the end surface is equal to or less than a predetermined value before etching. All glass substrates, including glass substrates determined to be a predetermined value or less, even when washed with a chemical solution having an etching property in a subsequent cleaning step, because the surface properties of the end face are less than a predetermined value, A non-defective glass substrate, that is, a glass substrate that generates little dust or does not affect subsequent processes.
 本出願は、2012年8月13日に日本国特許庁に出願された特願2012-179620号に基づく優先権を主張するものであり、特願2012-179620号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2012-179620 filed with the Japan Patent Office on August 13, 2012. The entire contents of Japanese Patent Application No. 2012-179620 are incorporated herein by reference. To do.

Claims (8)

  1.  主表面と端面とを有するガラス基板であって、
     前記端面を0.5μm以下のエッチング量でエッチングした場合に、前記端面のコア部のレベル差Rkが、0.8mmのカットオフ値の条件で、1.20μm以下となる、ガラス基板。
    A glass substrate having a main surface and an end surface,
    A glass substrate in which, when the end face is etched with an etching amount of 0.5 μm or less, the level difference Rk of the core portion of the end face is 1.20 μm or less under the condition of a cutoff value of 0.8 mm.
  2.  主表面と端面とを有するガラス基板であって、
     前記端面を0.5μm以下のエッチング量でエッチングした場合に、前記端面の算術平均傾斜RΔaが、0.025mmのカットオフ値の条件で、0.13以下となる、ガラス基板。
    A glass substrate having a main surface and an end surface,
    A glass substrate in which, when the end face is etched with an etching amount of 0.5 μm or less, the arithmetic average slope RΔa of the end face is 0.13 or less under the condition of a cutoff value of 0.025 mm.
  3.  主表面と端面とを有するガラス基板であって、
     前記端面を0.5μm以下のエッチング量でエッチングした場合に、前記端面の平滑化粗さ曲線の35%の負荷長さ率と55%の負荷長さ率との間の切断レベル差Rδcが、0.8mmのカットオフ値の条件で、0.25μm以下となる、ガラス基板。
    A glass substrate having a main surface and an end surface,
    When the end face is etched with an etching amount of 0.5 μm or less, a cutting level difference Rδc between a load length ratio of 35% and a load length ratio of 55% of the smoothed roughness curve of the end face is: A glass substrate that is 0.25 μm or less under the condition of a cutoff value of 0.8 mm.
  4.  主表面と端面とを有するガラス基板であって、
     前記端面のコア部のレベル差Rkが、0.8mmのカットオフ値の条件で、1.00μm以下である、ガラス基板。
    A glass substrate having a main surface and an end surface,
    The glass substrate whose level difference Rk of the core part of the said end surface is 1.00 micrometer or less on condition of the cutoff value of 0.8 mm.
  5.  主表面と端面とを有するガラス基板であって、
     前記端面の算術平均傾斜RΔaが、0.8mmのカットオフ値の条件で、0.10以下である、ガラス基板。
    A glass substrate having a main surface and an end surface,
    The glass substrate in which the arithmetic average slope RΔa of the end face is 0.10 or less under the condition of a cutoff value of 0.8 mm.
  6.  主表面と端面とを有するガラス基板であって、
     前記端面の平滑化粗さ曲線の35%の負荷長さ率と55%の負荷長さ率との間の切断レベル差Rδcが、0.8mmのカットオフ値の条件で、0.20μm以下である、ガラス基板。
    A glass substrate having a main surface and an end surface,
    The cutting level difference Rδc between the load length ratio of 35% and the load length ratio of 55% of the smoothed roughness curve of the end face is 0.20 μm or less under the condition of a cutoff value of 0.8 mm. There is a glass substrate.
  7.  主表面と端面とを有するガラス基板の製造方法であって、
     主表面と端面とを有する複数のガラス基板を用意する工程と、
     前記複数のガラス基板の端面を研磨する工程と、
     研磨した前記ガラス基板のうちの1枚以上のガラス基板の端面を、0.5μm以下のエッチング量でエッチングする工程と、
     エッチングした後の前記端面の表面性状を測定する工程と、
     前記の測定結果が所定値以下か否かを判定する工程と、
     を含む、ガラス基板の製造方法。
    A method for producing a glass substrate having a main surface and an end surface,
    Preparing a plurality of glass substrates having a main surface and an end surface;
    Polishing the end faces of the plurality of glass substrates;
    Etching the end face of one or more glass substrates among the polished glass substrates with an etching amount of 0.5 μm or less;
    Measuring the surface properties of the end face after etching;
    Determining whether the measurement result is a predetermined value or less;
    A method for producing a glass substrate, comprising:
  8.  主表面と端面とを有するガラス基板の製造方法であって、
     主表面と端面とを有するガラス基板を用意する工程と、
     前記ガラス基板の端面を研磨する工程と、
     前記端面の表面性状を測定する工程と、
     前記の測定結果が所定値以下か否かを判定する工程と、
     を含む、ガラス基板の製造方法。
    A method for producing a glass substrate having a main surface and an end surface,
    Preparing a glass substrate having a main surface and an end surface;
    Polishing the end face of the glass substrate;
    Measuring the surface properties of the end face;
    Determining whether the measurement result is a predetermined value or less;
    A method for producing a glass substrate, comprising:
PCT/JP2013/069949 2012-08-13 2013-07-23 Glass substrate and method for manufacturing glass substrate WO2014027546A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012179620A JP2015187042A (en) 2012-08-13 2012-08-13 Glass substrate and method for manufacturing glass substrate
JP2012-179620 2012-08-13

Publications (1)

Publication Number Publication Date
WO2014027546A1 true WO2014027546A1 (en) 2014-02-20

Family

ID=50685542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069949 WO2014027546A1 (en) 2012-08-13 2013-07-23 Glass substrate and method for manufacturing glass substrate

Country Status (3)

Country Link
JP (1) JP2015187042A (en)
TW (1) TW201410633A (en)
WO (1) WO2014027546A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017645A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Support substrate with inorganic film, glass laminate, method for producing these, and method for producing electronic device
JP2016058128A (en) * 2014-03-31 2016-04-21 Hoya株式会社 Glass substrate for magnetic disk
CN111465842A (en) * 2018-04-10 2020-07-28 日本电气硝子株式会社 Glass plate, method for manufacturing glass plate, and end face inspection method
WO2023032961A1 (en) * 2021-09-06 2023-03-09 日本電気硝子株式会社 Glass member, input device, pen input device, mobile apparatus, and method for manufacturing glass member

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6608750B2 (en) * 2016-03-30 2019-11-20 京セラ株式会社 Mounting member
JP6708460B2 (en) * 2016-03-30 2020-06-10 京セラ株式会社 Method for manufacturing joined body
JP2018189552A (en) * 2017-05-09 2018-11-29 日本電気硝子株式会社 Glass plate, method for inspecting end surface of glass plate, and method for manufacturing glass plate
JP6976799B2 (en) * 2017-10-02 2021-12-08 京セラ株式会社 Mounting member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104039A1 (en) * 2009-03-10 2010-09-16 日本電気硝子株式会社 Glass substrate and method for manufacturing same
WO2012005019A1 (en) * 2010-07-08 2012-01-12 旭硝子株式会社 Glass substrate end surface evaluation method, glass substrate end surface processing method, and glass substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104039A1 (en) * 2009-03-10 2010-09-16 日本電気硝子株式会社 Glass substrate and method for manufacturing same
WO2012005019A1 (en) * 2010-07-08 2012-01-12 旭硝子株式会社 Glass substrate end surface evaluation method, glass substrate end surface processing method, and glass substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058128A (en) * 2014-03-31 2016-04-21 Hoya株式会社 Glass substrate for magnetic disk
US11024335B2 (en) 2014-03-31 2021-06-01 Hoya Corporation Magnetic-disk glass substrate
WO2016017645A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Support substrate with inorganic film, glass laminate, method for producing these, and method for producing electronic device
CN111465842A (en) * 2018-04-10 2020-07-28 日本电气硝子株式会社 Glass plate, method for manufacturing glass plate, and end face inspection method
WO2023032961A1 (en) * 2021-09-06 2023-03-09 日本電気硝子株式会社 Glass member, input device, pen input device, mobile apparatus, and method for manufacturing glass member

Also Published As

Publication number Publication date
JP2015187042A (en) 2015-10-29
TW201410633A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
WO2014027546A1 (en) Glass substrate and method for manufacturing glass substrate
JP2018171705A (en) Glass edge finishing method
TW514976B (en) Method for processing semiconductor wafer and semiconductor wafer
TWI480127B (en) Glass substrate and its production method
JP5066895B2 (en) Glass substrate for display and manufacturing method thereof
JP5440786B2 (en) Glass substrate and manufacturing method thereof
JP2012218995A (en) Method for manufacturing tempered glass plate and cover glass, and cover glass
KR20180023829A (en) Rectangular glass substrate and method for preparing the same
JP2006324006A (en) Manufacturing method of glass substrate for information recording medium and glass substrate for information recording medium
JP3943869B2 (en) Semiconductor wafer processing method and semiconductor wafer
JP5585269B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP6311446B2 (en) Silicon wafer manufacturing method
JP5906823B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP5152357B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP6383981B2 (en) Glass plate, glass plate manufacturing apparatus, and glass plate manufacturing method
JP6727170B2 (en) Substrate for photomask
WO2017065138A1 (en) Glass substrate for displays and method for producing same
JP5083477B2 (en) Manufacturing method of glass substrate for information recording medium
JP6368364B2 (en) Manufacturing method of glass substrate
JP2013040086A (en) Method for manufacturing tempered glass plate and cover glass, and cover glass
JP6131749B2 (en) Method for polishing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium
TW201901146A (en) Glass plate, method for inspecting end surface of glass plate, and method for manufacturing glass plate
JP2009302338A (en) Wafer polishing method and wafer manufactured by the same
JP2013075808A (en) Method for producing glass substrate and glass substrate
JP5700015B2 (en) Glass substrate for magnetic recording media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP