JP5585269B2 - Method for manufacturing glass substrate for magnetic recording medium - Google Patents

Method for manufacturing glass substrate for magnetic recording medium Download PDF

Info

Publication number
JP5585269B2
JP5585269B2 JP2010165025A JP2010165025A JP5585269B2 JP 5585269 B2 JP5585269 B2 JP 5585269B2 JP 2010165025 A JP2010165025 A JP 2010165025A JP 2010165025 A JP2010165025 A JP 2010165025A JP 5585269 B2 JP5585269 B2 JP 5585269B2
Authority
JP
Japan
Prior art keywords
glass substrate
grinding
ground
magnetic recording
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010165025A
Other languages
Japanese (ja)
Other versions
JP2012027976A (en
Inventor
研一郎 寺田
大介 吉宗
丈彰 小野
哲志 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2010165025A priority Critical patent/JP5585269B2/en
Publication of JP2012027976A publication Critical patent/JP2012027976A/en
Application granted granted Critical
Publication of JP5585269B2 publication Critical patent/JP5585269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、固定砥粒工具を用いてガラス基板の主平面を研削する研削工程を有する磁気記録媒体用ガラス基板の製造方法に関する。   The present invention relates to a method for manufacturing a glass substrate for a magnetic recording medium, which includes a grinding step of grinding a main plane of a glass substrate using a fixed abrasive tool.

磁気記録媒体用ガラス基板及び磁気ディスクの製造工程は、以下の工程を含む。(1)フロート法、フュージョン法、又はプレス成形法などで成形されたガラス素基板を、中央部に円孔を有する円盤形状に加工し、内周側面と外周側面を面取り加工する形状付与工程。(2)ガラス素基板の主平面を研削加工する研削工程。(3)ガラス基板の側面部と面取り部を端面研磨する端面研磨工程。(4)ガラス基板の主平面を研磨する研磨工程。(5)ガラス基板を精密洗浄と乾燥し、磁気記録媒体用ガラス基板を得る洗浄工程。(6)磁気記録媒体用ガラス基板の上に磁性層などの薄膜を形成し、磁気ディスクを製造する磁気ディスク製造工程。   The manufacturing process of the glass substrate for magnetic recording media and the magnetic disk includes the following processes. (1) A shape imparting step in which a glass base substrate molded by a float method, a fusion method, a press molding method, or the like is processed into a disk shape having a circular hole in the center, and the inner peripheral side surface and the outer peripheral side surface are chamfered. (2) A grinding step of grinding the main plane of the glass base substrate. (3) An end surface polishing step of end-polishing the side surface portion and the chamfered portion of the glass substrate. (4) A polishing step for polishing the main plane of the glass substrate. (5) A cleaning step of precisely cleaning and drying the glass substrate to obtain a glass substrate for a magnetic recording medium. (6) A magnetic disk manufacturing process for manufacturing a magnetic disk by forming a thin film such as a magnetic layer on a glass substrate for a magnetic recording medium.

磁気記録媒体用ガラス基板の製造工程において、(2)ガラス素基板の主平面を研削加工する研削工程は、ガラス素基板を所望の板厚と平坦度にする工程である。   In the manufacturing process of the glass substrate for a magnetic recording medium, (2) the grinding process of grinding the main plane of the glass base substrate is a step of making the glass base substrate have a desired plate thickness and flatness.

成形されたガラス素基板の主平面が平滑な場合、粒子径が小さいダイヤモンド砥粒を含む固定砥粒工具でガラス素基板の主平面を研削すると、ダイヤモンド砥粒がガラス素基板の主平面に引っ掛かり難く、ダイヤモンド砥粒がガラス素基板の主平面で滑り、ガラス素基板を研削し難くなり研削の加工速度が低下する問題があった。   When the main plane of the formed glass base substrate is smooth, if the main plane of the glass base substrate is ground with a fixed abrasive tool containing diamond abrasive grains having a small particle diameter, the diamond abrasive grains are caught on the main plane of the glass base substrate. It was difficult, and the diamond abrasive grains slipped on the main plane of the glass base substrate, which made it difficult to grind the glass base substrate, resulting in a reduction in the grinding processing speed.

主平面が平滑なガラス素基板を研削するとき、研削の加工速度を低下させない手段として、固定砥粒工具でガラス素基板の主平面を研削する前に、薬液を用いてガラス素基板の主平面を粗面化する(フロスト加工)、遊離砥粒を用いてガラス素基板の主平面を研削して粗面化する、などが提案されている(特許文献1、特許文献2)。   When grinding a glass base substrate with a smooth main plane, as a means of not reducing the grinding processing speed, before grinding the main plane of the glass base substrate with a fixed abrasive tool, Have been proposed (Patent Document 1, Patent Document 2).

しかし、ガラス素基板の主平面を薬液で粗面化するフロスト加工は、ガラス素基板を等方的にエッチングするため、ガラス基板を所望の板厚、平坦度に制御できない。そのため、その後の研削工程や研磨工程において、板厚や平坦度を制御するために研削量や研磨量を多く設定する必要があり、生産性に劣るおそれがある。   However, the frost processing for roughening the main flat surface of the glass substrate with a chemical solution etches the glass substrate isotropically, so that the glass substrate cannot be controlled to have a desired plate thickness and flatness. Therefore, in the subsequent grinding process and polishing process, it is necessary to set a large amount of grinding and polishing in order to control the plate thickness and flatness, which may result in poor productivity.

また、ガラス素基板の主平面を遊離砥粒で研削し粗面化した場合、ガラス基板の主平面や端面に深いクラック(以下、加工変質層とも称す。)が発生し、該加工変質層を取り除くためにその後の研削工程や研磨工程で研削量又は研磨量を多くする必要があり生産性に劣るおそれがある。   In addition, when the main plane of the glass base substrate is ground and roughened with loose abrasive grains, deep cracks (hereinafter also referred to as a work-affected layer) occur on the main plane or end face of the glass substrate, and the work-affected layer is In order to remove it, it is necessary to increase the grinding amount or the polishing amount in the subsequent grinding step or polishing step, which may reduce the productivity.

WO2010/041623 A1WO2010 / 041623 A1 特開2009−99249号公報JP 2009-99249 A

本発明は、板形状を有するガラス素基板を、板厚分布と平坦度に優れたガラス基板に、高い生産性で加工する工程を有する磁気記録媒体用ガラス基板の製造方法を提供する。   The present invention provides a method for producing a glass substrate for a magnetic recording medium, which includes a step of processing a glass substrate having a plate shape into a glass substrate excellent in plate thickness distribution and flatness with high productivity.

本発明は、磁気記録媒体用ガラス基板の製造方法であって、板形状を有するガラス素基板の主平面を研削する研削工程が、ダイヤモンド砥粒、アルミナ砥粒、炭化ケイ素砥粒のいずれか1つ以上の砥粒を含む第1の固定砥粒工具を用いてガラス素基板の主平面を研削する第1研削工程と、前記第1の固定砥粒工具に含まれる砥粒より小さい平均粒子直径のダイヤモンド砥粒を含む第2の固定砥粒工具を用いてガラス基板の主平面を研削する第2研削工程と、を有し、前記第1の固定砥粒工具の研削面は、砥粒が表出しており、触針式の表面粗さ測定機を用いて測定した表面粗さRa が2μm〜8μmであり、前記第2の固定砥粒工具の研削面は、ダイヤモンド砥粒が表出しており、触針式の表面粗さ測定機を用いて測定した表面粗さRa が0.1μm〜2μmであり、かつ前記第1研削工程におけるガラス基板の加工速度(片面側の主平面)は13μm/min以上であり、前記第2研削工程におけるガラス基板の加工速度(片面側の主平面)は1〜10μm/minであることを特徴とする磁気記録媒体用ガラス基板の製造方法を提供する。 The present invention is a method for manufacturing a glass substrate for a magnetic recording medium, wherein the grinding step of grinding a main plane of a glass substrate having a plate shape is any one of diamond abrasive grains, alumina abrasive grains, and silicon carbide abrasive grains. A first grinding step of grinding the main surface of the glass base substrate using a first fixed abrasive tool including one or more abrasive grains, and an average particle diameter smaller than the abrasive grains contained in the first fixed abrasive tool diamond abrasive grains using a second fixed abrasive tool comprising possess a second grinding step of grinding the main surfaces of the glass substrate, the grinding surface of the first fixed abrasive tool, the abrasive grains The surface roughness Ra 1 measured using a stylus type surface roughness measuring machine is 2 μm to 8 μm, and the abrasive surface of the second fixed abrasive tool is exposed by diamond abrasive grains. and it has a surface roughness Ra 2 which was measured using a surface roughness tester stylus type The processing speed of the glass substrate in the first grinding step (main surface on one side) is 13 μm / min or more, and the processing speed of the glass substrate in the second grinding step (on one side) is 0.1 μm to 2 μm. The main plane) is 1 to 10 μm / min, and a method for producing a glass substrate for a magnetic recording medium is provided.

本発明の研削工程を有する磁気記録媒体用ガラス基板の製造方法は、ガラス素基板の主平面を研削する第1研削工程において、板形状を有するガラス素基板の板厚分布と平坦度を制御しつつ、ガラス基板の主平面や端面に大きなダメージを与えずに主平面を粗面化できるため、第2研削工程で効率よくガラス基板の主平面を研削できる。   The method for manufacturing a glass substrate for a magnetic recording medium having a grinding process according to the present invention controls the thickness distribution and flatness of a glass substrate having a plate shape in the first grinding process of grinding the main plane of the glass substrate. However, since the main plane can be roughened without causing major damage to the main plane or the end face of the glass substrate, the main plane of the glass substrate can be efficiently ground in the second grinding step.

本発明によれば、板厚分布と平坦度に優れ、表面粗さに優れる磁気記録媒体用ガス基板を高い生産性で製造できる。   According to the present invention, a gas substrate for a magnetic recording medium having excellent plate thickness distribution and flatness and excellent surface roughness can be produced with high productivity.

磁気記録媒体用ガラス基板の斜視図。The perspective view of the glass substrate for magnetic recording media. 両面研削装置の概略図。Schematic of a double-sided grinding device. 固定砥粒工具の研削面を模式的に表す断面図。Sectional drawing which represents the grinding surface of a fixed abrasive tool typically. 下側固定砥粒工具の研削面の表面粗さ測定箇所を示す概略図。Schematic which shows the surface roughness measurement location of the grinding surface of a lower side fixed abrasive tool.

以下、本発明を実施するための形態について説明するが、本発明は以下に記載される実施形態に限らない。   Hereinafter, although the form for implementing this invention is demonstrated, this invention is not restricted to embodiment described below.

一般に、磁気記録媒体用ガラス基板及び磁気ディスクの製造工程は、以下の工程を含む。(1)フロート法、フュージョン法又はプレス成形法で成形されたガラス素基板を、中央部に円孔を有する円盤形状に形状加工する。(2)中央部に円孔を有する円盤形状のガラス基板の内周側面と外周側面を面取り加工する。(3)ガラス基板の主平面を研削加工する。(4)ガラス基板の側面部と面取り部を端面研磨する。(5)ガラス基板の主平面を研磨する。研磨工程は、1次研磨のみでもよく、1次研磨と2次研磨を行ってもよく、2次研磨の後に3次研磨を行ってもよい。(6)ガラス基板を精密洗浄し、磁気記録媒体用ガラス基板を得る。(7)磁気記録媒体用ガラス基板の上に磁性層などの薄膜を形成し、磁気ディスクを製造する。   Generally, the manufacturing process of the glass substrate for magnetic recording media and the magnetic disk includes the following processes. (1) A glass substrate formed by a float method, a fusion method or a press molding method is processed into a disk shape having a circular hole in the center. (2) Chamfering the inner peripheral side surface and the outer peripheral side surface of a disk-shaped glass substrate having a circular hole in the center. (3) The main plane of the glass substrate is ground. (4) The side surface portion and the chamfered portion of the glass substrate are subjected to end surface polishing. (5) The main plane of the glass substrate is polished. The polishing step may be primary polishing only, primary polishing and secondary polishing may be performed, or tertiary polishing may be performed after secondary polishing. (6) The glass substrate is precisely cleaned to obtain a glass substrate for a magnetic recording medium. (7) A thin film such as a magnetic layer is formed on a glass substrate for a magnetic recording medium to manufacture a magnetic disk.

なお、上記磁気記録媒体用ガラス基板及び磁気ディスクの製造工程において、各工程間にガラス基板の洗浄(工程間洗浄)やガラス基板表面のエッチング(工程間エッチング)を実施してもよい。さらに、磁気記録媒体用ガラス基板に高い機械的強度が求められる場合、ガラス基板の表層に強化層を形成する強化工程(例えば、化学強化工程)を研磨工程前、研磨工程後、又は研磨工程間で実施してもよい。   In the manufacturing process of the magnetic recording medium glass substrate and magnetic disk, the glass substrate may be cleaned (inter-process cleaning) or the glass substrate surface may be etched (inter-process etching) between the processes. Furthermore, when high mechanical strength is required for the glass substrate for magnetic recording media, a strengthening step (for example, chemical strengthening step) for forming a reinforcing layer on the surface layer of the glass substrate is performed before the polishing step, after the polishing step, or between the polishing steps. May be implemented.

本発明において、磁気記録媒体用ガラス基板は、アモルファスガラスでもよく、結晶化ガラスでもよく、ガラス基板の表層に強化層を有する強化ガラス(例えば、化学強化ガラス)でもよい。また、本発明のガラス素基板は、フロート法で造られたものでもよく、フュージョン法で造られたものでもよく、プレス成形法で造られたものでもよい。本発明のガラス素基板としては、フロート法、フュージョン法で造られたものが、その生産性が高いことから好ましい。   In the present invention, the glass substrate for a magnetic recording medium may be amorphous glass, crystallized glass, or tempered glass (for example, chemically tempered glass) having a tempered layer on the surface layer of the glass substrate. Moreover, the glass base substrate of the present invention may be manufactured by a float process, may be manufactured by a fusion process, or may be manufactured by a press molding process. As the glass base substrate of the present invention, one produced by a float method or a fusion method is preferable because of its high productivity.

本発明は、(3)ガラス基板の主平面を研削加工する工程に関し、磁気記録媒体用ガラス基板の研削加工に係るものである。板形状を有するガラス素基板の研削について、両面研削装置でガラス素基板の両主平面を同時に研削する例を用いて説明する。   The present invention relates to (3) a process of grinding a main surface of a glass substrate, and relates to grinding of a glass substrate for a magnetic recording medium. Grinding of a glass substrate having a plate shape will be described using an example in which both principal planes of a glass substrate are simultaneously ground using a double-side grinding apparatus.

図1は、磁気記録媒体用ガラス基板の斜視図であり、10は磁気記録媒体用ガラス基板、101は磁気記録媒体用ガラス基板の主平面、102は内周側面、103は外周側面、をそれぞれ示す。   FIG. 1 is a perspective view of a glass substrate for a magnetic recording medium. 10 is a glass substrate for a magnetic recording medium, 101 is a main plane of the glass substrate for a magnetic recording medium, 102 is an inner peripheral side, and 103 is an outer peripheral side. Show.

図2は、両面研削装置20を用いて磁気記録媒体用ガラス基板の両主平面を同時に研削する様子を示す概略図である。図2において、10は磁気記録媒体用ガラス基板、30は上側固定砥粒工具の研削面、40は下側固定砥粒工具の研削面、50はキャリア、201は上定盤、202は下定盤、203はサンギア、204はインターナルギア、をそれぞれ示す。なお、図1と同一部分には同符号を付してその説明を省略する。   FIG. 2 is a schematic view showing a state in which both main planes of the glass substrate for a magnetic recording medium are simultaneously ground using the double-side grinding apparatus 20. In FIG. 2, 10 is a glass substrate for a magnetic recording medium, 30 is a grinding surface of an upper fixed abrasive tool, 40 is a grinding surface of a lower fixed abrasive tool, 50 is a carrier, 201 is an upper surface plate, 202 is a lower surface plate. , 203 indicates a sun gear, and 204 indicates an internal gear. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

磁気記録媒体用ガラス基板10は、キャリア50のガラス基板保持部に保持された状態で、上側固定砥粒工具の研削面30と下側固定砥粒工具の研削面40との間に狭持され、ガラス基板の両主平面に上側固定砥粒工具の研削面30と下側固定砥粒工具の研削面40を互いに押圧させた状態で、ガラス基板の両主平面に研削液を供給するとともに、ガラス基板と研削面を相対的に動かして、ガラス基板の両主平面を同時に研削する。   The magnetic recording medium glass substrate 10 is held between the grinding surface 30 of the upper fixed abrasive tool and the grinding surface 40 of the lower fixed abrasive tool while being held by the glass substrate holding portion of the carrier 50. In the state where the grinding surface 30 of the upper fixed abrasive tool and the grinding surface 40 of the lower fixed abrasive tool are pressed against each other on both main planes of the glass substrate, the grinding liquid is supplied to both main planes of the glass substrate, The main surface of the glass substrate is ground simultaneously by relatively moving the glass substrate and the grinding surface.

両面研削装置20は、サンギア203とインターナルギア204をそれぞれ所定の回転比率で回転駆動することにより、キャリア50を自転させながらサンギア203の周りを公転するように移動させ、上定盤201と下定盤202をそれぞれ所定の回転数で回転駆動して、ガラス基板の主平面を研削する。   The double-side grinding apparatus 20 drives the sun gear 203 and the internal gear 204 to rotate around the sun gear 203 while rotating the carrier 50 by rotating and driving the sun gear 203 and the internal gear 204 respectively. The main surfaces of the glass substrate are ground by rotating the respective 202 at a predetermined rotational speed.

上定盤201と下定盤202のガラス基板と対向する面には、固定砥粒工具が装着されている。上定盤201と下定盤202に装着された固定砥粒工具は、上側固定砥粒工具の研削面30と下側固定砥粒工具の研削面40をそれぞれ所定の表面形状とするため、ドレス治具を用いてドレス処理が施される。ドレス処理は、ドレス治具と研削面30、40との間にドレス水を供給するとともに、ドレス治具と研削面30、40を相対的に動かして、固定砥粒工具の研削面を削ることにより行われる。   A fixed abrasive tool is mounted on the surface of the upper surface plate 201 and the lower surface plate 202 facing the glass substrate. The fixed abrasive tool mounted on the upper surface plate 201 and the lower surface plate 202 has a predetermined surface shape for the grinding surface 30 of the upper fixed abrasive tool and the grinding surface 40 of the lower fixed abrasive tool. Dressing is performed using tools. In the dressing process, dressing water is supplied between the dressing jig and the grinding surfaces 30 and 40, and the dressing jig and the grinding surfaces 30 and 40 are relatively moved to scrape the grinding surface of the fixed abrasive tool. Is done.

本発明者は、磁気記録媒体用ガラス基板の製造方法において、フロート法などで成形された主平面が平滑なガラス素基板を、板厚分布と平坦度に優れ、表面粗さに優れるガラス基板に、高い生産性で加工する手段を検討した。その結果、研削工程は、ダイヤモンド砥粒、アルミナ砥粒、炭化ケイ素砥粒のいずれか1つ以上の砥粒を含む第1の固定砥粒工具を用いてガラス素基板の主平面を研削する第1研削工程と、第1の固定砥粒工具に含まれる砥粒より小さい平均粒子直径(以下、平均粒径と称す。)のダイヤモンド砥粒を含む第2の固定砥粒工具を用いてガラス基板の主平面を研削する第2研削工程とを有する磁気記録媒体用ガラス基板の製造方法であることを見出した。   In the method of manufacturing a glass substrate for a magnetic recording medium, the present inventor converts a glass base substrate having a smooth main surface formed by a float method or the like into a glass substrate excellent in plate thickness distribution and flatness and excellent in surface roughness. We examined the means of processing with high productivity. As a result, in the grinding step, the first plane of the glass base substrate is ground using a first fixed abrasive tool including at least one of diamond abrasive grains, alumina abrasive grains, and silicon carbide abrasive grains. A glass substrate using one grinding step and a second fixed abrasive tool including diamond abrasive grains having an average particle diameter (hereinafter referred to as an average particle diameter) smaller than the abrasive grains included in the first fixed abrasive tool And a second grinding step of grinding the main surface of the magnetic recording medium.

第1研削工程を実施しない場合、第1の固定砥粒工具に含まれる砥粒より小さい平均粒子直径のダイヤモンド砥粒を含む第2の固定砥粒工具を用いてガラス基板の主平面を研削するとき、ダイヤモンド砥粒がガラス素基板の主平面に引っ掛かり難く、ダイヤモンド砥粒がガラス素基板の主平面で滑り、研削の加工速度が低下してしまい生産性に劣るおそれがある。   When not performing the 1st grinding process, the main plane of a glass substrate is ground using the 2nd fixed abrasive tool containing the diamond grain of the average particle diameter smaller than the abrasive grain contained in the 1st fixed abrasive tool. At this time, the diamond abrasive grains are not easily caught on the main plane of the glass base substrate, and the diamond abrasive grains slide on the main plane of the glass base substrate, so that there is a possibility that the processing speed of grinding is lowered and the productivity is inferior.

一方、第2研削工程を実施しない場合、第1研削工程で研削されたガラス基板の主平面に発生した加工変質層を、その後の研磨工程で取り除くために研磨量を多く設定する必要があり、生産性に劣るおそれがある。   On the other hand, when not performing the second grinding step, it is necessary to set a large amount of polishing in order to remove the work-affected layer generated on the main plane of the glass substrate ground in the first grinding step in the subsequent polishing step, Productivity may be inferior.

また、第1研削工程及び/又は第2研削工程において、遊離砥粒を用いてガラス素基板及び/又はガラス基板の主平面を研削した場合、遊離砥粒を用いた研削は、固定砥粒工具を用いた研削に比べ加工速度が低いうえ、ガラス基板の主平面や端面に深い加工変質層を発生させるためにその後の研磨工程で加工変質層を取り除くように研磨量を多くする必要がある、ガラス基板の表面に付着した遊離砥粒の洗浄除去に手間を要する、など品質特性や生産性に劣るおそれがある。   In the first grinding step and / or the second grinding step, when the primary surface of the glass base substrate and / or the glass substrate is ground using loose abrasive grains, grinding using loose abrasive grains is a fixed abrasive tool. The processing speed is lower than grinding using, and it is necessary to increase the polishing amount so as to remove the work-affected layer in the subsequent polishing process in order to generate a deep work-affected layer on the main plane and end face of the glass substrate. There is a risk that the quality characteristics and productivity may be inferior, such as requiring time and effort to clean and remove the loose abrasive particles adhering to the surface of the glass substrate.

また、第1研削工程の代わりに、ガラス素基板の主平面を薬液で粗面化するフロスト加工を実施した場合、薬液がガラス素基板を等方的にエッチングするため、板厚が揃っていないガラス素基板の板厚を所望の板厚に揃え、所望の平坦度に制御できない。そのため、その後の研削工程や研磨工程において、研削量や研磨量を多くして、ガラス基板を所望の板厚に揃え、所望の平坦度にする必要があり、生産性に劣るおそれがある。   Moreover, when the frost process which roughens the main surface of a glass base substrate with a chemical | medical solution instead of a 1st grinding process is carried out, since a chemical | medical solution etches a glass base substrate isotropic, board thickness is not uniform. The thickness of the glass substrate cannot be adjusted to the desired flatness by aligning the thickness of the glass substrate to the desired thickness. Therefore, in the subsequent grinding process or polishing process, it is necessary to increase the grinding amount or the polishing amount so that the glass substrate has a desired plate thickness and to have a desired flatness, resulting in poor productivity.

図3に、固定砥粒工具の研削面を模式的に表す断面図を示す。図3において、60は固定砥粒工具、601は研削面に表出した砥粒(例えば、ダイヤモンド砥粒、アルミナ砥粒、炭化ケイ素砥粒、など)、602は固定砥粒工具に含まれる砥粒(例えば、ダイヤモンド砥粒、アルミナ砥粒、炭化ケイ素砥粒、など)、603は結合材(例えば、樹脂、金属、ガラス質(ビトリファイド)など)、をそれぞれ示す。なお、図2と同一部分には同符号を付してその説明を省略する。   In FIG. 3, sectional drawing which represents the grinding surface of a fixed abrasive tool typically is shown. In FIG. 3, 60 is a fixed abrasive tool, 601 is an abrasive grain exposed on the grinding surface (for example, diamond abrasive grain, alumina abrasive grain, silicon carbide abrasive grain, etc.), 602 is an abrasive contained in the fixed abrasive tool. Grains (for example, diamond abrasive grains, alumina abrasive grains, silicon carbide abrasive grains, etc.), 603 indicates a binder (for example, resin, metal, vitreous (vitrified), etc.). The same parts as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.

第1の固定砥粒工具は、ダイヤモンド砥粒、アルミナ砥粒、炭化ケイ素砥粒のいずれか1つ以上の砥粒を含む。前記砥粒のなかでも、ダイヤモンド砥粒を含む第1の固定砥粒工具が、研削の加工速度が高く、加工変質層を発生させ難いため好ましい。第1の固定砥粒工具は、砥粒を金属、樹脂、又はガラス質(ビトリファイド)などで結合して成形されており、該砥粒を第1の固定砥粒工具の研削面に表出させてガラス基板を研削する。   The first fixed abrasive tool includes one or more abrasive grains of diamond abrasive grains, alumina abrasive grains, and silicon carbide abrasive grains. Among the abrasive grains, the first fixed abrasive tool including diamond abrasive grains is preferable because it has a high grinding speed and hardly causes a work-affected layer. The first fixed abrasive tool is formed by bonding abrasive grains with metal, resin, vitreous, or the like, and exposes the abrasive grains to the grinding surface of the first fixed abrasive tool. Grind the glass substrate.

第1の固定砥粒工具に含まれる砥粒は、平均粒径が7〜50μmであることが好ましい。第1の固定砥粒工具に含まれる砥粒の平均粒径が7μm未満の場合、ガラス基板を研削する加工速度が低く、生産性に劣るおそれがある。砥粒の平均粒径が50μmを超える場合、ガラス基板の主平面に深い加工変質層を発生させてしまい、その後の研削工程や研磨工程で加工変質層を充分に除去できず、ガラス基板製品の主平面に欠陥(キズ)を生じさせるおそれがある。第1の固定砥粒工具に含まれる砥粒の平均粒径は7μm〜50μmが好ましく、7μm〜40μmが更に好ましく、7μm〜30μmが特に好ましい。   The abrasive grains contained in the first fixed abrasive tool preferably have an average particle diameter of 7 to 50 μm. When the average grain size of the abrasive grains contained in the first fixed abrasive tool is less than 7 μm, the processing speed for grinding the glass substrate is low and the productivity may be inferior. When the average grain size of the abrasive grains exceeds 50 μm, a deep work-affected layer is generated on the main plane of the glass substrate, and the work-affected layer cannot be sufficiently removed in the subsequent grinding process or polishing process. There is a risk of causing defects (scratches) in the main plane. The average particle size of the abrasive grains contained in the first fixed abrasive tool is preferably 7 μm to 50 μm, more preferably 7 μm to 40 μm, and particularly preferably 7 μm to 30 μm.

第2の固定砥粒工具は、第1の固定砥粒工具に含まれる砥粒より小さい平均粒径のダイヤモンド砥粒を含む。第2の固定砥粒工具は、ダイヤモンド砥粒を金属、樹脂、又はガラス質(ビトリファイド)などで結合して成形されており、該ダイヤモンド砥粒を第2の固定砥粒工具の研削面に表出させてガラス基板を研削する。   The second fixed abrasive tool includes diamond abrasive grains having an average particle size smaller than the abrasive grains included in the first fixed abrasive tool. The second fixed abrasive tool is formed by bonding diamond abrasive grains with metal, resin, vitreous, or the like, and the diamond abrasive grains are displayed on the grinding surface of the second fixed abrasive tool. The glass substrate is ground out.

第2の固定砥粒工具に含まれるダイヤモンド砥粒は、平均粒径が0.1〜6μmであることが好ましい。第2の固定砥粒工具に含まれるダイヤモンド砥粒の平均粒径が0.1μm未満の場合、ガラス基板を研削する加工速度が低く、生産性に劣るおそれがある。ダイヤモンド砥粒の平均粒径が6μmを超える場合、研削したガラス基板の主平面の粗さが高く、その後の研磨工程で所望の表面粗さにするため、研磨量を多く設定する必要があり、生産性に劣るおそれがある。第2の固定砥粒工具に含まれる砥粒の平均粒径は0.1μm〜6μmが好ましく、0.5μm〜5μmが更に好ましく、1μm〜5μmが特に好ましい。   The diamond abrasive grains contained in the second fixed abrasive tool preferably have an average particle diameter of 0.1 to 6 μm. When the average particle diameter of the diamond abrasive grains contained in the second fixed abrasive tool is less than 0.1 μm, the processing speed for grinding the glass substrate is low, and the productivity may be inferior. When the average particle diameter of the diamond abrasive grains exceeds 6 μm, the roughness of the principal plane of the ground glass substrate is high, and in order to obtain a desired surface roughness in the subsequent polishing step, it is necessary to set a large amount of polishing, Productivity may be inferior. The average particle size of the abrasive grains contained in the second fixed abrasive tool is preferably 0.1 μm to 6 μm, more preferably 0.5 μm to 5 μm, and particularly preferably 1 μm to 5 μm.

両面研削装置の上定盤201と下定盤202に装着された第1の固定砥粒工具は、ドレス治具により研削面を所定の平坦度と表面粗さにドレス処理された後、第1の固定砥粒工具の研削面をガラス基板の主平面に押し当てた状態で、研削液をガラス基板と固定砥粒工具の研削面との間に供給しながら、ガラス基板と固定砥粒工具の研削面とを相対的に移動させて、ガラス基板の主平面を研削する。   The first fixed abrasive tool mounted on the upper surface plate 201 and the lower surface plate 202 of the double-sided grinding device is subjected to dressing of the ground surface to a predetermined flatness and surface roughness by a dressing jig, While the grinding surface of the fixed abrasive tool is pressed against the main surface of the glass substrate, the grinding liquid is supplied between the glass substrate and the grinding surface of the fixed abrasive tool while grinding the glass substrate and the fixed abrasive tool. The main surface of the glass substrate is ground by moving the surface relatively.

ドレス処理を施した第1の固定砥粒工具の研削面の表面粗さRaやRzは、JIS B 0601−2001に準拠して、触針式の表面粗さ測定機で測定する。なお、固定砥粒工具の研削面の表面粗さ測定は、測定前に所定の表面粗さを有する標準試料で校正してから行う。 The surface roughness Ra 1 or Rz 1 of the ground surface of the first fixed abrasive tool subjected to the dressing process is measured with a stylus type surface roughness measuring machine in accordance with JIS B 0601-2001. The surface roughness of the ground surface of the fixed abrasive tool is measured after calibration with a standard sample having a predetermined surface roughness before measurement.

なお、本明細書において、第1の固定砥粒工具の研削面の表面粗さRa、Rzには添字1を付けてRa、Rzと表記し、第2の固定砥粒工具の研削面の表面粗さRa、Rzには添字2を付けてRa、Rzと表記する。また、ガラス基板の主平面の表面粗さRa、Rzには添字3を付けてRa、Rzと表記するものとする。 In the present specification, the surface roughness Ra and Rz of the ground surface of the first fixed abrasive tool is denoted by Ra 1 and Rz 1 with a suffix 1 and the ground surface of the second fixed abrasive tool. The surface roughnesses Ra and Rz are denoted by Ra 2 and Rz 2 with a subscript 2. Further, the surface roughness Ra, Rz of the main plane of the glass substrate is denoted by Ra 3 , Rz 3 with a subscript 3 attached thereto.

第1の固定砥粒工具の研削面の表面粗さRaは2〜8μmであることが好ましい。表面粗さRaが2μm未満であると、砥粒がガラス素基板の主平面に引っ掛かり難く、砥粒がガラス素基板の主平面で滑り、研削の加工速度が低く、生産性に劣るおそれがある。表面粗さRaが8μmを超えると、研削されたガラス基板の主平面の表面粗さが高くなり、その後の研削工程又は研磨工程において、研削量又は研磨量を多く設定する必要があり、製造工程全体の生産性を下げるおそれがある。第1の固定砥粒工具の研削面の表面粗さRaは2〜8μmが好ましく、2〜5μmが特に好ましい。 The surface roughness Ra 1 of the ground surface of the first fixed abrasive tool is preferably 2 to 8 μm. When the surface roughness Ra 1 is less than 2 μm, the abrasive grains are difficult to be caught on the main plane of the glass base substrate, and the abrasive grains slide on the main plane of the glass base substrate, so that the grinding processing speed is low and the productivity may be inferior. is there. If the surface roughness Ra 1 exceeds 8 μm, the surface roughness of the principal plane of the ground glass substrate becomes high, and it is necessary to set a large amount of grinding or polishing in the subsequent grinding or polishing step. There is a risk of lowering the productivity of the entire process. The surface roughness Ra 1 of the grinding surface of the first fixed abrasive tool is preferably 2 to 8 μm, particularly preferably 2 to 5 μm.

第1の固定砥粒工具の研削面の表面粗さRzは30μm以下であることが好ましい。表面粗さRzが30μmを超えると、研削されたガラス基板の主平面に深い加工変質層を発生させてしまい、その後の研削工程や研磨工程でガラス基板の主平面の加工変質層を充分に除去できず、ガラス基板製品の主平面に欠陥(キズ)を生じさせるおそれがある。第1の固定砥粒工具の研削面の表面粗さRzは30μm以下であることが好ましく、25μm以下が更に好ましく、20μm以下が特に好ましい。 It is preferable that the surface roughness Rz 1 of the grinding surface of the first fixed abrasive tool is 30μm or less. If the surface roughness Rz 1 exceeds 30 μm, a deep work-affected layer is generated on the main surface of the ground glass substrate, and the work-affected layer on the main surface of the glass substrate is sufficiently removed in the subsequent grinding and polishing processes. It cannot be removed, and there is a risk of causing defects (scratches) in the main plane of the glass substrate product. Preferably the surface roughness Rz 1 of the grinding surface of the first fixed abrasive tool is 30μm or less, more preferably 25μm or less, particularly preferably 20 [mu] m.

第2の固定砥粒工具も、第1の固定砥粒工具と同様に、両面研削装置の上定盤201と下定盤202に装着され、ドレス治具により研削面を所定の平坦度と表面粗さにドレス処理された後、第2の固定砥粒工具の研削面をガラス基板の主平面に押し当てた状態で、研削液をガラス基板と固定砥粒工具の研削面との間に供給しながら、ガラス基板と固定砥粒工具の研削面とを相対的に移動させて、ガラス基板の主平面を研削する。ドレス処理を施した第2の固定砥粒工具の研削面の表面粗さRaやRzは、第1の固定砥粒工具の研削面の表面粗さRaやRzと同様の手順に従い測定する。 Similarly to the first fixed abrasive tool, the second fixed abrasive tool is mounted on the upper surface plate 201 and the lower surface plate 202 of the double-sided grinding device, and the ground surface is given a predetermined flatness and surface roughness by a dressing jig. After the dressing process, the grinding liquid is supplied between the glass substrate and the grinding surface of the fixed abrasive tool while the grinding surface of the second fixed abrasive tool is pressed against the main surface of the glass substrate. However, the main surface of the glass substrate is ground by relatively moving the glass substrate and the grinding surface of the fixed abrasive tool. The surface roughness Ra 2 or Rz 2 of the ground surface of the second fixed abrasive tool subjected to the dressing process follows the same procedure as the surface roughness Ra 1 or Rz 1 of the ground surface of the first fixed abrasive tool. taking measurement.

第2の固定砥粒工具の研削面の表面粗さRaは0.1〜2μmであることが好ましい。表面粗さRaが0.1μm未満であると、研削の加工速度が低く生産性に劣るおそれがある。表面粗さRaが2μmを超えた場合、高い加工速度が得られる一方、表面粗さが低い平滑性に優れるガラス基板を得ることが難しくなるおそれがある。第2の固定砥粒工具の研削面の表面粗さRaは0.1〜2μmが好ましく、0.1〜1.5μmが更に好ましく、0.2〜1.2μmが特に好ましい。 The surface roughness Ra2 of the grinding surface of the second fixed abrasive tool is preferably 0.1 to 2 [ mu] m. If the surface roughness Ra 2 is less than 0.1 μm, the grinding speed is low and the productivity may be poor. When the surface roughness Ra 2 exceeds 2 μm, a high processing speed can be obtained, while it may be difficult to obtain a glass substrate having a low surface roughness and excellent smoothness. The surface roughness Ra 2 of the grinding surface of the second fixed abrasive tool is preferably 0.1 to 2 μm, more preferably 0.1 to 1.5 μm, and particularly preferably 0.2 to 1.2 μm.

第2の固定砥粒工具の研削面の表面粗さRzは10μm以下であることが好ましい。表面粗さRzが10μmを超えると、研削されたガラス基板の主平面に加工変質層を発生させてしまい、その後の研磨工程でガラス基板の主平面の加工変質層を充分に除去できず、ガラス基板製品の主平面に欠陥(キズ)を生じさせるおそれがある。第2の固定砥粒工具の研削面の表面粗さRzは10μm以下であることが好ましく、9μm以下が更に好ましく、8μm以下が特に好ましい。 The surface roughness Rz 2 of the grinding surface of the second fixed abrasive tool is preferably 10 μm or less. When the surface roughness Rz 2 exceeds 10 [mu] m, the grinding glass substrate causes to generate a damaged layer on the main plane, can not be sufficiently removed damaged layer of main planes of the glass substrates in the subsequent polishing process, There is a risk of causing defects (scratches) in the main plane of the glass substrate product. Preferably the surface roughness Rz 2 of the grinding surface of the second fixed abrasive tool is 10μm or less, more preferably 9μm or less, particularly preferably 8 [mu] m.

第1の固定砥粒工具を用いてガラス素基板の主平面を研削する第1研削工程において、ガラス基板の加工速度(片面側の主平面)は、13μm/min以上であることが好ましい。第1研削工程のガラス基板の加工速度が13μm/min未満の場合、製造工程の生産性が下がるおそれがある。   In the first grinding step of grinding the main plane of the glass base substrate using the first fixed abrasive tool, the processing speed of the glass substrate (the main plane on one side) is preferably 13 μm / min or more. If the processing speed of the glass substrate in the first grinding process is less than 13 μm / min, the productivity of the manufacturing process may be reduced.

第2の固定砥粒工具を用いてガラス素基板の主平面を研削する第2研削工程において、ガラス基板の加工速度(片面側の主平面)は、1〜10μm/minであることが好ましい。第1研削工程のガラス基板の加工速度が1μm/min未満の場合、製造工程の生産性が下がるおそれがある。第1研削工程のガラス基板の加工速度が10μm/minを超えた場合、所望の板厚に制御された主平面の平滑性に優れるガラス基板を得ることが難しくなるおそれがある。   In the second grinding step of grinding the main surface of the glass substrate using the second fixed abrasive tool, the processing speed of the glass substrate (the main surface on one side) is preferably 1 to 10 μm / min. If the processing speed of the glass substrate in the first grinding process is less than 1 μm / min, the productivity of the manufacturing process may be reduced. When the processing speed of the glass substrate in the first grinding step exceeds 10 μm / min, it may be difficult to obtain a glass substrate that is excellent in smoothness of the main plane controlled to a desired plate thickness.

なお、ガラス基板の加工速度は、研削前のガラス基板の板厚から研削後のガラス基板の板厚を差し引いて求めた研削で除去された板厚(研削量)を、研削時間で除して算出する。両面研削装置を用いてガラス基板の両主平面を同時に研削した場合、片面側の主平面の加工速度は、上記加工速度を2で除して求める。研削前と研削後のガラス基板の板厚は、マイクロメータ又はレーザ変位計で測定する。   The processing speed of the glass substrate is obtained by dividing the plate thickness (grinding amount) removed by grinding obtained by subtracting the plate thickness of the glass substrate after grinding from the plate thickness of the glass substrate before grinding by the grinding time. calculate. When both main planes of the glass substrate are ground simultaneously using a double-side grinding apparatus, the processing speed of the main plane on one side is obtained by dividing the processing speed by 2. The plate thickness of the glass substrate before and after grinding is measured with a micrometer or a laser displacement meter.

本発明の第1の固定砥粒工具を用いてガラス素基板の主平面を研削する第1研削工程において、研削されたガラス基板の主平面の加工変質層の深さは35μm以下であることが好ましい。   In the first grinding step of grinding the principal plane of the glass base substrate using the first fixed abrasive tool of the present invention, the depth of the work-affected layer on the principal plane of the ground glass substrate may be 35 μm or less. preferable.

研削されたガラス基板の主平面の加工変質層の深さが35μmを超えた場合、その後の第2研削工程において、ガラス基板の主平面の加工変質層を除去するため、研削量を多くする必要があり、生産性に劣るおそれがある。第1研削工程で研削されたガラス基板の主平面の加工変質層の深さは35μm以下好ましく、30μm以下がさらに好ましく、26μm以下が特に好ましい。   When the depth of the work-affected layer on the main surface of the ground glass substrate exceeds 35 μm, it is necessary to increase the amount of grinding in order to remove the work-affected layer on the main surface of the glass substrate in the subsequent second grinding step. There is a risk that productivity is inferior. The depth of the work-affected layer on the main plane of the glass substrate ground in the first grinding step is preferably 35 μm or less, more preferably 30 μm or less, and particularly preferably 26 μm or less.

なお、ガラス基板の主平面の加工変質層の深さは、ガラス基板の表面をフッ酸や硝酸等を含む酸性のエッチング溶液を用いて数μmエッチングし、ガラス基板の表面に残留する加工変質層を等方的にエッチングして観察しやすい大きさの円形状ピット又は楕円形状ピットを形成した後、ガラス基板の主平面を所定量研磨してから、光学顕微鏡又はレーザ顕微鏡などを用いて評価する。   The depth of the work-affected layer on the main plane of the glass substrate is determined by etching the surface of the glass substrate by several μm using an acidic etching solution containing hydrofluoric acid, nitric acid, etc., and the work-affected layer remaining on the surface of the glass substrate. Isotropically etched to form circular pits or elliptical pits with a size that can be easily observed, and then the principal plane of the glass substrate is polished by a predetermined amount and then evaluated using an optical microscope or a laser microscope. .

本発明の第1研削工程と第2研削工程とにより、研削されたガラス基板の主平面の表面粗さを、触針式の表面粗さ測定機で測定したとき、ガラス基板の主平面の表面粗さRaは0.3μm以下であることが好ましい。 When the surface roughness of the main plane of the glass substrate ground by the first grinding step and the second grinding step of the present invention is measured with a stylus type surface roughness measuring machine, the surface of the main plane of the glass substrate The roughness Ra 3 is preferably 0.3 μm or less.

表面粗さRaが0.3μmを超えると、磁気記録媒体用ガラス基板に求められる表面粗さとするために、その後の研磨工程で研磨時間を長く設定するなどにより研磨量を多くする必要があり、製造工程全体の生産性が下がるおそれがある。第1研削工程と第2研削工程とにより研削されたガラス基板の主平面の表面粗さRaは0.3μm以下が好ましく、0.2μm以下がさらに好ましく、0.15μm以下が特に好ましい。 When the surface roughness Ra 3 exceeds 0.3 [mu] m, in order to surface roughness required for the glass substrate for a magnetic recording medium, it is necessary to increase the polishing amount, such as by setting the polishing time longer in the subsequent polishing process There is a risk that the productivity of the entire manufacturing process is lowered. The surface roughness Ra 3 of the main plane of the glass substrate ground by the first grinding step and the second grinding step is preferably 0.3 μm or less, more preferably 0.2 μm or less, and particularly preferably 0.15 μm or less.

なお、研削されたガラス基板の主平面は、JIS B 0601−2001に準拠して、触針式の表面粗さ測定機で測定する。なお、研削されたガラス基板の主平面の表面粗さ測定は、測定前に所定の表面粗さを有する標準試料で校正してから行う。   In addition, the main plane of the ground glass substrate is measured with a stylus type surface roughness measuring machine in accordance with JIS B 0601-2001. In addition, the surface roughness measurement of the main plane of the ground glass substrate is performed after calibration with a standard sample having a predetermined surface roughness before the measurement.

本発明の第1研削工程と第2研削工程とにより、研削されたガラス基板は、同一ロット内におけるガラス基板間の板厚分布が1μm以下であることが好ましい。   The glass substrates ground by the first grinding step and the second grinding step of the present invention preferably have a plate thickness distribution of 1 μm or less between the glass substrates in the same lot.

研削されたガラス基板の同一ロット内におけるガラス基板間の板厚分布が1μmを超えた場合、その後の研磨工程で同一ロット内におけるガラス基板間の板厚分布を小さくすることが難しく、板厚分布に優れる磁気記録媒体用ガラス基板を得ることが難しくなるおそれがある。また、同一ロット内におけるガラス基板間の板厚が不均一であると、ガラス基板の主平面を均一に研磨することが難しくなり、同一ロット内におけるガラス基板間の主平面の表面特性(例えば、表面粗さや端部形状)にバラツキが生じるおそれもある。   When the thickness distribution between the glass substrates in the same lot of the ground glass substrates exceeds 1 μm, it is difficult to reduce the thickness distribution between the glass substrates in the same lot in the subsequent polishing process. It may be difficult to obtain a glass substrate for a magnetic recording medium that is excellent in performance. Further, if the plate thickness between the glass substrates in the same lot is non-uniform, it becomes difficult to uniformly polish the main plane of the glass substrate, surface characteristics of the main plane between the glass substrates in the same lot (for example, There is also a possibility that variations in surface roughness and edge shape may occur.

本発明の第1研削工程と第2研削工程とにより研削されたガラス基板は、光干渉計で測定された平坦度が4μm以下であることが好ましい。   The glass substrate ground by the first grinding step and the second grinding step of the present invention preferably has a flatness measured by an optical interferometer of 4 μm or less.

研削されたガラス基板の平坦度が4μmを超えた場合、その後の研磨工程で所望の平坦度に加工することが難しく、平坦度に優れる磁気記録媒体用ガラス基板を得ることが難しくなるおそれがある。第1研削工程と第2研削工程とにより研削されたガラス基板は、光干渉計で測定された平坦度が4μm以下であることが好ましく、3μm以下が特に好ましい。   When the flatness of the ground glass substrate exceeds 4 μm, it is difficult to process to a desired flatness in the subsequent polishing step, and it may be difficult to obtain a glass substrate for a magnetic recording medium having excellent flatness. . The glass substrate ground by the first grinding step and the second grinding step preferably has a flatness measured by an optical interferometer of 4 μm or less, particularly preferably 3 μm or less.

以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。   Examples The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited thereby.

外径65mm、内径20mm、板厚0.635mmの磁気記録媒体用ガラス基板用に、フロート法で成形されたSiOを主成分とするガラス素基板を、中央部に円孔を有する円盤形状ガラス基板に加工した。 A disk-shaped glass having an outer diameter of 65 mm, an inner diameter of 20 mm, and a glass substrate for a magnetic recording medium having a thickness of 0.635 mm, a glass base substrate mainly composed of SiO 2 formed by a float process, and having a circular hole in the center. Processed into a substrate.

中央部に円孔を有する円盤形状ガラス基板に加工されたガラス素基板は、第1の固定砥粒工具と研削液を用いて両面研削装置(浜井産業社製、製品名:16BF−4M5P)によりガラス基板の上下主平面を研削される(第1研削工程)。   A glass base substrate processed into a disk-shaped glass substrate having a circular hole in the center is obtained by a double-side grinding apparatus (product name: 16BF-4M5P, manufactured by Hamai Sangyo Co., Ltd.) using a first fixed abrasive tool and a grinding fluid. The upper and lower main planes of the glass substrate are ground (first grinding step).

第1の固定砥粒工具として、平均粒径が20μm、12μm、9μm、4μmのダイヤモンド砥粒を含有する固定砥粒工具を使用した。   As the first fixed abrasive tool, a fixed abrasive tool containing diamond abrasive grains having an average particle diameter of 20 μm, 12 μm, 9 μm, and 4 μm was used.

第1研削工程において、メインの研磨加工圧力は100g/cm、定盤回転数は30rpm、供給する研削液の温度は20℃とし、ガラス基板の研削量が130μm(片面側の主平面)となるように研削時間を調整してガラス素基板を研削した。研削されたガラス基板は、アルカリ性洗剤溶液に浸漬した状態で超音波洗浄された。 In the first grinding step, the main polishing pressure is 100 g / cm 2 , the platen rotation speed is 30 rpm, the temperature of the supplied grinding liquid is 20 ° C., and the grinding amount of the glass substrate is 130 μm (the main surface on one side). The glass substrate was ground by adjusting the grinding time so that The ground glass substrate was ultrasonically cleaned while immersed in an alkaline detergent solution.

第1研削工程で研削されたガラス基板は、第2の固定砥粒工具と研削液を用いて両面研削装置(浜井産業社製、製品名:16BF−4M5P)によりガラス基板の上下主平面を研削される(第2研削工程)。第2の固定砥粒工具として平均粒径が4μmのダイヤモンド砥粒を樹脂の結合剤で結合した固定砥粒工具(3M社製、製品名:Trizact4μmAA1)を用いた。第2研削工程において、メインの研磨加工圧力は100g/cm、定盤回転数は30rpm、供給する研磨液の温度は20℃とし、第1研削工程で発生したガラス基板の主平面の加工変質層を除去できる研削量(=第1研削工程で発生した加工変質層最大深さ+10μm)となるように研削時間を調整してガラス基板を研削した。研削されたガラス基板を、アルカリ性洗剤溶液に浸漬した状態で超音波洗浄した。 The glass substrate ground in the first grinding step is ground on the upper and lower main surfaces of the glass substrate by a double-sided grinding apparatus (product name: 16BF-4M5P, manufactured by Hamai Sangyo Co., Ltd.) using the second fixed abrasive tool and grinding fluid. (Second grinding step). A fixed abrasive tool (manufactured by 3M, product name: Trizact 4 μm AA1) in which diamond abrasive grains having an average particle diameter of 4 μm were bonded with a resin binder was used as the second fixed abrasive tool. In the second grinding step, the main polishing pressure is 100 g / cm 2 , the platen rotation speed is 30 rpm, the temperature of the polishing liquid to be supplied is 20 ° C., and the processing deterioration of the main surface of the glass substrate generated in the first grinding step The glass substrate was ground by adjusting the grinding time so that the grinding amount (= the maximum depth of the work-affected layer generated in the first grinding step + 10 μm) can be removed. The ground glass substrate was ultrasonically cleaned while immersed in an alkaline detergent solution.

両面研削装置の上定盤と下定盤に装着された第1の固定砥粒工具と第2の固定砥粒工具は、ガラス基板を研削加工する前に、ドレス治具を用いてドレス処理が施され、所定の研削面の形状と表面粗さに形成される。   The first fixed abrasive tool and the second fixed abrasive tool mounted on the upper surface plate and lower surface plate of the double-sided grinding device are subjected to dressing using a dressing jig before grinding the glass substrate. And a predetermined grinding surface shape and surface roughness.

ドレス処理を施した第1の固定砥粒工具と第2の固定砥粒工具の研削面の表面粗さRa、Rzと、Ra、Rzは、触針式の表面粗さ測定機(東京精密社製、製品名:Handy Surf 130A、触針の型式:KP66 DM43801)を用いて測定した。固定砥粒工具の研削面の表面粗さの測定は、触針の走査長を1mm、触針の走査長速度0.3mm/s、カットオフ値を0.8mm、に設定して実施した。研削面の表面粗さRa、Rzの測定は、下側固定砥粒工具の研削面において3箇所の位置(図4に示したX1、X2、X3の位置)で実施し、その平均値を固定砥粒工具の研削面の表面粗さRa、Rzと、Ra、Rzとした。 Surface roughnesses Ra 1 , Rz 1 , Ra 2 , Rz 2 of the ground surfaces of the first fixed abrasive tool and the second fixed abrasive tool subjected to dressing processing are stylus type surface roughness measuring machines. (Manufactured by Tokyo Seimitsu Co., Ltd., product name: Handy Surf 130A, stylus type: KP66 DM43801). The surface roughness of the ground surface of the fixed abrasive tool was measured by setting the stylus scanning length to 1 mm, the stylus scanning length speed of 0.3 mm / s, and the cutoff value to 0.8 mm. The surface roughness Ra 1 , Rz 1 of the grinding surface is measured at three positions (positions X1, X2, and X3 shown in FIG. 4) on the grinding surface of the lower fixed abrasive tool, and the average value thereof. Were the surface roughness Ra 1 , Rz 1 and Ra 2 , Rz 2 of the ground surface of the fixed abrasive tool.

第1研削工程で研削されたガラス基板の主平面の加工変質層の深さは、ガラス基板の表面を、フッ酸と硝酸等を含む酸性のエッチング溶液を用いて5μmエッチングし、ガラス基板の主平面に残留する加工変質層を等方的にエッチングしてから評価した。評価手順は、ガラス基板の表面を5μmエッチングした後、ガラス基板の主平面を所定量研磨して洗浄と乾燥を行い、エッチングされて円形状ピット又は楕円形状ピットになった加工変質層を光学顕微鏡で観察することにより実施した。光学顕微鏡の対物レンズは20倍を使用し、観察視野635μm×480μmで観察した。ガラス基板の両主平面を、0°、90°、180°、270°の計8箇所の位置で観察し、加工変質層の深さを評価した。ガラス基板の主平面において、円形状ピット又は楕円形状ピットが観察されなくなった時点におけるガラス基板の主平面の研磨量を、ガラス基板主平面の加工変質層最大深さとした。   The depth of the work-affected layer on the main plane of the glass substrate ground in the first grinding step is such that the surface of the glass substrate is etched by 5 μm using an acidic etching solution containing hydrofluoric acid, nitric acid, etc. Evaluation was made after isotropically etching the work-affected layer remaining on the flat surface. In the evaluation procedure, after etching the surface of the glass substrate by 5 μm, the main plane of the glass substrate is polished by a predetermined amount, washed and dried, and the processed damaged layer that has been etched into a circular pit or an elliptic pit is optical microscope. It was carried out by observing. The objective lens of the optical microscope used 20 times, and it observed with the observation visual field of 635 micrometers x 480 micrometers. Both main planes of the glass substrate were observed at a total of 8 positions of 0 °, 90 °, 180 °, and 270 °, and the depth of the work-affected layer was evaluated. The amount of polishing of the main plane of the glass substrate at the time when circular pits or elliptical pits were no longer observed on the main plane of the glass substrate was the maximum depth of the work-affected layer in the main plane of the glass substrate.

第1研削工程と第2研削工程で研削されたガラス基板の主平面の表面粗さRaとRzは、触針式の表面粗さ測定機(東京精密社製、製品名:Handy Surf 130A、触針の型式:KP66 DM43801)を用いて評価した。測定は、固定砥粒工具の研削面の表面粗さ測定と同じ条件で実施した。ガラス基板の主平面の表面粗さRaとRzは、磁気記録媒体用ガラス基板の両主平面において、中心部から20mmの位置(記録再生領域の中間領域)で、0°、120°、240°の計6箇所で測定し、その平均値を求めて得た。 The surface roughness Ra 3 and Rz 3 of the main plane of the glass substrate ground in the first grinding step and the second grinding step is a stylus type surface roughness measuring machine (manufactured by Tokyo Seimitsu Co., Ltd., product name: Handy Surf 130A). And stylus type: KP66 DM43801). The measurement was performed under the same conditions as the surface roughness measurement of the ground surface of the fixed abrasive tool. The surface roughness Ra 3 and Rz 3 of the main plane of the glass substrate is 0 °, 120 ° at a position 20 mm from the center (intermediate area of the recording / reproducing area) on both main planes of the glass substrate for magnetic recording medium. Measurements were taken at a total of 6 locations of 240 °, and the average value was obtained.

第1研削工程と第2研削工程で研削されたガラス基板の同一ロット内における板厚偏差は、1ロットから10枚のガラス基板を抜き取り、マイクロメータを用いて各ガラス基板の板厚を測定し、同一ロット内の最大板厚値と最小板厚値との差を求めて得た。   The thickness deviation within the same lot of the glass substrates ground in the first grinding process and the second grinding process is determined by extracting 10 glass substrates from one lot and measuring the thickness of each glass substrate using a micrometer. The difference between the maximum thickness value and the minimum thickness value in the same lot was obtained.

第1研削工程と第2研削工程で研削されたガラス基板の平坦度は、1ロットから5枚のガラス基板を抜き取り、光干渉計(NIDEK社製、製品名:FT−17)を用いて測定した。   The flatness of the glass substrate ground in the first grinding step and the second grinding step was measured using an optical interferometer (product name: FT-17) by removing five glass substrates from one lot. did.

表1に、第1研削工程で用いる第1の固定砥粒工具を変えてガラス基板を研削したときの結果を示す。表1において、例1〜例3は実施例、例4〜例7は比較例である。なお、例5と例6は第1研削工程において遊離砥粒(ホワイトアルミナ砥粒)を用いてガラス基板を研削したものであり、例7は第1研削工程の代わりに酸溶液でガラス基板の表面をエッチングしてフロスト加工したものである。   Table 1 shows the results when the glass substrate was ground by changing the first fixed abrasive tool used in the first grinding step. In Table 1, Examples 1 to 3 are Examples, and Examples 4 to 7 are Comparative Examples. In Examples 5 and 6, the glass substrate was ground using loose abrasive grains (white alumina abrasive grains) in the first grinding step. In Example 7, the glass substrate was treated with an acid solution instead of the first grinding step. The surface is etched and frosted.

例1〜例3の第1研削工程において、ガラス素基板は高い加工速度で研削され、ガラス基板主平面の加工変質層最大深さが浅いガラス基板を得ることができた。例1〜例3の第1研削工程で研削されたガラス基板を第2研削工程で研削したガラス基板は、ガラス基板主平面の表面粗さと、同一ロット内の板厚偏差と、平坦度に優れていた。   In the first grinding process of Examples 1 to 3, the glass base substrate was ground at a high processing speed, and a glass substrate having a shallow maximum depth of the work-affected layer on the main surface of the glass substrate could be obtained. The glass substrate obtained by grinding the glass substrate ground in the first grinding process of Examples 1 to 3 in the second grinding process is excellent in the surface roughness of the main plane of the glass substrate, the thickness deviation in the same lot, and the flatness. It was.

例4の第1研削工程は、第1の固定砥粒工具に含まれる砥粒の平均粒径が小さく、研削面の表面粗さも低いため、ガラス素基板を高い加工速度で研削できなかった。   In the first grinding step of Example 4, since the average grain size of the abrasive grains contained in the first fixed abrasive tool was small and the surface roughness of the grinding surface was low, the glass substrate could not be ground at a high processing speed.

例5と例6は、第1研削工程において遊離砥粒を用いてガラス素基板を研削したものであるが、ガラス素基板を、高い加工速度で加工変質層最大深さが浅いガラス基板に研削できなかった。   In Examples 5 and 6, the glass base substrate was ground using loose abrasive grains in the first grinding step, but the glass base substrate was ground to a glass substrate having a shallow maximum depth of the work-affected layer at a high processing speed. could not.

例7は、第1研削工程の代わりに酸溶液でガラス基板の表面をエッチングしてフロスト加工したものであるが、固定砥粒工具や遊離砥粒を用いた第1研削工程のようにガラス基板を所望の板厚に揃え、所望の平坦度に制御できなかった。そのため、同一ロット内の板厚偏差と平坦度を制御するため、第2研削工程での研削量を多くした。第1研削工程でフロスト加工したガラス基板は、第2研削工程での研削量を多くすることにより、同一ロット内の板厚偏差は制御できたが、平坦度に優れるガラス基板が得られなかった。   In Example 7, instead of the first grinding step, the surface of the glass substrate was etched and frosted with an acid solution, but the glass substrate was used as in the first grinding step using a fixed abrasive tool or loose abrasive grains. Were adjusted to the desired plate thickness, and the desired flatness could not be controlled. Therefore, in order to control the plate thickness deviation and flatness within the same lot, the amount of grinding in the second grinding process was increased. The glass substrate that was frosted in the first grinding process could control the thickness deviation in the same lot by increasing the amount of grinding in the second grinding process, but a glass substrate with excellent flatness could not be obtained. .

第1研削工程と第2研削工程で研削されたガラス基板は、中央部に円孔を有する円盤形状ガラス基板の内周側面と外周側面を、面取り幅0.15mm、面取り角度45°の磁気記録媒体用ガラス基板が得られるように面取り加工された。   The glass substrate ground in the first grinding step and the second grinding step has a magnetic recording with a chamfering width of 0.15 mm and a chamfering angle of 45 ° on the inner and outer peripheral surfaces of a disk-shaped glass substrate having a circular hole in the center. Chamfering was performed to obtain a glass substrate for medium.

次に、内周側面と内周面取り部を研磨ブラシと研磨液を用いて研磨し、内周側面と内周面取り部のキズを除去し、鏡面となるように内周端面を研磨加工した。内周端面研磨後のガラス基板は、外周側面と外周面取り部を研磨ブラシと研磨液を用いて研磨し、外周側面と外周面取り部のキズを除去し、鏡面となるように外周端面を研磨加工した。外周端面研磨後のガラス基板を、スクラブ洗浄と、アルカリ性洗剤溶液に浸漬した状態での超音波洗浄により、洗浄した。   Next, the inner peripheral side surface and the inner peripheral chamfered portion were polished using a polishing brush and a polishing liquid, scratches on the inner peripheral side surface and the inner peripheral chamfered portion were removed, and the inner peripheral end surface was polished so as to be a mirror surface. After polishing the inner peripheral edge surface, the outer peripheral side surface and the outer peripheral chamfered portion are polished with a polishing brush and a polishing liquid to remove scratches on the outer peripheral side surface and outer peripheral chamfered portion, and the outer peripheral end surface is polished so that it becomes a mirror surface did. The glass substrate after the outer peripheral end surface polishing was cleaned by scrub cleaning and ultrasonic cleaning in a state immersed in an alkaline detergent solution.

端面加工後のガラス基板は、研磨具として硬質ウレタン製の研磨パッドと酸化セリウム砥粒を含有する研磨液(一次粒子の平均粒径が約1.3μmの酸化セリウムを主成分した研磨液組成物)を用いて、両面研磨装置により上下主平面を1次研磨した。   The glass substrate after the end face processing is a polishing liquid containing a polishing pad made of hard urethane as a polishing tool and cerium oxide abrasive grains (a polishing liquid composition mainly composed of cerium oxide having an average primary particle diameter of about 1.3 μm). ) Was primarily polished by a double-side polishing apparatus.

1次研磨後のガラス基板は、研磨具として軟質ウレタン製の研磨パッドと、コロイダルシリカを含有する研磨液(一次粒子の平均粒径が20〜30nmのコロイダルシリカを主成分とする研磨液組成物)を用いて、両面研磨装置により上下主平面を2次研磨した。   The glass substrate after the primary polishing is composed of a polishing pad made of soft urethane as a polishing tool and a polishing liquid containing colloidal silica (a polishing liquid composition mainly composed of colloidal silica having an average primary particle diameter of 20 to 30 nm). The upper and lower main planes were subjected to secondary polishing using a double-side polishing apparatus.

なお、1次研磨と2次研磨において、両面研磨装置の上定盤と下定盤に装着した研磨パッドは、ガラス基板を研磨する前に、ダイヤモンド砥粒を表面に有するドレス治具を用いてドレス処理が施され、所定の研磨面に形成される。   In primary polishing and secondary polishing, the polishing pads mounted on the upper and lower surface plates of the double-side polishing apparatus are dressed using a dressing jig having diamond abrasive grains on the surface before polishing the glass substrate. Processing is performed to form a predetermined polished surface.

2次研磨を行ったガラス基板を、アルカリ性洗剤によるスクラブ洗浄、アルカリ性洗剤溶液に浸漬した状態での超音波洗浄、純水に浸漬した状態での超音波洗浄、を順次行い、イソプロピルアルコール蒸気にて乾燥し、磁気記録媒体用ガラス基板を得た。   The glass substrate that has been subjected to the secondary polishing is sequentially scrubbed with an alkaline detergent, ultrasonically washed in an alkaline detergent solution, and ultrasonically washed in pure water. It dried and obtained the glass substrate for magnetic recording media.

ガラス基板を洗浄乾燥した後、磁気記録媒体用ガラス基板の表面粗さRaを、原子間力顕微鏡を用いて測定した。磁気記録媒体用ガラス基板の表面粗さRaは、磁気記録媒体用ガラス基板の両主平面において、中心部から20mmの位置(記録再生領域の中間領域)で、0°、120°、240°の計6箇所で測定し、その平均値を求めて得た。例1〜例3のガラス基板を研磨し、洗浄乾燥して得た磁気記録媒体用ガラス基板の表面粗さRaは0.13nm以下であった。   After washing and drying the glass substrate, the surface roughness Ra of the glass substrate for magnetic recording medium was measured using an atomic force microscope. The surface roughness Ra of the glass substrate for magnetic recording medium is 0 °, 120 °, and 240 ° at a position 20 mm from the center (intermediate region of the recording / reproducing region) on both main planes of the glass substrate for magnetic recording medium. Measurements were made at a total of 6 points, and the average value was obtained. The surface roughness Ra of the glass substrate for magnetic recording media obtained by polishing, washing and drying the glass substrates of Examples 1 to 3 was 0.13 nm or less.

Figure 0005585269
Figure 0005585269

本発明は、板形状を有するガラス基板の主平面を、固定砥粒工具を用いて研削する研削工程を有するガラス基板の製造方法に適用できる。板形状を有するガラス基板として、磁気記録媒体用、フォトマスク用、液晶や有機EL等のディスプレイ用、光ピックアップや光学フィルタ等の光学部品用、などのガラス基板が具体的なものとして挙げられる。なお、本発明の実施形態である研磨装置は、両面研削装置でもよいし、片面研削装置でもよい。   INDUSTRIAL APPLICABILITY The present invention can be applied to a method for manufacturing a glass substrate having a grinding process in which a main plane of a glass substrate having a plate shape is ground using a fixed abrasive tool. Specific examples of the glass substrate having a plate shape include a glass substrate for a magnetic recording medium, a photomask, a display such as a liquid crystal or an organic EL, and an optical component such as an optical pickup or an optical filter. The polishing apparatus according to the embodiment of the present invention may be a double-side grinding apparatus or a single-side grinding apparatus.

10:磁気記録媒体用ガラス基板、101:磁気記録媒体用ガラス基板の主平面、102:内周側面、103:外周側面。
20:両面研削装置、30:上側固定砥粒工具の研削面、40:下側固定砥粒工具の研削面、50:キャリア、201:上定盤、202:下定盤、203:サンギア、204:インターナルギア、
60:固定砥粒工具、601:研削面に表出した砥粒、602:砥粒、603:結合剤、
X1:内周側領域の研削面の表面粗さ測定位置、X2:中央領域の研削面の表面粗さ測定位置、X3:外周側領域の研削面の表面粗さ測定位置。
10: glass substrate for magnetic recording medium, 101: main plane of glass substrate for magnetic recording medium, 102: inner peripheral side surface, 103: outer peripheral side surface.
20: Double-side grinding device, 30: Grinding surface of upper fixed abrasive tool, 40: Grinding surface of lower fixed abrasive tool, 50: Carrier, 201: Upper surface plate, 202: Lower surface plate, 203: Sun gear, 204: Internal gear,
60: fixed abrasive tool, 601: abrasive grains exposed on the grinding surface, 602: abrasive grains, 603: binder
X1: Surface roughness measurement position of the grinding surface in the inner peripheral region, X2: Surface roughness measurement position of the grinding surface in the central region, X3: Surface roughness measurement position of the grinding surface in the outer peripheral region.

Claims (8)

板形状を有するガラス素基板の形状付与工程と、前記ガラス素基板の主平面の研削工程と、前記研削工程で研削されたガラス基板の主平面の研磨工程と、前記ガラス基板の洗浄工程と、を有する磁気記録媒体用ガラス基板の製造方法において、
前記研削工程は、ダイヤモンド砥粒、アルミナ砥粒、炭化ケイ素砥粒のいずれか1つ以上の砥粒を含む第1の固定砥粒工具を用いてガラス素基板の主平面を研削する第1研削工程と、
前記第1の固定砥粒工具に含まれる砥粒より小さい平均粒子直径のダイヤモンド砥粒を含む第2の固定砥粒工具を用いてガラス基板の主平面を研削する第2研削工程と、
を有し、
前記第1の固定砥粒工具の研削面は、砥粒が表出しており、触針式の表面粗さ測定機を用いて測定した表面粗さRa が2μm〜8μmであり、前記第2の固定砥粒工具の研削面は、ダイヤモンド砥粒が表出しており、触針式の表面粗さ測定機を用いて測定した表面粗さRa が0.1μm〜2μmであり、
かつ前記第1研削工程におけるガラス基板の加工速度(片面側の主平面)は13μm/min以上であり、前記第2研削工程におけるガラス基板の加工速度(片面側の主平面)は1〜10μm/minであることを特徴とする磁気記録媒体用ガラス基板の製造方法。
A shape imparting step of a glass base substrate having a plate shape, a grinding step of a main plane of the glass base substrate, a polishing step of a main plane of the glass substrate ground in the grinding step, a cleaning step of the glass substrate, In a method for producing a glass substrate for a magnetic recording medium having
In the grinding step, a first grinding is performed in which the main plane of the glass base substrate is ground using a first fixed abrasive tool including at least one of diamond abrasive grains, alumina abrasive grains, and silicon carbide abrasive grains. Process,
A second grinding step of grinding the main plane of the glass substrate using a second fixed abrasive tool containing diamond grains having an average particle diameter smaller than the abrasive grains contained in the first fixed abrasive tool;
I have a,
The ground surface of the first fixed abrasive tool has abrasive grains, and the surface roughness Ra 1 measured using a stylus type surface roughness measuring machine is 2 μm to 8 μm, and the second The ground surface of the fixed abrasive tool is diamond abrasive, and the surface roughness Ra 2 measured using a stylus type surface roughness measuring machine is 0.1 μm to 2 μm,
In addition, the processing speed of the glass substrate in the first grinding step (main surface on one side) is 13 μm / min or more, and the processing speed of the glass substrate in the second grinding step (main surface on one side) is 1-10 μm / min. method of manufacturing a glass substrate for a magnetic recording medium, which is a min.
前記第1の固定砥粒工具の研削面触針式の表面粗さ測定機を用いて測定した表面粗さRzが30μm以下である請求項に記載の磁気記録媒体用ガラス基板の製造方法。 2. The production of a glass substrate for a magnetic recording medium according to claim 1 , wherein the surface roughness Rz 1 measured using a stylus type surface roughness measuring machine of the ground surface of the first fixed abrasive tool is 30 μm or less. Method. 前記第2の固定砥粒工具の研削面触針式の表面粗さ測定機を用いて測定した表面粗さRzが10μm以下である請求項1または2に記載の磁気記録媒体用ガラス基板の製造方法。 The second fixed abrasive glass substrate for a magnetic recording medium according to claim 1 or 2, the surface roughness Rz 2 measured using a surface roughness measuring instrument probe type of the grinding surface of the tool is 10μm or less Manufacturing method. 前記第1の固定砥粒工具に含まれる砥粒の平均粒子直径は7〜50μmである請求項1〜のいずれか1項に記載の磁気記録媒体用ガラス基板の製造方法。 Said first average particle diameter of abrasive grains contained in the fixed-abrasive tool manufacturing method of a glass substrate for a magnetic recording medium according to any one of claims 1 to 3 which is 7~50Myuemu. 前記第2の固定砥粒工具に含まれる砥粒の平均粒子直径は0.1〜6μmである請求項1〜のいずれか1項に記載の磁気記録媒体用ガラス基板の製造方法。 Said second average particle diameter of abrasive grains contained in the fixed-abrasive tool manufacturing method of a glass substrate for a magnetic recording medium according to any one of claims 1 to 4 which is a 0.1~6Myuemu. 前記第1研削工程で研削されたガラス基板は、主平面の加工変質層の深さが35μm以下である請求項1〜のいずれか1項に記載の磁気記録媒体用ガラス基板の製造方法。 The glass substrate which has been ground by the first grinding step, the depth of the damaged layer of the main plane is 35μm or less claim 1 or method of manufacturing a glass substrate for a magnetic recording medium according to one of 5. 前記第2研削工程で研削されたガラス基板は、光干渉計で測定した平坦度が3μm以下である請求項1〜のいずれか1項に記載の磁気記録媒体用ガラス基板の製造方法。 The glass substrate which has been ground in the second grinding step, a method of manufacturing a glass substrate for a magnetic recording medium according to any one of claims 1-6 flatness measured by optical interferometer is 3μm or less. 前記第2研削工程で研削されたガラス基板は、触針式の表面粗さ測定機で測定したときの主平面の表面粗さRaThe glass substrate ground in the second grinding step has a surface roughness Ra of the main plane as measured by a stylus type surface roughness measuring machine. 3 が0.3μm以下である請求項1〜7のいずれか1項に記載の磁気記録媒体用ガラス基板の製造方法。The manufacturing method of the glass substrate for magnetic recording media of any one of Claims 1-7 which is 0.3 micrometer or less.
JP2010165025A 2010-07-22 2010-07-22 Method for manufacturing glass substrate for magnetic recording medium Expired - Fee Related JP5585269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010165025A JP5585269B2 (en) 2010-07-22 2010-07-22 Method for manufacturing glass substrate for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010165025A JP5585269B2 (en) 2010-07-22 2010-07-22 Method for manufacturing glass substrate for magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2012027976A JP2012027976A (en) 2012-02-09
JP5585269B2 true JP5585269B2 (en) 2014-09-10

Family

ID=45780727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010165025A Expired - Fee Related JP5585269B2 (en) 2010-07-22 2010-07-22 Method for manufacturing glass substrate for magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5585269B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201503250RA (en) * 2012-10-31 2015-06-29 Hoya Corp Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP6131749B2 (en) * 2013-07-22 2017-05-24 旭硝子株式会社 Method for polishing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium
SG10202006113YA (en) * 2013-09-28 2020-07-29 Hoya Corp Grinding tool, method for manufacturing glass substrate, method for manufacturing magnetic-disk glass substrate, and method for manufacturing magnetic disk
MY190012A (en) * 2013-09-30 2022-03-22 Hoya Corp Method for manufacturing magnetic-disk glass substrate and method for manufacturing magnetic disk
CN113808627B (en) * 2017-09-29 2023-03-17 Hoya株式会社 Glass spacer and hard disk drive device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191247A (en) * 2000-01-07 2001-07-17 Hoya Corp Both surface grinding method of disc-like substrate, manufacturing method of substrate for information recording medium and manufacturing method of information recording medium
JP2002092867A (en) * 2000-09-21 2002-03-29 Hoya Corp Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium
JP4790973B2 (en) * 2003-03-28 2011-10-12 Hoya株式会社 Method for manufacturing glass substrate for information recording medium using polishing pad and glass substrate for information recording medium obtained by the method
JP2008310897A (en) * 2007-06-15 2008-12-25 Shin Etsu Chem Co Ltd Method for manufacturing substrate for magnetic recording medium
JP4615027B2 (en) * 2008-01-21 2011-01-19 Hoya株式会社 Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium
JP2011156646A (en) * 2010-02-03 2011-08-18 Ohara Inc Glass substrate manufacturing method

Also Published As

Publication number Publication date
JP2012027976A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5454180B2 (en) Manufacturing method of glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
JP5428793B2 (en) Glass substrate polishing method and method for producing glass substrate for magnetic recording medium
JP5056961B2 (en) Glass substrate for magnetic recording medium and method for manufacturing the same
JP2010257562A (en) Substrate for magnetic disk and method for manufacturing the same
JP5585269B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP5853408B2 (en) Manufacturing method of glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
JP2012089221A (en) Method for manufacturing glass substrate for magnetic recording medium
JP4858622B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP5906823B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP2010079948A (en) Method of manufacturing glass substrate for magnetic disk
JP2007102843A (en) Glass substrate for magnetic recording medium and magnetic disk
JP2010080023A (en) Method of manufacturing glass substrate for magnetic disk, and magnetic disk
JP4723341B2 (en) Glass substrate for magnetic recording medium and method for manufacturing magnetic disk
JP6063044B2 (en) Carrier, magnetic disk substrate manufacturing method, and magnetic disk manufacturing method
JP5792932B2 (en) Glass substrate polishing method and glass substrate manufacturing method using the glass substrate polishing method
JP2010238298A (en) Method for manufacturing glass substrate for magnetic disk
JP5510030B2 (en) Manufacturing method of glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
JP5701938B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5310671B2 (en) Glass substrate for magnetic recording medium and method for manufacturing the same
JP2010231841A (en) Method for manufacturing glass substrate, glass substrate and magnetic recording medium
JP2013004114A (en) Support tool and manufacturing method for glass substrate for magnetic recording medium
JP5731245B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2010073243A (en) Method for manufacturing glass substrate for magnetic disk
WO2013099083A1 (en) Method for manufacturing glass substrate for hdd
JP2011216166A (en) Method of working glass substrate for magnetic disk, method of manufacturing the glass substrate for magnetic disk, and method of manufacturing the magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5585269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees