WO2018205827A1 - 一种有机发光显示面板及其显示方法 - Google Patents

一种有机发光显示面板及其显示方法 Download PDF

Info

Publication number
WO2018205827A1
WO2018205827A1 PCT/CN2018/084195 CN2018084195W WO2018205827A1 WO 2018205827 A1 WO2018205827 A1 WO 2018205827A1 CN 2018084195 W CN2018084195 W CN 2018084195W WO 2018205827 A1 WO2018205827 A1 WO 2018205827A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
light emitting
temperature
display panel
sub
Prior art date
Application number
PCT/CN2018/084195
Other languages
English (en)
French (fr)
Inventor
赵利军
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/318,859 priority Critical patent/US11817052B2/en
Publication of WO2018205827A1 publication Critical patent/WO2018205827A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • G09G2300/0866Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation

Definitions

  • the present disclosure relates to an organic light emitting display panel and a display method thereof.
  • AMOLED Active Matrix Organic Light Emitting Diode
  • TFT LCD Thin Film Transistor Liquid Crystal Display
  • AMOLED display panels have begun to gradually replace the traditional LCD display panels.
  • TFT-LCD display panels which use a stable voltage to control brightness
  • AMOLED display panels are current driven and require a constant current to control illumination.
  • Existing OLEDs generally consist of a stacked anode, a luminescent material, and a cathode.
  • the luminescent property of the luminescent material changes significantly with temperature. For example, if the temperature is lowered, the OLED illuminating brightness will be lowered, thereby causing color shift of the illuminating light, thereby affecting the effect of the OLED display panel display.
  • An embodiment of the present invention provides an organic light emitting display panel, including a plurality of light emitting devices, wherein the organic light emitting display panel further includes: a temperature detecting compensation module electrically connected to an anode of each of the light emitting devices; the temperature detecting The compensation module is configured to: detect a temperature of the organic light emitting display panel during a preset detection period; and determine, according to a temperature detected by the temperature detecting module, when determining that the temperature of the organic light emitting display panel is not within a preset temperature range a temperature compensation voltage corresponding to the organic light emitting display panel; and applying the determined temperature compensation voltage to the anode of the light emitting device when the light emitting device emits light.
  • the temperature detection compensation module includes: a signal input sub-module, a voltage storage sub-module, a data processing sub-module, and a compensation input sub-module having the same number as the light-emitting device, and each compensation input The submodule is coupled to the anode of the corresponding light emitting device.
  • the signal input sub-module is respectively connected to the data processing sub-module, the voltage storage sub-module and the compensation input sub-module; the signal input sub-module is configured to: Providing, in the preset detection period, a temperature detection signal output by the data processing sub-module to the voltage storage sub-module, and performing temperature compensation of the output of the data processing sub-module when each of the light-emitting devices emits light a voltage is supplied to the compensation input sub-module;
  • the voltage storage sub-module is further connected to the ground end and configured to be charged or discharged under the control of the ground terminal and the received temperature detection signal;
  • the data processing sub-module is further connected to the voltage storage sub-module, configured to output the temperature detection signal; and when the voltage storage sub-module is discharged, detecting a discharge time of the voltage storage sub-module, according to the detected Determining a temperature of the organic light emitting display panel, and determining, when the temperature of the organic light emitting display panel is not within the preset temperature range, determining a temperature corresponding to the organic light emitting display panel according to the determined temperature a compensation voltage; according to the determined temperature compensation voltage, the determined temperature compensation voltage is applied to the anode of each of the light-emitting devices through a compensation input sub-module corresponding to each of the light-emitting devices;
  • Each of the compensation input sub-modules is configured to input the determined temperature compensation voltage to the anode of the connected light-emitting device when the connected light-emitting device emits light.
  • the signal input sub-module, the voltage storage sub-module, and the compensation input sub-module are located in a display area of the organic light-emitting display panel.
  • the display area includes a plurality of pixel units, a voltage storage sub-module, and a signal input sub-module, each of the pixel units including a light-emitting device and a compensation input sub-module.
  • the data processing sub-module is configured to: detect a discharge time of the voltage storage sub-module when the voltage storage sub-module is discharged, and determine the discharge time according to the detected discharge time a temperature of the display area, when determining that the temperature of the display area is not within the preset temperature range, determining a temperature compensation voltage corresponding to the display area according to the determined temperature; and compensating by each of the light emitting devices
  • An input sub-module applies the determined temperature compensation voltage to the anode of each of the light emitting devices.
  • the display area is divided into a plurality of display sub-areas, each of the display sub-areas includes: at least one pixel unit, one voltage storage sub-module and one signal input sub-module;
  • the pixel unit includes a light emitting device and a compensation input sub-module.
  • the data processing submodule is configured to detect a voltage storage submodule in each of the display subregions when a voltage storage submodule in each of the display subregions is discharged a discharge time, determining a temperature corresponding to each of the display sub-regions according to the detected discharge time of each of the voltage storage sub-modules, and determining that the temperature of the display sub-region is not within the preset temperature range, according to the The temperature corresponding to the display sub-region determines a temperature compensation voltage corresponding to the display sub-region; and the determined temperature compensation voltage is supplied to the anode of each of the light-emitting devices by a compensation input sub-module corresponding to each of the light-emitting devices .
  • the signal input sub-module includes: a first switching transistor; wherein a control electrode of the first switching transistor is connected to an input control signal end, a first pole and the data processing The sub-modules are connected, and the second poles are respectively connected to the voltage storage sub-module and the compensation input sub-module.
  • the compensation input sub-module includes: a second switching transistor; wherein a control electrode of the second switching transistor is connected to a compensation control signal end, a first pole and the signal input The sub-modules are connected, and the second pole is connected to the anode of the corresponding light-emitting device.
  • the voltage storage submodule includes: a first capacitor; wherein a first end of the first capacitor is respectively connected to the signal input submodule and the data processing submodule The second end is connected to the ground.
  • the embodiment of the present invention further provides a display method of an organic light emitting display panel, where the organic light emitting display panel includes a plurality of light emitting devices, wherein the method includes:
  • the determined temperature compensation voltage is supplied to the anode of the light emitting device when the light emitting device emits light.
  • the detecting the temperature of the organic light emitting display panel in a preset detection period comprises: providing a temperature detection signal to the preset detection period a voltage storage submodule for charging and discharging the voltage storage submodule, detecting a discharge time of the voltage storage submodule when the voltage storage submodule is discharged, and determining the organic light emitting display according to the detected discharge time The temperature of the panel.
  • the providing the determined temperature compensation voltage to the anode of the light emitting device includes: a compensation input corresponding to the light emitting device by illumination
  • the sub-module applies the determined temperature compensation voltage to the anode of the light-emitting device that emits light.
  • FIG. 1 is a schematic structural diagram of an organic light emitting display panel according to an embodiment of the present invention.
  • FIG. 2 is a second schematic structural diagram of an organic light emitting display panel according to an embodiment of the present invention.
  • 2b is a third schematic structural diagram of an organic light emitting display panel according to an embodiment of the present invention.
  • 2c is a fourth structural schematic diagram of an organic light emitting display panel according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a pixel compensation circuit according to an embodiment of the present invention.
  • FIG. 4a is a schematic structural diagram of an organic light emitting display panel according to an embodiment of the present invention.
  • 4b is a second schematic structural diagram of an organic light emitting display panel according to an embodiment of the present invention.
  • Figure 5a is a corresponding input timing diagram in the first embodiment
  • Figure 5b is a corresponding input timing diagram in the second embodiment
  • FIG. 6 is a flowchart of a display method according to an embodiment of the present invention.
  • an embodiment of the present invention provides an organic light emitting display panel.
  • the organic light emitting display panel includes a plurality of light emitting devices L.
  • the organic light emitting display panel further includes: an anode respectively connected to each of the light emitting devices L. Electrically connected temperature detection compensation module 10;
  • the temperature detection compensation module 10 is configured to detect the temperature of the organic light emitting display panel within a preset detection period; and when determining that the temperature of the organic light emitting display panel is not within the preset temperature range, determine the organic light emitting display according to the temperature detected by the temperature detecting module 10 The temperature compensation voltage corresponding to the panel; when the light emitting device L emits light, the determined temperature compensation voltage is applied to the anode of the light emitting device L.
  • the temperature detection compensation module is configured to detect the temperature of the organic light-emitting display panel during a preset detection period; and determine that the temperature of the organic light-emitting display panel is not within the preset temperature range.
  • the preset temperature range may be 26.9 ° C to 27.1 ° C, or 26 ° C to 28 ° C.
  • the preset temperature range can be determined according to the actual application environment.
  • the preset detection period may be a time interval of M display frames, where M is an integer greater than or equal to 1.
  • M is an integer greater than or equal to 1.
  • the time of one frame display can be spaced, so that the temperature of the organic light-emitting display panel can be accurately known.
  • the preset detection period can be determined according to the actual application environment.
  • each of the light emitting devices is electrically connected to the temperature detecting compensation module through a one-to-one connected wire.
  • the temperature detecting compensation module is further configured to: when determining that the temperature of the organic light emitting display panel is within a preset temperature range, voltage compensation is not performed on each of the light emitting devices.
  • the temperature detection compensation module may include: a signal input sub-module 11, a voltage storage sub-module 12, a data processing sub-module 13 and
  • the compensation input sub-module 14 is the same as the number of the light-emitting devices L, and each compensation input sub-module 14 is connected to the anode of its corresponding light-emitting device L;
  • the signal input sub-module 11 is respectively connected to the data processing sub-module 13, the voltage storage sub-module 12 and the compensation input sub-modules 14; the signal input sub-module is configured to output the temperature detection signal of the data processing sub-module 13 within a preset detection period.
  • the temperature compensation voltage output by the data processing sub-module 13 is provided to each compensation input sub-module 14;
  • the voltage storage sub-module 12 is also connected to the ground GND, and is charged or discharged under the control of the ground GND and the received temperature detection signal;
  • the data processing sub-module 13 is also connected to the voltage storage sub-module 12 to output a temperature detection signal; when the voltage storage sub-module 12 is discharged, the data processing sub-module 13 detects the discharge time of the voltage storage sub-module 12, according to the detected discharge time. Determining a temperature of the organic light emitting display panel, and determining that the temperature of the organic light emitting display panel is not within the preset temperature range, determining a temperature compensation voltage corresponding to the organic light emitting display panel according to the determined temperature; and determining, according to the determined temperature compensation voltage, Each compensation input sub-module 14 corresponding to each of the light-emitting devices L applies a determined temperature compensation voltage to the anode of each of the light-emitting devices L;
  • Each of the compensation input sub-modules 14 is configured to input a determined temperature compensation voltage to the anode of the light-emitting device L when the light-emitting device L connected to each of the compensation input sub-modules 14 emits light.
  • the temperature detecting and compensating module of the organic light emitting display panel includes: a signal input submodule, a voltage storage submodule, a data processing submodule, and a compensation input submodule connected in one-to-one correspondence with the anodes of the respective light emitting devices;
  • the mutual cooperation of the modules compensates the anode voltage of each of the light-emitting devices when the temperature of the organic light-emitting display panel is not within the preset temperature range, thereby eliminating color shift of the light-emitting device due to temperature change, thereby improving organic light emission.
  • the display panel displays the effect of the screen.
  • the display panel generally includes a display area and a non-display area.
  • the signal input submodule 11 For better compensation of the light emitting device, for example, in the above organic light emitting display panel provided by the embodiment of the present invention, as shown in FIG. 2a to FIG. 2c, the signal input submodule 11.
  • the voltage storage sub-module 12 and the compensation input sub-module 14 are located in the display area AA of the organic light-emitting display panel. Since the temperature in the display area AA is close to the temperature of the environment in which the light-emitting device L is located, the light-emitting device L can be voltage-compensated more accurately.
  • the above modules can also be set in the non-display area. The location of the above module settings can be determined according to the actual application environment.
  • the organic light emitting display panel further includes: a pixel compensation circuit 30 having the same number as the light emitting device L, and each pixel compensation circuit 30 is connected to the anode of its corresponding light-emitting device L.
  • the signal input submodule, the voltage storage submodule, and the compensation input submodule are located in a display area of the organic light emitting display panel
  • the signal input submodule and the voltage storage device are
  • the orthographic projection of the module and the compensation input sub-module on the organic light-emitting display panel may be located in the orthographic projection of the pixel compensation circuit in the organic light-emitting display panel.
  • the positions of the signal input sub-module, the voltage storage sub-module and the compensation input sub-module in the display area of the organic light-emitting display panel can be determined according to the actual application environment design.
  • the data processing sub-module may be located in a display area of the organic light emitting display panel, or may be located in a non-display area of the organic light emitting display panel, or may be located in the organic light emitting display panel.
  • the printed circuit board may also be located on a flexible circuit board of the organic light emitting display panel. The specific location of the data processing sub-module can be determined and determined according to the actual application environment.
  • the display area of the small-sized organic light-emitting display panel is small, and thus the temperature in the display area may be relatively uniform.
  • the display area AA includes a plurality of pixel units 20, a voltage storage sub-module 12, and a signal input sub-module 11, each pixel unit 20 There is a light emitting device L and a compensation input sub-module 14.
  • the data processing sub-module 13 is configured to: when the voltage storage sub-module 12 is discharged, detect the discharge time of the voltage storage sub-module 12, determine the temperature of the display area AA according to the detected discharge time, and determine that the temperature of the display area AA is not preset. When the temperature is within the range, the temperature compensation voltage corresponding to the display area AA is determined according to the determined temperature; and the determined temperature compensation voltage is supplied to the compensation input sub-module 14 corresponding to each of the light-emitting devices L according to the determined temperature compensation voltage. The anode of each of the light-emitting devices L.
  • the display area of the large and medium-sized organic light-emitting display panel is large, and thus the temperature in the display area may be uneven.
  • the above organic light emitting display panel provided by the embodiment of the present invention as shown in FIG. 2b and FIG. 2c (each display sub-region in FIG. 2b includes two pixel units, and each display sub-region in FIG.
  • each display sub-area aa_n may include: at least one pixel unit 20, one voltage storage sub-module 12 and a signal input sub-module 11; each pixel unit 20 has a light-emitting device L and a compensation input sub-module 14;
  • the data processing sub-module 13 is configured to detect the discharge time of the voltage storage sub-module 12 in each display sub-area aa_n when the voltage storage sub-module 12 in each display sub-area aa_n is discharged; and store the sub-module according to the detected voltages
  • the discharge time of 12 determines the temperature corresponding to each display sub-area aa_n; for each display sub-area aa_n, when it is determined that the temperature of the display sub-area aa_n is not within the preset temperature range, the display sub-area aa_n is determined according to the temperature corresponding to the display sub-area aa_n Corresponding temperature compensation voltage; according to the determined temperature compensation voltage, the determined temperature compensation voltage is applied to the anode of each of the light-emitting devices L through the compensation input sub-module 14 corresponding to each of the light-emitting devices L.
  • the pixel compensation circuit may include: a data writing module 31, a reset module 32, an initialization module 33, a compensation control module 34, and a storage module 35.
  • the data writing module 31 is respectively connected to the scanning signal terminal Scan and the data signal terminal Data, and is connected to the first node A for providing the signal of the data signal terminal Data to the first node A under the control of the scanning signal terminal Scan.
  • the reset module 32 is respectively connected to the reset signal terminal Re, the first power terminal VDD, and the first node A.
  • the reset module 32 supplies the signal of the first power terminal VDD to the first node A under the control of the reset signal terminal Re.
  • the initialization module 33 is connected to the reset signal terminal Re, the initialization signal terminal Vinit, and the control electrode G of the driving transistor M0.
  • the initialization module 33 supplies the signal of the initialization signal terminal Vinit to the gate electrode G of the drive transistor M0 under the control of the reset signal terminal Re.
  • the compensation control module 34 is connected to the scan signal terminal Scan, the control electrode G of the drive transistor M0, and the second pole D of the drive transistor M0, respectively.
  • the compensation control module 34 turns on the gate electrode G and the second pole D of the driving transistor M0 under the control of the scanning signal terminal Scan.
  • the memory module 35 is connected to the first node A and the gate G of the driving transistor M0, respectively.
  • the memory module 35 charges or discharges under the control of the signal of the first node A and the signal of the gate G of the driving transistor M0, and maintains the first node A and the driving when the gate G of the driving transistor M0 is in the floating state. The voltage difference between the gates G of the transistor M0 is stabilized.
  • the illumination control module 36 is respectively connected to the illumination control signal terminal EM, the reference signal terminal Vref, the first node A, the second pole D of the driving transistor M0, and the anode of the light emitting device L; the cathode of the light emitting device L is connected to the second power terminal VSS.
  • the illumination control module 36 supplies the signal of the reference signal terminal Vref to the first node A under the control of the illumination control signal terminal EM, and turns on the second pole D of the driving transistor M0 and the anode of the light emitting device L to make the connected illumination Device L illuminates.
  • the pixel compensation circuit includes: a data writing module, a reset module, a compensation control module, a memory module, an illumination control module, and a driving transistor; and the mutual interaction between the modules and the driving transistor
  • the operating current of the driving transistor to drive the light emitting device can be related only to the voltage of the data signal terminal and the voltage of the reference signal terminal, and the threshold voltage of the driving transistor and the voltage of the first power terminal can be eliminated, and the threshold voltage and IR of the driving transistor can be eliminated.
  • the effect of the drop on the operating current flowing through the light-emitting device maintains the operating current for driving the light-emitting device to be stable, thereby improving the uniformity of the brightness of the display area in the organic light-emitting display panel.
  • the above is only a description of the structure of the pixel compensation circuit provided by the embodiment of the present invention.
  • the structure of the pixel compensation circuit is not limited to the above-described structure provided by the embodiment of the present invention, and may be other structures, which are not limited herein.
  • the pixel compensation circuit when the temperature detection compensation module detects the temperature of the organic light emitting display panel, the pixel compensation circuit can be controlled to drive the light emitting device to be connected, or the pixel compensation circuit can be controlled.
  • Work that is, the light-emitting device that does not drive the connection emits light.
  • the working state of the pixel compensation circuit can be determined according to the actual application environment design.
  • the driving transistor M0 may be a P-type transistor.
  • the gate of the P-type transistor is the gate G of the driving transistor M0
  • the source of the P-type transistor is the first pole S of the driving transistor M0
  • the drain of the P-type transistor is the second pole D of the driving transistor M0. Its current flows from the first pole S of the driving transistor M0 to its second pole D.
  • the voltage V dd of the corresponding first power terminal is generally a positive value
  • the voltage V ss of the second power terminal is generally grounded or negative.
  • the following is an example in which the voltage V ss of the second power supply terminal is grounded as an example.
  • the driving transistor may also be an N-type transistor.
  • the gate of the N-type transistor is the gate of the drive transistor
  • the drain of the N-type transistor is the first pole of the drive transistor
  • the source of the N-type transistor is the second pole of the drive transistor. Its current flows from the first pole of the drive transistor to its second pole.
  • the light emitting device is generally an organic electroluminescent diode that emits light under the action of a current when the driving transistor is in a saturated state.
  • the above organic light emitting display panel may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • Other indispensable components of the organic light-emitting display panel are understood by those skilled in the art, and are not described herein, nor should they be construed as limiting the invention.
  • each of the display sub-regions includes a pixel unit, a voltage storage sub-module and a signal input sub-module as an example, and the present invention will be described in detail in conjunction with specific embodiments. It should be noted that the present invention is intended to better explain the present invention, but does not limit the present invention.
  • the signal input sub-module 11 may include: a first switching transistor M1;
  • the control electrode of the first switching transistor M1 is connected to the input control signal terminal VG, the first electrode is connected to the data processing sub-module 13, and the second electrode is connected to the voltage storage sub-module 12 and the compensation input sub-module 14, respectively.
  • the first switching transistor M1 may be a P-type transistor; or, as shown in FIG. 4b, the first switching transistor M1 may also be N. Type transistor.
  • the specific structure of the first switching transistor can be determined according to the actual application environment, which is not limited herein.
  • the temperature detection signal output by the data processing sub-module is supplied to the voltage storage sub-module;
  • the voltage of the signal input to the control signal terminal is set to cause the first switching transistor to generate a leakage current phenomenon; and when the input control signal terminal is in the on state, the data processing device is turned on.
  • the temperature compensation voltage output by the module is supplied to the compensation input submodule.
  • the compensation input sub-module 14 may include: a second switching transistor M2;
  • the control electrode of the second switching transistor M2 is connected to the compensation control signal terminal VS, the first electrode is connected to the signal input sub-module 11, and the second electrode is connected to the anode of the corresponding light-emitting device L.
  • the second switching transistor M2 may be a P-type transistor; or, as shown in FIG. 4b, the second switching transistor M2 may also be N. Type transistor.
  • the structure of the second switching transistor can be determined according to the actual application environment, which is not limited herein.
  • the second switching transistor when the second switching transistor is in an on state under the control of the compensation control signal end, the corresponding temperature compensation voltage outputted by the signal input submodule is applied to the corresponding illumination.
  • the anode of the device when the second switching transistor is in an on state under the control of the compensation control signal end, the corresponding temperature compensation voltage outputted by the signal input submodule is applied to the corresponding illumination.
  • the anode of the device when the second switching transistor is in an on state under the control of the compensation control signal end, the corresponding temperature compensation voltage outputted by the signal input submodule is applied to the corresponding illumination.
  • the voltage storage sub-module 12 may include: a first capacitor C1;
  • the first end of the first capacitor C1 is connected to the signal input sub-module 11 and the data processing sub-module 13, respectively, and the second end is connected to the ground GND.
  • the first capacitor is charged under the control of the temperature detection signal, and the voltage after the completion of the charging of the first capacitor is V 0 ; and then the signal of the input control signal terminal is set.
  • the voltage causes the first switching transistor to generate a leakage current, so that the first capacitor is discharged through the first switching transistor, and the voltage after the completion of the discharging is V t ; the time taken for the first capacitor to discharge from V 0 to V t is the discharging time.
  • the semiconductor material of the active layer of the switching transistor changes with temperature, that is, the active layer of the first switching transistor increases with temperature, causing the leakage current of the first switching transistor to increase, so that the first capacitor is at different temperatures
  • the discharge time is different.
  • the data processing sub-module 13 may include a microprocessor MCU;
  • the output of the microprocessor MCU is connected to the signal input sub-module 11 and the receiving end is connected to the voltage storage sub-module 12.
  • the microprocessor may be a chip circuit that combines software programs and hardware. And the structure of the microprocessor can adopt conventional techniques, and will not be described herein.
  • the data writing module 31 may include: a third switching transistor M3;
  • the control electrode of the third switching transistor M3 is connected to the scanning signal terminal Scan, the first pole is connected to the data signal terminal Data, and the second pole is connected to the first node A.
  • the third switching transistor M3 may be a P-type transistor; or, as shown in FIG. 4b, the third switching transistor M3 may also be N. Type transistor.
  • the structure of the third switching transistor can be determined according to the actual application environment, which is not limited herein.
  • the third switching transistor when the third switching transistor is in an on state under the control of the signal of the scanning signal end, the signal of the data signal end is supplied to the first node.
  • the reset module 32 may include: a fourth switching transistor M4;
  • the control electrode of the fourth switching transistor M4 is connected to the reset signal terminal Re, the first pole is connected to the first power terminal VDD, and the second pole is connected to the first node A.
  • the fourth switching transistor M4 may be a P-type transistor; or, as shown in FIG. 4b, the fourth switching transistor M4 may also be N. Type transistor.
  • the structure of the fourth switching transistor can be determined according to the actual application environment, which is not limited herein.
  • the fourth switching transistor when the fourth switching transistor is in an on state under the control of the signal at the reset signal end, the signal of the first power terminal is supplied to the first node.
  • the initialization module 33 may include: a fifth switching transistor M5;
  • the control electrode of the fifth switching transistor M5 is connected to the reset signal terminal Re, the first electrode of the fifth switching transistor M5 is connected to the initialization signal terminal Vinit, and the second electrode of the fifth switching transistor M5 is connected to the control electrode G of the driving transistor M0.
  • the fifth switching transistor M5 may be a P-type transistor; or, as shown in FIG. 4b, the fifth switching transistor M5 may also be N. Type transistor.
  • the structure of the fifth switching transistor can be determined according to the actual application environment, which is not limited herein.
  • the fifth switching transistor when the fifth switching transistor is in an on state under the control of the signal at the reset signal terminal, the signal of the initialization signal terminal is supplied to the control electrode of the driving transistor.
  • the compensation control module 34 may include: a sixth switching transistor M6;
  • the control electrode of the sixth switching transistor M6 is connected to the scanning signal terminal Scan, the first electrode of the sixth switching transistor M6 is connected to the control electrode G of the driving transistor M0, the second electrode of the sixth switching transistor M6 is connected to the second electrode of the driving transistor M0.
  • the pole D is connected.
  • the sixth switching transistor M6 may be a P-type transistor; or, as shown in FIG. 4b, the sixth switching transistor M6 may also be N. Type transistor.
  • the structure of the sixth switching transistor can be determined according to the actual application environment, which is not limited herein.
  • the control electrode of the driving transistor and the second electrode of the driving transistor may be turned on.
  • the drive transistor is placed in a diode connection state.
  • the light-emitting control module 36 may include: a seventh switching transistor M7 and an eighth switching transistor M8;
  • the control electrode of the seventh switching transistor M7 is connected to the light-emitting control signal terminal EM, the first pole is connected to the reference signal terminal Vref, and the second pole is connected to the first node A;
  • the control electrode of the eighth switching transistor M8 is connected to the light emission control signal terminal EM, the first electrode of the eighth switching transistor M8 is connected to the second electrode D of the driving transistor M0, and the second electrode of the eighth switching transistor M8 is connected to the corresponding light emitting device.
  • the anode of L is connected.
  • the seventh switching transistor M7 and the eighth switching transistor M8 may be P-type transistors; or, as shown in FIG. 4b, the seventh switch The transistor M7 and the eighth switching transistor M8 may also be N-type transistors.
  • the structure of the seventh switching transistor and the eighth switching transistor can be determined according to the actual application environment, which is not limited herein.
  • the reference signal terminal and the first node may be turned on to reference the signal.
  • the signal of the terminal is provided to the first node.
  • the eighth switching transistor is in an on state under the control of the signal of the light emission control signal end, the second electrode of the driving transistor and the corresponding light emitting device may be turned on, thereby supplying the current of the second pole of the driving transistor to the corresponding light emitting device To drive the corresponding light emitting device to emit light.
  • the memory module 35 may include: a second capacitor C2;
  • the first end of the second capacitor C2 is connected to the first node A, and the second end is connected to the gate G of the driving transistor M0.
  • the second capacitor is charged under the control of the signal of the first node and the signal of the control electrode of the driving transistor, and the signal of the first node and the control of the driving transistor are controlled.
  • the discharge is performed under the control of the pole signal, and the voltage difference between the first node and the control electrode of the drive transistor is kept stable when the control electrode of the drive transistor is in the floating state.
  • each module in the organic light-emitting display panel provided by the embodiment of the present invention.
  • the structure of the above-mentioned module may also be other structures, which are not limited herein.
  • all of the switching transistors may be P-type transistors.
  • all of the switching transistors may be N-type transistors, which are not limited herein.
  • the driving transistor M0 is a P-type transistor
  • all of the switching transistors are P-type transistors. In this way, the process of each switching transistor in the pixel compensation circuit of the organic light emitting display panel can be unified, and the manufacturing process flow can be simplified.
  • the driving transistor when the driving transistor is an N-type transistor, all of the switching transistors are N-type transistors. In this way, the process of each switching transistor in the pixel compensation circuit of the organic light emitting display panel can be unified, and the manufacturing process flow can be simplified.
  • the P-type transistor is turned off under a high potential and turned on under a low potential; the N-type transistor is turned on under a high potential, and is under a low potential. cutoff.
  • the driving transistor and each switching transistor may be a thin film transistor (TFT) or a metal oxide semiconductor field effect transistor (MOS). Metal Oxide Semiconductor) is not limited here.
  • each of the switching transistor control electrodes serves as a gate, and the first and second poles thereof may have a first pole as a source or a drain and a second pole according to a type of each switching transistor and a signal at a signal terminal.
  • the drain or the source is not limited herein.
  • the driving transistor and each switching transistor are MOS transistors as an example.
  • the input timing diagram corresponding to the structure of the organic light emitting display panel shown in FIG. 4a is as shown in FIG. 5a.
  • the temperature detection phase T1 in the preset detection period in the input timing chart shown in FIG. 5a and the display phase T2 after the temperature detection phase T1 are selected; wherein the temperature detection phase T1 performs temperature detection, and the pixel compensation circuit does not work.
  • the display phase T2 pixel compensation circuit works in three stages: T21, T22, and T23.
  • VC in Figure 5a represents the voltage at which the first capacitor C1 is charged and discharged.
  • the turned-on first switching transistor M1 supplies the temperature detection signal VX output from the microprocessor MCU to the first terminal of the first capacitor C1 to charge the first capacitor C1. After the charging of the first capacitor C1 is completed, the voltage of the first capacitor C1 is V 0 .
  • the discharge time t and V t of the first capacitor C1 satisfy the discharge formula: Where R is an external resistor, the resistor can be disposed in the microprocessor MCU, and C is the capacitance of the first capacitor C1. It can be seen from the formula that the microprocessor MCU can determine the discharge time t of the first capacitor C1 by detecting the voltage of the first capacitor C1, thereby realizing the function of detecting the discharge time t of the first capacitor C1.
  • the microprocessor MCU can determine the temperature of the organic light emitting display panel according to the detected discharge time t, and when determining that the temperature of the organic light emitting display panel is not within the preset temperature range, for example, determining that the temperature of the organic light emitting display panel is not at 26.9 ° C. Between 27.1 ° C, the temperature compensation voltage TX corresponding to the organic light emitting display panel is determined according to the determined temperature; and the determined temperature compensation is performed by the second switching transistor M2 corresponding to the light emitting device L according to the determined temperature compensation voltage TX A voltage TX is applied to the anode of the light emitting device L.
  • the turned-on fourth switching transistor M4 supplies the signal of the first power terminal VDD to the first node A, so the voltage of the first node A is V dd , that is, the voltage of the first terminal of the second capacitor C2 is V dd .
  • the turned-on fifth switching transistor M5 supplies the signal of the initialization signal terminal Vinit to the gate G of the driving transistor M0, so the voltage of the gate G of the driving transistor M0, that is, the second terminal of the second capacitor C2 is the initialization signal terminal Vinit The voltage of the signal V init .
  • the turned-on third switching transistor M3 supplies the signal of the data signal terminal Data to the first node A, so the voltage of the first node A is the voltage V data of the signal of the data signal terminal Data, that is, the first end of the second capacitor C2. The voltage is V data .
  • the turned-on sixth switching transistor M6 turns on the gate G of the driving transistor M0 and the drain D of the driving transistor M0, so that the driving transistor M0 is in a diode-connected state, so that the first power terminal VDD passes through the driving transistor M0 to the second capacitor.
  • C2 is charged until the gate G of the driving transistor M0, that is, the voltage at the second terminal of the second capacitor C2 becomes V dd + Vth ; V th represents the threshold voltage of the driving transistor M0. Therefore, the voltage difference across the second capacitor C2 is: V dd +V th -V data .
  • the turned-on seventh switching transistor M7 supplies the signal of the reference signal terminal Vref to the first node A, so the voltage of the first node A is V ref .
  • the second capacitor C2 maintains the voltage difference across it still: V dd +V th -V data , so the voltage of the second terminal of the second capacitor C2 is V dd + V th jumps to V dd +V th -V data +V ref , that is, the voltage of the gate G of the driving transistor M0 is: V dd +V th -V data +V ref .
  • the driving transistor M0 is in a saturated state, and the voltage of the source of the driving transistor M0 is V dd .
  • the first switching transistor M1 turned on at this time supplies the temperature compensation voltage TX outputted by the microprocessor MCU to the source of the second switching transistor M2, and the second switching transistor M2 that turns on supplies the temperature compensation voltage TX to the connected light.
  • the anode of the device L is such that a certain voltage is applied to the anode of the light-emitting device L when the temperature of the organic light-emitting display panel is not between 26.9 ° C and 27.1 ° C.
  • the light-emitting luminance of the light-emitting device L at this time is as close as possible to the luminance of the organic light-emitting display panel in the range of 26.9 ° C to 27.1 ° C, whereby the screen display effect of the organic light-emitting display panel can be improved.
  • the formula by the above-described I L satisfies seen that current driving transistor M0 is saturated only related to the voltage V data voltage V ref and the data signal terminal Data reference signal terminal Vref, and the driving transistor M0 the threshold voltage V th And the voltage V dd of the first power terminal VDD is independent.
  • the threshold voltage Vth drift caused by the process of the driving transistor M0 and the long-time operation, and the influence of the IR drop on the current flowing through the light-emitting device L can be solved, thereby keeping the operating current of the light-emitting device L stable, further ensuring The organic light emitting display panel works normally.
  • Embodiment 1 of the present invention can perform voltage compensation on the anode voltage of the light emitting device when each of the light emitting devices emits light for each of the light emitting devices, thereby eliminating the color shift phenomenon generated when the light emitting device changes in temperature, thereby improving the organic light emitting display.
  • the panel displays the effect of the screen.
  • the above-mentioned pixel compensation circuit can also solve the drift of the threshold voltage Vth due to the process process of the driving transistor and the long-time operation, and the influence of the IR Drop on the current flowing through the light-emitting device L, so that the operating current of the light-emitting device L is maintained. Stable, can further ensure that the organic light-emitting display panel works normally.
  • the input timing diagram corresponding to the structure of the organic light emitting display panel shown in FIG. 4a is as shown in FIG. 5b.
  • the temperature detection phase T1 in the preset detection period in the input timing chart shown in FIG. 5b and the display phase T2 after the temperature detection phase T1 are selected; wherein the temperature detection phase T1 performs temperature detection, and the pixel compensation circuit does not work.
  • the display phase T2 pixel compensation circuit works in three stages: T21, T22, and T23.
  • VC in Figure 5b represents the voltage at which the first capacitor C1 is charged and discharged.
  • the discharge time t and V t of the first capacitor C1 satisfy the discharge formula: Where R is an external resistor, the resistor can be disposed in the microprocessor MCU, and C is the capacitance of the first capacitor C1. It can be seen from the formula that the microprocessor MCU can determine the discharge time t of the first capacitor C1 by detecting the voltage of the first capacitor C1, thereby realizing the function of detecting the discharge time t of the first capacitor C1.
  • the microprocessor MCU can determine the temperature of the organic light emitting display panel according to the detected discharge time t, and when determining that the temperature of the organic light emitting display panel is within a preset temperature range, for example, determining that the temperature of the organic light emitting display panel is 26.9 ° C.
  • the temperature compensation voltage corresponding to the organic light emitting display panel is not determined, that is, the anode of the light emitting device L is not subjected to voltage compensation.
  • the working process is basically the same as the working process of the T21 phase in the first embodiment, and will not be repeated here.
  • the turned-on seventh switching transistor M7 supplies the signal of the reference signal terminal Vref to the first node A, so the voltage of the first node A is V ref .
  • the second capacitor C2 maintains the voltage difference across it still: V dd +V th -V data , so the voltage of the second terminal of the second capacitor C2 is V dd + V th jumps to V dd +V th -V data +V ref , that is, the voltage of the gate G of the driving transistor M0 is: V dd +V th -V data +V ref .
  • the driving transistor M0 is in a saturated state, and the voltage of the source of the driving transistor M0 is V dd .
  • Equation via the I L satisfies seen that current driving transistor M0 is saturated only related to the voltage V data voltage V ref and the data signal terminal Data reference signal terminal V ref, and the driving transistor M0 the threshold voltage V th And the voltage V dd of the first power terminal VDD is independent. Therefore, the threshold voltage Vth drift caused by the process of the driving transistor M0 and the long-time operation, and the influence of the IR drop on the current flowing through the light-emitting device L can be solved, thereby keeping the operating current of the light-emitting device L stable, further ensuring The organic light emitting display panel works normally.
  • the above pixel compensation circuit can also solve the threshold voltage Vth drift caused by the process of the driving transistor and the long-time operation, and the influence of the IR Drop on the current flowing through the light emitting device L, thereby keeping the operating current of the light emitting device L stable.
  • the organic light emitting display panel can be further ensured to work normally.
  • an embodiment of the present invention further provides a display method of any one of the above-mentioned organic light-emitting display panels according to an embodiment of the present invention.
  • the organic light-emitting display panel includes a plurality of light-emitting devices, as shown in FIG. include:
  • the display method of the above-mentioned organic light-emitting display panel detects the temperature of the organic light-emitting display panel in a preset detection period; when it is determined that the temperature of the organic light-emitting display panel is not within the preset temperature range, according to the detection
  • the temperature of the organic light emitting display panel determines a temperature compensation voltage corresponding to the organic light emitting display panel; thereby, according to the determined temperature compensation voltage, when the light emitting device emits light, the determined temperature compensation voltage is applied to the light emitting
  • the anode of the light-emitting device is voltage-compensated for the anode voltage of the light-emitting device, thereby eliminating the color shift phenomenon that occurs when the light-emitting device changes in temperature, thereby improving the effect of the display screen of the organic light-emitting display panel.
  • the preset temperature range may be 26.9 ° C to 27.1 ° C, or 26 ° C to 28 ° C.
  • the preset temperature range can be determined according to the actual application environment.
  • the preset detection period may be a time interval of M display frames, where M is an integer greater than or equal to 1.
  • the display frame time can be separated by one, so that the temperature of the organic light-emitting display panel can be accurately known.
  • the preset detection period can be determined according to the actual application environment, and is not limited herein.
  • detecting the temperature of the organic light emitting display panel in the preset detection period may include: providing the temperature detection signal to the voltage storage submodule in the preset detection period, and causing the voltage storage The sub-module is charged and discharged.
  • the discharge time of the voltage storage sub-module is detected, and the temperature of the organic light-emitting display panel is determined according to the detected discharge time;
  • Applying the determined temperature compensation voltage to the anode of the light emitting device includes applying a determined temperature compensation voltage to the anode of the light emitting light emitting device by a compensation input sub-module corresponding to the light emitting device that emits light.
  • the organic light emitting display panel and the display method thereof are provided by the embodiment of the invention, and the temperature of the organic light emitting display panel can be detected in a preset detection period by setting a temperature detection compensation module; determining that the temperature of the organic light emitting display panel is not preset When the temperature range is within, determining a temperature compensation voltage corresponding to the organic light emitting display panel according to the detected temperature of the organic light emitting display panel; thereby, when each of the light emitting devices emits light, applying the determined temperature compensation voltage to the light emitting light.
  • the anode of the device is voltage-compensated for the anode voltage of the light-emitting device, thereby eliminating the color shift phenomenon caused by the temperature change of the light-emitting device, thereby improving the display effect of the organic light-emitting display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种有机发光显示面板及其显示方法,通过设置温度检测补偿模块(10),可以在预设检测周期内检测该有机发光显示面板的温度;在确定该有机发光显示面板的温度不在预设温度范围内时,根据检测到的该有机发光显示面板的温度确定该有机发光显示面板对应的温度补偿电压;在每一个发光器件(L)发光时,将确定出的温度补偿电压施加到该发光的发光器件(L)的阳极,以对发光器件(L)的阳极电压进行电压补偿,从而可以消除发光器件(L)在温度变化时出现的色偏现象,进而改善有机发光显示面板显示画面的效果。

Description

一种有机发光显示面板及其显示方法 技术领域
本公开涉及一种有机发光显示面板及其显示方法。
背景技术
随着显示技术的进步,越来越多的有源矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode,AMOLED)显示面板进入市场,与传统的晶体管液晶显示面板(Thin Film Transistor Liquid Crystal Display,TFT LCD)相比,其具有低能耗、生产成本低、自发光、宽视角及响应速度快等优点。目前,在手机、掌上电脑(Personal Digital Assistant,PDA)、数码相机等显示领域,AMOLED显示面板已经开始逐步取代传统的LCD显示面板。与TFT-LCD显示面板利用稳定的电压控制亮度不同,AMOLED显示面板属于电流驱动,需要稳定的电流来控制发光。现有的OLED一般由层叠设置的阳极、发光材料以及阴极组成。发光材料的发光特性随温度变化明显,例如,温度降低,OLED发光亮度将会降低,从而导致发光产生色偏,进而影响OLED显示面板画面显示的效果。
发明内容
本发明实施例提供一种有机发光显示面板,包括多个发光器件,其中,所述有机发光显示面板还包括:分别与各所述发光器件的阳极电连接的温度检测补偿模块;所述温度检测补偿模块配置为:在预设检测周期内检测所述有机发光显示面板的温度;在确定所述有机发光显示面板的温度不在预设温度范围内时,根据所述温度检测模块检测到的温度确定所述有机发光显示面板对应的温度补偿电压;在所述发光器件发光时,将所述确定出的温度补偿电压施加到所述发光器件的所述阳极。
根据本发明的一种实施方式,例如,所述温度检测补偿模块包括:信号输入子模块、电压存储子模块、数据处理子模块以及与发光器件数量相同的补偿输入子模块,并且每一补偿输入子模块与其对应的所述发光器件的所述 阳极连接。
根据本发明的一种实施方式,例如,所述信号输入子模块分别与所述数据处理子模块、所述电压存储子模块以及所述补偿输入子模块相连;所述信号输入子模块配置为:在所述预设检测周期内将所述数据处理子模块输出的温度检测信号提供给所述电压存储子模块,以及在各所述发光器件发光时,将所述数据处理子模块输出的温度补偿电压提供给所述补偿输入子模块;
所述电压存储子模块还与接地端相连,配置为在所述接地端与接收的所述温度检测信号的控制下充电或放电;
所述数据处理子模块还与所述电压存储子模块相连,配置为输出所述温度检测信号;在所述电压存储子模块放电时,检测所述电压存储子模块的放电时间,根据检测到的放电时间确定所述有机发光显示面板的温度,并在确定所述有机发光显示面板的温度不在所述预设温度范围内时,根据所述确定出的温度确定所述有机发光显示面板对应的温度补偿电压;根据确定出的温度补偿电压,通过各所述发光器件对应的补偿输入子模块将所述确定出的温度补偿电压施加到各所述发光器件的所述阳极;
各所述补偿输入子模块配置为:在连接的发光器件发光时向所述连接的发光器件的所述阳极输入所述确定出的温度补偿电压。
根据本发明的一种实施方式,例如,所述信号输入子模块、所述电压存储子模块以及所述补偿输入子模块位于所述有机发光显示面板的显示区域。
根据本发明的一种实施方式,例如,所述显示区域包括多个像素单元、一个电压存储子模块以及一个信号输入子模块,各所述像素单元包括一个发光器件与一个补偿输入子模块。
根据本发明的一种实施方式,例如,所述数据处理子模块配置为:在所述电压存储子模块放电时,检测所述电压存储子模块的放电时间,根据检测到的放电时间确定所述显示区域的温度,在确定所述显示区域的温度不在所述预设温度范围内时,根据所述确定出的温度确定所述显示区域对应的温度补偿电压;通过各所述发光器件对应的补偿输入子模块将所述确定出的温度补偿电压施加到各所述发光器件的所述阳极。
根据本发明的一种实施方式,例如,所述显示区域划分为多个显示子区域,各所述显示子区域包括:至少一个像素单元,一个电压存储子模块以及 一个信号输入子模块;各所述像素单元包括一个发光器件与一个补偿输入子模块。
根据本发明的一种实施方式,例如,所述数据处理子模块配置为:在各所述显示子区域中的电压存储子模块放电时,检测各所述显示子区域中的电压存储子模块的放电时间,根据检测到的各所述电压存储子模块的放电时间确定各所述显示子区域对应的温度,在确定所述显示子区域的温度不在所述预设温度范围内时,根据所述显示子区域对应的温度确定所述显示子区域对应的温度补偿电压;通过各所述发光器件对应的补偿输入子模块将所述确定出的温度补偿电压提供给各所述发光器件的所述阳极。
根据本发明的一种实施方式,例如,所述信号输入子模块包括:第一开关晶体管;其中,所述第一开关晶体管的控制极与输入控制信号端相连,第一极与所述数据处理子模块相连,第二极分别与所述电压存储子模块以及所述补偿输入子模块相连。
根据本发明的一种实施方式,例如,所述补偿输入子模块包括:第二开关晶体管;其中,所述第二开关晶体管的控制极与补偿控制信号端相连,第一极与所述信号输入子模块相连,第二极与对应的所述发光器件的所述阳极相连。
根据本发明的一种实施方式,例如,所述电压存储子模块包括:第一电容;其中,所述第一电容的第一端分别与所述信号输入子模块以及所述数据处理子模块相连,第二端与所述接地端相连。
本发明实施例还提供一种如前所述有机发光显示面板的显示方法,所述有机发光显示面板包括多个发光器件,其中,所述方法包括:
在预设检测周期内检测所述有机发光显示面板的温度;
在所述有机发光显示面板的温度不在预设温度范围内时,根据所述温度检测模块检测到的温度确定所述有机发光显示面板对应的温度补偿电压;
在所述发光器件发光时,将所述确定出的温度补偿电压提供给所述发光器件的所述阳极。
根据本发明的一种实施方式,在上述方法中,例如,所述在预设检测周期内检测所述有机发光显示面板的温度包括:在所述预设检测周期内将温度检测信号提供给所述电压存储子模块,使所述电压存储子模块充电与放电, 在所述电压存储子模块放电时,检测所述电压存储子模块的放电时间,根据检测到的放电时间确定所述有机发光显示面板的温度。
根据本发明的一种实施方式,在上述方法中,例如,所述将所述确定出的温度补偿电压提供给所述发光器件的所述阳极包括:通过发光的所述发光器件对应的补偿输入子模块将所述确定出的温度补偿电压施加到发光的所述发光器件的所述阳极。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明实施例提供的有机发光显示面板的结构示意图之一;
图2a为本发明实施例提供的有机发光显示面板的结构示意图之二;
图2b为本发明实施例提供的有机发光显示面板的结构示意图之三;
图2c为本发明实施例提供的有机发光显示面板的结构示意图之四;
图3为本发明实施例提供的像素补偿电路的结构示意图;
图4a为本发明实施例提供的有机发光显示面板的结构示意图之一;
图4b为本发明实施例提供的有机发光显示面板的结构示意图之二;
图5a为实施例一中对应的输入时序图;
图5b为实施例二中对应的输入时序图;
图6为本发明实施例提供的显示方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种有机发光显示面板,如图1至图2c所示,该有机发光显示面板包括多个发光器件L,该有机发光显示面板还包括:分别与 各发光器件L的阳极电连接的温度检测补偿模块10;
温度检测补偿模块10配置为在预设检测周期内检测有机发光显示面板的温度;在确定有机发光显示面板的温度不在预设温度范围内时,根据温度检测模块10检测到的温度确定有机发光显示面板对应的温度补偿电压;在发光器件L发光时,将确定出的温度补偿电压施加到发光器件L的阳极。
在本发明实施例提供的上述有机发光显示面板中,设置的温度检测补偿模块在预设检测周期内检测该有机发光显示面板的温度;确定该有机发光显示面板的温度不在预设温度范围内时,根据检测到的该有机发光显示面板的温度确定该有机发光显示面板对应的温度补偿电压;最后,在每一个发光器件发光时,将确定出的温度补偿电压施加到该发光的发光器件的阳极,以对发光器件的阳极电压进行电压补偿,从而可以消除发光器件由于温度变化而产生的色偏现象,进而改善有机发光显示面板显示画面的效果。
例如,在本发明实施例提供的上述有机发光显示面板中,预设温度范围可以为26.9℃~27.1℃,或者为26℃~28℃。当然,预设温度范围可以根据实际应用环境来确定。
例如,在本发明实施例提供的上述有机发光显示面板中,预设检测周期可以为间隔M个显示帧的时间,其中M为大于或等于1的整数。例如,可以间隔1个显示帧的时间,这样可以精确地获知有机发光显示面板的温度。或者也可以间隔5个显示帧的时间,这样可以降低有机发光显示面板的功耗。预设检测周期可以根据实际应用环境来确定。
例如,在本发明实施例提供的上述有机发光显示面板中,各发光器件通过一一对应连接的导线与温度检测补偿模块电连接。
例如,在本发明实施例提供的上述有机发光显示面板中,温度检测补偿模块还配置为:在确定有机发光显示面板的温度在预设温度范围内时,不对各发光器件进行电压补偿。
例如,在本发明实施例提供的上述有机发光显示面板中,如图2a至图2c所示,温度检测补偿模块可以包括:信号输入子模块11、电压存储子模块12、数据处理子模块13以及与发光器件L数量相同的补偿输入子模块14,并且每一补偿输入子模块14与其对应的发光器件L的阳极连接;其中,
信号输入子模块11分别与数据处理子模块13、电压存储子模块12以及 各补偿输入子模块14相连;信号输入子模块配置为在预设检测周期内将数据处理子模块13输出的温度检测信号提供给电压存储子模块12,以及在各发光器件L发光时,将数据处理子模块13输出的温度补偿电压提供给各补偿输入子模块14;
电压存储子模块12还与接地端GND相连,在接地端GND和接收的温度检测信号的控制下充电或放电;
数据处理子模块13还与电压存储子模块12相连,以输出温度检测信号;在电压存储子模块12放电时,数据处理子模块13检测电压存储子模块12的放电时间,根据检测到的放电时间确定有机发光显示面板的温度,并在确定有机发光显示面板的温度不在预设温度范围内时,根据确定出的温度确定有机发光显示面板对应的温度补偿电压;根据确定出的温度补偿电压,通过各发光器件L对应的各补偿输入子模块14,将确定出的温度补偿电压施加到各发光器件L的阳极;
各补偿输入子模块14配置为:在与各补偿输入子模块14连接的发光器件L发光时,向上述发光器件L的阳极输入确定出的温度补偿电压。
本发明实施例提供的上述有机发光显示面板的温度检测补偿模块包括:信号输入子模块、电压存储子模块、数据处理子模块以及与各发光器件的阳极一一对应连接的补偿输入子模块;通过这些模块的相互配合,在有机发光显示面板的温度不在预设温度范围内时,对每一发光器件的阳极电压进行补偿,从而可以消除由于温度变化引起的发光器件的色偏,进而改善有机发光显示面板显示画面的效果。
显示面板一般包括显示区域与非显示区域,为了较好地对发光器件进行补偿,例如,在本发明实施例提供的上述有机发光显示面板中,如图2a至图2c所示,信号输入子模块11、电压存储子模块12以及补偿输入子模块14位于有机发光显示面板的显示区域AA。由于显示区域AA中的温度与发光器件L所处环境的温度较接近,从而可以较准确地对发光器件L进行电压补偿。当然上述模块也可以设置在非显示区域。上述模块设置的位置可以根据实际应用环境来设计确定。
例如,在本发明实施例提供的上述有机发光显示面板中,如图2a至图2c所示,有机发光显示面板还包括:与发光器件L数量相同的像素补偿电路 30,并且每一像素补偿电路30与其对应的发光器件L的阳极连接。
例如,在本发明实施例提供的上述有机发光显示面板中,当信号输入子模块、电压存储子模块以及补偿输入子模块位于有机发光显示面板的显示区域时,上述信号输入子模块、电压存储子模块以及补偿输入子模块在有机发光显示面板的正投影可以位于像素补偿电路在有机发光显示面板的正投影内。上述信号输入子模块、电压存储子模块以及补偿输入子模块在有机发光显示面板的显示区域中的位置可以根据实际应用环境设计确定。
例如,在本发明实施例提供的上述有机发光显示面板中,数据处理子模块可以位于有机发光显示面板的显示区域,或者可以位于有机发光显示面板的非显示区域,或者也可以位于有机发光显示面板的印刷电路板,或者也可以位于有机发光显示面板的柔性电路板上。数据处理子模块的具体位置可以根据实际应用环境来设计确定。
小尺寸的有机发光显示面板的显示区域面积较小,因此显示区域中的温度可能较均匀。例如,在本发明实施例提供的上述有机发光显示面板中,如图2a所示,显示区域AA包括多个像素单元20、一个电压存储子模块12以及一个信号输入子模块11,各像素单元20具有一个发光器件L与一个补偿输入子模块14。
数据处理子模块13配置为:在电压存储子模块12放电时,检测电压存储子模块12的放电时间,根据检测到的放电时间确定显示区域AA的温度,在确定显示区域AA的温度不在预设温度范围内时,根据确定出的温度确定显示区域AA对应的温度补偿电压;根据确定出的温度补偿电压,通过各发光器件L对应的补偿输入子模块14,将确定出的温度补偿电压提供给各发光器件L的阳极。
大中尺寸的有机发光显示面板的显示区域面积较大,因此显示区域中的温度可能不均匀。例如,在本发明实施例提供的上述有机发光显示面板中,如图2b与图2c(图2b中每个显示子区域包括两个像素单元,图2c中每个显示子区域包括一个像素单元)所示,显示区域AA划分为多个显示子区域aa_n(n=1、2、3…N,N为正整数),各显示子区域aa_n可以包括:至少一个像素单元20,一个电压存储子模块12以及一个信号输入子模块11;各像素单元20具有一个发光器件L与一个补偿输入子模块14;
数据处理子模块13配置为:在各显示子区域aa_n中的电压存储子模块12放电时,检测各显示子区域aa_n中的电压存储子模块12的放电时间;根据检测到的各电压存储子模块12的放电时间确定各显示子区域aa_n对应的温度;针对各显示子区域aa_n,在确定显示子区域aa_n的温度不在预设温度范围内时,根据显示子区域aa_n对应的温度确定显示子区域aa_n对应的温度补偿电压;根据确定出的温度补偿电压,通过各发光器件L对应的补偿输入子模块14将确定出的温度补偿电压施加到各发光器件L的阳极。
例如,在本发明实施例提供的上述有机发光显示面板中,如图3所示,像素补偿电路可以包括:数据写入模块31、复位模块32、初始化模块33、补偿控制模块34、存储模块35、发光控制模块36以及驱动晶体管M0;其中,驱动晶体管M0的第一极S与第一电源端VDD相连,驱动晶体管M0的第二极D与对应的发光器件L的阳极相连。
数据写入模块31分别与扫描信号端Scan、数据信号端Data,第一节点A相连,用于在扫描信号端Scan的控制下将数据信号端Data的信号提供给第一节点A。
复位模块32分别与复位信号端Re、第一电源端VDD以及第一节点A相连。复位模块32在复位信号端Re的控制下将第一电源端VDD的信号提供给第一节点A。
初始化模块33分别与复位信号端Re、初始化信号端Vinit、驱动晶体管M0的控制极G相连。初始化模块33在复位信号端Re的控制下将初始化信号端Vinit的信号提供给驱动晶体管M0的控制极G。
补偿控制模块34分别与扫描信号端Scan、驱动晶体管M0的控制极G以及驱动晶体管M0的第二极D相连。补偿控制模块34在扫描信号端Scan的控制下导通驱动晶体管M0的控制极G与第二极D。
存储模块35分别与第一节点A以及驱动晶体管M0的控制极G相连。存储模块35在第一节点A的信号与驱动晶体管M0的控制极G的信号的控制下进行充电或放电,以及在驱动晶体管M0的控制极G处于浮接状态时,保持第一节点A与驱动晶体管M0的控制极G之间的电压差稳定。
发光控制模块36分别与发光控制信号端EM、参考信号端Vref、第一节点A、驱动晶体管M0的第二极D以及发光器件L的阳极相连;发光器件L 的阴极与第二电源端VSS相连;发光控制模块36在发光控制信号端EM的控制下将参考信号端Vref的信号提供给第一节点A,以及导通驱动晶体管M0的第二极D与发光器件L的阳极,使连接的发光器件L发光。
在本发明实施例提供的上述有机发光显示面板中,像素补偿电路包括:数据写入模块、复位模块、补偿控制模块、存储模块、发光控制模块以及驱动晶体管;通过上述各模块与驱动晶体管的相互配合,可以使驱动晶体管驱动发光器件发光的工作电流仅与数据信号端的电压和参考信号端的电压有关,而与驱动晶体管的阈值电压和第一电源端的电压无关,可以消除驱动晶体管的阈值电压与IR Drop对流过发光器件的工作电流的影响,从而使驱动发光器件发光的工作电流保持稳定,进而提高有机发光显示面板中显示区域画面亮度的均匀性。以上仅是举例说明本发明实施例提供的像素补偿电路的结构。像素补偿电路的结构不限于本发明实施例提供的上述结构,还可以是其他结构,在此不作限定。
例如,在本发明实施例提供的上述像素补偿电路中,在温度检测补偿模块检测有机发光显示面板的温度的时间内,可以控制像素补偿电路驱动连接的发光器件发光,也可以控制像素补偿电路不工作,即不驱动连接的发光器件发光。像素补偿电路的工作状态可以根据实际应用环境设计确定。
例如,在本发明实施例提供的上述像素补偿电路中,如图3所示,驱动晶体管M0可以为P型晶体管。该P型晶体管的栅极为驱动晶体管M0的控制极G、该P型晶体管的源极为驱动晶体管M0的第一极S、该P型晶体管的漏极为驱动晶体管M0的第二极D。其电流从驱动晶体管M0的第一极S流向其第二极D。为了保证驱动晶体管M0能正常工作,对应的第一电源端的电压V dd一般为正值,第二电源端的电压V ss一般接地或为负值。以下均是以第二电源端的电压V ss接地为例进行说明。
例如,在发明实施例提供的上述像素补偿电路中,驱动晶体管也可以为N型晶体管。该N型晶体管的栅极为驱动晶体管的控制极、该N型晶体管的漏极为驱动晶体管的第一极、该N型晶体管的源极为驱动晶体管的第二极。其电流从驱动晶体管的第一极流向其第二极。
例如,在本发明实施例提供的上述有机发光显示面板中,发光器件一般为有机电致发光二极管,其在驱动晶体管处于饱和状态时的电流的作用下发 光。
例如,本发明实施例提供的上述有机发光显示面板可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该有机发光显示面板的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。
下面以每个显示子区域包括一个像素单元,一个电压存储子模块以及一个信号输入子模块为例,结合具体实施例,对本发明进行详细说明。需要说明的是,本实施例中是为了更好的解释本发明,但不限制本发明。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a与图4b所示,信号输入子模块11可以包括:第一开关晶体管M1;其中,
第一开关晶体管M1的控制极与输入控制信号端VG相连,第一极与数据处理子模块13相连,第二极分别与电压存储子模块12以及补偿输入子模块14相连。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a所示,第一开关晶体管M1可以为P型晶体管;或者,如图4b所示,第一开关晶体管M1也可以为N型晶体管。第一开关晶体管的具体结构可以根据实际应用环境来确定,在此不作限定。
例如,在本发明实施例提供的上述有机发光显示面板中,第一开关晶体管在输入控制信号端的控制下处于导通状态时,将数据处理子模块输出的温度检测信号提供给电压存储子模块;在输入控制信号端的控制下处于截止状态时,通过设置输入控制信号端的信号的电压以使第一开关晶体管产生漏电流现象;以及在输入控制信号端的控制下处于导通状态时,将数据处理子模块输出的温度补偿电压提供给补偿输入子模块。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a与图4b所示,补偿输入子模块14可以包括:第二开关晶体管M2;其中,
第二开关晶体管M2的控制极与补偿控制信号端VS相连,第一极与信号输入子模块11相连,第二极与对应的发光器件L的阳极相连。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a所示,第二开关晶体管M2可以为P型晶体管;或者,如图4b所示,第二开关晶体 管M2也可以为N型晶体管。第二开关晶体管的结构可以根据实际应用环境来设计确定,在此不作限定。
例如,在本发明实施例提供的上述有机发光显示面板中,第二开关晶体管在补偿控制信号端的控制下处于导通状态时,将信号输入子模块输出的对应的温度补偿电压施加到对应的发光器件的阳极。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a与图4b所示,电压存储子模块12可以包括:第一电容C1;其中,
第一电容C1的第一端分别与信号输入子模块11以及数据处理子模块13相连,第二端与接地端GND相连。
例如,在本发明实施例提供的上述有机发光显示面板中,第一电容在温度检测信号的控制下进行充电,第一电容充电完成后的电压为V 0;之后通过设置输入控制信号端的信号的电压使第一开关晶体管产生漏电流,从而使第一电容通过第一开关晶体管进行放电,放电完成后的电压为V t;第一电容从V 0放电至V t所用的时间即为放电时间。根据开关晶体管的有源层的半导体材料随温度变化的特性,即第一开关晶体管的有源层随温度升高、导致第一开关晶体管的漏电流增加的特性,使得第一电容在不同的温度下的放电时间不同。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a与图4b所示,数据处理子模块13可以包括微处理器MCU;其中,
微处理器MCU的输出端与信号输入子模块11相连,接收端与电压存储子模块12相连。
例如,在本发明实施例提供的上述有机发光显示面板中,微处理器可以为采用软件程序与硬件相互结合的芯片电路。并且微处理器的结构可以采用常规技术,在此不做赘述。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a与图4b所示,数据写入模块31可以包括:第三开关晶体管M3;其中,
第三开关晶体管M3的控制极与扫描信号端Scan相连,第一极与数据信号端Data相连,第二极与第一节点A相连。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a所示,第三开关晶体管M3可以为P型晶体管;或者,如图4b所示,第三开关晶体 管M3也可以为N型晶体管。第三开关晶体管的结构可以根据实际应用环境来设计确定,在此不作限定。
例如,在本发明实施例提供的上述有机发光显示面板中,第三开关晶体管在扫描信号端的信号的控制下处于导通状态时,将数据信号端的信号提供给第一节点。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a与图4b所示,复位模块32可以包括:第四开关晶体管M4;其中,
第四开关晶体管M4的控制极与复位信号端Re相连,第一极与第一电源端VDD相连,第二极与第一节点A相连。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a所示,第四开关晶体管M4可以为P型晶体管;或者,如图4b所示,第四开关晶体管M4也可以为N型晶体管。第四开关晶体管的结构可以根据实际应用环境来设计确定,在此不作限定。
例如,在本发明实施例提供的上述有机发光显示面板中,第四开关晶体管在复位信号端的信号的控制下处于导通状态时,将第一电源端的信号提供给第一节点。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a与图4b所示,初始化模块33可以包括:第五开关晶体管M5;其中,
第五开关晶体管M5的控制极与复位信号端Re相连,第五开关晶体管M5的第一极与初始化信号端Vinit相连,第五开关晶体管M5的第二极与驱动晶体管M0的控制极G相连。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a所示,第五开关晶体管M5可以为P型晶体管;或者,如图4b所示,第五开关晶体管M5也可以为N型晶体管。第五开关晶体管的结构可以根据实际应用环境来确定,在此不作限定。
例如,在本发明实施例提供的上述有机发光显示面板中,第五开关晶体管在复位信号端的信号的控制下处于导通状态时,将初始化信号端的信号提供给驱动晶体管的控制极。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a与图4b所示,补偿控制模块34可以包括:第六开关晶体管M6;其中,
第六开关晶体管M6的控制极与扫描信号端Scan相连,第六开关晶体管M6的第一极与驱动晶体管M0的控制极G相连,第六开关晶体管M6的第二极与驱动晶体管M0的第二极D相连。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a所示,第六开关晶体管M6可以为P型晶体管;或者,如图4b所示,第六开关晶体管M6也可以为N型晶体管。第六开关晶体管的结构可以根据实际应用环境来设计确定,在此不作限定。
例如,在本发明实施例提供的上述有机发光显示面板中,第六开关晶体管在扫描信号端的信号的控制下处于导通状态时,可以导通驱动晶体管的控制极与驱动晶体管的第二极,使驱动晶体管处于二极管连接状态。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a与图4b所示,发光控制模块36可以包括:第七开关晶体管M7与第八开关晶体管M8;其中,
第七开关晶体管M7的控制极与发光控制信号端EM相连,第一极与参考信号端Vref相连,第二极与第一节点A相连;
第八开关晶体管M8的控制极与发光控制信号端EM相连,第八开关晶体管M8的第一极与驱动晶体管M0的第二极D相连,第八开关晶体管M8的第二极与对应的发光器件L的阳极相连。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a所示,第七开关晶体管M7与第八开关晶体管M8可以为P型晶体管;或者,如图4b所示,第七开关晶体管M7与第八开关晶体管M8也可以为N型晶体管。第七开关晶体管与第八开关晶体管的结构可以根据实际应用环境来设计确定,在此不作限定。
例如,在本发明实施例提供的上述有机发光显示面板中,第七开关晶体管在发光控制信号端的信号的控制下处于导通状态时,可以导通参考信号端与第一节点,以将参考信号端的信号提供给第一节点。第八开关晶体管在发光控制信号端的信号的控制下处于导通状态时,可以导通驱动晶体管的第二极与对应的发光器件,从而将驱动晶体管的第二极的电流提供给对应的发光器件,以驱动对应的发光器件发光。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a与图 4b所示,存储模块35可以包括:第二电容C2;其中,
第二电容C2的第一端与第一节点A相连,第二端与驱动晶体管M0的控制极G相连。
例如,在本发明实施例提供的上述有机发光显示面板中,第二电容在第一节点的信号与驱动晶体管的控制极的信号的控制下进行充电,在第一节点的信号与驱动晶体管的控制极的信号的控制下进行放电,在驱动晶体管的控制极处于浮接状态时,保持第一节点与驱动晶体管的控制极之间的电压差稳定。
以上仅是举例说明本发明实施例提供的有机发光显示面板中各模块的具体结构,上述模块的结构还可以是其他结构,在此不作限定。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a所示,所有的开关晶体管可以均为P型晶体管。或如图4b所示,所有的开关晶体管可以均为N型晶体管,在此不作限定。
例如,在本发明实施例提供的上述有机发光显示面板中,如图4a所示,在驱动晶体管M0为P型晶体管时,所有开关晶体管为P型晶体管。这样可以使有机发光显示面板的像素补偿电路中的各开关晶体管的工艺统一,简化制作工艺流程。
例如,在本发明实施例提供的上述有机发光显示面板中,在驱动晶体管为N型晶体管时,所有开关晶体管为N型晶体管。这样可以使有机发光显示面板的像素补偿电路中的各开关晶体管的工艺统一,简化制作工艺流程。
例如,在本发明实施例提供的上述有机发光显示面板中,P型晶体管在高电位作用下截止,在低电位作用下导通;N型晶体管在高电位作用下导通,在低电位作用下截止。
需要说明的是,在本发明实施例提供的上述有机发光显示面板中,驱动晶体管以及各开关晶体管可以是薄膜晶体管(TFT,Thin Film Transistor),也可以是金属氧化物半导体场效应管(MOS,Metal Oxide Semiconductor),在此不作限定。例如,各开关晶体管控制极作为栅极,并且其第一极和第二极根据各开关晶体管的类型以及信号端的信号的不同,可以将第一极作为源极或漏极,以及将第二极作为漏极或源极,在此不作限定。在描述具体实施例时,均是以驱动晶体管和各开关晶体管为MOS管为例进行说明的。
下面以图4a所示的有机发光显示面板中的结构为例,结合电路时序图对本发明实施例提供的上述有机发光显示面板的工作过程作以描述。下述描述中以1表示高电位,0表示低电位。需要说明的是,1和0是逻辑电位,其仅是为了更好的解释本发明实施例的工作过程,而不是施加在各开关晶体管的栅极上的实际电位。
实施例一
如图4a所示,假设有机发光显示面板的温度不在预设温度范围内。如图4a所示的有机发光显示面板的结构对应的输入时序图如图5a所示。例如,选取如图5a所示的输入时序图中的预设检测周期内的温度检测阶段T1与温度检测阶段T1之后的显示阶段T2;其中,温度检测阶段T1进行温度检测,像素补偿电路不工作,显示阶段T2像素补偿电路工作,分为T21、T22、T23三个阶段。图5a中VC代表第一电容C1充电与放电的电压。
在T1阶段,VS=1、VG=0、Re=1、Scan=1、EM=1。
由于VG=0,因此第一开关晶体管M1导通。由于VS=1,因此第二开关晶体管M2截止。由于Re=1,因此第四开关晶体管M4与第五开关晶体管M5均截止。由于Scan=1,因此第三开关晶体管M3与第六开关晶体管M6均截止。由于EM=1,因此第七开关晶体管M7与第八开关晶体管M8均截止。导通的第一开关晶体管M1将微处理器MCU输出的温度检测信号VX提供给第一电容C1的第一端,对第一电容C1进行充电。在第一电容C1充电完成后,第一电容C1的电压为V 0
之后,VS=1、VG=1、Re=1、Scan=1、EM=1。
由于VS=1,因此第二开关晶体管M2截止。由于Re=1,因此第四开关晶体管M4与第五开关晶体管M5均截止。由于Scan=1,因此第三开关晶体管M3与第六开关晶体管M6均截止。由于EM=1,因此第七开关晶体管M7与第八开关晶体管M8均截止。由于VG=1,第一开关晶体管M1产生漏电流;在第一开关晶体管M1的漏电流以及温度检测信号VX的电位变为低电位的影响下,第一电容C1放电,最终第一电容C1经过放电时间t放电为V t。第一电容C1的放电时间t与V t满足放电公式:
Figure PCTCN2018084195-appb-000001
其中,R为外接电阻,该电阻可以设置在微处理器MCU中,C为第一电容C1的电容量。 通过该公式可以看出,微处理器MCU可以通过检测第一电容C1的电压,来确定第一电容C1的放电时间t,从而实现检测第一电容C1的放电时间t的功能。
微处理器MCU可以根据检测到的放电时间t确定有机发光显示面板的温度,并在确定有机发光显示面板的温度不在预设温度范围内时,例如,确定有机发光显示面板的温度不在26.9℃~27.1℃之间时,根据确定出的温度确定有机发光显示面板对应的温度补偿电压TX;再根据确定出的温度补偿电压TX,通过发光器件L对应的第二开关晶体管M2将确定出的温度补偿电压TX施加到该发光器件L的阳极。
在显示阶段T2的T21阶段,VS=1、VG=1、Re=0、Scan=1、EM=1。
由于Re=0,第四开关晶体管M4与第五开关晶体管M5均导通。由于VG=1,第一开关晶体管M1截止。由于VS=1,第二开关晶体管M2截止。由于Scan=1,第三开关晶体管M3与第六开关晶体管M6均截止。由于EM=1,第七开关晶体管M7与第八开关晶体管M8均截止。导通的第四开关晶体管M4将第一电源端VDD的信号提供给第一节点A,因此第一节点A的电压为V dd,即第二电容C2的第一端的电压为V dd。导通的第五开关晶体管M5将初始化信号端Vinit的信号提供给驱动晶体管M0的栅极G,因此驱动晶体管M0的栅极G,即第二电容C2的第二端的电压为初始化信号端Vinit的信号的电压V init
在T22阶段,VS=1、VG=1、Re=1、Scan=0、EM=1。
由于Scan=0,第三开关晶体管M3与第六开关晶体管M6均导通。由于Re=1,第四开关晶体管M4与第五开关晶体管M5均截止。由于VG=1,第一开关晶体管M1截止。由于VS=1,第二开关晶体管M2截止。由于EM=1,第七开关晶体管M7与第八开关晶体管M8均截止。导通的第三开关晶体管M3将数据信号端Data的信号提供给第一节点A,因此第一节点A的电压为数据信号端Data的信号的电压V data,即第二电容C2的第一端的电压为V data。导通的第六开关晶体管M6导通驱动晶体管M0的栅极G与驱动晶体管M0的漏极D,使驱动晶体管M0处于二极管连接状态,以使第一电源端VDD通过驱动晶体管M0向第二电容C2进行充电,直至驱动晶体管M0的栅极G,即第二电容C2的第二端的电压变为V dd+V th时为止;V th代表驱动晶体管M0 的阈值电压。因此,第二电容C2两端的电压差为:V dd+V th-V data
在T23阶段,VS=0、VG=0、Re=1、Scan=1、EM=0。
由于EM=0,第七开关晶体管M7与第八开关晶体管M8均导通。由于VG=0,第一开关晶体管M1导通。由于VS=0,第二开关晶体管M2导通。由于Scan=1,第三开关晶体管M3与第六开关晶体管M6均截止。由于Re=1,第四开关晶体管M4与第五开关晶体管M5均截止。导通的第七开关晶体管M7将参考信号端Vref的信号提供给第一节点A,因此第一节点A的电压为V ref。由于驱动晶体管M0的栅极G处于浮接状态,第二电容C2为了保持其两端的电压差仍为:V dd+V th-V data,因此第二电容C2的第二端的电压由V dd+V th跳变为V dd+V th-V data+V ref,即驱动晶体管M0的栅极G的电压为:V dd+V th-V data+V ref。此时驱动晶体管M0处于饱和状态,驱动晶体管M0源极的电压为V dd,根据饱和状态电流特性可知,驱动发光器件L发光的电流I L满足公式:I L=K(V GS-V th) 2=K[(V dd+V th-V data+V ref-V dd)-V th] 2=K(V ref-V data) 2;其中,V GS为驱动晶体管M0的栅源电压;K为结构参数,相同结构中此数值相对稳定,可以算作常量。此时导通的第一开关晶体管M1将微处理器MCU输出的温度补偿电压TX提供给第二开关晶体管M2的源极,导通的第二开关晶体管M2将温度补偿电压TX提供给连接的发光器件L的阳极,从而在有机发光显示面板的温度不在26.9℃~27.1℃之间时,对发光器件L的阳极施加一定的电压。以使此时发光器件L的发光亮度尽可能接近有机发光显示面板的温度处于26.9℃~27.1℃范围内的发光亮度,从而可以提高有机发光显示面板的画面显示效果。并且通过上述I L满足的公式可知,驱动晶体管M0处于饱和状态时的电流仅与参考信号端Vref的电压V ref和数据信号端Data的电压V data相关,而与驱动晶体管M0的阈值电压V th以及第一电源端VDD的电压V dd无关。从而可以解决由于驱动晶体管M0的工艺制程以及长时间的操作造成的阈值电压V th漂移,以及IR Drop对流过发光器件L的电流的影响,从而使发光器件L的工作电流保持稳定,进一步保证了有机发光显示面板正常工作。
本发明实施例一可以针对每一个发光器件,在每一个发光器件发光时,对发光器件的阳极电压进行电压补偿,从而可以消除发光器件在温度变化时 产生的色偏现象,进而改善有机发光显示面板显示画面的效果。并且由于上述像素补偿电路还可以解决由于驱动晶体管的工艺制程以及长时间的操作造成的阈值电压V th漂移,以及IR Drop对流过发光器件L的电流的影响,从而使发光器件L的工作电流保持稳定,可以进一步保证有机发光显示面板正常工作。
实施例二
如图4a所示,假设有机发光显示面板的温度在预设温度范围内。如图4a所示的有机发光显示面板的结构对应的输入时序图如图5b所示。例如,选取如图5b所示的输入时序图中的预设检测周期内的温度检测阶段T1与温度检测阶段T1之后的显示阶段T2;其中,温度检测阶段T1进行温度检测,像素补偿电路不工作,显示阶段T2像素补偿电路工作,分为T21、T22、T23三个阶段。图5b中VC代表第一电容C1充电与放电的电压。
在T1阶段,VS=1、VG=0、Re=1、Scan=1、EM=1。工作过程与实施例一中的T1阶段的工作过程基本相同,在此不再重复。
之后,VS=1、VG=1、Re=1、Scan=1、EM=1。
由于VS=1,第二开关晶体管M2截止。由于Re=1,第四开关晶体管M4与第五开关晶体管M5均截止。由于Scan=1,第三开关晶体管M3与第六开关晶体管M6均截止。由于EM=1,第七开关晶体管M7与第八开关晶体管M8均截止。由于VG=1,第一开关晶体管M1产生漏电流,在第一开关晶体管M1的漏电流以及温度检测信号VX的电位变为低电位的影响下,第一电容C1放电,最终第一电容C1经过放电时间t放电为V t。第一电容C1的放电时间t与V t满足放电公式:
Figure PCTCN2018084195-appb-000002
其中,R为外接电阻,该电阻可以设置在微处理器MCU中,C为第一电容C1的电容量。通过该公式可以看出,微处理器MCU可以通过检测第一电容C1的电压,来确定第一电容C1的放电时间t,从而实现检测第一电容C1的放电时间t的功能。
微处理器MCU可以根据检测到的放电时间t确定有机发光显示面板的温度,并在确定有机发光显示面板的温度在预设温度范围内时,例如,确定有机发光显示面板的温度在26.9℃~27.1℃范围内时,不确定有机发光显示面板对应的温度补偿电压,即不对发光器件L的阳极进行电压补偿。
在显示阶段T2的T21阶段,VS=1、VG=1、Re=0、Scan=1、EM=1。工作过程与实施例一中的T21阶段的工作过程基本相同,在此不再重复。
在T22阶段,VS=1、VG=1、Re=1、Scan=0、EM=1。工作过程与实施例一中的T22阶段的工作过程基本相同,在此不再重复。
在T23阶段,VS=0、VG=0、Re=1、Scan=1、EM=0。
由于EM=0,第七开关晶体管M7与第八开关晶体管M8均导通。由于VG=0,第一开关晶体管M1导通。由于VS=0,第二开关晶体管M2导通。由于Scan=1,第三开关晶体管M3与第六开关晶体管M6均截止。由于Re=1,第四开关晶体管M4与第五开关晶体管M5均截止。导通的第七开关晶体管M7将参考信号端Vref的信号提供给第一节点A,因此第一节点A的电压为V ref。由于驱动晶体管M0的栅极G处于浮接状态,第二电容C2为了保持其两端的电压差仍为:V dd+V th-V data,因此第二电容C2的第二端的电压由V dd+V th跳变为V dd+V th-V data+V ref,即驱动晶体管M0的栅极G的电压为:V dd+V th-V data+V ref。此时驱动晶体管M0处于饱和状态,驱动晶体管M0源极的电压为V dd,根据饱和状态电流特性可知,驱动发光器件L发光的电流I L满足公式:I L=K(V GS-V th) 2=K[(V dd+V th-V data+V ref-V dd)-V th] 2=K(V ref-V data) 2;其中,V GS为驱动晶体管M0的栅源电压;K为结构参数,相同结构中此数值相对稳定,可以算作常量。通过上述I L满足的公式可知,驱动晶体管M0处于饱和状态时的电流仅与参考信号端V ref的电压V ref和数据信号端Data的电压V data相关,而与驱动晶体管M0的阈值电压V th以及第一电源端VDD的电压V dd无关。从而可以解决由于驱动晶体管M0的工艺制程以及长时间的操作造成的阈值电压V th漂移,以及IR Drop对流过发光器件L的电流的影响,从而使发光器件L的工作电流保持稳定,进一步保证了有机发光显示面板正常工作。
本发明实施例二,在检测到的有机发光显示面板的温度满足预设温度范围时,不对发光器件的阳极电压进行电压补偿,从而可以避免消耗额外的功耗。并且上述像素补偿电路还可以解决由于驱动晶体管的工艺制程以及长时间的操作造成的阈值电压V th漂移,以及IR Drop对流过发光器件L的电流的影响,从而使发光器件L的工作电流保持稳定,可以进一步保证有机发光 显示面板正常工作。
基于同一发明构思,本发明实施例还提供了一种本发明实施例提供的上述任一种有机发光显示面板的显示方法,有机发光显示面板包括多个发光器件,如图6所示,该方法包括:
S601、在预设检测周期内检测有机发光显示面板的温度;
S602、在有机发光显示面板的温度不在预设温度范围内时,根据温度检测模块检测到的温度确定有机发光显示面板对应的温度补偿电压;
S603、根据确定出的温度补偿电压,在发光器件发光时,将确定出的温度补偿电压施加到发光器件的阳极。
本发明实施例提供的上述有机发光显示面板的显示方法,在预设检测周期内检测该有机发光显示面板的温度;在确定该有机发光显示面板的温度不在预设温度范围内时,根据检测到的该有机发光显示面板的温度确定该有机发光显示面板对应的温度补偿电压;从而可以根据确定出的温度补偿电压,在每一个发光器件发光时,将确定出的温度补偿电压施加到该发光的发光器件的阳极,以对发光器件的阳极电压进行电压补偿,从而可以消除发光器件在温度变化时出现的色偏现象,进而改善有机发光显示面板显示画面的效果。
例如,在本发明实施例提供的上述显示方法中,预设温度范围可以为26.9℃~27.1℃,或者为26℃~28℃。当然,在实际应用中,预设温度范围可以根据实际应用环境来设计确定。
例如,在本发明实施例提供的上述显示方法中,预设检测周期可以为间隔M个显示帧的时间,其中M为大于或等于1的整数。例如,可以间隔1个显示帧时间,这样可以精确的获知有机发光显示面板的温度。或者也可以间隔5个显示帧时间,这样可以降低有机发光显示面板功耗。预设检测周期可以根据实际应用环境来确定,在此不作限定。
例如,在本发明实施例提供的上述显示方法中,在预设检测周期内检测有机发光显示面板的温度可以包括:在预设检测周期内将温度检测信号提供给电压存储子模块,使电压存储子模块充电与放电,在电压存储子模块放电时,检测电压存储子模块的放电时间,根据检测到的放电时间确定有机发光显示面板的温度;
将确定出的温度补偿电压施加到发光器件的阳极,包括:通过发光的发 光器件对应的补偿输入子模块将确定出的温度补偿电压施加到发光的发光器件的阳极。
本发明实施例提供的有机发光显示面板及其显示方法,通过设置温度检测补偿模块,可以在预设检测周期内检测该有机发光显示面板的温度;在确定该有机发光显示面板的温度不在预设温度范围内时,根据检测到的该有机发光显示面板的温度确定该有机发光显示面板对应的温度补偿电压;从而在每一个发光器件发光时,将确定出的温度补偿电压施加到该发光的发光器件的阳极,以对发光器件的阳极电压进行电压补偿,从而可以消除发光器件在温度变化时产生的色偏现象,进而改善有机发光显示面板显示画面的效果。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2017年5月11日递交的中国专利申请第201710329211.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (14)

  1. 一种有机发光显示面板,包括多个发光器件,其中,所述有机发光显示面板还包括:分别与各所述发光器件的阳极电连接的温度检测补偿模块;
    所述温度检测补偿模块配置为:在预设检测周期内检测所述有机发光显示面板的温度;在确定所述有机发光显示面板的温度不在预设温度范围内时,根据所述温度检测模块检测到的温度确定所述有机发光显示面板对应的温度补偿电压;在所述发光器件发光时,将所述确定出的温度补偿电压施加到所述发光器件的所述阳极。
  2. 如权利要求1所述的有机发光显示面板,其中,所述温度检测补偿模块包括:信号输入子模块、电压存储子模块、数据处理子模块以及与发光器件数量相同的补偿输入子模块,并且每一补偿输入子模块与其对应的所述发光器件的所述阳极连接。
  3. 如权利要求2所述的有机发光显示面板,其中,
    所述信号输入子模块分别与所述数据处理子模块、所述电压存储子模块以及所述补偿输入子模块相连;所述信号输入子模块配置为:在所述预设检测周期内将所述数据处理子模块输出的温度检测信号提供给所述电压存储子模块,以及在各所述发光器件发光时,将所述数据处理子模块输出的温度补偿电压提供给所述补偿输入子模块;
    所述电压存储子模块还与接地端相连,配置为在所述接地端与接收的所述温度检测信号的控制下充电或放电;
    所述数据处理子模块还与所述电压存储子模块相连,配置为输出所述温度检测信号;在所述电压存储子模块放电时,检测所述电压存储子模块的放电时间,根据检测到的放电时间确定所述有机发光显示面板的温度,并在确定所述有机发光显示面板的温度不在所述预设温度范围内时,根据所述确定出的温度确定所述有机发光显示面板对应的温度补偿电压;根据确定出的温度补偿电压,通过各所述发光器件对应的补偿输入子模块将所述确定出的温度补偿电压施加到各所述发光器件的所述阳极;
    各所述补偿输入子模块配置为:在连接的发光器件发光时向所述连接的发光器件的所述阳极输入所述确定出的温度补偿电压。
  4. 如权利要求2或3所述的有机发光显示面板,其中,所述信号输入子模块、所述电压存储子模块以及所述补偿输入子模块位于所述有机发光显示面板的显示区域。
  5. 如权利要求4所述的有机发光显示面板,其中,所述显示区域包括多个像素单元、一个电压存储子模块以及一个信号输入子模块,各所述像素单元包括一个发光器件与一个补偿输入子模块。
  6. 如权利要求5所述的有机发光显示面板,其中,所述数据处理子模块配置为:在所述电压存储子模块放电时,检测所述电压存储子模块的放电时间,根据检测到的放电时间确定所述显示区域的温度,在确定所述显示区域的温度不在所述预设温度范围内时,根据所述确定出的温度确定所述显示区域对应的温度补偿电压;通过各所述发光器件对应的补偿输入子模块将所述确定出的温度补偿电压施加到各所述发光器件的所述阳极。
  7. 如权利要求4所述的有机发光显示面板,其中,所述显示区域划分为多个显示子区域,各所述显示子区域包括:至少一个像素单元,一个电压存储子模块以及一个信号输入子模块;各所述像素单元包括一个发光器件与一个补偿输入子模块。
  8. 如权利要求7所述的有机发光显示面板,其中,所述数据处理子模块配置为:在各所述显示子区域中的电压存储子模块放电时,检测各所述显示子区域中的电压存储子模块的放电时间,根据检测到的各所述电压存储子模块的放电时间确定各所述显示子区域对应的温度,在确定所述显示子区域的温度不在所述预设温度范围内时,根据所述显示子区域对应的温度确定所述显示子区域对应的温度补偿电压;通过各所述发光器件对应的补偿输入子模块将所述确定出的温度补偿电压提供给各所述发光器件的所述阳极。
  9. 如权利要求2或3所述的有机发光显示面板,其中,所述信号输入子模块包括:第一开关晶体管;其中,
    所述第一开关晶体管的控制极与输入控制信号端相连,第一极与所述数据处理子模块相连,第二极分别与所述电压存储子模块以及所述补偿输入子模块相连。
  10. 如权利要求2或3所述的有机发光显示面板,其中,所述补偿输入子模块包括:第二开关晶体管;其中,
    所述第二开关晶体管的控制极与补偿控制信号端相连,第一极与所述信号输入子模块相连,第二极与对应的所述发光器件的所述阳极相连。
  11. 如权利要求2或3所述的有机发光显示面板,其中,所述电压存储子模块包括:第一电容;其中,
    所述第一电容的第一端分别与所述信号输入子模块以及所述数据处理子模块相连,第二端与所述接地端相连。
  12. 一种如权利要求1-11的任一项所述的有机发光显示面板的显示方法,所述有机发光显示面板包括多个发光器件,其中,所述方法包括:
    在预设检测周期内检测所述有机发光显示面板的温度;
    在所述有机发光显示面板的温度不在预设温度范围内时,根据所述温度检测模块检测到的温度确定所述有机发光显示面板对应的温度补偿电压;
    在所述发光器件发光时,将所述确定出的温度补偿电压提供给所述发光器件的所述阳极。
  13. 如权利要求12所述的方法,其中,所述在预设检测周期内检测所述有机发光显示面板的温度包括:在所述预设检测周期内将温度检测信号提供给所述电压存储子模块,使所述电压存储子模块充电与放电,在所述电压存储子模块放电时,检测所述电压存储子模块的放电时间,根据检测到的放电时间确定所述有机发光显示面板的温度。
  14. 如权利要求12或13所述的方法,其中,所述将所述确定出的温度补偿电压提供给所述发光器件的所述阳极包括:通过发光的所述发光器件对应的补偿输入子模块将所述确定出的温度补偿电压施加到发光的所述发光器件的所述阳极。
PCT/CN2018/084195 2017-05-11 2018-04-24 一种有机发光显示面板及其显示方法 WO2018205827A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/318,859 US11817052B2 (en) 2017-05-11 2018-04-24 Organic light-emitting display panel and display method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710329211.3A CN106960656B (zh) 2017-05-11 2017-05-11 一种有机发光显示面板及其显示方法
CN201710329211.3 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018205827A1 true WO2018205827A1 (zh) 2018-11-15

Family

ID=59482334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084195 WO2018205827A1 (zh) 2017-05-11 2018-04-24 一种有机发光显示面板及其显示方法

Country Status (3)

Country Link
US (1) US11817052B2 (zh)
CN (1) CN106960656B (zh)
WO (1) WO2018205827A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960656B (zh) * 2017-05-11 2019-03-19 京东方科技集团股份有限公司 一种有机发光显示面板及其显示方法
CN109727571A (zh) * 2017-10-31 2019-05-07 昆山国显光电有限公司 一种像素电路和显示装置
CN110033730B (zh) * 2018-04-18 2020-08-04 友达光电股份有限公司 复合式驱动显示面板
CN110459172B (zh) * 2018-05-08 2020-06-09 京东方科技集团股份有限公司 一种像素驱动电路及驱动方法、显示装置
WO2020240815A1 (ja) * 2019-05-31 2020-12-03 シャープ株式会社 表示装置およびその駆動方法
CN111486979B (zh) * 2020-04-23 2022-02-01 京东方科技集团股份有限公司 一种温度检测电路及其驱动方法、显示装置及其驱动方法
CN116543689A (zh) * 2023-03-30 2023-08-04 天马新型显示技术研究院(厦门)有限公司 显示面板及其驱动方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050106834A (ko) * 2004-05-06 2005-11-11 삼성에스디아이 주식회사 발광 표시 장치 및 그 구동 방법
CN104036749A (zh) * 2014-06-25 2014-09-10 重庆卓美华视光电有限公司 具有温度补偿的lcd电源电路
CN104835452A (zh) * 2015-05-28 2015-08-12 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置
CN105096880A (zh) * 2015-08-24 2015-11-25 武汉华星光电技术有限公司 一种液晶显示面板及其驱动方法
CN106356024A (zh) * 2016-10-28 2017-01-25 昆山国显光电有限公司 Oled屏体温度监测调控电路、系统及oled显示面板
CN206057738U (zh) * 2016-09-06 2017-03-29 合肥京东方光电科技有限公司 一种检测电路、显示基板、显示面板、显示装置
CN106960656A (zh) * 2017-05-11 2017-07-18 京东方科技集团股份有限公司 一种有机发光显示面板及其显示方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3752596B2 (ja) * 2001-11-16 2006-03-08 日本精機株式会社 有機elパネルの駆動回路
US7245297B2 (en) * 2004-05-22 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8907991B2 (en) * 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US9177503B2 (en) * 2012-05-31 2015-11-03 Apple Inc. Display having integrated thermal sensors
KR101442680B1 (ko) * 2012-10-15 2014-09-19 엘지디스플레이 주식회사 유기 발광 표시 장치의 구동 장치 및 구동 방법
KR102215204B1 (ko) * 2013-11-29 2021-02-16 삼성디스플레이 주식회사 표시 장치, 그 보상 데이터 산출 방법 및 그 구동 방법
KR102387787B1 (ko) * 2015-08-24 2022-04-15 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 구동방법
KR102412107B1 (ko) * 2015-10-29 2022-06-24 엘지디스플레이 주식회사 휘도 제어장치와 이를 포함하는 표시장치
CN105679265A (zh) * 2016-03-08 2016-06-15 京东方科技集团股份有限公司 面板补偿装置和方法
CN105741811B (zh) 2016-05-06 2018-04-06 京东方科技集团股份有限公司 温度补偿电路、显示面板和温度补偿方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050106834A (ko) * 2004-05-06 2005-11-11 삼성에스디아이 주식회사 발광 표시 장치 및 그 구동 방법
CN104036749A (zh) * 2014-06-25 2014-09-10 重庆卓美华视光电有限公司 具有温度补偿的lcd电源电路
CN104835452A (zh) * 2015-05-28 2015-08-12 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置
CN105096880A (zh) * 2015-08-24 2015-11-25 武汉华星光电技术有限公司 一种液晶显示面板及其驱动方法
CN206057738U (zh) * 2016-09-06 2017-03-29 合肥京东方光电科技有限公司 一种检测电路、显示基板、显示面板、显示装置
CN106356024A (zh) * 2016-10-28 2017-01-25 昆山国显光电有限公司 Oled屏体温度监测调控电路、系统及oled显示面板
CN106960656A (zh) * 2017-05-11 2017-07-18 京东方科技集团股份有限公司 一种有机发光显示面板及其显示方法

Also Published As

Publication number Publication date
CN106960656B (zh) 2019-03-19
US20230196996A1 (en) 2023-06-22
CN106960656A (zh) 2017-07-18
US11817052B2 (en) 2023-11-14

Similar Documents

Publication Publication Date Title
US11881164B2 (en) Pixel circuit and driving method thereof, and display panel
US10083658B2 (en) Pixel circuits with a compensation module and drive methods thereof, and related devices
WO2018205827A1 (zh) 一种有机发光显示面板及其显示方法
CN107358915B (zh) 一种像素电路、其驱动方法、显示面板及显示装置
US10453389B2 (en) Pixel circuit, organic electroluminescent display panel and display apparatus
WO2021043102A1 (zh) 驱动电路及其驱动方法、显示装置
WO2019137105A1 (zh) 像素电路、驱动方法、电致发光显示面板及显示装置
US20210312861A1 (en) Pixel circuit and driving method thereof, array substrate, and display device
WO2018145499A1 (zh) 像素电路、显示面板、显示装置及驱动方法
US10181283B2 (en) Electronic circuit and driving method, display panel, and display apparatus
WO2017031909A1 (zh) 像素电路及其驱动方法、阵列基板、显示面板及显示装置
US20160284280A1 (en) Pixel circuit, organic electroluminescent display panel, display apparatus and driving method thereof
US10170050B2 (en) Pixel circuit, driving method, organic electroluminescent display panel, and display device
CN109887464B (zh) 像素电路及其驱动方法、显示面板和显示设备
US20200035158A1 (en) Pixel driving circuit, method for driving the same and display device
CN110264957B (zh) 一种像素电路的补偿方法、装置、显示设备
CN110164375B (zh) 像素补偿电路、驱动方法、电致发光显示面板及显示装置
US10553159B2 (en) Pixel circuit, display panel and display device
WO2019047701A1 (zh) 像素电路及其驱动方法、显示装置
US10957257B2 (en) Pixel circuit, driving method thereof and display panel
US20210210013A1 (en) Pixel circuit and driving method, display panel, display device
US20190333446A1 (en) Pixel driving circuit and driving method thereof display panel and display apparatus
US10510297B2 (en) Pixel circuit, driving method thereof, display panel and display device
US11302245B2 (en) Pixel circuit, driving method thereof, and display device
CN114639347A (zh) 像素驱动电路、驱动方法及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18798450

Country of ref document: EP

Kind code of ref document: A1