WO2018205457A1 - 一种不停机换模膨化机及使用方法 - Google Patents

一种不停机换模膨化机及使用方法 Download PDF

Info

Publication number
WO2018205457A1
WO2018205457A1 PCT/CN2017/099624 CN2017099624W WO2018205457A1 WO 2018205457 A1 WO2018205457 A1 WO 2018205457A1 CN 2017099624 W CN2017099624 W CN 2017099624W WO 2018205457 A1 WO2018205457 A1 WO 2018205457A1
Authority
WO
WIPO (PCT)
Prior art keywords
template
passage
inlet
channel
port
Prior art date
Application number
PCT/CN2017/099624
Other languages
English (en)
French (fr)
Inventor
提摩太 斯特拉特曼罗伯特
马亮
安哲
Original Assignee
江苏牧羊控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710329046.1A external-priority patent/CN107242602A/zh
Priority claimed from CN201710329050.8A external-priority patent/CN107041563A/zh
Application filed by 江苏牧羊控股有限公司 filed Critical 江苏牧羊控股有限公司
Priority to US16/185,339 priority Critical patent/US11178897B2/en
Publication of WO2018205457A1 publication Critical patent/WO2018205457A1/zh
Priority to US17/498,032 priority patent/US11559076B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/20Extruding
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N17/00Apparatus specially adapted for preparing animal feeding-stuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/30Puffing or expanding
    • A23P30/32Puffing or expanding by pressure release, e.g. explosion puffing; by vacuum treatment
    • A23P30/34Puffing or expanding by pressure release, e.g. explosion puffing; by vacuum treatment by extrusion-expansion

Definitions

  • the invention relates to the food industry and the feed industry, in particular to processing equipment and processing methods in the fields of pet food, human food and aquatic feed.
  • a puffing line often needs to produce 3 to 8 different products a day. Every time you replace the product, you need to stop, remove the template, clean the extruder, install the template, and then turn it on. Such a process takes a long time and usually takes 30 to 60 minutes. If the operator is not skilled, this replacement will take up to 120 minutes.
  • the extruder In addition to the variety of products, in the process of production, the extruder often encounters fibers and debris in the raw materials to block the template. After the template is clogged, the particles are deformed and the productivity is reduced. The only way to solve this problem is to stop the machine and change the template. And each time you change the template, you also need to disassemble the template, clean the extruder, install the template, and then turn it on. The time is quite long.
  • the time efficiency of the positive and effective operation of the extruder is relatively low. Generally, it takes 10 hours to go to work normally, and the extruder can only run for about 6 hours.
  • Extrusion is a high temperature, high pressure, high moisture processing method.
  • a large amount of water vapor is formed while the particles are expanded. This water vapor will be emitted in the surrounding air.
  • the environment on the site is very bad, which affects the comfort of the operator's working environment.
  • water vapor will corrode the equipment on site, and some mechanical equipment will be exposed for a long time. In the environment of water vapor, it is rusty and affects the service life of the equipment.
  • the prior art processes this problem in such a way that after the puffed particles exiting the extruder exit the extruder, the particles fall downward by gravity and enter the next device, such as a drying device. The water vapor generated by the expanded particles is sucked up through the suction line.
  • Problem 1 Can not absorb all the water vapor, and a large part of the water vapor flows into the surrounding environment, because the puffed particles themselves contain water vapor, and the puffed particles continue to separate the water vapor during the falling process.
  • the present invention provides a non-stop mold changer, which can simultaneously use a plurality of templates, and does not need to remove the template and can realize mold change, and does not need to stop the extruder when changing the mold. Running.
  • the invention also provides a non-stop mold-changing extruder, which can solve the above problems, and can also solve the problem that the water vapor polluting environment and the condensed water appearing in the extruder cause the particles to stick.
  • the present invention also provides a technical solution for the above-described method of using the non-stop changeable extruder.
  • the utility model relates to a non-stop die-changing extruder, which comprises a puffing cavity, a feeding port located in the puffing cavity, and a die changing device located at the outlet of the puffing cavity; and the puffing cavity is provided with conveying material for conveying the material to the die changing device
  • the die changing device comprises a cylinder, a movable block located in the cylinder body, a driving device for driving the movement of the movable block, a first template connected to the side wall of the cylinder body, and a second template connected to the side wall of the cylinder body;
  • the first template is provided with a first passage penetrating through the first template and communicating with the interior of the cylinder;
  • the second template is provided with a second passage penetrating through the second template and communicating with the interior of the cylinder; an outlet of the expansion chamber Attached to the side wall of the cylinder and communicating with the inside of the cylinder;
  • the movable block is provided with a transfer passage, and the movable block is
  • the utility model provides the non-stop die-changing extruder capable of connecting the expansion chamber to different templates by driving the movable block without stopping the machine, thereby replacing the product variety, and if the template is blocked, there is no need to stop replacing the new template.
  • two templates are given in the above technical solution, but it should not be considered that only two templates are included, and two or more templates belong to the solution of the technical solution, because at least two templates also include at least Two templates.
  • the movable block is a piston or a rotating rotating block located inside the cylinder.
  • the movable block is a piston located in the cylinder; the piston is provided with at least one first transfer passage and at least one second transfer passage.
  • first transfer passage communicates the expansion chamber with the first passage
  • second transfer passage communicates the expansion chamber with the second passage when the piston moves to the second position within the cylinder.
  • the invention provides the above-mentioned method for using the non-stop die-changing extruder when using the piston as the movable block.
  • the driving device drives the piston to move to the first position, so that the first transfer channel will be
  • the expansion chamber communicates with the first passage, and conveys the material to the first template through the conveyor of the expansion chamber;
  • the driving device drives the piston to move to the second position, so that the second transfer passage will
  • the expansion chamber communicates with the second passage, and the material is conveyed to the second template through the conveyor of the expansion chamber.
  • the piston is provided with at least one third transfer passage; when the piston moves to a third position in the cylinder, the third transfer passage simultaneously connects the expansion chamber with the first passage and the second passage .
  • the present invention also provides a method of using the puffing machine, that is, for the case where only the first template is used for production, the driving device drives the piston to move to the first position, so that An transfer passage communicates the expansion chamber with the first passage, and conveys the material to the first template through the conveyor of the expansion chamber; when the second template is used for production, the driving device drives the piston to move to the second position, so that The second transfer passage communicates the expansion chamber with the second passage, and conveys the material to the second template through the conveyor of the expansion chamber; when the first template and the second template are used simultaneously, the piston is moved to the third by the driving device The position is such that the third transfer channel communicates the expansion chamber with the first channel and the second channel simultaneously, and the material is simultaneously transported into the first template and the second template through the conveyor of the expansion chamber.
  • the first transfer channel includes a first inlet and a first outlet
  • the second transfer passage includes a second inlet and a second outlet
  • the side wall of the cylinder is provided with a connecting barrel inside and a feeding port of the outlet of the puffing chamber, a first discharging port connecting the inside of the cylinder and the first connecting passage, a connecting body and a second discharging port of the second connecting passage.
  • the present invention provides a technical solution for the following method of use.
  • the first adapter channel will be driven by the driving device to drive the piston to move.
  • the expansion chamber is in communication with the first passage, and the first inlet is in misaligned communication with the inlet opening on the cylinder, and then the material is conveyed from the inlet to the first inlet through the conveyor of the expansion chamber, and is conveyed through the first outlet In the first template; when only the second template is used to produce and adjust the mechanical energy received by the material, the driving device drives the piston to move, so that the second transfer passage connects the expansion chamber with the first passage, and the second inlet and the barrel at this time
  • the feed port on the body forms a misalignment communication, and the material is transported from the feed port to the second inlet through the conveyor of the expansion chamber, and is transported to the second template through the second outlet.
  • the channel opening formed is actually smaller than the size of the inlet port, and the resistance formed by the material at the opening position of the channel is When it becomes larger, the greater the magnitude of the misalignment, the greater the resistance, and the greater the mechanical energy the material receives.
  • the mechanical energy received by the material can be adjusted by adjusting the position of the opening of the passage.
  • the piston when at least one third transfer passage is provided in the piston, when the first template and the second template are simultaneously used to produce and adjust the mechanical energy received by the material, the piston is moved by the driving device to make the first
  • the three-way passage connects the expansion chamber to the first passage and the second passage at the same time.
  • the third inlet forms a misaligned connection with the inlet opening on the cylinder, and then the material is conveyed from the inlet through the conveyor of the expansion chamber.
  • the third inlet is simultaneously delivered to the first template and the second template through the two third outlets.
  • the movable block is a rotating rotating block located inside the cylinder; when the rotating block is rotated to the first position in the cylinder, the first opening communicates with the expansion chamber, and the second opening communicates with the first passage, when the rotating block When the cylinder rotates to the second position, the second port communicates with the expansion chamber, and the first port communicates with the second passage.
  • the invention provides a method for using the non-stop changeable puffing machine when the rotating block is used as the movable block.
  • the driving device drives the rotating block to rotate to the first position, so that the first port is connected. Expanding the cavity, and the second port communicates with the first passage, and conveys the material to the first template through the conveyor of the expansion chamber; when the second template is used for production, the rotating block is driven to the second position by the driving device, so that The second port communicates with the expansion chamber, and the second port communicates with the second channel, and the material is conveyed to the second template through the conveyor of the expansion chamber.
  • the three-way transit channel includes a channel 1 and a channel 2 and a channel 3 that simultaneously communicate with the channel 1; when the three-way rotating block rotates in the cylinder to the channel and connects the expansion chamber, the channel 2 is connected to the first channel, and the channel 3 is connected to the second channel. aisle.
  • the present invention also provides a method of using the puffing machine, that is, when the first template and the second template are simultaneously used for production, the rotating block is replaced with a three-way rotating block, and
  • the driving device drives the three-way rotating block to rotate to the channel-connecting expansion chamber, the channel 2 communicates with the first channel, and the channel 3 communicates with the second channel.
  • the side wall of the cylinder body is provided with an inlet opening connecting the inside of the cylinder and the outlet of the expansion chamber, a first discharge port connecting the inside of the cylinder and the first transfer passage, and the inside of the connecting cylinder and the second The second discharge port of the transfer channel.
  • the present invention provides a technical solution of the following method of use.
  • the first port is connected by driving the rotating block to rotate by the driving device.
  • Expanding the cavity, and the second port is connected to the first channel, at which time the first port is in misaligned communication with the inlet port on the barrel, and then the material is transferred from the inlet port to the first port through the conveyor of the expansion chamber And passing through the second port to the first template; when only the second template is used to produce and adjust the mechanical energy received by the material, the driving device drives the rotating block to rotate, so that the second port communicates with the expanding chamber, and the first pass The port is connected to the second passage, and the second port is in a misaligned connection with the inlet port on the cylinder, and then the material is conveyed from the inlet port to the second port through the conveyor of the expansion chamber, and passes through the first port. Transfer to the second template.
  • the channel opening formed is actually smaller than the size of the inlet port, and the resistance formed by the material at the opening position of the channel is It will become larger, the greater the dislocation, the greater the resistance, and the greater the mechanical energy the material will receive.
  • the mechanical energy received by the material can be adjusted by adjusting the position of the opening of the passage.
  • the rotating block is replaced with a three-way rotating block, and the three-way rotating block is driven by the driving device to rotate to the channel-connecting expansion chamber.
  • the channel 2 is connected to the first channel, and the channel 3 is connected to the second channel; at this time, the channel 1 is in misaligned communication with the inlet port on the cylinder body, and then the material is transported from the inlet port to the channel 1 through the conveyor of the expansion chamber, and The material is conveyed to the first template through channel two; and the third channel conveys the material to the second template.
  • the method further includes a first cutting device connected to the first template, a second cutting device connected to the second template, a first air duct connecting the first cutting device, and a second air duct connecting the second cutting device.
  • the cutting device is used separately for different templates.
  • the method further includes a three-way switching valve that simultaneously connects the first air duct and the second air duct; the three-way switching valve has a first inlet, a second inlet, and an opening and closing valve outlet, and the first inlet is connected to the first wind The second inlet is connected to the second duct.
  • the three-way switch comprises a switching plate between the two inlets and the outlet of the switching valve, and a driving device for driving the switching plate, the switching plate has a first channel port and a second channel port; when the first inlet is used Driving the switching plate to align the first passage port with the first inlet, and at this time, the switching plate blocks the second inlet; when the first inlet and the second inlet are simultaneously used, the driving device drives the switching plate to move forward, so that the first The passage port is aligned with the second inlet, and the second passage port is aligned with the first inlet; when the second inlet is used, the driving device continues to drive the switching plate to be displaced forward, and the second passage port is aligned with the position of the second inlet, and this The switchboard blocks the first inlet.
  • the first air duct includes a first vertical air duct connected to the first cutting device and extending upward from the first cutting device, a first curved pipe connecting the upper end of the first vertical air duct and bent to a horizontal direction, Connecting a horizontal end of the first elbow and continuing to extend horizontally to a first horizontal duct connected to the first inlet;
  • the second duct includes a second vertical line connected to the second cutting device and extending upward from the second cutting device a duct, a second elbow connecting the upper end of the second vertical duct and bent to the horizontal direction, connecting the horizontal end of the second elbow and continuing to horizontally extend to the second horizontal duct connected to the second inlet.
  • the object of the present invention is to provide a novel non-stop die-changing extruder for the deficiencies of the prior art, and verify that the invention has excellent effects through relevant test data, and can replace the product variety without stopping, if the template is clogged After that, there is no need to stop replacing the new template.
  • the production efficiency of the expansion line can be increased from 56 to 60% to over 80%, greatly increasing the expansion line.
  • Productivity In addition, it also solves the problem that the water vapor pollutes the environment and the condensed water causes the particles to stick together. The bonded particles are from 2 to 5% of the original, to completely avoid particle sticking.
  • FIG. 1 is a front elevational view showing a non-stop changing template extruder in the first embodiment of the present invention.
  • Figure 2 is a left side elevational view of the template inflating machine in the first embodiment of the present invention.
  • Fig. 3 is a top plan view of the non-stop changing template extruder according to the first embodiment of the present invention.
  • Fig. 4 is a perspective view showing the non-stop change template expansion machine in the first embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing a portion of a die changing device of a non-stop changeable template extruder in the first embodiment of the present invention.
  • Fig. 6 is a front elevational view showing the mold changing device of the non-stop changeable template puffing machine in the first embodiment of the present invention.
  • Figure 7 is a longitudinal cross-sectional view of the mold changing device of Figure 6 and showing the state of operation of the A template.
  • Figure 8 is a transverse cross-sectional view of the mold changing device of Figure 6 and showing the state of operation of the A template.
  • Figure 9 is a structural view of a piston in the first embodiment of the present invention, and shows a 2-position die-changing +1-position dual-mode piston.
  • Figure 10 is a longitudinal cross-sectional view of the mold changing device of Figure 6 and showing the state of operation of the B-plate.
  • Figure 11 is a transverse cross-sectional view of the mold changing device of Figure 6 and showing the state in which the B-plate is in operation.
  • Figure 12 is a longitudinal cross-sectional view of the mold changing device of Figure 6, and showing the state in which the A template and the B template are simultaneously operated.
  • Figure 13 is a transverse cross-sectional view of the mold changing device of Figure 6, and showing the state in which the A template and the B template are simultaneously operated.
  • Figure 14 is a longitudinal cross-sectional view of the mold changing device of Figure 6, and showing the state in which the A template operates and adjusts the mechanical energy experienced by the material.
  • Figure 15 is a structural view of a 2-position die-changing piston.
  • Figure 16 is a structural view of a 3-position die-changing +1-position dual-mode piston.
  • Figure 17 is a structural view of a 3-position die-changing piston.
  • Figure 18 is a structural view of a 4-position die-changing +1-position dual-mode piston.
  • Figure 19 is a schematic view showing the structure of the three-way switching valve in the first embodiment, and showing the state of the A inlet working.
  • Figure 20 is a schematic view showing the structure of the three-way on-off valve of the first embodiment, and shows the state when the A inlet and the B inlet are simultaneously operated.
  • Figure 21 is a schematic view showing the structure of the three-way switching valve in the first embodiment, and showing the state of the B inlet working.
  • Fig. 22 is a front elevational view showing the non-stop change template expansion machine in the second embodiment of the present invention.
  • Figure 23 is a left side elevational view of the non-stop changing template extruder in the second embodiment of the present invention.
  • Figure 24 is a plan view of the non-stop change template expansion machine in the second embodiment of the present invention.
  • Figure 25 is a cross-sectional view showing a portion of a die changing device of a non-stop changeable template extruder in the second embodiment of the present invention.
  • Fig. 26 is a front elevational view showing the mold changing device of the non-stop change template expansion machine in the second embodiment of the present invention.
  • Figure 27 is a cross-sectional view of the mold changing device of Figure 26.
  • Figure 28 is a transverse cross-sectional view of the mold changing device of Figure 27 including the rotating block, and showing the state in which the A template is in operation.
  • Figure 29 is a transverse cross-sectional view of the mold changing device of Figure 27 including the rotating block, and showing the state in which the A template operates and adjusts the mechanical energy experienced by the material.
  • Figure 30 is a transverse cross-sectional view of the mold changing device of Figure 27 including a rotating block, and showing the state in which the B-plate is in operation.
  • Figure 31 is a transverse cross-sectional view of the mold changing device of Figure 27 including a rotating block, and shows the operation of the B template And adjust the state of the mechanical energy received by the material.
  • Figure 32 is a transverse cross-sectional view of the mold changing device of Figure 27, with the three-way rotating block replacing the rotating block, and showing the state in which the A template and the B template are simultaneously operated.
  • Figure 33 is a transverse cross-sectional view of the mold changing device of Figure 27, replacing the rotating block with a three-way rotating block, and showing the state in which the A template and the B template work simultaneously and adjust the mechanical energy received by the material.
  • FIG. 1 to FIG. 21 is a first embodiment of the non-stop changeable extruder.
  • the first embodiment discloses a puffing machine, which comprises a base 12 supporting the entire extruder, and a motor 1 directly connected to the base 12 , and the motor is directly connected to the gear box 2 , and the gear box 2
  • the multi-stage expansion chamber 4 is connected to the long cylinder, and the feed expansion chamber 3 is disposed near the initial position of the expansion chamber.
  • the conveyor in the feed expansion chamber 3 is a screw 13, and the gear box 2 and the motor 1 drive the screw to rotate.
  • the end of the puffing chamber is connected to the die changing mechanism 5, and the template changing mechanism 5 contains two templates: A template 17-1 and B template 17-2.
  • the A template and the B template are connected to the A cutting device 6-1 and the B cutting device 6-2, respectively.
  • the A-cutting device 6-1 is connected to the closed vertical duct 7-1 installed at the upper portion thereof, the vertical duct 7-1 is connected to the elbow 8-1, and the elbow 8-1 is connected to the horizontal duct 9 -1.
  • the B-cutting device 6-2 is connected to the closed vertical air duct 7-2 installed at the upper portion thereof, the vertical air duct 7-2 is connected to the curved pipe 8-2, and the curved pipe 8-2 is connected to the horizontal air duct 9 -2.
  • the horizontal ducts 9-1 and 9-2 are respectively connected to the A inlet 27-1 and the B inlet 27-2 of the three-way switching valve 10.
  • the die change mechanism 5 includes a vertically long cylindrical housing 14 having a vertically disposed piston 19 therein.
  • the top of the piston 19 is coupled to the drive unit 25 for driving.
  • the device 25 is mounted on the top plate 26 while the top plate 26 is directly connected to the housing 19.
  • the housing 14 includes a feed port 20, an A discharge port 21-1, and a B discharge port 21-2.
  • the angle D1 between the center line of the feed port 20 and the center line of the A discharge port is 60 to 160, and preferably 90 to 125.
  • the angle D2 between the center line of the feed port 20 and the center line of the B discharge port is 60° to 160°, preferably 90° to 125°.
  • the A discharge port is connected to the flow divider 16-1, and the flow divider 16-1 is connected to the A template 17-1. After the A template 16-1 is connected to the A cutting device 6-1.
  • the A cutting device includes an A cutter 18-1.
  • the B discharge port is connected to the flow divider 16-2, and the flow divider 16-2 is connected to the B template 17-2.
  • the B-cutting device 6-2 is connected to the B template 16-2.
  • the B cutting device includes a B cutter 18-1.
  • the piston 19 can be reciprocated up and down in accordance with the action of the driving device 25 in the cylinder, and the speed of movement is 0.002 to 20 m/s, and preferably the speed is 0.01 to 0.1 m/s. During operation of the extruder, the piston 19 can rest at any of the positions inside the piston 19 as needed.
  • the piston 19 includes a plurality of channels arranged at different positions above and below, each channel having a feed port and a discharge port, and the discharge port has one or two.
  • the A channel 22 can be connected to the A discharge port 21-1
  • the B channel is connected to the B discharge port 21-2
  • the A discharge port 21-1 and the B discharge port 21-2 are simultaneously connected.
  • the number of A channels is one or two or more; the number of B channels is one or two or more; the number of dual channels is zero or one or two or more.
  • the three-way switching valve 10 includes two inlets, an A inlet 27-1 and a B inlet 27-2, and an outlet 11. There is a switching plate 28 between the inlet and the outlet, and the switching plate 28 is connected to the drive unit 29. There are two passage openings on the switchboard 28. A channel port 30-1, B channel port 30-2. When the A inlet 27-1 is used, the A-channel port 30-1 on the switching plate 28 is aligned with the A inlet 27-1, and at this time the switching plate 28 is blocked by the B inlet 27-2.
  • the driving device 29 drives the switching plate 28 to be displaced forward, and the A channel port 30-1 on the 28 is aligned with the B inlet 27-2, while switching the plate.
  • the B channel port 30-2 is aligned with the A inlet 27-1.
  • the drive unit 29 continues to drive the shifting plate 28 to move forward, and the B passage port 30-2 on the 28 is displaced to the position of the B inlet 27-2, and at this time the switching plate 28 is blocked by the A inlet 27-1. of.
  • the three-way switching valve 10 is only preferred in this embodiment. Even if the three-way switching valve 10 is not used, if one valve is separately provided for each air duct for independent control, it does not affect the use.
  • the present invention can select A template 17-1 production, or B template 17-2 production, or both templates can be produced at the same time in the production process.
  • the A channel 22 on the piston is displaced to the feed port 20 by the action of the driving device 25, and the material is extruded to the A through the A channel.
  • the A template is in operation at this time.
  • the piston 19 blocks the B discharge port 21-2, and the B discharge port has no material, the B discharge port is in a non-operating state.
  • the material After the material is extruded from the A template, it enters the A cutting device and is cut by the A cutter 18-1.
  • the cut expanded product is subjected to negative pressure pneumatic conveying, and the expanded product passes through the vertical air duct 7-1, the elbow 8-1, and the horizontal air duct 9-1, respectively, and enters the three-way switching valve 10.
  • the A-channel port 30-1 of the switching plate in the three-way switching valve 10 is aligned with the A inlet 27-1, and the B inlet 27-2 is blocked by the switching plate. Therefore, the negative pressure air can be transferred from the outlet 11 through the A-channel port 30-1 down the pipe until it is delivered to the A-plate. Eventually, the expanded particles move upwards until the outlet 11 is reached. And go to the next process.
  • the B channel 23 on the piston is displaced to the feed port 20 by the action of the driving device 25, and the material is extruded to the B through the B channel.
  • the B template is in operation at this time.
  • the piston 19 is blocking the A discharge port 21-1, the A discharge port has no material, so the A discharge port is in a non-operating state.
  • the material After the material is extruded from the B template, it enters the B cutting device and is cut by the B cutter 18-2.
  • the extruded product after cutting is subjected to negative pressure pneumatic transmission, and the expanded product passes through the vertical air duct 7-2, the elbow 8-2, and the horizontal air duct 9-2, respectively, and enters the three-way switching valve 10.
  • the B-channel port 30-2 of the switching plate in the three-way switching valve 10 is aligned with the B inlet 27-2, and the A inlet 27-1 is blocked by the switching plate. Therefore, the negative pressure air can be passed down the line from the outlet 11 through the B-channel port 30-2 until it is passed to the front of the B-plate. Eventually, the expanded particles move upwards until the outlet 11 is reached. And go to the next process.
  • the dual channel 24 on the piston is displaced to the feed port 20 by the action of the driving device 25, and the material is Simultaneous extrusion into the A discharge port and the B discharge port through the two channels, at this time, the A template and the B template are simultaneously in operation.
  • the material After the material is extruded from the A template, it enters the A cutting device and is cut by the A cutter 18-1.
  • the cut expanded product is subjected to negative pressure pneumatic conveying, and the expanded product passes through the vertical air duct 7-1, the elbow 8-1, and the horizontal air duct 9-1, respectively, and enters the three-way switching valve 10.
  • the material After the material is extruded from the B template, it enters the B cutting device and is cut by the B cutter 18-2.
  • the extruded product after cutting is subjected to negative pressure pneumatic transmission, and the expanded product passes through the vertical air duct 7-2, the elbow 8-2, and the horizontal air duct 9-2, respectively, and enters the three-way switching valve 10.
  • the B channel port 30-2 of the switching plate in the three-way switching valve 10 is aligned with the A inlet 27-1, and at the same time The A channel port 30-1 is aligned with the B inlet port 27-2. Therefore, the negative pressure air can be passed down from the outlet 11 through the A-channel port 30-1 and the B-channel port 30-2 along the two-way pipe until it is passed to the front of the two templates. Eventually, the expanded particles at the two templates are moved upwards until the outlet 11 is reached. And go to the next process.
  • the non-stop die-changing extruder of the first embodiment can realize switching between different templates in the production process.
  • the piston 19 is moved downward by a position of the driving device 25 during the production process, and the A channel 22 is aligned with the inlet port 20 to become the B channel 23 aligned with the inlet port. 20.
  • the A template is clogged, and the B template is opened.
  • the B cutter runs the cutting material to obtain the puffed product.
  • the B inlet 27-2 is opened in the three-way switching valve 10, and the A inlet 27-1 is blocked.
  • the A template When the A template is in production, or when the B template is in production, it can also be switched to the simultaneous production of the A template and the B template.
  • a piston with a 2-position die-changing +1-position dual mode is used, that is, three channels are formed, and two channels can form a die-changing position with the A template and the B template, respectively.
  • Figure 15 is a structural diagram of a 2-position die-changing piston, and the piston has only 2 positions, and the A template and the B template respectively form a die-changing position, and there is no dual-mode position.
  • Figure 16 is a structural diagram of a 3-position die-change +1-position dual-mode piston, that is, there are two bits that can be changed with the A template or the B template, so that when one channel is blocked, there are other channels.
  • Figure 17 is a structural view of a 3-position die-changing piston.
  • Figure 18 is a structural view of a 4-position die-changing +1-position dual-mode piston.
  • N is greater than 2
  • N piston having an N-position mold change + M-position double mold
  • the present invention enables mechanical energy control during production.
  • the A-plate When the A-plate is produced, when the A-channel 22 and the feed port 20 form a certain degree of misalignment, the resistance formed by the material at the position becomes larger than that of the good position, and the greater the misalignment, the greater the resistance. The greater the mechanical energy the material receives.
  • the piston 19 can be held at different positions as needed to control the amount of mechanical energy that the material is subjected to in the extruder.
  • the adjustment of the different positions of the piston 19 can also be carried out under the working state of the extruder, and no downtime adjustment is required. Therefore, the adjustment of the online mechanical energy can be achieved.
  • the B template when used for production, it is the same as the previous A template, and the functions as described above can also be realized.
  • the non-stop mold change extruder of the first embodiment can avoid particle sticking and water vapor leakage during the production process, and pollute the surrounding environment.
  • the particles are not free fall, but are pneumatically transported, the particles do not have the problem of mutual extrusion, so there is no problem of particle deformation and sticking.
  • the tester of the above-described first embodiment was subjected to a test test to prove that the present invention can achieve the advantageous effects of the statement.
  • the template used in the test of the first embodiment was a 3.0 mm aperture die hole.
  • the main motor load current of the extruder is 90%, and the capacity of the extruder is 6t/h.
  • the piston in the die change mechanism can reciprocate up and down in the cylinder according to the action of the driving device.
  • the moving speed of the piston is 0.1 m/s.
  • the piston can stay in any position inside the cylinder as needed.
  • the piston contains one A-pass 2, and contains one B-channel and one dual-channel.
  • the angle D1 between the center line of the feed port 20 and the center line of the A discharge port is 120°.
  • the angle D2 between the center line of the feed port 20 and the center line of the B discharge port is also 120°.
  • the formula for testing is shown in Table 1.
  • the pulverization fineness of the material is 95% through 80 mesh sieve, 99.5% over 60 mesh sieve, and 100% over 50 mesh sieve.
  • the material is first pre-cooked in an ordinary conditioner. After the conditioner, the degree of gelatinization of the material is 45%, the temperature of the material is 95 ° C, and the moisture content of the material is 24%.
  • Such material enters the extruder, first extruded through the A template and cut into expanded pellets by the A cutter, and enters the A inlet 27-1 through the closed vertical duct, and finally the outlet 11 enters the next process.
  • the application case of the technology of the present invention can be analyzed, and the A template can be switched to the B template in a short time without stopping the machine.
  • the quality of the products before and after switching can be consistent.
  • the application case of the technology of the present invention can be analyzed, and the B template can be switched to the A template in a short time without stopping.
  • the quality of the products before and after switching can be consistent.
  • the application of the technology of the present invention can be analyzed, and the B template can be switched to the A template and the B template to work simultaneously in a short time without stopping.
  • the floating particles with low bulk density are produced.
  • the area of the template increases, and it becomes a sinking particle with 100% sinking.
  • the difference in particle length of the product remains the same.
  • Particle bulk density Remarks 1 Adjust the channel misalignment 0% during the A template production process 346g/l 2 Adjust the channel misalignment by 20% during the A template production process 333g/l 3 Adjust the channel misalignment by 30% during the A template production process 322g/l 4 Adjust the channel misalignment by 40% during the A template production process 309g/l 5 Adjust the channel misalignment 0% during the B template production process 340g/l 6 In the B template production process, adjust the channel misalignment by 20%.
  • 331g/l 7 Adjust the channel misalignment by 30% during the B template production process 318g/l 8 Adjusting the channel misalignment by 40% during the B template production process 305g/l 9
  • adjust the channel misalignment 0% 725g/l 10 When the AB template is in production at the same time, adjust the channel misalignment by 20%.
  • 685g/l 11 When the AB template is in production at the same time, adjust the channel misalignment by 30%. 654g/l 12
  • the channel misalignment is adjusted by 40%. 621g/l
  • the case of applying the technology of the present invention can be analyzed, and online adjustment of mechanical energy can be realized.
  • the bulk density of the expanded particles is controlled by adjusting the misalignment percentage of the channels.
  • FIG. 22 to FIG. 33 is a second embodiment of the non-stop die-changing machine of the present invention.
  • the second embodiment discloses a puffing machine, which comprises a base 10 supporting the entire extruder, and a motor 1 directly connected to the base 10, and the motor is directly connected to the gear box 2, and the gear box 2
  • the multi-stage expansion chamber 4 is connected to the long cylinder, and the feed expansion chamber 3 is disposed near the initial position of the expansion chamber.
  • the end of the puffing chamber is connected to the die changing device 5, and the template changing mechanism 5 contains two templates: A template 15-1 and B template 15-2.
  • the A template and the B template are connected to the A cutting device 6-1 and the B cutting device 6-2, respectively.
  • the A-cutting device 6-1 is connected to the closed vertical duct 7-1 installed at the upper portion thereof, the vertical duct 7-1 is connected to the elbow 8-1, and the elbow 8-1 is connected to the horizontal duct 9 -1.
  • the B-cutting device 6-2 is connected to the closed vertical air duct 7-2 installed at the upper portion thereof, the vertical air duct 7-2 is connected to the curved pipe 8-2, and the curved pipe 8-2 is connected to the horizontal air duct 9 -2.
  • the die changing device 5 includes a cylindrical housing 12 in a vertical direction.
  • the housing 12 has a rotatable rotating block 13 therein, and a rotating gear 16 is mounted on the upper portion of the rotating block 13.
  • the speed reducer 16 is coupled to the rotating block 13 via a coupling 14.
  • the speed reducer 16 is fixed to the housing 12 by the support frame 15.
  • a drive motor 17 is mounted above the reducer. During operation, the driving motor drives the speed reducer to operate, and the speed reducer drives the rotating block to rotate by the coupling.
  • the housing 12 includes a feed port 23, an A discharge port 20-1, and a B discharge port 20-2.
  • the angle between the center line of the feed port 23 and the center line of the A discharge port 20-1 is D1; the angle between the center line of the feed port 23 and the center line of the B discharge port 20-2 is D2.
  • the D1 angle ranges from 85° to 125°, with the preferred angle being 120° and 90°, and D1 is absolutely equal to D2, or the absolute value of the angle value of D1-D2 is ⁇ 5°.
  • the A discharge port is connected to the flow divider 14-1, and the flow divider 14-1 is connected to the A template 15-1.
  • the A-cutting device 6-1 is connected to the A-module 15-1.
  • the A cutting device includes an A cutter 16-1.
  • the B discharge port is connected to the flow divider 14-2, and the flow divider 14-2 is connected to the B template 15-2.
  • the B-cut device 6-2 is connected to the B template 15-2.
  • the B cutting device includes a B cutter 16-1.
  • the rotating block 13 can be rotated in the horizontal direction in the housing 12, and the driving force of the rotating motion of the rotating block 13 is derived from a driving motor and a speed reducer mounted on the upper portion of the housing.
  • the angular velocity of the movement of the rotating block 13 is from 0.08 to 160 ° m/s, and preferably the speed is from 8 to 40 °/s.
  • the rotating block 13 can stay at any position inside the casing 12 as needed and can be held.
  • the rotating block 13 has two inlet and outlet passages, an A passage 21 and a B passage 22.
  • the angle between the A channel and the B channel is equal to D1.
  • the material enters the B channel from the feed port 23, and since the B channel is connected to the A channel, the material enters the A discharge port 20-1 along the two connected channels.
  • the A discharge port is connected to the A template 15-1, and the A template can work.
  • the rotating block 13 blocks the B discharge port 20-2, so the material does not enter the B discharge port, and the B template connected to the B discharge material does not have material extrusion, and the B template is in a non-working state.
  • the rotating block 13 blocks the A discharge port 20-1, so the material does not enter the A discharge port, and the A template connected to the A discharge does not have material extrusion, and the A template is in a non-working state.
  • the A channel 22 on the rotating block is displaced to the feed port 20 by the action of the driving device 25, and the material is extruded through the A channel.
  • the A template is in operation at this time.
  • the rotating block 19 blocks the B discharge port 21-2, and the B discharge port has no material, the B discharge port is in a non-operating state.
  • the relationship of the work switching between the A template and the B template is realized, and the replacement of the template is realized.
  • the time taken for the rotation angle D1 of the rotating block is 0.1 to 10 seconds, which is relatively short. Therefore, it is possible to replace the template without stopping the machine.
  • the three-channel rotating block 24 has a rotatable function at the same time.
  • the rotating block 24 includes a channel one 25, a channel two 26 and a channel three 27.
  • Channel one 25 is facing the feed port 23, at which point channel two 26 is just facing B discharge port 20-2, while channel three 27 is just facing A discharge port 20-1.
  • channel one 25, channel two 26, and channel three 27 are in communication with each other, when material flows from the feed port 23 during production, the material enters the A template through channel three 27 and enters the B template through channel two 26. This enables the simultaneous production of two templates.
  • the present invention enables mechanical energy control during production.
  • the rotation of the rotating block can realize the displacement of the A discharge port 20-1 and the A channel 21 by a certain extent.
  • the resistance created by the material at this location will be greater than the good one. The greater the magnitude of the misalignment, the greater the resistance and the greater the mechanical energy the material will receive.
  • the rotating block 13 can be held at different positions as needed to control the amount of mechanical energy that the material receives in the extruder.
  • the adjustment of the different positions of the rotating block 19 can also be carried out under the working state of the extruder, and no downtime adjustment is required. Therefore, the adjustment of the online mechanical energy can be achieved.
  • the B template when used for production, it is the same as the previous A template, and the functions as described above can also be realized.
  • the non-stop die-changing extruder of the second embodiment can avoid particle sticking, water vapor leakage and pollution of the surrounding environment during the production process.
  • the particles are not free fall, but are pneumatically transported, the particles do not have the problem of mutual extrusion, so there is no problem of particle deformation and sticking.
  • the tester of the above-described second embodiment is subjected to a test test to prove that the present invention can achieve the advantageous effects of the statement.
  • the template used in the test of the second embodiment was a 3.0 mm aperture die hole.
  • the main motor load current of the extruder is 90%, and the capacity of the extruder is 6t/h.
  • the rotating block in the die changing device can reciprocate up and down in the cylinder according to the action of the driving device.
  • the rotational speed of the rotating block is 30°/s.
  • the rotating block can stay at any position inside the cylinder as needed.
  • the angle D1 between the center line of the feed port and the center line of the A discharge port is 120°.
  • the angle D2 between the center line of the feed port 20 and the center line of the B discharge port is also 120°.
  • the second embodiment is divided into two steps.
  • the first step is to test the die change data using two rotating blocks with an angle of 120°; the second step is to test the rotating blocks of three channels with an angle of 120°. Production Data.
  • the formula for testing is shown in Table 6.
  • the crushing fineness of the material is 95% through an 80 mesh sieve, 99.5% through a 60 mesh sieve, and 100% through a 50 mesh sieve.
  • the material is first pre-cooked in an ordinary conditioner. After the conditioner, the degree of gelatinization of the material is 45%, the temperature of the material is 95 ° C, and the moisture content of the material is 24%.
  • Such material enters the extruder, first extruded through the A template and cut into expanded pellets by the A cutter, and enters the A inlet through the closed vertical duct, and finally the outlet enters the next process.
  • the test is divided into two steps.
  • the first step is to use the dual channel test
  • the second step is to use the three channels for the test.
  • the data of the test test includes the following:
  • the first set of data (dual channel test)
  • test can be switched from A template to B template without stopping the machine, and can still keep expanding after switching. Stable production of chemical machines;
  • the application case of the technology of the present invention can be analyzed, and the A template can be switched to the B template in a short time without stopping the machine.
  • the quality of the products before and after switching can be consistent.
  • the application case of the technology of the present invention can be analyzed, and the B template can be switched to the A template in a short time without stopping.
  • the quality of the products before and after switching can be consistent.
  • sample 2 kg Before the A template, sample 2 kg to see the amount of puffed particles bonded by the particles.
  • the application of the technology of the present invention can be analyzed, and the A template and the B template work simultaneously. At the same time, mechanical energy control can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

一种不停机换模膨化机,包括膨化腔(3,4)、位于膨化腔(3,4)出口处的换模装置(5)、换模装置(5)的筒体(14)侧壁上连接第一模板(17-1,15-1)、第二模板(17-2,15-2);换模装置(5)中的活动块中设有转接通道,当活动块在筒体(14)内运动到第一位置时,转接通道将膨化腔(3,4)与第一通道连通,当活动块在筒体(14)内运动到第二位置时,转接通道将膨化腔(3,4)与第二通道连通,从而能够不用停机进行换模而更换产品品种,如果模板堵塞后,也不需要停机更换新的模板。

Description

一种不停机换模膨化机及使用方法 技术领域
本发明涉及食品行业和饲料行业,尤其是宠物食品、人类食品和水产饲料领域的加工设备和加工方法。
背景技术
食品行业和饲料行业为了实现加工高熟化程度的产品,通常的选择是使用膨化机。但是目前膨化生产线存在如下的问题:
问题一:设备运行效率低,更换模板,更换品种时间长
食品行业和饲料行业的膨化产品的配方都有很多种,一般有10~15种配方,也有20~30种配方,甚至更多。而模板的规格也有很多,一般至少有10多中模板。不同的配方合不同的模板进行组合,这样就有200多种产品。
一条膨化生产线往往一天需要生产3~8种不同的产品。而每次更换产品的时候都需要停机,拆卸模板,清理膨化机,再安装模板,再开机。这样一个过程的时间都比较长,一般需要30~60分钟。如果操作人员不熟练,这个更换品种的时间会达到120分钟。
除了产品的品种多之外,膨化机在生产的过程中,常常遇到原料中的纤维和杂物堵塞模板。模板堵塞后,导致颗粒变形,产能降低。目前解决这个问题的唯一方法是停机,换模板。而每次停机换模板,也需要拆卸模板,清理膨化机,再安装模板,再开机。时间相当长。
由于以上两个方面的因素,膨化机的正正有效运行的时间效率比较低。一般正常上班10个小时,膨化机运行的时间可能仅仅6个小时左右。
所以,产品品种的更换和模板的堵塞,这两大因素导致生产工厂效率的大幅度下降。这是一个迫切解决的问题,而本发明正是解决这样的问题。
问题二:膨化机出口产生的蒸汽导致现场环境差
挤压膨化是一种高温、高压、高水分的加工方法。当物料离开模板后,颗粒膨化的同时会形成大量的水蒸气。这个水蒸气会散发在周围的空气中,一方面导致现场的环境很恶劣,影响操作人员的工作环境的舒适度;另外一方面,水蒸气会对现场的设备产生腐蚀作用,一些机械设备长期暴露在水蒸气的环境中,锈迹斑斑,影响设备的使用寿命。
现有的技术是这样处理这个问题的:膨化机出口的膨化颗粒离开膨化机后,通过重力的作用,颗粒向下下落,进入下道设备中,如烘干设备。伴随膨化颗粒产生的水蒸气,通过吸风管路向上吸走。
这样处理的方式存在两个问题:
问题一:不能把所有的水蒸气都吸走,还有很大一部分的水蒸气飘逸到周围环境中去,因为膨化颗粒本身就含有水汽,膨化颗粒在下落的过程中还不断分离出水汽。
问题二:风管吸风的过程中会不断产生大量的冷凝水,冷凝水向下流淌至膨化颗粒中,导致部分膨化颗粒黏结在一起,影响烘干的水分均匀性,最终影响产品的品质。
故,需要一种新的技术方案以解决上述问题。
发明内容
发明目的:为解决上述问题,本发明提供一种不停机换模膨化机,能够同时使用多个模板,且不需要拆除模板及可实现换模,同时换模时不需要停止膨化机 的运行。
本发明还提供了一种不停机换模膨化机,在解决上述问题的基础上,还可以解决在膨化机中出现的水蒸气污染环境和冷凝水导致颗粒黏结的问题。
以及,本发明还提供了上述不停机换模膨化机的使用方法的技术方案。
本发明提供的不停机换模膨化机可采用以下技术方案:
一种不停机换模膨化机,包括膨化腔、位于膨化腔内上的进料口、位于膨化腔出口处的换模装置;所述膨化腔内设有用以将物料输送至换模装置的输送器;所述换模装置包括筒体、位于筒体内的活动块、驱动活动块运动的驱动装置、连接在筒体侧壁上的第一模板、连接在筒体侧壁上的第二模板;所述第一模板设有贯穿第一模板且与筒体内部连通的第一通道;所述第二模板设有贯穿第二模板且与筒体内部连通的第二通道;所述膨化腔的出口连接在筒体侧壁上且与筒体内部连通;所述活动块中设有转接通道,活动块通过驱动装置的驱动在第一位置至第二位置移动,当活动块在筒体内运动到第一位置时,所述转接通道将膨化腔与第一通道连通,当活动块在筒体内运动到第二位置时,所述转接通道将膨化腔与第二通道连通。
有益效果,本发明提供的该不停机换模膨化机能够不用停机而通过驱动活动块运动而使膨化腔连通不同的模板,从而更换产品品种,如果模板堵塞后,也不需要停机更换新的模板。应当注意的是,在上述技术方案中给出了两个模板,但不应当认为仅包含两个模板,两个以上的模板也属于该技术方案的方案,因两个以上的模板也至少包含了两个模板。
其中,所述活动块为活塞或者位于筒体内的转动的转动块。
当选择活塞作为活动块时:
所述活动块为位于筒体内的活塞;所述活塞内设有至少一个第一转接通道、至少一个第二转接通道,当活塞在筒体内运动到第一位置时,所述第一转接通道将膨化腔与第一通道连通,当活塞在筒体内运动到第二位置时,所述第二转接通道将膨化腔与第二通道连通。
本发明提供了上述使用活塞作为活动块时,上述不停机换模膨化机的使用方法,当只使用第一模板生产时,通过驱动装置驱动活塞移动至第一位置,使第一转接通道将膨化腔与第一通道连通,通过膨化腔的输送器将物料输送至第一模板中;当只使用第二模板生产时,通过驱动装置驱动活塞移动至第二位置,使第二转接通道将膨化腔与第二通道连通,通过膨化腔的输送器将物料输送至第二模板中。
进一步的,所述活塞内设有至少一个第三转接通道;当活塞在筒体内运动到一个第三位置时,所述第三转接通道将膨化腔与第一通道和第二通道同时连通。该进一步的技术特征实现了同时使用第一模板和第二模板的效果,扩大了该膨化机的应用,可以同时生产两种以上的产品。
而对于具有第三转接通道的膨化机,本发明同时给出了该膨化机的使用方法,即:对于该当只使用第一模板生产时,通过驱动装置驱动活塞移动至第一位置,使第一转接通道将膨化腔与第一通道连通,通过膨化腔的输送器将物料输送至第一模板中;当只使用第二模板生产时,通过驱动装置驱动活塞移动至第二位置,使第二转接通道将膨化腔与第二通道连通,通过膨化腔的输送器将物料输送至第二模板中;当同时使用第一模板和第二模板生产时,通过驱动装置驱动活塞移动至第三位置,使第三转接通道将膨化腔与第一通道、第二通道同时连通,通过膨化腔的输送器将物料同时输送至第一模板及第二模板中。
进一步的,第一转接通道包括一个第一入口及一个第一出口,第二转接通道包括一个第二入口及一个第二出口,所述筒体的侧壁上设有连接筒体内部与膨化腔出口的入料口、连接筒体内部与第一转接通道的第一出料口、连接筒体内部与第二转接通道的第二出料口。
当需要调整物料受到的机械能时,本发明给出了以下使用方法的技术方案,当只使用第一模板生产并调整物料受到的机械能时,通过驱动装置驱动活塞移动而使第一转接通道将膨化腔与第一通道连通,此时第一入口与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至第一入口,并通过第一出口输送至第一模板中;当只使用第二模板生产并调整物料受到的机械能时,通过驱动装置驱动活塞移动而使第二转接通道将膨化腔与第一通道连通,此时第二入口与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至第二入口,并通过第二出口输送至第二模板中。
该使用方法中,由于在使用某一个模板时,入料口与某一个入口之间形成错位,即形成的通道开口实际上小于入料口的大小,物料在该通道开口位置形成的阻力就会变大,错位的幅度越大,其阻力会越大,物料受到的机械能也就越大。通过调整该通道开口位置的大小即可以调整物料受到的机械能。
同样的原理,当所述活塞内设有至少一个第三转接通道时,此时当同时使用第一模板和第二模板生产并调整物料受到的机械能时,通过驱动装置驱动活塞移动而使第三转接通道将膨化腔与第一通道、第二通道同时连通,此时第三入口与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至第三入口,并通过两个第三出口同时输送至第一模板及第二模板中。
当选择转动块作为活动块时:
所述活动块为位于筒体内的转动的转动块;当转动块在筒体内转动到第一位置时,所述第一通口连通膨化腔,而第二通口连通第一通道,当转动块在筒体内转动到第二位置时,所述第二通口连通膨化腔,而第一通口连通第二通道。
本发明提供了上述使用转动块作为活动块时,不停机换模膨化机的使用方法,当只使用第一模板生产时,通过驱动装置驱动转动块转动至第一位置,使第一通口连通膨化腔,而第二通口连通第一通道,通过膨化腔的输送器将物料输送至第一模板中;当只使用第二模板生产时,通过驱动装置驱动转动块转动至第二位置,使第二通口连通膨化腔,二第一通口连通第二通道,通过膨化腔的输送器将物料输送至第二模板中。
还包括替换所述转动块的三通转动块,所述三通转动块替换转动块后同样由驱动装置驱动而在筒体内转动,所述三通转动块设有一个三通转接通道,所述三通转接通道包括通道一、同时连通通道一的通道二和通道三;当三通转动块在筒体内转动到通道一连通膨化腔时,通道二连通第一通道、通道三连通第二通道。该进一步的技术特征实现了同时使用第一模板和第二模板的效果,扩大了该膨化机的应用,可以同时生产两种以上的产品。
而对于具有三通转动块的膨化机,本发明同时给出了该膨化机的使用方法,即:当同时使用第一模板和第二模板生产时,将转动块更换为三通转动块,并通过驱动装置驱动三通转动块转动至通道一连通膨化腔时,通道二连通第一通道、通道三连通第二通道。
进一步的,所述筒体的侧壁上设有连接筒体内部与膨化腔出口的入料口、连接筒体内部与第一转接通道的第一出料口、连接筒体内部与第二转接通道的第二出料口。
当需要调整物料受到的机械能时,本发明给出了以下使用方法的技术方案,当只使用第一模板生产并调整物料受到的机械能时,通过驱动装置驱动转动块转动而使第一通口连通膨化腔,而第二通口连通第一通道,此时第一通口与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至第一通口,并通过第二通口输送至第一模板中;当只使用第二模板生产并调整物料受到的机械能时,通过驱动装置驱动转动块转动而使第二通口连通膨化腔,而第一通口连通第二通道,此时第二通口与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至第二通口,并通过第一通口输送至第二模板中。
该使用方法中,由于在使用某一个模板时,入料口与某一个通口之间形成错位,即形成的通道开口实际上小于入料口的大小,物料在该通道开口位置形成的阻力就会变大,错位的幅度越大,其阻力会越大,物料受到的机械能也就越大。通过调整该通道开口位置的大小即可以调整物料受到的机械能。
同样的原理,当同时使用第一模板和第二模板生产并调整物料受到的机械能时,将转动块更换为三通转动块,并通过驱动装置驱动三通转动块转动至通道一连通膨化腔时,通道二连通第一通道、通道三连通第二通道;此时通道一与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至通道一,并通过通道二将物料输送至第一模板;同时通道三将物料输送至第二模板。
进一步的,还包括与第一模板连接的第一切割装置、与第二模板连接的第二切割装置、连接第一切割装置的第一风管、连接第二切割装置的第二风管。切割装置对应不同的模板分别使用。
进一步的,还包括同时连接第一风管及第二风管的三通开关阀;所述三通开关阀具有第一进口、第二进口及开关阀出口,所述第一进口连通第一风管,第二进口连通第二风管。
进一步的,所述三通开关包括位于两个进口与开关阀出口之间切换板,及驱动切换板的驱动装置,该切换版上有第一通道口及第二通道口;当使用第一进口时,驱动切换板使第一通道口对准第一进口,而这时切换板堵塞第二进口;当第一进口和第二进口同时使用时,驱动装置驱动切换板向前位移,使第一通道口对准第二进口,同时第二通道口对准第一进口;当使用第二进口时,驱动装置继续驱动切换板向前位移,第二通道口对准第二进口的位置,而此时切换板堵塞第一进口。
进一步的,所述第一风管包括与第一切割装置连接并自第一切割装置向上延伸的第一垂直风管、连接第一垂直风管上端并弯折至水平方向的第一弯管、连接第一弯管水平端且继续水平延伸至与上述第一进口连接的第一水平风管;所述第二风管包括与第二切割装置连接并自第二切割装置向上延伸的第二垂直风管、连接第二垂直风管上端并弯折至水平方向的第二弯管、连接第二弯管水平端且继续水平延伸至与上述第二进口连接的第二水平风管。该进一步的技术特征使从模板之后出来的膨化产品,伴随着大量蒸汽,蒸汽和膨化产品一起通过气力输送运走进入下道工序中。由于这样的工况处于负压中,这样就避免了现场蒸汽的外泄。另外由于颗粒非自由落体下落,而是气力输送,颗粒不存在相互挤压的问题,所以不存在颗粒变形和黏结的问题。
本发明的目的是针对现有技术存在的不足,提供了一种新型的不停机换模膨化机,并通过相关测试数据验证了该发明有优异的效果,能够不用停机更换产品品种,如果模板堵塞后,也不需要停机更换新的模板。应用该技术后,膨化生产线的生产效率能够有现有的56~60%提高到80%以上,大幅度提升膨化生产线的 生产效率。另外也很好的解决了水蒸气污染环境和冷凝水导致颗粒黏结的问题,黏结的颗粒由原先的2~5%,到彻底避免颗粒黏结。
附图说明
图1是本发明实施例一中不停机换模板膨化机的主视图。
图2是本发明实施例一中不停机换模板膨化机的左视图。
图3是本发明实施例一中不停机换模板膨化机的俯视图。
图4是本发明实施例一中不停机换模板膨化机的立体图。
图5是本发明实施例一中不停机换模板膨化机换模装置部分的剖视图。
图6是本发明实施例一中不停机换模板膨化机换模装置的主视图。
图7是图6中换模装置的纵向剖视图,并展示了A模板工作的状态。
图8是图6中换模装置的横向剖视图,并展示了A模板工作的状态。
图9是本发明实施例一中活塞的结构图,并展示了一种2位换模+1位双模的活塞。
图10是图6中换模装置的纵向剖视图,并展示了B模板工作的状态。
图11是图6中换模装置的横向剖视图,并展示了B模板工作的状态。
图12是图6中换模装置的纵向剖视图,并展示了A模板和B模板同时工作的状态。
图13是图6中换模装置的横向剖视图,并展示了A模板和B模板同时工作的状态。
图14是图6中换模装置的纵向剖视图,并展示了A模板工作且调整物料受到的机械能时的状态。
图15是一种2位换模活塞的结构图。
图16是一种3位换模+1位双模活塞的结构图。
图17是一种3位换模活塞的结构图。
图18是一种4位换模+1位双模活塞的结构图。
图19是实施例一中三通开关阀的结构示意图,并展示了A进口工作时的状态。
图20是实施例一中三通开关阀的结构示意图,并展示了A进口和B进口同时工作时的状态。
图21是实施例一中三通开关阀的结构示意图,并展示了B进口工作时的状态。
图22是本发明实施例二中不停机换模板膨化机的主视图。
图23是本发明实施例二中不停机换模板膨化机的左视图。
图24是本发明实施例二中不停机换模板膨化机的俯视图。
图25是本发明实施例二中不停机换模板膨化机换模装置部分的剖视图。
图26是本发明实施例二中不停机换模板膨化机换模装置的主视图。
图27是图26中换模装置的剖视图。
图28是图27中换模装置包括转动块的横向剖视图,并展示了A模板工作的状态。
图29是图27中换模装置包括转动块的横向剖视图,并展示了A模板工作且调整物料受到的机械能时的状态。
图30是图27中换模装置包括转动块的横向剖视图,并展示了B模板工作的状态。
图31是图27中换模装置包括转动块的横向剖视图,并展示了B模板工作 且调整物料受到的机械能时的状态。
图32是图27中换模装置的横向剖视图,并用三通转动块替换转动块,并展示了A模板和B模板同时工作的状态。
图33是图27中换模装置的横向剖视图,并用三通转动块替换转动块,并展示了A模板和B模板同时工作且调整物料受到的机械能时的状态。
具体实施方式
实施例一
请参阅图1至图21所示,为本发明不停机换模膨化机的第一种实施方式。
请参阅图1至图14所示,本实施例一公开了一种膨化机,包含有底座12支撑整个膨化机,与底座12直接连接的有电机1,电机直接连接齿轮箱2,齿轮箱2与长筒形的多段的膨化腔4相连,膨化腔起始位置附近设置有进料膨化腔3。所述进料膨化腔3内的输送器为螺杆13,齿轮箱2及电机1驱动螺杆旋转。膨化腔的末端连接着换模机构5,换模板机构5含有两个模板:A模板17-1和B模板17-2。A模板和B模板分别与A切割装置6-1和B切割装置6-2相连接。
其中,A切割装置6-1与安装于其上部的密闭垂直风管7-1相连,垂直风管7-1之后连接着弯管8-1,弯管8-1后连接着水平风管9-1。
其中,B切割装置6-2与安装于其上部的密闭垂直风管7-2相连,垂直风管7-2之后连接着弯管8-2,弯管8-2后连接着水平风管9-2。
其中,水平风管9-1和9-2分别与三通开关阀10的A进口27-1和B进口27-2相连接。
请结合图7及图8,所述的换模机构5包含一个垂直方向的长筒形的壳体14,筒体14内部含有一个垂直放置的活塞19,活塞19顶部与驱动装置25相连,驱动装置25安装在顶板26上,而顶板26直接与壳体19相连。
所述的壳体14包含一个进料口20,一个A出料口21-1,一个B出料口21-2。进料口20的中心线与A出料口的中心线之间的夹角D1为60°~160°,其中优选90°~125°。进料口20的中心线与B出料口的中心线之间的夹角D2为60°~160°,其中优选90°~125°
所述的A出料口连接着分流器16-1,分流器16-1连接着A模板17-1。A模板16-1之后连接着A切割装置6-1。A切割装置包含A切刀18-1。
所述的B出料口连接着分流器16-2,分流器16-2连接着B模板17-2。B模板16-2之后连接着B切割装置6-2。B切割装置包含B切刀18-1。
所述的活塞19在筒体中能够根据驱动装置25的作用进行上下的往复运动,运动的速度为0.002~20m/s,其中优选速度为0.01~0.1m/s。在膨化机运行过程中,活塞19能够根据需要停留在活塞19内部的任何一个位置。
请结合图7至图13,所述的活塞19含有上下不同位置布置的多个通道,每个通道都含有一个进料口和出料口,出料口有1个或者2个。其中能够与A出料口21-1连接的为A通道22,与B出料口21-2连接的为B通道,与A出料口21-1和B出料口21-2同时相连的为双通道24。其中A通道的数量为1个或者2个或者多个;B通道的数量为1个或者2个或者多个;双通道的数量为0个或者1个或者2个或者多个。
请再结合图19至图21,所述的三通开关阀10,包含2个进口,A进口27-1和B进口27-2,和一个出口11。在进口和出口之间有一个切换板28,切换板28与驱动装置29相连。切换板28上有两个通道口。A通道口30-1,B通道口30-2。 当使用A进口27-1时,切换板28上的A通道口30-1对准A进口27-1,而这时切换板28是堵塞B进口27-2的。
当使用A进口27-1和B进口27-2同时使用时,驱动装置29驱动切换板28向前位移,28上的A通道口30-1对准B进口27-2,同时切换板上的B通道口30-2对准A进口27-1。
当使用B进口时,驱动装置29继续驱动切换板28向前位移,28上的B通道口30-2位移到B进口27-2的位置,而此时切换板28是堵塞A进口27-1的。
需要指出的是,该三通开关阀10只是本实施例中的优选,即使不采用该三通开关阀10,如对于每条风管都分别设置一个阀进行独立控制,也不影响使用。
本发明在生产过程中能够根据需要,选择A模板17-1生产,或者B模板17-2生产,或者两个模板同时生产。
请结合图7及图8所示,当选择A模板17-1生产时,活塞上的A通道22通过驱动装置25的作用,位移至进料口20时,物料会经由A通道挤压至A出料口中,这时A模板处于运行状态。这时由于活塞19是堵塞B出料口21-2的,B出料口没有物料,所以B出料口处于非运行状态。
物料从A模板挤出后,进入A切割装置,由A切刀18-1进行切割。切割后的膨化产品受到负压气力输送的作用,膨化产品向上分别经过垂直风管7-1、弯管8-1,和水平风管9-1,进入三通开关阀10。
此时三通开关阀10中的切换板的A通道口30-1对准着A进口27-1,而B进口27-2是被切换板堵塞着的。所以,负压的空气能够由出口11经过A通道口30-1沿着管路一直向下传递,直到传递到A模板前。最终带动膨化颗粒向上运动,一直到出口11。并进入下道工序中去。
请结合图10及图11所示,当选择B模板17-2生产时,活塞上的B通道23通过驱动装置25的作用,位移至进料口20时,物料会经由B通道挤压至B出料口中,这时B模板处于运行状态。这时由于活塞19是堵塞A出料口21-1的,A出料口没有物料,所以A出料口处于非运行状态。
物料从B模板挤出后,进入B切割装置,由B切刀18-2进行切割。切割后的膨化产品受到负压气力输送的作用,膨化产品向上分别经过垂直风管7-2、弯管8-2,和水平风管9-2,进入三通开关阀10。
此时三通开关阀10中的切换板的B通道口30-2对准着B进口27-2,而A进口27-1是被切换板堵塞着的。所以,负压的空气能够由出口11经过B通道口30-2沿着管路一直向下传递,直到传递到B模板前。最终带动膨化颗粒向上运动,一直到出口11。并进入下道工序中去。
请结合图12及图13所示,当选择A模板17-1和B模板17-2同时生产时,活塞上的双通道24通过驱动装置25的作用,位移至进料口20时,物料会经由双通道同时挤压至A出料口和B出料口中,这时A模板和B模板同时处于运行状态。
物料从A模板挤出后,进入A切割装置,由A切刀18-1进行切割。切割后的膨化产品受到负压气力输送的作用,膨化产品向上分别经过垂直风管7-1、弯管8-1,和水平风管9-1,进入三通开关阀10。
物料从B模板挤出后,进入B切割装置,由B切刀18-2进行切割。切割后的膨化产品受到负压气力输送的作用,膨化产品向上分别经过垂直风管7-2、弯管8-2,和水平风管9-2,进入三通开关阀10。
此时三通开关阀10中的切换板的B通道口30-2对准着A进口27-1,同时 A通道口30-1对准着B进料口27-2。所以,负压的空气能够由出口11经过A通道口30-1和B通道口30-2沿着双路的管路一直向下传递,直到传递到两个模板前。最终带动两个模板处的膨化颗粒向上运动,一直到出口11。并进入下道工序中去。
本实施例一的不停机换模膨化机在生产过程中能够实现不同模板之间的切换。
当A模板向B模板切换时,在生产过程中通过驱动装置25的作用,活塞19进行向下移动一定位置,由A通道22对准进料口20,变成B通道23对准进料口20。这样A模板堵塞,而B模板打开,物料进入B模板后,B切刀运行切割物料得到膨化产品。此时,三通开关阀10中B进口27-2打开,A进口27-1堵塞。
反之,当B模板向A模板切换时,也是可以的。
在A模板在生产时,或者B模板在生产时,也是可以切换为A模板和B模板同时生产的工况。
需要指出的是,本实施例中,采用了一种活塞是2位换模+1位双模的活塞,即具有三个通道,两个通道能够与A模板、B模板分别形成换模位,还有1位是同时连通并使用A模板和B模板。但在该原理的基础上,并不限于只有这3个换模位。如图15是一种2位换模活塞的结构图,及活塞只有2位与A模板、B模板分别形成换模位,而没有双模位。图16是一种3位换模+1位双模活塞的结构图,即有2位是可以与A模板或者与B模板换模的换模位,这样当一个通道堵住时,有其他通道来替代。同样的,图17是一种3位换模活塞的结构图。图18是一种4位换模+1位双模活塞的结构图。进一步的,在该原理的基础上,具有N位换模的活塞(N大于2),及N位换模+M位双模的活塞均是可以使用的(N大于2、M大于1),并在此基础上,也不仅仅只限于只有两个模板(A模板、B模板),在换模装置的尺寸允许的情况下,在换模装置中设置三个以上的模板也是本发明的原理可以实现的一种实施方式。
请结合图14所示,本发明在生产过程中能够实现机械能的控制。当使用A模板生产时,A通道22与进料口20形成一定幅度的错位时,与不错位相比,物料在该位置形成的阻力就会变大,错位的幅度越大,其阻力会越大,物料受到的机械能也就越大。
所以,可以把活塞19根据需要停留在不同的位置上,以此来控制物料在膨化机中受到的机械能大小。活塞19不同位置的调整也是可以在膨化机运行的工作状态下进行了,不需要停机调整。所以,可以实现在线机械能的调节。
同样,当使用B模板生产时,和前面的A模板是一样的,也能够实现如上所述的功能。
同样,当使用A模板和B模板同时生产时,和前面的A模板也是一样的,也能够实现如上所述的功能。
本实施例一的不停机换模膨化机在生产过程中能够避免颗粒黏结,和水蒸气的外泄,污染周围的环境。
从模板之后出来的膨化产品,伴随着大量蒸汽,蒸汽和膨化产品一起通过气力输送运走进入下道工序中。由于这样的工况处于负压中,这样就避免了现场蒸汽的外泄。
另外由于颗粒非自由落体下落,而是气力输送,颗粒不存在相互挤压的问题,所以不存在颗粒变形和黏结的问题。
以下,通过对上述实施例一的膨化机进行试验测试,以证明本发明能够实现声明的有益效果。
本实施例一测试中使用的模板为3.0mm孔径的模孔。膨化机的主电机负载电流为90%,膨化机的产能问题6t/h。
换模机构中的活塞在筒体中能够根据驱动装置的作用进行上下的往复运动。在本实施例中,活塞的运动速度为0.1m/s。在膨化机运行过程中,活塞能够根据需要停留在筒体中内部的任何一个位置。
本实施例一中,活塞含有1个A通2,含有1个B通道,同时含有1个双通道。本实施例一中,进料口20的中心线与A出料口的中心线之间的夹角D1为120°。进料口20的中心线与B出料口的中心线之间的夹角D2也为120°。
采用本实施例一时,进行测试的配方见表一,物料的粉碎细度为95%通过80目筛,99.5%过60目筛,100%过50目筛。物料首先在一个普通的调质器中进行预熟化,经过调质器后物料的糊化度为45%,物料的温度为95℃,物料的含水率为24%。这样的物料进入膨化机,首先通过A模板进行挤出并通过A切刀切割成膨化颗粒,并通过密闭的垂直风管进入A进口27-1中,最后有出口11进入下道工序中。
表1 物料的配方(重量百分含量)
豆粕 27
小麦粉 25
麦麸 18
菜仔饼 27
油脂 3
合计 100
本实施例一中测试的数据包含如下:
一、第一组数据
1)测试是否能够实现不停机从A模板切换为B模板,切换后还能够保持膨化机的稳定生产;
2)测试不停机更换模板的时长,这个时长的起始点为A模板稳定生产过程中,向孔子系统下达切换模板的指令;终止点为完成模板切换,B模板开始稳定生产,能够加工出合格的膨化产品。
3)测试切换前主电机电流的最大波动幅度;
4)测试在切换模板过程中的主电机电流的最大波动幅度;
5)测试模板切换前后膨化颗粒膨化系数的对比
6)测试模板切换前后膨化颗粒容重的对比
7)测试模板切换前后产品漂浮率的对比
8)测试模板切换前后膨化长短均匀度的对比
9)肉眼观察模板切换前,切割装置附近是否有水蒸气泄漏
10)肉眼观察模板切换后,切割装置附近是否有水蒸气泄漏
11)模板切换前,取样2公斤,查看颗粒黏结的膨化颗粒数量
12)模板切换前,取样2公斤,查看颗粒黏结的膨化颗粒数量
二、第二组数据
1)测试是否能够实现不停机从B模板切换为A模板,切换后还能够保持膨化机的稳定生产;
2)测试不停机更换模板的时长,这个时长的起始点为B模板稳定生产过程中,向孔子系统下达切换模板的指令;终止点为完成模板切换,A模板开始稳定生产,能够加工出合格的膨化产品。
3)测试切换前主电机电流的最大波动幅度;
4)测试在切换模板过程中的主电机电流的最大波动幅度;
5)测试模板切换前后膨化颗粒膨化系数的对比
6)测试模板切换前后膨化颗粒容重的对比
7)测试模板切换前后产品漂浮率的对比
8)测试模板切换前后膨化长短均匀度的对比
9)肉眼观察模板切换前,切割装置附近是否有水蒸气泄漏
10)肉眼观察模板切换后,切割装置附近是否有水蒸气泄漏
11)模板切换前,取样2公斤,查看颗粒黏结的膨化颗粒数量
12)模板切换前,取样2公斤,查看颗粒黏结的膨化颗粒数量
三、第三组数据
1)测试是否能够实现不停机从B模板切换为A模板和B模板同时工作,切换后还能够保持膨化机的稳定生产;
2)测试不停机更换模板的时长,这个时长的起始点为B模板稳定生产过程中,向孔子系统下达切换模板的指令;终止点为完成模板切换,A模板开始稳定生产,能够加工出合格的膨化产品。
3)测试切换前主电机电流的最大波动幅度;
4)测试在切换模板过程中的主电机电流的最大波动幅度;
5)测试模板切换前后膨化颗粒膨化系数的对比
6)测试模板切换前后膨化颗粒容重的对比
7)测试模板切换前后产品漂浮率的对比
8)测试模板切换前后膨化长短均匀度的对比
9)肉眼观察模板切换前,切割装置附近是否有水蒸气泄漏
10)肉眼观察模板切换后,切割装置附近是否有水蒸气泄漏
11)模板切换前,取样2公斤,查看颗粒黏结的膨化颗粒数量
12)模板切换前,取样2公斤,查看颗粒黏结的膨化颗粒数量
四、第四组数据
1)A模板生产过程中,机械能调节,调整通道错位20%,检测容重变化;
2)A模板生产过程中,机械能调节,机械能调节,调整通道错位30%,检测容重变化;
3)A模板生产过程中,机械能调节,机械能调节,调整通道错位40%,检测容重变化;
4)B模板生产过程中,机械能调节,调整通道错位20%,检测容重变化;
5)B模板生产过程中,机械能调节,机械能调节,调整通道错位30%,检测容重变化;
6)B模板生产过程中,机械能调节,机械能调节,调整通道错位40%,检测 容重变化;
7)A模板和B模板同时生产过程中,机械能调节,调整通道错位20%,检测容重变化;
8)A模板和B模板同时生产过程中,机械能调节,调整通道错位30%,检测容重变化;
9)A模板和B模板同时生产过程中,机械能调节,调整通道错位40%,检测容重变化;
表2 A模板切换为B模板
Figure PCTCN2017099624-appb-000001
根据以上的测试数据可以分析得出本发明技术应用的案例,可以实现不停机在短时间内由A模板切换为B模板。同时在切换的过程中,和切换后没有大的波动,切换前后产品的品质能够保持一致。
表3 B模板切换为A模板
Figure PCTCN2017099624-appb-000002
Figure PCTCN2017099624-appb-000003
根据以上的测试数据可以分析得出本发明技术应用的案例,可以实现不停机在短时间内由B模板切换为A模板。同时在切换的过程中,和切换后没有大的波动,切换前后产品的品质能够保持一致。
表4 B模板切换为A模板和B模板同时工作
Figure PCTCN2017099624-appb-000004
根据以上的测试数据可以分析得出本发明技术应用的案例,可以实现不停机在短时间内由B模板切换为A模板和B模板同时工作。切换前生产的是低容重的浮性颗粒,切换后由于模板的面积增加,变成了100%下沉的沉性颗粒。但是产品的颗粒长度的差异保持不变。
表5 机械能调节测试数据
序号 测试项目 颗粒容重 备注
1 A模板生产过程中,调整通道错位0% 346g/l  
2 A模板生产过程中,调整通道错位20% 333g/l  
3 A模板生产过程中,调整通道错位30% 322g/l  
4 A模板生产过程中,调整通道错位40% 309g/l  
5 B模板生产过程中,调整通道错位0% 340g/l  
6 B模板生产过程中,调整通道错位20% 331g/l  
7 B模板生产过程中,调整通道错位30% 318g/l  
8 B模板生产过程中,调整通道错位40% 305g/l  
9 AB模板同时生产中,调整通道错位0% 725g/l  
10 AB模板同时生产中,调整通道错位20% 685g/l  
11 AB模板同时生产中,调整通道错位30% 654g/l  
12 AB模板同时生产中,调整通道错位40% 621g/l  
根据以上的测试数据可以分析得出本发明技术应用的案例,可以实现机械能的在线调节。通过调整通道的错位百分比来控制膨化颗粒的容重。
从以上三组测试的数据进行比较,可得出结论:本发明实施例一的技术方案应用的加工工艺和设备,能够实现不停机切换模板,同时能够实现机械能的控制,同时能够避免颗粒的黏结,避免蒸汽的外溢。
实施例二
请参阅图22至图33所示,为本发明不停机换模膨化机的第二种实施方式。
请参阅图22至图27所示,本实施例二公开了一种膨化机,包含有底座10支撑整个膨化机,与底座10直接连接的有电机1,电机直接连接齿轮箱2,齿轮箱2与长筒形的多段的膨化腔4相连,膨化腔起始位置附近设置有进料膨化腔3。膨化腔的末端连接着换模装置5,换模板机构5含有两个模板:A模板15-1和B模板15-2。A模板和B模板分别与A切割装置6-1和B切割装置6-2相连接。
其中,A切割装置6-1与安装于其上部的密闭垂直风管7-1相连,垂直风管7-1之后连接着弯管8-1,弯管8-1后连接着水平风管9-1。
其中,B切割装置6-2与安装于其上部的密闭垂直风管7-2相连,垂直风管7-2之后连接着弯管8-2,弯管8-2后连接着水平风管9-2。
请结合图26及图27,所述的换模装置5包含一个垂直方向的圆筒形的壳体12,壳体12内部含有一个可以旋转的转动块13,转动块13上部安装减速器16,减速器16通过联轴器14与转动块13向连接。减速器16通过支撑架15与壳体12固定。减速器上方安装驱动电机17。在工作中驱动电机驱动减速器运转,减速器通过联轴器带动转动块作旋转运动。
所述的壳体12包含一个进料口23,一个A出料口20-1,一个B出料口20-2。进料口23的中心线与A出料口20-1的中心线之间的夹角为D1;进料口23的中心线与B出料口20-2的中心线之间的夹角为D2。D1角度范围85°~125°之间,其中优选角度为120°和90°,且D1绝对等于D2,或者D1-D2的角度值的绝对值≤5°。
所述的A出料口连接着分流器14-1,分流器14-1连接着A模板15-1。A模板15-1之后连接着A切割装置6-1。A切割装置包含A切刀16-1。
所述的B出料口连接着分流器14-2,分流器14-2连接着B模板15-2。B模板15-2之后连接着B切割装置6-2。B切割装置包含B切刀16-1。
所述的转动块13在壳体12中可以在水平方向进行旋转运动,转动块13旋转运动的动力来源于安装在壳体上部的驱动电机和减速器。转动块13运动的角速度为0.08°~160°m/s,其中优选速度为8°~40°/s。在膨化机运行过程中,转动块13能够根据需要停留在壳体12内部的任何一个位置,且能够保持。
所述的转动块13含有两个进出口通道,A通道21和B通道22。A通道和B通道的夹角等于D1。
请结合图28所示,所述的转动块13,当A通道21正对着A出料口20-1时,B通道22恰好正对着进料口23,此时转动块13刚好堵塞住B出料口20-2。
在生产过程中,物料从进料口23进入B通道,由于B通道与A通道向连,故物料顺着相连的两通道进入A出料口20-1。A出料口连接着A模板15-1,此时A模板可以工作。而此时转动块13堵塞住B出料口20-2,所以物料不会进入B出料口,与B出料相连的B模板不会有物料挤出,B模板处于非工作状态。
请结合图30所示,所述的转动块13进行旋转运动时,当转动块运动到A通道21刚好正对着进料口23时,转动块停止运动,并固定。此时,B通道22恰好正对着B出料口20-2,而转动块13刚好堵塞住A出料口20-1。
在生产过程中,当转动块旋转至上述的位置时,物料从进料口23进入A通道,由于A通道与B通道相连,故物料顺着相连的两通道进入B出料口20-2。B出料口20-2连接着B模板15-2,此时B模板可以工作。而此时转动块13堵塞住A出料口20-1,所以物料不会进入A出料口,与A出料相连的A模板不会有物料挤出,A模板处于非工作状态。
请结合图28及图30所示,当选择A模板17-1生产时,转动块上的A通道22通过驱动装置25的作用,位移至进料口20时,物料会经由A通道挤压至A出料口中,这时A模板处于运行状态。这时由于转动块19是堵塞B出料口21-2的,B出料口没有物料,所以B出料口处于非运行状态。
通过如上转动块的旋转,实现了A模板和B模板的工作切换的关系,也就实现了模板的更换。同时由于转动块的旋转角度D1花费的时间为0.1~10秒时间比较短。故可以实现不停机更换模板。
请参阅图32所示,当转动块13更换为三通道转动块24时,三通道转动块24同时具有可旋转的功能。转动块24上包含通道一25、通道二26和通道三27。通道一25正对着进料口23,此时通道二26恰好正对着B出料口20-2,同时通道三27恰好正对着A出料口20-1。
由于通道一25、通道二26和通道三27相互连通,所以,在生产时,当物料从进料口23流入,物料会通过通道三27进入A模板,同时会通过通道二26进入B模板。这样实现两个模板同时生产的功能。
请结合图29及图31所示,本发明在生产过程中能够实现机械能的控制。当使用A模板生产时,通过转动块的旋转,可以实现A出料口20-1与A通道21形成一定幅度的错位。与不错位相比,物料在该位置形成的阻力就会变大。错位的幅度越大,其阻力会越大,物料受到的机械能也就越大。
所以,可以把转动块13根据需要停留在不同的位置上,以此来控制物料在膨化机中受到的机械能大小。转动块19不同位置的调整也是可以在膨化机运行的工作状态下进行了,不需要停机调整。所以,可以实现在线机械能的调节。
同样,当使用B模板生产时,和前面的A模板是一样的,也能够实现如上所述的功能。
请结合图33所示,同样,当使用A模板和B模板同时生产时,和前面的A模板也是一样的,也能够实现如上所述的功能。
本实施例二的不停机换模膨化机在生产过程中能够避免颗粒黏结,和水蒸气的外泄,污染周围的环境。
从模板之后出来的膨化产品,伴随着大量蒸汽,蒸汽和膨化产品一起通过气力输送运走进入下道工序中。由于这样的工况处于负压中,这样就避免了现场蒸汽的外泄。
另外由于颗粒非自由落体下落,而是气力输送,颗粒不存在相互挤压的问题,所以不存在颗粒变形和黏结的问题。
以下,通过对上述实施例二的膨化机进行试验测试,以证明本发明能够实现声明的有益效果。
本实施例二测试中使用的模板为3.0mm孔径的模孔。膨化机的主电机负载电流为90%,膨化机的产能问题6t/h。
换模装置中的转动块在筒体中能够根据驱动装置的作用进行上下的往复运动。在本实施例二中,转动块的旋转速度为30°/s。在膨化机运行过程中,转动块能够根据需要停留在筒体中内部的任何一个位置。
本实施例二中,进料口的中心线与A出料口的中心线之间的夹角D1为120°。进料口20的中心线与B出料口的中心线之间的夹角D2也为120°。
本实施例二分为两步,第一步为使用夹角为120°的两个通道的转动块进行测试换模数据;第二步为使用夹角为120°的三个通道的转动块进行测试生产数据。
采用本实施例二时,进行测试的配方见表6,物料的粉碎细度为95%通过80目筛,99.5%过60目筛,100%过50目筛。物料首先在一个普通的调质器中进行预熟化,经过调质器后物料的糊化度为45%,物料的温度为95℃,物料的含水率为24%。这样的物料进入膨化机,首先通过A模板进行挤出并通过A切刀切割成膨化颗粒,并通过密闭的垂直风管进入A进口中,最后有出口进入下道工序中。
表6 物料的配方(重量百分含量)
豆粕 27
小麦粉 25
麦麸 18
菜仔饼 27
油脂 3
合计 100
本实施例二,分为两步进行测试,第一步为采用双通道测试,第二步使用三通道进行测试。试验测试的数据包含如下:
一、第一组数据(双通道测试)
13)测试是否能够实现不停机从A模板切换为B模板,切换后还能够保持膨 化机的稳定生产;
14)测试不停机更换模板的时长,这个时长的起始点为A模板稳定生产过程中,向孔子系统下达切换模板的指令;终止点为完成模板切换,B模板开始稳定生产,能够加工出合格的膨化产品。
15)测试切换前主电机电流的最大波动幅度;
16)测试在切换模板过程中的主电机电流的最大波动幅度;
17)测试模板切换前后膨化颗粒膨化系数的对比
18)测试模板切换前后膨化颗粒容重的对比
19)测试模板切换前后产品漂浮率的对比
20)测试模板切换前后膨化长短均匀度的对比
21)肉眼观察模板切换前,切割装置附近是否有水蒸气泄漏
22)肉眼观察模板切换后,切割装置附近是否有水蒸气泄漏
23)模板切换前,取样2公斤,查看颗粒黏结的膨化颗粒数量
24)模板切换前,取样2公斤,查看颗粒黏结的膨化颗粒数量
25)B模板生产过程中,机械能调节,调整通道错位20%,检测容重变化;
26)B模板生产过程中,机械能调节,机械能调节,调整通道错位30%,检测容重变化;
27)B模板生产过程中,机械能调节,机械能调节,调整通道错位40%,检测容重变化;
表7 A模板切换为B模板
Figure PCTCN2017099624-appb-000005
Figure PCTCN2017099624-appb-000006
根据以上的测试数据可以分析得出本发明技术应用的案例,可以实现不停机在短时间内由A模板切换为B模板。同时在切换的过程中,和切换后没有大的波动,切换前后产品的品质能够保持一致。
二、第二组数据(双通道测试)
13)测试是否能够实现不停机从B模板切换为A模板,切换后还能够保持膨化机的稳定生产;
14)测试不停机更换模板的时长,这个时长的起始点为B模板稳定生产过程中,向孔子系统下达切换模板的指令;终止点为完成模板切换,A模板开始稳定生产,能够加工出合格的膨化产品。
15)测试切换前主电机电流的最大波动幅度;
16)测试在切换模板过程中的主电机电流的最大波动幅度;
17)测试模板切换前后膨化颗粒膨化系数的对比
18)测试模板切换前后膨化颗粒容重的对比
19)测试模板切换前后产品漂浮率的对比
20)测试模板切换前后膨化长短均匀度的对比
21)肉眼观察模板切换前,切割装置附近是否有水蒸气泄漏
22)肉眼观察模板切换后,切割装置附近是否有水蒸气泄漏
23)模板切换前,取样2公斤,查看颗粒黏结的膨化颗粒数量
24)模板切换前,取样2公斤,查看颗粒黏结的膨化颗粒数量
25)A模板生产过程中,机械能调节,调整通道错位20%,检测容重变化;
26)A模板生产过程中,机械能调节,机械能调节,调整通道错位30%,检测容重变化;
27)A模板生产过程中,机械能调节,机械能调节,调整通道错位40%,检测容重变化;
表8 B模板切换为A模板
Figure PCTCN2017099624-appb-000007
Figure PCTCN2017099624-appb-000008
根据以上的测试数据可以分析得出本发明技术应用的案例,可以实现不停机在短时间内由B模板切换为A模板。同时在切换的过程中,和切换后没有大的波动,切换前后产品的品质能够保持一致。
三、第三组数据(三通道测试)
13)测试A模板和B模板同时工作时,膨化机是否稳定生产;
14)测试生产过程中主电机电流的最大波动幅度;
15)测试A模板和B模板膨化颗粒膨化系数的对比
16)测试A模板和B模板膨化颗粒容重的对比
17)测试A模板和B模板膨化颗粒漂浮率的对比
18)测试A模板和B模板膨化颗粒长短均匀度的对比
19)肉眼观察模,切割装置附近是否有水蒸气泄漏
20)A模板前,取样2公斤,查看颗粒黏结的膨化颗粒数量
21)B模板前,取样2公斤,查看颗粒黏结的膨化颗粒数量
22)A模板和B模板同时生产过程中,机械能调节,调整通道错位20%,检测容重变化;
23)A模板和B模板同时生产过程中,机械能调节,调整通道错位30%,检测容重变化;
24)A模板和B模板同时生产过程中,机械能调节,调整通道错位40%,检测容重变化;
表9 B模板切换为A模板和B模板同时工作
Figure PCTCN2017099624-appb-000009
Figure PCTCN2017099624-appb-000010
根据以上的测试数据可以分析得出本发明技术应用的案例,A模板和B模板同时工作可行。同时可以实现机械能控制。
从以上三组测试的数据进行比较,可得出结论:本发明实施例二的技术方案应用的加工工艺和设备,能够实现不停机切换模板,同时能够实现机械能的控制,同时能够避免颗粒的黏结,避免蒸汽的外溢。
另外,本发明的具体实现方法和途径很多,以上所述仅是本发明的优选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (22)

  1. 一种不停机换模膨化机,其特征在于:包括膨化腔、位于膨化腔内上的进料口、位于膨化腔出口处的换模装置;所述膨化腔内设有用以将物料输送至换模装置的输送器;
    所述换模装置包括筒体、位于筒体内的活动块、驱动活动块运动的驱动装置、连接在筒体侧壁上的第一模板、连接在筒体侧壁上的第二模板;所述第一模板设有贯穿第一模板且与筒体内部连通的第一通道;所述第二模板设有贯穿第二模板且与筒体内部连通的第二通道;所述膨化腔的出口连接在筒体侧壁上且与筒体内部连通;
    所述活动块中设有转接通道,活动块通过驱动装置的驱动在第一位置至第二位置移动,当活动块在筒体内运动到第一位置时,所述转接通道将膨化腔与第一通道连通,当活动块在筒体内运动到第二位置时,所述转接通道将膨化腔与第二通道连通。
  2. 根据权利要求1所述的不停机换模膨化机,其特征在于:所述活动块为位于筒体内的活塞;所述活塞内设有至少一个第一转接通道、至少一个第二转接通道,当活塞在筒体内运动到第一位置时,所述第一转接通道将膨化腔与第一通道连通,当活塞在筒体内运动到第二位置时,所述第二转接通道将膨化腔与第二通道连通。
  3. 根据权利要求2所述的不停机换模膨化机,其特征在于:所述活塞内设有至少一个第三转接通道;当活塞在筒体内运动到一个第三位置时,所述第三转接通道将膨化腔与第一通道和第二通道同时连通。
  4. 根据权利要求2或3所述不停机换模膨化机,其特征在于:第一转接通道包括一个第一入口及一个第一出口,第二转接通道包括一个第二入口及一个第二出口,所述筒体的侧壁上设有连接筒体内部与膨化腔出口的入料口、连接筒体内部与第一转接通道的第一出料口、连接筒体内部与第二转接通道的第二出料口;所述筒体上的入料口的中心线与第一出料口的中心线之间的夹角D1为60°~160°;进料口的中心线与第二出料口的中心线之间的夹角D2为60°~160°。
  5. 根据权利要求4所述的不停机换模膨化机,其特征在于:所述筒体上的入料口的中心线与第一出料口的中心线之间的夹角D1为90°~125°;进料口的中心线与第二出料口的中心线之间的夹角D2为90°~125°
  6. 根据权利要求1所述的不停机换模膨化机,其特征在于:所述活动块为位于筒体内的转动的转动块;当转动块在筒体内转动到第一位置时,所述第一通口连通膨化腔,而第二通口连通第一通道,当转动块在筒体内转动到第二位置时,所述第二通口连通膨化腔,而第一通口连通第二通道。
  7. 根据权利要求6所述的不停机换模膨化机,其特征在于:还包括替换所述转动块的三通转动块,所述三通转动块替换转动块后同样由驱动装置驱动而在筒体内转动,所述三通转动块设有一个三通转接通道,所述三通转接通道包括通道一、同时连通通道一的通道二和通道三;当三通转动块在筒体内转动到通道一连通膨化腔时,通道二连通第一通道、通道三连通第二通道。
  8. 根据权利要求6或7所述的不停机换模膨化机,其特征在于:所述筒体的侧壁上设有连接筒体内部与膨化腔出口的入料口、连接筒体内部与第一转接通道的第一出料口、连接筒体内部与第二转接通道的第二出料口;所述筒体上的入料口的中心线与第一出料口的中心线之间的夹角D1为85°~125°;进料口的中心线与第二出料口的中心线之间的夹角为D2,D2=D1或者D1-D2的角度值的绝对值≤5°。
  9. 根据权利要求8所述的不停机换模膨化机,其特征在于:所述筒体上的入料口的中心线与第一出料口的中心线之间的夹角D1为120°或90°。
  10. 根据权利要求1所述的不停机换模膨化机,其特征在于:还包括与第一模板连接的第一切割装置、与第二模板连接的第二切割装置、连接第一切割装置的第一风管、连接第二切割装置的第二风管。
  11. 根据权利要求10所述的不停机换模膨化机,其特征在于:还包括同时连接第一风管及第二风管的三通开关阀;所述三通开关阀具有第一进口、第二进口及开关阀出口,所述第一进口连通第一风管,第二进口连通第二风管。
  12. 根据权利要求11所述的不停机换模膨化机,其特征在于:所述三通开关包括位于两个进口与开关阀出口之间切换板,及驱动切换板的驱动装置,该切换版上有第一通道口及第二通道口;当使用第一进口时,驱动切换板使第一通道口对准第一进口,而这时切换板堵塞第二进口;当第一进口和第二进口同时使用时,驱动装置驱动切换板向前位移,使第一通道口对准第二进口,同时第二通道口对准第一进口;当使用第二进口时,驱动装置继续驱动切换板向前位移,第二通道口对准第二进口的位置,而此时切换板堵塞第一进口。
  13. 根据权利要求12所述的不停机换模膨化机,其特征在于:所述第一风管包括与第一切割装置连接并自第一切割装置向上延伸的第一垂直风管、连接第一垂直风管上端并弯折至水平方向的第一弯管、连接第一弯管水平端且继续水平延伸至与上述第一进口连接的第一水平风管;所述第二风管包括与第二切割装置连接并自第二切割装置向上延伸的第二垂直风管、连接第二垂直风管上端并弯折至水平方向的第二弯管、连接第二弯管水平端且继续水平延伸至与上述第二进口连接的第二水平风管。
  14. 根据权利要求1所述的不停机换模膨化机,其特征在于:所述膨化腔内的输送器为螺杆,膨化腔的后端连接有驱动螺杆旋转的齿轮箱及电机。
  15. 一种使用如权利要求2至5、10至14中任一项不停机换模膨化机的使用方法,其特征在于:当只使用第一模板生产时,通过驱动装置驱动活塞移动至第一位置,使第一转接通道将膨化腔与第一通道连通,通过膨化腔的输送器将物料输送至第一模板中;
    当只使用第二模板生产时,通过驱动装置驱动活塞移动至第二位置,使第二转接通道将膨化腔与第二通道连通,通过膨化腔的输送器将物料输送至第二模板中。
  16. 一种使用如权利要求3中所述不停机换模膨化机的使用方法,其特征在于,包括:当只使用第一模板生产时,通过驱动装置驱动活塞移动至第一位置,使第一转接通道将膨化腔与第一通道连通,通过膨化腔的输送器将物料输送至第一模板中;
    当只使用第二模板生产时,通过驱动装置驱动活塞移动至第二位置,使第二转接通道将膨化腔与第二通道连通,通过膨化腔的输送器将物料输送至第二模板中;
    当同时使用第一模板和第二模板生产时,通过驱动装置驱动活塞移动至第三位置,使第三转接通道将膨化腔与第一通道、第二通道同时连通,通过膨化腔的输送器将物料同时输送至第一模板及第二模板中。
  17. 一种使用如权利要求4中所述不停机换模膨化机的使用方法,其特征在于,包括:
    当只使用第一模板生产并调整物料受到的机械能时,通过驱动装置驱动活塞 移动而使第一转接通道将膨化腔与第一通道连通,此时第一入口与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至第一入口,并通过第一出口输送至第一模板中;
    当只使用第二模板生产并调整物料受到的机械能时,通过驱动装置驱动活塞移动而使第二转接通道将膨化腔与第一通道连通,此时第二入口与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至第二入口,并通过第二出口输送至第二模板中。
  18. 如权利要求17所述的使用方法,其特征在于,所述活塞内设有至少一个第三转接通道;当活塞在筒体内运动到一个第三位置时,所述第三转接通道将膨化腔与第一通道和第二通道同时连通;第三转接通道设有一个第三入口及两个第三出口;
    此时当同时使用第一模板和第二模板生产并调整物料受到的机械能时,通过驱动装置驱动活塞移动而使第三转接通道将膨化腔与第一通道、第二通道同时连通,此时第三入口与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至第三入口,并通过两个第三出口同时输送至第一模板及第二模板中。
  19. 一种使用如权利要求6至14中任一项不停机换模膨化机的使用方法,其特征在于:当只使用第一模板生产时,通过驱动装置驱动转动块转动至第一位置,使第一通口连通膨化腔,而第二通口连通第一通道,通过膨化腔的输送器将物料输送至第一模板中;
    当只使用第二模板生产时,通过驱动装置驱动转动块转动至第二位置,使第二通口连通膨化腔,二第一通口连通第二通道,通过膨化腔的输送器将物料输送至第二模板中。
  20. 一种使用如权利要求7中所述旋转式不停机换模膨化机的使用方法,其特征在于:当同时使用第一模板和第二模板生产时,将转动块更换为三通转动块,并通过驱动装置驱动三通转动块转动至通道一连通膨化腔时,通道二连通第一通道、通道三连通第二通道。
  21. 一种使用如权利要求8中所述旋转式不停机换模膨化机的使用方法,其特征在于,包括:
    当只使用第一模板生产并调整物料受到的机械能时,通过驱动装置驱动转动块转动而使第一通口连通膨化腔,而第二通口连通第一通道,此时第一通口与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至第一通口,并通过第二通口输送至第一模板中;
    当只使用第二模板生产并调整物料受到的机械能时,通过驱动装置驱动转动块转动而使第二通口连通膨化腔,而第一通口连通第二通道,此时第二通口与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至第二通口,并通过第一通口输送至第二模板中。
  22. 如权利要求21所述的使用方法,其特征在于:当同时使用第一模板和第二模板生产并调整物料受到的机械能时,将转动块更换为三通转动块,并通过驱动装置驱动三通转动块转动至通道一连通膨化腔时,通道二连通第一通道、通道三连通第二通道;此时通道一与筒体上的入料口形成错位连通,再通过膨化腔的输送器将物料自入料口输送至通道一,并通过通道二将物料输送至第一模板;同时通道三将物料输送至第二模板。
PCT/CN2017/099624 2017-05-11 2017-08-30 一种不停机换模膨化机及使用方法 WO2018205457A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/185,339 US11178897B2 (en) 2017-05-11 2017-08-30 Extruder with non-stop die change device and method of using same
US17/498,032 US11559076B2 (en) 2017-05-11 2021-10-11 Extruder with non-stop die change device and method of using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710329046.1A CN107242602A (zh) 2017-05-11 2017-05-11 一种不停机换模膨化机及使用方法
CN201710329050.8 2017-05-11
CN201710329046.1 2017-05-11
CN201710329050.8A CN107041563A (zh) 2017-05-11 2017-05-11 一种旋转式不停机换模膨化机及使用方法

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/185,339 A-371-Of-International US11178897B2 (en) 2017-05-11 2017-08-30 Extruder with non-stop die change device and method of using same
US201816185339A Continuation 2017-05-11 2018-11-09
US17/498,032 Division US11559076B2 (en) 2017-05-11 2021-10-11 Extruder with non-stop die change device and method of using same

Publications (1)

Publication Number Publication Date
WO2018205457A1 true WO2018205457A1 (zh) 2018-11-15

Family

ID=64105026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099624 WO2018205457A1 (zh) 2017-05-11 2017-08-30 一种不停机换模膨化机及使用方法

Country Status (2)

Country Link
US (2) US11178897B2 (zh)
WO (1) WO2018205457A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714713A1 (de) * 1996-04-13 1997-11-06 Kahl Amandus Maschf Vorrichtung zur Behandlung von Futtermitteln
CN101024304A (zh) * 2006-07-14 2007-08-29 石戴卫 膨化机整流装置
CN101331974A (zh) * 2008-07-22 2008-12-31 江苏牧羊集团有限公司 用于挤压高淀粉原料加工的工艺及专用设备
CN201528648U (zh) * 2009-11-12 2010-07-21 武汉明博机电设备有限公司 自动换模膨化机
CN204259798U (zh) * 2014-11-28 2015-04-15 湖南省展望生物科技发展有限公司 一种饲料膨化机
CN205416102U (zh) * 2016-02-16 2016-08-03 沈永灶 一种智能化废塑料处理装置
CN206154534U (zh) * 2016-11-22 2017-05-10 东北石油大学 一种自动塑料造粒装置
CN107041563A (zh) * 2017-05-11 2017-08-15 江苏牧羊控股有限公司 一种旋转式不停机换模膨化机及使用方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238385A (en) * 1992-05-22 1993-08-24 Nestec S.A. Extrusion die assembly
US6971865B2 (en) * 2002-12-11 2005-12-06 Guill Tool & Engineering Co., Inc. Manifold for regulating the flow of plastic to an extrusion die
CN201663906U (zh) * 2010-04-23 2010-12-08 江苏牧羊集团有限公司 双出料装置的挤压膨化机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19714713A1 (de) * 1996-04-13 1997-11-06 Kahl Amandus Maschf Vorrichtung zur Behandlung von Futtermitteln
CN101024304A (zh) * 2006-07-14 2007-08-29 石戴卫 膨化机整流装置
CN101331974A (zh) * 2008-07-22 2008-12-31 江苏牧羊集团有限公司 用于挤压高淀粉原料加工的工艺及专用设备
CN201528648U (zh) * 2009-11-12 2010-07-21 武汉明博机电设备有限公司 自动换模膨化机
CN204259798U (zh) * 2014-11-28 2015-04-15 湖南省展望生物科技发展有限公司 一种饲料膨化机
CN205416102U (zh) * 2016-02-16 2016-08-03 沈永灶 一种智能化废塑料处理装置
CN206154534U (zh) * 2016-11-22 2017-05-10 东北石油大学 一种自动塑料造粒装置
CN107041563A (zh) * 2017-05-11 2017-08-15 江苏牧羊控股有限公司 一种旋转式不停机换模膨化机及使用方法

Also Published As

Publication number Publication date
US11178897B2 (en) 2021-11-23
US20200054063A1 (en) 2020-02-20
US20220022517A1 (en) 2022-01-27
US11559076B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
CN214665831U (zh) 一种用于纸托烘干装置
CN105145751A (zh) 一种饼干生产线
WO2018205457A1 (zh) 一种不停机换模膨化机及使用方法
CN106718293A (zh) 水稻育苗基质模压生产线
CN108398002B (zh) 一种电池烘干设备
CN111923365A (zh) 一种淀粉吸管加工生产线
CN102100374A (zh) 一种海藻或蔬菜制饼装置
CN201691016U (zh) 一种海藻或蔬菜制饼装置
CN207340877U (zh) 水稻育苗基质模压生产线
CN102626962B (zh) 一种橡胶连续混炼系统装置
CN202911016U (zh) 一种橡胶连续混炼系统装置
CN203128869U (zh) 粉体洗涤剂自动加料器
CN107041563A (zh) 一种旋转式不停机换模膨化机及使用方法
CN101475412B (zh) 生物有机肥生产加工设备
CN212442065U (zh) 一种塑料母粒筛选装置
CN107242602A (zh) 一种不停机换模膨化机及使用方法
CN203877504U (zh) 一种高效能集中供料系统
CN105923414A (zh) 一种高粘性胶状物料定量给料装置
CN217495169U (zh) 一种新型多机头吹膜机
CN208813539U (zh) 一种中药饮片自动定量包装设备
CN214561279U (zh) 一种粉条分拨装置
CN214131553U (zh) 一种生产叔丁胺催化剂的加工装置
CN105603538B (zh) 用于棉花加工设备的自动除尘配棉装置
CN103789133A (zh) 一种糖化设备及糖化方法
CN212764648U (zh) 一种淀粉吸管挤出机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908939

Country of ref document: EP

Kind code of ref document: A1