WO2018205388A1 - 空调器、空调器的控制装置和控制方法 - Google Patents

空调器、空调器的控制装置和控制方法 Download PDF

Info

Publication number
WO2018205388A1
WO2018205388A1 PCT/CN2017/091348 CN2017091348W WO2018205388A1 WO 2018205388 A1 WO2018205388 A1 WO 2018205388A1 CN 2017091348 W CN2017091348 W CN 2017091348W WO 2018205388 A1 WO2018205388 A1 WO 2018205388A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
heat exchanger
outdoor heat
outdoor
frosting
Prior art date
Application number
PCT/CN2017/091348
Other languages
English (en)
French (fr)
Inventor
贺杰
苏立志
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720556937.6U external-priority patent/CN206831707U/zh
Priority claimed from CN201710348811.4A external-priority patent/CN106989494A/zh
Priority claimed from CN201710349113.6A external-priority patent/CN107036348A/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2018205388A1 publication Critical patent/WO2018205388A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to the field of air conditioner technology, and in particular, to a control device for an air conditioner, an air conditioner having the device, and a control method for the air conditioner.
  • the condenser of the air conditioner tends to precipitate moisture when the outdoor temperature is low in winter, and the deposited moisture adheres to the surface of the condenser coil to form a frost layer. With the formation of the frost layer, the heating capacity of the air conditioner is lowered, and the working efficiency of the air conditioner is lowered.
  • the heating capacity of the air conditioner is lowered.
  • the air conditioner starts the defrosting mode to layer the frost on the condenser into water, and the water condenses along the condensation.
  • the device flows onto the chassis and is discharged from the drain hole in the chassis.
  • the related art has a problem in that when the water on the chassis is not discharged at the end of the defrosting, and the condenser is frosted again and reaches the thickness in contact with the water on the chassis, the water on the chassis condenses into ice.
  • the layer will not form a thick ice layer for a long time, which will cause the heating capacity of the air conditioner to decrease, the working efficiency of the air conditioner to decrease, and even threaten the safety of the axial fan.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • a control device for an air conditioner includes: a detecting module, wherein the detecting module includes at least one sensing component, wherein each of the sensing components is disposed in the air conditioner On the heat dissipating fins or coils of the outdoor heat exchanger of the device, the capacitance value of the detecting module changes when each of the sensing components senses frosting of the outdoor heat exchanger of the air conditioner, or each The sensing component is disposed on a chassis of the air conditioner, and a capacitance value of the detecting module changes when each of the sensing components senses that the chassis of the air conditioner is frozen; a capacitance detecting module, the capacitance detecting module Connected to the detection module, the capacitance detection module detects the detection module The capacitance value is used to generate a detection signal.
  • the control device for the air conditioner is configured to provide a detecting module including at least one sensing component on the heat dissipating fin or the coil of the outdoor heat exchanger, and the outdoor heat exchanger junction of the air conditioner is sensed in each of the sensing components.
  • the capacitance value of the detecting module changes during the frosting, or a detecting module including at least one sensing component is disposed in the chassis of the air conditioner, and the capacitance value of the detecting module changes when the sensing component senses that the chassis of the air conditioner is frozen.
  • the detection module detects the capacitance value of the detection module to generate a detection signal, thereby accurately detecting the frosting degree of the outdoor heat exchanger of the outdoor unit, preventing the excessive thickness of the frosting, thereby reducing the heating capacity of the air conditioner, and ensuring the working efficiency of the air conditioner. Moreover, it is possible to accurately detect the degree of icing of the outdoor unit chassis, prevent the excessive thickness of the ice, thereby reducing the heating capacity of the air conditioner, ensuring the working efficiency of the air conditioner, and ensuring the safety of the axial fan.
  • each of the sensing components includes a first electrode and a second electrode, each of which is disposed on a heat dissipating fin or coil of an outdoor heat exchanger of the air conditioner Or, the first electrode and the second electrode are both disposed on a chassis of the air conditioner.
  • each of the sensing components includes a first shielded cable and a second shielded cable, the first shielded cable and the second shielded cable being respectively associated with the first and second electrodes, respectively Suppress external interference.
  • the capacitance detecting module includes: a resonating unit connected to the detecting module to form a resonant circuit; a detecting unit, the detecting unit is connected to the resonating unit, the detecting unit And detecting a resonant frequency of the resonant circuit, and acquiring a capacitance value of the detecting module according to a resonant frequency of the resonant circuit to generate a detection signal.
  • the resonant unit includes a resonant capacitor and a resonant inductor connected in parallel, one end of the parallel connected resonant capacitor and the resonant inductor being connected to a first input of the detecting unit, the parallel connected The other end of the resonant capacitor and the resonant inductor are connected to the second input end of the detecting unit, wherein when the at least one sensing component is connected in series, one end of the at least one sensing component connected in series is grounded, and the serially connected The other end of the at least one inductive component is connected to one end of the parallel connected resonant capacitor and the resonant inductor; or, when the at least one inductive component is connected in parallel, one end of the at least one inductive component connected in parallel is grounded, connected in parallel The other end of the connected at least one inductive component is connected to one end of the parallel connected resonant capacitor and resonant inductor.
  • the plurality of resonant units are each connected to a corresponding sensing component to form a resonant tank, wherein each of the resonant units includes a resonant capacitor and a resonant inductor connected in parallel, One end of the parallel connected resonant capacitor and the resonant inductor is connected to the first input end of the detecting unit, and the other end of the parallel connected resonant capacitor and the resonant inductor is connected to the second input end of the detecting unit; One end of each of the sensing components is grounded, and the other end of each of the sensing components is connected to one end of a resonant capacitor and a resonant inductor connected in parallel in a corresponding resonant unit.
  • control device of the air conditioner further includes: a shield driver, the shield driver Connected to a first input and/or a second input of the detection unit, the shielding driver for amplifying a signal input by the first input and/or the second input of the detection unit.
  • the outdoor unit controller of the air conditioner communicates with the capacitance detecting module to receive the detection signal, and determines whether the outdoor heat exchanger is frosted according to the detection signal or Whether the chassis is frozen.
  • the outdoor unit controller is further configured to calculate, according to the detection signal, a capacitance change rate of the capacitance value of the detection module within a preset time, and the change rate of the capacitance is greater than a preset At the rate of change, it is judged that the outdoor heat exchanger is frosted or the chassis is frozen.
  • the outdoor unit controller is further configured to acquire an initial capacitance value of the detection module when the outdoor heat exchanger is not frosted, and calculate a current capacitance value and an initial capacitance of the detection module. a difference between the values, and calculating a current frost thickness of the outdoor heat exchanger or a current icing thickness of the chassis based on the difference.
  • the outdoor unit controller obtains a current frosting thickness of the outdoor heat exchanger or a current icing thickness of the chassis according to the following formula:
  • Hn is the current frosting thickness of the outdoor heat exchanger or the current icing thickness of the chassis
  • ⁇ C is the difference between the current capacitance value of the detection module and the initial capacitance value
  • K is obtained through experiments. The constant.
  • the capacitance detection module is coupled to the outdoor unit controller via an I2C interface module.
  • the control device of the air conditioner further includes: a first temperature detector, the first temperature detector is configured to detect a temperature of the outdoor heat exchanger; and a second temperature detector is configured to a second temperature detector for detecting an outdoor ambient temperature; the outdoor unit controller communicating with the capacitance detecting module to obtain a frosting thickness of the outdoor heat exchanger, the outdoor controller and the first temperature detecting Communicating to obtain the temperature of the outdoor heat exchanger, the outdoor controller is in communication with the second temperature detector to obtain the outdoor ambient temperature, and the outdoor controller is configured to determine the outdoor heat exchanger Whether the frosting thickness satisfies the first defrosting start condition and whether the temperature of the outdoor heat exchanger and the outdoor ambient temperature satisfy the second defrosting start condition, and the frosting thickness of the outdoor heat exchanger satisfies the first
  • the air conditioner is controlled to perform defrosting when the frost start condition and the temperature of the outdoor heat exchanger and the outdoor ambient temperature satisfy the second defrosting start condition.
  • the first defrosting start condition includes a frosting thickness of the outdoor heat exchanger greater than a first predetermined thickness; and the second defrosting starting condition includes a temperature of the outdoor heat exchanger Less than or equal to the first temperature threshold and the outdoor ambient temperature is less than the second temperature threshold.
  • the outdoor controller is further configured to determine whether a frost thickness of the outdoor heat exchanger satisfies a first defrosting end condition and whether the outdoor heat exchanger temperature and the outdoor ambient temperature satisfy a second defrosting end condition, and when the frosting thickness of the outdoor heat exchanger satisfies the first defrosting end condition and the outdoor heat exchanger temperature and the outdoor ambient temperature satisfy the second defrosting end condition, the control center The air conditioner stops defrosting.
  • the first defrosting end condition includes a frosting thickness of the outdoor heat exchanger that is less than or equal to The second predetermined thickness is smaller than the first predetermined thickness; the second defrosting start condition includes the temperature of the outdoor heat exchanger being greater than a third temperature threshold, the third The temperature threshold is greater than the first temperature threshold.
  • an embodiment of the second aspect of the present invention provides an air conditioner including the control device of the air conditioner.
  • the air conditioner provided by the embodiment of the invention can accurately detect the frosting degree of the outdoor heat exchanger of the outdoor unit, prevent the excessive thickness of the frosting, thereby reducing the heating capacity of the air conditioner, ensuring the working efficiency of the air conditioner, and accurately detecting
  • the degree of icing of the outdoor unit chassis prevents the thickness of the icing from being too large, resulting in a decrease in the heating capacity of the air conditioner, ensuring the working efficiency of the air conditioner, and ensuring the safety of the axial fan.
  • a third aspect of the present invention provides a method for controlling an air conditioner, the air conditioner including a detecting module, the detecting module including at least one frosting sensing component, each of the sensing components being disposed on a heat dissipating fin or coil of the outdoor heat exchanger of the air conditioner, wherein a capacitance value of the detecting module changes when each of the sensing components senses frosting of an outdoor heat exchanger of the air conditioner, or Each of the sensing components is disposed on a chassis of the air conditioner, and a capacitance value of the detecting module changes when each of the sensing components senses that the chassis of the air conditioner is frozen, and the method includes the following steps Obtaining a change in capacitance of the detection module; generating a detection signal by detecting a capacitance value of the detection module.
  • a detecting module including at least one sensing component is disposed on a heat dissipating fin or a coil of an outdoor heat exchanger, and an outdoor heat exchanger junction of the air conditioner is sensed in each sensing component.
  • the capacitance value of the detecting module is changed during the frosting, or a detecting module including at least one sensing component is disposed on the chassis of the air conditioner, and the capacitance value of the detecting module is changed when each of the sensing components senses that the chassis of the air conditioner is frozen.
  • Detecting the capacitance value of the detection module to generate a detection signal thereby accurately detecting the frosting degree of the outdoor heat exchanger of the outdoor unit, preventing the excessive thickness of the frosting, thereby reducing the heating capacity of the air conditioner, ensuring the working efficiency of the air conditioner, and It can accurately detect the degree of icing of the outdoor unit chassis, prevent the ice thickness from being too large, and reduce the heating capacity of the air conditioner, ensure the working efficiency of the air conditioner, and ensure the safety of the axial fan.
  • the air conditioner further includes a resonance unit connected to the detection module to constitute a resonance circuit, and the detecting the capacitance value of the detection module to generate the detection signal includes: detecting the a resonant frequency of the resonant circuit; obtaining a capacitance value of the detecting module according to a resonant frequency of the resonant circuit to generate a detection signal.
  • control method of the air conditioner further includes: determining, according to the detection signal, whether the outdoor heat exchanger is frosted or whether the chassis is frozen.
  • the determining, according to the detection signal, whether the outdoor heat exchanger is frosted or whether the chassis is icing comprises: calculating a capacitance value of the detecting module according to the detection signal at a preset time The rate of change of capacitance within the battery; determining whether the outdoor heat exchanger is frosted or the chassis is frozen when the rate of change of the capacitance is greater than a preset rate of change.
  • the frost detecting method of the air conditioner further includes: acquiring an initial capacitance value of the detecting module when the outdoor heat exchanger is not frosted; and calculating a current capacitance value of the detecting module a difference between initial capacitance values; calculating a current frosting thickness of the outdoor heat exchanger or a current icing thickness of the chassis based on the difference.
  • the current frosting thickness of the outdoor heat exchanger or the current icing thickness of the chassis is obtained according to the following formula:
  • Hn is the current frosting thickness of the outdoor heat exchanger or the current icing thickness of the chassis
  • ⁇ C is the difference between the current capacitance value of the detection module and the initial capacitance value
  • K is obtained through experiments. The constant.
  • control method of the air conditioner further includes: acquiring a frosting thickness of the outdoor heat exchanger in the air conditioner; acquiring a temperature of the outdoor heat exchanger and an outdoor ambient temperature; determining the Whether the frosting thickness of the outdoor heat exchanger satisfies the first defrosting start condition and whether the outdoor heat exchanger temperature and the outdoor ambient temperature satisfy the second defrosting start condition;
  • the air conditioner is controlled to perform defrosting if the frosting thickness of the outdoor heat exchanger satisfies the first defrosting start condition and the temperature of the outdoor heat exchanger and the outdoor ambient temperature satisfy the second defrosting start condition.
  • the first defrosting start condition includes a frosting thickness of the outdoor heat exchanger greater than a first predetermined thickness; and the second defrosting starting condition includes a temperature of the outdoor heat exchanger Less than or equal to the first temperature threshold and the outdoor ambient temperature is less than the second temperature threshold.
  • control method of the air conditioner further includes: determining whether a frost thickness of the outdoor heat exchanger satisfies a first defrosting end condition and a temperature of the outdoor heat exchanger and an outdoor ambient temperature Whether the second defrosting end condition is satisfied; if the frosting thickness of the outdoor heat exchanger satisfies the first defrosting end condition and the temperature of the outdoor heat exchanger and the outdoor ambient temperature satisfy the second defrosting end condition, then control The air conditioner stops defrosting.
  • the first defrosting end condition includes a frosting thickness of the outdoor heat exchanger that is less than or equal to a second predetermined thickness, and the second predetermined thickness is less than the first predetermined thickness
  • the second defrosting start condition includes that the temperature of the outdoor heat exchanger is greater than a third temperature threshold, and the third temperature threshold is greater than the first temperature threshold.
  • a fourth aspect of the present invention provides a non-transitory computer readable storage medium having stored thereon a computer program, which is executed by a processor to implement the third aspect of the present invention.
  • Air conditioner control method Air conditioner control method.
  • FIG. 1 is a block schematic diagram of a control device for an air conditioner according to an embodiment of the present invention, wherein the detection module is a frost detection module;
  • FIG. 2 is a schematic diagram of an inductive component in a control device for an air conditioner according to an embodiment of the present invention, wherein the inductive component is a frosting sensing component;
  • FIG. 3 is a schematic diagram of an inductive component in a control device for an air conditioner according to another embodiment of the present invention, wherein the inductive component is a frosting sensing component;
  • FIG. 4 is a block schematic diagram of a control device for an air conditioner according to an embodiment of the present invention, wherein the detection module is a frost detection module;
  • FIG. 5 is a block schematic diagram of a control device for an air conditioner according to another embodiment of the present invention, wherein the detection module is a frost detection module;
  • FIG. 6 is a circuit schematic diagram of a capacitance detecting module in a control device for an air conditioner according to an embodiment of the present invention, wherein the sensing component is a frosting sensing component;
  • FIG. 7 is a circuit schematic diagram of a capacitance detecting module in a control device for an air conditioner according to another embodiment of the present invention, wherein the sensing component is a frosting sensing component;
  • FIG. 8 is a circuit schematic diagram of a capacitance detecting module in a control device for an air conditioner according to still another embodiment of the present invention, wherein the sensing component is a frosting sensing component;
  • FIG. 9 is a block schematic diagram of a control device for an air conditioner according to still another embodiment of the present invention, wherein the detection module is a frost detection module;
  • FIG. 10 is a block schematic diagram of a control device for an air conditioner according to an embodiment of the present invention, wherein the detection module is an icing detection module;
  • FIG. 11 is a schematic diagram of an inductive component in a control device for an air conditioner according to an embodiment of the present invention, wherein the inductive component is an ice sensing component;
  • FIG. 12 is a schematic diagram of an inductive component in a control device for an air conditioner according to another embodiment of the present invention, wherein the inductive component is an ice sensing component;
  • FIG. 13 is a block schematic diagram of a control device for an air conditioner according to an embodiment of the present invention, wherein the detection module is an icing detection module;
  • FIG. 14 is a block schematic diagram of a control device for an air conditioner according to another embodiment of the present invention, wherein the detection module is an icing detection module;
  • FIG. 15 is a circuit schematic diagram of a capacitance detecting module in a control device for an air conditioner according to an embodiment of the present invention, wherein the sensing component is an icing sensing component;
  • FIG. 16 is a circuit schematic diagram of a capacitance detecting module in a control device for an air conditioner according to another embodiment of the present invention, wherein the sensing component is an icing sensing component;
  • FIG. 17 is a circuit schematic diagram of a capacitance detecting module in a control device for an air conditioner according to still another embodiment of the present invention, wherein the sensing component is an icing sensing component;
  • FIG. 18 is a block schematic diagram of a control device for an air conditioner according to still another embodiment of the present invention, wherein the detection module is an icing detection module;
  • Figure 19 is a block diagram showing a control device of an air conditioner according to still another embodiment of the present invention.
  • FIG. 20 is a flow chart of a frost detecting method of an air conditioner according to an embodiment of the present invention.
  • 21 is a flow chart of a method of detecting ice formation of an air conditioner according to an embodiment of the present invention.
  • 22 is a flowchart of a defrosting control method of an air conditioner according to an embodiment of the present invention.
  • FIG. 23 is a flow chart of a defrosting control method of an air conditioner according to an embodiment of the present invention.
  • 24 is a flow chart for obtaining a frost thickness of an outdoor heat exchanger in a defrosting control method of an air conditioner according to an embodiment of the present invention.
  • the air conditioner may include an indoor unit and an outdoor unit, the outdoor unit may include a compressor and an outdoor heat exchanger, and the outdoor heat exchanger includes a heat dissipating fin and a coil, wherein the coil is connected to the compressor, and the coil is provided with heat transfer
  • the medium when the compressor connected to the coil performs work, the heat transfer medium in the coil is compressed into high temperature and high pressure steam, so that the air of the air conditioner indoor unit connected to the coil is heated and heated.
  • the outdoor heat exchanger When the outdoor temperature is low in winter, if the temperature of the outdoor heat exchanger is lower than the frost temperature of the air, the outdoor heat exchanger will precipitate moisture and adhere to the surface to form a frost layer, and the temperature of the outdoor heat exchanger and the temperature of the air The greater the temperature difference between them, the faster the frosting rate and the more severe the frosting. This will prevent the heat exchange, which will result in a decrease in the heating capacity of the air conditioner and a decrease in the work efficiency of the air conditioner.
  • an embodiment of the present invention provides a control device and method for an air conditioner and an air conditioner having the same.
  • the control device of the air conditioner is used for detecting frosting of the outdoor heat exchanger
  • the detecting module is a frosting detecting module 10
  • the sensing component is a frosting sensing component 101
  • the detection signal is The frost detection signal
  • the control method of the air conditioner is a frost detection method.
  • FIG. 1 is a block schematic diagram of a control device of an air conditioner according to an embodiment of the present invention. As shown in FIG. 1, the device includes a frost detection module 10 and a capacitance detection module 20.
  • the frosting detecting module 10 includes at least one frosting sensing component 101, and each frosting sensing component 101 is disposed on a heat dissipating fin or coil of an outdoor heat exchanger of the air conditioner, and more specifically, the frosting sensing component 101.
  • Each frosting sensing component 101 is disposed on a heat dissipating fin or coil of an outdoor heat exchanger of the air conditioner, and more specifically, the frosting sensing component 101.
  • Set in outdoor heat exchanger The outer surface of the heat dissipating fin or coil changes the capacitance value of the frost detecting module 10 when each frosting sensing component 101 senses the frosting of the outdoor heat exchanger of the air conditioner.
  • the capacitance detecting module 20 is connected to the frost detecting module 10, and the capacitance detecting module 20 generates a frost detecting signal by detecting the capacitance value of the frost detecting module 10.
  • the capacitance value of the capacitor is related to the dielectric constant of the intermediate substance of the capacitor, whereby the frosting induction component 101 is disposed on the heat dissipating fin or coil of the outdoor heat exchanger of the air conditioner, and is outdoor.
  • the frost or air of the heat exchanger junction can serve as an intermediate substance for the frosting sensing assembly 101, and the capacitance value of the frosting sensing assembly 101 will vary with the degree of frosting of the outdoor heat exchanger.
  • the capacitance value of the frosting detecting module 10 changes according to the frosting condition of the outdoor heat exchanger, and the intermediate substance of the frosting detecting module 10 is air when not frosted, and the frosting detecting module 10 when frosting The intermediate substance contains frost, and the capacitance detecting module 20 can accurately detect the frosting of the outdoor heat exchanger by detecting the capacitance value of the frost detecting module 10.
  • the plurality of frost sensing assemblies 101 when there are a plurality of frost sensing assemblies 101, the plurality of frost sensing assemblies 101 can correspondingly set a plurality of positions on the outdoor heat exchanger, thereby detecting frosting at different positions of the outdoor heat exchanger. The situation further improves the accuracy of frost detection.
  • each frosting sensing component 101 includes a first electrode A1 and a second electrode A2, and the first electrode A1 and the second electrode A2 are both disposed in an outdoor heat exchanger of the air conditioner.
  • the structure of each frosting sensing component 101 is basically the same.
  • FIG. 2 illustrates only one frosting sensing component 101 as an example.
  • the first electrode A1 and the second electrode A2 may constitute a parallel plate capacitor, and the first electrode A1 and the second electrode A2 are disposed on the heat dissipating fins or coils of the outdoor heat exchanger 40 at a predetermined distance, air or The heat radiating fins of the outdoor heat exchanger 40 or the frost on the coil may be filled between the first electrode A1 and the second electrode A2.
  • the detection principle of the capacitance detecting module 20 will be described below.
  • the capacitance detecting module 20 includes: a resonating unit 201 and a detecting unit 202, and the resonating unit 201 is connected to the frost detecting module 10 to constitute a resonant circuit; the detecting unit 202 and the resonating unit 201 Connected, the detecting unit 202 is configured to detect the resonant frequency of the resonant circuit, and acquire the capacitance value of the frosting detecting module 10 according to the resonant frequency of the resonant circuit to generate a frosting detecting signal.
  • the resonance unit 201 and the frosting detection module 10 together constitute a resonance circuit.
  • the detection unit 202 acquires the resonance frequency of the resonance circuit.
  • the capacitance value of the frost detection module 10 is used to generate a frost detection signal, which may be a digital signal.
  • the detecting unit 202 can detect the change of the capacitance value of the frost detecting module 10, and can convert the change of the capacitance value from an analog signal to a digital signal.
  • the resonance unit 201 includes a resonant capacitor C1 and a resonant inductor L1 connected in parallel, and the resonant capacitor C1 and the resonant inductor L1 connected in parallel and the first end of the detecting unit 202
  • the input terminals are connected, and the other ends of the resonant capacitor C1 and the resonant inductor L1 connected in parallel are connected to the second input end of the detecting unit 202.
  • One end of at least one frosting sensing component 101 is grounded, and the other end of the at least one frosting sensing component 101 connected in series is connected to one end of the resonant capacitor C1 and the resonant inductor L1 connected in parallel; or, as shown in FIG.
  • one frosting sensing component 101 is connected in parallel, one end of at least one frosting sensing component 101 connected in parallel is grounded, and the other end of the at least one frosting sensing component 101 connected in parallel is connected to the resonant capacitor C1 and the resonant inductor L1 connected in parallel. Connected.
  • At least one frosting sensing component 101 may be connected in series, for example, a first electrode of the first frosting sensing component is one end of at least one frosting sensing component 101 connected in series, and a second The first electrode of the frosting sensing component is connected to the second electrode of the first frosting sensing component, the first electrode of the third frosting sensing component is connected to the second electrode of the second frosting sensing component, and so on, the Nth junction
  • the first electrode of the frost sensing component is connected to the second electrode of the N-1 frosting sensing component, and the second electrode of the Nth frosting sensing component is the other end of the at least one frosting sensing component 101 connected in series, N is positive Integer.
  • At least one frosting sensing component 101 connected in series forms a resonant tank 60 together with the resonant capacitor C1 and the resonant inductor L1 connected in parallel.
  • the detecting unit 202 can acquire the capacitance value of the frost detecting module 10 by detecting the resonant frequency of the resonant circuit 60.
  • At least one frosting sensing component 101 can be connected in parallel.
  • the first electrodes of at least one frosting sensing component 101 are connected together as one end of at least one frosting sensing component 101 connected in parallel
  • at least The second electrodes of a frosting sensing assembly 101 are each coupled together as the other end of at least one frosting sensing assembly 101 connected in parallel.
  • at least one frosting sensing component 101 connected in parallel forms a resonant tank 60 together with the resonant capacitor C1 and the resonant inductor L1 connected in parallel.
  • the resonant tank 60 The resonant frequency changes, and the detecting unit 202 can acquire the capacitance value of the frost detecting module 10 by detecting the resonant frequency of the resonant circuit 60.
  • each of the resonating units 201 includes The resonant capacitor C1 and the resonant inductor L1 connected in parallel, one end of the resonant capacitor C1 and the resonant inductor L1 connected in parallel are connected to the first input end of the detecting unit 202, and the other end of the resonant capacitor C1 and the resonant inductor L1 connected in parallel and the detecting unit
  • the second input ends of the plurality of frost sensing components 101 are connected to each other, and the other end of each frosting sensing component 101 is connected to one end of the resonant capacitor C1 and the resonant inductor L1 connected in parallel in the corresponding resonant unit 201.
  • the plurality of frosting sensing components 101 may respectively form a plurality of resonant circuits 60 corresponding to the plurality of resonant units 201, and the first electrodes of each frosting sensing component 101 serve as One end of the frosting sensing assembly 101, and the second electrode of each frosting sensing assembly 101 serves as the other end of the frosting sensing assembly 101.
  • each of the frosting sensing components 101 and the resonant capacitor C1 and the resonant inductor L1 connected in parallel in the corresponding resonant unit 201 together form a resonant tank 60.
  • the detecting unit 202 can obtain the capacitance value of the frosting sensing component 101 by detecting the resonant frequency of the corresponding resonant circuit 60, thereby acquiring the capacitance of the frosting detecting module 10. value.
  • the detecting unit 202 can detect a voltage signal or a current signal across the resonant capacitor C1 or the resonant inductor L1, and acquire the resonant frequency of the resonant tank 60 according to the frequency of the voltage signal or the current signal.
  • each frosting sensing assembly 101 includes a first shielded cable 102 and a second shielded cable 103, respectively, a first shielded cable 102 and a second shielded cable 103
  • An electrode A1 and a second electrode A2 are connected to each other to suppress external interference.
  • the first shielded cable 102 and the second shielded cable 103 respectively correspond to the connection ends of the first electrode A1 and the second electrode A2, for example.
  • the first electrode A1 can be grounded through the first shielded cable 102
  • the second electrode A2 can be connected to the first input end of the detecting unit 202 in the capacitance detecting module 20 through the second shielded cable 103 .
  • the parasitic capacitance between the detecting unit and the ground can be eliminated by the shielded cable, and external interference is effectively reduced.
  • the frost detecting device of the air conditioner further includes: a shield driver 30 connected to the first input end and/or the second input end of the detecting unit 202, and the shield driver 30 is used for
  • the signal input by the first input and/or the second input of the detecting unit 202 is amplified. That is, taking the shield driver 30 connected to the first input end of the detecting unit 202 as an example, the shield driver 30 can drive the signal input to the first input end of the detecting unit 202 by an external gain of 1 to amplify the circuit.
  • the amplified signal is introduced to the first input of the detection unit 202.
  • the outdoor unit controller 50 of the air conditioner communicates with the capacitance detecting module 20 to receive the frost detection signal, and judges the outdoor switching according to the frost detection signal. Whether the heater is knotted Frost.
  • the capacitance detecting module 20 converts the change in the capacitance value of the frost detecting module 10 from an analog signal to a digital signal (frosting detection signal) and then transmits it to the outdoor unit controller 50, and the outdoor unit controller 50 monitors the frosting.
  • the detection signal can determine whether the outdoor heat exchanger is frosted.
  • the outdoor unit controller 50 is further configured to calculate, according to the frost detection signal, a capacitance change rate of the capacitance value of the frost detection module 10 within a preset time, and the capacitance change rate is greater than a preset When the rate of change is determined, the outdoor heat exchanger is frosted.
  • the outdoor unit controller 50 can receive the frost detection signal every preset time T to sample the capacitance value of the frost detection module 10 every preset time, whereby the capacitance detection module 20 can exchange heat outdoors.
  • a plurality of capacitance values (e.g., C1, C2, ..., Cn, ...) generated during the frosting process are transmitted to the outdoor unit controller 50.
  • the outdoor unit controller 50 can determine whether the outdoor heat exchanger is frosted by detecting the capacitance change rate of the capacitance value within a preset time.
  • the outdoor unit controller 50 may further determine the time when the outdoor heat exchanger is frosted according to the capacitance change rate of the capacitance value of the frost detecting module 10 within a preset time, that is, The preset time T is a fixed value.
  • the preset time T is a fixed value.
  • the outdoor unit controller 50 is further configured to acquire an initial capacitance value of the frost detection module 10 when the outdoor heat exchanger is not frosted, and calculate a current capacitance value and an initial capacitance of the frost detection module 10 The difference between the values, and the current frost thickness of the outdoor heat exchanger based on the difference.
  • the outdoor unit controller 50 obtains the current frosting thickness of the outdoor heat exchanger according to the following formula:
  • Hn is the current frosting thickness of the outdoor heat exchanger
  • ⁇ C is the difference between the current capacitance value of the frosting detection module and the initial capacitance value
  • K is a constant obtained by experiments.
  • the capacitance detecting module 20 is connected to the outdoor unit controller 50 through the I2C interface module 70. That is, the capacitance detecting module 20 and the outdoor unit controller 50 can pass through the I2C interface module 70. Communicate.
  • the outdoor unit controller 50 is further configured to acquire the temperature of the outdoor heat exchanger and the outdoor ambient temperature, and control the air to perform defrosting or stopping according to the temperature of the outdoor heat exchanger and the outdoor ambient temperature and the frosting thickness of the outdoor heat exchanger. Defrost.
  • the outdoor unit controller 50 is further configured to determine whether the frost thickness of the outdoor heat exchanger satisfies the first defrosting start condition and whether the outdoor heat exchanger temperature and the outdoor ambient temperature satisfy the second defrosting start condition, and
  • the air conditioner is controlled to perform defrosting when the frosting thickness of the outdoor heat exchanger satisfies the first defrosting start condition and the temperature of the outdoor heat exchanger and the outdoor ambient temperature satisfy the second defrosting start condition.
  • the first defrosting start condition may include that the frosting thickness of the outdoor heat exchanger is greater than the first predetermined thickness; and the second defrosting starting condition may include that the temperature of the outdoor heat exchanger is less than or equal to the first temperature threshold and the outdoor ambient temperature Less than the second temperature threshold.
  • the outdoor unit controller 50 is further configured to determine whether the frost thickness of the outdoor heat exchanger satisfies the first defrosting end condition and whether the outdoor heat exchanger temperature and the outdoor ambient temperature satisfy the second defrosting end condition, and The air conditioner is controlled to stop defrosting when the frosting thickness of the outdoor heat exchanger satisfies the first defrosting end condition and the temperature of the outdoor heat exchanger and the outdoor ambient temperature satisfy the second defrosting end condition.
  • the first defrosting end condition may include that the frosting thickness of the outdoor heat exchanger is less than or equal to the second predetermined thickness, the second predetermined thickness is less than the first predetermined thickness; and the second defrosting starting condition may include outdoor heat exchange
  • the temperature of the device is greater than a third temperature threshold, and the third temperature threshold is greater than the first temperature threshold.
  • the frost detecting device of the air conditioner is provided with a frost detecting module including at least one frosting sensing component on the heat dissipating fin or the coil of the outdoor heat exchanger, in each frosting
  • the sensing component senses that the capacitance value of the frosting detecting module changes when the outdoor heat exchanger of the air conditioner is frosted, and the capacitance detecting module generates a frosting detecting signal by detecting the capacitance value of the frost detecting module, thereby being able to accurately detect the outdoor unit outdoor
  • the degree of frosting of the heat exchanger prevents the frosting thickness from being too large, resulting in a decrease in the heating capacity of the air conditioner, and ensures the working efficiency of the air conditioner.
  • the embodiment of the invention also proposes an air conditioner comprising the control device of the air conditioner of the embodiment of the invention of Figs. 1-9.
  • the air conditioner according to the embodiment of the invention can accurately detect the frosting degree of the outdoor heat exchanger of the outdoor unit, prevent the excessive frosting thickness from causing the heating capacity of the air conditioner to decrease, and ensure the working efficiency of the air conditioner.
  • an embodiment of the present invention further provides a frost detecting method for an air conditioner.
  • the air conditioner includes a frosting detecting module, and the frosting detecting module includes at least one frosting sensing component, and each frosting sensing component is disposed on a heat radiating fin or a coil of the outdoor heat exchanger of the air conditioner, and each frosting sensing The component senses that the capacitance value of the frost detection module changes when the outdoor heat exchanger of the air conditioner is frosted.
  • the frost detecting method of the air conditioner of the embodiment of the present invention includes the following steps:
  • a frost detection signal is generated by detecting a capacitance value of the frost detection module.
  • the air conditioner further includes a resonance unit connected to the frost detection module to constitute a resonance circuit, and detecting the capacitance value of the frost detection module to generate the frost detection signal includes: detecting the resonance of the resonance circuit Frequency; the capacitance value of the frost detection module is obtained according to the resonance frequency of the resonance circuit to generate a frost detection signal.
  • the frost detecting method of the air conditioner further includes:
  • the frost detection signal it is judged whether the outdoor heat exchanger is frosted.
  • determining whether the outdoor heat exchanger is frosted according to the frost detection signal comprises: calculating a capacitance change rate of the capacitance value of the frost detection module within a preset time according to the frost detection signal; when the capacitance change rate Judging the outdoor heat exchanger frosting when it is greater than the preset rate of change.
  • the frost detecting method of the air conditioner further includes: obtaining an initial capacitance value of the frost detecting module when the outdoor heat exchanger is not frosted; and calculating a current capacitance value and an initial capacitance value of the frost detecting module. The difference between the two; the current frost thickness of the outdoor heat exchanger is calculated based on the difference.
  • the current frosting thickness of the outdoor heat exchanger is obtained according to the following formula:
  • Hn is the current frosting thickness of the outdoor heat exchanger
  • ⁇ C is the difference between the current capacitance value of the frosting detection module and the initial capacitance value
  • K is a constant obtained by experiments.
  • a frost detecting module including at least one frosting sensing component is disposed on the heat dissipating fin or the coil of the outdoor heat exchanger, and is sensed in each frosting sensing component.
  • the air conditioner may include an indoor unit and an outdoor unit, the outdoor unit may include a compressor and an outdoor heat exchanger, and the outdoor heat exchanger includes a heat dissipating fin and a copper tube, wherein the copper tube is connected to the compressor, and the copper tube is provided with heat transfer.
  • the outdoor heat exchanger includes a heat dissipating fin and a copper tube, wherein the copper tube is connected to the compressor, and the copper tube is provided with heat transfer.
  • Medium when the compressor connected to the copper pipe works, the heat transfer medium in the copper pipe is compressed into high temperature and high pressure steam, and the air of the air conditioner indoor unit connected to the copper pipe is heated and heated.
  • the outdoor heat exchanger When the outdoor temperature is low in winter, if the temperature of the outdoor heat exchanger is lower than the frost temperature of the air, the outdoor heat exchanger will precipitate moisture and adhere to the surface to form a frost layer, and the temperature of the outdoor heat exchanger and the temperature of the air The greater the temperature difference between them, the faster the frosting rate and the more severe the frosting.
  • the air conditioner is controlled to start the defrosting mode to convert the frost on the outdoor heat exchanger into water, and the water flows along the outdoor heat exchanger to the bottom plate and is discharged from the drain hole on the chassis.
  • the water on the chassis is not condensed and will condense into an ice layer, which leads to a decrease in the heating capacity of the air conditioner, a decrease in the working efficiency of the air conditioner, and even a threat to the safety of the axial fan.
  • an embodiment of the present invention provides another air conditioner control device and method, and an air conditioner having the same Device.
  • the control device of the air conditioner is configured to perform ice detection on the chassis of the air conditioner
  • the detection module is an icing detection module 11
  • the sensing component is an icing sensing component 111
  • the detection signal is The icing detection signal
  • the control method of the air conditioner is a chassis icing detection method.
  • FIG. 10 is a block schematic diagram of a chassis icing detecting apparatus of an air conditioner according to an embodiment of the present invention. As shown in FIG. 10, the device includes an icing detection module 11 and a capacitance detection module 20.
  • the icing detecting module 11 includes at least one icing sensing component 111, and each icing sensing component 111 is disposed on the chassis of the air conditioner, and the icing detection is performed when each icing sensing component 111 senses that the chassis of the air conditioner is frozen.
  • the capacitance value of module 11 changes.
  • the chassis of the air conditioner may be disposed below the outdoor heat exchanger of the air conditioner to receive water flowing from the outdoor heat exchanger.
  • the capacitance detecting module 20 is connected to the icing detecting module 11, and the capacitance detecting module 20 generates an icing detecting signal by detecting the capacitance value of the icing detecting module 11.
  • the capacitance value of the capacitor is related to the dielectric constant of the intermediate substance of the capacitor, whereby the icing sensing component 111 is disposed on the chassis of the air conditioner, and the water and/or ice on the chassis can be used as icing.
  • the intermediate material of the sensing component 111, the capacitance value of the icing sensing component 111 will vary with the degree of icing of the chassis.
  • the capacitance value of the icing detecting module 11 changes with the icing condition of the chassis, and the capacitance detecting module 20 can accurately detect the icing condition of the chassis by detecting the capacitance value of the icing detecting module 11.
  • the plurality of icing sensing components 111 when there are a plurality of icing sensing components 111, the plurality of icing sensing components 111 can correspondingly set a plurality of positions of the chassis, thereby detecting icing conditions at different positions of the chassis, and further improving icing detection. Accuracy.
  • each of the icing sensing components 111 includes a first electrode A1 and a second electrode A2, and the first electrode A1 and the second electrode A2 are both disposed on the chassis 41 of the air conditioner.
  • the structure of each of the icing sensing components 111 is substantially the same.
  • FIG. 11 illustrates only one icing sensing component 111 as an example.
  • the first electrode A1 and the second electrode A2 may constitute a parallel plate capacitor, and the first electrode A1 and the second electrode A2 are disposed on the chassis 41 at a predetermined distance, and water or ice on the chassis 41 may be filled in the first Between the electrode A1 and the second electrode A2.
  • ⁇ r is the dielectric constant of the intermediate substance sandwiched between the first electrode A1 and the second electrode A2
  • ⁇ 0 is a vacuum absolute dielectric constant
  • A is a positive surface area of the first electrode A1 and the second electrode A2
  • d is The distance between the first electrode A1 and the second electrode A2, in the case where ⁇ 0 , A and d are constant, the capacitance value C of the parallel plate capacitor capacitance is only related to the dielectric constant ⁇ r , that is, C ⁇ ⁇ r .
  • the detection principle of the capacitance detecting module 20 will be described below.
  • the capacitance detecting module 20 includes: a resonating unit 201 and a detecting unit 202, and the resonating unit 201 is connected to the icing detecting module 11 to constitute a resonant circuit; the detecting unit 202 and the resonating unit 201 Connected, the detecting unit 202 is configured to detect the resonant frequency of the resonant circuit, and acquire the capacitance value of the icing detecting module 11 according to the resonant frequency of the resonant circuit to generate an icing detecting signal.
  • the resonance unit 201 and the icing detection module 11 together constitute a resonance circuit.
  • the detection unit 202 acquires the resonance frequency of the resonance circuit.
  • the capacitance value of the icing detection module 11 is used to generate an icing detection signal, and the icing detection signal can be a digital signal.
  • the detecting unit 202 can detect the change of the capacitance value of the icing detecting module 11, and can convert the change of the capacitance value from an analog signal to a digital signal.
  • the resonance unit 201 includes a resonant capacitor C1 and a resonant inductor L1 connected in parallel, and the resonant capacitor C1 and the resonant inductor L1 connected in parallel and the first end of the detecting unit 202
  • the input terminals are connected, and the other ends of the resonant capacitor C1 and the resonant inductor L1 connected in parallel are connected to the second input end of the detecting unit 202.
  • One end of at least one icing sensing component 111 is grounded, and the other end of the at least one icing sensing component 111 connected in series is connected to one end of the resonant capacitor C1 and the resonant inductor L1 connected in parallel; or, as shown in FIG.
  • one icing sensing component 111 is connected in parallel, one end of the at least one icing sensing component 111 connected in parallel is grounded, and the other end of the at least one icing sensing component 111 connected in parallel is connected to the resonant capacitor C1 and the resonant inductor L1 connected in parallel. Connected.
  • At least one icing sensing component 111 may be connected in series, for example, the first electrode of the first icing sensing component is one end of at least one icing sensing component 111 connected in series, and the second The first electrode of the icing sensing component is coupled to the second electrode of the first icing sensing component, the first electrode of the third icing sensing component is coupled to the second electrode of the second icing sensing component, and so on, the Nth junction
  • the first electrode of the ice sensing component is connected to the second electrode of the N-1 icing sensing component, and the second electrode of the Nth icing sensing component is the other end of the at least one icing sensing component 111 connected in series, N is positive Integer.
  • the at least one icing sensing component 111 connected in series forms a resonant tank 60 together with the resonant capacitor C1 and the resonant inductor L1 connected in parallel.
  • the detecting unit 202 can acquire the capacitance value of the icing detecting module 11 by detecting the resonant frequency of the resonant circuit 60.
  • At least one icing sensing component 111 can be connected in parallel, for example, the first electrodes of at least one icing sensing component 111 are connected together as one end of at least one icing sensing component 111 connected in parallel, to The second electrodes of one less icing sensing component 111 are each coupled together as the other end of at least one icing sensing component 111 connected in parallel.
  • the at least one icing sensing component 111 connected in parallel forms a resonant tank 60 together with the resonant capacitor C1 and the resonant inductor L1 connected in parallel.
  • the detecting unit 202 can acquire the capacitance value of the icing detecting module 11 by detecting the resonant frequency of the resonant circuit 60.
  • each resonating unit 201 includes The resonant capacitor C1 and the resonant inductor L1 connected in parallel, one end of the resonant capacitor C1 and the resonant inductor L1 connected in parallel are connected to the first input end of the detecting unit 202, and the other end of the resonant capacitor C1 and the resonant inductor L1 connected in parallel and the detecting unit
  • the second input end of each of the icing sensing components 111 is connected to each other; the other end of each icing sensing component 111 is connected to one end of the resonant capacitor C1 and the resonant inductor L1 connected in parallel in the corresponding resonant unit 201.
  • the plurality of icing sensing components 111 may respectively form a plurality of resonant circuits 60 corresponding to the plurality of resonant units 201, and the first electrodes of each icing sensing component 111 serve as One end of the icing sensing unit 111, and the second electrode of each icing sensing unit 111 serves as the other end of the icing sensing unit 111.
  • each of the icing sensing components 111 and the resonant capacitor C1 and the resonant inductor L1 connected in parallel in the corresponding resonant unit 201 together form a resonant tank 60.
  • the icing is performed.
  • the resonant frequency of the resonant circuit 60 corresponding to the sensing component 111 changes, and the detecting unit 202 can obtain the capacitance value of the icing sensing component 111 by detecting the resonant frequency of the corresponding resonant circuit 60, thereby obtaining the capacitance of the icing detecting module 11. value.
  • the detecting unit 202 can detect a voltage signal or a current signal across the resonant capacitor C1 or the resonant inductor L1, and acquire the resonant frequency of the resonant tank 60 according to the frequency of the voltage signal or the current signal.
  • each frost sensing assembly 101 includes a first shielded cable 102 and a second shielded cable 103, and the first shielded cable 102 and the second shielded cable 103 are respectively An electrode A1 and a second electrode A2 are connected to each other to suppress external interference. More specifically, the first shielded cable 102 and the second shielded cable 103 respectively correspond to the connection ends of the first electrode A1 and the second electrode A2, for example.
  • the first electrode A1 can be grounded through the first shielded cable 102
  • the second electrode A2 can be connected to the first input end of the detecting unit 202 in the capacitance detecting module 20 through the second shielded cable 103.
  • the parasitic capacitance between the detecting unit and the ground can be eliminated by the shielded cable, and external interference is effectively reduced.
  • the frost detecting device of the air conditioner further includes: a shield driver 30 connected to the first input end and/or the second input end of the detecting unit 202, and the shield driver 30 is used for The signal input by the first input and/or the second input of the detecting unit 202 is amplified. That is, taking the shield driver 30 connected to the first input end of the detecting unit 202 as an example, the shield driver 30 can drive the signal input to the first input end of the detecting unit 202 by an external gain of 1 to amplify the circuit. Introducing the amplified signal into the detection unit 202 An input.
  • the outdoor unit controller 50 of the air conditioner communicates with the capacitance detecting module 20 to receive an icing detection signal, and determines whether the chassis is based on the icing detection signal. Icing.
  • the capacitance detecting module 20 converts the change in the capacitance value of the icing detecting module 11 from the analog signal to the digital signal (icing detection signal) and then transmits it to the outdoor unit controller 50, and the outdoor unit controller 50 monitors the icing by monitoring
  • the detection signal can determine whether the chassis is frozen.
  • the outdoor unit controller 50 is further configured to calculate, according to the icing detection signal, a capacitance change rate of the capacitance value of the icing detection module 11 within a preset time, and the capacitance change rate is greater than a preset When the rate of change is determined, the chassis is frozen.
  • the outdoor unit controller 50 can receive the icing detection signal every predetermined time T to sample the capacitance value of the icing detection module 11 every preset time, whereby the capacitance detecting module 20 can condense the condensate A plurality of capacitance values (e.g., C1, C2, ..., Cn, ...) generated during the ice transfer to the outdoor unit controller 50.
  • the outdoor unit controller 50 can determine whether the chassis is frozen by detecting the capacitance change rate of the capacitance value within a preset time.
  • the outdoor unit controller 50 may further determine the time when the chassis freezes according to the capacitance change rate of the capacitance value of the icing detection module 11 within a preset time, that is, preset
  • the time T is a fixed value.
  • the rate of change of the nth capacitance value Cn and the n-1th capacitance value Cn-1 within a preset time is greater than the preset rate of change, it is determined that the chassis is frozen, and the chassis can be determined at this time.
  • the outdoor unit controller 50 is further configured to: obtain an initial capacitance value of the icing detection module 11 when the chassis is not frozen, and calculate between a current capacitance value of the icing detection module 11 and an initial capacitance value. The difference, and the current icing thickness of the chassis based on the difference.
  • the outdoor unit controller 50 obtains the current icing thickness of the chassis according to the following formula:
  • Hn is the current icing thickness of the chassis
  • ⁇ C is the difference between the current capacitance value of the icing detection module and the initial capacitance value
  • K is a constant obtained by experiment.
  • the capacitance value of the icing detecting module 11 changes, whereby the outdoor unit controller 50 calculates the difference between the current capacitance value of the icing detecting module 11 and the initial capacitance value.
  • the capacitance detecting module 20 and the outdoor unit controller 50 pass The I2C interface module 70 is connected. That is, the capacitance detecting module 20 and the outdoor unit controller 50 can communicate via the I2C interface module 70.
  • the chassis icing detecting device of the air conditioner is configured to provide an icing detecting module including at least one icing sensing component on the chassis of the air conditioner, and the air detecting device is sensed in each icing sensing component.
  • the capacitance value of the icing detection module changes.
  • the capacitance detection module detects the icing detection signal by detecting the capacitance value of the icing detection module, thereby accurately detecting the icing degree of the outdoor unit chassis and preventing the icing thickness from being excessive.
  • the large heating capacity of the air conditioner is reduced, ensuring the working efficiency of the air conditioner and ensuring the safety of the axial fan.
  • An embodiment of the present invention also provides an air conditioner comprising the chassis icing detecting device of the air conditioner of the embodiment of the present invention.
  • the air conditioner according to the embodiment of the invention can accurately detect the icing degree of the outdoor unit chassis, prevent the excessive thickness of the icing, thereby reducing the heating capacity of the air conditioner, ensuring the working efficiency of the air conditioner, and ensuring the safety of the axial fan. .
  • the embodiment of the invention further provides a method for detecting the icing of the chassis of the air conditioner.
  • the air conditioner includes an icing detection module, and the icing detection module includes at least one icing sensing component, each icing sensing component is disposed on the chassis of the air conditioner, and each icing sensing component senses that the chassis of the air conditioner is icy.
  • the capacitance value of the ice detection module changes.
  • the chassis icing detection method of the air conditioner according to the embodiment of the present invention includes the following steps:
  • S20 Generate an icing detection signal by detecting a capacitance value of the icing detection module.
  • the air conditioner includes a resonance unit connected to the icing detection module to constitute a resonance circuit, and detecting the capacitance value of the icing detection module to generate the icing detection signal includes: detecting the resonance frequency of the resonance circuit Obtaining a capacitance value of the icing detection module according to a resonance frequency of the resonance circuit to generate an icing detection signal.
  • the chassis icing detection method of the air conditioner further includes determining whether the chassis is icy based on the icing detection signal.
  • determining whether the chassis is icy according to the icing detection signal comprises: calculating a capacitance change rate of the capacitance value of the icing detection module in a preset time according to the icing detection signal; and when the capacitance change rate is greater than the preset When the rate of change is determined, the chassis is frozen.
  • the chassis icing detection method of the air conditioner further includes: obtaining an initial capacitance value of the icing detection module when the chassis is not frozen; and calculating a current capacitance value between the icing detection module and the initial capacitance value Difference; calculate the current icing thickness of the chassis based on the difference.
  • the current icing thickness of the chassis is obtained according to the following formula:
  • Hn is the current icing thickness of the chassis
  • ⁇ C is between the current capacitance value of the icing detection module and the initial capacitance value.
  • K is the constant obtained by experiment.
  • a chassis icing detection method for an air conditioner provides an icing detection module including at least one icing sensing component on a chassis of an air conditioner, and an air conditioner is sensed in each icing sensing component.
  • the capacitance value of the icing detection module changes.
  • the icing degree of the outdoor unit chassis can be accurately detected, and the icing thickness is prevented from being excessively caused to cause air conditioning.
  • the heating capacity of the device is reduced, ensuring the working efficiency of the air conditioner and ensuring the safety of the axial fan.
  • the embodiment of the present invention provides a control device and method for an air conditioner and an air conditioner having the same.
  • the air conditioner control device is a defrosting control system for performing defrosting control on the outdoor heat exchanger, and the defrosting control method of the air conditioner is a defrosting control method.
  • the outdoor controller 50 is represented by the controller 51
  • the frost detecting device 1000 is the frost detecting device of the air conditioner of the embodiment of Figs. 1-9.
  • the defrosting control method of the air conditioner includes the following steps:
  • the temperature t' of the outdoor heat exchanger may be detected by a first temperature detector, wherein the first temperature detector may be disposed at a surface of the outdoor heat exchanger. And, the outdoor ambient temperature t" can be detected by the second temperature detector.
  • the first defrosting start condition may include that the frosting thickness H n of the outdoor heat exchanger is greater than the first predetermined thickness H 1 , that is, H n >H 1 ;
  • the second defrosting start condition may include The temperature t' of the outdoor heat exchanger is less than or equal to the first temperature threshold t 1 and the outdoor ambient temperature t" is less than the second temperature threshold t 2 , ie, t' ⁇ t 1 and t" ⁇ t 2 , wherein the first temperature threshold t 1 may be 3 ° C and the second temperature threshold t 2 may be 6 ° C.
  • S400 controlling the air conditioner to perform defrosting if the frosting thickness Hn of the outdoor heat exchanger satisfies the first defrosting start condition and the temperature t' of the outdoor heat exchanger and the outdoor ambient temperature t" satisfy the second defrosting start condition .
  • the frosting thickness H n of the outdoor heat exchanger can be obtained, and the outdoor temperature t′ and the outdoor ambient temperature t′′ are obtained, and then the frosting thickness H n of the outdoor heat exchanger is judged whether Is greater than the first predetermined thickness H 1 and whether the temperature t′ of the outdoor heat exchanger is less than or equal to the first temperature threshold t 1 , and whether the outdoor ambient temperature t′ is less than the second temperature threshold t 2 , if the outdoor heat exchanger is frosted
  • the thickness H n is greater than the first predetermined thickness H 1 and the temperature t′ of the outdoor heat exchanger is less than or equal to the first temperature threshold t 1 and the outdoor ambient temperature t′ is less than the second temperature threshold t 2 , then the air conditioner is controlled to perform defrosting .
  • the first temperature threshold t 1 may be 3 ° C
  • the second temperature threshold t 2 may be 6 ° C, that is, when the frosting thickness H n of the outdoor heat exchanger > the first predetermined thickness H 1 , and outdoor
  • the air conditioner is controlled to perform defrosting.
  • controlling the air conditioner to perform defrosting includes: controlling a four-way valve reversal of the air conditioner to cause the air conditioner to operate in a cooling manner, thereby utilizing heat of the heat exchange medium to defrost.
  • the heating rod may be installed beside the outdoor heat exchanger or the heating belt may be wound on the exposed portion of the outdoor heat exchanger copper tube or the heat dissipating fin, and the air conditioner is controlled for defrosting, including: controlling the heating rod Or the heating belt is energized to heat the outdoor heat exchanger to achieve defrosting by external heating.
  • the defrosting control method of the air conditioner further includes: determining whether the frosting thickness H n of the outdoor heat exchanger satisfies the first defrosting end condition and the temperature t' of the outdoor heat exchanger and Whether the outdoor ambient temperature t" satisfies the second defrosting end condition; if the frosting thickness H n of the outdoor heat exchanger satisfies the first defrosting end condition and the outdoor heat exchanger temperature t' and the outdoor ambient temperature t" satisfy the second The defrosting end condition controls the air conditioner to stop defrosting.
  • the first defrosting end condition may include that the frosting thickness H n of the outdoor heat exchanger is less than or equal to the second predetermined thickness H 2 , that is, H n ⁇ H 2 , and the second preset thickness H 2 is smaller than the first preset.
  • second defrost start condition may include an outdoor heat exchanger temperature t 'is greater than the third temperature threshold value t 3, i.e., t'> t 3, the third temperature is greater than a first threshold value t 3
  • a temperature threshold t 1 ie, t 3 >t 1 , wherein the third temperature threshold t 3 may be 4° C.
  • the frost thickness H n of the outdoor heat exchanger is continuously obtained, and the outdoor temperature t' and the outdoor ambient temperature t" are obtained, and then the frosting thickness of the outdoor heat exchanger is judged. Whether H n is less than or equal to the second predetermined thickness H 2 and whether the temperature t′ of the outdoor heat exchanger is greater than the third temperature threshold t 3 if the frosting thickness H n of the outdoor heat exchanger is greater than or equal to the second preset The thickness H 2 and the temperature t' of the outdoor heat exchanger are greater than the third temperature threshold t 3 , then the air conditioner is controlled to stop defrosting.
  • the third temperature threshold t 3 may be 4 ° C, that is, when the frosting thickness H n of the outdoor heat exchanger ⁇ the second predetermined thickness H 2 , and the temperature of the outdoor heat exchanger is t′>4° C. , then control the air conditioner to stop defrosting.
  • the defrosting control method of the air conditioner includes the following steps:
  • S101 Control the air conditioner to perform heating operation.
  • step S103 If yes, go to step S103; if no, go back to step S102.
  • the first defrosting start condition may include that the frosting thickness H n of the outdoor heat exchanger is greater than the first predetermined thickness H 1 , that is, H n >H 1 .
  • step S104 If yes, go to step S104; if no, go back to step S102.
  • the second defrosting start condition may include that the temperature t' of the outdoor heat exchanger is less than or equal to the first temperature threshold t 1 and the outdoor ambient temperature t" is less than the second temperature threshold t 2 , that is, t' ⁇ t 1 and t" ⁇ t 2 , for example, the first temperature threshold t 1 may be 3 ° C, and the second temperature threshold t 2 may be 6 ° C.
  • S104 Control the air conditioner to perform defrosting.
  • the frosting thickness H n of the outdoor heat exchanger is obtained by the frosting detecting module disposed in the outdoor heat exchanger, the first preset thickness H 1 is obtained, and the temperature of the outdoor heat exchanger is obtained t′ ⁇ 3° C.
  • the air conditioner is controlled to perform defrosting.
  • S105 Determine whether the frost thickness of the outdoor heat exchanger satisfies the first defrosting end condition.
  • step S106 If yes, go to step S106; if no, go back to step S105.
  • the first defrosting end condition may include that the frosting thickness H n of the outdoor heat exchanger is less than or equal to the second predetermined thickness H 2 , that is, H n ⁇ H 2 , and the second preset thickness H 2 is smaller than the first preset. Thickness H 1 , ie H 2 ⁇ H 1 .
  • step S107 is executed to control the air conditioner to stop defrosting; if not, return to step S106.
  • the second defrosting start condition may include that the temperature t' of the outdoor heat exchanger is greater than the third temperature threshold t 3 , that is, t'>t 3 , and the third temperature threshold t 3 is greater than the first temperature threshold t 1 , that is, t 3 > t 1 , wherein the third temperature threshold t 3 can be 4 ° C.
  • the frosting thickness H n of the outdoor heat exchanger is obtained by the frosting detecting module disposed in the outdoor heat exchanger, the first preset thickness H 1 is obtained, and the temperature of the outdoor heat exchanger is obtained t′ ⁇ 3° C.
  • the air conditioner is controlled to perform defrosting, and then the frosting detecting module of the outdoor heat exchanger obtains the frosting thickness H n ⁇ the second preset thickness H 2 of the outdoor heat exchanger and is outdoor
  • the air conditioner is controlled to stop defrosting.
  • the frost thickness of the outdoor heat exchanger in the air conditioner, the temperature of the outdoor heat exchanger, and the outdoor ambient temperature are obtained, when the frost thickness of the outdoor heat exchanger is greater than the first preheating
  • the thickness of the outdoor heat exchanger is controlled to perform defrosting when the temperature of the outdoor heat exchanger is less than or equal to the first temperature threshold and the outdoor ambient temperature is less than the second temperature threshold.
  • the air conditioner is controlled to stop defrosting.
  • step S1 includes the following steps:
  • S201 Detecting a capacitance value of the frost detection module disposed in the outdoor heat exchanger, that is, C, wherein a capacitance value of the frost detection module changes when frosting of the outdoor heat exchanger.
  • the frosting detecting module includes at least one frosting sensing component, each frosting sensing component is disposed on a heat dissipating fin or coil of an outdoor heat exchanger of the air conditioner, and more specifically, the frosting sensing component is disposed on The outer surface of the heat dissipating fin or the coil of the outdoor heat exchanger, the capacitance value of the frost detecting module changes when each frosting sensing component senses the frost of the outdoor heat exchanger of the air conditioner; the capacitance detecting module is used for detecting The capacitance value of the frost detection module is used to generate a frost detection signal.
  • each of the frosting sensing assemblies includes a first electrode and a second electrode, each of which is disposed on a heat dissipating fin or coil of an outdoor heat exchanger of the air conditioner.
  • the first electrode and the second electrode may constitute a parallel plate capacitor, and the first electrode and the second electrode are disposed on the heat dissipating fin or coil of the outdoor heat exchanger at a predetermined distance, and the air or the outdoor heat exchanger
  • the frost on the heat dissipating fins or coils may be interposed between the first electrode and the second electrode.
  • the capacitance detecting module includes: a resonance unit and a detecting unit, the resonance unit is connected to the frost detecting module to form a resonant circuit; the detecting unit is connected to the resonant unit, and the detecting unit is used for detecting the harmonic
  • the resonant frequency of the resonant circuit, and the capacitance value of the frosting detecting module is obtained according to the resonant frequency of the resonant circuit to generate a frosting detection signal.
  • the resonance unit and the frost detection module together form a resonance circuit.
  • the resonance frequency of the resonance circuit changes, and the detection unit acquires the frost detection module by detecting the resonance frequency of the resonance circuit.
  • the capacitance value is used to generate a frost detection signal, and the frost detection signal can be a digital signal. Thereby, the change in the capacitance value can be converted from an analog signal to a digital signal.
  • the frost thickness H of the outdoor heat exchanger in the air conditioner is related to the difference ⁇ C, that is, H ⁇ ⁇ C.
  • the outdoor heat exchanger is frosted, the intermediate substance contained in the frosting sensing component contains frost, and the capacitance value of the frosting detecting module changes, thereby the outdoor unit controller calculates the current capacitance value and the initial capacitance value of the frosting detecting module. The difference between the two can be obtained from the current frost thickness of the outdoor heat exchanger.
  • the frost thickness of the outdoor heat exchanger can be obtained according to the following formula:
  • H n is the frosting thickness of the outdoor heat exchanger
  • ⁇ C is the difference between the capacitance value of the frosting detection module and the initial capacitance value
  • K is a constant obtained by experiments.
  • the outdoor heat exchanger is judged by obtaining the frost thickness of the outdoor heat exchanger in the air conditioner, the temperature of the outdoor heat exchanger, and the outdoor temperature. Whether the frosting thickness satisfies the first defrosting start condition and whether the outdoor heat exchanger temperature and the outdoor ambient temperature satisfy the second defrosting start condition, and if the first defrosting start condition and the second defrosting start condition are simultaneously satisfied, the air conditioner is controlled Defrost the device.
  • the defrosting is judged by combining the outdoor heat exchanger temperature with the outdoor ambient temperature and the frosting thickness of the outdoor heat exchanger, thereby avoiding the problem of defrosting in the case where the outdoor heat exchanger is insufficiently frosted. It reduces the waste of energy caused by frequent false start defrosting and improves the defrosting efficiency.
  • FIG. 19 is a block schematic diagram of a defrosting control system of an air conditioner in accordance with an embodiment of the present invention.
  • the defrosting control system of the air conditioner includes a frosting detecting device 100, a first temperature detector 200, a second temperature detector 300, and a controller 51.
  • the frost detecting device 100 is configured to detect the frosting thickness H n of the outdoor heat exchanger in the air conditioner, the first temperature detector 200 is used to detect the temperature t′ of the outdoor heat exchanger, and the second temperature detector 300 is used to detect the frosting thickness H′ of the outdoor heat exchanger.
  • the controller 51 communicates with the frost detecting device 100 to obtain the frosting thickness H n of the outdoor heat exchanger, and the controller 51 communicates with the first temperature detector 200 to obtain the outdoor heat exchanger At a temperature t', the controller 51 communicates with the second temperature detector 300 to obtain an outdoor ambient temperature t", and the controller 51 determines whether the frosting thickness Hn of the outdoor heat exchanger satisfies the first defrosting start condition and the outdoor Whether the temperature t' of the heat exchanger and the outdoor ambient temperature t" satisfy the second defrosting start condition, and the frosting thickness H n of the outdoor heat exchanger satisfies the first defrosting start condition and the temperature t' of the outdoor heat exchanger When the outdoor ambient temperature t" satisfies the second defrosting start condition, the air conditioner is controlled to perform defrosting.
  • controlling the air conditioner to perform defrosting includes: controlling a four-way valve reversal of the air conditioner to cause the air conditioner to operate in a cooling manner, thereby utilizing heat of the heat exchange medium to defrost.
  • the heating rod may be installed beside the outdoor heat exchanger or the heating belt may be wound on the exposed portion of the outdoor heat exchanger copper tube or the heat dissipating fin, and the air conditioner is controlled for defrosting, including: controlling the heating rod Or the heating belt is energized to heat the outdoor heat exchanger to achieve defrosting by external heating.
  • the first defrosting start condition may include that the frosting thickness H n of the outdoor heat exchanger is greater than the first predetermined thickness H 1 , that is, H n >H 1 ;
  • the second defrosting start condition may include The temperature t' of the outdoor heat exchanger is less than or equal to the first temperature threshold t 1 and the outdoor ambient temperature t" is less than the second temperature threshold t 2 , ie, t' ⁇ t 1 and t" ⁇ t 2 .
  • the frost thickness H n of the outdoor heat exchanger can be obtained, and the outdoor temperature t' and the outdoor ambient temperature t" can be obtained, and then the frost thickness of the outdoor heat exchanger can be judged.
  • the frosting thickness H n of the outdoor heat exchanger can be obtained, and the outdoor temperature t' and the outdoor ambient temperature t" are obtained, and then it is judged whether the frosting thickness H n of the outdoor heat exchanger is greater than the first Whether the preset thickness H 1 and the temperature t′ of the outdoor heat exchanger are less than or equal to the first temperature threshold t 1 , and whether the outdoor ambient temperature t′ is smaller than the second temperature threshold t 2 , if the frost thickness of the outdoor heat exchanger is greater than the first a predetermined thickness H 1 and the outdoor heat exchanger temperature t 'is less than or equal to a first threshold t 1 and the temperature of the outdoor temperature t "is less than the second temperature threshold value t 2, the air conditioner control defrosting.
  • the first temperature threshold t 1 may be 3 ° C
  • the second temperature threshold t 2 may be 6 ° C, that is, when the frosting thickness H n of the outdoor heat exchanger > the first predetermined thickness H 1 , and outdoor
  • the air conditioner is controlled to perform defrosting.
  • the controller is further configured to determine whether the frosting thickness H n of the outdoor heat exchanger satisfies the first defrosting end condition and whether the outdoor heat exchanger temperature t' and the outdoor ambient temperature t" are satisfied.
  • the second defrosting end condition and when the frosting thickness H n of the outdoor heat exchanger satisfies the first defrosting end condition and the outdoor heat exchanger temperature t' and the outdoor ambient temperature t" satisfy the second defrosting end condition, Control the air conditioner to stop defrosting.
  • the first defrosting end condition includes that the frosting thickness H n of the outdoor heat exchanger is less than or equal to the second predetermined thickness H 2 , that is, H n ⁇ H 2 , and the second predetermined thickness H 2 is smaller than the first predetermined thickness H 1 , that is, H 2 ⁇ H 1 ;
  • the second defrosting start condition includes that the temperature t′ of the outdoor heat exchanger is greater than the third temperature threshold t 3 , that is, t′>t 3 , the third temperature The threshold t 3 is greater than the first temperature threshold t 1 , ie, t 3 >t 1 , wherein the third temperature threshold t 3 may be 4° C.
  • the frost thickness H n of the outdoor heat exchanger is continuously obtained, and the outdoor temperature t' and the outdoor ambient temperature t" are obtained, and then the frosting thickness of the outdoor heat exchanger is judged. Whether H n is less than or equal to the second predetermined thickness H 2 and whether the temperature t′ of the outdoor heat exchanger is greater than the third temperature threshold t 3 if the frosting thickness H n of the outdoor heat exchanger is greater than or equal to the second preset The thickness H 2 and the temperature t' of the outdoor heat exchanger are greater than the third temperature threshold t 3 , then the air conditioner is controlled to stop defrosting.
  • the third temperature threshold t 3 may be 4 ° C, that is, when the frosting thickness H n of the outdoor heat exchanger ⁇ the second predetermined thickness H 2 , and the temperature of the outdoor heat exchanger is t′>4° C. , then control the air conditioner to stop defrosting.
  • the frosting thickness H n of the outdoor heat exchanger is obtained by the frosting detecting module disposed in the outdoor heat exchanger, the first preset thickness H 1 is obtained, and the temperature of the outdoor heat exchanger is obtained t′ ⁇ 3° C.
  • the air conditioner is controlled to perform defrosting, and then the frosting detecting module of the outdoor heat exchanger obtains the frosting thickness H n ⁇ the second preset thickness H 2 of the outdoor heat exchanger and is outdoor
  • the air conditioner is controlled to stop defrosting.
  • the frost detecting apparatus 100 includes a capacitance detecting module and a frost detecting module.
  • the frosting detecting module comprises at least one frosting sensing component, each frosting sensing component is disposed in an outdoor heat exchanger of the air conditioner, and the frosting detecting module is formed when each frosting sensing component senses frosting of the outdoor heat exchanger
  • the capacitance value changes; the capacitance detecting module is connected to each frosting sensing component, the capacitance detecting module is used to detect the capacitance value of the frosting detecting module; and the controller 51 obtains the initial of the frosting detecting module when the outdoor heat exchanger is not frosted.
  • the capacitance value is calculated, and the difference between the capacitance value of the frost detection module and the initial capacitance value is calculated, and the frost thickness H n of the outdoor heat exchanger is calculated according to the difference.
  • the frosting detecting module includes at least one frosting sensing component, each frosting sensing component is disposed on a heat dissipating fin or coil of an outdoor heat exchanger of the air conditioner, and more specifically, the frosting sensing component is disposed on The outer surface of the heat dissipating fin or the coil of the outdoor heat exchanger, the capacitance value of the frost detecting module changes when each frosting sensing component senses the frost of the outdoor heat exchanger of the air conditioner; the capacitance detecting module is used for detecting The capacitance value of the frost detection module is used to generate a frost detection signal.
  • each of the frosting sensing assemblies includes a first electrode and a second electrode, each of which is disposed on a heat dissipating fin or coil of an outdoor heat exchanger of the air conditioner.
  • the first electrode and the second electrode may constitute a parallel plate capacitor, and the first electrode and the second electrode are disposed on the heat dissipating fin or coil of the outdoor heat exchanger at a predetermined distance, and the air or the outdoor heat exchanger
  • the frost on the heat dissipating fins or coils may be interposed between the first electrode and the second electrode.
  • the capacitance detecting module includes: a resonance unit and a detecting unit, the resonance unit is connected to the frost detecting module to form a resonant circuit; the detecting unit is connected to the resonant unit, and the detecting unit is configured to detect the resonant circuit.
  • the resonance frequency is obtained, and the capacitance value of the frost detection module is acquired according to the resonance frequency of the resonance circuit to generate a frost detection signal.
  • the resonance unit and the frost detection module together form a resonance circuit.
  • the resonance frequency of the resonance circuit changes, and the detection unit acquires the frost detection module by detecting the resonance frequency of the resonance circuit.
  • the capacitance value is used to generate a frost detection signal, and the frost detection signal can be a digital signal. Thereby, the change in the capacitance value can be converted from an analog signal to a digital signal.
  • the frost thickness H of the outdoor heat exchanger in the air conditioner is related to the difference ⁇ C, that is, H ⁇ ⁇ C.
  • the outdoor heat exchanger is frosted, the intermediate substance contained in the frosting sensing component contains frost, and the capacitance value of the frosting detecting module changes, thereby the outdoor unit controller calculates the current capacitance value and the initial capacitance value of the frosting detecting module. The difference between the two can be obtained from the current frost thickness of the outdoor heat exchanger.
  • the frost thickness of the outdoor heat exchanger can be obtained according to the following formula:
  • H n is the frosting thickness of the outdoor heat exchanger
  • ⁇ C is the difference between the capacitance value of the frosting detection module and the initial capacitance value
  • K is a constant obtained by experiments.
  • the defrosting control system of the air conditioner detects the air through the frost detecting device.
  • the frost thickness of the outdoor heat exchanger in the regulator detects the temperature of the outdoor heat exchanger
  • the second temperature detector detects the outdoor ambient temperature
  • the controller determines whether the frost thickness of the outdoor heat exchanger satisfies the first
  • the defrosting is judged by combining the outdoor heat exchanger temperature with the outdoor ambient temperature and the frosting thickness of the outdoor heat exchanger, thereby avoiding the problem of defrosting in the case where the outdoor heat exchanger is insufficiently frosted. It reduces the waste of energy caused by frequent false start defrosting and improves the defrosting efficiency.
  • the embodiment of the present invention proposes an air conditioner comprising the defrosting control system of the air conditioner of the embodiment of Fig. 19 of the present invention.
  • the defrosting is judged by combining the outdoor heat exchanger temperature with the outdoor ambient temperature and the frosting thickness of the outdoor heat exchanger, thereby avoiding the case where the outdoor heat exchanger is insufficiently frosted.
  • the problem of defrosting reduces the waste of energy caused by frequent false start defrosting and improves the defrosting efficiency.
  • the present embodiment proposes a non-transitory computer readable storage medium having stored thereon a computer program that, when executed by the processor, implements the control method of the air conditioner of the embodiment of the present invention.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • a more specific example (non-exhaustive list) of computer readable media includes the following: electrical connections having one or more wires (electrical Sub-device), portable computer case (magnetic device), random access memory (RAM), read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic device, and portable CD Read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

一种空调器的控制装置包括:检测模块(10),包括至少一个感应组件(101),其中每个感应组件(101)设置于空调器的室内换热器的散热翅片或盘管上,在每个感应组件(101)感应到空调器的室外换热器结霜时检测模块(10)的电容值会发生变化,或者每个感应组件(101)设置于空调器的底盘,在每个感应组件(101)感应到空调器的底盘结冰时检测模块(10)的电容值发生变化;电容检测模块(20),与检测模块(10)相连,电容检测模块(20)通过检测检测模块(10)的电容值以生成检测信号,从而能准确检测室外换热器的结霜程度或底盘的结冰程度,防止结霜或结冰厚度过大导致空调器的制热能力下降。还公开了一种空调器及其控制方法。

Description

空调器、空调器的控制装置和控制方法
相关申请的交叉引用
本申请基于申请号为201710349121.0、201720556937.6、201710348811.4、201720550920.X和201710349113.6,申请日为2017年5月17日以及申请号为201710326516.9、201710326802.5和201710326500.8,申请日为2017年5月10日的中国专利申请提出,并要求前述中国专利申请的优先权,这些中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调器技术领域,特别涉及一种空调器的控制装置、一种具有该装置的空调器以及一种空调器的控制方法。
背景技术
相关技术中,空调器的冷凝器在冬天室外温度较低时容易会析出水分,析出的水分附着于冷凝器盘管的表面形成霜层。随着霜层的形成,空调器的制热能力下降,空调器的工作效率降低。
此外,随着霜层的形成,空调器的制热能力下降,当达到空调器的除霜条件时,空调器启动除霜模式,以将冷凝器上结的霜层化成水,水顺着冷凝器流到底盘上并从底盘上的排水孔排出。但是,相关技术存在的问题是,在除霜结束时底盘上的水往往没有排干净,从而冷凝器再次结霜并达到与底盘上的水接触的厚度时,底盘上的水就会凝结成冰层,长时间未处理将会形成较厚的冰层,导致空调器的制热能力下降,空调器的工作效率降低,甚至威胁轴流风机的使用安全。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为达到上述目的,本发明第一方面实施例提出的一种空调器的控制装置,包括:检测模块,所述检测模块包括至少一个感应组件,其中,每个所述感应组件设置于所述空调器的室外换热器的散热翅片或盘管上,在每个所述感应组件感应到所述空调器的室外换热器结霜时所述检测模块的电容值发生变化,或者,每个所述感应组件设置于所述空调器的底盘,在每个所述感应组件感应到所述空调器的底盘结冰时所述检测模块的电容值发生变化;电容检测模块,所述电容检测模块与所述检测模块相连,所述电容检测模块通过检测所述检测模块的 电容值以生成检测信号。
本发明实施例提出的空调器的控制装置,在室外换热器的散热翅片或盘管上设置包括至少一个感应组件的检测模块,在每个感应组件感应到空调器的室外换热器结霜时检测模块的电容值发生变化,或者,在空调器的底盘设置包括至少一个感应组件的检测模块,在每个感应组件感应到空调器的底盘结冰时检测模块的电容值发生变化,电容检测模块通过检测检测模块的电容值以生成检测信号,从而能够准确检测室外机室外换热器的结霜程度,防止结霜厚度过大导致空调器的制热能力下降,确保空调器的工作效率,并且,能够准确检测室外机底盘的结冰程度,防止结冰厚度过大导致空调器的制热能力下降,确保空调器的工作效率,保证轴流风机的使用安全。
在至少一个实施例中,每个所述感应组件包括第一电极和第二电极,所述第一电极和第二电极均设置于所述空调器的室外换热器的散热翅片或盘管上,或者,所述第一电极和第二电极均设置于所述空调器的底盘。
在至少一个实施例中,每个所述感应组件包括第一屏蔽电缆和第二屏蔽电缆,所述第一屏蔽电缆和第二屏蔽电缆分别与所述第一电极和第二电极对应相连,以抑制外部干扰。
在至少一个实施例中,所述电容检测模块包括:谐振单元,所述谐振单元与所述检测模块相连以构成谐振回路;检测单元,所述检测单元与所述谐振单元相连,所述检测单元用于检测所述谐振回路的谐振频率,并根据所述谐振回路的谐振频率获取所述检测模块的电容值以生成检测信号。
在至少一个实施例中,所述谐振单元包括并联连接的谐振电容和谐振电感,所述并联连接的谐振电容和谐振电感的一端与所述检测单元的第一输入端相连,所述并联连接的谐振电容和谐振电感的另一端与所述检测单元的第二输入端相连,其中,当所述至少一个感应组件串联连接时,串联连接的所述至少一个感应组件的一端接地,串联连接的所述至少一个感应组件的另一端与所述并联连接的谐振电容和谐振电感的一端相连;或者,当所述至少一个感应组件并联连接时,并联连接的所述至少一个感应组件的一端接地,并联连接的所述至少一个感应组件的另一端与所述并联连接的谐振电容和谐振电感的一端相连。
在至少一个实施例中,所述谐振单元为多个,每个所述谐振单元与对应的感应组件相连以构成谐振回路,其中,每个所述谐振单元包括并联连接的谐振电容和谐振电感,所述并联连接的谐振电容和谐振电感的一端与所述检测单元的第一输入端相连,所述并联连接的谐振电容和谐振电感的另一端与所述检测单元的第二输入端相连;每个所述感应组件的一端接地,每个所述感应组件的另一端与对应的谐振单元中并联连接的谐振电容和谐振电感的一端相连。
在至少一个实施例中,所述的空调器的控制装置还包括:屏蔽驱动器,所述屏蔽驱动器 与所述检测单元的第一输入端和/或第二输入端相连,所述屏蔽驱动器用于对由所述检测单元的第一输入端和/或第二输入端输入的信号进行放大。
在至少一个实施例中,所述空调器的室外机控制器与所述电容检测模块进行通信以接收所述检测信号,并根据所述检测信号判断所述室外换热器是否结霜或者所述底盘是否结冰。
在至少一个实施例中,所述室外机控制器进一步用于,根据所述检测信号计算所述检测模块的电容值在预设时间内的电容变化率,并在所述电容变化率大于预设变化率时,判断所述室外换热器结霜或者所述底盘结冰。
在至少一个实施例中,所述室外机控制器进一步用于,获取所述室外换热器未结霜时所述检测模块的初始电容值,并计算所述检测模块的当前电容值与初始电容值之间的差值,以及根据所述差值计算所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度。
在至少一个实施例中,所述室外机控制器根据以下公式获取所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度:
Hn=ΔC/K
其中,Hn为所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度,ΔC为所述检测模块的当前电容值与初始电容值之间的差值,K为通过实验得出的常数。
在至少一个实施例中,所述电容检测模块与所述室外机控制器通过I2C接口模块相连。
在至少一个实施例中,所述的空调器的控制装置还包括:第一温度检测器,所述第一温度检测器用于检测所述室外换热器的温度;第二温度检测器,所述第二温度检测器用于检测室外环境温度;所述室外机控制器与所述电容检测模块进行通信以获取所述室外换热器的结霜厚度,所述室外控制器与所述第一温度检测器进行通信以获取所述室外换热器的温度,所述室外控制器与所述第二温度检测器进行通信以获取所述室外环境温度,所述室外控制器用于判断所述室外换热器的结霜厚度是否满足第一化霜开始条件以及所述室外换热器的温度和室外环境温度是否满足第二化霜开始条件,并在所述室外换热器的结霜厚度满足第一化霜开始条件且所述室外换热器的温度和室外环境温度满足第二化霜开始条件时,控制所述空调器进行除霜。
在至少一个实施例中,所述第一化霜开始条件包括所述室外换热器的结霜厚度大于第一预设厚度;所述第二化霜开始条件包括所述室外换热器的温度小于或等于第一温度阈值且所述室外环境温度小于第二温度阈值。
在至少一个实施例中,所述室外控制器进一步用于,判断所述室外换热器的结霜厚度是否满足第一化霜结束条件以及所述室外换热器的温度和室外环境温度是否满足第二化霜结束条件,并在所述室外换热器的结霜厚度满足第一化霜结束条件且所述室外换热器的温度和室外环境温度满足第二化霜结束条件时,控制所述空调器停止除霜。
在至少一个实施例中,所述第一化霜结束条件包括所述室外换热器的结霜厚度小于或等 于第二预设厚度,所述第二预设厚度小于所述第一预设厚度;所述第二化霜开始条件包括所述室外换热器的温度大于第三温度阈值,所述第三温度阈值大于所述第一温度阈值。
为达到上述目的,本发明第二方面实施例提出了一种空调器,包括所述的空调器的控制装置。
本发明实施例提出的空调器,能够准确检测室外机室外换热器的结霜程度,防止结霜厚度过大导致空调器的制热能力下降,确保空调器的工作效率,并且,能够准确检测室外机底盘的结冰程度,防止结冰厚度过大导致空调器的制热能力下降,确保空调器的工作效率,保证轴流风机的使用安全。
为达到上述目的,本发明第三方面实施例提出了一种空调器的控制方法,所述空调器包括检测模块,所述检测模块包括至少一个结霜感应组件,每个所述感应组件设置于所述空调器的室外换热器的散热翅片或盘管上,在每个所述感应组件感应到所述空调器的室外换热器结霜时所述检测模块的电容值发生变化,或者,每个所述感应组件设置于所述空调器的底盘,在每个所述感应组件感应到所述空调器的底盘结冰时所述检测模块的电容值发生变化,所述方法包括以下步骤:获取所述检测模块的电容变化情况;通过检测所述检测模块的电容值以生成检测信号。
本发明实施例提出的空调器的控制方法,在室外换热器的散热翅片或盘管上设置包括至少一个感应组件的检测模块,在每个感应组件感应到空调器的室外换热器结霜时检测模块的电容值发生变化,或者,在空调器的底盘设置包括至少一个感应组件的检测模块,在每个感应组件感应到空调器的底盘结冰时检测模块的电容值发生变化,通过检测检测模块的电容值以生成检测信号,从而能够准确检测室外机室外换热器的结霜程度,防止结霜厚度过大导致空调器的制热能力下降,确保空调器的工作效率,并且,能够准确检测室外机底盘的结冰程度,防止结冰厚度过大导致空调器的制热能力下降,确保空调器的工作效率,保证轴流风机的使用安全。
在至少一个实施例中,所述空调器还包括谐振单元,所述谐振单元与所述检测模块相连以构成谐振回路,所述通过检测所述检测模块的电容值以生成检测信号包括:检测所述谐振回路的谐振频率;根据所述谐振回路的谐振频率获取所述检测模块的电容值以生成检测信号。
在至少一个实施例中,所述的空调器的控制方法还包括:根据所述检测信号判断所述室外换热器是否结霜或者所述底盘是否结冰。
在至少一个实施例中,所述根据所述检测信号判断所述室外换热器是否结霜或者所述底盘是否结冰包括:根据所述检测信号计算所述检测模块的电容值在预设时间内的电容变化率;当所述电容变化率大于预设变化率时判断所述室外换热器结霜或者所述底盘结冰。
在至少一个实施例中,所述的空调器的结霜检测方法还包括:获取所述室外换热器未结霜时所述检测模块的初始电容值;计算所述检测模块的当前电容值与初始电容值之间的差值;根据所述差值计算所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度。
在至少一个实施例中,根据以下公式获取所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度:
Hn=ΔC/K
其中,Hn为所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度,ΔC为所述检测模块的当前电容值与初始电容值之间的差值,K为通过实验得出的常数。
在至少一个实施例中,所述的空调器的控制方法还包括:获取所述空调器中室外换热器的结霜厚度;获取所述室外换热器的温度和室外环境温度;判断所述室外换热器的结霜厚度是否满足第一化霜开始条件以及所述室外换热器的温度和室外环境温度是否满足第二化霜开始条件;
如果所述室外换热器的结霜厚度满足第一化霜开始条件且所述室外换热器的温度和室外环境温度满足第二化霜开始条件,则控制所述空调器进行除霜。
在至少一个实施例中,所述第一化霜开始条件包括所述室外换热器的结霜厚度大于第一预设厚度;所述第二化霜开始条件包括所述室外换热器的温度小于或等于第一温度阈值且所述室外环境温度小于第二温度阈值。
在至少一个实施例中,所述的空调器的控制方法还包括:判断所述室外换热器的结霜厚度是否满足第一化霜结束条件以及所述室外换热器的温度和室外环境温度是否满足第二化霜结束条件;如果所述室外换热器的结霜厚度满足第一化霜结束条件且所述室外换热器的温度和室外环境温度满足第二化霜结束条件,则控制所述空调器停止除霜。
在至少一个实施例中,所述第一化霜结束条件包括所述室外换热器的结霜厚度小于或等于第二预设厚度,所述第二预设厚度小于所述第一预设厚度;所述第二化霜开始条件包括所述室外换热器的温度大于第三温度阈值,所述第三温度阈值大于所述第一温度阈值。
为达到上述目的,本发明第四方面实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明第三方面实施例所述的空调器的控制方法。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是根据本发明实施例的空调器的控制装置的方框示意图,其中,检测模块为结霜检测模块;
图2是根据本发明一个实施例的空调器的控制装置中感应组件的示意图,其中,感应组件为结霜感应组件;
图3是根据本发明另一个实施例的空调器的控制装置中感应组件的示意图,其中,感应组件为结霜感应组件;
图4是根据本发明一个实施例的空调器的控制装置的方框示意图,其中,检测模块为结霜检测模块;
图5是根据本发明另一个实施例的空调器的控制装置的方框示意图,其中,检测模块为结霜检测模块;
图6是根据本发明一个实施例的空调器的控制装置中电容检测模块的电路原理图,其中,感应组件为结霜感应组件;
图7是根据本发明另一个实施例的空调器的控制装置中电容检测模块的电路原理图,其中,感应组件为结霜感应组件;
图8是根据本发明又一个实施例的空调器的控制装置中电容检测模块的电路原理图,其中,感应组件为结霜感应组件;
图9是根据本发明又一个实施例的空调器的控制装置的方框示意图,其中,检测模块为结霜检测模块;
图10是根据本发明实施例的空调器的控制装置的方框示意图,其中,检测模块为结冰检测模块;
图11是根据本发明一个实施例的空调器的控制装置中感应组件的示意图,其中,感应组件为结冰感应组件;
图12是根据本发明另一个实施例的空调器的控制装置中感应组件的示意图,其中,感应组件为结冰感应组件;
图13是根据本发明一个实施例的空调器的控制装置的方框示意图,其中,检测模块为结冰检测模块;
图14是根据本发明另一个实施例的空调器的控制装置的方框示意图,其中,检测模块为结冰检测模块;
图15是根据本发明一个实施例的空调器的控制装置中电容检测模块的电路原理图,其中,感应组件为结冰感应组件;
图16是根据本发明另一个实施例的空调器的控制装置中电容检测模块的电路原理图,其中,感应组件为结冰感应组件;
图17是根据本发明又一个实施例的空调器的控制装置中电容检测模块的电路原理图,其中,感应组件为结冰感应组件;
图18是根据本发明又一个实施例的空调器的控制装置的方框示意图,其中,检测模块为结冰检测模块;
图19是根据本发明再一个实施例的空调器的控制装置的方框示意图;
图20是根据本发明一个实施例的空调器的结霜检测方法的流程图;
图21是根据本发明一个实施例的空调器的结冰检测方法的流程图;
图22是根据本发明一个实施例的空调器的除霜控制方法的流程图;
图23是根据本发明一个具体实施例的空调器的除霜控制方法的流程图;以及
图24是根据本发明一个实施例的空调器的除霜控制方法中获取室外换热器的结霜厚度的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面先对空调器的结构进行简单介绍。
空调器可包括室内机和室外机,室外机可包括压缩机和室外换热器,室外换热器包括散热翅片和盘管,其中,盘管与压缩机相连接,盘管内装有传热介质,当与盘管相连接的压缩机做功时,盘管内的传热介质被压缩成高温高压蒸汽,使与盘管相连的空调器室内机的空气加热升温。
冬天室外温度较低时,如果室外换热器的温度低于空气的霜点温度,则室外换热器就会析出水分并附着于其表面形成霜层,室外换热器的温度与空气温度之间的温差越大,结霜速度越快,结霜也越严重。这样会阻止热交流,从而导致空调器的制热能力下降,空调器的工作效率降低。
基于此,本发明实施例提出一种空调器的控制装置和方法以及具有该装置的空调器。
下面参考附图1-9以及图20来描述本发明实施例提出的空调器的控制装置和方法以及具有该装置的空调器。其中,在图1-9的实施例中,空调器的控制装置用于对室外换热器进行结霜检测,检测模块为结霜检测模块10,感应组件为结霜感应组件101,检测信号为结霜检测信号,此外,空调器的控制方法为结霜检测方法。
图1是根据本发明实施例的空调器的控制装置的方框示意图。如图1所示,该装置包括:结霜检测模块10和电容检测模块20。
其中,结霜检测模块10包括至少一个结霜感应组件101,每个结霜感应组件101设置于空调器的室外换热器的散热翅片或盘管上,更具体地,结霜感应组件101设置于室外换热器 的散热翅片或盘管的外表面,在每个结霜感应组件101感应到空调器的室外换热器结霜时结霜检测模块10的电容值发生变化。
电容检测模块20与结霜检测模块10相连,电容检测模块20通过检测结霜检测模块10的电容值以生成结霜检测信号。
需要说明的是,根据电容原理,电容的电容值与电容中间物质的介电常数相关,由此,结霜感应组件101设置在空调器的室外换热器的散热翅片或盘管上,室外换热器结的霜或者空气(未结霜时)可作为结霜感应组件101的中间物质,结霜感应组件101的电容值将随着室外换热器的结霜程度而变化。
也就是说,结霜检测模块10的电容值会随着室外换热器的结霜情况发生变化,未结霜时结霜检测模块10的中间物质为空气,结霜时结霜检测模块10的中间物质含有霜,电容检测模块20通过检测结霜检测模块10的电容值即可准确地检测室外换热器的结霜情况。
根据本发明的一个实施例,当结霜感应组件101为多个时,多个结霜感应组件101可对应设置室外换热器上的多个位置,从而检测室外换热器不同位置的结霜情况,进一步提高结霜检测的准确度。
根据本发明的一个实施例,如图2所示,每个结霜感应组件101包括第一电极A1和第二电极A2,第一电极A1和第二电极A2均设置于空调器的室外换热器40的散热翅片或盘管上。其中,每个结霜感应组件101的结构基本相同,图2仅以一个结霜感应组件101为例说明。
也就是说,第一电极A1和第二电极A2可构成平行板电容器,第一电极A1和第二电极A2相隔预设距离设置在室外换热器40的散热翅片或盘管上,空气或者室外换热器40的散热翅片或盘管上结的霜可填充在第一电极A1和第二电极A2之间。
根据平行板电容器电容计算公式
Figure PCTCN2017091348-appb-000001
其中,εr为第一电极A1和第二电极A2所夹中间物质(空气或霜)的介电常数,ε0为真空绝对介电常数,A为第一电极A1与第二电极A2的正对表面积,d为第一电极A1和第二电极A2之间的距离,在ε0、A和d不变的情况下,平行板电容器电容的电容值C仅与介电常数εr相关,即C∝εr
由此,在第一电极A1和第二电极A2设置好后,ε0、A和d保持不变,底室外换热器40结霜后,第一电极A1和第二电极A2所夹的空气变为霜,导致介电常数εr发生变化。根据上述关系式C∝εr,结霜感应组件101的电容值在室外换热器40结霜时发生变化,进而结霜检测模块10的电容值发生变化。
下面对电容检测模块20的检测原理进行描述。
根据本发明的一个实施例,如图5所示,电容检测模块20包括:谐振单元201和检测单元202,谐振单元201与结霜检测模块10相连以构成谐振回路;检测单元202与谐振单元201相连,检测单元202用于检测谐振回路的谐振频率,并根据谐振回路的谐振频率获取结霜检测模块10的电容值以生成结霜检测信号。
也就是说,谐振单元201与结霜检测模块10共同构成谐振回路,当结霜检测模块10的电容值发生变化时,谐振回路的谐振频率发生变化,检测单元202通过检测谐振回路的谐振频率获取结霜检测模块10的电容值以生成结霜检测信号,结霜检测信号可为数字信号。由此,检测单元202可检测结霜检测模块10的电容值变化情况,并可将电容值变化情况由模拟信号转换为数字信号。
根据本发明的一些实施例,如图6-8所示,谐振单元201包括并联连接的谐振电容C1和谐振电感L1,并联连接的谐振电容C1和谐振电感L1的一端与检测单元202的第一输入端相连,并联连接的谐振电容C1和谐振电感L1的另一端与检测单元202的第二输入端相连,其中,如图6所示,当至少一个结霜感应组件101串联连接时,串联连接的至少一个结霜感应组件101的一端接地,串联连接的至少一个结霜感应组件101的另一端与并联连接的谐振电容C1和谐振电感L1的一端相连;或者,如图7所示,当至少一个结霜感应组件101并联连接时,并联连接的至少一个结霜感应组件101的一端接地,并联连接的至少一个结霜感应组件101的另一端与并联连接的谐振电容C1和谐振电感L1的一端相连。
具体来说,如图6所示,至少一个结霜感应组件101可以串联方式连接,例如,第一结霜感应组件的第一电极作为串联连接的至少一个结霜感应组件101的一端,第二结霜感应组件的第一电极与第一结霜感应组件的第二电极相连,第三结霜感应组件的第一电极与第二结霜感应组件的第二电极相连,依次类推,第N结霜感应组件的第一电极与第N-1结霜感应组件的第二电极相连,第N结霜感应组件的第二电极作为串联连接的至少一个结霜感应组件101的另一端,N为正整数。由此,串联连接的至少一个结霜感应组件101与并联连接的谐振电容C1和谐振电感L1一起构成谐振回路60,当任一个结霜感应组件101的电容发生变化时,谐振回路60的谐振频率发生变化,检测单元202通过检测谐振回路60的谐振频率即可获取结霜检测模块10的电容值。
如图7所示,至少一个结霜感应组件101可以并联方式连接,例如,至少一个结霜感应组件101的第一电极均连接在一起作为并联连接的至少一个结霜感应组件101的一端,至少一个结霜感应组件101的第二电极均连接在一起作为并联连接的至少一个结霜感应组件101的另一端。由此,并联连接的至少一个结霜感应组件101与并联连接的谐振电容C1和谐振电感L1一起构成谐振回路60,当任一个结霜感应组件101的电容发生变化时,谐振回路60 的谐振频率发生变化,检测单元202通过检测谐振回路60的谐振频率即可获取结霜检测模块10的电容值。
根据本发明的另一个实施例,如图8所述,谐振单元201为多个,每个谐振单元201与对应的结霜感应组件101相连以构成谐振回路60,其中,每个谐振单元201包括并联连接的谐振电容C1和谐振电感L1,并联连接的谐振电容C1和谐振电感L1的一端与检测单元202的第一输入端相连,并联连接的谐振电容C1和谐振电感L1的另一端与检测单元202的第二输入端相连;每个结霜感应组件101的一端接地,每个结霜感应组件101的另一端与对应的谐振单元201中并联连接的谐振电容C1和谐振电感L1的一端相连。
也就是说,当结霜感应组件101为多个时,多个结霜感应组件101可分别与多个谐振单元201对应构成多个谐振回路60,每个结霜感应组件101的第一电极作为结霜感应组件101的一端,每个结霜感应组件101的第二电极作为结霜感应组件101的另一端。由此,每个结霜感应组件101与对应的谐振单元201中并联连接的谐振电容C1和谐振电感L1一起构成谐振回路60,当某一个结霜感应组件101的电容发生变化时,该结霜感应组件101对应的谐振回路60的谐振频率会发生变化,检测单元202通过检测相应的谐振回路60的谐振频率即可获取该结霜感应组件101的电容值,进而获取结霜检测模块10的电容值。
根据本发明的一个具体实施例,检测单元202可检测谐振电容C1或谐振电感L1两端的电压信号或电流信号,并根据电压信号或电流信号的频率获取谐振回路60的谐振频率。
根据本发明的一个实施例,如图3和4所示,每个结霜感应组件101包括第一屏蔽电缆102和第二屏蔽电缆103,第一屏蔽电缆102和第二屏蔽电缆103分别与第一电极A1和第二电极A2对应相连,以抑制外部干扰,更具体地,第一屏蔽电缆102和第二屏蔽电缆103分别对应串联于第一电极A1和第二电极A2的连接端,举例来说,以图8为例,第一电极A1可通过第一屏蔽电缆102接地,第二电极A2可通过第二屏蔽电缆103与电容检测模块20中检测单元202的第一输入端相连。
由此,通过屏蔽电缆可消除检测单元与大地之间的寄生电容,有效减少外部干扰。
进一步地,如图4所示,空调器的结霜检测装置还包括:屏蔽驱动器30,屏蔽驱动器30与检测单元202的第一输入端和/或第二输入端相连,屏蔽驱动器30用于对由检测单元202的第一输入端和/或第二输入端输入的信号进行放大。也就是说,以屏蔽驱动器30与检测单元202的第一输入端相连为例,屏蔽驱动器30可通过外置增益为1放大电路对输入至检测单元202的第一输入端的信号进行驱动放大,以将放大后的信号引入检测单元202的第一输入端。
进一步地,根据本发明的一些实施例,如图6-9所示,空调器的室外机控制器50与电容检测模块20进行通信以接收结霜检测信号,并根据结霜检测信号判断室外换热器是否结 霜。
也就是说,电容检测模块20将结霜检测模块10的电容值变化情况由模拟信号转换为数字信号(结霜检测信号)之后传送给室外机控制器50,室外机控制器50通过监测结霜检测信号可判断室外换热器是否结霜。
根据本发明的一个具体实施例,室外机控制器50进一步用于,根据结霜检测信号计算结霜检测模块10的电容值在预设时间内的电容变化率,并在电容变化率大于预设变化率时判断室外换热器结霜。
也就是说,室外机控制器50可每隔预设时间T接收结霜检测信号,以每隔预设时间采样结霜检测模块10的电容值,由此,电容检测模块20可将室外换热器结霜过程中产生的多个电容值(例如C1、C2、…、Cn、…、)传送室外机控制器50。室外机控制器50可通过检测电容值在预设时间内的电容变化率即可判断室外换热器是否结霜。
其中,电容值在预设时间内的电容变化率可为相邻两个电容值之间的差值与预设时间T之比,即相邻两个电容值之间的差值ΔCn=Cn-Cn-1,电容变化率D=ΔC1/T。
进一步地,根据本发明的一个实施例,室外机控制器50还可根据结霜检测模块10的电容值在预设时间内的电容变化率确定室外换热器发生结霜的时间,也就是说,预设时间T为固定值,当第n个电容值Cn与第n-1个电容值Cn-1在预设时间内的变化率大于预设变化率时,判断室外换热器发生结霜,此时可确定室外换热器发生结霜的时间为Tn=T×n。
根据本发明的一个实施例,室外机控制器50进一步用于,获取室外换热器未结霜时结霜检测模块10的初始电容值,并计算结霜检测模块10的当前电容值与初始电容值之间的差值,以及根据差值计算室外换热器的当前结霜厚度。
根据本发明的一个具体实施例,室外机控制器50根据以下公式获取室外换热器的当前结霜厚度:
Hn=ΔC/K
其中,Hn为室外换热器的当前结霜厚度,ΔC为结霜检测模块的当前电容值与初始电容值之间的差值,K为通过实验得出的常数。
也就是说,当室外换热器未结霜时结霜感应组件所夹中间物质为空气,此时可获取结霜检测模块10的初始电容值即C0,对应的结霜厚度H0=0,当室外换热器结霜时结霜感应组件所夹中间物质含有霜,结霜检测模块10的电容值发生变化,由此,室外机控制器50通过计算结霜检测模块10的当前电容值与初始电容值之间的差值可获取室外换热器的当前结霜厚度,即Hn=ΔC/K。
根据本发明的一个实施例,如图6-9所示,电容检测模块20与室外机控制器50通过I2C接口模块70相连。也就是说,电容检测模块20与室外机控制器50可通过I2C接口模块70 进行通信。
另外,室外机控制器50还用于获取室外换热器的温度和室外环境温度,并根据室外换热器的温度和室外环境温度以及室外换热器的结霜厚度控制空气进行除霜或停止除霜。
具体地,室外机控制器50进一步用于,判断室外换热器的结霜厚度是否满足第一化霜开始条件以及室外换热器的温度和室外环境温度是否满足第二化霜开始条件,并在室外换热器的结霜厚度满足第一化霜开始条件且室外换热器的温度和室外环境温度满足第二化霜开始条件时,控制空调器进行除霜。其中,第一化霜开始条件可包括室外换热器的结霜厚度大于第一预设厚度;第二化霜开始条件可包括室外换热器的温度小于或等于第一温度阈值且室外环境温度小于第二温度阈值。
具体地,室外机控制器50进一步用于,判断室外换热器的结霜厚度是否满足第一化霜结束条件以及室外换热器的温度和室外环境温度是否满足第二化霜结束条件,并在室外换热器的结霜厚度满足第一化霜结束条件且室外换热器的温度和室外环境温度满足第二化霜结束条件时,控制空调器停止除霜。其中,第一化霜结束条件可包括室外换热器的结霜厚度小于或等于第二预设厚度,第二预设厚度小于第一预设厚度;第二化霜开始条件可包括室外换热器的温度大于第三温度阈值,第三温度阈值大于第一温度阈值。
综上,根据本发明实施例提出的空调器的结霜检测装置,在室外换热器的散热翅片或盘管上设置包括至少一个结霜感应组件的结霜检测模块,在每个结霜感应组件感应到空调器的室外换热器结霜时结霜检测模块的电容值发生变化,电容检测模块通过检测结霜检测模块的电容值以生成结霜检测信号,从而能够准确检测室外机室外换热器的结霜程度,防止结霜厚度过大导致空调器的制热能力下降,确保空调器的工作效率。
本发明实施例还提出了一种空调器,包括本发明图1-9实施例的空调器的控制装置。
根据本发明实施例提出的空调器,能够准确检测室外机室外换热器的结霜程度,防止结霜厚度过大导致空调器的制热能力下降,确保空调器的工作效率。
基于图1-9实施例的空调器的控制装置,本发明实施例又提出了一种空调器的结霜检测方法。
图20是根据本发明实施例的空调器的结霜检测方法的流程图。空调器包括结霜检测模块,结霜检测模块包括至少一个结霜感应组件,每个结霜感应组件设置于空调器的室外换热器的散热翅片或盘管上,在每个结霜感应组件感应到空调器的室外换热器结霜时结霜检测模块的电容值发生变化。
如图20所示,本发明实施例的空调器的结霜检测方法包括以下步骤:
S1:获取结霜检测模块的电容变化情况。
S2:通过检测结霜检测模块的电容值以生成结霜检测信号。
根据本发明的一个实施例,空调器还包括谐振单元,谐振单元与结霜检测模块相连以构成谐振回路,通过检测结霜检测模块的电容值以生成结霜检测信号包括:检测谐振回路的谐振频率;根据谐振回路的谐振频率获取结霜检测模块的电容值以生成结霜检测信号。
根据本发明的一个实施例,空调器的结霜检测方法还包括:
根据结霜检测信号判断室外换热器是否结霜。
根据本发明的一个实施例,根据结霜检测信号判断室外换热器是否结霜包括:根据结霜检测信号计算结霜检测模块的电容值在预设时间内的电容变化率;当电容变化率大于预设变化率时判断室外换热器结霜。
根据本发明的一个实施例,空调器的结霜检测方法还包括:获取室外换热器未结霜时结霜检测模块的初始电容值;计算结霜检测模块的当前电容值与初始电容值之间的差值;根据差值计算室外换热器的当前结霜厚度。
根据本发明的一个实施例,根据以下公式获取室外换热器的当前结霜厚度:
Hn=ΔC/K
其中,Hn为室外换热器的当前结霜厚度,ΔC为结霜检测模块的当前电容值与初始电容值之间的差值,K为通过实验得出的常数。
根据本发明实施例提出的空调器的结霜检测方法,在室外换热器的散热翅片或盘管上设置包括至少一个结霜感应组件的结霜检测模块,在每个结霜感应组件感应到空调器的室外换热器结霜时结霜检测模块的电容值发生变化,通过检测结霜检测模块的电容值以生成结霜检测信号,从而能够准确检测室外机室外换热器的结霜程度,防止结霜厚度过大导致空调器的制热能力下降,确保空调器的工作效率。
下面先对空调器的结构进行简单介绍。
空调器可包括室内机和室外机,室外机可包括压缩机和室外换热器,室外换热器包括散热翅片和铜管,其中,铜管与压缩机相连接,铜管内装有传热介质,当与铜管相连接的压缩机做功时,铜管内的传热介质被压缩成高温高压蒸汽,使与铜管相连的空调器室内机的空气加热升温。
冬天室外温度较低时,如果室外换热器的温度低于空气的霜点温度,则室外换热器就会析出水分并附着于其表面形成霜层,室外换热器的温度与空气温度之间的温差越大,结霜速度越快,结霜也越严重。当达到除霜条件的时候,控制空调器启动除霜模式,以将室外换热器上的霜层化成水,水顺着室外换热器流到底盘上并从底盘上的排水孔排出。但是,底盘上的水未排净会凝结成冰层,从而导致空调器的制热能力下降,空调器的工作效率降低,甚至威胁轴流风机的使用安全。
基于此,本发明实施例提出另一种空调器的控制装置和方法以及具有该装置的空调 器。
下面参考附图10-18以及图21来描述本发明实施例提出的空调器的控制装置和方法以及具有该装置的空调器。其中,在图10-18的实施例中,空调器的控制装置用于对空调器的底盘进行结冰检测,检测模块为结冰检测模块11,感应组件为结冰感应组件111,检测信号为结冰检测信号,此外,空调器的控制方法为底盘结冰检测方法。
图10是根据本发明实施例的空调器的底盘结冰检测装置的方框示意图。如图10所示,该装置包括:结冰检测模块11和电容检测模块20。
其中,结冰检测模块11包括至少一个结冰感应组件111,每个结冰感应组件111设置于空调器的底盘,在每个结冰感应组件111感应到空调器的底盘结冰时结冰检测模块11的电容值发生变化。根据本发明的一个实施例,空调器的底盘可设置在空调器的室外换热器的下方,以承接室外换热器流下的水。
电容检测模块20与结冰检测模块11相连,电容检测模块20通过检测结冰检测模块11的电容值以生成结冰检测信号。
需要说明的是,根据电容原理,电容的电容值与电容中间物质的介电常数相关,由此,结冰感应组件111设置在空调器的底盘上,底盘上水和/或冰可作为结冰感应组件111的中间物质,结冰感应组件111的电容值将随着底盘的结冰程度而变化。
也就是说,结冰检测模块11的电容值会随着底盘的结冰情况发生变化,电容检测模块20通过检测结冰检测模块11的电容值即可准确地检测底盘的结冰情况。
根据本发明的一个实施例,当结冰感应组件111为多个时,多个结冰感应组件111可对应设置底盘的多个位置,从而检测底盘不同位置的结冰情况,进一步提高结冰检测的准确度。
根据本发明的一个实施例,如图11所示,每个结冰感应组件111包括第一电极A1和第二电极A2,第一电极A1和第二电极A2均设置于空调器的底盘41。其中,每个结冰感应组件111的结构基本相同,图11仅以一个结冰感应组件111为例说明。
也就是说,第一电极A1和第二电极A2可构成平行板电容器,第一电极A1和第二电极A2相隔预设距离设置在底盘41上,底盘41上的水或冰可填充在第一电极A1和第二电极A2之间。
根据平行板电容器电容计算公式
Figure PCTCN2017091348-appb-000002
其中,εr为第一电极A1和第二电极A2所夹中间物质的介电常数,ε0为真空绝对介电常数,A为第一电极A1与第二电极A2的正对表面积,d为第一电极A1和第二电极A2之间的距离,在ε0、A和d不变的情况下,平行板电容器电容的电容值C仅与介电常数εr相关,即C∝εr
由此,在第一电极A1和第二电极A2设置好后,ε0、A和d保持不变,底盘41的冷凝 水结冰后,第一电极A1和第二电极A2所夹的冷凝水结成冰,导致介电常数εr发生变化。根据上述关系式C∝εr,结冰感应组件111的电容值在底盘结冰时发生变化,进而结冰检测模块11的电容值发生变化。
下面对电容检测模块20的检测原理进行描述。
根据本发明的一个实施例,如图14所示,电容检测模块20包括:谐振单元201和检测单元202,谐振单元201与结冰检测模块11相连以构成谐振回路;检测单元202与谐振单元201相连,检测单元202用于检测谐振回路的谐振频率,并根据谐振回路的谐振频率获取结冰检测模块11的电容值以生成结冰检测信号。
也就是说,谐振单元201与结冰检测模块11共同构成谐振回路,当结冰检测模块11的电容值发生变化时,谐振回路的谐振频率发生变化,检测单元202通过检测谐振回路的谐振频率获取结冰检测模块11的电容值以生成结冰检测信号,结冰检测信号可为数字信号。由此,检测单元202可检测结冰检测模块11的电容值变化情况,并可将电容值变化情况由模拟信号转换为数字信号。
根据本发明的一些实施例,如图15-17所示,谐振单元201包括并联连接的谐振电容C1和谐振电感L1,并联连接的谐振电容C1和谐振电感L1的一端与检测单元202的第一输入端相连,并联连接的谐振电容C1和谐振电感L1的另一端与检测单元202的第二输入端相连,其中,如图15所示,当至少一个结冰感应组件111串联连接时,串联连接的至少一个结冰感应组件111的一端接地,串联连接的至少一个结冰感应组件111的另一端与并联连接的谐振电容C1和谐振电感L1的一端相连;或者,如图16所示,当至少一个结冰感应组件111并联连接时,并联连接的至少一个结冰感应组件111的一端接地,并联连接的至少一个结冰感应组件111的另一端与并联连接的谐振电容C1和谐振电感L1的一端相连。
具体来说,如图15所示,至少一个结冰感应组件111可以串联方式连接,例如,第一结冰感应组件的第一电极作为串联连接的至少一个结冰感应组件111的一端,第二结冰感应组件的第一电极与第一结冰感应组件的第二电极相连,第三结冰感应组件的第一电极与第二结冰感应组件的第二电极相连,依次类推,第N结冰感应组件的第一电极与第N-1结冰感应组件的第二电极相连,第N结冰感应组件的第二电极作为串联连接的至少一个结冰感应组件111的另一端,N为正整数。由此,串联连接的至少一个结冰感应组件111与并联连接的谐振电容C1和谐振电感L1一起构成谐振回路60,当任一个结冰感应组件111的电容发生变化时,谐振回路60的谐振频率发生变化,检测单元202通过检测谐振回路60的谐振频率即可获取结冰检测模块11的电容值。
如图16所示,至少一个结冰感应组件111可以并联方式连接,例如,至少一个结冰感应组件111的第一电极均连接在一起作为并联连接的至少一个结冰感应组件111的一端,至 少一个结冰感应组件111的第二电极均连接在一起作为并联连接的至少一个结冰感应组件111的另一端。由此,并联连接的至少一个结冰感应组件111与并联连接的谐振电容C1和谐振电感L1一起构成谐振回路60,当任一个结冰感应组件111的电容发生变化时,谐振回路60的谐振频率发生变化,检测单元202通过检测谐振回路60的谐振频率即可获取结冰检测模块11的电容值。
根据本发明的另一个实施例,如图17所示,谐振单元201为多个,每个谐振单元201与对应的结冰感应组件111相连以构成谐振回路60,其中,每个谐振单元201包括并联连接的谐振电容C1和谐振电感L1,并联连接的谐振电容C1和谐振电感L1的一端与检测单元202的第一输入端相连,并联连接的谐振电容C1和谐振电感L1的另一端与检测单元202的第二输入端相连;每个结冰感应组件111的一端接地,每个结冰感应组件111的另一端与对应的谐振单元201中并联连接的谐振电容C1和谐振电感L1的一端相连。
也就是说,当结冰感应组件111为多个时,多个结冰感应组件111可分别与多个谐振单元201对应构成多个谐振回路60,每个结冰感应组件111的第一电极作为结冰感应组件111的一端,每个结冰感应组件111的第二电极作为结冰感应组件111的另一端。由此,每个结冰感应组件111与对应的谐振单元201中并联连接的谐振电容C1和谐振电感L1一起构成谐振回路60,当某一个结冰感应组件111的电容发生变化时,该结冰感应组件111对应的谐振回路60的谐振频率会发生变化,检测单元202通过检测相应的谐振回路60的谐振频率即可获取该结冰感应组件111的电容值,进而获取结冰检测模块11的电容值。
根据本发明的一个具体实施例,检测单元202可检测谐振电容C1或谐振电感L1两端的电压信号或电流信号,并根据电压信号或电流信号的频率获取谐振回路60的谐振频率。
根据本发明的一个实施例,如图12和13所示,每个结霜感应组件101包括第一屏蔽电缆102和第二屏蔽电缆103,第一屏蔽电缆102和第二屏蔽电缆103分别与第一电极A1和第二电极A2对应相连,以抑制外部干扰,更具体地,第一屏蔽电缆102和第二屏蔽电缆103分别对应串联于第一电极A1和第二电极A2的连接端,举例来说,以图17为例,第一电极A1可通过第一屏蔽电缆102接地,第二电极A2可通过第二屏蔽电缆103与电容检测模块20中检测单元202的第一输入端相连。
由此,通过屏蔽电缆可消除检测单元与大地之间的寄生电容,有效减少外部干扰。
进一步地,如图13所示,空调器的结霜检测装置还包括:屏蔽驱动器30,屏蔽驱动器30与检测单元202的第一输入端和/或第二输入端相连,屏蔽驱动器30用于对由检测单元202的第一输入端和/或第二输入端输入的信号进行放大。也就是说,以屏蔽驱动器30与检测单元202的第一输入端相连为例,屏蔽驱动器30可通过外置增益为1放大电路对输入至检测单元202的第一输入端的信号进行驱动放大,以将放大后的信号引入检测单元202的第 一输入端。
进一步地,根据本发明的一些实施例,如图15-18所示,空调器的室外机控制器50与电容检测模块20进行通信以接收结冰检测信号,并根据结冰检测信号判断底盘是否结冰。
也就是说,电容检测模块20将结冰检测模块11的电容值变化情况由模拟信号转换为数字信号(结冰检测信号)之后传送给室外机控制器50,室外机控制器50通过监测结冰检测信号可判断底盘是否结冰。
根据本发明的一个具体实施例,室外机控制器50进一步用于,根据结冰检测信号计算结冰检测模块11的电容值在预设时间内的电容变化率,并在电容变化率大于预设变化率时判断底盘结冰。
也就是说,室外机控制器50可每隔预设时间T接收结冰检测信号,以每隔预设时间采样结冰检测模块11的电容值,由此,电容检测模块20可将冷凝水结冰过程中产生的多个电容值(例如C1、C2、…、Cn、…、)传送室外机控制器50。室外机控制器50可通过检测电容值在预设时间内的电容变化率即可判断底盘是否结冰。
其中,电容值在预设时间内的电容变化率可为相邻两个电容值之间的差值与预设时间T之比,即相邻两个电容值之间的差值ΔCn=Cn-Cn-1,电容变化率D=ΔC1/T。
进一步地,根据本发明的一个实施例,室外机控制器50还可根据结冰检测模块11的电容值在预设时间内的电容变化率确定底盘发生结冰的时间,也就是说,预设时间T为固定值,当第n个电容值Cn与第n-1个电容值Cn-1在预设时间内的变化率大于预设变化率时,判断底盘发生结冰,此时可确定底盘发生结冰的时间为Tn=T×n。
根据本发明的一个实施例,室外机控制器50进一步用于,获取底盘未结冰时结冰检测模块11的初始电容值,并计算结冰检测模块11的当前电容值与初始电容值之间的差值,以及根据差值计算底盘的当前结冰厚度。
根据本发明的一个具体实施例,室外机控制器50根据以下公式获取底盘的当前结冰厚度:
Hn=ΔC/K
其中,Hn为底盘的当前结冰厚度,ΔC为结冰检测模块的当前电容值与初始电容值之间的差值,K为通过实验得出的常数。
也就是说,当底盘未结冰时结冰感应组件所夹中间物质为水,此时可获取结冰检测模块11的初始电容值即C0,对应的结冰厚度H0=0,当底盘结冰时结冰感应组件所夹中间物质含有冰,结冰检测模块11的电容值发生变化,由此,室外机控制器50通过计算结冰检测模块11的当前电容值与初始电容值之间的差值可获取底盘的当前结冰厚度,即Hn=ΔC/K。
根据本发明的一个实施例,如图15-18所示,电容检测模块20与室外机控制器50通过 I2C接口模块70相连。也就是说,电容检测模块20与室外机控制器50可通过I2C接口模块70进行通信。
综上,根据本发明实施例提出的空调器的底盘结冰检测装置,在空调器的底盘设置包括至少一个结冰感应组件的结冰检测模块,在每个结冰感应组件感应到空调器的底盘结冰时结冰检测模块的电容值发生变化,电容检测模块通过检测结冰检测模块的电容值以生成结冰检测信号,从而能够准确检测室外机底盘的结冰程度,防止结冰厚度过大导致空调器的制热能力下降,确保空调器的工作效率,保证轴流风机的使用安全。
本发明实施例还提出了一种空调器,包括本发明图10-18实施例的空调器的底盘结冰检测装置。
根据本发明实施例提出的空调器,能够准确检测室外机底盘的结冰程度,防止结冰厚度过大导致空调器的制热能力下降,确保空调器的工作效率,保证轴流风机的使用安全。
本发明实施例又提出了一种空调器的底盘结冰检测方法。
图21是根据本发明实施例的空调器的底盘结冰检测方法的流程图。空调器包括结冰检测模块,结冰检测模块包括至少一个结冰感应组件,每个结冰感应组件设置于空调器的底盘,在每个结冰感应组件感应到空调器的底盘结冰时结冰检测模块的电容值发生变化.
如图21所示,本发明实施例的空调器的底盘结冰检测方法包括以下步骤:
S10:获取结冰检测模块的电容变化情况;
S20:通过检测结冰检测模块的电容值以生成结冰检测信号。
根据本发明的一个实施例,空调器包括谐振单元,谐振单元与结冰检测模块相连以构成谐振回路,通过检测结冰检测模块的电容值以生成结冰检测信号包括:检测谐振回路的谐振频率;根据谐振回路的谐振频率获取结冰检测模块的电容值以生成结冰检测信号。
根据本发明的一个实施例,空调器的底盘结冰检测方法还包括:根据结冰检测信号判断底盘是否结冰。
根据本发明的一个实施例,根据结冰检测信号判断底盘是否结冰包括:根据结冰检测信号计算结冰检测模块的电容值在预设时间内的电容变化率;当电容变化率大于预设变化率时判断底盘结冰。
根据本发明的一个实施例,空调器的底盘结冰检测方法还包括:获取底盘未结冰时结冰检测模块的初始电容值;计算结冰检测模块的当前电容值与初始电容值之间的差值;根据差值计算底盘的当前结冰厚度。
根据本发明的一个实施例,根据以下公式获取底盘的当前结冰厚度:
Hn=ΔC/K
其中,Hn为底盘的当前结冰厚度,ΔC为结冰检测模块的当前电容值与初始电容值之间 的差值,K为通过实验得出的常数。
综上,根据本发明实施例提出的空调器的底盘结冰检测方法,在空调器的底盘设置包括至少一个结冰感应组件的结冰检测模块,在每个结冰感应组件感应到空调器的底盘结冰时结冰检测模块的电容值发生变化,通过检测结冰检测模块的电容值以生成结冰检测信号,从而能够准确检测室外机底盘的结冰程度,防止结冰厚度过大导致空调器的制热能力下降,确保空调器的工作效率,保证轴流风机的使用安全。
基于本发明图1-9实施例的空调器的结霜控制方法,本发明实施例提出了又一种空调器的控制装置和方法以及具有该装置的空调器。
下面结合附图19、以及图22-24描述本发明实施例的空调器的控制装置和方法以及具有该装置的空调器。其中,空调器的控制装置为除霜控制系统,用于对室外换热器进行除霜控制,空调器的除霜控制方法为除霜控制方法。需要说明的是,在下面的实施例中,室外控制器50以控制器51表示,结霜检测装置1000为图1-9实施例的空调器的结霜检测装置。
图22是根据本发明实施例的空调器的除霜控制方法的流程图。如图22所示,空调器的除霜控制方法包括以下步骤:
S100:获取空调器中室外换热器的结霜厚度Hn
S200:获取室外换热器的温度t'和室外环境温度t"。
根据本发明的一个实施例,可通过第一温度检测器检测室外换热器的温度t',其中,第一温度检测器可设置在室外换热器的表面。并且,可通过第二温度检测器检测室外环境温度t″。
S300:判断室外换热器的结霜厚度Hn是否满足第一化霜开始条件以及室外换热器的温度t'和室外环境温度t"是否满足第二化霜开始条件。
根据本发明的一个实施例,第一化霜开始条件可包括室外换热器的结霜厚度Hn大于第一预设厚度H1,即Hn>H1;第二化霜开始条件可包括室外换热器的温度t'小于或等于第一温度阈值t1且室外环境温度t"小于第二温度阈值t2,即t'≤t1且t"<t2,其中,第一温度阈值t1可为3℃,第二温度阈值t2可为6℃。
S400:如果室外换热器的结霜厚度Hn满足第一化霜开始条件且室外换热器的温度t'和室外环境温度t"满足第二化霜开始条件,则控制空调器进行除霜。
也就是说,在空调器运行过程中,可获取室外换热器的结霜厚度Hn,并获取室外温度t'和室外环境温度t",然后判断室外换热器的结霜厚度Hn是否大于第一预设厚度H1以及室外换热器的温度t'是否小于或等于第一温度阈值t1、室外环境温度t"是否小于第二温度阈值t2,如果室外换热器的结霜厚度Hn大于第一预设厚度H1且室外换热器的温度t'小于或等于第一温度阈值t1且室外环境温度t"小于第二温度阈值t2,则控制空调器进行除霜。
例如,第一温度阈值t1可为3℃,第二温度阈值t2可为6℃,也就是说,当室外换热器的结霜厚度Hn>第一预设厚度H1,且室外换热器的温度t'≤3℃且室外环境温度t"<6℃时,则控制空调器进行除霜。
根据本发明的一个具体实施例,控制空调器进行除霜包括:控制空调器的四通阀换向以使空调器制冷运行,从而利用换热介质的热量来除霜。
或者,根据本发明的一个具体实施例,可室外换热器旁安装加热棒或在室外换热器铜管的裸露部分或散热翅片上缠绕加热带,控制空调器进行除霜包括:控制加热棒或加热带通电以对室外换热器进行加热,从而通过外部加热实现除霜。
进一步地,根据本发明的一个实施例,空调器的除霜控制方法还包括:判断室外换热器的结霜厚度Hn是否满足第一化霜结束条件以及室外换热器的温度t'和室外环境温度t"是否满足第二化霜结束条件;如果室外换热器的结霜厚度Hn满足第一化霜结束条件且室外换热器的温度t'和室外环境温度t"满足第二化霜结束条件,则控制空调器停止除霜。
其中,第一化霜结束条件可包括室外换热器的结霜厚度Hn小于或等于第二预设厚度H2,即Hn≤H2,第二预设厚度H2小于第一预设厚度H1,即H2<H1;第二化霜开始条件可包括室外换热器的温度t'大于第三温度阈值t3,即t'>t3,第三温度阈值t3大于第一温度阈值t1,即t3>t1,其中,第三温度阈值t3可为4℃。
也就是说,在空调器进行除霜的过程中,继续获取室外换热器的结霜厚度Hn,并获取室外温度t'和室外环境温度t",然后判断室外换热器的结霜厚度Hn是否小于或等于第二预设厚度H2以及室外换热器的温度t'是否大于第三温度阈值t3,如果室外换热器的结霜厚度Hn大于小于或等于第二预设厚度H2且室外换热器的温度t'大于第三温度阈值t3,则控制空调器停止除霜。
其中,第三温度阈值t3可为4℃,也就是说,当室外换热器的结霜厚度Hn≤第二预设厚度H2,且室外换热器的温度t'>4℃时,则控制空调器停止除霜。
根据本发明的一个实施例,如图23所示,空调器的除霜控制方法包括以下步骤:
S101:控制空调器进行制热运行。
S102:判断室外换热器的结霜厚度Hn是否满足第一化霜开始条件。
如果是,则执行步骤S103;如果否,则返回步骤S102。
其中,第一化霜开始条件可包括室外换热器的结霜厚度Hn大于第一预设厚度H1,即Hn>H1
S103:判断室外换热器的温度t'和室外环境温度t"是否满足第二化霜开始条件。
如果是,则执行步骤S104;如果否,则返回步骤S102。
其中,第二化霜开始条件可包括室外换热器的温度t'小于或等于第一温度阈值t1且室外环境温度t"小于第二温度阈值t2,即t'≤t1且t"<t2,例如,第一温度阈值t1可为3℃,第二温度阈值t2可为6℃。
S104:控制空调器进行除霜。
举例来说,当通过设置于室外换热器的结霜检测模块获取室外换热器的结霜厚度Hn>第一预设厚度H1,获取室外换热器的温度t'≤3℃且室外环境温度t"<6℃时,则控制空调器进行除霜。
S105:判断室外换热器的结霜厚度是否满足第一化霜结束条件。
如果是,则执行步骤S106;如果否,则返回步骤S105。
其中,第一化霜结束条件可包括室外换热器的结霜厚度Hn小于或等于第二预设厚度H2,即Hn≤H2,第二预设厚度H2小于第一预设厚度H1,即H2<H1
S106:判断室外换热器的温度t'和室外环境温度t"是否满足第二化霜结束条件。
如果是,则执行步骤S107控制空调器停止除霜;如果否,则返回步骤S106。
S107:控制空调器停止除霜。
其中,第二化霜开始条件可包括室外换热器的温度t'大于第三温度阈值t3,即t'>t3,第三温度阈值t3大于第一温度阈值t1,即t3>t1,其中,第三温度阈值t3可为4℃。
举例来说,当通过设置于室外换热器的结霜检测模块获取室外换热器的结霜厚度Hn>第一预设厚度H1,获取室外换热器的温度t'≤3℃且室外环境温度t"<6℃时,则控制空调器进 行除霜,然后当室外换热器的结霜检测模块获取室外换热器的结霜厚度Hn≤第二预设厚度H2且室外换热器的温度t'>4℃时,控制空调器停止除霜。
具体而言,在空调器进行制热运行时,获取空调器中室外换热器的结霜厚度、室外换热器的温度和室外环境温度,当室外换热器的结霜厚度大于第一预设厚度,室外换热器的温度小于或等于第一温度阈值且室外环境温度小于第二温度阈值时,控制空调器进行除霜。在空调器进行除霜后,当室外换热器的结霜厚度小于或等于第二预设厚度,室外换热器的温度大于第三温度阈值时,控制空调器停止除霜。
根据本发明的一个具体实施例,如图24所示,获取空调器中室外换热器的结霜厚度,即步骤S1包括以下步骤:
S201:检测设置于室外换热器的结霜检测模块的电容值,即C,其中,结霜检测模块的电容值在室外换热器的结霜时发生变化。
具体而言,结霜检测模块包括至少一个结霜感应组件,每个结霜感应组件设置于空调器的室外换热器的散热翅片或盘管上,更具体地,结霜感应组件设置于室外换热器的散热翅片或盘管的外表面,在每个结霜感应组件感应到空调器的室外换热器结霜时结霜检测模块的电容值发生变化;电容检测模块用于检测结霜检测模块的电容值以生成结霜检测信号。
根据本发明的一个实施例,每个结霜感应组件包括第一电极和第二电极,第一电极和第二电极均设置于空调器的室外换热器的散热翅片或盘管上。
也就是说,第一电极和第二电极可构成平行板电容器,第一电极和第二电极相隔预设距离设置在室外换热器的散热翅片或盘管上,空气或者室外换热器的散热翅片或盘管上的结霜可介入在第一电极和第二电极之间。
根据平行板电容器电容计算公式
Figure PCTCN2017091348-appb-000003
其中,εr为第一电极A1和第二电极A2所夹中间物质(空气或霜)的介电常数,ε0为真空绝对介电常数,A为第一电极A1与第二电极A2的正对表面积,d为第一电极A1和第二电极A2之间的距离,在ε0、A和d不变的情况下,平行板电容器电容的电容值C仅与介电常数εr相关,即C∝εr
由此,在第一电极和第二电极设置好后,ε0、A和d保持不变,室外换热器结霜后,第一电极和第二电极所夹的空气变为霜,导致介电常数εr发生变化。根据上述关系式C∝εr,结霜检测模块的电容值在室外换热器结霜时发生变化。
另外,根据本发明的一个具体实施例,电容检测模块包括:谐振单元和检测单元,谐振单元与结霜检测模块相连以构成谐振回路;检测单元与谐振单元相连,检测单元用于检测谐 振回路的谐振频率,并根据谐振回路的谐振频率获取结霜检测模块的电容值以生成结霜检测信号。
也就是说,谐振单元与结霜检测模块共同构成谐振回路,当结霜检测模块的电容值发生变化时,谐振回路的谐振频率发生变化,检测单元通过检测谐振回路的谐振频率获取结霜检测模块的电容值以生成结霜检测信号,结霜检测信号可为数字信号。由此,可将电容值变化情况由模拟信号转换为数字信号。
S202:获取室外换热器未结霜时结霜检测模块的初始电容值C0
S203:计算结霜检测模块的电容值C与初始电容值C0之间的差值ΔC,即ΔC=C-C0,并根据差值ΔC计算室外换热器的结霜厚度Hn
其中,空调器中室外换热器的结霜厚度H与差值ΔC相关,即H∝ΔC。
也就是说,当室外换热器未结霜时结霜感应组件所夹中间物质为空气,此时可获取结霜检测模块的初始电容值即C0,对应的结霜厚度H0=0,当室外换热器结霜时结霜感应组件所夹中间物质含有霜,结霜检测模块的电容值发生变化,由此,室外机控制器通过计算结霜检测模块的当前电容值与初始电容值之间的差值可获取室外换热器的当前结霜厚度。
具体地,可根据以下公式获取室外换热器的结霜厚度:
Hn=ΔC/K
其中,Hn为室外换热器的结霜厚度,ΔC为结霜检测模块的电容值与初始电容值之间的差值,K为通过实验得出的常数。
综上所述,根据本发明实施例提出的空调器的除霜控制方法,通过获取空调器中室外换热器的结霜厚度、室外换热器的温度和室外温度,判断室外换热器的结霜厚度是否满足第一化霜开始条件以及室外换热器温度和室外环境温度是否满足第二化霜开始条件,如果同时满足第一化霜开始条件和第二化霜开始条件,则控制空调器进行除霜。由此,通过将室外换热器温度和室外环境温度以及室外换热器的结霜厚度结合在一起判断除霜,避免了在室外换热器结霜不足的情况下就进行化霜的问题,减少了频繁误启动化霜造成的能耗浪费,提高了化霜效率。
图19是根据本发明实施例的空调器的除霜控制系统的方框示意图。如图19所示,空调器的除霜控制系统包括:结霜检测装置100、第一温度检测器200、第二温度检测器300和控制器51。
其中,结霜检测装置100用于检测空调器中室外换热器的结霜厚度Hn,第一温度检测器200用于检测室外换热器的温度t',第二温度检测器300用于检测室外环境温度t",控制器51与结霜检测装置100进行通信以获取室外换热器的结霜厚度Hn,控制器51与第一温度检测器200进行通信以获取室外换热器的温度t',控制器51与第二温度检测器300进行通信 以获取室外环境温度t",控制器51用于判断室外换热器的结霜厚度Hn是否满足第一化霜开始条件以及室外换热器的温度t'和室外环境温度t"是否满足第二化霜开始条件,并在室外换热器的结霜厚度Hn满足第一化霜开始条件且室外换热器的温度t'和室外环境温度t"满足第二化霜开始条件时,控制空调器进行除霜。
根据本发明的一个具体实施例,控制空调器进行除霜包括:控制空调器的四通阀换向以使空调器制冷运行,从而利用换热介质的热量来除霜。
或者,根据本发明的一个具体实施例,可室外换热器旁安装加热棒或在室外换热器铜管的裸露部分或散热翅片上缠绕加热带,控制空调器进行除霜包括:控制加热棒或加热带通电以对室外换热器进行加热,从而通过外部加热实现除霜。
根据本发明的一个实施例,第一化霜开始条件可包括室外换热器的结霜厚度Hn大于第一预设厚度H1,即Hn>H1;第二化霜开始条件可包括室外换热器的温度t'小于或等于第一温度阈值t1且室外环境温度t"小于第二温度阈值t2,即t'≤t1且t"<t2
也就是说,在空调器运行过程中,可获取室外换热器的结霜厚度Hn,并获取室外温度t'和室外环境温度t",然后判断室外换热器的结霜厚度也就是说,在空调器运行过程中,可获取室外换热器的结霜厚度Hn,并获取室外温度t'和室外环境温度t",然后判断室外换热器的结霜厚度Hn是否大于第一预设厚度H1以及室外换热器的温度t'是否小于或等于第一温度阈值t1、室外环境温度t"是否小于第二温度阈值t2,如果室外换热器的结霜厚度大于第一预设厚度H1且室外换热器的温度t'小于或等于第一温度阈值t1且室外环境温度t"小于第二温度阈值t2,则控制空调器进行除霜。
例如,第一温度阈值t1可为3℃,第二温度阈值t2可为6℃,也就是说,当室外换热器的结霜厚度Hn>第一预设厚度H1,且室外换热器的温度t'≤3℃且室外环境温度t"<6℃时,则控制空调器进行除霜。
根据本发明的一个实施例,控制器进一步用于,判断室外换热器的结霜厚度Hn是否满足第一化霜结束条件以及室外换热器的温度t'和室外环境温度t"是否满足第二化霜结束条件,并在室外换热器的结霜厚度Hn满足第一化霜结束条件且室外换热器的温度t'和室外环境温 度t"满足第二化霜结束条件时,控制空调器停止除霜。
在本发明的一个实施例中,第一化霜结束条件包括室外换热器的结霜厚度Hn小于或等于第二预设厚度H2,即Hn≤H2,第二预设厚度H2小于第一预设厚度H1,即H2≤H1;第二化霜开始条件包括室外换热器的温度t'大于第三温度阈值t3,即t'>t3,第三温度阈值t3大于第一温度阈值t1,即t3>t1,其中,第三温度阈值t3可为4℃。
也就是说,在空调器进行除霜的过程中,继续获取室外换热器的结霜厚度Hn,并获取室外温度t'和室外环境温度t",然后判断室外换热器的结霜厚度Hn是否小于或等于第二预设厚度H2以及室外换热器的温度t'是否大于第三温度阈值t3,如果室外换热器的结霜厚度Hn大于小于或等于第二预设厚度H2且室外换热器的温度t'大于第三温度阈值t3,则控制空调器停止除霜。
其中,第三温度阈值t3可为4℃,也就是说,当室外换热器的结霜厚度Hn≤第二预设厚度H2,且室外换热器的温度t'>4℃时,则控制空调器停止除霜。
举例来说,当通过设置于室外换热器的结霜检测模块获取室外换热器的结霜厚度Hn>第一预设厚度H1,获取室外换热器的温度t'≤3℃且室外环境温度t"<6℃时,则控制空调器进行除霜,然后当室外换热器的结霜检测模块获取室外换热器的结霜厚度Hn≤第二预设厚度H2且室外换热器的温度t'>4℃时,控制空调器停止除霜。
根据本发明的一个实施例,结霜检测装置100包括电容检测模块和结霜检测模块。
其中,结霜检测模块包括至少一个结霜感应组件,每个结霜感应组件设置于空调器的室外换热器,在每个结霜感应组件感应到室外换热器结霜时结霜检测模块的电容值发生变化;电容检测模块与每个结霜感应组件相连,电容检测模块用于检测结霜检测模块的电容值;控制器51获取室外换热器未结霜时结霜检测模块的初始电容值,并计算结霜检测模块的电容值与初始电容值之间的差值,并根据差值计算室外换热器的结霜厚度Hn
具体而言,结霜检测模块包括至少一个结霜感应组件,每个结霜感应组件设置于空调器的室外换热器的散热翅片或盘管上,更具体地,结霜感应组件设置于室外换热器的散热翅片或盘管的外表面,在每个结霜感应组件感应到空调器的室外换热器结霜时结霜检测模块的电容值发生变化;电容检测模块用于检测结霜检测模块的电容值以生成结霜检测信号。
根据本发明的一个实施例,每个结霜感应组件包括第一电极和第二电极,第一电极和第二电极均设置于空调器的室外换热器的散热翅片或盘管上。
也就是说,第一电极和第二电极可构成平行板电容器,第一电极和第二电极相隔预设距离设置在室外换热器的散热翅片或盘管上,空气或者室外换热器的散热翅片或盘管上的结霜可介入在第一电极和第二电极之间。
根据平行板电容器电容计算公式
Figure PCTCN2017091348-appb-000004
其中,εr为第一电极A1和第二电极A2所夹中间物质(空气或霜)的介电常数,ε0为真空绝对介电常数,A为第一电极A1与第二电极A2的正对表面积,d为第一电极A1和第二电极A2之间的距离,在ε0、A和d不变的情况下,平行板电容器电容的电容值C仅与介电常数εr相关,即C∝εr
由此,在第一电极和第二电极设置好后,ε0、A和d保持不变,室外换热器结霜后,第一电极和第二电极所夹的空气变为霜,导致介电常数εr发生变化。根据上述关系式C∝εr,结霜检测模块的电容值在室外换热器结霜时发生变化。
另外,根据本发明的一个具体实施例,电容检测模块包括:谐振单元和检测单元,谐振单元与结霜检测模块相连以构成谐振回路;检测单元与谐振单元相连,检测单元用于检测谐振回路的谐振频率,并根据谐振回路的谐振频率获取结霜检测模块的电容值以生成结霜检测信号。
也就是说,谐振单元与结霜检测模块共同构成谐振回路,当结霜检测模块的电容值发生变化时,谐振回路的谐振频率发生变化,检测单元通过检测谐振回路的谐振频率获取结霜检测模块的电容值以生成结霜检测信号,结霜检测信号可为数字信号。由此,可将电容值变化情况由模拟信号转换为数字信号。
获取室外换热器未结霜时结霜检测模块的初始电容值C0,计算结霜检测模块的电容值C与初始电容值C0之间的差值ΔC,即ΔC=C-C0,并根据差值ΔC计算室外换热器的结霜厚度。其中,空调器中室外换热器的结霜厚度H与差值ΔC相关,即H∝ΔC。
也就是说,当室外换热器未结霜时结霜感应组件所夹中间物质为空气,此时可获取结霜检测模块的初始电容值即C0,对应的结霜厚度H0=0,当室外换热器结霜时结霜感应组件所夹中间物质含有霜,结霜检测模块的电容值发生变化,由此,室外机控制器通过计算结霜检测模块的当前电容值与初始电容值之间的差值可获取室外换热器的当前结霜厚度。
具体地,可根据以下公式获取室外换热器的结霜厚度:
Hn=ΔC/K
其中,Hn为室外换热器的结霜厚度,ΔC为结霜检测模块的电容值与初始电容值之间的差值,K为通过实验得出的常数。
综上所述,根据本发明实施例提出的空调器的除霜控制系统,通过结霜检测装置检测空 调器中室外换热器的结霜厚度,第一温度检测器检测室外换热器的温度,第二温度检测器检测室外环境温度,通过控制器判断室外换热器的结霜厚度是否满足第一化霜开始条件以及室外换热器的温度和室外环境温度是否满足第二化霜开始条件,如果同时满足第一化霜开始条件和第二化霜开始条件则控制空调器进行除霜。由此,通过将室外换热器温度和室外环境温度以及室外换热器的结霜厚度结合在一起判断除霜,避免了在室外换热器结霜不足的情况下就进行化霜的问题,减少了频繁误启动化霜造成的能耗浪费,提高了化霜效率。
本发明实施例提出了一种空调器,包括本发明图19实施例的空调器的除霜控制系统。
根据本发明实施例的空调器,通过将室外换热器温度和室外环境温度以及室外换热器的结霜厚度结合在一起判断除霜,避免了在室外换热器结霜不足的情况下就进行化霜的问题,减少了频繁误启动化霜造成的能耗浪费,提高了化霜效率。
此外,本发实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明实施例的空调器的控制方法。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电 子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (28)

  1. 一种空调器的控制装置,其特征在于,包括:
    检测模块,所述检测模块包括至少一个感应组件,其中,每个所述感应组件设置于所述空调器的室外换热器的散热翅片或盘管上,在每个所述感应组件感应到所述空调器的室外换热器结霜时所述检测模块的电容值发生变化,或者,每个所述感应组件设置于所述空调器的底盘,在每个所述感应组件感应到所述空调器的底盘结冰时所述检测模块的电容值发生变化;
    电容检测模块,所述电容检测模块与所述检测模块相连,所述电容检测模块通过检测所述检测模块的电容值以生成检测信号。
  2. 根据权利要求1所述的空调器的控制装置,其特征在于,每个所述感应组件包括第一电极和第二电极,所述第一电极和第二电极均设置于所述空调器的室外换热器的散热翅片或盘管上,或者,所述第一电极和第二电极均设置于所述空调器的底盘。
  3. 根据权利要求2所述的空调器的控制装置,其特征在于,每个所述感应组件包括第一屏蔽电缆和第二屏蔽电缆,所述第一屏蔽电缆和第二屏蔽电缆分别与所述第一电极和第二电极对应相连,以抑制外部干扰。
  4. 根据权利要求1所述的空调器的控制装置,其特征在于,所述电容检测模块包括:
    谐振单元,所述谐振单元与所述检测模块相连以构成谐振回路;
    检测单元,所述检测单元与所述谐振单元相连,所述检测单元用于检测所述谐振回路的谐振频率,并根据所述谐振回路的谐振频率获取所述检测模块的电容值以生成检测信号。
  5. 根据权利要求4所述的空调器的控制装置,其特征在于,所述谐振单元包括并联连接的谐振电容和谐振电感,所述并联连接的谐振电容和谐振电感的一端与所述检测单元的第一输入端相连,所述并联连接的谐振电容和谐振电感的另一端与所述检测单元的第二输入端相连,其中,
    当所述至少一个感应组件串联连接时,串联连接的所述至少一个感应组件的一端接地,串联连接的所述至少一个感应组件的另一端与所述并联连接的谐振电容和谐振电感的一端相连;
    或者,当所述至少一个感应组件并联连接时,并联连接的所述至少一个感应组件的一端接地,并联连接的所述至少一个感应组件的另一端与所述并联连接的谐振电容和谐振电感的一端相连。
  6. 根据权利要求4所述的空调器的控制装置,其特征在于,所述谐振单元为多个,每个所述谐振单元与对应的感应组件相连以构成谐振回路,其中,
    每个所述谐振单元包括并联连接的谐振电容和谐振电感,所述并联连接的谐振电容和谐 振电感的一端与所述检测单元的第一输入端相连,所述并联连接的谐振电容和谐振电感的另一端与所述检测单元的第二输入端相连;
    每个所述感应组件的一端接地,每个所述感应组件的另一端与对应的谐振单元中并联连接的谐振电容和谐振电感的一端相连。
  7. 根据权利要求5或6所述的空调器的控制装置,其特征在于,还包括:
    屏蔽驱动器,所述屏蔽驱动器与所述检测单元的第一输入端和/或第二输入端相连,所述屏蔽驱动器用于对由所述检测单元的第一输入端和/或第二输入端输入的信号进行放大。
  8. 根据权利要求1所述的空调器的控制装置,其特征在于,所述空调器的室外机控制器与所述电容检测模块进行通信以接收所述检测信号,并根据所述检测信号判断所述室外换热器是否结霜或者所述底盘是否结冰。
  9. 根据权利要求8所述的空调器的控制装置,其特征在于,所述室外机控制器进一步用于,根据所述检测信号计算所述检测模块的电容值在预设时间内的电容变化率,并在所述电容变化率大于预设变化率时,判断所述室外换热器结霜或者所述底盘结冰。
  10. 根据权利要求8所述的空调器的控制装置,其特征在于,所述室外机控制器进一步用于,获取所述室外换热器未结霜时所述检测模块的初始电容值,并计算所述检测模块的当前电容值与初始电容值之间的差值,以及根据所述差值计算所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度。
  11. 根据权利要求10所述的空调器的控制装置,其特征在于,所述室外机控制器根据以下公式获取所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度:
    Hn=ΔC/K
    其中,Hn为所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度,ΔC为所述检测模块的当前电容值与初始电容值之间的差值,K为通过实验得出的常数。
  12. 根据权利要求8所述的空调器的控制装置,其特征在于,所述电容检测模块与所述室外机控制器通过I2C接口模块相连。
  13. 根据权利要求8-11中任一项所述的空调器的控制装置,其特征在于,还包括:
    第一温度检测器,所述第一温度检测器用于检测所述室外换热器的温度;
    第二温度检测器,所述第二温度检测器用于检测室外环境温度;
    所述室外机控制器与所述电容检测模块进行通信以获取所述室外换热器的结霜厚度,所述室外控制器与所述第一温度检测器进行通信以获取所述室外换热器的温度,所述室外控制器与所述第二温度检测器进行通信以获取所述室外环境温度,所述室外控制器用于判断所述室外换热器的结霜厚度是否满足第一化霜开始条件以及所述室外换热器的温度和室外环境温度是否满足第二化霜开始条件,并在所述室外换热器的结霜厚度满足第一化霜开始条件且所述室外换热器的温度和室外环境温度满足第二化霜开始条件时,控制所述空调器进行除 霜。
  14. 根据权利要求13所述的空调器的控制装置,其特征在于,其中,
    所述第一化霜开始条件包括所述室外换热器的结霜厚度大于第一预设厚度;
    所述第二化霜开始条件包括所述室外换热器的温度小于或等于第一温度阈值且所述室外环境温度小于第二温度阈值。
  15. 根据权利要求14所述的空调器的控制装置,其特征在于,所述室外控制器进一步用于,判断所述室外换热器的结霜厚度是否满足第一化霜结束条件以及所述室外换热器的温度和室外环境温度是否满足第二化霜结束条件,并在所述室外换热器的结霜厚度满足第一化霜结束条件且所述室外换热器的温度和室外环境温度满足第二化霜结束条件时,控制所述空调器停止除霜。
  16. 根据权利要求15所述的空调器的控制装置,其特征在于,其中,
    所述第一化霜结束条件包括所述室外换热器的结霜厚度小于或等于第二预设厚度,所述第二预设厚度小于所述第一预设厚度;
    所述第二化霜开始条件包括所述室外换热器的温度大于第三温度阈值,所述第三温度阈值大于所述第一温度阈值。
  17. 一种空调器,其特征在于,包括根据权利要求1-16中任一项所述的空调器的控制装置。
  18. 一种空调器的控制方法,其特征在于,所述空调器包括检测模块,所述检测模块包括至少一个结霜感应组件,每个所述感应组件设置于所述空调器的室外换热器的散热翅片或盘管上,在每个所述感应组件感应到所述空调器的室外换热器结霜时所述检测模块的电容值发生变化,或者,每个所述感应组件设置于所述空调器的底盘,在每个所述感应组件感应到所述空调器的底盘结冰时所述检测模块的电容值发生变化,所述方法包括以下步骤:
    获取所述检测模块的电容变化情况;以及
    通过检测所述检测模块的电容值以生成检测信号。
  19. 根据权利要求18所述的空调器的控制方法,其特征在于,所述空调器还包括谐振单元,所述谐振单元与所述检测模块相连以构成谐振回路,所述通过检测所述检测模块的电容值以生成检测信号包括:
    检测所述谐振回路的谐振频率;
    根据所述谐振回路的谐振频率获取所述检测模块的电容值以生成检测信号。
  20. 根据权利要求18所述的空调器的控制方法,其特征在于,还包括:
    根据所述检测信号判断所述室外换热器是否结霜或者所述底盘是否结冰。
  21. 根据权利要求20所述的空调器的控制方法,其特征在于,所述根据所述检测信号判断所述室外换热器是否结霜或者所述底盘是否结冰包括:
    根据所述检测信号计算所述检测模块的电容值在预设时间内的电容变化率;
    当所述电容变化率大于预设变化率时判断所述室外换热器结霜或者所述底盘结冰。
  22. 根据权利要求20所述的空调器的结霜检测方法,其特征在于,还包括:
    获取所述室外换热器未结霜时所述检测模块的初始电容值;
    计算所述检测模块的当前电容值与初始电容值之间的差值;以及
    根据所述差值计算所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度。
  23. 根据权利要求22所述的空调器的控制方法,其特征在于,根据以下公式获取所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度:
    Hn=ΔC/K
    其中,Hn为所述室外换热器的当前结霜厚度或者所述底盘的当前结冰厚度,ΔC为所述检测模块的当前电容值与初始电容值之间的差值,K为通过实验得出的常数。
  24. 根据权利要求20-23中任一项所述的空调器的控制方法,其特征在于,还包括:
    获取所述空调器中室外换热器的结霜厚度;
    获取所述室外换热器的温度和室外环境温度;
    判断所述室外换热器的结霜厚度是否满足第一化霜开始条件以及所述室外换热器的温度和室外环境温度是否满足第二化霜开始条件;
    如果所述室外换热器的结霜厚度满足第一化霜开始条件且所述室外换热器的温度和室外环境温度满足第二化霜开始条件,则控制所述空调器进行除霜。
  25. 根据权利要求24所述的空调器的控制方法,其特征在于,其中,
    所述第一化霜开始条件包括所述室外换热器的结霜厚度大于第一预设厚度;
    所述第二化霜开始条件包括所述室外换热器的温度小于或等于第一温度阈值且所述室外环境温度小于第二温度阈值。
  26. 根据权利要求24所述的空调器的控制方法,其特征在于,还包括:
    判断所述室外换热器的结霜厚度是否满足第一化霜结束条件以及所述室外换热器的温度和室外环境温度是否满足第二化霜结束条件;
    如果所述室外换热器的结霜厚度满足第一化霜结束条件且所述室外换热器的温度和室外环境温度满足第二化霜结束条件,则控制所述空调器停止除霜。
  27. 根据权利要求26所述的空调器的控制方法,其特征在于,其中,
    所述第一化霜结束条件包括所述室外换热器的结霜厚度小于或等于第二预设厚度,所述第二预设厚度小于所述第一预设厚度;
    所述第二化霜开始条件包括所述室外换热器的温度大于第三温度阈值,所述第三温度阈值大于所述第一温度阈值。
  28. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序 被处理器执行时实现如权利要求18-27中任一项所述的空调器的控制方法。
PCT/CN2017/091348 2017-05-10 2017-06-30 空调器、空调器的控制装置和控制方法 WO2018205388A1 (zh)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201710326500.8 2017-05-10
CN201710326802.5 2017-05-10
CN201710326802 2017-05-10
CN201710326516 2017-05-10
CN201710326500 2017-05-10
CN201710326516.9 2017-05-10
CN201720556937.6U CN206831707U (zh) 2017-05-10 2017-05-17 空调器及其底盘结冰检测装置
CN201710348811.4A CN106989494A (zh) 2017-05-10 2017-05-17 空调器及其结霜检测装置和方法
CN201720550920.XU CN207585020U (zh) 2017-05-10 2017-05-17 空调器及其结霜检测装置
CN201710349121.0 2017-05-17
CN201720550920.X 2017-05-17
CN201710348811.4 2017-05-17
CN201710349113.6 2017-05-17
CN201710349113.6A CN107036348A (zh) 2017-05-17 2017-05-17 空调器、空调器的除霜控制方法及系统
CN201710349121.0A CN106979563A (zh) 2017-05-10 2017-05-17 空调器及其底盘结冰检测装置和方法
CN201720556937.6 2017-05-17

Publications (1)

Publication Number Publication Date
WO2018205388A1 true WO2018205388A1 (zh) 2018-11-15

Family

ID=64104271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091348 WO2018205388A1 (zh) 2017-05-10 2017-06-30 空调器、空调器的控制装置和控制方法

Country Status (1)

Country Link
WO (1) WO2018205388A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928768A (zh) * 2020-07-31 2020-11-13 中国第一汽车股份有限公司 一种曲轴箱通风管路结冰检测装置及方法
CN113375291A (zh) * 2021-06-25 2021-09-10 宁波奥克斯电气股份有限公司 一种空调器化霜控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187517A (zh) * 2006-11-17 2008-05-28 海尔集团公司 空调除霜方法
US20080250796A1 (en) * 2005-02-15 2008-10-16 Control Devices, Inc. Methods and Apparatus for Detecting and Making Ice
CN201514223U (zh) * 2009-09-23 2010-06-23 珠海格力电器股份有限公司 冰霜检测装置及热泵型空调器
CN202171375U (zh) * 2011-07-28 2012-03-21 Tcl空调器(中山)有限公司 底盘防结冰结构及空调器
JP2012098044A (ja) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp 着露検出装置、着露検出方法および空調機
CN202993470U (zh) * 2012-11-30 2013-06-12 深圳市深越光电技术有限公司 一种冷凝器结霜检测装置
WO2015194295A1 (ja) * 2014-06-16 2015-12-23 アルプス電気株式会社 霜検出器及び該霜検出器を用いた着霜状態検出装置
US20160025403A1 (en) * 2014-07-28 2016-01-28 Infineon Technologies Austria Ag Temperature regulating system and method of deicing the temperature regulating system
CN107246701A (zh) * 2016-09-13 2017-10-13 奥克斯空调股份有限公司 一种空调器室外换热器除霜或除雪控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080250796A1 (en) * 2005-02-15 2008-10-16 Control Devices, Inc. Methods and Apparatus for Detecting and Making Ice
CN101187517A (zh) * 2006-11-17 2008-05-28 海尔集团公司 空调除霜方法
CN201514223U (zh) * 2009-09-23 2010-06-23 珠海格力电器股份有限公司 冰霜检测装置及热泵型空调器
JP2012098044A (ja) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp 着露検出装置、着露検出方法および空調機
CN202171375U (zh) * 2011-07-28 2012-03-21 Tcl空调器(中山)有限公司 底盘防结冰结构及空调器
CN202993470U (zh) * 2012-11-30 2013-06-12 深圳市深越光电技术有限公司 一种冷凝器结霜检测装置
WO2015194295A1 (ja) * 2014-06-16 2015-12-23 アルプス電気株式会社 霜検出器及び該霜検出器を用いた着霜状態検出装置
US20160025403A1 (en) * 2014-07-28 2016-01-28 Infineon Technologies Austria Ag Temperature regulating system and method of deicing the temperature regulating system
CN107246701A (zh) * 2016-09-13 2017-10-13 奥克斯空调股份有限公司 一种空调器室外换热器除霜或除雪控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928768A (zh) * 2020-07-31 2020-11-13 中国第一汽车股份有限公司 一种曲轴箱通风管路结冰检测装置及方法
CN113375291A (zh) * 2021-06-25 2021-09-10 宁波奥克斯电气股份有限公司 一种空调器化霜控制方法

Similar Documents

Publication Publication Date Title
CN107560007B (zh) 空调系统及其冷媒散热管的防凝露控制方法和装置
WO2018205388A1 (zh) 空调器、空调器的控制装置和控制方法
CN207585020U (zh) 空调器及其结霜检测装置
CN1166252C (zh) 有电容耦合加热系统的隔离玻璃
CN107036348A (zh) 空调器、空调器的除霜控制方法及系统
US10804743B2 (en) Surface flux control for inductive wireless charging systems
CN206831707U (zh) 空调器及其底盘结冰检测装置
CN108302712B (zh) 热泵空调机组及其节能控制方法和控制装置
CN110986334A (zh) 空调器的控制方法、装置、空调器和电子设备
WO2019210802A1 (zh) 化霜控制方法及系统
CN104684358A (zh) 地埋式电动汽车无线充电装置的散热系统
US10598551B2 (en) Variable frequency drive temperature determination
JP2004226061A (ja) 赤外線検出を使用した温度制御
CN116337935A (zh) 一种热管性能检测系统
CN111854045A (zh) 空调器的自清洁方法、装置、空调器和电子设备
CN207019242U (zh) 积尘检测装置及空调器
KR102158043B1 (ko) 능동 위상 배열 레이더 안테나의 응결수 형성 억제가 가능한 냉각 시스템 및 이의 제어 방법
CN111397165A (zh) 空调器及其控制方法和装置、存储介质
US20220283109A1 (en) Sensing frost and ice accumulation using capacitance
CN115230500A (zh) 基于屏蔽板耦合电压检测位置的电动汽车无线充电系统
US11268921B2 (en) Determining material composition of cookware in induction heating systems
CN101441486B (zh) 一种电热恒温水浴箱及水温控制方法
CN111380088B (zh) 电磁炉及其上烹饪锅具的识别方法与装置
US20190170413A1 (en) Electrical monitoring of refrigerant circuit
CN113655318B (zh) Llc谐振异常的检测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17909296

Country of ref document: EP

Kind code of ref document: A1