WO2018205330A1 - 一种复合抗菌除臭功能母粒、纤维的制备方法 - Google Patents

一种复合抗菌除臭功能母粒、纤维的制备方法 Download PDF

Info

Publication number
WO2018205330A1
WO2018205330A1 PCT/CN2017/087659 CN2017087659W WO2018205330A1 WO 2018205330 A1 WO2018205330 A1 WO 2018205330A1 CN 2017087659 W CN2017087659 W CN 2017087659W WO 2018205330 A1 WO2018205330 A1 WO 2018205330A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
copper
antibacterial deodorizing
composite antibacterial
preparing
Prior art date
Application number
PCT/CN2017/087659
Other languages
English (en)
French (fr)
Inventor
李刚
Original Assignee
浙江银瑜新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江银瑜新材料股份有限公司 filed Critical 浙江银瑜新材料股份有限公司
Priority to US16/612,404 priority Critical patent/US11034804B2/en
Publication of WO2018205330A1 publication Critical patent/WO2018205330A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties

Definitions

  • the invention belongs to the technical field of functional textile materials, and in particular relates to a preparation method of a composite antibacterial deodorizing functional masterbatch and fiber.
  • antibacterial functionalization of fabrics has gradually increased with the improvement of living standards.
  • some solutions have been solved, for example, from the origin of fibers, and antibacterial fibers can be prepared.
  • silver antibacterial systems have been used before, and good antibacterial effects can be achieved.
  • silver ion migration is also a potential threat that affects normal cells. Therefore, copper ion antibacterial systems are currently advocated and are currently widely used in some medical and domestic textile fields.
  • the cost requirement is too high, the purity of copper will affect the antibacterial properties of the fiber, and the processing cost of the metal powder is relatively high. Therefore, the cost of using the copper powder to achieve the antibacterial effect is unacceptable for traditional textiles;
  • the fiber mechanical properties are poor, and the copper powder is an active metal material, especially after the small particles will have a certain catalytic explanation performance, resulting in poor mechanical properties of the fiber;
  • the present invention has been made in view of the above-mentioned and/or technical drawbacks of the existing composite antibacterial deodorizing functional masterbatch and fiber preparation method.
  • one of the objects of the present invention is to overcome the deficiencies in the prior art and provide a method for preparing a composite antibacterial deodorizing functional masterbatch and fiber, which is prepared by copper powder and surface modified and compounded with functional resin powder.
  • the functional masterbatch is prepared together with the body.
  • a method for preparing a composite antibacterial deodorizing functional mother particle which comprises surface modification of a copper powder: a temperature of 20 to 90 ° C, and a stirring speed of 500 ⁇ 2000 rpm, the surface modifier is mixed with the copper powder to form a nano-conductive powder, wherein the surface modifier is added in an amount of 1 to 5 wt% of the copper powder, mixed for 30 to 90 min;
  • Resin powder arrangement: organic benzene sulfonate or organic sulphate and hydrazide or polyamine compound are mixed with resin powder in a certain ratio to form compound resin powder, the ratio is according to the molar ratio: organic Benzene sulfonate or organic sulphate: hydrazide or polyamine compound is 1:9 ⁇ 9:1, the ratio of mixed substance to resin powder is 1:5 ⁇ 1:100; compound antibacterial deodorization Preparation of functional masterbatch: mixing the nano-conductive powder with the compounde
  • a preferred embodiment of the method for producing a composite antibacterial deodorizing functional mother particle according to the present invention wherein before the surface modification of the copper powder, a copper powder having a particle diameter of less than 2 ⁇ m is further prepared.
  • the copper-based powder is prepared by mechanical pulverization and jet milling.
  • a preferred embodiment of the method for preparing a composite antibacterial deodorizing functional masterbatch according to the present invention wherein the copper powder is copper powder, copper oxide powder, cuprous oxide powder, tetraammine copper sulfate (II) ) one or more of copper acetate, copper oxalate, and copper citrate.
  • the copper powder is copper powder, copper oxide powder, cuprous oxide powder, tetraammine copper sulfate (II) ) one or more of copper acetate, copper oxalate, and copper citrate.
  • the surface modifying agent is an active silicone series surface modifying agent, including vinyltrimethoxysilane or 3-aminopropyl. Trimethoxysilane.
  • the resin powder is one or more of PET powder, PBT powder, PTT powder, PC powder, nylon 6 powder, nylon 66 powder, polypropylene powder or polyethylene powder.
  • a preferred embodiment of the method for preparing a composite antibacterial deodorizing functional masterbatch according to the present invention wherein the organic benzene sulfonate or organic sulphate must contain one or more, hydrazide or polyamine
  • the compound must contain one or more, and the organic benzenesulfonate includes sodium dodecylbenzenesulfonate, and the organic sulfate includes sodium lauryl sulfate, the hydrazide compound A 1-pyrazoloyl-2-aryl hydrazide compound including ethylenediamine and triethanolamine is included.
  • a preferred embodiment of the method for preparing a composite antibacterial deodorizing functional masterbatch according to the present invention wherein the basic resin chip is one or more of a polyester slice, a polyolefin slice or a polyamide slice.
  • the basic resin chip is one or more of a polyester slice, a polyolefin slice or a polyamide slice.
  • Another object of the present invention is to provide a method for preparing a composite antibacterial deodorizing functional fiber, which is prepared by spinning a composite antibacterial deodorizing functional masterbatch to prepare a composite antibacterial deodorizing fiber having different colors.
  • a method for preparing a composite antibacterial deodorizing functional fiber comprising: a method for preparing a composite antibacterial deodorizing functional masterbatch; and, the composite antibacterial deodorizing function
  • the composite antibacterial deodorizing functional masterbatch is uniformly mixed with the basic resin slice to perform melt spinning, and the spinning speed is 600-3000 m/min, and the spinning assembly is initially.
  • the pressure is 8 to 16 MPa, and a composite antibacterial deodorizing functional fiber is obtained.
  • the composite antibacterial deodorizing functional fiber has a single filament fineness of 0.5 to 10D.
  • the invention has the beneficial effects that the invention adopts a novel antibacterial compounding mechanism to prepare a new antibacterial deodorizing fiber, has a permanent antibacterial function, and the mechanical property can reach the standard of ordinary fiber, fully meets the requirements of various weaving, cost and antibacterial The finishing is equivalent and the pollution is reduced.
  • the invention can expand the export of textiles and increase the added value of textiles.
  • Figure 1 is an SEM image of the antibacterial deodorant fiber obtained in the present invention.
  • an embodiment or “an embodiment” as used herein refers to a particular feature, structure, or characteristic that can be included in at least one implementation of the invention.
  • cuprous oxide powder is surface-modified by a high-speed kneader at a temperature of 20 ° C and a stirring speed of 500 rpm.
  • the surface modifier is added to the cuprous oxide powder by a metering device.
  • the surface modifier is added in an amount of 1 wt% of the mass of the cuprous oxide powder, and is mixed at a high speed for 90 min.
  • the surface modifier is an active silicone series surface modifier vinyl trimethoxysilane;
  • Functional compound resin powder configuration sodium dodecyl sulfonate and polyethene polyamine are mixed with a resin powder by a premixer at a molar ratio of 9:1 to obtain a functional compound resin powder, and the ratio of the mixed substance to the resin powder is Is 1:20;
  • the surface-modified cuprous oxide powder and the functional compounding resin powder are uniformly mixed, the resin powder adopts PBT resin powder, and the cuprous oxide powder accounts for 10% by weight of the whole mass.
  • the mixed raw materials were extruded by twin-screw extrusion blending, and the processing temperature was 250 ° C to obtain an antibacterial deodorizing master batch.
  • cuprous oxide powder is surface-modified by a high-speed kneader at a temperature of 20 ° C and a stirring speed of 500 rpm.
  • the surface modifier is added to the cuprous oxide powder by a metering device.
  • the surface modifier is added in an amount of 1 wt% of the mass of the cuprous oxide powder, and mixed at a high speed for 90 min;
  • the surface modifier is an active silicone series surface modifier vinyl trimethoxysilane;
  • Functional compound resin powder configuration sodium dodecyl sulfonate and polyethene polyamine are mixed with a resin powder by a premixer at a molar ratio of 9:1 to obtain a functional compound resin powder, and the ratio of the mixed substance to the resin powder is Is 1:20;
  • the surface-modified cuprous oxide powder and the functional compounding resin powder are uniformly mixed, the resin powder adopts PBT resin powder, and the cuprous oxide powder accounts for 10% by weight of the whole mass.
  • the mixed raw material is subjected to twin-screw extrusion blending and granulation extrusion, and the processing temperature is 250 ° C to obtain an antibacterial deodorizing master batch;
  • the antibacterial deodorized masterbatch is dried at a temperature of 100 ° C for 8 hours, and the antibacterial deodorized masterbatch is uniformly mixed with the basic resin slice, fed into a feeder of the spinning machine for melt spinning, and the basic resin slice is made of PET slice and spun.
  • the silk temperature is 285 ° C
  • the spinning speed is 600 m / min
  • the initial pressure of the spinning assembly is 8 MPa
  • the antibacterial deodorizing fiber is obtained.
  • the color of the antibacterial deodorizing fiber may be yellow, black or the like.
  • the mechanical properties of the antibacterial deodorant fiber obtained in Example 2 were tested as follows: the strength was 2.43 cn/dtex, and the elongation at break was 18%, which satisfied the requirements of various weaving methods, and the diameter of the single fiber was 1 D (7 ⁇ m). It can develop various fabrics such as plain cloth and velvet.
  • the antibacterial performance of the fabric weaved when the content of antibacterial deodorant fiber exceeds 25% meets the requirements of national standards, among which the Escherichia coli bactericidal rate is 95%, the golden cocci is 94%, and the white slime mold 93%.
  • the deodorization test is shown in the following table:
  • Figure 1 is a scanning electron micrograph of an antibacterial deodorant fiber. It can be seen from the picture that particles with a particle size of less than 2 ⁇ m form a uniform distribution on the surface of the fiber. These small protrusions have a good antibacterial effect and can enter the bacterial cell nucleus after contact with bacteria.
  • the presence of sodium dodecyl benzene sulfonate and polyethene polyamine is an alkaline substance that not only kills bacteria and oxidized cuprous powder for antibacterial synergy, but also neutralizes bacteria. The odor is emitted to keep the fabric and the wearer comfortable.
  • cuprous oxide powder surface modification of cuprous oxide powder by a high speed kneader
  • the temperature is 20 ° C
  • the stirring speed is 500 rev / min
  • the surface modifier is added to the cuprous oxide powder by a metering device, and the surface modifier is added in an amount of 5 wt% of the mass of the cuprous oxide powder, and mixed at a high speed for 90 min
  • the surface modifier is an active silicone series surface modifier 3-aminopropyltrimethoxysilane
  • Functional compound resin powder configuration sodium dodecyl sulfonate and polyethene polyamine are mixed at a molar ratio of 1:9 by a premixer and PBT resin powder to obtain a functional compound resin powder, and the mixed substance and resin powder The body ratio is 1:20;
  • the surface-modified cuprous oxide powder and the functional compounding resin powder are uniformly mixed, the resin powder adopts PBT resin powder, and the cuprous oxide powder accounts for 40% by weight of the whole mass.
  • the mixed raw materials were extruded by twin-screw extrusion blending, and the processing temperature was 250 ° C to obtain an antibacterial deodorizing master batch.
  • cuprous oxide powder is surface-modified by a high-speed kneader at a temperature of 20 ° C and a stirring speed of 500 rpm.
  • the surface modifier is added to the cuprous oxide powder by a metering device.
  • the surface modifier is added in an amount of 5 wt% of the mass of the cuprous oxide powder and mixed at a high speed for 90 min;
  • the surface modifier is an active silicone series surface modifier 3-aminopropyltrimethoxysilane;
  • Functional compound resin powder configuration sodium dodecyl sulfonate and polyethene polyamine are mixed at a molar ratio of 1:9 by a premixer and PBT resin powder to obtain a functional compound resin powder, and the mixed substance and resin powder The body ratio is 1:20;
  • the surface-modified cuprous oxide powder and the functional compounding resin powder are uniformly mixed, the resin powder adopts PBT resin powder, and the cuprous oxide powder accounts for 40% by weight of the whole mass.
  • the mixed raw material is subjected to twin-screw extrusion blending and granulation extrusion, and the processing temperature is 250 ° C to obtain an antibacterial deodorizing master batch;
  • the antibacterial deodorized masterbatch is dried at a temperature of 100 ° C for 8 hours, and the antibacterial deodorized masterbatch is uniformly mixed with the basic resin slice, fed into a feeder of the spinning machine for melt spinning, and the basic resin slice is made of PET slice and spun.
  • the silk temperature is 285 ° C
  • the spinning speed is 600 m / min
  • the initial pressure of the spinning assembly is 8 MPa
  • the antibacterial deodorizing fiber is obtained.
  • the color of the antibacterial deodorizing fiber may be yellow, black or the like.
  • the mechanical properties of the antibacterial deodorant fiber obtained in Example 4 were tested as follows: the strength was 2.21 cn/dtex, and the elongation at break was 19%, which satisfied the requirements of various weaving methods, and the diameter of the single fiber was 1 D (7 ⁇ m). Can develop various fabrics such as plain cloth and velvet, and the fabric weaved has an antibacterial and deodorant fiber content of more than 25%. Its antibacterial performance meets the requirements of national standards, in which the Escherichia coli bactericidal rate is 98%, the golden cocci is 99%, and the white slime is 99%.
  • the deodorization test is shown in the following table:
  • the surface of copper (II) sulfate tetrahydrate was modified by a high-speed kneader at a temperature of 20 ° C and a stirring speed of 500 rpm.
  • the surface modifier was The metering device is added and mixed with copper (II) sulfate tetrahydrate powder, and the surface modifier is added in an amount of 3 wt% of the mass of the copper (II) sulfate tetrahydrate powder, and mixed at a high speed for 90 min; the surface modifier is active organic Silicon series surface modifier vinyl trimethoxysilane;
  • Functional compound resin powder configuration sodium dodecyl sulfonate and polyethene polyamine are mixed according to a molar ratio of 1:1 through a premixer and a PP resin powder to obtain a functional compound resin powder, and the mixed substance and resin powder The body ratio is 1:20;
  • Preparation of antibacterial deodorizing masterbatch The surface-modified copper tetraammine (II) sulfate powder and the functional compound resin powder are uniformly mixed, and the resin powder is made of PP resin powder and tetraammine copper sulfate (II).
  • the powder accounts for 25 wt% of the whole mass, and the mixed raw materials are extruded by twin-screw extrusion blending, and the processing temperature is 180 ° C to obtain an antibacterial deodorizing master batch.
  • the surface of copper (II) sulfate tetrahydrate was modified by a high-speed kneader at a temperature of 20 ° C and a stirring speed of 500 rpm.
  • the surface modifier was The metering device is added and mixed with copper (II) sulfate tetrahydrate powder, and the surface modifier is added in an amount of 3 wt% of the mass of the copper (II) sulfate tetrahydrate powder, and mixed at a high speed for 90 min; the surface modifier is active organic Silicon series surface modifier vinyl trimethoxysilane;
  • Functional compound resin powder configuration sodium dodecyl sulfonate and polyethene polyamine pass in a molar ratio of 1:1
  • the premixer is mixed with the PP resin powder to obtain a functional compound resin powder, and the ratio of the substance to the resin powder after mixing is 1:20;
  • Preparation of antibacterial deodorizing masterbatch The surface-modified copper tetraammine (II) sulfate powder and the functional compound resin powder are uniformly mixed, and the resin powder is made of PP resin powder and tetraammine copper sulfate (II).
  • the powder accounts for 25 wt% of the whole mass, and the mixed raw materials are extruded by twin-screw extrusion blending, and the processing temperature is 180 ° C to obtain an antibacterial deodorizing master batch.
  • the antibacterial deodorized masterbatch is dried at a temperature of 100 ° C for 8 hours, and the antibacterial deodorized masterbatch is uniformly mixed with the basic resin slice, fed into a feeder of the spinning machine for melt spinning, and the basic resin slice is PP sliced and spun.
  • the silk temperature is 195 ° C
  • the spinning speed is 600 m / min
  • the initial pressure of the spinning assembly is 8 MPa
  • the antibacterial deodorizing fiber is obtained.
  • the color of the antibacterial deodorizing fiber may be yellow, black or the like.
  • the mechanical properties of the antibacterial deodorant fiber obtained in Example 6 were tested as follows: the strength was 2.46 cn/dtex, and the elongation at break was 21%, which satisfies the requirements of various weaving methods, and the diameter of the single fiber is 1 D (7 ⁇ m). It can develop various fabrics such as plain cloth and velvet.
  • the fabric of the woven fabric has antibacterial performance that meets the national standard when the content of antibacterial deodorant fiber exceeds 25%.
  • the bactericidal rate of Escherichia coli is 98%, Staphylococcus aureus 98%, white slime mold. 98%.
  • the deodorization test is shown in the following table:
  • the surface of copper (II) sulfate tetrahydrate was modified by a high-speed kneader at a temperature of 20 ° C and a stirring speed of 500 rpm.
  • the surface modifier was The metering device is added and mixed with copper (II) sulfate tetrahydrate powder, and the surface modifier is added in an amount of 3 wt% of the mass of the copper (II) sulfate tetrahydrate powder, and mixed at a high speed for 90 min; the surface modifier is active organic Silicon series surface modifier vinyl trimethoxysilane;
  • Functional compound resin powder configuration sodium dodecyl sulfonate and polyethene polyamine are mixed according to a molar ratio of 1:1 through a premixer and a PP resin powder to obtain a functional compound resin powder, and the mixed substance and resin powder Body ratio Is 1:40;
  • Preparation of antibacterial deodorizing masterbatch The surface-modified copper tetraammine (II) sulfate powder and the functional compound resin powder are uniformly mixed, and the resin powder is made of PP resin powder and tetraammine copper sulfate (II).
  • the powder accounts for 6wt% of the whole mass, and the mixed raw materials are extruded by twin-screw extrusion blending, and the processing temperature is 180 ° C to obtain an antibacterial deodorizing master batch.
  • the antibacterial deodorized masterbatch is dried at a temperature of 100 ° C for 8 hours, and the antibacterial deodorized masterbatch is uniformly mixed with the basic resin slice, fed into a feeder of the spinning machine for melt spinning, and the basic resin slice is PP sliced and spun.
  • the silk temperature is 195 ° C
  • the spinning speed is 600 m / min
  • the initial pressure of the spinning assembly is 8 MPa
  • the antibacterial deodorizing fiber is obtained.
  • the color of the antibacterial deodorizing fiber may be yellow, black or the like.
  • the mechanical properties of the antibacterial deodorant fiber obtained in Example 7 were tested as follows: the strength was 2.46 cn/dtex, and the elongation at break was 21%, which satisfied the requirements of various weaving methods, and the diameter of the single fiber was 1 D (7 ⁇ m). It can develop various fabrics such as plain cloth and velvet.
  • the fabric of the woven fabric has antibacterial performance that meets the national standard when the content of antibacterial deodorant fiber exceeds 25%.
  • the bactericidal rate of Escherichia coli is 72%, Staphylococcus aureus 68%, white slime mold 68%.
  • the deodorization test is shown in the following table:
  • the invention adopts a combination of physical antibacterial and chemical antibacterial deodorizing function.
  • the physical intervention of the copper particles can destroy the nucleus of the bacteria, thereby inactivating the bacteria, but the bacteria will have an unpleasant smell after being inactivated, and the traditional method adopts physical adsorption.
  • the method is solved, but after the adsorption amount is saturated, there is no effect of removing the odor.
  • the invention adopts the odor reaction of the hydrazide and the polyamine compound with the bacteria after the inactivation, and can achieve the effect of high-efficiency antibacterial deodorization.

Abstract

一种复合抗菌除臭功能母粒、纤维的制备方法,其中复合抗菌除臭功能母粒的制备方法包括,铜系粉体的表面修饰、功能复配树脂粉体配置以及复合抗菌除臭功能母粒的制备。采用全新的抗菌复配机理制备新的抗菌除臭母粒、纤维,具有永久性抗菌功能,机械性能可以达到普通纤维的标准,完全满足各种织造的要求,成本与抗菌后整理相当,减少了污染,可以扩大纺织品的出口,提升纺织品的附加值。

Description

一种复合抗菌除臭功能母粒、纤维的制备方法 技术领域
本发明属于功能纺织材料技术领域,具体涉及一种复合抗菌除臭功能母粒、纤维的制备方法。
背景技术
面料抗菌功能化随着生活水平的提高其需求也逐渐增加,目前已经有一些解决方案例如从纤维的本源上来解决,可以制备抗菌纤维,例如以前采用银抗菌体系,可以达到很好的抗菌效果,但是银离子迁移也是一种潜在的威胁,会对正常的细胞造成影响,因此目前提倡铜离子抗菌体系,目前在一些医用卫生及生活用纺织品领域有着广泛的应用。
但是此类纤维也有不可弥补的缺陷:
第一、成本要求太高,铜的纯度会影响纤维的抗菌性能,金属粉体制备加工成本也比较高,因此纯用铜系粉体来达到抗菌效果的成本对于传统纺织品来说难以接受;
第二、纤维力学性能差,铜系粉体是一种活性金属材料,尤其是小颗粒以后会具有一定的催化讲解性能,使得纤维力学性能变差;
第三、安全隐患,铜系粉体的加工容易引起爆炸等,因此在保证抗菌性能的基础上尽量减少铜系粉体的添加;
第四、抗菌的有效性,铜系粉体的添加达到了抗菌效果,但是一些生活用品如袜子和内衣还需要去除异味,这一点传统铜离子纤维难以达到,需要进行功能复配来实现。
目前市场上比较多的面料是采用抗菌后整理来实现面料的抗菌功能的,这种方式相对于使用抗菌纤维来说成本较低,效果显著,因此也为大多数面料厂家所使用。这种方式虽然低廉有效,却也存在不可避免的缺陷:
(1)附加污染,目前一般是采用抗菌剂后整理,增加了废水的污染程度,也增加了废水的处理难度;
(2)持久性不够,目前采用的抗菌后整理方式耐洗性不好,一般很少有能达到标准要求的耐洗性,不利于纺织品的出口,降低了纺织品的竞争优势,增加了贸易中的纠纷。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
鉴于上述和/或现有复合抗菌除臭功能母粒、纤维制备方法的技术缺陷,提出了本发明。
因此,本发明其中的一个目的是克服现有技术中存在的不足,提供一种复合抗菌除臭功能母粒及纤维的制备方法,通过铜系粉体制备及表面修饰并与复配功能树脂粉体一起制备功能母粒。
为解决上述技术问题,本发明提供了如下技术方案:一种复合抗菌除臭功能母粒的制备方法,其包括,铜系粉体的表面修饰:温度为20~90℃,搅拌速度为500~2000转/min,将表面修饰剂与所述铜系粉体混合形成纳米导电粉体,其中,表面修饰剂的加入量为铜系粉体质量的1~5wt%,混合30~90min;功能复配树脂粉体配置:有机苯磺酸盐类或者有机硫酸盐类物质与酰肼类或多胺类化合物按照一定比例与树脂粉体混合形成复配树脂粉体,其比例按照摩尔比为:有机苯磺酸盐类或者有机硫酸盐类物质:酰肼类或多胺类化合物为1:9~9:1,混合后物质与树脂粉体比为1:5~1:100;复合抗菌除臭功能母粒的制备:将所述纳米导电粉体与所述复配树脂粉体混合均匀,铜系粉体占整体质量的10~50wt%,混好的原料经共混造粒,得到复合抗菌除臭功能母粒。
作为本发明所述的复合抗菌除臭功能母粒的制备方法的一种优选方案,其中:在铜系粉体的表面修饰前,还包括,制备粒径小于2μm的铜系粉体。
作为本发明所述的复合抗菌除臭功能母粒的制备方法的一种优选方案,其中:所述铜系粉体采用机械粉碎和气流粉碎的方式制备。
作为本发明所述的复合抗菌除臭功能母粒的制备方法的一种优选方案,其中:所述铜系粉体为铜粉,氧化铜粉,氧化亚铜粉,硫酸四氨合铜(Ⅱ),醋酸铜,草酸铜,柠檬酸铜中的一种或几种。
作为本发明所述的复合抗菌除臭功能母粒的制备方法的一种优选方案,其中:所述表面修饰剂为活性有机硅系列表面修饰剂,包括乙烯基三甲氧基硅烷或3-氨丙基三甲氧基硅烷。
作为本发明所述的复合抗菌除臭功能母粒的制备方法的一种优选方案,其 中:所述树脂粉体为PET粉体、PBT粉体、PTT粉体、PC粉体、尼龙6粉体、尼龙66粉体、聚丙烯粉体或聚乙烯粉体中的一种或几种。
作为本发明所述的复合抗菌除臭功能母粒的制备方法的一种优选方案,其中:有机苯磺酸盐类或者有机硫酸盐类物质必须含有一种或多种,酰肼类或多胺类化合物必须含有一种或多种,,所述有机苯磺酸盐类包括十二烷基苯磺酸钠,所述有机硫酸盐类物质包括十二烷基硫酸钠,所述酰肼类化合物包括1-吡唑甲酰基-2-芳基酰肼类化合物,所述多胺类化合物包括乙二胺和三乙醇胺。
作为本发明所述的复合抗菌除臭功能母粒的制备方法的一种优选方案,其中:所述基本树脂切片为聚酯类切片、聚烯烃类切片或聚酰胺类切片中的一种或几种。
本发明其中的另一个目的是提供一种复合抗菌除臭功能纤维的制备方法,其通过复合抗菌除臭功能母粒进行纺丝,制备具有不同颜色的复合抗菌除臭纤维。
为解决上述技术问题,本发明提供了如下技术方案:一种复合抗菌除臭功能纤维的制备方法,其包括,复合抗菌除臭功能母粒的制备方法;以及,将所述复合抗菌除臭功能母粒于100~180℃温度干燥2~12小时后,将复合抗菌除臭功能母粒与基本树脂切片混合均匀,进行熔体纺丝,纺丝速度为600~3000m/min,纺丝组件初始压力8~16MPa,得到复合抗菌除臭功能纤维。
作为本发明所述的复合抗菌除臭功能纤维的制备方法的一种优选方案,其中:所述复合抗菌除臭功能纤维的单丝纤度为0.5~10D。
本发明的有益效果:本发明采用全新的抗菌复配机理制备新的抗菌除臭纤维,具有永久性抗菌功能,机械性能可以达到普通纤维的标准,完全满足各种织造的要求,成本与抗菌后整理相当,减少了污染,本发明可以扩大纺织品的出口,提升纺织品的附加值。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明得到的抗菌除臭纤维的SEM图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施例对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
实施例1:
采用机械粉碎的方式制备粒径小于2μm的氧化亚铜粉体;
氧化亚铜粉体的表面修饰:将氧化亚铜粉体通过高速捏合机进行表面修饰,温度为20℃,搅拌速度为500转/min,表面修饰剂经计量装置加入与氧化亚铜粉体混合,表面修饰剂的加入量为氧化亚铜粉体质量的1wt%,高速混合90min,所述表面修饰剂为活性有机硅系列表面修饰剂乙烯基三甲氧基硅烷;
功能复配树脂粉体配置:十二苯磺酸钠与多乙烯多胺按照摩尔比9:1通过预混机与树脂粉体混合得到功能复配树脂粉体,混合后物质与树脂粉体比为1:20;
抗菌除臭母粒的制备:将经表面修饰后的氧化亚铜粉体与功能复配树脂粉体混合均匀,树脂粉体采用PBT树脂粉体,氧化亚铜粉体占整体质量的10wt%,混好的原料经双螺杆挤出共混造粒挤出,加工温度为250℃,得到抗菌除臭母粒。
实施例2:
采用机械粉碎的方式制备粒径小于2μm的氧化亚铜粉体;
氧化亚铜粉体的表面修饰:将氧化亚铜粉体通过高速捏合机进行表面修饰,温度为20℃,搅拌速度为500转/min,表面修饰剂经计量装置加入与氧化亚铜粉体混合,表面修饰剂的加入量为氧化亚铜粉体质量的1wt%,高速混合90min;所述表面修饰剂为活性有机硅系列表面修饰剂乙烯基三甲氧基硅烷;
功能复配树脂粉体配置:十二苯磺酸钠与多乙烯多胺按照摩尔比9:1通过预混机与树脂粉体混合得到功能复配树脂粉体,混合后物质与树脂粉体比为1:20;
抗菌除臭母粒的制备:将经表面修饰后的氧化亚铜粉体与功能复配树脂粉体混合均匀,树脂粉体采用PBT树脂粉体,氧化亚铜粉体占整体质量的10wt%,混好的原料经双螺杆挤出共混造粒挤出,加工温度为250℃,得到抗菌除臭母粒;
将抗菌除臭母粒于100℃温度干燥8小时,将抗菌除臭母粒与基本树脂切片混合均匀,喂入纺丝机的喂料器进行熔体纺丝,基本树脂切片采用PET切片,纺丝温度为285℃,纺丝速度为600m/min,纺丝组件初始压力8MPa,得到所述的抗菌除臭纤维,抗菌除臭纤维的颜色可以为黄色、黑色等不同颜色。
实施例2得到的抗菌除臭纤维的力学性能经测试为:强度为2.43cn/dtex,断裂伸长率为18%,满足各种织造方式的要求,单纤的直径为1D(7微米),可以开发平布、绒类等各种面料,其织造的面料当抗菌除臭纤维含量超过25%时其抗菌性能满足国标要求,其中大肠杆菌杀菌率为95%,黄金球菌94%,白色黏菌93%。除臭测试如下表所示:
Figure PCTCN2017087659-appb-000001
图1为抗菌除臭纤维的扫描电镜图片,从图片上可以看到粒径小于2μm的颗粒在纤维表面形成了均匀分布,这些小的突起具有很好的抗菌效果,接触细菌后可以进入细菌细胞核,从而杀死细菌,十二烷基苯磺酸钠及多乙烯多胺的存在是一种碱性物质,不仅可以杀死细菌与氧化亚铜粉体进行抗菌协效,还可以中和细菌所散发的异味,保持面料及穿着者的舒适。
实施例3:
采用机械粉碎的方式制备粒径小于2μm的氧化亚铜粉体;
氧化亚铜粉体的表面修饰:将氧化亚铜粉体通过高速捏合机进行表面修饰, 温度为20℃,搅拌速度为500转/min,表面修饰剂经计量装置加入与氧化亚铜粉体混合,表面修饰剂的加入量为氧化亚铜粉体质量的5wt%,高速混合90min;所述表面修饰剂为活性有机硅系列表面修饰剂3-氨丙基三甲氧基硅烷;
功能复配树脂粉体配置:十二苯磺酸钠与多乙烯多胺按照摩尔比1:9通过预混机与PBT树脂粉体混合制得功能复配树脂粉体,混合后物质与树脂粉体比为1:20;
抗菌除臭母粒的制备:将经表面修饰后的氧化亚铜粉体与功能复配树脂粉体混合均匀,树脂粉体采用PBT树脂粉体,氧化亚铜粉体占整体质量的40wt%,混好的原料经双螺杆挤出共混造粒挤出,加工温度为250℃,得到抗菌除臭母粒。
实施例4:
采用机械粉碎的方式制备粒径小于2μm的氧化亚铜粉体;
氧化亚铜粉体的表面修饰:将氧化亚铜粉体通过高速捏合机进行表面修饰,温度为20℃,搅拌速度为500转/min,表面修饰剂经计量装置加入与氧化亚铜粉体混合,表面修饰剂的加入量为氧化亚铜粉体质量的5wt%,高速混合90min;所述表面修饰剂为活性有机硅系列表面修饰剂3-氨丙基三甲氧基硅烷;
功能复配树脂粉体配置:十二苯磺酸钠与多乙烯多胺按照摩尔比1:9通过预混机与PBT树脂粉体混合制得功能复配树脂粉体,混合后物质与树脂粉体比为1:20;
抗菌除臭母粒的制备:将经表面修饰后的氧化亚铜粉体与功能复配树脂粉体混合均匀,树脂粉体采用PBT树脂粉体,氧化亚铜粉体占整体质量的40wt%,混好的原料经双螺杆挤出共混造粒挤出,加工温度为250℃,得到抗菌除臭母粒;
将抗菌除臭母粒于100℃温度干燥8小时,将抗菌除臭母粒与基本树脂切片混合均匀,喂入纺丝机的喂料器进行熔体纺丝,基本树脂切片采用PET切片,纺丝温度为285℃,纺丝速度为600m/min,纺丝组件初始压力8MPa,得到所述的抗菌除臭纤维,抗菌除臭纤维的颜色可以为黄色、黑色等不同颜色。
实施例4得到的抗菌除臭纤维的力学性能经测试为:强度为2.21cn/dtex,断裂伸长率为19%,满足各种织造方式的要求,单纤的直径为1D(7微米),可以开发平布、绒类等各种面料,其织造的面料当抗菌除臭纤维含量超过25% 时其抗菌性能满足国标要求,其中大肠杆菌杀菌率为98%,黄金球菌99%,白色黏菌99%。除臭测试如下表所示:
Figure PCTCN2017087659-appb-000002
实施例5:
采用机械粉碎的方式制备粒径小于2μm的硫酸四氨合铜(Ⅱ)粉体;
硫酸四氨合铜(Ⅱ)粉体的表面修饰:将硫酸四氨合铜(Ⅱ)粉体通过高速捏合机进行表面修饰,温度为20℃,搅拌速度为500转/min,表面修饰剂经计量装置加入与硫酸四氨合铜(Ⅱ)粉体混合,表面修饰剂的加入量为硫酸四氨合铜(Ⅱ)粉体质量的3wt%,高速混合90min;所述表面修饰剂为活性有机硅系列表面修饰剂乙烯基三甲氧基硅烷;
功能复配树脂粉体配置:十二苯磺酸钠与多乙烯多胺按照摩尔比1:1通过预混机与PP树脂粉体混合制得功能复配树脂粉体,混合后物质与树脂粉体比为1:20;
抗菌除臭母粒的制备:将经表面修饰后的硫酸四氨合铜(Ⅱ)粉体与功能复配树脂粉体混合均匀,树脂粉体采用PP树脂粉体,硫酸四氨合铜(Ⅱ)粉体占整体质量的25wt%,混好的原料经双螺杆挤出共混造粒挤出,加工温度为180℃,得到抗菌除臭母粒。
实施例6:
采用机械粉碎的方式制备粒径小于2μm的硫酸四氨合铜(Ⅱ)粉体;
硫酸四氨合铜(Ⅱ)粉体的表面修饰:将硫酸四氨合铜(Ⅱ)粉体通过高速捏合机进行表面修饰,温度为20℃,搅拌速度为500转/min,表面修饰剂经计量装置加入与硫酸四氨合铜(Ⅱ)粉体混合,表面修饰剂的加入量为硫酸四氨合铜(Ⅱ)粉体质量的3wt%,高速混合90min;所述表面修饰剂为活性有机硅系列表面修饰剂乙烯基三甲氧基硅烷;
功能复配树脂粉体配置:十二苯磺酸钠与多乙烯多胺按照摩尔比1:1通过 预混机与PP树脂粉体混合制得功能复配树脂粉体,混合后物质与树脂粉体比为1:20;
抗菌除臭母粒的制备:将经表面修饰后的硫酸四氨合铜(Ⅱ)粉体与功能复配树脂粉体混合均匀,树脂粉体采用PP树脂粉体,硫酸四氨合铜(Ⅱ)粉体占整体质量的25wt%,混好的原料经双螺杆挤出共混造粒挤出,加工温度为180℃,得到抗菌除臭母粒。
将抗菌除臭母粒于100℃温度干燥8小时,将抗菌除臭母粒与基本树脂切片混合均匀,喂入纺丝机的喂料器进行熔体纺丝,基本树脂切片采用PP切片,纺丝温度为195℃,纺丝速度为600m/min,纺丝组件初始压力8MPa,得到所述的抗菌除臭纤维,抗菌除臭纤维的颜色可以为黄色、黑色等不同颜色。
实施例6得到的抗菌除臭纤维的力学性能经测试为:强度为2.46cn/dtex,断裂伸长率为21%,满足各种织造方式的要求,单纤的直径为1D(7微米),可以开发平布、绒类等各种面料,其织造的面料当抗菌除臭纤维含量超过25%时其抗菌性能满足国标要求,其中大肠杆菌杀菌率为98%,黄金球菌98%,白色黏菌98%。除臭测试如下表所示:
Figure PCTCN2017087659-appb-000003
实施例7:
采用机械粉碎的方式制备粒径小于2μm的硫酸四氨合铜(Ⅱ)粉体;
硫酸四氨合铜(Ⅱ)粉体的表面修饰:将硫酸四氨合铜(Ⅱ)粉体通过高速捏合机进行表面修饰,温度为20℃,搅拌速度为500转/min,表面修饰剂经计量装置加入与硫酸四氨合铜(Ⅱ)粉体混合,表面修饰剂的加入量为硫酸四氨合铜(Ⅱ)粉体质量的3wt%,高速混合90min;所述表面修饰剂为活性有机硅系列表面修饰剂乙烯基三甲氧基硅烷;
功能复配树脂粉体配置:十二苯磺酸钠与多乙烯多胺按照摩尔比1:1通过预混机与PP树脂粉体混合制得功能复配树脂粉体,混合后物质与树脂粉体比 为1:40;
抗菌除臭母粒的制备:将经表面修饰后的硫酸四氨合铜(Ⅱ)粉体与功能复配树脂粉体混合均匀,树脂粉体采用PP树脂粉体,硫酸四氨合铜(Ⅱ)粉体占整体质量的6wt%,混好的原料经双螺杆挤出共混造粒挤出,加工温度为180℃,得到抗菌除臭母粒。
将抗菌除臭母粒于100℃温度干燥8小时,将抗菌除臭母粒与基本树脂切片混合均匀,喂入纺丝机的喂料器进行熔体纺丝,基本树脂切片采用PP切片,纺丝温度为195℃,纺丝速度为600m/min,纺丝组件初始压力8MPa,得到所述的抗菌除臭纤维,抗菌除臭纤维的颜色可以为黄色、黑色等不同颜色。
实施例7得到的抗菌除臭纤维的力学性能经测试为:强度为2.46cn/dtex,断裂伸长率为21%,满足各种织造方式的要求,单纤的直径为1D(7微米),可以开发平布、绒类等各种面料,其织造的面料当抗菌除臭纤维含量超过25%时其抗菌性能满足国标要求,其中大肠杆菌杀菌率为72%,黄金球菌68%,白色黏菌68%。除臭测试如下表所示:
Figure PCTCN2017087659-appb-000004
本发明采用物理抗菌与化学抗菌除臭功能结合的方法,铜系粒子的物理介入可以破坏细菌的核,从而使得细菌失活,但是细菌失活后会有难闻气味产生,传统方法采用物理吸附的方式解决,但是吸附量饱和后就不再有除异味效果,本发明采用酰肼类和多胺类化合物与失活后细菌产生的异味反应,可以达到高效抗菌除臭的效果。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种复合抗菌除臭功能母粒的制备方法,其特征在于:包括,
    铜系粉体的表面修饰:温度为20~90℃,搅拌速度为500~2000转/min,将表面修饰剂与所述铜系粉体混合形成纳米导电粉体,其中,表面修饰剂的加入量为铜系粉体质量的1~5wt%,混合30~90min;
    功能复配树脂粉体配置:有机苯磺酸盐类或者有机硫酸盐类物质与酰肼类或多胺类化合物按照一定比例与树脂粉体混合形成复配树脂粉体,其比例按照摩尔比为:有机苯磺酸盐类或者有机硫酸盐类物质:酰肼类或多胺类化合物为1:9~9:1,混合后物质与树脂粉体比为1:5~1:100;
    复合抗菌除臭功能母粒的制备:将所述纳米导电粉体与所述复配树脂粉体混合均匀,铜系粉体占整体质量的10~50wt%,混好的原料经共混造粒,得到复合抗菌除臭功能母粒。
  2. 如权利要求1所述的复合抗菌除臭功能母粒的制备方法,其特征在于:在铜系粉体的表面修饰前,还包括,
    制备粒径小于2μm的铜系粉体。
  3. 如权利要求1或2所述的复合抗菌除臭功能母粒的制备方法,其特征在于:所述铜系粉体采用机械粉碎或气流粉碎的方式制备。
  4. 如权利要求3所述的复合抗菌除臭功能母粒的制备方法,其特征在于:所述铜系粉体为铜粉,氧化铜粉,氧化亚铜粉,硫酸四氨合铜(Ⅱ),醋酸铜,草酸铜,柠檬酸铜中的一种或几种。
  5. 如权利要求1、2或4任一所述的复合抗菌除臭功能母粒的制备方法,其特征在于:所述表面修饰剂为活性有机硅系列表面修饰剂,包括乙烯基三甲氧基硅烷或3-氨丙基三甲氧基硅烷。
  6. 如权利要求1、2或4任一所述的复合抗菌除臭功能母粒的制备方法,其特征在于:所述树脂粉体为PET粉体、PBT粉体、PTT粉体、PC粉体、尼龙6粉体、尼龙66粉体、聚丙烯粉体或聚乙烯粉体中的一种或几种。
  7. 如权利要求6所述的复合抗菌除臭功能母粒的制备方法,其特征在于:有机苯磺酸盐类或者有机硫酸盐类物质必须含有一种或多种,酰肼类化合物或多胺类化合物必须含有一种或多种,所述有机苯磺酸盐类包括十二烷基苯磺酸钠,所述有机硫酸盐类物质包括十二烷基硫酸钠,所述酰肼类化合物包括1-吡唑甲酰基-2-芳基酰肼类化合物,所述多胺类化合物包括乙二胺和三乙醇胺。
  8. 如权利要求1、2、4或6任一所述的复合抗菌除臭功能母粒的制备方法,其特征在于:所述基本树脂切片为聚酯类切片、聚烯烃类切片或聚酰胺类切片中的一种或几种。
  9. 一种复合抗菌除臭功能纤维的制备方法,其特征在于:包括,
    如1、2、4或6任一所述的复合抗菌除臭功能母粒的制备方法;以及,
    将所述复合抗菌除臭功能母粒于100~180℃温度干燥2~12小时后,将复合抗菌除臭功能母粒与基本树脂切片混合均匀,进行熔体纺丝,纺丝速度为600~3000m/min,纺丝组件初始压力8~16MPa,得到复合抗菌除臭功能纤维。
  10. 如权利要求9所述的复合抗菌除臭功能纤维的制备方法,其特征在于:所述复合抗菌除臭功能纤维的单丝纤度为0.5~10D。
PCT/CN2017/087659 2017-05-11 2017-06-09 一种复合抗菌除臭功能母粒、纤维的制备方法 WO2018205330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/612,404 US11034804B2 (en) 2017-05-11 2017-06-09 Method for preparing masterbatch and fiber with composite antibacterial and deodorizing functions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710331216.X 2017-05-11
CN201710331216.XA CN106977751B (zh) 2017-05-11 2017-05-11 一种复合抗菌除臭功能母粒、纤维的制备方法

Publications (1)

Publication Number Publication Date
WO2018205330A1 true WO2018205330A1 (zh) 2018-11-15

Family

ID=59342014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087659 WO2018205330A1 (zh) 2017-05-11 2017-06-09 一种复合抗菌除臭功能母粒、纤维的制备方法

Country Status (3)

Country Link
US (1) US11034804B2 (zh)
CN (1) CN106977751B (zh)
WO (1) WO2018205330A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113954402A (zh) * 2021-09-30 2022-01-21 江苏佰家丽新材料科技有限公司 一种抗菌吸音板的制作方法及抗菌吸音板
CN116162355A (zh) * 2023-02-03 2023-05-26 昆山力普电子橡胶有限公司 一种抗菌硅胶及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108440922A (zh) * 2018-03-21 2018-08-24 安徽江淮汽车集团股份有限公司 一种pet复合材料及其制备方法
CN109183516B (zh) * 2018-08-31 2021-06-25 平湖市景兴包装材料有限公司 一种具有防水透气和抗菌保鲜功能的包装用纸及其制备方法
TWI706975B (zh) * 2018-12-25 2020-10-11 南亞塑膠工業股份有限公司 一種消臭纖維及其使用的消臭母粒
CN110820080A (zh) * 2019-10-24 2020-02-21 张家港欣阳化纤有限公司 一种抗菌保暖阻燃复合长丝及其生产工艺
CN111020739B (zh) * 2019-12-24 2022-10-14 广州市中诚新型材料科技有限公司 一种功能性抗酸氧化锦纶纤维及其制备方法
CN112267162B (zh) * 2020-10-16 2021-06-25 浙江银瑜新材料股份有限公司 一种二氧化钛表面沉积氧化锌涤纶纤维的制备方法
CN112575448B (zh) * 2020-12-11 2022-04-15 浙江理工大学 一种具有抗菌功能多孔无纺布的制备方法
CN112760980A (zh) * 2020-12-25 2021-05-07 陕西元丰纺织技术研究有限公司 一种亲肤抗菌面料的整理工艺
CN113089116A (zh) * 2021-04-07 2021-07-09 武汉发明家创新科技有限公司 铜银系列灭菌除臭人造丝线及其制作方法和应用
CN113498790A (zh) * 2021-07-02 2021-10-15 上海鑫灵精细化工有限公司 一种功能基团固载的纳米银材料及制备方法和应用
CN113684611A (zh) * 2021-09-30 2021-11-23 广东粤港澳大湾区国家纳米科技创新研究院 一种抗菌防霉熔喷无纺布
TWI776705B (zh) * 2021-10-08 2022-09-01 銓程國際股份有限公司 金屬離子光能激發之纖維製造方法
CN114605678A (zh) * 2022-04-01 2022-06-10 绍兴喜美新材料科技有限公司 一种纺丝用铜抗菌母粒、制备方法及其应用
CN115028990B (zh) * 2022-06-23 2023-03-31 海南大学 一种高强度抗菌型玄武岩纤维增强尼龙复合材料及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170793A (zh) * 1996-06-11 1998-01-21 东丽株式会社 除臭纤维材料及其制造方法
US20050255078A1 (en) * 2004-04-23 2005-11-17 Chisso Corpoartion Deodorant fiber and fibrous article and product made thereof
CN103741242A (zh) * 2013-12-04 2014-04-23 太仓荣文合成纤维有限公司 一种氧化亚铜基抗菌纤维及其制备方法
CN105671682A (zh) * 2014-11-17 2016-06-15 北京中纺优丝特种纤维科技有限公司 一种铜系抗菌纤维及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105672004B (zh) * 2016-04-18 2017-12-26 河南工程学院 一种腈纶织物荧光黄染色和多功能整理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170793A (zh) * 1996-06-11 1998-01-21 东丽株式会社 除臭纤维材料及其制造方法
US20050255078A1 (en) * 2004-04-23 2005-11-17 Chisso Corpoartion Deodorant fiber and fibrous article and product made thereof
CN103741242A (zh) * 2013-12-04 2014-04-23 太仓荣文合成纤维有限公司 一种氧化亚铜基抗菌纤维及其制备方法
CN105671682A (zh) * 2014-11-17 2016-06-15 北京中纺优丝特种纤维科技有限公司 一种铜系抗菌纤维及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113954402A (zh) * 2021-09-30 2022-01-21 江苏佰家丽新材料科技有限公司 一种抗菌吸音板的制作方法及抗菌吸音板
CN113954402B (zh) * 2021-09-30 2023-02-03 江苏佰家丽新材料科技股份有限公司 一种抗菌吸音板的制作方法及抗菌吸音板
CN116162355A (zh) * 2023-02-03 2023-05-26 昆山力普电子橡胶有限公司 一种抗菌硅胶及其制备方法
CN116162355B (zh) * 2023-02-03 2023-12-05 昆山力普电子橡胶有限公司 一种抗菌硅胶及其制备方法

Also Published As

Publication number Publication date
US11034804B2 (en) 2021-06-15
CN106977751A (zh) 2017-07-25
CN106977751B (zh) 2018-04-03
US20200115511A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2018205330A1 (zh) 一种复合抗菌除臭功能母粒、纤维的制备方法
US10667521B2 (en) Antimicrobial material comprising synergistic combinations of metal oxides
US20170044691A1 (en) Fibers with improving anti-microbial performance
CN109706533B (zh) 一种抗菌防霉丙纶长丝及其制备方法
EP2878715B1 (en) Method for preparing antibacterial thermal storage fiber, fiber prepared thereby, and fabrics using same
CN108588883B (zh) 石墨烯纤维及制备方法和制品
KR101586209B1 (ko) 기능성 셀룰로스 성형물
CN106120013B (zh) 一种应用于内衣的抗静电聚酰胺纤维
JP2009084758A (ja) 消臭抗菌性繊維用樹脂及び消臭抗菌性繊維
JP2005179607A (ja) 抗菌性複合粒子
KR101157513B1 (ko) 은 나노입자가 증착된 마스터배치을 이용하여 제조된다기능사 및 이의 제조방법
CN114853054B (zh) 一种银掺杂氧化锌抗菌抗病毒纳米粉体的制备方法和产品及应用
KR100588763B1 (ko) 은나노입자-함유 항균섬유의 제조방법 및 제조된 항균섬유
US11224227B2 (en) Antimicrobial material comprising synergistic combinations of metal oxides
KR20080042637A (ko) 새로운 은(銀)나노 백탄조성물을 이용한 기능성 마스터베치제조 방법
KR100894494B1 (ko) 심초형 복합방사 단섬유 및 그의 제조방법
KR101756911B1 (ko) 견운모함유 쉬쓰/코어형 복합필라멘트의 제조방법
KR20100007443A (ko) 은 나노입자가 증착된 마스터배치를 이용하여 제조된항균사 및 이의 제조방법
CN108162524A (zh) 一种高分子镀膜环保无纺布及其生产工艺
KR20160092294A (ko) 견운모함유 기능성 합성섬유의 제조방법
KR20080042634A (ko) 기능성조성물 pp방적사 제조
CN109112697A (zh) 保健型新型内衣服饰纺织面料
KR20170070612A (ko) 은나노가 함유된 원사의 제조 방법
TW202144642A (zh) 奈米前處理長效功能性複合材料及其織物
WO2005098102A1 (en) Manufacturing method of high charcoal content synthetic fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909124

Country of ref document: EP

Kind code of ref document: A1