WO2018203478A1 - Method for producing organic el display - Google Patents

Method for producing organic el display Download PDF

Info

Publication number
WO2018203478A1
WO2018203478A1 PCT/JP2018/015998 JP2018015998W WO2018203478A1 WO 2018203478 A1 WO2018203478 A1 WO 2018203478A1 JP 2018015998 W JP2018015998 W JP 2018015998W WO 2018203478 A1 WO2018203478 A1 WO 2018203478A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
film
optical
forming step
organic
Prior art date
Application number
PCT/JP2018/015998
Other languages
French (fr)
Japanese (ja)
Inventor
文彦 池田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020197034306A priority Critical patent/KR102502812B1/en
Priority to CN201880028327.6A priority patent/CN110574495B/en
Priority to JP2019515695A priority patent/JP6749485B2/en
Publication of WO2018203478A1 publication Critical patent/WO2018203478A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • the present invention relates to a method for manufacturing an organic EL display.
  • a circularly polarizing plate is used to suppress external light reflection.
  • OLED Organic Light Emitting Diode
  • a circularly polarizing plate is produced by laminating a linearly polarizing plate and a wave plate (retardation plate) so that the polarization axes intersect at 45 degrees.
  • the wave plate may be formed so that its polarization axis is inclined at 15 degrees or 75 degrees. Therefore, it is necessary to form a polarizing plate and a wave plate at an arbitrary angle. Furthermore, in order to cross the polarizing axes of the polarizing plate and the wave plate at an arbitrary angle, it is necessary to form these polarizing plates and the wave plate individually.
  • a stretched film is a film in which molecules in the material are oriented in one direction by stretching and pasting the film in one direction.
  • the polarizing plate and the wave plate are also required to be thinned.
  • a polarizing plate or a wavelength plate when a stretched film is used as in the prior art, there is a limit to reducing the thickness of the stretched film itself, and a sufficient thin plate cannot be obtained.
  • thinning is achieved by applying a coating liquid having a predetermined material on the substrate to form a polarizing plate and a wavelength plate having a required film thickness.
  • a coating liquid having liquid crystallinity is applied to the substrate as a predetermined material, and cast and oriented.
  • the liquid crystal molecules form supramolecular aggregates in the coating liquid, and when the coating liquid is flowed while applying a shear stress, the major axis direction of the supramolecular aggregates is aligned in the flow direction.
  • a polarizing film printing apparatus described in Patent Document 1 includes a table for holding a substrate and a slot die for discharging ink liquid onto the substrate. The slot die is moved in the printing direction to apply the ink liquid to the substrate.
  • the substrate on which the coating liquid for the optical member is applied is prepared separately from the substrate on which the organic light emitting diode is formed and bonded.
  • the number of parts such as a substrate and an adhesive layer is large, the organic EL display is not sufficiently thinned, and the flexibility of the organic EL display is not sufficient.
  • the present invention has been made in view of the above problems, and has as its main object to provide an organic EL display including an optical member that is thin and has improved flexibility.
  • an organic EL display including an optical member that is thin and has improved flexibility.
  • FIG. 1 is a plan view showing an organic EL display according to an embodiment.
  • the circuit of one unit circuit 11 is shown enlarged.
  • the organic EL display 1 includes a substrate 10, a plurality of unit circuits 11 arranged on the substrate 10, a scanning line driving circuit 14 provided on the substrate 10, and a data line driving circuit 15 provided on the substrate 10. Have.
  • the unit circuit 11 is provided in a region surrounded by a plurality of scanning lines 16 connected to the scanning line driving circuit 14 and a plurality of data lines 17 connected to the data line driving circuit 15.
  • the unit circuit 11 includes a TFT layer 12 and an organic light emitting diode 13.
  • the TFT layer 12 has a plurality of thin film transistors (TFTs). One TFT has a function as a switching element, and the other TFT has a function as a current control element for controlling the amount of current flowing through the organic light emitting diode 13.
  • the TFT layer 12 is operated by the scanning line driving circuit 14 and the data line driving circuit 15, and supplies current to the organic light emitting diode 13.
  • the TFT layer 12 is provided for each unit circuit 11, and the plurality of unit circuits 11 are controlled independently.
  • the TFT layer 12 may have a general configuration, and is not limited to the configuration shown in FIG.
  • the driving method of the organic EL display 1 is an active matrix method in the present embodiment, but may be a passive matrix method.
  • FIG. 2 is a cross-sectional view showing a main part of an organic EL display according to an embodiment.
  • the organic EL display 1 shown in FIG. 2 is a top emission type, and includes a substrate 10, an organic light emitting diode 13, a sealing layer 30, a touch sensor 40, and an optical member 50 in this order.
  • the touch sensor 40 is incorporated in the organic EL display 1 when the organic EL display 1 is a touch panel.
  • the substrate 10 may be any of a resin substrate, a glass substrate, a semiconductor substrate, a metal substrate, and the like, and is preferably a resin substrate from the viewpoint of improving flexibility.
  • the substrate 10 may be a laminated substrate of a resin substrate and a glass substrate from the viewpoint of improving flexibility and reducing moisture permeability.
  • a TFT layer 12 is formed on the substrate 10. On the TFT layer 12, a flattening layer 18 for flattening a step formed by the TFT layer 12 is formed.
  • the planarization layer 18 has an insulating property.
  • Contact plugs 19 are formed in contact holes that penetrate the planarization layer 18.
  • the contact plug 19 electrically connects the pixel electrode 21 formed on the flat surface of the flattening layer 18 and the TFT layer 12.
  • the contact plug 19 may be formed of the same material as the pixel electrode 21 at the same time.
  • the organic light emitting diode 13 is formed on the flat surface of the flattening layer 18.
  • the organic light emitting diode 13 includes a pixel electrode 21, a counter electrode 22 provided on the opposite side of the substrate 10 with respect to the pixel electrode 21, and an organic layer 23 formed between the pixel electrode 21 and the counter electrode 22. .
  • a voltage is applied between the pixel electrode 21 and the counter electrode 22, and the organic layer 23 emits light.
  • the pixel electrode 21 is, for example, a cathode and is formed of a metal material such as aluminum, and reflects light from the organic layer 23 toward the organic layer 23. The light reflected by the pixel electrode 21 passes through the organic layer 23 and the counter electrode 22 and is extracted outside.
  • the pixel electrode 21 is provided for each unit circuit 11.
  • the counter electrode 22 is, for example, an anode, is formed of a transparent material such as ITO (Indium Tin Oxide), and transmits light from the organic layer 23.
  • ITO Indium Tin Oxide
  • the light transmitted through the counter electrode 22 passes through the sealing layer 30, the touch sensor 40, and the optical member 50, and is extracted outside.
  • the counter electrode 22 is common to the plurality of unit circuits 11.
  • the organic layer 23 has, for example, an electron injection layer 24, an electron transport layer 25, a light emitting layer 26, a hole transport layer 27, and a hole injection layer 28 in this order from the cathode side to the anode side.
  • an electron injection layer 24 When a voltage is applied between the cathode and the anode, electrons are injected from the cathode into the electron injection layer 24 and holes are injected from the anode into the hole injection layer 28.
  • the electrons injected into the electron injection layer 24 are transported to the light emitting layer 26 by the electron transport layer 25.
  • the holes injected into the hole injection layer 28 are transported to the light emitting layer 26 by the hole transport layer 27.
  • the light emitting material of the light emitting layer 26 is excited, and the light emitting layer 26 emits light.
  • the light emitting layer 26 for example, a red light emitting layer that emits red light, a green light emitting layer that emits green light, and a blue light emitting layer that emits blue light are formed.
  • the organic layer 23 includes an electron injection layer 24, an electron transport layer 25, a light emitting layer 26, a hole transport layer 27, and a hole injection layer 28 in this order from the cathode side to the anode side.
  • the organic layer 23 is not limited to the configuration shown in FIG.
  • the sealing layer 30 seals the organic light emitting diode 13 between the substrate 10.
  • a silicon oxide layer, a silicon nitride layer, or the like is used as the sealing layer 30 .
  • the sealing layer 30 is formed by low-temperature CVD at a film forming temperature of 100 ° C. or less. Or it is good also as the sealing layer 30 by sticking the resin film in which the moisture-proof layer was formed.
  • the touch sensor 40 detects contact or proximity of an object such as a finger to the screen of the organic EL display 1.
  • the detection method of the touch sensor 40 is not particularly limited, but may be a capacitance method, for example.
  • Examples of the capacitance method include a surface capacitance method and a projection capacitance method.
  • Examples of the projected capacitance method include a self-capacitance method and a mutual capacitance method. Use of the mutual capacitance method is preferable because simultaneous multipoint detection is possible.
  • the touch sensor 40 is formed on the substrate 10 on which the organic light emitting diode 13 is formed in advance, as will be described in detail later. Therefore, as compared with the case where the touch sensor 40 is formed on a substrate different from the substrate 10 and bonded to the substrate 10 as in the past, the number of components such as the substrate and the adhesive layer can be reduced. The thickness can be reduced, and the flexibility of the organic EL display 1 can be improved.
  • the touch sensor 40 is formed between the organic light emitting diode 13 and the optical member 50.
  • the optical member 50 is a circularly polarizing film that suppresses reflection of external light
  • the circularly polarizing film is disposed on the light extraction side with respect to the touch sensor 40, so that the efficiency of suppressing external light reflection can be improved.
  • the optical member 50 is, for example, a circularly polarizing film that suppresses reflection of external light.
  • the optical member 50 has a 1 ⁇ 4 wavelength film ( ⁇ / 4 film) as the first optical film, and a straight line as the second optical film.
  • the quarter wavelength film and the linear polarizing film are formed so that their polarization axes intersect at 45 degrees. Note that the number of optical films constituting the optical member 50 is not particularly limited.
  • the optical member 50 is formed on the substrate 10 on which the organic light emitting diode 13 is formed in advance, as will be described in detail later. Therefore, as compared with the case where the optical member 50 is formed on a substrate different from the substrate 10 and bonded to the substrate 10 as in the past, the number of components such as the substrate and the adhesive layer can be reduced. The thickness can be reduced, and the flexibility of the organic EL display 1 can be improved.
  • the optical member 50 is manufactured without using ultraviolet irradiation in order to suppress deterioration of the organic layer 23 due to ultraviolet rays.
  • the optical member 50 is manufactured at a temperature of 100 ° C. or lower in order to suppress deterioration of the organic layer 23 due to heat.
  • the organic EL display 1 shown in FIG. 2 is a top emission system, it may be a bottom emission system.
  • the bottom emission method light from the light emitting layer 26 passes through the pixel electrode 21 and is extracted from the substrate 10, so that an anode that is a transparent electrode is used as the pixel electrode 21 and a cathode that is a reflective electrode is used as the counter electrode 22. It is done. That is, in the bottom emission method, the arrangement of the anode and the cathode is reversed.
  • the substrate 10 is a transparent substrate.
  • the touch sensor 40 and the optical member 50 are formed on the side opposite to the organic light emitting diode 13 with respect to the substrate 10.
  • FIG. 3 is a flowchart illustrating a method for manufacturing an organic EL display according to an embodiment.
  • the manufacturing method of the organic EL display 1 includes a touch sensor forming step S110 and an optical member forming step S120.
  • touch sensor formation process S110 is performed when the organic EL display 1 is a touch panel.
  • each step will be described.
  • the touch sensor 40 is formed on the substrate 10 on which the organic light emitting diodes 13 are formed in advance before the optical member forming step S120. Therefore, as compared with the case where the touch sensor 40 is formed on a substrate different from the substrate 10 and bonded to the substrate 10 as in the past, the number of components such as the substrate and the adhesive layer can be reduced. The thickness can be reduced, and the flexibility of the organic EL display 1 can be improved.
  • FIG. 4 is a flowchart illustrating a touch sensor formation process according to an embodiment.
  • FIG. 5 is a cross-sectional view illustrating a first metal film formed on a substrate according to an embodiment.
  • FIG. 6 is a cross-sectional view showing a resist film formed on the first metal film according to one embodiment.
  • FIG. 7 is a cross-sectional view showing a resist film after exposure and development according to an embodiment.
  • FIG. 8 is a cross-sectional view illustrating the first metal film after etching according to an embodiment.
  • FIG. 9 is a cross-sectional view showing the first metal film after removal of the resist film according to one embodiment.
  • FIG. 10 is a cross-sectional view illustrating an insulating film formed on a first metal film according to an embodiment.
  • FIG. 11 is a plan view showing a state after the partial removal of the second metal film formed on the insulating film according to the embodiment.
  • 5 to 10 are sectional views taken along the line AA in FIG. 5 to 11, the illustration of the organic light emitting diode 13 and the sealing layer 30 shown in FIG. 2 is omitted.
  • the touch sensor formation step S110 includes a step S111 for forming the light-shielding first metal film 41 on the substrate 10, and a step S112 for selectively removing a part of the first metal film 41 by a photolithography method and an etching method.
  • the first metal film 41 is formed on the substrate 10 (more specifically, for example, on the sealing layer 30).
  • a resist film 42 is formed on the first metal film 41 as shown in FIG.
  • the resist film 42 is patterned as shown in FIG. 7 by exposure and development.
  • the resist film 42 may be a positive type in which an exposed portion is removed by development, or a negative type in which an exposed portion remains after development.
  • the organic light emitting diode 13 Since the exposure light is shielded by the first metal film 41, the organic light emitting diode 13 is not deteriorated. Thereafter, using the patterned resist film 42 as a mask, a part of the first metal film 41 is selectively removed as shown in FIG.
  • the first metal film 41 from which a part has been selectively removed is formed in a stripe shape in plan view as shown by a broken line in FIG. Thereafter, the resist film 42 used for patterning the first metal film 41 is removed as shown in FIG.
  • the first metal film 41 having a light shielding property means that the transmittance of the first metal film 41 is 5% or less.
  • the transmittance of the first metal film 41 is preferably 3% or less.
  • the transmittance of the first metal film 41 is the ratio at which the exposure light (for example, light having a wavelength of 365 nm) of the resist film 42 formed on the first metal film 41 is transmitted through the first metal film 41. is there.
  • the first metal film 41 is made of copper, for example.
  • the touch sensor forming step S110 includes a step S113 of forming the insulating film 43 on the first metal film 41 from which part has been selectively removed.
  • the insulating film 43 insulates the first metal film 41 and the second metal film 45.
  • a silicon oxide film, a silicon nitride film, or the like is used as the insulating film 43.
  • the insulating film 43 is formed by low-temperature CVD at a film forming temperature of 100 ° C. or lower.
  • a part of the second metal film 45 is selectively removed by the step S114 of forming the light-shielding second metal film 45 on the insulating film 43 and the photolithography method and the etching method.
  • Step S115 The formation of the second metal film 45 and the partial removal of the second metal film are performed in the same manner as the formation of the first metal film 41 and the partial removal of the first metal film 41.
  • the second metal film 45 from which a part has been selectively removed is formed in a stripe shape in plan view as shown in FIG. Thereafter, the resist film used for patterning the second metal film 45 is removed.
  • the second metal film 45 having a light shielding property means that the transmittance of the second metal film 45 is 5% or less.
  • the transmittance of the second metal film 45 is preferably 3% or less.
  • the transmittance of the second metal film 45 is a ratio at which the exposure light (for example, light having a wavelength of 365 nm) of the resist film formed on the second metal film 45 passes through the second metal film 45.
  • the second metal film 45 is made of, for example, copper.
  • the touch sensor forming step S110 includes a step S116 of forming the touch sensor protective film 47 on the second metal film 45 from which part has been selectively removed.
  • the touch sensor protective film 47 is formed in the same manner as the insulating film 43.
  • a silicon oxide film, a silicon nitride film, or the like is used as the touch sensor protective film 47.
  • the touch sensor protective film 47 is formed by low-temperature CVD at a film forming temperature of 100 ° C. or less.
  • the touch sensor 40 constituted by the first metal film 41, the insulating film 43, the second metal film 45, and the touch sensor protective film 47 is obtained.
  • the wire-like first metal film 41 and the wire-like second metal film 45 are formed in a square lattice shape as shown in FIG. 11 so as not to overlap the organic layer 23 of the organic light emitting diode 13 in plan view. That is, the organic layer 23 is disposed in the opening of the square lattice in plan view. It is easy to extract light from the organic layer 23 to the outside.
  • Any one of the first metal film 41 and the second metal film 45 is used as a drive electrode, and the remaining one is used as a reception electrode.
  • the touch sensor 40 detects the contact or proximity of an object such as a finger to the screen of the organic EL display 1 by detecting a change in capacitance between the drive electrode and the reception electrode.
  • the touch sensor 40 is formed on the substrate 10 on which the organic light emitting diode 13 has been formed in advance while suppressing the deterioration of the organic layer 23 of the organic light emitting diode 13 due to exposure by a photolithography method. Can be formed. Compared to the case where the touch sensor 40 is formed on a substrate different from the substrate 10 and bonded to the substrate 10 as in the past, the number of components such as the substrate and the adhesive layer can be reduced, so the organic EL display 1 is made thinner. The flexibility of the organic EL display 1 can be improved.
  • the touch sensor formation step S110 of this embodiment is performed before the optical member formation step S120, the touch sensor 40 is formed between the organic light emitting diode 13 and the optical member 50.
  • the optical member 50 is a circularly polarizing film that suppresses reflection of external light
  • the circularly polarizing film is disposed on the light extraction side with respect to the touch sensor 40, so that the efficiency of suppressing external light reflection can be improved.
  • optical member formation process In the optical member forming step S120, an optical film in which liquid crystal molecules are aligned is formed by applying an optical film coating liquid containing liquid crystal molecules and a solvent on the substrate 10 on which the organic light emitting diodes 13 are formed in advance, and drying. Form.
  • the optical member 50 is composed of an optical film or the like.
  • the optical member 50 includes, for example, a first optical film and a second optical film.
  • One of the first optical film and the second optical film is a retardation film, and the remaining one is a polarizing film.
  • the optical member 50 is, for example, a circularly polarizing film that suppresses reflection of external light.
  • the optical member 50 has a 1 ⁇ 4 wavelength film ( ⁇ / 4 film) as the first optical film, and a straight line as the second optical film.
  • the quarter wavelength film and the linear polarizing film are formed so that their polarization axes intersect at 45 degrees. Note that the number of optical films constituting the optical member 50 is not particularly limited.
  • the optical member 50 is formed on the substrate 10 on which the organic light emitting diode 13 is previously formed. Therefore, as compared with the case where the optical member 50 is formed on a substrate different from the substrate 10 and bonded to the substrate 10 as in the past, the number of components such as the substrate and the adhesive layer can be reduced. The thickness can be reduced, and the flexibility of the organic EL display 1 can be improved.
  • the optical member 50 is manufactured without using ultraviolet irradiation in order to suppress deterioration of the organic layer 23 due to ultraviolet rays.
  • the optical member 50 is manufactured at a temperature of 100 ° C. or lower in order to suppress deterioration of the organic layer 23 due to heat.
  • FIG. 12 is a flowchart showing an optical member forming process according to the first embodiment.
  • the optical member forming step S120 includes a first optical film forming step S121, an intermediate film forming step S122, a first optical film patterning step S123, a second optical film forming step S124, and protection.
  • the film forming process S125 and the second optical film patterning process S126 are provided in this order.
  • each step will be described.
  • the first optical film patterning step S123 and the second optical film patterning step S126 are effective when a plurality of optical members 50 are formed on the substrate 10 at intervals. When only one member 50 is formed on the substrate 10, it may be omitted. The same applies to the partially insolubilizing process described later.
  • steps other than the steps shown in FIG. 12 may be performed.
  • the surface of the substrate 10 on which the first optical film is formed (more specifically, the sealing layer 30).
  • a step of modifying the surface of the touch sensor protective film 47) may be performed.
  • an organic film such as a silane coupling agent or an inorganic film such as silicon nitride may be formed.
  • first optical film forming step S121 of FIG. 12 As shown in FIGS. 13 to 15, a first optical film coating liquid 61 containing liquid crystal molecules and a solvent is applied onto the substrate 10 and dried to thereby form the first optical film.
  • An optical film 62 is formed.
  • the first optical film 62 is, for example, a quarter wavelength film.
  • FIG. 13 is a side view showing a liquid film of the first optical film coating liquid coated on the substrate according to the first embodiment.
  • FIG. 14 is a side view showing the first optical film formed by drying the liquid film of the first optical film coating liquid according to the first embodiment.
  • FIG. 15 is a side view showing the first optical film partially insolubilized according to the first embodiment.
  • the first optical film coating liquid 61 is applied onto the substrate 10 from the coating nozzle 60.
  • the application nozzle 60 is, for example, a slit coater having a slit-like discharge port on the lower surface.
  • the first optical film coating solution 61 includes liquid crystal molecules such as lyotropic liquid crystal molecules and thermotropic liquid crystal molecules, and a solvent that dissolves the liquid crystal molecules.
  • liquid crystal molecules such as lyotropic liquid crystal molecules and thermotropic liquid crystal molecules
  • a solvent that dissolves the liquid crystal molecules for example, water is used as the solvent.
  • An organic solvent may be used as the solvent.
  • a shear stress can be applied to the first optical film coating solution 61 applied to the substrate 10.
  • the acting direction of the shear stress coincides with the relative movement direction of the coating nozzle 60 and the substrate 10.
  • the orientation direction of the liquid crystal molecules can be controlled by controlling the acting direction of the shear stress.
  • a slit coater is used to apply the first optical film coating solution 61, but a dip coater or the like may be used. It is only necessary that a shear stress can be applied to the first optical film coating solution 61 and the direction of action of the shear stress can be controlled.
  • the liquid film (see FIG. 13) of the first optical film coating liquid 61 applied on the substrate 10 is dried to form the first optical film 62.
  • the solvent is removed from the liquid film of the first optical film coating liquid 61, and the alignment of the liquid crystal molecules is appropriately maintained.
  • the first optical film 62 is, for example, a quarter wavelength film.
  • vacuum drying For drying the liquid film of the first optical film coating liquid 61, vacuum drying, natural drying, heat drying, air drying, or the like is used.
  • the drying under reduced pressure can shorten the processing time compared with the natural drying.
  • the reduced pressure drying can suppress the convection of the liquid film and can suppress the disorder of the alignment of the liquid crystal molecules, as compared with the heat drying and the air drying.
  • heat drying may be further performed.
  • the first optical film forming step S121 only a part 63 of the first optical film 62 may be insolubilized in the cleaning liquid used in the first optical film patterning step S123. This partial insolubilization is performed as necessary.
  • the cleaning liquid used in the first optical film patterning step S123 the same solvent as the solvent of the first optical film coating liquid 61 may be used, for example, water may be used. In this case, insolubilization with water is performed.
  • the fixing liquid 110 that insolubilizes a part 63 of the first optical film 62 is discharged from, for example, an ink jet type application nozzle 111.
  • the application nozzle 111 has a plurality of ejection nozzles that eject droplets of the fixing liquid 110 on the lower surface.
  • the fixing liquid 110 is selectively applied to a part 63 of the first optical film 62 by discharging droplets of the fixing liquid 110 from the application nozzle 111 while relatively moving the application nozzle 111 and the substrate 10. . Thereby, a part 63 of the first optical film 62 is insolubilized.
  • the fixing solution 110 replaces a part 63 of the first optical film 62 by, for example, substituting the functional group at the end of the first optical film 62 (for example, a water-soluble functional group such as an OH group) with another functional group. Insolubilize. Further, the fixing solution 110 may be polymerized by a condensation reaction (for example, a dehydration condensation reaction such as an OH group) to insolubilize a part 63 of the first optical film 62. In the latter case, insolubilization is likely to proceed because of higher polymerization than in the former case.
  • a condensation reaction for example, a dehydration condensation reaction such as an OH group
  • the fixing solution 110 is removed after insolubilizing a part 63 of the first optical film 62.
  • the fixing solution 110 may contain water or an organic solvent.
  • the region to which the fixing liquid 110 is applied may be, for example, a region where a plurality of pixels such as OLEDs are formed (hereinafter also referred to as “pixel area”).
  • the ink jet type application nozzle 111 is used.
  • the present invention is not limited to this.
  • only the remaining part of the first optical film 62 may be covered with a mask, and then the entire substrate 10 may be immersed in the fixing liquid 110 to apply the fixing liquid only to a part 63 of the first optical film 62.
  • FIG. 16 is a side view showing a liquid film of the coating liquid for intermediate film applied on the first optical film according to the first embodiment.
  • FIG. 17 is a side view showing the intermediate film formed by drying the liquid film of the intermediate film coating liquid according to the first embodiment.
  • the intermediate film coating liquid 71 is applied from the coating nozzle 70 onto the substrate 10 on which the first optical film 62 is formed.
  • the coating nozzle 70 may be an ink jet method, and has a plurality of ejection nozzles that eject droplets of the coating liquid 71 for the intermediate film on the lower surface.
  • the intermediate film coating solution 71 is coated on the first optical film 62. Therefore, the liquid crystal molecules forming the first optical film 62 may be insoluble in the solvent of the intermediate film coating liquid 71. It is possible to prevent the first optical film 62 from being melted by the application of the intermediate film coating liquid 71.
  • the intermediate film coating solution 71 includes an organic material that forms the intermediate film 72 and a solvent that dissolves the organic material.
  • the organic material forming the intermediate film 72 includes a polymer insoluble in the cleaning liquid used in the first optical film patterning step S123.
  • thermosetting transparent paint for example, a thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, or the like is used. Specifically, oil-based enamel paint, phthalate resin paint, or the like is used.
  • thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, and the like are polymerized by thermal curing, chemical reaction, or dry curing, and thus a dense intermediate film 72 can be formed. Therefore, the insolubility of the intermediate film 72 with respect to the cleaning liquid used in the first optical film patterning step S123 can be improved.
  • the intermediate film coating liquid 71 may have the same function as the fixing liquid 110. Partial insolubilization of the first optical film 62 can be promoted. In the case where the first optical film 62 is partially insolubilized by the intermediate film coating solution 71, the first optical film 62 may not be partially insolubilized in the first optical film forming step S121.
  • the coating liquid 71 for the intermediate film replaces a functional group at the end of the first optical film 62 (for example, a water-soluble functional group such as an OH group) with another functional group, thereby
  • the part 63 may be insolubilized.
  • the intermediate film coating liquid 71 may be insolubilized by partly insolubilizing 63 of the first optical film 62 by polymerizing by a condensation reaction (for example, a dehydration condensation reaction such as OH group). In the latter case, insolubilization is likely to proceed because of higher polymerization than in the former case.
  • the area where the intermediate film coating liquid 71 is applied may coincide with the area where the fixing liquid 110 is applied.
  • the region to which the intermediate film coating liquid 71 is applied may be a pixel area on the substrate 10.
  • the liquid film (see FIG. 16) of the intermediate film coating liquid 71 applied on the substrate 10 is dried to form the intermediate film 72.
  • the solvent is removed from the liquid film of the intermediate film coating liquid 71 to form the intermediate film 72.
  • vacuum drying For drying the liquid film of the intermediate film coating liquid 71, vacuum drying, natural drying, heat drying, wind drying, or the like is used.
  • the drying under reduced pressure can shorten the processing time compared with the natural drying.
  • heat drying may be further performed.
  • the intermediate film 72 is insoluble in the cleaning liquid used in the first optical film patterning step S123. Unlike the first optical film 62, the intermediate film 72 has isotropic optical characteristics.
  • the visible light transmittance of the intermediate film 72 is preferably 95% or more.
  • the film thickness of the intermediate film 72 is preferably 10 ⁇ m or less. Further, the residual stress of the intermediate film 72 is preferably as small as possible in order to suppress deformation of the optical member.
  • the intermediate film 72 covers the main surface of a part 63 of the first optical film 62.
  • the intermediate film 72 also serves to protect the part 63 of the first optical film 62 so that the part 63 of the first optical film 62 is not scratched or foreign.
  • the pencil hardness of the intermediate film 72 is preferably 2H or more. This is particularly effective when the production of the optical member is temporarily interrupted and it takes a long time to resume since there is a high risk of scratches and foreign matter.
  • the remainder of the 1st optical film 62 is removed by 1st optical film patterning process S123, it does not become a problem that a damage
  • FIG. 18 is a side view showing the first optical film from which a portion not covered with the intermediate film according to the first embodiment is removed.
  • the part 63 of the first optical film 62 can be protected by the intermediate film 72, and the shape collapse of the part 63 of the first optical film 62 can be suppressed. Therefore, the quality of the optical member can be improved.
  • a cleaning solution that dissolves the first optical film 62 is used.
  • the cleaning liquid is supplied to the substrate 10 while rotating the substrate 10 with, for example, a spin chuck.
  • the cleaning liquid supplied to the substrate 10 spreads over the entire substrate 10 by centrifugal force and is shaken off from the outer peripheral edge of the substrate 10.
  • the first optical film 62 Since a part 63 of the first optical film 62 is covered with the intermediate film 72, it does not come into contact with the cleaning liquid and is not deformed by the cleaning liquid. On the other hand, the remaining portion of the first optical film 62 comes into contact with the cleaning liquid and is dissolved and removed by the cleaning liquid.
  • the cleaning liquid is stored in the cleaning tank, and the substrate 10 is immersed in the cleaning liquid in the cleaning tank so that the remaining portion of the first optical film 62 can be dissolved and removed while leaving a part 63 of the first optical film 62.
  • the cleaning liquid in the cleaning tank may be stirred with a stirring blade or the like.
  • the part 63 of the first optical film 62 is insolubilized in the cleaning liquid in the first optical film forming step S121 and the intermediate film forming step S122. It is valid. Excessive removal due to the wraparound of the cleaning liquid can be prevented, and a part 63 of the first optical film 62 can be reliably left.
  • the first optical film 62 can be obtained without partially insolubilizing the first optical film 62 in the first optical film forming step S121 and the intermediate film forming step S122. Patterning is possible. In this case, the number of processes can be reduced.
  • the first optical film forming step S121 since the first optical film coating liquid 61 is applied while applying a shear stress, it is difficult to apply the first optical film coating liquid 61 only to the pixel area. Therefore, it is effective to perform the first optical film patterning step S123.
  • the remaining portion of the first optical film 62 is removed using a cleaning liquid, but the method for removing the remaining portion of the first optical film 62 is not particularly limited.
  • an etching method may be used. Etching may be either wet etching or dry etching.
  • first optical film 63 the part 63 of the first optical film 62 remaining in the first optical film patterning step S123 is also referred to as “first optical film 63”.
  • a second optical film coating liquid 81 containing liquid crystal molecules and a solvent is applied on the intermediate film 72 and dried.
  • Two optical films 82 are formed.
  • the second optical film 82 is, for example, a linearly polarizing film.
  • FIG. 19 to 21 are explanatory side views of the second optical film forming step according to the first embodiment.
  • FIG. 19 is a side view showing a liquid film of the second optical film coating liquid coated on the intermediate film according to the first embodiment.
  • FIG. 20 is a side view showing the second optical film formed by drying the liquid film of the second optical film coating liquid according to the first embodiment.
  • FIG. 21 is a side view showing the second optical film partially insolubilized according to the first embodiment.
  • a second optical film coating liquid 81 is applied onto the substrate 10 from the coating nozzle 80.
  • the application nozzle 80 is, for example, a slit coater having a slit-like discharge port on the lower surface.
  • the second optical film coating solution 81 is applied onto the intermediate film 72. Therefore, the organic material forming the intermediate film 72 may be insoluble in the solvent of the second optical film coating liquid 81. It is possible to prevent the intermediate film 72 from being melted by the application of the second optical film coating liquid 81.
  • the coating solution 81 for the second optical film contains liquid crystal molecules such as lyotropic liquid crystal molecules and thermotropic liquid crystal molecules, and a solvent that dissolves the liquid crystal molecules.
  • liquid crystal molecules such as lyotropic liquid crystal molecules and thermotropic liquid crystal molecules
  • a solvent that dissolves the liquid crystal molecules for example, water is used as the solvent.
  • An organic solvent may be used as the solvent.
  • a shear stress can be applied to the second optical film coating solution 81 applied to the substrate 10.
  • the acting direction of the shear stress coincides with the relative movement direction of the coating nozzle 80 and the substrate 10.
  • the orientation direction of the liquid crystal molecules can be controlled by controlling the acting direction of the shear stress.
  • the acting direction of the shear stress in the second optical film forming step S124 is a direction intersecting at an oblique angle of 45 ° with respect to the acting direction of the shear stress in the first optical film forming step S121.
  • the quarter wavelength film and the linearly polarizing film are formed so that their polarization axes intersect at 45 degrees.
  • a slit coater is used to apply the second optical film coating solution 81, but a dip coater or the like may be used. It is only necessary that a shear stress can be applied to the second optical film coating solution 81 and the direction of action of the shear stress can be controlled.
  • the liquid film (see FIG. 19) of the second optical film coating liquid 81 applied on the substrate 10 is dried to form the second optical film 82.
  • the solvent is removed from the liquid film of the second optical film coating liquid 81, and the alignment of the liquid crystal molecules is appropriately maintained.
  • the second optical film 82 is, for example, a linearly polarizing film.
  • the liquid film of the second optical film coating liquid 81 For drying the liquid film of the second optical film coating liquid 81, vacuum drying, natural drying, heat drying, wind drying, or the like is used.
  • the drying under reduced pressure can shorten the processing time compared with the natural drying.
  • the reduced pressure drying can suppress the convection of the liquid film and can suppress the disorder of the alignment of the liquid crystal molecules, as compared with the heat drying and the air drying.
  • heat drying may be further performed.
  • the second optical film forming step S124 only a part 83 of the second optical film 82 may be insolubilized in the cleaning liquid used in the second optical film patterning step S126. This partial insolubilization is performed as necessary.
  • the same solvent as the solvent of the second optical film coating liquid 81 may be used, for example, water may be used. In this case, insolubilization with water is performed.
  • the fixing liquid 120 that insolubilizes the part 83 of the second optical film 82 is discharged from, for example, an ink jet type application nozzle 121.
  • the coating nozzle 121 has a plurality of ejection nozzles that eject droplets of the fixing liquid 120 on the lower surface.
  • the fixing liquid 120 is selectively applied to a part 83 of the second optical film 82 by discharging droplets of the fixing liquid 120 from the application nozzle 121 while relatively moving the application nozzle 121 and the substrate 10. . Thereby, a part 83 of the second optical film 82 is insolubilized.
  • the fixing solution 120 replaces the functional group at the end of the second optical film 82 (for example, a water-soluble functional group such as an OH group) with another functional group, so that a part 83 of the second optical film 82 is replaced. Insolubilize. Further, the fixing solution 120 may be polymerized by a condensation reaction (for example, a dehydration condensation reaction such as an OH group) to insolubilize a part 83 of the second optical film 82. In the latter case, insolubilization is likely to proceed because of higher polymerization than in the former case.
  • a condensation reaction for example, a dehydration condensation reaction such as an OH group
  • the fixing solution 120 is removed after insolubilizing the part 83 of the second optical film 82.
  • the fixing solution 120 may contain water or an organic solvent.
  • the area where the fixing liquid 120 is applied may be, for example, a pixel area.
  • the ink jet type application nozzle 121 is used, but the present invention is not limited to this.
  • only the remaining part of the second optical film 82 may be covered with a mask, and then the entire substrate 10 may be immersed in the fixing liquid 120 to apply the fixing liquid only to a part 83 of the second optical film 82.
  • a protective film coating liquid 91 different from the second optical film coating liquid 81 is applied onto the second optical film 82 and dried. Thereby, the protective film 92 is formed.
  • FIG. 22 is a side view showing a liquid film of the coating liquid for the protective film applied on the second optical film according to the first embodiment.
  • FIG. 23 is a side view showing the protective film formed by drying the liquid film of the protective film coating liquid according to the first embodiment.
  • the protective film coating liquid 91 is applied from the coating nozzle 90 onto the substrate 10 on which the second optical film 82 is formed.
  • the coating nozzle 90 may be an ink jet system, and has a plurality of ejection nozzles that eject droplets of the protective film coating liquid 91 on the lower surface.
  • the protective film coating liquid 91 is applied onto the second optical film 82. Therefore, the liquid crystal molecules forming the second optical film 82 may be insoluble in the solvent of the protective film coating liquid 91. It is possible to prevent the second optical film 82 from being melted by the application of the protective film coating liquid 91.
  • the protective film coating solution 91 includes an organic material that forms the protective film 92 and a solvent that dissolves the organic material.
  • the organic material forming the protective film 92 includes a polymer that is insoluble in the cleaning liquid used in the second optical film patterning step S126.
  • the protective film coating liquid 91 for example, a thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, or the like is used. Specifically, oil-based enamel paint, phthalate resin paint, or the like is used.
  • thermosetting transparent coating, a chemical reaction type transparent coating, a dry curing type transparent coating, and the like are polymerized by thermal curing, chemical reaction, or drying curing, so that a dense protective film 92 can be formed. Therefore, the insolubility of the protective film 92 in the cleaning liquid used in the second optical film patterning step S126 can be improved.
  • the protective film coating liquid 91 may have the same function as the fixing liquid 120. Partial insolubilization of the second optical film 82 can be promoted. When the second optical film 82 is partially insolubilized by the protective film coating solution 91, the second optical film 82 may not be partially insolubilized in the second optical film forming step S124.
  • the coating liquid 91 for the protective film replaces the functional group at the end of the second optical film 82 (for example, a water-soluble functional group such as an OH group) with another functional group, thereby
  • the part 83 may be insolubilized.
  • the protective film coating solution 91 may be polymerized by a condensation reaction (for example, a dehydration condensation reaction such as an OH group) to insolubilize a part 83 of the second optical film 82. In the latter case, insolubilization is likely to proceed because of higher polymerization than in the former case.
  • the area where the protective film coating liquid 91 is applied may coincide with the area where the fixing liquid 120 is applied.
  • the region where the protective film coating liquid 91 is applied may be a pixel area on the substrate 10.
  • the liquid film (see FIG. 22) of the protective film coating liquid 91 applied on the substrate 10 is dried to form the protective film 92.
  • the solvent is removed from the liquid film of the protective film coating liquid 91 to form a protective film 92.
  • vacuum drying For drying the liquid film of the protective film coating liquid 91, vacuum drying, natural drying, heat drying, wind drying, or the like is used.
  • the drying under reduced pressure can shorten the processing time compared with the natural drying.
  • heat drying may be further performed.
  • the protective film 92 is insoluble in the cleaning liquid used in the second optical film patterning step S126. Unlike the second optical film 82, the protective film 92 has isotropic optical characteristics.
  • the visible light transmittance of the protective film 92 is preferably 95% or more.
  • the film thickness of the protective film 92 is preferably 10 ⁇ m or less. Further, the residual stress of the protective film 92 is preferably as small as possible in order to suppress deformation of the optical member.
  • the protective film 92 covers the main surface of a part 83 of the second optical film 82.
  • the protective film 92 also serves to protect the part 83 of the second optical film 82 so that the part 83 of the second optical film 82 is not damaged or foreign matter.
  • the pencil hardness of the intermediate film 72 is preferably 2H or more.
  • the remainder of the second optical film 82 is removed in the second optical film patterning step S126, it is not a problem that scratches or foreign matters are attached.
  • the foreign matter attached to the protective film 92 can be removed by cleaning, and the cleaning does not damage the portion 83 of the second optical film 82.
  • the protective film 92 of the present embodiment is formed by applying the protective film coating liquid 91 on the second optical film 82 and drying it.
  • the protective film 92 is attached to the second optical film 82 in the form of a film. Also good.
  • FIG. 24 is a side view showing the second optical film from which a portion not covered with the protective film according to the first embodiment is removed.
  • the part 83 of the second optical film 82 can be protected by the protective film 92, and the shape collapse of the part 83 of the second optical film 82 can be suppressed. Therefore, the quality of the optical member can be improved.
  • a cleaning solution that dissolves the second optical film 82 is used.
  • the cleaning liquid is supplied to the substrate 10 while rotating the substrate 10 with, for example, a spin chuck.
  • the cleaning liquid supplied to the substrate 10 spreads over the entire substrate 10 by centrifugal force and is shaken off from the outer peripheral edge of the substrate 10.
  • part 83 of the second optical film 82 Since part 83 of the second optical film 82 is covered with the protective film 92, it does not come into contact with the cleaning liquid and does not lose its shape due to the cleaning liquid. On the other hand, since the remaining part of the second optical film 82 is in contact with the cleaning liquid, it is dissolved and removed by the cleaning liquid.
  • the cleaning liquid is stored in the cleaning tank, and the substrate 10 is immersed in the cleaning liquid in the cleaning tank so that the remaining portion of the second optical film 82 can be dissolved and removed while leaving the portion 83 of the second optical film 82.
  • the cleaning liquid in the cleaning tank may be stirred with a stirring blade or the like.
  • the part 83 of the second optical film 82 is insolubilized in the cleaning liquid in the second optical film forming step S124 and the protective film forming step S125. It is valid. Excessive removal due to the wraparound of the cleaning liquid can be prevented, and the part 83 of the second optical film 82 can be reliably left.
  • the second optical film 82 can be obtained without partially insolubilizing the second optical film 82 in the second optical film forming step S124 or the protective film forming step S125. Patterning is possible. In this case, the number of processes can be reduced.
  • the second optical film forming step S124 since the second optical film coating liquid 81 is applied while applying a shear stress, it is difficult to apply the second optical film coating liquid 81 only to the pixel area. Therefore, it is effective to perform the second optical film patterning step S126.
  • the remaining portion of the second optical film 82 is removed using a cleaning liquid, but the method for removing the remaining portion of the second optical film 82 is not particularly limited.
  • an etching method may be used. Etching may be either wet etching or dry etching.
  • the part 83 of the second optical film 82 remaining in the second optical film patterning step S126 is also referred to as “second optical film 83”.
  • the optical member 50 composed of the first optical film 63, the intermediate film 72, the second optical film 83, and the protective film 92 is spaced on the substrate 10. A plurality are formed. Therefore, the optical member 50 can be multi-surfaced, and the organic EL display 1 can be multi-surfaced. In addition, since the optical member 50 is selectively formed in the pixel area, terminals provided around the pixel area can function appropriately.
  • the first optical film forming step S121, the intermediate film forming step S122, and the second optical film forming step S124 are performed in this order.
  • An intermediate film 72 is formed between the first optical film 63 and the second optical film 83.
  • the intermediate film 72 can protect the first optical film 63 so that the first optical film 63 is not damaged or foreign matter. Therefore, the quality of the optical member 50 can be improved. This is particularly effective when the production of the optical member 50 is temporarily interrupted and it takes a long time to resume, since there is a high risk of scratches and foreign matter.
  • the intermediate film 72 that covers only a part 63 of the first optical film 62 is used as a mask.
  • a first optical film patterning step S123 for removing the remaining part of the first optical film 62 is performed.
  • the part 63 of the first optical film 62 can be protected by the intermediate film 72, and the shape collapse of the part 63 of the first optical film 62 can be suppressed. Therefore, the quality of the optical member 50 can be improved.
  • a cleaning liquid that dissolves the first optical film 62 is used in the first optical film patterning step S123. Since a part 63 of the first optical film 62 is covered with the intermediate film 72, it does not come into contact with the cleaning liquid and is not deformed by the cleaning liquid. On the other hand, the remaining portion of the first optical film 62 comes into contact with the cleaning liquid and is dissolved and removed by the cleaning liquid.
  • the first optical film forming step S121 in the first optical film forming step S121, only a part 63 of the first optical film 62 is insolubilized in the cleaning liquid used in the first optical film patterning step S123. Therefore, in the first optical film patterning step S123, excessive removal due to the wrapping of the cleaning liquid can be prevented, and a part 63 of the first optical film 62 can be reliably left.
  • the intermediate film forming step S122 only the part 63 of the first optical film 62 is applied to the first optical film 62 by applying the intermediate film coating liquid 71 only to the part 63 of the first optical film 62. It is insolubilized in the cleaning liquid used in the optical film patterning step S123. Therefore, in the first optical film patterning step S123, excessive removal due to the wrapping of the cleaning liquid can be prevented, and a part 63 of the first optical film 62 can be reliably left.
  • the protective film forming step S125 for forming the protective film 92 that protects the second optical film 83 is performed.
  • the protective film 92 can protect the second optical film 83 so that the second optical film 83 is not damaged or foreign matter after the optical member 50 is manufactured. Therefore, the quality of the optical member 50 can be improved.
  • the remaining part of the second optical film 82 is removed using the protective film 92 that covers only a part 83 of the second optical film 82 as a mask.
  • An optical film patterning step S126 is performed. During the second optical film patterning step S126, the part 83 of the second optical film 82 can be protected by the protective film 92, and the shape collapse of the part 83 of the second optical film 82 can be suppressed. Therefore, the quality of the optical member 50 can be improved.
  • a cleaning liquid that dissolves the second optical film 82 is used in the second optical film patterning step S126. Since a part 83 of the second optical film 82 is covered with the protective film 92, it does not come into contact with the cleaning liquid and does not lose its shape due to the cleaning liquid. On the other hand, since the remaining part of the second optical film 82 is in contact with the cleaning liquid, it is dissolved and removed by the cleaning liquid.
  • the second optical film forming step S124 in the second optical film forming step S124, only a part 83 of the second optical film 82 is insolubilized in the cleaning liquid used in the second optical film patterning step S126. Therefore, in the second optical film patterning step S126, it is possible to prevent excessive removal due to wraparound of the cleaning liquid, and it is possible to reliably leave a part 83 of the second optical film 82.
  • the protective film forming step S125 only the part 83 of the second optical film 82 is applied to the second optical film 82 by applying the coating liquid 91 for protective film only to the part 83 of the second optical film 82. It is insolubilized in the cleaning liquid used in the optical film patterning step S126. Therefore, in the second optical film patterning step S126, it is possible to prevent excessive removal due to wraparound of the cleaning liquid, and it is possible to reliably leave a part 83 of the second optical film 82.
  • the first optical film patterning process S123 is performed after the intermediate film formation process S122, whereas in the present embodiment, the intermediate film formation process S122 is performed after the first optical film patterning process S123. Is different.
  • the intermediate film 72 of the present embodiment does not serve as a mask for removing a part of the first optical film 62 while leaving a part 63 of the first optical film 62.
  • the intermediate film 72 of the present embodiment plays a role of protecting the part 63 of the first optical film 62 so that the part 63 of the first optical film 62 is not damaged or foreign matter.
  • the second optical film patterning step S126 is performed after the protective film forming step S125, whereas in the present embodiment, the protective film forming step S125 is performed after the second optical film patterning step S126. It differs in that it is done.
  • the protective film 92 according to the present embodiment does not serve as a mask for removing the remaining portion of the second optical film 82 while leaving a part 83 of the second optical film 82.
  • the protective film 92 of the present embodiment plays a role of protecting the part 83 of the second optical film 82 so that the part 83 of the second optical film 82 is not damaged or foreign matter.
  • FIG. 25 is a flowchart showing an optical member forming process according to the second embodiment.
  • the optical member forming step S120 includes a first optical film forming step S121, a first optical film patterning step S123, an intermediate film forming step S122, a second optical film forming step S124, It has 2 optical film patterning process S126 and protective film formation process S125 in this order.
  • the first optical film patterning step S123 and the second optical film patterning step S126 are effective when a plurality of optical members 50 are formed on the substrate 10 at intervals. When only one member 50 is formed on the substrate 10, it may be omitted. The same applies to the partially insolubilizing process described later.
  • steps other than the steps shown in FIG. 25 may be performed.
  • a step of modifying the surface of the substrate on which the first optical film is formed may be performed in order to improve the adhesion of the first optical film to the substrate.
  • an organic film such as a silane coupling agent or an inorganic film such as silicon nitride may be formed.
  • the optical film patterning step S126 may be performed in this order.
  • first optical film forming step S121, the intermediate film forming step S122 and the first optical film patterning step S123 shown in FIG. 12, and the second optical film forming step S124 and the second optical film patterning step shown in FIG. S126 and protective film formation step S125 may be performed in this order.
  • the first optical film coating liquid 61 containing liquid crystal molecules and a solvent is applied onto the substrate 10 and dried to thereby form the first optical film.
  • An optical film 62 is formed.
  • the first optical film 62 is, for example, a quarter wavelength film.
  • the process for insolubilizing the part 63 of the first optical film 62 shown in FIG. 15 is not performed. This process is performed in the first optical film patterning step S123.
  • FIG. 26 is a side view showing the first optical film from which a portion not insolubilized is removed according to the second embodiment.
  • the cleaning liquid is supplied to the substrate 10 while rotating the substrate 10 with, for example, a spin chuck.
  • the cleaning liquid supplied to the substrate 10 spreads over the entire substrate 10 by centrifugal force and is shaken off from the outer peripheral edge of the substrate 10.
  • the first optical film 62 Since a part 63 of the first optical film 62 is insolubilized in the cleaning liquid, it does not lose its shape due to the cleaning liquid. On the other hand, the remaining portion of the first optical film 62 is not insolubilized in the cleaning liquid, and is dissolved and removed by the cleaning liquid.
  • the cleaning liquid is stored in the cleaning tank, and the substrate 10 is immersed in the cleaning liquid in the cleaning tank so that the remaining portion of the first optical film 62 can be dissolved and removed while leaving a part 63 of the first optical film 62.
  • the cleaning liquid in the cleaning tank may be stirred with a stirring blade or the like.
  • the first optical film forming step S121 since the first optical film coating liquid 61 is applied while applying a shear stress, it is difficult to apply the first optical film coating liquid 61 only to the pixel area. Therefore, it is effective to perform the first optical film patterning step S123.
  • first optical film 63 the part 63 of the first optical film 62 remaining in the first optical film patterning step S123 is also referred to as “first optical film 63”.
  • FIG. 27 is a view showing a liquid film of the coating liquid for intermediate film applied on the first optical film according to the second embodiment.
  • FIG. 28 is a view showing an intermediate film formed by drying a liquid film of the intermediate film coating liquid according to the second embodiment.
  • the intermediate film coating liquid 71 is applied from the coating nozzle 70 onto the substrate 10 on which the first optical film 63 is formed.
  • the coating nozzle 70 may be an ink jet method, and has a plurality of ejection nozzles that eject droplets of the coating liquid 71 for the intermediate film on the lower surface.
  • the intermediate film coating solution 71 is applied onto the first optical film 63. Therefore, the liquid crystal molecules forming the first optical film 63 may be insoluble in the solvent of the intermediate film coating liquid 71. It is possible to prevent the first optical film 63 from being melted by the application of the intermediate film coating liquid 71.
  • the intermediate film coating solution 71 includes an organic material that forms the intermediate film 72 and a solvent that dissolves the organic material.
  • the organic material forming the intermediate film 72 includes a polymer that is insoluble in the solvent of the second optical film coating solution 81 (see FIG. 29) applied on the intermediate film 72.
  • thermosetting transparent paint for example, a thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, or the like is used. Specifically, oil-based enamel paint, phthalate resin paint, or the like is used.
  • thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, and the like are polymerized by thermal curing, chemical reaction, or dry curing, and thus a dense intermediate film 72 can be formed.
  • the intermediate film coating solution 71 may be applied so as to cover not only the main surface of the first optical film 63 but also the end surface of the first optical film 63 as shown in FIG.
  • the first optical film 63 can be protected by the intermediate film 72 so that not only the main surface of the first optical film 63 but also the end surface of the first optical film 63 is not damaged or foreign matter.
  • the region where the intermediate film coating liquid 71 is applied may be limited to the pixel area on the substrate 10 and the vicinity thereof.
  • a mask such as a film may be affixed on the substrate 10 in order to limit the region to which the intermediate film coating solution 71 is applied. This mask may form a gap between the first optical film 63 and the first optical film 63 so as not to damage the first optical film 63 when it is peeled later.
  • the liquid film (see FIG. 27) of the intermediate film coating liquid 71 applied on the substrate 10 is dried to form the intermediate film 72.
  • the solvent is removed from the liquid film of the intermediate film coating liquid 71 to form the intermediate film 72.
  • the intermediate film 72 has isotropic optical characteristics.
  • the visible light transmittance of the intermediate film 72 is preferably 95% or more.
  • the film thickness of the intermediate film 72 is preferably 10 ⁇ m or less. Further, the residual stress of the intermediate film 72 is preferably as small as possible in order to suppress deformation of the optical member.
  • the intermediate film 72 covers not only the main surface of the first optical film 63 but also the end surface of the first optical film 63.
  • the intermediate film 72 serves to protect the first optical film 63 so that the first optical film 63 is not damaged or foreign matter.
  • the pencil hardness of the intermediate film 72 is preferably 2H or more. This is particularly effective when the production of the optical member is temporarily interrupted and it takes a long time to resume since there is a high risk of scratches and foreign matter.
  • the intermediate film 72 is formed only in the pixel area on the substrate 10 and in the vicinity thereof, and a plurality of intermediate films 72 are formed on the substrate 10 at intervals. Note that, when it is not necessary to take out terminals provided around the pixel area, the intermediate film 72 may be formed on substantially the entire substrate 10.
  • the second optical film coating liquid 81 is applied onto the intermediate film 72, the alignment controllability of the liquid crystal molecules of the second optical film coating liquid 81 is good.
  • a second optical film coating solution 81 containing liquid crystal molecules and a solvent is applied onto the intermediate film 72 and dried to thereby form the first optical film.
  • Two optical films 82 are formed.
  • the second optical film 82 is, for example, a linearly polarizing film.
  • FIG. 29 is a side view showing a liquid film of the second optical film coating liquid applied on the intermediate film according to the second embodiment.
  • FIG. 30 is a side view showing a second optical film formed by drying the liquid film of the second optical film coating liquid according to the second embodiment.
  • the second optical film coating liquid 81 is applied onto the substrate 10 from the coating nozzle 80.
  • the application nozzle 80 is, for example, a slit coater having a slit-like discharge port on the lower surface.
  • the second optical film coating solution 81 is applied onto the intermediate film 72. Therefore, the organic material forming the intermediate film 72 may be insoluble in the solvent of the second optical film coating liquid 81. It is possible to prevent the intermediate film 72 from being melted by the application of the second optical film coating liquid 81.
  • a slit coater is used to apply the second optical film coating solution 81, but a dip coater or the like may be used. It is only necessary that a shear stress can be applied to the second optical film coating solution 81 and the direction of action of the shear stress can be controlled.
  • the liquid film (see FIG. 29) of the second optical film coating liquid 81 applied on the substrate 10 is dried to form the second optical film 82.
  • the solvent is removed from the liquid film of the second optical film coating liquid 81, and the alignment of the liquid crystal molecules is appropriately maintained.
  • the second optical film 82 is, for example, a linearly polarizing film.
  • the second optical film patterning step S126 only a part 83 of the second optical film 82 is insolubilized in the cleaning liquid as shown in FIG. 31, and then the remaining part of the second optical film 82 is shown in FIG. Dissolve with cleaning solution.
  • FIG. 31 is a side view showing the second optical film partially insolubilized according to the second embodiment.
  • FIG. 32 is a side view showing the second optical film from which the insoluble portion has been removed according to the second embodiment.
  • the cleaning liquid the same solvent as the solvent of the second optical film coating liquid 81 may be used.
  • water may be used. In this case, insolubilization with water is performed.
  • the fixing liquid 120 that insolubilizes the part 83 of the second optical film 82 is discharged from, for example, an ink jet type application nozzle 121.
  • the coating nozzle 121 has a plurality of ejection nozzles that eject droplets of the fixing liquid 120 on the lower surface.
  • the fixing liquid 120 is selectively applied to a part 83 of the second optical film 82 by discharging droplets of the fixing liquid 120 from the application nozzle 121 while relatively moving the application nozzle 121 and the substrate 10. . Thereby, a part 83 of the second optical film 82 is insolubilized.
  • the area where the fixing liquid 120 is applied may be, for example, a pixel area.
  • the second optical film patterning step S126 only a part 83 of the second optical film 82 is left and the remaining part of the second optical film 82 is removed.
  • a cleaning liquid is used to remove the remaining portion of the second optical film 82.
  • the cleaning liquid is supplied to the substrate 10 while rotating the substrate 10 with, for example, a spin chuck.
  • the cleaning liquid supplied to the substrate 10 spreads over the entire substrate 10 by centrifugal force and is shaken off from the outer peripheral edge of the substrate 10.
  • the part 83 of the second optical film 82 is insolubilized in the cleaning liquid, so that it does not lose its shape due to the cleaning liquid. On the other hand, since the remaining portion of the second optical film 82 is not insolubilized in the cleaning liquid, it is dissolved and removed by the cleaning liquid.
  • the cleaning liquid is stored in the cleaning tank, and the substrate 10 is immersed in the cleaning liquid in the cleaning tank so that the remaining portion of the second optical film 82 can be dissolved and removed while leaving the portion 83 of the second optical film 82.
  • the cleaning liquid in the cleaning tank may be stirred with a stirring blade or the like.
  • the second optical film forming step S124 since the second optical film coating liquid 81 is applied while applying a shear stress, it is difficult to apply the second optical film coating liquid 81 only to the pixel area. Therefore, it is effective to perform the second optical film patterning step S126.
  • the part 83 of the second optical film 82 remaining in the second optical film patterning step S126 is also referred to as “second optical film 83”.
  • a protective film coating liquid 91 different from the second optical film coating liquid 81 is applied onto the second optical film 83 and dried. Thereby, the protective film 92 is formed.
  • FIG. 33 is a side view showing a liquid film of a coating liquid for a protective film applied on the second optical film according to the second embodiment.
  • FIG. 34 is a side view showing the protective film formed by drying the liquid film of the protective film coating liquid according to the second embodiment.
  • the protective film coating liquid 91 is applied from the coating nozzle 90 onto the substrate 10 on which the second optical film 83 is formed.
  • the coating nozzle 90 may be an ink jet system, and has a plurality of ejection nozzles that eject droplets of the protective film coating liquid 91 on the lower surface.
  • the protective film coating solution 91 is applied onto the second optical film 83. Therefore, the liquid crystal molecules forming the second optical film 83 may be insoluble in the solvent of the protective film coating solution 91. It is possible to prevent the second optical film 83 from being melted by the application of the protective film coating liquid 91.
  • the protective film coating solution 91 includes an organic material that forms the protective film 92 and a solvent that dissolves the organic material.
  • the protective film coating liquid 91 for example, a thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, or the like is used. Specifically, oil-based enamel paint, phthalate resin paint, or the like is used.
  • thermosetting transparent coating, a chemical reaction type transparent coating, a dry curing type transparent coating, and the like are polymerized by thermal curing, chemical reaction, or drying curing, so that a dense protective film 92 can be formed.
  • the protective film coating liquid 91 may be applied so as to cover not only the main surface of the second optical film 83 but also the end surface of the second optical film 83.
  • the second optical film 83 can be protected by the protective film 92 so that not only the main surface of the second optical film 83 but also the end surface of the second optical film 83 is not damaged or foreign matter.
  • the protective film coating solution 91 does not cover the end face of the intermediate film 72 in FIG. 33, but may be applied so as to cover the end face of the intermediate film 72.
  • the region where the protective film coating liquid 91 is applied may be limited to the pixel area on the substrate 10 and the vicinity thereof.
  • a mask such as a film may be affixed on the substrate 10 in order to limit the region to which the protective film coating solution 91 is applied.
  • a gap may be formed between the mask and the second optical film 83 so as not to damage the second optical film 83 when it is later peeled off.
  • the liquid film (see FIG. 33) of the protective film coating liquid 91 applied on the substrate 10 is dried to form the protective film 92.
  • the solvent is removed from the liquid film of the protective film coating liquid 91 to form a protective film 92.
  • the protective film 92 has isotropic optical characteristics.
  • the visible light transmittance of the protective film 92 is preferably 95% or more.
  • the film thickness of the protective film 92 is preferably 10 ⁇ m or less. Further, the residual stress of the protective film 92 is preferably as small as possible in order to suppress deformation of the optical member.
  • the protective film 92 covers not only the main surface of the second optical film 83 but also the end surface of the second optical film 83.
  • the protective film 92 serves to protect the second optical film 83 so that the second optical film 83 is not scratched or foreign.
  • the pencil hardness of the protective film 92 is preferably 2H or higher.
  • the protective film 92 is formed only in the pixel area on the substrate 10 and in the vicinity thereof, and a plurality of protective films 92 are formed on the substrate 10 at intervals. Note that when it is not necessary to take out terminals provided around the pixel area, the protective film 92 may be formed on substantially the entire substrate 10.
  • the protective film 92 of the present embodiment is formed by applying the protective film coating liquid 91 on the second optical film 83 and drying it.
  • the protective film 92 is attached to the second optical film 83 in the form of a film. Also good.
  • the optical member 50 including the first optical film 63, the intermediate film 72, the second optical film 83, and the protective film 92 is spaced apart on the substrate 10. A plurality are formed. Therefore, the optical member 50 can be multi-surfaced, and the organic EL display 1 can be multi-surfaced. Moreover, since the optical member 50 is selectively formed in the pixel area and its vicinity, the terminals provided around the pixel area can function appropriately.
  • the first optical film forming step S121, the intermediate film forming step S122, and the second optical film forming step S124 are performed in this order.
  • An intermediate film 72 is formed between the first optical film 63 and the second optical film 83.
  • the intermediate film 72 can protect the first optical film 63 so that the first optical film 63 is not damaged or foreign matter. Therefore, the quality of the optical member 50 can be improved. This is particularly effective when the production of the optical member 50 is temporarily interrupted and it takes a long time to resume, since there is a high risk of scratches and foreign matter.
  • the part 63 of the first optical film 62 is left and the remaining part of the first optical film 62 is removed.
  • One optical film patterning step S123 is performed. Therefore, it is possible to cover not only the main surface of the first optical film 63 remaining after the first optical film patterning step S123 but also the end surface of the first optical film 63 with the intermediate film 72.
  • the first optical film patterning step S123 only a part 63 of the first optical film 62 is insolubilized in the cleaning liquid that dissolves the first optical film 62, and then the remaining part of the first optical film 62 is obtained. Dissolve with cleaning solution. Since a part 63 of the first optical film 62 is insolubilized in the cleaning liquid, the mold is not lost by the cleaning liquid. On the other hand, the remaining portion of the first optical film 62 is not insolubilized in the cleaning liquid, and is dissolved and removed by the cleaning liquid.
  • the intermediate film 72 is formed so as to cover the main surface of the first optical film 63 and the end surface of the first optical film 63.
  • the intermediate film 72 can protect the first optical film 63 so that not only the main surface of the first optical film 63 but also the end surface of the first optical film 63 is not damaged or foreign matter. Therefore, the quality of the optical member 50 can be improved. This is particularly effective when the production of the optical member 50 is temporarily interrupted and it takes a long time to resume, since there is a high risk of scratches and foreign matter.
  • the protective film forming step S125 for forming the protective film 92 that protects the second optical film 83 is performed.
  • the protective film 92 can protect the second optical film 83 so that the second optical film 83 is not damaged or foreign matter after the optical member 50 is manufactured. Therefore, the quality of the optical member 50 can be improved.
  • the second optical film 82 is left as a part 83 and the remaining portion of the second optical film 82 is removed.
  • Two optical film patterning process S126 is performed. Therefore, it is possible to cover not only the main surface of the second optical film 83 remaining after the second optical film patterning step S126 but also the end surface of the second optical film 83 with the protective film 92.
  • the second optical film patterning step S126 only a part 83 of the second optical film 82 is insolubilized in the cleaning liquid that dissolves the second optical film 82, and then the remaining part of the second optical film 82 is obtained. Dissolve with cleaning solution. Since a part 83 of the second optical film 82 is insolubilized in the cleaning liquid, the mold is not lost by the cleaning liquid. On the other hand, since the remaining portion of the second optical film 82 is not insolubilized in the cleaning liquid, it is dissolved and removed by the cleaning liquid.
  • the protective film 92 is formed so as to cover the main surface of the second optical film 83 and the end surface of the second optical film 83.
  • the protective film 92 can protect the second optical film 83 so that not only the main surface of the second optical film 83 but also the end surface of the second optical film 83 is not damaged or foreign matter. Therefore, the quality of the optical member 50 can be improved. This is particularly effective when the production of the optical member 50 is temporarily interrupted and it takes a long time to resume, since there is a high risk of scratches and foreign matter.
  • the optical member 50 includes the first optical film 63, the intermediate film 72, the second optical film 83, and the protective film 92 in the above embodiment, but the present invention is not limited to this.
  • the optical member 50 only needs to include an optical film in which liquid crystal molecules are aligned, and the number of optical films is not limited.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)

Abstract

This method for producing organic EL display contains an optical member formation step in which an optical film having liquid crystal molecules aligned therein is formed by applying a coating solution for an optical film, the coating solution containing liquid crystal molecules and a solvent, onto a substrate having organic light-emitting diodes formed thereupon, and subsequently drying the solution.

Description

有機ELディスプレイの製造方法Manufacturing method of organic EL display
 本発明は、有機ELディスプレイの製造方法に関する。 The present invention relates to a method for manufacturing an organic EL display.
 例えば有機発光ダイオード(OLED:Organic Light Emitting Diode)を用いたディスプレイ(以下、「有機EL(Electro Luminescence)ディスプレイ」とも呼ぶ。)には、外光反射の抑制のために円偏光板が用いられている。円偏光板は、直線偏光板と波長板(位相差板)を、その偏光軸が45度で交差するように積層して作製される。 For example, in a display using an organic light emitting diode (OLED: Organic Light Emitting Diode) (hereinafter also referred to as an “organic EL (Electro Luminescence) display”), a circularly polarizing plate is used to suppress external light reflection. Yes. The circularly polarizing plate is produced by laminating a linearly polarizing plate and a wave plate (retardation plate) so that the polarization axes intersect at 45 degrees.
 また、例えば波長板のみを、その偏光軸が15度や75度に傾くように形成する場合がある。したがって、偏光板や波長板を任意の角度で形成する必要がある。さらに、偏光板や波長板の偏光軸を任意の角度で交差させるため、これら偏光板や波長板を個別に形成する必要もある。 Also, for example, only the wave plate may be formed so that its polarization axis is inclined at 15 degrees or 75 degrees. Therefore, it is necessary to form a polarizing plate and a wave plate at an arbitrary angle. Furthermore, in order to cross the polarizing axes of the polarizing plate and the wave plate at an arbitrary angle, it is necessary to form these polarizing plates and the wave plate individually.
 従来、このような偏光板や波長板は、例えば延伸フィルムを用いて作製されている。延伸フィルムは、フィルムを一方向に延伸させて貼り付けることで、その材料中の分子を一方向に配向させたものである。 Conventionally, such polarizing plates and wave plates have been produced using, for example, stretched films. A stretched film is a film in which molecules in the material are oriented in one direction by stretching and pasting the film in one direction.
 ところで、近年、有機ELディスプレイの薄型化に伴い、偏光板や波長板の薄板化も求められている。しかしながら、偏光板や波長板を作製するにあたり、従来のように延伸フィルムを用いた場合、当該延伸フィルム自体の膜厚を小さくするのに限界があり、十分な薄板を得ることができない。 By the way, in recent years, with the thinning of the organic EL display, the polarizing plate and the wave plate are also required to be thinned. However, when producing a polarizing plate or a wavelength plate, when a stretched film is used as in the prior art, there is a limit to reducing the thickness of the stretched film itself, and a sufficient thin plate cannot be obtained.
 そこで、基板上に所定材料を有する塗布液を塗布し、必要な膜厚の偏光板や波長板を形成することで、薄板化が図られている。具体的には、例えば所定材料として液晶性を有する塗布液を基板に塗布し、流延・配向させる。液晶分子は塗布液中で超分子会合体を形成しており、せん断応力を加えながら塗布液を流動させると超分子会合体の長軸方向が流動方向に配向する。 Therefore, thinning is achieved by applying a coating liquid having a predetermined material on the substrate to form a polarizing plate and a wavelength plate having a required film thickness. Specifically, for example, a coating liquid having liquid crystallinity is applied to the substrate as a predetermined material, and cast and oriented. The liquid crystal molecules form supramolecular aggregates in the coating liquid, and when the coating liquid is flowed while applying a shear stress, the major axis direction of the supramolecular aggregates is aligned in the flow direction.
 このように基板に対して塗布液を塗布できるようにするため、従来、種々の装置が提案されている。例えば特許文献1に記載された偏光膜印刷装置は、基板を保持するためのテーブルと、基板にインク液を吐出するスロットダイとを有する。スロットダイを印刷方向に移動させて基板にインク液を塗布する。 In order to be able to apply the coating liquid to the substrate in this way, various apparatuses have been proposed conventionally. For example, a polarizing film printing apparatus described in Patent Document 1 includes a table for holding a substrate and a slot die for discharging ink liquid onto the substrate. The slot die is moved in the printing direction to apply the ink liquid to the substrate.
日本国特開2005-62502号公報Japanese Unexamined Patent Publication No. 2005-62502
 基板上に塗布液を塗布して乾燥することにより、円偏光板などの光学部材を形成する技術が開発、検討されている。 A technique for forming an optical member such as a circularly polarizing plate by applying a coating solution on a substrate and drying it has been developed and studied.
 従来、光学部材用の塗布液が塗布される基板は、有機発光ダイオードが形成された基板とは別に用意され、貼り合わされていた。 Conventionally, the substrate on which the coating liquid for the optical member is applied is prepared separately from the substrate on which the organic light emitting diode is formed and bonded.
 そのため、基板や接着層などの部品点数が多く、有機ELディスプレイの薄型化が十分ではなく、有機ELディスプレイのフレキシブル性が十分ではなかった。 Therefore, the number of parts such as a substrate and an adhesive layer is large, the organic EL display is not sufficiently thinned, and the flexibility of the organic EL display is not sufficient.
 本発明は、上記課題に鑑みてなされたものであり、薄型化およびフレキシブル性を向上した、光学部材を備える有機ELディスプレイの提供を主な目的とする。 The present invention has been made in view of the above problems, and has as its main object to provide an organic EL display including an optical member that is thin and has improved flexibility.
 上記課題を解決するため、本発明の一態様によれば、
 有機発光ダイオードが予め形成された基板上に、液晶分子と溶媒を含む光学膜用塗布液を塗布して乾燥することにより、液晶分子が配向された光学膜を形成する光学部材形成工程を有する、有機ELディスプレイの製造方法が提供される。
In order to solve the above problems, according to one aspect of the present invention,
An optical member forming step of forming an optical film in which liquid crystal molecules are aligned by applying and drying an optical film coating liquid containing liquid crystal molecules and a solvent on a substrate on which an organic light emitting diode is formed in advance; A method for producing an organic EL display is provided.
 本発明の一態様によれば、薄型化およびフレキシブル性を向上した、光学部材を備える有機ELディスプレイが提供される。 According to one aspect of the present invention, there is provided an organic EL display including an optical member that is thin and has improved flexibility.
一実施形態による有機ELディスプレイを示す平面図である。It is a top view which shows the organic electroluminescent display by one Embodiment. 一実施形態による有機ELディスプレイの要部を示す断面図である。It is sectional drawing which shows the principal part of the organic electroluminescent display by one Embodiment. 一実施形態による有機ELディスプレイの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the organic electroluminescent display by one Embodiment. 一実施形態によるタッチセンサ形成工程を示すフローチャートである。It is a flowchart which shows the touch sensor formation process by one Embodiment. 一実施形態による基板上に形成された第1金属膜を示す断面図である。It is sectional drawing which shows the 1st metal film formed on the board | substrate by one Embodiment. 一実施形態による第1金属膜上に形成されたレジスト膜を示す断面図である。It is sectional drawing which shows the resist film formed on the 1st metal film by one Embodiment. 一実施形態による露光および現像後のレジスト膜を示す断面図である。It is sectional drawing which shows the resist film after exposure and image development by one Embodiment. 一実施形態によるエッチング後の第1金属膜を示す断面図である。It is sectional drawing which shows the 1st metal film after the etching by one Embodiment. 一実施形態によるレジスト膜の除去後の第1金属膜を示す断面図である。It is sectional drawing which shows the 1st metal film after the removal of the resist film by one Embodiment. 一実施形態による第1金属膜上に形成された絶縁膜を示す断面図である。It is sectional drawing which shows the insulating film formed on the 1st metal film by one Embodiment. 一実施形態による絶縁膜上に形成された第2金属膜の一部除去後の状態を示す平面図である。It is a top view which shows the state after partial removal of the 2nd metal film formed on the insulating film by one Embodiment. 第1実施形態による光学部材形成工程を示すフローチャートである。It is a flowchart which shows the optical member formation process by 1st Embodiment. 第1実施形態による基板上に塗布された第1光学膜用塗布液の液膜を示す側面図である。It is a side view which shows the liquid film of the coating liquid for 1st optical films apply | coated on the board | substrate by 1st Embodiment. 第1実施形態による第1光学膜用塗布液の液膜の乾燥により形成された第1光学膜を示す側面図である。It is a side view which shows the 1st optical film formed by drying the liquid film of the coating liquid for 1st optical films by 1st Embodiment. 第1実施形態による一部不溶化された第1光学膜を示す側面図である。It is a side view which shows the 1st optical film partially insolubilized by 1st Embodiment. 第1実施形態による第1光学膜上に塗布された中間膜用塗布液の液膜を示す側面図である。It is a side view which shows the liquid film of the coating liquid for intermediate films apply | coated on the 1st optical film by 1st Embodiment. 第1実施形態による中間膜用塗布液の液膜の乾燥により形成された中間膜を示す側面図である。It is a side view which shows the intermediate film formed by drying the liquid film of the coating liquid for intermediate films by 1st Embodiment. 第1実施形態による中間膜で覆われていない部分が除去された第1光学膜を示す側面図である。It is a side view which shows the 1st optical film from which the part which is not covered with the intermediate film by 1st Embodiment was removed. 第1実施形態による中間膜上に塗布された第2光学膜用塗布液の液膜を示す側面図である。It is a side view which shows the liquid film of the coating liquid for 2nd optical films apply | coated on the intermediate film by 1st Embodiment. 第1実施形態による第2光学膜用塗布液の液膜の乾燥により形成された第2光学膜を示す側面図である。It is a side view which shows the 2nd optical film formed by drying the liquid film of the coating liquid for 2nd optical films by 1st Embodiment. 第1実施形態による一部不溶化された第2光学膜を示す側面図である。It is a side view which shows the 2nd optical film partially insolubilized by 1st Embodiment. 第1実施形態による第2光学膜上に塗布された保護膜用塗布液の液膜を示す側面図である。It is a side view which shows the liquid film of the coating liquid for protective films apply | coated on the 2nd optical film by 1st Embodiment. 第1実施形態による保護膜用塗布液の液膜の乾燥により形成された保護膜を示す側面図である。It is a side view which shows the protective film formed by drying the liquid film of the coating liquid for protective films by 1st Embodiment. 第1実施形態による保護膜で覆われていない部分が除去された第2光学膜を示す側面図である。It is a side view which shows the 2nd optical film from which the part which is not covered with the protective film by 1st Embodiment was removed. 第2実施形態による光学部材形成工程を示すフローチャートである。It is a flowchart which shows the optical member formation process by 2nd Embodiment. 第2実施形態による不溶化されていない部分が除去された第1光学膜を示す側面図である。It is a side view which shows the 1st optical film by which the part which has not been insolubilized by 2nd Embodiment was removed. 第2実施形態による第1光学膜上に塗布された中間膜用塗布液の液膜を示す側面図である。It is a side view which shows the liquid film of the coating liquid for intermediate films apply | coated on the 1st optical film by 2nd Embodiment. 第2実施形態による中間膜用塗布液の液膜の乾燥により形成された中間膜を示す側面図である。It is a side view which shows the intermediate film formed by drying the liquid film of the coating liquid for intermediate films by 2nd Embodiment. 第2実施形態による中間膜上に塗布された第2光学膜用塗布液の液膜を示す側面図である。It is a side view which shows the liquid film of the coating liquid for 2nd optical films apply | coated on the intermediate film by 2nd Embodiment. 第2実施形態による第2光学膜用塗布液の液膜の乾燥により形成された第2光学膜を示す側面図である。It is a side view which shows the 2nd optical film formed by drying the liquid film of the coating liquid for 2nd optical films by 2nd Embodiment. 第2実施形態による一部不溶化された第2光学膜を示す側面図である。It is a side view which shows the 2nd optical film partially insolubilized by 2nd Embodiment. 第2実施形態による不溶化されていない部分が除去された第2光学膜を示す側面図である。It is a side view which shows the 2nd optical film by which the part which is not insolubilized by 2nd Embodiment was removed. 第2実施形態による第2光学膜上に塗布された保護膜用塗布液の液膜を示す側面図である。It is a side view which shows the liquid film of the coating liquid for protective films apply | coated on the 2nd optical film by 2nd Embodiment. 第2実施形態による保護膜用塗布液の液膜の乾燥により形成された保護膜を示す側面図である。It is a side view which shows the protective film formed by drying the liquid film of the coating liquid for protective films by 2nd Embodiment.
 以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.
 <有機ELディスプレイ>
 図1は、一実施形態による有機ELディスプレイを示す平面図である。図1において、一の単位回路11の回路を拡大して示す。
<Organic EL display>
FIG. 1 is a plan view showing an organic EL display according to an embodiment. In FIG. 1, the circuit of one unit circuit 11 is shown enlarged.
 有機ELディスプレイ1は、基板10と、基板10上に配列される複数の単位回路11と、基板10上に設けられる走査線駆動回路14と、基板10上に設けられるデータ線駆動回路15とを有する。走査線駆動回路14に接続される複数の走査線16と、データ線駆動回路15に接続される複数のデータ線17とで囲まれる領域に、単位回路11が設けられる。単位回路11は、TFT層12と、有機発光ダイオード13とを含む。 The organic EL display 1 includes a substrate 10, a plurality of unit circuits 11 arranged on the substrate 10, a scanning line driving circuit 14 provided on the substrate 10, and a data line driving circuit 15 provided on the substrate 10. Have. The unit circuit 11 is provided in a region surrounded by a plurality of scanning lines 16 connected to the scanning line driving circuit 14 and a plurality of data lines 17 connected to the data line driving circuit 15. The unit circuit 11 includes a TFT layer 12 and an organic light emitting diode 13.
 TFT層12は、複数のTFT(Thin Film Transistor)を有する。一のTFTはスイッチング素子としての機能を有し、他の一のTFTは有機発光ダイオード13に流す電流量を制御する電流制御用素子としての機能を有する。TFT層12は、走査線駆動回路14およびデータ線駆動回路15によって作動され、有機発光ダイオード13に電流を供給する。TFT層12は単位回路11毎に設けられており、複数の単位回路11は独立に制御される。尚、TFT層12は、一般的な構成であればよく、図1に示す構成には限定されない。 The TFT layer 12 has a plurality of thin film transistors (TFTs). One TFT has a function as a switching element, and the other TFT has a function as a current control element for controlling the amount of current flowing through the organic light emitting diode 13. The TFT layer 12 is operated by the scanning line driving circuit 14 and the data line driving circuit 15, and supplies current to the organic light emitting diode 13. The TFT layer 12 is provided for each unit circuit 11, and the plurality of unit circuits 11 are controlled independently. The TFT layer 12 may have a general configuration, and is not limited to the configuration shown in FIG.
 尚、有機ELディスプレイ1の駆動方式は、本実施形態ではアクティブマトリックス方式であるが、パッシブマトリックス方式であってもよい。 The driving method of the organic EL display 1 is an active matrix method in the present embodiment, but may be a passive matrix method.
 図2は、一実施形態による有機ELディスプレイの要部を示す断面図である。図2に示す有機ELディスプレイ1は、トップエミッション方式であり、基板10、有機発光ダイオード13、封止層30、タッチセンサ40、および光学部材50をこの順で有する。タッチセンサ40は、有機ELディスプレイ1がタッチパネルである場合に、有機ELディスプレイ1に組み込まれる。 FIG. 2 is a cross-sectional view showing a main part of an organic EL display according to an embodiment. The organic EL display 1 shown in FIG. 2 is a top emission type, and includes a substrate 10, an organic light emitting diode 13, a sealing layer 30, a touch sensor 40, and an optical member 50 in this order. The touch sensor 40 is incorporated in the organic EL display 1 when the organic EL display 1 is a touch panel.
 基板10は、樹脂基板、ガラス基板、半導体基板、金属基板などのいずれでもよく、フレキシブル性向上の観点から樹脂基板であることが好ましい。基板10は、フレキシブル性向上と水分透過性低下の観点から、樹脂基板とガラス基板の積層基板でもよい。基板10上には、TFT層12が形成されている。TFT層12上には、TFT層12によって形成される段差を平坦化する平坦化層18が形成されている。 The substrate 10 may be any of a resin substrate, a glass substrate, a semiconductor substrate, a metal substrate, and the like, and is preferably a resin substrate from the viewpoint of improving flexibility. The substrate 10 may be a laminated substrate of a resin substrate and a glass substrate from the viewpoint of improving flexibility and reducing moisture permeability. A TFT layer 12 is formed on the substrate 10. On the TFT layer 12, a flattening layer 18 for flattening a step formed by the TFT layer 12 is formed.
 平坦化層18は、絶縁性を有している。平坦化層18を貫通するコンタクトホールには、コンタクトプラグ19が形成されている。コンタクトプラグ19は、平坦化層18の平坦面に形成される画素電極21と、TFT層12とを電気的に接続する。コンタクトプラグ19は、画素電極21と同じ材料で、同時に形成されてよい。 The planarization layer 18 has an insulating property. Contact plugs 19 are formed in contact holes that penetrate the planarization layer 18. The contact plug 19 electrically connects the pixel electrode 21 formed on the flat surface of the flattening layer 18 and the TFT layer 12. The contact plug 19 may be formed of the same material as the pixel electrode 21 at the same time.
 有機発光ダイオード13は、平坦化層18の平坦面上に形成される。有機発光ダイオード13は、画素電極21と、画素電極21を基準として基板10とは反対側に設けられる対向電極22と、画素電極21と対向電極22の間に形成される有機層23とを有する。TFT層12を作動させることで、画素電極21と対向電極22との間に電圧が印加され、有機層23が発光する。 The organic light emitting diode 13 is formed on the flat surface of the flattening layer 18. The organic light emitting diode 13 includes a pixel electrode 21, a counter electrode 22 provided on the opposite side of the substrate 10 with respect to the pixel electrode 21, and an organic layer 23 formed between the pixel electrode 21 and the counter electrode 22. . By operating the TFT layer 12, a voltage is applied between the pixel electrode 21 and the counter electrode 22, and the organic layer 23 emits light.
 画素電極21は、例えば陰極であり、アルミニウムなどの金属材料で形成され、有機層23からの光を有機層23に向けて反射する。画素電極21で反射した光は、有機層23や対向電極22を透過し、外部に取り出される。画素電極21は、単位回路11毎に設けられる。 The pixel electrode 21 is, for example, a cathode and is formed of a metal material such as aluminum, and reflects light from the organic layer 23 toward the organic layer 23. The light reflected by the pixel electrode 21 passes through the organic layer 23 and the counter electrode 22 and is extracted outside. The pixel electrode 21 is provided for each unit circuit 11.
 対向電極22は、例えば陽極であって、ITO(Indium Tin Oxide)などの透明材料で形成され、有機層23からの光を透過する。対向電極22を透過した光は、封止層30やタッチセンサ40、光学部材50を通過し、外部に取り出される。対向電極22は、複数の単位回路11に共通のものである。 The counter electrode 22 is, for example, an anode, is formed of a transparent material such as ITO (Indium Tin Oxide), and transmits light from the organic layer 23. The light transmitted through the counter electrode 22 passes through the sealing layer 30, the touch sensor 40, and the optical member 50, and is extracted outside. The counter electrode 22 is common to the plurality of unit circuits 11.
 有機層23は、例えば、陰極側から陽極側に向けて、電子注入層24、電子輸送層25、発光層26、正孔輸送層27、正孔注入層28をこの順で有する。陰極と陽極との間に電圧がかかると、陰極から電子注入層24に電子が注入されると共に、陽極から正孔注入層28に正孔が注入される。電子注入層24に注入された電子は、電子輸送層25によって発光層26へ輸送される。また、正孔注入層28に注入された正孔は、正孔輸送層27によって発光層26へ輸送される。そうして、発光層26内で正孔と電子が再結合して、発光層26の発光材料が励起され、発光層26が発光する。発光層26としては、例えば、赤色に発光する赤色発光層、緑色に発光する緑色発光層、および青色に発光する青色発光層が形成される。 The organic layer 23 has, for example, an electron injection layer 24, an electron transport layer 25, a light emitting layer 26, a hole transport layer 27, and a hole injection layer 28 in this order from the cathode side to the anode side. When a voltage is applied between the cathode and the anode, electrons are injected from the cathode into the electron injection layer 24 and holes are injected from the anode into the hole injection layer 28. The electrons injected into the electron injection layer 24 are transported to the light emitting layer 26 by the electron transport layer 25. The holes injected into the hole injection layer 28 are transported to the light emitting layer 26 by the hole transport layer 27. Then, holes and electrons are recombined in the light emitting layer 26, the light emitting material of the light emitting layer 26 is excited, and the light emitting layer 26 emits light. As the light emitting layer 26, for example, a red light emitting layer that emits red light, a green light emitting layer that emits green light, and a blue light emitting layer that emits blue light are formed.
 尚、有機層23は、本実施形態では、陰極側から陽極側に向けて、電子注入層24、電子輸送層25、発光層26、正孔輸送層27、正孔注入層28をこの順で有するが、少なくとも発光層26を有していればよい。有機層23は、図2に示す構成には限定されない。 In the present embodiment, the organic layer 23 includes an electron injection layer 24, an electron transport layer 25, a light emitting layer 26, a hole transport layer 27, and a hole injection layer 28 in this order from the cathode side to the anode side. However, it is sufficient that at least the light emitting layer 26 is provided. The organic layer 23 is not limited to the configuration shown in FIG.
 封止層30は、基板10との間に、有機発光ダイオード13を封止する。封止層30としては、酸化珪素層や窒化珪素層などが用いられ、例えば成膜温度が100℃以下の低温CVDにより形成される。あるいは、防湿層が形成された樹脂フィルムを貼着して封止層30としてもよい。 The sealing layer 30 seals the organic light emitting diode 13 between the substrate 10. As the sealing layer 30, a silicon oxide layer, a silicon nitride layer, or the like is used. For example, the sealing layer 30 is formed by low-temperature CVD at a film forming temperature of 100 ° C. or less. Or it is good also as the sealing layer 30 by sticking the resin film in which the moisture-proof layer was formed.
 タッチセンサ40は、有機ELディスプレイ1の画面に対する指などの物体の接触または近接を検出する。タッチセンサ40の検出方式は、特に限定されないが、例えば静電容量方式であってよい。静電容量方式としては、表面型静電容量方式、投影型静電容量方式などがある。投影型静電容量方式としては、自己容量方式、相互容量方式等がある。相互容量方式を用いると、同時多点検出が可能となるため好ましい。 The touch sensor 40 detects contact or proximity of an object such as a finger to the screen of the organic EL display 1. The detection method of the touch sensor 40 is not particularly limited, but may be a capacitance method, for example. Examples of the capacitance method include a surface capacitance method and a projection capacitance method. Examples of the projected capacitance method include a self-capacitance method and a mutual capacitance method. Use of the mutual capacitance method is preferable because simultaneous multipoint detection is possible.
 タッチセンサ40は、詳しくは後述するが、有機発光ダイオード13が予め形成された基板10上に形成される。よって、従来のようにタッチセンサ40が基板10とは別の基板に形成され、基板10と貼り合わされる場合に比べて、基板や接着層などの部品点数を削減できるので、有機ELディスプレイ1を薄型化でき、有機ELディスプレイ1のフレキシブル性を向上できる。 The touch sensor 40 is formed on the substrate 10 on which the organic light emitting diode 13 is formed in advance, as will be described in detail later. Therefore, as compared with the case where the touch sensor 40 is formed on a substrate different from the substrate 10 and bonded to the substrate 10 as in the past, the number of components such as the substrate and the adhesive layer can be reduced. The thickness can be reduced, and the flexibility of the organic EL display 1 can be improved.
 タッチセンサ40は、有機発光ダイオード13と光学部材50との間に形成される。光学部材50が外光反射を抑制する円偏光膜である場合に、円偏光膜がタッチセンサ40よりも光取出側に配設されるため、外光反射の抑制効率を向上できる。 The touch sensor 40 is formed between the organic light emitting diode 13 and the optical member 50. When the optical member 50 is a circularly polarizing film that suppresses reflection of external light, the circularly polarizing film is disposed on the light extraction side with respect to the touch sensor 40, so that the efficiency of suppressing external light reflection can be improved.
 光学部材50は、例えば外光反射を抑制する円偏光膜であって、本実施形態では、第1光学膜として1/4波長膜(λ/4膜)を有し、第2光学膜として直線偏光膜とを有する。1/4波長膜と直線偏光膜は、その偏光軸が45度で交差するように形成される。尚、光学部材50を構成する光学膜の数は特に限定されない。 The optical member 50 is, for example, a circularly polarizing film that suppresses reflection of external light. In the present embodiment, the optical member 50 has a ¼ wavelength film (λ / 4 film) as the first optical film, and a straight line as the second optical film. A polarizing film. The quarter wavelength film and the linear polarizing film are formed so that their polarization axes intersect at 45 degrees. Note that the number of optical films constituting the optical member 50 is not particularly limited.
 光学部材50は、詳しくは後述するが、有機発光ダイオード13が予め形成された基板10上に形成される。よって、従来のように光学部材50が基板10とは別の基板に形成され、基板10と貼り合わされる場合に比べて、基板や接着層などの部品点数を削減できるので、有機ELディスプレイ1を薄型化でき、有機ELディスプレイ1のフレキシブル性を向上できる。 The optical member 50 is formed on the substrate 10 on which the organic light emitting diode 13 is formed in advance, as will be described in detail later. Therefore, as compared with the case where the optical member 50 is formed on a substrate different from the substrate 10 and bonded to the substrate 10 as in the past, the number of components such as the substrate and the adhesive layer can be reduced. The thickness can be reduced, and the flexibility of the organic EL display 1 can be improved.
 光学部材50は、有機層23の紫外線による劣化を抑制するため、紫外線照射を用いることなく製造される。また、光学部材50は、有機層23の熱による劣化を抑制するため、100℃以下の温度で製造される。 The optical member 50 is manufactured without using ultraviolet irradiation in order to suppress deterioration of the organic layer 23 due to ultraviolet rays. The optical member 50 is manufactured at a temperature of 100 ° C. or lower in order to suppress deterioration of the organic layer 23 due to heat.
 尚、図2に示す有機ELディスプレイ1は、トップエミッション方式であるが、ボトムエミッション方式であってもよい。ボトムエミッション方式の場合、発光層26からの光は画素電極21を透過し基板10から取り出されるため、透明電極である陽極が画素電極21として用いられ、反射電極である陰極が対向電極22として用いられる。つまり、ボトムエミッション方式の場合、陽極と陰極の配置が逆になる。また、ボトムエミッション方式の場合、基板10は透明基板である。さらに、ボトムエミッション方式の場合、タッチセンサ40や光学部材50は、基板10を基準として、有機発光ダイオード13とは反対側に形成される。 In addition, although the organic EL display 1 shown in FIG. 2 is a top emission system, it may be a bottom emission system. In the case of the bottom emission method, light from the light emitting layer 26 passes through the pixel electrode 21 and is extracted from the substrate 10, so that an anode that is a transparent electrode is used as the pixel electrode 21 and a cathode that is a reflective electrode is used as the counter electrode 22. It is done. That is, in the bottom emission method, the arrangement of the anode and the cathode is reversed. In the case of the bottom emission method, the substrate 10 is a transparent substrate. Further, in the case of the bottom emission method, the touch sensor 40 and the optical member 50 are formed on the side opposite to the organic light emitting diode 13 with respect to the substrate 10.
 <有機ELディスプレイの製造方法>
 図3は、一実施形態による有機ELディスプレイの製造方法を示すフローチャートである。図3に示すように、有機ELディスプレイ1の製造方法は、タッチセンサ形成工程S110と、光学部材形成工程S120とを有する。尚、タッチセンサ形成工程S110は、有機ELディスプレイ1がタッチパネルである場合に行われる。以下、各工程について説明する。
<Method for manufacturing organic EL display>
FIG. 3 is a flowchart illustrating a method for manufacturing an organic EL display according to an embodiment. As shown in FIG. 3, the manufacturing method of the organic EL display 1 includes a touch sensor forming step S110 and an optical member forming step S120. In addition, touch sensor formation process S110 is performed when the organic EL display 1 is a touch panel. Hereinafter, each step will be described.
 <タッチセンサ形成工程>
 タッチセンサ形成工程S110は、光学部材形成工程S120の前に、有機発光ダイオード13が予め形成された基板10上に、タッチセンサ40を形成する。よって、従来のようにタッチセンサ40が基板10とは別の基板に形成され、基板10と貼り合わされる場合に比べて、基板や接着層などの部品点数を削減できるので、有機ELディスプレイ1を薄型化でき、有機ELディスプレイ1のフレキシブル性を向上できる。
<Touch sensor formation process>
In the touch sensor forming step S110, the touch sensor 40 is formed on the substrate 10 on which the organic light emitting diodes 13 are formed in advance before the optical member forming step S120. Therefore, as compared with the case where the touch sensor 40 is formed on a substrate different from the substrate 10 and bonded to the substrate 10 as in the past, the number of components such as the substrate and the adhesive layer can be reduced. The thickness can be reduced, and the flexibility of the organic EL display 1 can be improved.
 図4は、一実施形態によるタッチセンサ形成工程を示すフローチャートである。図5は、一実施形態による基板上に形成された第1金属膜を示す断面図である。図6は、一実施形態による第1金属膜上に形成されたレジスト膜を示す断面図である。図7は、一実施形態による露光および現像後のレジスト膜を示す断面図である。図8は、一実施形態によるエッチング後の第1金属膜を示す断面図である。図9は、一実施形態によるレジスト膜の除去後の第1金属膜を示す断面図である。図10は、一実施形態による第1金属膜上に形成された絶縁膜を示す断面図である。図11は、一実施形態による絶縁膜上に形成された第2金属膜の一部除去後の状態を示す平面図である。図5~図10は、図11のA-A線に沿った断面図である。図5~図11において、図2に示す有機発光ダイオード13や封止層30などの図示を省略する。 FIG. 4 is a flowchart illustrating a touch sensor formation process according to an embodiment. FIG. 5 is a cross-sectional view illustrating a first metal film formed on a substrate according to an embodiment. FIG. 6 is a cross-sectional view showing a resist film formed on the first metal film according to one embodiment. FIG. 7 is a cross-sectional view showing a resist film after exposure and development according to an embodiment. FIG. 8 is a cross-sectional view illustrating the first metal film after etching according to an embodiment. FIG. 9 is a cross-sectional view showing the first metal film after removal of the resist film according to one embodiment. FIG. 10 is a cross-sectional view illustrating an insulating film formed on a first metal film according to an embodiment. FIG. 11 is a plan view showing a state after the partial removal of the second metal film formed on the insulating film according to the embodiment. 5 to 10 are sectional views taken along the line AA in FIG. 5 to 11, the illustration of the organic light emitting diode 13 and the sealing layer 30 shown in FIG. 2 is omitted.
 タッチセンサ形成工程S110は、基板10上に遮光性の第1金属膜41を形成する工程S111と、フォトリソグラフィ法およびエッチング法によって第1金属膜41の一部を選択的に除去する工程S112とを有する。第1金属膜41は、図5に示すように基板10上(より詳細には例えば封止層30上)に形成される。第1金属膜41上には、図6に示すようにレジスト膜42が形成される。レジスト膜42は、露光および現像によって図7に示すようにパターンニングされる。レジスト膜42は、露光された部分が現像で除去されるポジ型でもよいし、露光された部分が現像後に残るネガ型でもよい。露光の光は、第1金属膜41で遮光されるため、有機発光ダイオード13を劣化させることがない。その後、パターンニングされたレジスト膜42をマスクとして用いて、図8に示すように第1金属膜41の一部が選択的に除去される。一部が選択的に除去された第1金属膜41は、図11に破線で示すように平面視で、縞状に形成される。その後、第1金属膜41のパターンニングに用いたレジスト膜42は、図9に示すように除去される。 The touch sensor formation step S110 includes a step S111 for forming the light-shielding first metal film 41 on the substrate 10, and a step S112 for selectively removing a part of the first metal film 41 by a photolithography method and an etching method. Have As shown in FIG. 5, the first metal film 41 is formed on the substrate 10 (more specifically, for example, on the sealing layer 30). A resist film 42 is formed on the first metal film 41 as shown in FIG. The resist film 42 is patterned as shown in FIG. 7 by exposure and development. The resist film 42 may be a positive type in which an exposed portion is removed by development, or a negative type in which an exposed portion remains after development. Since the exposure light is shielded by the first metal film 41, the organic light emitting diode 13 is not deteriorated. Thereafter, using the patterned resist film 42 as a mask, a part of the first metal film 41 is selectively removed as shown in FIG. The first metal film 41 from which a part has been selectively removed is formed in a stripe shape in plan view as shown by a broken line in FIG. Thereafter, the resist film 42 used for patterning the first metal film 41 is removed as shown in FIG.
 尚、本明細書において、第1金属膜41が遮光性を有するとは、第1金属膜41の透過率が5%以下であることを意味する。第1金属膜41の透過率は、好ましくは3%以下である。ここで、第1金属膜41の透過率は、第1金属膜41上に形成されるレジスト膜42の露光の光(例えば波長365nmの光)が第1金属膜41を透過する割合のことである。第1金属膜41は、例えば銅で形成される。 In the present specification, the first metal film 41 having a light shielding property means that the transmittance of the first metal film 41 is 5% or less. The transmittance of the first metal film 41 is preferably 3% or less. Here, the transmittance of the first metal film 41 is the ratio at which the exposure light (for example, light having a wavelength of 365 nm) of the resist film 42 formed on the first metal film 41 is transmitted through the first metal film 41. is there. The first metal film 41 is made of copper, for example.
 また、タッチセンサ形成工程S110は、一部が選択的に除去された第1金属膜41上に絶縁膜43を形成する工程S113を有する。絶縁膜43は、第1金属膜41と第2金属膜45とを絶縁する。絶縁膜43としては、酸化珪素膜や窒化珪素膜などが用いられ、例えば成膜温度が100℃以下の低温CVDにより形成される。 Further, the touch sensor forming step S110 includes a step S113 of forming the insulating film 43 on the first metal film 41 from which part has been selectively removed. The insulating film 43 insulates the first metal film 41 and the second metal film 45. As the insulating film 43, a silicon oxide film, a silicon nitride film, or the like is used. For example, the insulating film 43 is formed by low-temperature CVD at a film forming temperature of 100 ° C. or lower.
 さらに、タッチセンサ形成工程S110は、絶縁膜43上に遮光性の第2金属膜45を形成する工程S114と、フォトリソグラフィ法およびエッチング法によって第2金属膜45の一部を選択的に除去する工程S115とを有する。第2金属膜45の形成および第2金属膜の一部除去は、第1金属膜41の形成および第1金属膜41の一部除去と同様に行われる。一部が選択的に除去された第2金属膜45は、図11に示すように平面視で、縞状に形成される。その後、第2金属膜45のパターンニングに用いたレジスト膜は、除去される。 Further, in the touch sensor formation step S110, a part of the second metal film 45 is selectively removed by the step S114 of forming the light-shielding second metal film 45 on the insulating film 43 and the photolithography method and the etching method. Step S115. The formation of the second metal film 45 and the partial removal of the second metal film are performed in the same manner as the formation of the first metal film 41 and the partial removal of the first metal film 41. The second metal film 45 from which a part has been selectively removed is formed in a stripe shape in plan view as shown in FIG. Thereafter, the resist film used for patterning the second metal film 45 is removed.
 尚、本明細書において、第2金属膜45が遮光性を有するとは、第2金属膜45の透過率が5%以下であることを意味する。第2金属膜45の透過率は、好ましくは3%以下である。ここで、第2金属膜45の透過率は、第2金属膜45上に形成されるレジスト膜の露光の光(例えば波長365nmの光)が第2金属膜45を透過する割合のことである。第2金属膜45は、例えば銅で形成される。 In the present specification, the second metal film 45 having a light shielding property means that the transmittance of the second metal film 45 is 5% or less. The transmittance of the second metal film 45 is preferably 3% or less. Here, the transmittance of the second metal film 45 is a ratio at which the exposure light (for example, light having a wavelength of 365 nm) of the resist film formed on the second metal film 45 passes through the second metal film 45. . The second metal film 45 is made of, for example, copper.
 さらに、タッチセンサ形成工程S110は、一部が選択的に除去された第2金属膜45上にタッチセンサ保護膜47を形成する工程S116を有する。タッチセンサ保護膜47は、絶縁膜43と同様に形成される。例えば、タッチセンサ保護膜47としては、酸化珪素膜や窒化珪素膜などが用いられ、例えば成膜温度が100℃以下の低温CVDにより形成される。 Furthermore, the touch sensor forming step S110 includes a step S116 of forming the touch sensor protective film 47 on the second metal film 45 from which part has been selectively removed. The touch sensor protective film 47 is formed in the same manner as the insulating film 43. For example, as the touch sensor protective film 47, a silicon oxide film, a silicon nitride film, or the like is used. For example, the touch sensor protective film 47 is formed by low-temperature CVD at a film forming temperature of 100 ° C. or less.
 このようにして、第1金属膜41、絶縁膜43、第2金属膜45、およびタッチセンサ保護膜47とで構成されるタッチセンサ40が得られる。ワイヤー状の第1金属膜41やワイヤー状の第2金属膜45は、平面視で有機発光ダイオード13の有機層23と重ならないように、図11に示すように四角格子状に形成される。つまり、平面視で、四角格子の開口部に有機層23が配設される。有機層23からの光を外部に取り出しやすい。第1金属膜41および第2金属膜45は、いずれか1つが駆動電極として用いられ、残りの1つが受信電極として用いられる。タッチセンサ40は、駆動電極と受信電極の間の容量変化を検出することで、有機ELディスプレイ1の画面に対する指などの物体の接触または近接を検出する。 Thus, the touch sensor 40 constituted by the first metal film 41, the insulating film 43, the second metal film 45, and the touch sensor protective film 47 is obtained. The wire-like first metal film 41 and the wire-like second metal film 45 are formed in a square lattice shape as shown in FIG. 11 so as not to overlap the organic layer 23 of the organic light emitting diode 13 in plan view. That is, the organic layer 23 is disposed in the opening of the square lattice in plan view. It is easy to extract light from the organic layer 23 to the outside. Any one of the first metal film 41 and the second metal film 45 is used as a drive electrode, and the remaining one is used as a reception electrode. The touch sensor 40 detects the contact or proximity of an object such as a finger to the screen of the organic EL display 1 by detecting a change in capacitance between the drive electrode and the reception electrode.
 本実施形態のタッチセンサ形成工程S110によれば、フォトリソグラフィ法の露光による有機発光ダイオード13の有機層23の劣化を抑制しながら、予め有機発光ダイオード13が形成された基板10上にタッチセンサ40を形成できる。従来のようにタッチセンサ40が基板10とは別の基板に形成され、基板10と貼り合わされる場合に比べて、基板や接着層などの部品点数を削減できるので、有機ELディスプレイ1を薄型化でき、有機ELディスプレイ1のフレキシブル性を向上できる。 According to the touch sensor formation step S110 of the present embodiment, the touch sensor 40 is formed on the substrate 10 on which the organic light emitting diode 13 has been formed in advance while suppressing the deterioration of the organic layer 23 of the organic light emitting diode 13 due to exposure by a photolithography method. Can be formed. Compared to the case where the touch sensor 40 is formed on a substrate different from the substrate 10 and bonded to the substrate 10 as in the past, the number of components such as the substrate and the adhesive layer can be reduced, so the organic EL display 1 is made thinner. The flexibility of the organic EL display 1 can be improved.
 本実施形態のタッチセンサ形成工程S110は、光学部材形成工程S120の前に行われるので、タッチセンサ40は有機発光ダイオード13と光学部材50との間に形成される。光学部材50が外光反射を抑制する円偏光膜である場合に、円偏光膜がタッチセンサ40よりも光取出側に配設されるため、外光反射の抑制効率を向上できる。 Since the touch sensor formation step S110 of this embodiment is performed before the optical member formation step S120, the touch sensor 40 is formed between the organic light emitting diode 13 and the optical member 50. When the optical member 50 is a circularly polarizing film that suppresses reflection of external light, the circularly polarizing film is disposed on the light extraction side with respect to the touch sensor 40, so that the efficiency of suppressing external light reflection can be improved.
 <光学部材形成工程>
 光学部材形成工程S120は、有機発光ダイオード13が予め形成された基板10上に、液晶分子と溶媒を含む光学膜用塗布液を塗布して乾燥することにより、液晶分子が配向された光学膜を形成する。光学膜などで光学部材50が構成される。
<Optical member formation process>
In the optical member forming step S120, an optical film in which liquid crystal molecules are aligned is formed by applying an optical film coating liquid containing liquid crystal molecules and a solvent on the substrate 10 on which the organic light emitting diodes 13 are formed in advance, and drying. Form. The optical member 50 is composed of an optical film or the like.
 光学部材50は、例えば第1光学膜と第2光学膜を有する。第1光学膜および第2光学膜は、いずれか1つが位相差膜であり、残りの1つが偏光膜である。 The optical member 50 includes, for example, a first optical film and a second optical film. One of the first optical film and the second optical film is a retardation film, and the remaining one is a polarizing film.
 光学部材50は、例えば外光反射を抑制する円偏光膜であって、本実施形態では、第1光学膜として1/4波長膜(λ/4膜)を有し、第2光学膜として直線偏光膜とを有する。1/4波長膜と直線偏光膜は、その偏光軸が45度で交差するように形成される。尚、光学部材50を構成する光学膜の数は特に限定されない。 The optical member 50 is, for example, a circularly polarizing film that suppresses reflection of external light. In the present embodiment, the optical member 50 has a ¼ wavelength film (λ / 4 film) as the first optical film, and a straight line as the second optical film. A polarizing film. The quarter wavelength film and the linear polarizing film are formed so that their polarization axes intersect at 45 degrees. Note that the number of optical films constituting the optical member 50 is not particularly limited.
 本実施形態の光学部材形成工程S120によれば、光学部材50は、有機発光ダイオード13が予め形成された基板10上に形成される。よって、従来のように光学部材50が基板10とは別の基板に形成され、基板10と貼り合わされる場合に比べて、基板や接着層などの部品点数を削減できるので、有機ELディスプレイ1を薄型化でき、有機ELディスプレイ1のフレキシブル性を向上できる。 According to the optical member forming step S120 of the present embodiment, the optical member 50 is formed on the substrate 10 on which the organic light emitting diode 13 is previously formed. Therefore, as compared with the case where the optical member 50 is formed on a substrate different from the substrate 10 and bonded to the substrate 10 as in the past, the number of components such as the substrate and the adhesive layer can be reduced. The thickness can be reduced, and the flexibility of the organic EL display 1 can be improved.
 本実施形態の光学部材形成工程S120によれば、光学部材50は、有機層23の紫外線による劣化を抑制するため、紫外線照射を用いることなく製造される。また、光学部材50は、有機層23の熱による劣化を抑制するため、100℃以下の温度で製造される。 According to the optical member forming step S120 of this embodiment, the optical member 50 is manufactured without using ultraviolet irradiation in order to suppress deterioration of the organic layer 23 due to ultraviolet rays. The optical member 50 is manufactured at a temperature of 100 ° C. or lower in order to suppress deterioration of the organic layer 23 due to heat.
 <第1実施形態の光学部材形成工程>
 図12は、第1実施形態による光学部材形成工程を示すフローチャートである。光学部材形成工程S120は、図12に示すように、第1光学膜形成工程S121と、中間膜形成工程S122と、第1光学膜パターンニング工程S123と、第2光学膜形成工程S124と、保護膜形成工程S125と、第2光学膜パターンニング工程S126とをこの順で有する。以下、各工程について説明する。
<Optical member formation process of 1st Embodiment>
FIG. 12 is a flowchart showing an optical member forming process according to the first embodiment. As shown in FIG. 12, the optical member forming step S120 includes a first optical film forming step S121, an intermediate film forming step S122, a first optical film patterning step S123, a second optical film forming step S124, and protection. The film forming process S125 and the second optical film patterning process S126 are provided in this order. Hereinafter, each step will be described.
 尚、図12に示す全ての工程が行われなくてもよい。例えば詳しくは後述するが、第1光学膜パターンニング工程S123や第2光学膜パターンニング工程S126は、光学部材50を基板10上に間隔をおいて複数形成する場合には有効であるが、光学部材50を基板10上に1つのみ形成する場合には省略してもよい。後述の一部不溶化の処理について同様である。 Note that all the steps shown in FIG. 12 need not be performed. For example, as will be described in detail later, the first optical film patterning step S123 and the second optical film patterning step S126 are effective when a plurality of optical members 50 are formed on the substrate 10 at intervals. When only one member 50 is formed on the substrate 10, it may be omitted. The same applies to the partially insolubilizing process described later.
 また、図12に示す工程以外の工程が行われてもよい。例えば、第1光学膜形成工程S121の前に、基板10に対する第1光学膜の密着性を改善するため、基板10の第1光学膜が形成される面(より具体的には封止層30またはタッチセンサ保護膜47)を表面改質する工程が行われてもよい。表面改質膜として、シランカップリング剤などの有機膜、または窒化珪素などの無機膜が形成されてよい。 Further, steps other than the steps shown in FIG. 12 may be performed. For example, before the first optical film forming step S121, in order to improve the adhesion of the first optical film to the substrate 10, the surface of the substrate 10 on which the first optical film is formed (more specifically, the sealing layer 30). Alternatively, a step of modifying the surface of the touch sensor protective film 47) may be performed. As the surface modification film, an organic film such as a silane coupling agent or an inorganic film such as silicon nitride may be formed.
 <第1実施形態の第1光学膜形成工程>
 図12の第1光学膜形成工程S121では、図13~図15に示すように、液晶分子と溶媒を含む第1光学膜用塗布液61を基板10上に塗布して乾燥することにより第1光学膜62を形成する。第1光学膜62は、例えば1/4波長膜である。
<First Optical Film Formation Step of First Embodiment>
In the first optical film forming step S121 of FIG. 12, as shown in FIGS. 13 to 15, a first optical film coating liquid 61 containing liquid crystal molecules and a solvent is applied onto the substrate 10 and dried to thereby form the first optical film. An optical film 62 is formed. The first optical film 62 is, for example, a quarter wavelength film.
 図13は、第1実施形態による基板上に塗布された第1光学膜用塗布液の液膜を示す側面図である。図14は、第1実施形態による第1光学膜用塗布液の液膜の乾燥により形成された第1光学膜を示す側面図である。図15は、第1実施形態による一部不溶化された第1光学膜を示す側面図である。 FIG. 13 is a side view showing a liquid film of the first optical film coating liquid coated on the substrate according to the first embodiment. FIG. 14 is a side view showing the first optical film formed by drying the liquid film of the first optical film coating liquid according to the first embodiment. FIG. 15 is a side view showing the first optical film partially insolubilized according to the first embodiment.
 図13~図15において、図2に示す有機発光ダイオード13や封止層30などの図示を省略する。尚、図16~図24において、同様に、図2に示す有機発光ダイオード13や封止層30などの図示を省略する。 13 to 15, the illustration of the organic light emitting diode 13 and the sealing layer 30 shown in FIG. 2 is omitted. 16 to 24, similarly, the illustration of the organic light emitting diode 13 and the sealing layer 30 shown in FIG. 2 is omitted.
 図13に示すように、第1光学膜形成工程S121では、基板10上に塗布ノズル60から第1光学膜用塗布液61を塗布する。塗布ノズル60は、例えば下面にスリット状の吐出口を有するスリットコータである。 As shown in FIG. 13, in the first optical film forming step S <b> 121, the first optical film coating liquid 61 is applied onto the substrate 10 from the coating nozzle 60. The application nozzle 60 is, for example, a slit coater having a slit-like discharge port on the lower surface.
 第1光学膜用塗布液61は、リオトロピック液晶分子やサーモトロピック液晶分子などの液晶分子と、液晶分子を溶かす溶媒とを含む。溶媒としては、例えば水などが用いられる。尚、溶媒として、有機溶媒が用いられてもよい。 The first optical film coating solution 61 includes liquid crystal molecules such as lyotropic liquid crystal molecules and thermotropic liquid crystal molecules, and a solvent that dissolves the liquid crystal molecules. For example, water is used as the solvent. An organic solvent may be used as the solvent.
 塗布ノズル60と基板10とを相対的に一方向に移動させることにより、基板10に塗布される第1光学膜用塗布液61にせん断応力を加えることができる。せん断応力の作用方向は、塗布ノズル60と基板10の相対的な移動方向と一致する。せん断応力の作用方向を制御することで、液晶分子の配向方向を制御できる。 By moving the coating nozzle 60 and the substrate 10 relatively in one direction, a shear stress can be applied to the first optical film coating solution 61 applied to the substrate 10. The acting direction of the shear stress coincides with the relative movement direction of the coating nozzle 60 and the substrate 10. The orientation direction of the liquid crystal molecules can be controlled by controlling the acting direction of the shear stress.
 尚、本実施形態では第1光学膜用塗布液61の塗布にスリットコータが用いられるが、ディップコータなどが用いられてもよい。第1光学膜用塗布液61にせん断応力を加えることができ、そのせん断応力の作用方向を制御できればよい。 In this embodiment, a slit coater is used to apply the first optical film coating solution 61, but a dip coater or the like may be used. It is only necessary that a shear stress can be applied to the first optical film coating solution 61 and the direction of action of the shear stress can be controlled.
 図14に示すように、第1光学膜形成工程S121では、基板10上に塗布された第1光学膜用塗布液61の液膜(図13参照)を乾燥して、第1光学膜62を形成する。第1光学膜用塗布液61の液膜から溶媒が除去され、液晶分子の配向が適切に維持される。第1光学膜62は、例えば1/4波長膜である。 As shown in FIG. 14, in the first optical film forming step S121, the liquid film (see FIG. 13) of the first optical film coating liquid 61 applied on the substrate 10 is dried to form the first optical film 62. Form. The solvent is removed from the liquid film of the first optical film coating liquid 61, and the alignment of the liquid crystal molecules is appropriately maintained. The first optical film 62 is, for example, a quarter wavelength film.
 第1光学膜用塗布液61の液膜の乾燥には、減圧乾燥、自然乾燥、加熱乾燥、風乾燥などが用いられる。減圧乾燥は、自然乾燥よりも、処理時間を短縮できる。また、減圧乾燥は、加熱乾燥や風乾燥に比べて、液膜の対流を抑制でき、液晶分子の配向の乱れを抑制できる。減圧乾燥で溶媒が残留している場合、さらに加熱乾燥が行われてもよい。 For drying the liquid film of the first optical film coating liquid 61, vacuum drying, natural drying, heat drying, air drying, or the like is used. The drying under reduced pressure can shorten the processing time compared with the natural drying. Moreover, the reduced pressure drying can suppress the convection of the liquid film and can suppress the disorder of the alignment of the liquid crystal molecules, as compared with the heat drying and the air drying. When the solvent remains by vacuum drying, heat drying may be further performed.
 図15に示すように、第1光学膜形成工程S121では、第1光学膜62の一部63のみを第1光学膜パターンニング工程S123で用いられる洗浄液に対し不溶化してもよい。この一部不溶化は、必要に応じて行われる。 As shown in FIG. 15, in the first optical film forming step S121, only a part 63 of the first optical film 62 may be insolubilized in the cleaning liquid used in the first optical film patterning step S123. This partial insolubilization is performed as necessary.
 尚、第1光学膜パターンニング工程S123で用いられる洗浄液としては、第1光学膜用塗布液61の溶媒と同じものが用いられてよく、例えば水が用いられてよい。この場合、水に対する不溶化が行われる。 In addition, as the cleaning liquid used in the first optical film patterning step S123, the same solvent as the solvent of the first optical film coating liquid 61 may be used, for example, water may be used. In this case, insolubilization with water is performed.
 第1光学膜62の一部63を不溶化する定着液110は、例えばインクジェット方式の塗布ノズル111から吐出される。塗布ノズル111は、下面に定着液110の液滴を吐出する吐出ノズルを複数有する。 The fixing liquid 110 that insolubilizes a part 63 of the first optical film 62 is discharged from, for example, an ink jet type application nozzle 111. The application nozzle 111 has a plurality of ejection nozzles that eject droplets of the fixing liquid 110 on the lower surface.
 塗布ノズル111と基板10とを相対的に移動させながら、塗布ノズル111から定着液110の液滴を吐出することで、第1光学膜62の一部63に定着液110を選択的に塗布する。これにより、第1光学膜62の一部63が不溶化される。 The fixing liquid 110 is selectively applied to a part 63 of the first optical film 62 by discharging droplets of the fixing liquid 110 from the application nozzle 111 while relatively moving the application nozzle 111 and the substrate 10. . Thereby, a part 63 of the first optical film 62 is insolubilized.
 定着液110は、例えば、第1光学膜62の末端の官能基(例えばOH基などの水溶性の官能基)を別の官能基に置換することで、第1光学膜62の一部63を不溶化する。また、定着液110は、縮合反応(例えばOH基などの脱水縮合反応)によって高分子化させることで、第1光学膜62の一部63を不溶化してもよい。後者の場合、前者の場合に比べて、高分子化が進むため、不溶化が進みやすい。 The fixing solution 110 replaces a part 63 of the first optical film 62 by, for example, substituting the functional group at the end of the first optical film 62 (for example, a water-soluble functional group such as an OH group) with another functional group. Insolubilize. Further, the fixing solution 110 may be polymerized by a condensation reaction (for example, a dehydration condensation reaction such as an OH group) to insolubilize a part 63 of the first optical film 62. In the latter case, insolubilization is likely to proceed because of higher polymerization than in the former case.
 定着液110は、第1光学膜62の一部63を不溶化した後、除去される。定着液110は、水を含んでもよいし、有機溶媒を含んでもよい。 The fixing solution 110 is removed after insolubilizing a part 63 of the first optical film 62. The fixing solution 110 may contain water or an organic solvent.
 定着液110が塗布される領域は、例えば、OLEDなどの画素が複数形成される領域(以下、「画素エリア」とも呼ぶ。)であってよい。 The region to which the fixing liquid 110 is applied may be, for example, a region where a plurality of pixels such as OLEDs are formed (hereinafter also referred to as “pixel area”).
 尚、本実施形態では、第1光学膜62の一部63のみに定着液110を塗布するため、インクジェット方式の塗布ノズル111を用いるが、本発明はこれに限定されない。例えば、第1光学膜62の残部のみをマスクで覆い、その後、基板10全体を定着液110に浸漬することで、第1光学膜62の一部63のみに定着液を塗布してもよい。 In this embodiment, since the fixing liquid 110 is applied only to a part 63 of the first optical film 62, the ink jet type application nozzle 111 is used. However, the present invention is not limited to this. For example, only the remaining part of the first optical film 62 may be covered with a mask, and then the entire substrate 10 may be immersed in the fixing liquid 110 to apply the fixing liquid only to a part 63 of the first optical film 62.
 <第1実施形態の中間膜形成工程>
 図12の中間膜形成工程S122では、図16~図17に示すように、第1光学膜用塗布液61とは異なる中間膜用塗布液71を第1光学膜62上に塗布して乾燥することにより中間膜72を形成する。
<Intermediate Film Forming Process of First Embodiment>
In the intermediate film forming step S122 of FIG. 12, as shown in FIGS. 16 to 17, an intermediate film coating liquid 71 different from the first optical film coating liquid 61 is applied on the first optical film 62 and dried. Thus, the intermediate film 72 is formed.
 図16は、第1実施形態による第1光学膜上に塗布された中間膜用塗布液の液膜を示す側面図である。図17は、第1実施形態による中間膜用塗布液の液膜の乾燥により形成された中間膜を示す側面図である。 FIG. 16 is a side view showing a liquid film of the coating liquid for intermediate film applied on the first optical film according to the first embodiment. FIG. 17 is a side view showing the intermediate film formed by drying the liquid film of the intermediate film coating liquid according to the first embodiment.
 図16に示すように、中間膜形成工程S122では、第1光学膜62が形成された基板10上に塗布ノズル70から中間膜用塗布液71を塗布する。塗布ノズル70は、インクジェット方式であってよく、下面に中間膜用塗布液71の液滴を吐出する吐出ノズルを複数有する。 As shown in FIG. 16, in the intermediate film forming step S <b> 122, the intermediate film coating liquid 71 is applied from the coating nozzle 70 onto the substrate 10 on which the first optical film 62 is formed. The coating nozzle 70 may be an ink jet method, and has a plurality of ejection nozzles that eject droplets of the coating liquid 71 for the intermediate film on the lower surface.
 塗布ノズル70と基板10とを相対的に移動させながら、塗布ノズル70から中間膜用塗布液71の液滴を吐出することで、第1光学膜62の一部63に中間膜用塗布液71を選択的に塗布する。 While the coating nozzle 70 and the substrate 10 are moved relatively, droplets of the coating liquid 71 for the intermediate film are ejected from the coating nozzle 70, so that the coating liquid 71 for the intermediate film is applied to a part 63 of the first optical film 62. Is applied selectively.
 中間膜用塗布液71は、第1光学膜62上に塗布される。そのため、第1光学膜62を形成する液晶分子は、中間膜用塗布液71の溶媒に対し不溶性を有してよい。中間膜用塗布液71の塗布によって第1光学膜62が溶けることを防止できる。 The intermediate film coating solution 71 is coated on the first optical film 62. Therefore, the liquid crystal molecules forming the first optical film 62 may be insoluble in the solvent of the intermediate film coating liquid 71. It is possible to prevent the first optical film 62 from being melted by the application of the intermediate film coating liquid 71.
 中間膜用塗布液71は、中間膜72を形成する有機材料と、その有機材料を溶かす溶媒とを含む。中間膜72を形成する有機材料は、第1光学膜パターンニング工程S123で用いられる洗浄液に対し不溶性の高分子などを含む。 The intermediate film coating solution 71 includes an organic material that forms the intermediate film 72 and a solvent that dissolves the organic material. The organic material forming the intermediate film 72 includes a polymer insoluble in the cleaning liquid used in the first optical film patterning step S123.
 中間膜用塗布液71としては、例えば、熱硬化型の透明塗料、化学反応型の透明塗料、乾燥硬化型の透明塗料などが用いられる。具体的には、油性エナメル塗料、フタル酸樹脂塗料などが用いられる。 As the intermediate film coating liquid 71, for example, a thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, or the like is used. Specifically, oil-based enamel paint, phthalate resin paint, or the like is used.
 熱硬化型の透明塗料、化学反応型の透明塗料、乾燥硬化型の透明塗料などは、熱硬化や化学反応または乾燥硬化によって高分子化されるため、緻密な中間膜72を形成できる。よって、中間膜72の第1光学膜パターンニング工程S123で用いられる洗浄液に対する不溶性を向上できる。 A thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, and the like are polymerized by thermal curing, chemical reaction, or dry curing, and thus a dense intermediate film 72 can be formed. Therefore, the insolubility of the intermediate film 72 with respect to the cleaning liquid used in the first optical film patterning step S123 can be improved.
 中間膜用塗布液71は、定着液110と同様の機能を有してもよい。第1光学膜62の一部不溶化を促進できる。尚、中間膜用塗布液71によって第1光学膜62の一部不溶化を行う場合、上記第1光学膜形成工程S121で第1光学膜62の一部不溶化を行わなくてもよい。 The intermediate film coating liquid 71 may have the same function as the fixing liquid 110. Partial insolubilization of the first optical film 62 can be promoted. In the case where the first optical film 62 is partially insolubilized by the intermediate film coating solution 71, the first optical film 62 may not be partially insolubilized in the first optical film forming step S121.
 例えば、中間膜用塗布液71は、第1光学膜62の末端の官能基(例えばOH基などの水溶性の官能基)を別の官能基に置換することで、第1光学膜62の一部63を不溶化してもよい。また、中間膜用塗布液71は、縮合反応(例えばOH基などの脱水縮合反応)によって高分子化させることで、第1光学膜62の一部63を不溶化してもよい。後者の場合、前者の場合に比べて、高分子化が進むため、不溶化が進みやすい。 For example, the coating liquid 71 for the intermediate film replaces a functional group at the end of the first optical film 62 (for example, a water-soluble functional group such as an OH group) with another functional group, thereby The part 63 may be insolubilized. In addition, the intermediate film coating liquid 71 may be insolubilized by partly insolubilizing 63 of the first optical film 62 by polymerizing by a condensation reaction (for example, a dehydration condensation reaction such as OH group). In the latter case, insolubilization is likely to proceed because of higher polymerization than in the former case.
 中間膜用塗布液71が塗布される領域は、定着液110が塗布される領域と一致してよい。例えば、中間膜用塗布液71が塗布される領域は、基板10上の画素エリアであってよい。 The area where the intermediate film coating liquid 71 is applied may coincide with the area where the fixing liquid 110 is applied. For example, the region to which the intermediate film coating liquid 71 is applied may be a pixel area on the substrate 10.
 図17に示すように、中間膜形成工程S122では、基板10上に塗布された中間膜用塗布液71の液膜(図16参照)を乾燥して、中間膜72を形成する。中間膜用塗布液71の液膜から溶媒が除去され、中間膜72が形成される。 17, in the intermediate film forming step S122, the liquid film (see FIG. 16) of the intermediate film coating liquid 71 applied on the substrate 10 is dried to form the intermediate film 72. The solvent is removed from the liquid film of the intermediate film coating liquid 71 to form the intermediate film 72.
 中間膜用塗布液71の液膜の乾燥には、減圧乾燥、自然乾燥、加熱乾燥、風乾燥などが用いられる。減圧乾燥は、自然乾燥よりも、処理時間を短縮できる。減圧乾燥で溶媒が残留している場合、さらに加熱乾燥が行われてもよい。 For drying the liquid film of the intermediate film coating liquid 71, vacuum drying, natural drying, heat drying, wind drying, or the like is used. The drying under reduced pressure can shorten the processing time compared with the natural drying. When the solvent remains by vacuum drying, heat drying may be further performed.
 中間膜72は、第1光学膜パターンニング工程S123で用いられる洗浄液に対し不溶性を有する。中間膜72は、第1光学膜62とは異なり、等方的な光学特性を有する。中間膜72の可視光透過率は95%以上であることが好ましい。また、中間膜72の膜厚は、10μm以下であることが好ましい。また、中間膜72の残留応力は、光学部材の変形を抑制するため、小さいほど好ましい。 The intermediate film 72 is insoluble in the cleaning liquid used in the first optical film patterning step S123. Unlike the first optical film 62, the intermediate film 72 has isotropic optical characteristics. The visible light transmittance of the intermediate film 72 is preferably 95% or more. The film thickness of the intermediate film 72 is preferably 10 μm or less. Further, the residual stress of the intermediate film 72 is preferably as small as possible in order to suppress deformation of the optical member.
 中間膜72は、第1光学膜62の一部63の主表面を覆う。中間膜72は、第1光学膜62の一部63に傷や異物などが付かないように、第1光学膜62の一部63を保護する役割も果たす。中間膜72の鉛筆硬度は、2H以上であることが好ましい。光学部材の製造が途中で一時的に中断され、再開までに時間がかかる場合、傷や異物が付くリスクが高いため、特に有効である。 The intermediate film 72 covers the main surface of a part 63 of the first optical film 62. The intermediate film 72 also serves to protect the part 63 of the first optical film 62 so that the part 63 of the first optical film 62 is not scratched or foreign. The pencil hardness of the intermediate film 72 is preferably 2H or more. This is particularly effective when the production of the optical member is temporarily interrupted and it takes a long time to resume since there is a high risk of scratches and foreign matter.
 尚、第1光学膜62の残部は、第1光学膜パターンニング工程S123で除去されるため、傷や異物が付くことは問題にならない。また、中間膜72に付いた異物は洗浄で除去でき、その洗浄によって第1光学膜62の一部63が傷つくことは無い。 In addition, since the remainder of the 1st optical film 62 is removed by 1st optical film patterning process S123, it does not become a problem that a damage | wound and a foreign material attach. Further, the foreign matter attached to the intermediate film 72 can be removed by cleaning, and the cleaning does not damage the part 63 of the first optical film 62.
 <第1実施形態の第1光学膜パターンニング工程>
 図12の第1光学膜パターンニング工程S123では、中間膜形成工程S122の後、第2光学膜形成工程S124の前に、第1光学膜62の一部63(図17参照)のみを覆う中間膜72をマスクとして用いて、図18に示すように第1光学膜62の残部を除去する。
<First Optical Film Patterning Step of First Embodiment>
In the first optical film patterning step S123 of FIG. 12, after the intermediate film forming step S122 and before the second optical film forming step S124, an intermediate covering only a part 63 (see FIG. 17) of the first optical film 62. Using the film 72 as a mask, the remaining portion of the first optical film 62 is removed as shown in FIG.
 図18は、第1実施形態による中間膜で覆われていない部分が除去された第1光学膜を示す側面図である。第1光学膜パターンニング工程S123の間、第1光学膜62の一部63を中間膜72で保護でき、第1光学膜62の一部63の形状崩れを抑制できる。よって、光学部材の品質を向上できる。 FIG. 18 is a side view showing the first optical film from which a portion not covered with the intermediate film according to the first embodiment is removed. During the first optical film patterning step S123, the part 63 of the first optical film 62 can be protected by the intermediate film 72, and the shape collapse of the part 63 of the first optical film 62 can be suppressed. Therefore, the quality of the optical member can be improved.
 例えば、第1光学膜パターンニング工程S123では、第1光学膜62を溶かす洗浄液を用いる。洗浄液は、例えばスピンチャックで基板10を回転させながら、基板10に供給される。基板10に供給された洗浄液は、遠心力によって基板10の全体に広がり、基板10の外周縁から振り切られる。 For example, in the first optical film patterning step S123, a cleaning solution that dissolves the first optical film 62 is used. The cleaning liquid is supplied to the substrate 10 while rotating the substrate 10 with, for example, a spin chuck. The cleaning liquid supplied to the substrate 10 spreads over the entire substrate 10 by centrifugal force and is shaken off from the outer peripheral edge of the substrate 10.
 第1光学膜62の一部63は、中間膜72で覆われているため、洗浄液と接触することがなく、洗浄液によって型崩れしない。一方、第1光学膜62の残部は、洗浄液と接触するため、洗浄液で溶かされ、除去される。 Since a part 63 of the first optical film 62 is covered with the intermediate film 72, it does not come into contact with the cleaning liquid and is not deformed by the cleaning liquid. On the other hand, the remaining portion of the first optical film 62 comes into contact with the cleaning liquid and is dissolved and removed by the cleaning liquid.
 尚、洗浄液は洗浄槽に貯えられ、洗浄槽の洗浄液に基板10を浸漬することで、第1光学膜62の一部63を残しつつ、第1光学膜62の残部を溶かして除去してもよい。洗浄槽の洗浄液は、撹拌翼などで撹拌されてもよい。 The cleaning liquid is stored in the cleaning tank, and the substrate 10 is immersed in the cleaning liquid in the cleaning tank so that the remaining portion of the first optical film 62 can be dissolved and removed while leaving a part 63 of the first optical film 62. Good. The cleaning liquid in the cleaning tank may be stirred with a stirring blade or the like.
 第1光学膜62の一部63が確実に残るように、上記第1光学膜形成工程S121や上記中間膜形成工程S122において、第1光学膜62の一部63を洗浄液に対し不溶化することは有効である。洗浄液の回り込みによる過剰な除去を防止でき、第1光学膜62の一部63を確実に残すことができる。 In order to ensure that the part 63 of the first optical film 62 remains, the part 63 of the first optical film 62 is insolubilized in the cleaning liquid in the first optical film forming step S121 and the intermediate film forming step S122. It is valid. Excessive removal due to the wraparound of the cleaning liquid can be prevented, and a part 63 of the first optical film 62 can be reliably left.
 尚、中間膜72は洗浄液に対する不溶性を有するため、上記第1光学膜形成工程S121や上記中間膜形成工程S122において、第1光学膜62の一部不溶化を行わなくても、第1光学膜62のパターンニングは可能である。この場合、工程数を削減できる。 Since the intermediate film 72 is insoluble in the cleaning liquid, the first optical film 62 can be obtained without partially insolubilizing the first optical film 62 in the first optical film forming step S121 and the intermediate film forming step S122. Patterning is possible. In this case, the number of processes can be reduced.
 上記第1光学膜形成工程S121では、せん断応力を加えながら第1光学膜用塗布液61を塗布するため、画素エリアのみに第1光学膜用塗布液61を塗布するのは困難である。従って、第1光学膜パターンニング工程S123を行うことは有効である。 In the first optical film forming step S121, since the first optical film coating liquid 61 is applied while applying a shear stress, it is difficult to apply the first optical film coating liquid 61 only to the pixel area. Therefore, it is effective to perform the first optical film patterning step S123.
 尚、本実施形態では洗浄液を用いて第1光学膜62の残部を除去するが、第1光学膜62の残部の除去方法は特に限定されない。例えば、エッチング法が用いられてもよい。エッチングは、ウェットエッチング、ドライエッチングのいずれでもよい。 In the present embodiment, the remaining portion of the first optical film 62 is removed using a cleaning liquid, but the method for removing the remaining portion of the first optical film 62 is not particularly limited. For example, an etching method may be used. Etching may be either wet etching or dry etching.
 以下、第1光学膜パターンニング工程S123で残る第1光学膜62の一部63を、「第1光学膜63」とも称する。 Hereinafter, the part 63 of the first optical film 62 remaining in the first optical film patterning step S123 is also referred to as “first optical film 63”.
 <第1実施形態の第2光学膜形成工程>
 図12の第2光学膜形成工程S124では、図19~図21に示すように、液晶分子と溶媒を含む第2光学膜用塗布液81を中間膜72上に塗布して乾燥することにより第2光学膜82を形成する。第2光学膜82は、例えば直線偏光膜である。
<Second Optical Film Forming Process of First Embodiment>
In the second optical film forming step S124 of FIG. 12, as shown in FIGS. 19 to 21, a second optical film coating liquid 81 containing liquid crystal molecules and a solvent is applied on the intermediate film 72 and dried. Two optical films 82 are formed. The second optical film 82 is, for example, a linearly polarizing film.
 図19~図21は、第1実施形態による第2光学膜形成工程の説明側面図である。図19は、第1実施形態による中間膜上に塗布された第2光学膜用塗布液の液膜を示す側面図である。図20は、第1実施形態による第2光学膜用塗布液の液膜の乾燥により形成された第2光学膜を示す側面図である。図21は、第1実施形態による一部不溶化された第2光学膜を示す側面図である。 19 to 21 are explanatory side views of the second optical film forming step according to the first embodiment. FIG. 19 is a side view showing a liquid film of the second optical film coating liquid coated on the intermediate film according to the first embodiment. FIG. 20 is a side view showing the second optical film formed by drying the liquid film of the second optical film coating liquid according to the first embodiment. FIG. 21 is a side view showing the second optical film partially insolubilized according to the first embodiment.
 図19に示すように、第2光学膜形成工程S124では、基板10上に塗布ノズル80から第2光学膜用塗布液81を塗布する。塗布ノズル80は、例えば下面にスリット状の吐出口を有するスリットコータである。 As shown in FIG. 19, in the second optical film forming step S <b> 124, a second optical film coating liquid 81 is applied onto the substrate 10 from the coating nozzle 80. The application nozzle 80 is, for example, a slit coater having a slit-like discharge port on the lower surface.
 第2光学膜用塗布液81は、中間膜72上に塗布される。そのため、中間膜72を形成する有機材料は、第2光学膜用塗布液81の溶媒に対し不溶性を有してよい。第2光学膜用塗布液81の塗布によって中間膜72が溶けることを防止できる。 The second optical film coating solution 81 is applied onto the intermediate film 72. Therefore, the organic material forming the intermediate film 72 may be insoluble in the solvent of the second optical film coating liquid 81. It is possible to prevent the intermediate film 72 from being melted by the application of the second optical film coating liquid 81.
 第2光学膜用塗布液81は、リオトロピック液晶分子やサーモトロピック液晶分子などの液晶分子と、液晶分子を溶かす溶媒とを含む。溶媒としては、例えば水などが用いられる。尚、溶媒として、有機溶媒が用いられてもよい。 The coating solution 81 for the second optical film contains liquid crystal molecules such as lyotropic liquid crystal molecules and thermotropic liquid crystal molecules, and a solvent that dissolves the liquid crystal molecules. For example, water is used as the solvent. An organic solvent may be used as the solvent.
 塗布ノズル80と基板10とを相対的に一方向に移動させることにより、基板10に塗布される第2光学膜用塗布液81にせん断応力を加えることができる。せん断応力の作用方向は、塗布ノズル80と基板10の相対的な移動方向と一致する。せん断応力の作用方向を制御することで、液晶分子の配向方向を制御できる。 By moving the coating nozzle 80 and the substrate 10 relatively in one direction, a shear stress can be applied to the second optical film coating solution 81 applied to the substrate 10. The acting direction of the shear stress coincides with the relative movement direction of the coating nozzle 80 and the substrate 10. The orientation direction of the liquid crystal molecules can be controlled by controlling the acting direction of the shear stress.
 第2光学膜形成工程S124でのせん断応力の作用方向は、第1光学膜形成工程S121でのせん断応力の作用方向に対し斜め45°で交わる方向とされる。これにより、1/4波長膜と直線偏光膜は、その偏光軸が45度で交差するように形成される。 The acting direction of the shear stress in the second optical film forming step S124 is a direction intersecting at an oblique angle of 45 ° with respect to the acting direction of the shear stress in the first optical film forming step S121. Thereby, the quarter wavelength film and the linearly polarizing film are formed so that their polarization axes intersect at 45 degrees.
 尚、本実施形態では第2光学膜用塗布液81の塗布にスリットコータが用いられるが、ディップコータなどが用いられてもよい。第2光学膜用塗布液81にせん断応力を加えることができ、そのせん断応力の作用方向を制御できればよい。 In this embodiment, a slit coater is used to apply the second optical film coating solution 81, but a dip coater or the like may be used. It is only necessary that a shear stress can be applied to the second optical film coating solution 81 and the direction of action of the shear stress can be controlled.
 図20に示すように、第2光学膜形成工程S124では、基板10上に塗布された第2光学膜用塗布液81の液膜(図19参照)を乾燥して、第2光学膜82を形成する。第2光学膜用塗布液81の液膜から溶媒が除去され、液晶分子の配向が適切に維持される。第2光学膜82は、例えば直線偏光膜である。 As shown in FIG. 20, in the second optical film forming step S124, the liquid film (see FIG. 19) of the second optical film coating liquid 81 applied on the substrate 10 is dried to form the second optical film 82. Form. The solvent is removed from the liquid film of the second optical film coating liquid 81, and the alignment of the liquid crystal molecules is appropriately maintained. The second optical film 82 is, for example, a linearly polarizing film.
 第2光学膜用塗布液81の液膜の乾燥には、減圧乾燥、自然乾燥、加熱乾燥、風乾燥などが用いられる。減圧乾燥は、自然乾燥よりも、処理時間を短縮できる。また、減圧乾燥は、加熱乾燥や風乾燥に比べて、液膜の対流を抑制でき、液晶分子の配向の乱れを抑制できる。減圧乾燥で溶媒が残留している場合、さらに加熱乾燥が行われてもよい。 For drying the liquid film of the second optical film coating liquid 81, vacuum drying, natural drying, heat drying, wind drying, or the like is used. The drying under reduced pressure can shorten the processing time compared with the natural drying. Moreover, the reduced pressure drying can suppress the convection of the liquid film and can suppress the disorder of the alignment of the liquid crystal molecules, as compared with the heat drying and the air drying. When the solvent remains by vacuum drying, heat drying may be further performed.
 図21に示すように、第2光学膜形成工程S124では、第2光学膜82の一部83のみを第2光学膜パターンニング工程S126で用いられる洗浄液に対し不溶化してもよい。この一部不溶化は、必要に応じて行われる。 As shown in FIG. 21, in the second optical film forming step S124, only a part 83 of the second optical film 82 may be insolubilized in the cleaning liquid used in the second optical film patterning step S126. This partial insolubilization is performed as necessary.
 尚、第2光学膜パターンニング工程S126で用いられる洗浄液としては、第2光学膜用塗布液81の溶媒と同じものが用いられてよく、例えば水が用いられてよい。この場合、水に対する不溶化が行われる。 As the cleaning liquid used in the second optical film patterning step S126, the same solvent as the solvent of the second optical film coating liquid 81 may be used, for example, water may be used. In this case, insolubilization with water is performed.
 第2光学膜82の一部83を不溶化する定着液120は、例えばインクジェット方式の塗布ノズル121から吐出される。塗布ノズル121は、下面に定着液120の液滴を吐出する吐出ノズルを複数有する。 The fixing liquid 120 that insolubilizes the part 83 of the second optical film 82 is discharged from, for example, an ink jet type application nozzle 121. The coating nozzle 121 has a plurality of ejection nozzles that eject droplets of the fixing liquid 120 on the lower surface.
 塗布ノズル121と基板10とを相対的に移動させながら、塗布ノズル121から定着液120の液滴を吐出することで、第2光学膜82の一部83に定着液120を選択的に塗布する。これにより、第2光学膜82の一部83が不溶化される。 The fixing liquid 120 is selectively applied to a part 83 of the second optical film 82 by discharging droplets of the fixing liquid 120 from the application nozzle 121 while relatively moving the application nozzle 121 and the substrate 10. . Thereby, a part 83 of the second optical film 82 is insolubilized.
 定着液120は、例えば、第2光学膜82の末端の官能基(例えばOH基などの水溶性の官能基)を別の官能基に置換することで、第2光学膜82の一部83を不溶化する。また、定着液120は、縮合反応(例えばOH基などの脱水縮合反応)によって高分子化させることで、第2光学膜82の一部83を不溶化してもよい。後者の場合、前者の場合に比べて、高分子化が進むため、不溶化が進みやすい。 For example, the fixing solution 120 replaces the functional group at the end of the second optical film 82 (for example, a water-soluble functional group such as an OH group) with another functional group, so that a part 83 of the second optical film 82 is replaced. Insolubilize. Further, the fixing solution 120 may be polymerized by a condensation reaction (for example, a dehydration condensation reaction such as an OH group) to insolubilize a part 83 of the second optical film 82. In the latter case, insolubilization is likely to proceed because of higher polymerization than in the former case.
 定着液120は、第2光学膜82の一部83を不溶化した後、除去される。定着液120は、水を含んでもよいし、有機溶媒を含んでもよい。 The fixing solution 120 is removed after insolubilizing the part 83 of the second optical film 82. The fixing solution 120 may contain water or an organic solvent.
 定着液120が塗布される領域は、例えば画素エリアであってよい。 The area where the fixing liquid 120 is applied may be, for example, a pixel area.
 尚、本実施形態では、第2光学膜82の一部83のみに定着液120を塗布するため、インクジェット方式の塗布ノズル121を用いるが、本発明はこれに限定されない。例えば、第2光学膜82の残部のみをマスクで覆い、その後、基板10全体を定着液120に浸漬することで、第2光学膜82の一部83のみに定着液を塗布してもよい。 In this embodiment, since the fixing liquid 120 is applied only to a part 83 of the second optical film 82, the ink jet type application nozzle 121 is used, but the present invention is not limited to this. For example, only the remaining part of the second optical film 82 may be covered with a mask, and then the entire substrate 10 may be immersed in the fixing liquid 120 to apply the fixing liquid only to a part 83 of the second optical film 82.
 <第1実施形態の保護膜形成工程>
 図12の保護膜形成工程S125では、図22~図23に示すように、第2光学膜用塗布液81とは異なる保護膜用塗布液91を第2光学膜82上に塗布して乾燥することにより保護膜92を形成する。
<Protective film formation process of 1st Embodiment>
In the protective film forming step S125 of FIG. 12, as shown in FIGS. 22 to 23, a protective film coating liquid 91 different from the second optical film coating liquid 81 is applied onto the second optical film 82 and dried. Thereby, the protective film 92 is formed.
 図22は、第1実施形態による第2光学膜上に塗布された保護膜用塗布液の液膜を示す側面図である。図23は、第1実施形態による保護膜用塗布液の液膜の乾燥により形成された保護膜を示す側面図である。 FIG. 22 is a side view showing a liquid film of the coating liquid for the protective film applied on the second optical film according to the first embodiment. FIG. 23 is a side view showing the protective film formed by drying the liquid film of the protective film coating liquid according to the first embodiment.
 図22に示すように、保護膜形成工程S125では、第2光学膜82が形成された基板10上に塗布ノズル90から保護膜用塗布液91を塗布する。塗布ノズル90は、インクジェット方式であってよく、下面に保護膜用塗布液91の液滴を吐出する吐出ノズルを複数有する。 As shown in FIG. 22, in the protective film forming step S125, the protective film coating liquid 91 is applied from the coating nozzle 90 onto the substrate 10 on which the second optical film 82 is formed. The coating nozzle 90 may be an ink jet system, and has a plurality of ejection nozzles that eject droplets of the protective film coating liquid 91 on the lower surface.
 塗布ノズル90と基板10とを相対的に移動させながら、塗布ノズル90から保護膜用塗布液91の液滴を吐出することで、第2光学膜82の一部83に保護膜用塗布液91を選択的に塗布する。 While the coating nozzle 90 and the substrate 10 are moved relatively, droplets of the coating liquid 91 for the protective film are ejected from the coating nozzle 90, so that the coating liquid 91 for the protective film is applied to a part 83 of the second optical film 82. Is applied selectively.
 保護膜用塗布液91は、第2光学膜82上に塗布される。そのため、第2光学膜82を形成する液晶分子は、保護膜用塗布液91の溶媒に対し不溶性を有してよい。保護膜用塗布液91の塗布によって第2光学膜82が溶けることを防止できる。 The protective film coating liquid 91 is applied onto the second optical film 82. Therefore, the liquid crystal molecules forming the second optical film 82 may be insoluble in the solvent of the protective film coating liquid 91. It is possible to prevent the second optical film 82 from being melted by the application of the protective film coating liquid 91.
 保護膜用塗布液91は、保護膜92を形成する有機材料と、その有機材料を溶かす溶媒とを含む。保護膜92を形成する有機材料は、第2光学膜パターンニング工程S126で用いられる洗浄液に対し不溶性の高分子などを含む。 The protective film coating solution 91 includes an organic material that forms the protective film 92 and a solvent that dissolves the organic material. The organic material forming the protective film 92 includes a polymer that is insoluble in the cleaning liquid used in the second optical film patterning step S126.
 保護膜用塗布液91としては、例えば、熱硬化型の透明塗料、化学反応型の透明塗料、乾燥硬化型の透明塗料などが用いられる。具体的には、油性エナメル塗料、フタル酸樹脂塗料などが用いられる。 As the protective film coating liquid 91, for example, a thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, or the like is used. Specifically, oil-based enamel paint, phthalate resin paint, or the like is used.
 熱硬化型の透明塗料、化学反応型の透明塗料、乾燥硬化型の透明塗料などは、熱硬化や化学反応または乾燥硬化によって高分子化されるため、緻密な保護膜92を形成できる。よって、保護膜92の第2光学膜パターンニング工程S126で用いられる洗浄液に対する不溶性を向上できる。 A thermosetting transparent coating, a chemical reaction type transparent coating, a dry curing type transparent coating, and the like are polymerized by thermal curing, chemical reaction, or drying curing, so that a dense protective film 92 can be formed. Therefore, the insolubility of the protective film 92 in the cleaning liquid used in the second optical film patterning step S126 can be improved.
 保護膜用塗布液91は、定着液120と同様の機能を有してもよい。第2光学膜82の一部不溶化を促進できる。尚、保護膜用塗布液91によって第2光学膜82の一部不溶化を行う場合、上記第2光学膜形成工程S124で第2光学膜82の一部不溶化を行わなくてもよい。 The protective film coating liquid 91 may have the same function as the fixing liquid 120. Partial insolubilization of the second optical film 82 can be promoted. When the second optical film 82 is partially insolubilized by the protective film coating solution 91, the second optical film 82 may not be partially insolubilized in the second optical film forming step S124.
 例えば、保護膜用塗布液91は、第2光学膜82の末端の官能基(例えばOH基などの水溶性の官能基)を別の官能基に置換することで、第2光学膜82の一部83を不溶化してもよい。また、保護膜用塗布液91は、縮合反応(例えばOH基などの脱水縮合反応)によって高分子化させることで、第2光学膜82の一部83を不溶化してもよい。後者の場合、前者の場合に比べて、高分子化が進むため、不溶化が進みやすい。 For example, the coating liquid 91 for the protective film replaces the functional group at the end of the second optical film 82 (for example, a water-soluble functional group such as an OH group) with another functional group, thereby The part 83 may be insolubilized. The protective film coating solution 91 may be polymerized by a condensation reaction (for example, a dehydration condensation reaction such as an OH group) to insolubilize a part 83 of the second optical film 82. In the latter case, insolubilization is likely to proceed because of higher polymerization than in the former case.
 保護膜用塗布液91が塗布される領域は、定着液120が塗布される領域と一致してよい。例えば、保護膜用塗布液91が塗布される領域は、基板10上の画素エリアであってよい。 The area where the protective film coating liquid 91 is applied may coincide with the area where the fixing liquid 120 is applied. For example, the region where the protective film coating liquid 91 is applied may be a pixel area on the substrate 10.
 図23に示すように、保護膜形成工程S125では、基板10上に塗布された保護膜用塗布液91の液膜(図22参照)を乾燥して、保護膜92を形成する。保護膜用塗布液91の液膜から溶媒が除去され、保護膜92が形成される。 As shown in FIG. 23, in the protective film forming step S125, the liquid film (see FIG. 22) of the protective film coating liquid 91 applied on the substrate 10 is dried to form the protective film 92. The solvent is removed from the liquid film of the protective film coating liquid 91 to form a protective film 92.
 保護膜用塗布液91の液膜の乾燥には、減圧乾燥、自然乾燥、加熱乾燥、風乾燥などが用いられる。減圧乾燥は、自然乾燥よりも、処理時間を短縮できる。減圧乾燥で溶媒が残留している場合、さらに加熱乾燥が行われてもよい。 For drying the liquid film of the protective film coating liquid 91, vacuum drying, natural drying, heat drying, wind drying, or the like is used. The drying under reduced pressure can shorten the processing time compared with the natural drying. When the solvent remains by vacuum drying, heat drying may be further performed.
 保護膜92は、第2光学膜パターンニング工程S126で用いられる洗浄液に対し不溶性を有する。保護膜92は、第2光学膜82とは異なり、等方的な光学特性を有する。保護膜92の可視光透過率は95%以上であることが好ましい。また、保護膜92の膜厚は、10μm以下であることが好ましい。また、保護膜92の残留応力は、光学部材の変形を抑制するため、小さいほど好ましい。 The protective film 92 is insoluble in the cleaning liquid used in the second optical film patterning step S126. Unlike the second optical film 82, the protective film 92 has isotropic optical characteristics. The visible light transmittance of the protective film 92 is preferably 95% or more. The film thickness of the protective film 92 is preferably 10 μm or less. Further, the residual stress of the protective film 92 is preferably as small as possible in order to suppress deformation of the optical member.
 保護膜92は、第2光学膜82の一部83の主表面を覆う。保護膜92は、第2光学膜82の一部83に傷や異物などが付かないように、第2光学膜82の一部83を保護する役割も果たす。中間膜72の鉛筆硬度は、2H以上であることが好ましい。 The protective film 92 covers the main surface of a part 83 of the second optical film 82. The protective film 92 also serves to protect the part 83 of the second optical film 82 so that the part 83 of the second optical film 82 is not damaged or foreign matter. The pencil hardness of the intermediate film 72 is preferably 2H or more.
 尚、第2光学膜82の残部は、第2光学膜パターンニング工程S126で除去されるため、傷や異物が付くことは問題にならない。また、保護膜92に付いた異物は洗浄で除去でき、その洗浄によって第2光学膜82の一部83が傷つくことは無い。 In addition, since the remainder of the second optical film 82 is removed in the second optical film patterning step S126, it is not a problem that scratches or foreign matters are attached. In addition, the foreign matter attached to the protective film 92 can be removed by cleaning, and the cleaning does not damage the portion 83 of the second optical film 82.
 尚、本実施形態の保護膜92は、保護膜用塗布液91を第2光学膜82上に塗布して乾燥することにより形成するが、フィルムの形態で第2光学膜82に貼り付けられてもよい。 The protective film 92 of the present embodiment is formed by applying the protective film coating liquid 91 on the second optical film 82 and drying it. The protective film 92 is attached to the second optical film 82 in the form of a film. Also good.
 <第1実施形態の第2光学膜パターンニング工程>
 図12の第2光学膜パターンニング工程S126では、保護膜形成工程S125の後に、第2光学膜82の一部83のみを覆う保護膜92(図23参照)をマスクとして用いて、図24に示すように第2光学膜82の残部を除去する。
<Second Optical Film Patterning Step of First Embodiment>
In the second optical film patterning step S126 of FIG. 12, after the protective film forming step S125, the protective film 92 (see FIG. 23) covering only a part 83 of the second optical film 82 is used as a mask in FIG. As shown, the remaining portion of the second optical film 82 is removed.
 図24は、第1実施形態による保護膜で覆われていない部分が除去された第2光学膜を示す側面図である。第2光学膜パターンニング工程S126の間、第2光学膜82の一部83を保護膜92で保護でき、第2光学膜82の一部83の形状崩れを抑制できる。よって、光学部材の品質を向上できる。 FIG. 24 is a side view showing the second optical film from which a portion not covered with the protective film according to the first embodiment is removed. During the second optical film patterning step S126, the part 83 of the second optical film 82 can be protected by the protective film 92, and the shape collapse of the part 83 of the second optical film 82 can be suppressed. Therefore, the quality of the optical member can be improved.
 例えば、第2光学膜パターンニング工程S126では、第2光学膜82を溶かす洗浄液を用いる。洗浄液は、例えばスピンチャックで基板10を回転させながら、基板10に供給される。基板10に供給された洗浄液は、遠心力によって基板10の全体に広がり、基板10の外周縁から振り切られる。 For example, in the second optical film patterning step S126, a cleaning solution that dissolves the second optical film 82 is used. The cleaning liquid is supplied to the substrate 10 while rotating the substrate 10 with, for example, a spin chuck. The cleaning liquid supplied to the substrate 10 spreads over the entire substrate 10 by centrifugal force and is shaken off from the outer peripheral edge of the substrate 10.
 第2光学膜82の一部83は、保護膜92で覆われているため、洗浄液と接触することがなく、洗浄液によって型崩れしない。一方、第2光学膜82の残部は、洗浄液と接触するため、洗浄液で溶かされ、除去される。 Since part 83 of the second optical film 82 is covered with the protective film 92, it does not come into contact with the cleaning liquid and does not lose its shape due to the cleaning liquid. On the other hand, since the remaining part of the second optical film 82 is in contact with the cleaning liquid, it is dissolved and removed by the cleaning liquid.
 尚、洗浄液は洗浄槽に貯えられ、洗浄槽の洗浄液に基板10を浸漬することで、第2光学膜82の一部83を残しつつ、第2光学膜82の残部を溶かして除去してもよい。洗浄槽の洗浄液は、撹拌翼などで撹拌されてもよい。 The cleaning liquid is stored in the cleaning tank, and the substrate 10 is immersed in the cleaning liquid in the cleaning tank so that the remaining portion of the second optical film 82 can be dissolved and removed while leaving the portion 83 of the second optical film 82. Good. The cleaning liquid in the cleaning tank may be stirred with a stirring blade or the like.
 第2光学膜82の一部83が確実に残るように、上記第2光学膜形成工程S124や上記保護膜形成工程S125において、第2光学膜82の一部83を洗浄液に対し不溶化することは有効である。洗浄液の回り込みによる過剰な除去を防止でき、第2光学膜82の一部83を確実に残すことができる。 In order to ensure that the part 83 of the second optical film 82 remains, the part 83 of the second optical film 82 is insolubilized in the cleaning liquid in the second optical film forming step S124 and the protective film forming step S125. It is valid. Excessive removal due to the wraparound of the cleaning liquid can be prevented, and the part 83 of the second optical film 82 can be reliably left.
 尚、保護膜92は洗浄液に対する不溶性を有するため、上記第2光学膜形成工程S124や上記保護膜形成工程S125において、第2光学膜82の一部不溶化を行わなくても、第2光学膜82のパターンニングは可能である。この場合、工程数を削減できる。 Since the protective film 92 is insoluble in the cleaning liquid, the second optical film 82 can be obtained without partially insolubilizing the second optical film 82 in the second optical film forming step S124 or the protective film forming step S125. Patterning is possible. In this case, the number of processes can be reduced.
 上記第2光学膜形成工程S124では、せん断応力を加えながら第2光学膜用塗布液81を塗布するため、画素エリアのみに第2光学膜用塗布液81を塗布するのは困難である。従って、第2光学膜パターンニング工程S126を行うことは有効である。 In the second optical film forming step S124, since the second optical film coating liquid 81 is applied while applying a shear stress, it is difficult to apply the second optical film coating liquid 81 only to the pixel area. Therefore, it is effective to perform the second optical film patterning step S126.
 尚、本実施形態では洗浄液を用いて第2光学膜82の残部を除去するが、第2光学膜82の残部の除去方法は特に限定されない。例えば、エッチング法が用いられてもよい。エッチングは、ウェットエッチング、ドライエッチングのいずれでもよい。 In the present embodiment, the remaining portion of the second optical film 82 is removed using a cleaning liquid, but the method for removing the remaining portion of the second optical film 82 is not particularly limited. For example, an etching method may be used. Etching may be either wet etching or dry etching.
 以下、第2光学膜パターンニング工程S126で残る第2光学膜82の一部83を、「第2光学膜83」とも称する。 Hereinafter, the part 83 of the second optical film 82 remaining in the second optical film patterning step S126 is also referred to as “second optical film 83”.
 本実施形態によれば、図24に示すように、第1光学膜63、中間膜72、第2光学膜83および保護膜92で構成される光学部材50が、基板10上に間隔をおいて複数形成される。よって、光学部材50の多面取りが可能であり、有機ELディスプレイ1の多面取りが可能である。また、光学部材50は画素エリアに選択的に形成されるため、画素エリアの周囲に設けられた端子が適切に機能できる。 According to the present embodiment, as shown in FIG. 24, the optical member 50 composed of the first optical film 63, the intermediate film 72, the second optical film 83, and the protective film 92 is spaced on the substrate 10. A plurality are formed. Therefore, the optical member 50 can be multi-surfaced, and the organic EL display 1 can be multi-surfaced. In addition, since the optical member 50 is selectively formed in the pixel area, terminals provided around the pixel area can function appropriately.
 <第1実施形態の光学部材形成工程のまとめ>
 以上説明したように、本実施形態によれば、第1光学膜形成工程S121と、中間膜形成工程S122と、第2光学膜形成工程S124とがこの順で行われる。第1光学膜63と第2光学膜83との間に中間膜72が形成される。中間膜72は、第1光学膜63に傷や異物などが付かないように、第1光学膜63を保護できる。よって、光学部材50の品質を向上できる。光学部材50の製造が途中で一時的に中断され、再開までに時間がかかる場合、傷や異物が付くリスクが高いため、特に有効である。
<Summary of Optical Member Forming Process of First Embodiment>
As described above, according to the present embodiment, the first optical film forming step S121, the intermediate film forming step S122, and the second optical film forming step S124 are performed in this order. An intermediate film 72 is formed between the first optical film 63 and the second optical film 83. The intermediate film 72 can protect the first optical film 63 so that the first optical film 63 is not damaged or foreign matter. Therefore, the quality of the optical member 50 can be improved. This is particularly effective when the production of the optical member 50 is temporarily interrupted and it takes a long time to resume, since there is a high risk of scratches and foreign matter.
 本実施形態によれば、中間膜形成工程S122の後であって第2光学膜形成工程S124の前に、第1光学膜62の一部63のみを覆う中間膜72をマスクとして用いて、第1光学膜62の残部を除去する第1光学膜パターンニング工程S123が行われる。第1光学膜パターンニング工程S123の間、第1光学膜62の一部63を中間膜72で保護でき、第1光学膜62の一部63の形状崩れを抑制できる。よって、光学部材50の品質を向上できる。 According to this embodiment, after the intermediate film formation step S122 and before the second optical film formation step S124, the intermediate film 72 that covers only a part 63 of the first optical film 62 is used as a mask. A first optical film patterning step S123 for removing the remaining part of the first optical film 62 is performed. During the first optical film patterning step S123, the part 63 of the first optical film 62 can be protected by the intermediate film 72, and the shape collapse of the part 63 of the first optical film 62 can be suppressed. Therefore, the quality of the optical member 50 can be improved.
 本実施形態によれば、第1光学膜パターンニング工程S123では、第1光学膜62を溶かす洗浄液を用いる。第1光学膜62の一部63は、中間膜72で覆われているため、洗浄液と接触することがなく、洗浄液によって型崩れしない。一方、第1光学膜62の残部は、洗浄液と接触するため、洗浄液で溶かされ、除去される。 According to the present embodiment, a cleaning liquid that dissolves the first optical film 62 is used in the first optical film patterning step S123. Since a part 63 of the first optical film 62 is covered with the intermediate film 72, it does not come into contact with the cleaning liquid and is not deformed by the cleaning liquid. On the other hand, the remaining portion of the first optical film 62 comes into contact with the cleaning liquid and is dissolved and removed by the cleaning liquid.
 本実施形態によれば、第1光学膜形成工程S121では、第1光学膜62の一部63のみを第1光学膜パターンニング工程S123で用いられる洗浄液に対し不溶化する。よって、第1光学膜パターンニング工程S123において、洗浄液の回り込みによる過剰な除去を防止でき、第1光学膜62の一部63を確実に残すことができる。 According to this embodiment, in the first optical film forming step S121, only a part 63 of the first optical film 62 is insolubilized in the cleaning liquid used in the first optical film patterning step S123. Therefore, in the first optical film patterning step S123, excessive removal due to the wrapping of the cleaning liquid can be prevented, and a part 63 of the first optical film 62 can be reliably left.
 本実施形態によれば、中間膜形成工程S122では、第1光学膜62の一部63のみに中間膜用塗布液71を塗布することで、第1光学膜62の一部63のみを第1光学膜パターンニング工程S123で用いられる洗浄液に対し不溶化する。よって、第1光学膜パターンニング工程S123において、洗浄液の回り込みによる過剰な除去を防止でき、第1光学膜62の一部63を確実に残すことができる。 According to the present embodiment, in the intermediate film forming step S122, only the part 63 of the first optical film 62 is applied to the first optical film 62 by applying the intermediate film coating liquid 71 only to the part 63 of the first optical film 62. It is insolubilized in the cleaning liquid used in the optical film patterning step S123. Therefore, in the first optical film patterning step S123, excessive removal due to the wrapping of the cleaning liquid can be prevented, and a part 63 of the first optical film 62 can be reliably left.
 本実施形態によれば、第2光学膜83を保護する保護膜92を形成する保護膜形成工程S125が行われる。保護膜92は、光学部材50の製造後に、第2光学膜83に傷や異物などが付かないように、第2光学膜83を保護できる。よって、光学部材50の品質を向上できる。 According to the present embodiment, the protective film forming step S125 for forming the protective film 92 that protects the second optical film 83 is performed. The protective film 92 can protect the second optical film 83 so that the second optical film 83 is not damaged or foreign matter after the optical member 50 is manufactured. Therefore, the quality of the optical member 50 can be improved.
 本実施形態によれば、保護膜形成工程S125の後であって第2光学膜82の一部83のみを覆う保護膜92をマスクとして用いて、第2光学膜82の残部を除去する第2光学膜パターンニング工程S126が行われる。第2光学膜パターンニング工程S126の間、第2光学膜82の一部83を保護膜92で保護でき、第2光学膜82の一部83の形状崩れを抑制できる。よって、光学部材50の品質を向上できる。 According to the present embodiment, after the protective film formation step S125, the remaining part of the second optical film 82 is removed using the protective film 92 that covers only a part 83 of the second optical film 82 as a mask. An optical film patterning step S126 is performed. During the second optical film patterning step S126, the part 83 of the second optical film 82 can be protected by the protective film 92, and the shape collapse of the part 83 of the second optical film 82 can be suppressed. Therefore, the quality of the optical member 50 can be improved.
 本実施形態によれば、第2光学膜パターンニング工程S126では、第2光学膜82を溶かす洗浄液を用いる。第2光学膜82の一部83は、保護膜92で覆われているため、洗浄液と接触することがなく、洗浄液によって型崩れしない。一方、第2光学膜82の残部は、洗浄液と接触するため、洗浄液で溶かされ、除去される。 According to the present embodiment, a cleaning liquid that dissolves the second optical film 82 is used in the second optical film patterning step S126. Since a part 83 of the second optical film 82 is covered with the protective film 92, it does not come into contact with the cleaning liquid and does not lose its shape due to the cleaning liquid. On the other hand, since the remaining part of the second optical film 82 is in contact with the cleaning liquid, it is dissolved and removed by the cleaning liquid.
 本実施形態によれば、第2光学膜形成工程S124では、第2光学膜82の一部83のみを第2光学膜パターンニング工程S126で用いられる洗浄液に対し不溶化する。よって、第2光学膜パターンニング工程S126において、洗浄液の回り込みによる過剰な除去を防止でき、第2光学膜82の一部83を確実に残すことができる。 According to the present embodiment, in the second optical film forming step S124, only a part 83 of the second optical film 82 is insolubilized in the cleaning liquid used in the second optical film patterning step S126. Therefore, in the second optical film patterning step S126, it is possible to prevent excessive removal due to wraparound of the cleaning liquid, and it is possible to reliably leave a part 83 of the second optical film 82.
 本実施形態によれば、保護膜形成工程S125では、第2光学膜82の一部83のみに保護膜用塗布液91を塗布することで、第2光学膜82の一部83のみを第2光学膜パターンニング工程S126で用いられる洗浄液に対し不溶化する。よって、第2光学膜パターンニング工程S126において、洗浄液の回り込みによる過剰な除去を防止でき、第2光学膜82の一部83を確実に残すことができる。 According to the present embodiment, in the protective film forming step S125, only the part 83 of the second optical film 82 is applied to the second optical film 82 by applying the coating liquid 91 for protective film only to the part 83 of the second optical film 82. It is insolubilized in the cleaning liquid used in the optical film patterning step S126. Therefore, in the second optical film patterning step S126, it is possible to prevent excessive removal due to wraparound of the cleaning liquid, and it is possible to reliably leave a part 83 of the second optical film 82.
 <第2実施形態の光学部材形成工程>
 上記第1実施形態では中間膜形成工程S122の後に第1光学膜パターンニング工程S123が行われるの対し、本実施形態では第1光学膜パターンニング工程S123の後に中間膜形成工程S122が行われる点で相違する。
<Optical member formation process of 2nd Embodiment>
In the first embodiment, the first optical film patterning process S123 is performed after the intermediate film formation process S122, whereas in the present embodiment, the intermediate film formation process S122 is performed after the first optical film patterning process S123. Is different.
 そのため、本実施形態の中間膜72は、上記第1実施形態と異なり、第1光学膜62の一部63を残し第1光学膜62の残部を除去するためのマスクの役割を果たさない。本実施形態の中間膜72は、第1光学膜62の一部63に傷や異物などが付かないように第1光学膜62の一部63を保護する役割を果たす。 Therefore, unlike the first embodiment, the intermediate film 72 of the present embodiment does not serve as a mask for removing a part of the first optical film 62 while leaving a part 63 of the first optical film 62. The intermediate film 72 of the present embodiment plays a role of protecting the part 63 of the first optical film 62 so that the part 63 of the first optical film 62 is not damaged or foreign matter.
 また、上記第1実施形態では保護膜形成工程S125の後に第2光学膜パターンニング工程S126が行われるのに対し、本実施形態では第2光学膜パターンニング工程S126の後に保護膜形成工程S125が行われる点で相違する。 In the first embodiment, the second optical film patterning step S126 is performed after the protective film forming step S125, whereas in the present embodiment, the protective film forming step S125 is performed after the second optical film patterning step S126. It differs in that it is done.
 そのため、本実施形態の保護膜92は、上記第1実施形態と異なり、第2光学膜82の一部83を残し第2光学膜82の残部を除去するためのマスクの役割を果たさない。本実施形態の保護膜92は、第2光学膜82の一部83に傷や異物が付かないように第2光学膜82の一部83を保護する役割を果たす。 Therefore, unlike the first embodiment, the protective film 92 according to the present embodiment does not serve as a mask for removing the remaining portion of the second optical film 82 while leaving a part 83 of the second optical film 82. The protective film 92 of the present embodiment plays a role of protecting the part 83 of the second optical film 82 so that the part 83 of the second optical film 82 is not damaged or foreign matter.
 以下、図25などを参照して相違点について主に説明する。図25は、第2実施形態による光学部材形成工程を示すフローチャートである。図25に示すように、光学部材形成工程S120は、第1光学膜形成工程S121と、第1光学膜パターンニング工程S123と、中間膜形成工程S122と、第2光学膜形成工程S124と、第2光学膜パターンニング工程S126と、保護膜形成工程S125とをこの順で有する。 Hereinafter, differences will be mainly described with reference to FIG. FIG. 25 is a flowchart showing an optical member forming process according to the second embodiment. As shown in FIG. 25, the optical member forming step S120 includes a first optical film forming step S121, a first optical film patterning step S123, an intermediate film forming step S122, a second optical film forming step S124, It has 2 optical film patterning process S126 and protective film formation process S125 in this order.
 尚、図25に示す全ての工程が行われなくてもよい。例えば詳しくは後述するが、第1光学膜パターンニング工程S123や第2光学膜パターンニング工程S126は、光学部材50を基板10上に間隔をおいて複数形成する場合には有効であるが、光学部材50を基板10上に1つのみ形成する場合には省略してもよい。後述の一部不溶化の処理について同様である。 Note that all the steps shown in FIG. 25 need not be performed. For example, as will be described in detail later, the first optical film patterning step S123 and the second optical film patterning step S126 are effective when a plurality of optical members 50 are formed on the substrate 10 at intervals. When only one member 50 is formed on the substrate 10, it may be omitted. The same applies to the partially insolubilizing process described later.
 また、図25に示す工程以外の工程が行われてもよい。例えば、第1光学膜形成工程S121の前に、基板に対する第1光学膜の密着性を改善するため、基板の第1光学膜が形成される面を表面改質する工程が行われてもよい。表面改質膜として、シランカップリング剤などの有機膜、または窒化珪素などの無機膜が形成されてよい。 Further, steps other than the steps shown in FIG. 25 may be performed. For example, before the first optical film forming step S121, a step of modifying the surface of the substrate on which the first optical film is formed may be performed in order to improve the adhesion of the first optical film to the substrate. . As the surface modification film, an organic film such as a silane coupling agent or an inorganic film such as silicon nitride may be formed.
 さらに、図25に示す第1光学膜形成工程S121、第1光学膜パターンニング工程S123および中間膜形成工程S122、ならびに図12に示す第2光学膜形成工程S124、保護膜形成工程S125および第2光学膜パターンニング工程S126が、この順で行われてもよい。 Further, the first optical film forming step S121, the first optical film patterning step S123, and the intermediate film forming step S122 shown in FIG. 25, and the second optical film forming step S124, the protective film forming step S125, and the second shown in FIG. The optical film patterning step S126 may be performed in this order.
 さらにまた、図12に示す第1光学膜形成工程S121、中間膜形成工程S122および第1光学膜パターンニング工程S123、ならびに図25に示す第2光学膜形成工程S124、第2光学膜パターンニング工程S126および保護膜形成工程S125が、この順で行われてもよい。 Furthermore, the first optical film forming step S121, the intermediate film forming step S122 and the first optical film patterning step S123 shown in FIG. 12, and the second optical film forming step S124 and the second optical film patterning step shown in FIG. S126 and protective film formation step S125 may be performed in this order.
 <第2実施形態の第1光学膜形成工程>
 図25の第1光学膜形成工程S121では、図13~図14に示すように、液晶分子と溶媒を含む第1光学膜用塗布液61を基板10上に塗布して乾燥することにより第1光学膜62を形成する。第1光学膜62は、例えば1/4波長膜である。
<First Optical Film Formation Step of Second Embodiment>
In the first optical film forming step S121 of FIG. 25, as shown in FIGS. 13 to 14, the first optical film coating liquid 61 containing liquid crystal molecules and a solvent is applied onto the substrate 10 and dried to thereby form the first optical film. An optical film 62 is formed. The first optical film 62 is, for example, a quarter wavelength film.
 本実施形態の第1光学膜形成工程S121では、図15に示す第1光学膜62の一部63を不溶化する処理は行われない。この処理は、第1光学膜パターンニング工程S123で行われる。 In the first optical film forming step S121 of the present embodiment, the process for insolubilizing the part 63 of the first optical film 62 shown in FIG. 15 is not performed. This process is performed in the first optical film patterning step S123.
 <第2実施形態の第1光学膜パターンニング工程>
 図25の第1光学膜パターンニング工程S123では、第1光学膜形成工程S121の後であって中間膜形成工程S122の前に、第1光学膜62の一部63を残し第1光学膜62の残部を除去する。
<First Optical Film Patterning Step of Second Embodiment>
In the first optical film patterning step S123 of FIG. 25, a part 63 of the first optical film 62 is left after the first optical film formation step S121 and before the intermediate film formation step S122. Remove the rest of the.
 例えば、第1光学膜パターンニング工程S123では、図15に示すように第1光学膜62の一部63のみを洗浄液に対し不溶化し、その後、図26に示すように第1光学膜62の残部を洗浄液で溶かす。図26は、第2実施形態による不溶化されていない部分が除去された第1光学膜を示す側面図である。 For example, in the first optical film patterning step S123, only a part 63 of the first optical film 62 is insolubilized in the cleaning liquid as shown in FIG. 15, and then the remaining part of the first optical film 62 is shown in FIG. Dissolve with cleaning solution. FIG. 26 is a side view showing the first optical film from which a portion not insolubilized is removed according to the second embodiment.
 洗浄液は、例えばスピンチャックで基板10を回転させながら、基板10に供給される。基板10に供給された洗浄液は、遠心力によって基板10の全体に広がり、基板10の外周縁から振り切られる。 The cleaning liquid is supplied to the substrate 10 while rotating the substrate 10 with, for example, a spin chuck. The cleaning liquid supplied to the substrate 10 spreads over the entire substrate 10 by centrifugal force and is shaken off from the outer peripheral edge of the substrate 10.
 第1光学膜62の一部63は、洗浄液に対し不溶化されているため、洗浄液によって型崩れしない。一方、第1光学膜62の残部は、洗浄液に対し不溶化されていないため、洗浄液で溶かされ、除去される。 Since a part 63 of the first optical film 62 is insolubilized in the cleaning liquid, it does not lose its shape due to the cleaning liquid. On the other hand, the remaining portion of the first optical film 62 is not insolubilized in the cleaning liquid, and is dissolved and removed by the cleaning liquid.
 尚、洗浄液は洗浄槽に貯えられ、洗浄槽の洗浄液に基板10を浸漬することで、第1光学膜62の一部63を残しつつ、第1光学膜62の残部を溶かして除去してもよい。洗浄槽の洗浄液は、撹拌翼などで撹拌されてもよい。 The cleaning liquid is stored in the cleaning tank, and the substrate 10 is immersed in the cleaning liquid in the cleaning tank so that the remaining portion of the first optical film 62 can be dissolved and removed while leaving a part 63 of the first optical film 62. Good. The cleaning liquid in the cleaning tank may be stirred with a stirring blade or the like.
 図26に示すように、本実施形態では、中間膜72(図28参照)が形成される前に、第1光学膜62の一部63を残し第1光学膜62の残部が除去され、第1光学膜62がパターンニングされる。 As shown in FIG. 26, in this embodiment, before the intermediate film 72 (see FIG. 28) is formed, a part 63 of the first optical film 62 is left, and the remaining part of the first optical film 62 is removed. One optical film 62 is patterned.
 上記第1光学膜形成工程S121では、せん断応力を加えながら第1光学膜用塗布液61を塗布するため、画素エリアのみに第1光学膜用塗布液61を塗布するのは困難である。従って、第1光学膜パターンニング工程S123を行うことは有効である。 In the first optical film forming step S121, since the first optical film coating liquid 61 is applied while applying a shear stress, it is difficult to apply the first optical film coating liquid 61 only to the pixel area. Therefore, it is effective to perform the first optical film patterning step S123.
 以下、第1光学膜パターンニング工程S123で残る第1光学膜62の一部63を、「第1光学膜63」とも称する。 Hereinafter, the part 63 of the first optical film 62 remaining in the first optical film patterning step S123 is also referred to as “first optical film 63”.
 <第2実施形態の中間膜形成工程>
 図25の中間膜形成工程S122では、図27~図28に示すように、第1光学膜用塗布液61とは異なる中間膜用塗布液71を第1光学膜63上に塗布して乾燥することにより中間膜72を形成する。
<Intermediate Film Forming Process of Second Embodiment>
In the intermediate film forming step S122 of FIG. 25, as shown in FIGS. 27 to 28, an intermediate film coating liquid 71 different from the first optical film coating liquid 61 is applied onto the first optical film 63 and dried. Thus, the intermediate film 72 is formed.
 図27は、第2実施形態による第1光学膜上に塗布された中間膜用塗布液の液膜を示す図である。図28は、第2実施形態による中間膜用塗布液の液膜の乾燥により形成された中間膜を示す図である。 FIG. 27 is a view showing a liquid film of the coating liquid for intermediate film applied on the first optical film according to the second embodiment. FIG. 28 is a view showing an intermediate film formed by drying a liquid film of the intermediate film coating liquid according to the second embodiment.
 図27に示すように、中間膜形成工程S122では、第1光学膜63が形成された基板10上に塗布ノズル70から中間膜用塗布液71を塗布する。塗布ノズル70は、インクジェット方式であってよく、下面に中間膜用塗布液71の液滴を吐出する吐出ノズルを複数有する。 27, in the intermediate film forming step S122, the intermediate film coating liquid 71 is applied from the coating nozzle 70 onto the substrate 10 on which the first optical film 63 is formed. The coating nozzle 70 may be an ink jet method, and has a plurality of ejection nozzles that eject droplets of the coating liquid 71 for the intermediate film on the lower surface.
 塗布ノズル70と基板10とを相対的に移動させながら、塗布ノズル70から中間膜用塗布液71の液滴を吐出することで、第1光学膜63およびその近傍のみ(例えば画素エリアおよびその近傍のみ)に中間膜用塗布液71を選択的に塗布する。 By ejecting droplets of the coating liquid 71 for the intermediate film from the coating nozzle 70 while relatively moving the coating nozzle 70 and the substrate 10, only the first optical film 63 and the vicinity thereof (for example, the pixel area and the vicinity thereof). Only) is applied selectively with the intermediate film coating liquid 71.
 中間膜用塗布液71は、第1光学膜63上に塗布される。そのため、第1光学膜63を形成する液晶分子は、中間膜用塗布液71の溶媒に対し不溶性を有してよい。中間膜用塗布液71の塗布によって第1光学膜63が溶けることを防止できる。 The intermediate film coating solution 71 is applied onto the first optical film 63. Therefore, the liquid crystal molecules forming the first optical film 63 may be insoluble in the solvent of the intermediate film coating liquid 71. It is possible to prevent the first optical film 63 from being melted by the application of the intermediate film coating liquid 71.
 中間膜用塗布液71は、中間膜72を形成する有機材料と、その有機材料を溶かす溶媒とを含む。中間膜72を形成する有機材料は、中間膜72上に塗布される第2光学膜用塗布液81(図29参照)の溶媒に対し不溶性の高分子などを含む。 The intermediate film coating solution 71 includes an organic material that forms the intermediate film 72 and a solvent that dissolves the organic material. The organic material forming the intermediate film 72 includes a polymer that is insoluble in the solvent of the second optical film coating solution 81 (see FIG. 29) applied on the intermediate film 72.
 中間膜用塗布液71としては、例えば、熱硬化型の透明塗料、化学反応型の透明塗料、乾燥硬化型の透明塗料などが用いられる。具体的には、油性エナメル塗料、フタル酸樹脂塗料などが用いられる。 As the intermediate film coating liquid 71, for example, a thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, or the like is used. Specifically, oil-based enamel paint, phthalate resin paint, or the like is used.
 熱硬化型の透明塗料、化学反応型の透明塗料、乾燥硬化型の透明塗料などは、熱硬化や化学反応または乾燥硬化によって高分子化されるため、緻密な中間膜72を形成できる。 A thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, and the like are polymerized by thermal curing, chemical reaction, or dry curing, and thus a dense intermediate film 72 can be formed.
 中間膜用塗布液71は、図27に示すように、第1光学膜63の主表面のみならず、第1光学膜63の端面を覆うように塗布されてよい。第1光学膜63の主表面のみならず、第1光学膜63の端面に傷や異物が付かないように、第1光学膜63を中間膜72で保護できる。 The intermediate film coating solution 71 may be applied so as to cover not only the main surface of the first optical film 63 but also the end surface of the first optical film 63 as shown in FIG. The first optical film 63 can be protected by the intermediate film 72 so that not only the main surface of the first optical film 63 but also the end surface of the first optical film 63 is not damaged or foreign matter.
 中間膜用塗布液71が塗布される領域は、基板10上の画素エリアおよびその近傍に限定されてよい。 The region where the intermediate film coating liquid 71 is applied may be limited to the pixel area on the substrate 10 and the vicinity thereof.
 尚、中間膜用塗布液71が塗布される領域を限定するため、基板10上にフィルムなどのマスクを貼り付けてもよい。このマスクは、後で剥離される際に第1光学膜63を損傷しないように、第1光学膜63との間に隙間を形成してよい。 It should be noted that a mask such as a film may be affixed on the substrate 10 in order to limit the region to which the intermediate film coating solution 71 is applied. This mask may form a gap between the first optical film 63 and the first optical film 63 so as not to damage the first optical film 63 when it is peeled later.
 図28に示すように、中間膜形成工程S122では、基板10上に塗布された中間膜用塗布液71の液膜(図27参照)を乾燥して、中間膜72を形成する。中間膜用塗布液71の液膜から溶媒が除去され、中間膜72が形成される。 28, in the intermediate film forming step S122, the liquid film (see FIG. 27) of the intermediate film coating liquid 71 applied on the substrate 10 is dried to form the intermediate film 72. The solvent is removed from the liquid film of the intermediate film coating liquid 71 to form the intermediate film 72.
 中間膜72は、第1光学膜63とは異なり、等方的な光学特性を有する。中間膜72の可視光透過率は95%以上であることが好ましい。また、中間膜72の膜厚は、10μm以下であることが好ましい。また、中間膜72の残留応力は、光学部材の変形を抑制するため、小さいほど好ましい。 Unlike the first optical film 63, the intermediate film 72 has isotropic optical characteristics. The visible light transmittance of the intermediate film 72 is preferably 95% or more. The film thickness of the intermediate film 72 is preferably 10 μm or less. Further, the residual stress of the intermediate film 72 is preferably as small as possible in order to suppress deformation of the optical member.
 中間膜72は、第1光学膜63の主表面のみならず第1光学膜63の端面を覆う。中間膜72は、第1光学膜63に傷や異物などが付かないように、第1光学膜63を保護する役割を果たす。中間膜72の鉛筆硬度は、2H以上であることが好ましい。光学部材の製造が途中で一時的に中断され、再開までに時間がかかる場合、傷や異物が付くリスクが高いため、特に有効である。 The intermediate film 72 covers not only the main surface of the first optical film 63 but also the end surface of the first optical film 63. The intermediate film 72 serves to protect the first optical film 63 so that the first optical film 63 is not damaged or foreign matter. The pencil hardness of the intermediate film 72 is preferably 2H or more. This is particularly effective when the production of the optical member is temporarily interrupted and it takes a long time to resume since there is a high risk of scratches and foreign matter.
 中間膜72は、基板10上の画素エリアおよびその近傍のみに形成され、基板10上に間隔をおいて複数形成される。尚、画素エリアの周辺に設けられた端子の取出しが不要である場合、基板10の略全体に中間膜72が形成されてもよい。中間膜72上に第2光学膜用塗布液81を塗布する際に、第2光学膜用塗布液81の液晶分子の配向制御性が良い。 The intermediate film 72 is formed only in the pixel area on the substrate 10 and in the vicinity thereof, and a plurality of intermediate films 72 are formed on the substrate 10 at intervals. Note that, when it is not necessary to take out terminals provided around the pixel area, the intermediate film 72 may be formed on substantially the entire substrate 10. When the second optical film coating liquid 81 is applied onto the intermediate film 72, the alignment controllability of the liquid crystal molecules of the second optical film coating liquid 81 is good.
 <第2実施形態の第2光学膜形成工程>
 図25の第2光学膜形成工程S124では、図29~図30に示すように、液晶分子と溶媒を含む第2光学膜用塗布液81を中間膜72上に塗布して乾燥することにより第2光学膜82を形成する。第2光学膜82は、例えば直線偏光膜である。
<Second Optical Film Forming Step of Second Embodiment>
In the second optical film forming step S124 of FIG. 25, as shown in FIGS. 29 to 30, a second optical film coating solution 81 containing liquid crystal molecules and a solvent is applied onto the intermediate film 72 and dried to thereby form the first optical film. Two optical films 82 are formed. The second optical film 82 is, for example, a linearly polarizing film.
 図29は、第2実施形態による中間膜上に塗布された第2光学膜用塗布液の液膜を示す側面図である。図30は、第2実施形態による第2光学膜用塗布液の液膜の乾燥により形成された第2光学膜を示す側面図である。 FIG. 29 is a side view showing a liquid film of the second optical film coating liquid applied on the intermediate film according to the second embodiment. FIG. 30 is a side view showing a second optical film formed by drying the liquid film of the second optical film coating liquid according to the second embodiment.
 図29に示すように、第2光学膜形成工程S124では、基板10上に塗布ノズル80から第2光学膜用塗布液81を塗布する。塗布ノズル80は、例えば下面にスリット状の吐出口を有するスリットコータである。 As shown in FIG. 29, in the second optical film forming step S124, the second optical film coating liquid 81 is applied onto the substrate 10 from the coating nozzle 80. The application nozzle 80 is, for example, a slit coater having a slit-like discharge port on the lower surface.
 第2光学膜用塗布液81は、中間膜72上に塗布される。そのため、中間膜72を形成する有機材料は、第2光学膜用塗布液81の溶媒に対し不溶性を有してよい。第2光学膜用塗布液81の塗布によって中間膜72が溶けることを防止できる。 The second optical film coating solution 81 is applied onto the intermediate film 72. Therefore, the organic material forming the intermediate film 72 may be insoluble in the solvent of the second optical film coating liquid 81. It is possible to prevent the intermediate film 72 from being melted by the application of the second optical film coating liquid 81.
 尚、本実施形態では第2光学膜用塗布液81の塗布にスリットコータが用いられるが、ディップコータなどが用いられてもよい。第2光学膜用塗布液81にせん断応力を加えることができ、そのせん断応力の作用方向を制御できればよい。 In this embodiment, a slit coater is used to apply the second optical film coating solution 81, but a dip coater or the like may be used. It is only necessary that a shear stress can be applied to the second optical film coating solution 81 and the direction of action of the shear stress can be controlled.
 図30に示すように、第2光学膜形成工程S124では、基板10上に塗布された第2光学膜用塗布液81の液膜(図29参照)を乾燥して、第2光学膜82を形成する。第2光学膜用塗布液81の液膜から溶媒が除去され、液晶分子の配向が適切に維持される。第2光学膜82は、例えば直線偏光膜である。 As shown in FIG. 30, in the second optical film forming step S124, the liquid film (see FIG. 29) of the second optical film coating liquid 81 applied on the substrate 10 is dried to form the second optical film 82. Form. The solvent is removed from the liquid film of the second optical film coating liquid 81, and the alignment of the liquid crystal molecules is appropriately maintained. The second optical film 82 is, for example, a linearly polarizing film.
 <第2実施形態の第2光学膜パターンニング工程>
 図25の第2光学膜パターンニング工程S126では、第2光学膜形成工程S124の後であって保護膜形成工程S125の前に、第2光学膜82の一部83を残し第2光学膜82の残部を除去する。
<Second Optical Film Patterning Step of Second Embodiment>
In the second optical film patterning step S126 of FIG. 25, after the second optical film formation step S124 and before the protective film formation step S125, a part 83 of the second optical film 82 is left and the second optical film 82 is left. Remove the rest of the.
 例えば、第2光学膜パターンニング工程S126では、図31に示すように第2光学膜82の一部83のみを洗浄液に対し不溶化し、その後、図32に示すように第2光学膜82の残部を洗浄液で溶かす。 For example, in the second optical film patterning step S126, only a part 83 of the second optical film 82 is insolubilized in the cleaning liquid as shown in FIG. 31, and then the remaining part of the second optical film 82 is shown in FIG. Dissolve with cleaning solution.
 図31は、第2実施形態による一部不溶化された第2光学膜を示す側面図である。図32は、第2実施形態による不溶化されていない部分が除去された第2光学膜を示す側面図である。 FIG. 31 is a side view showing the second optical film partially insolubilized according to the second embodiment. FIG. 32 is a side view showing the second optical film from which the insoluble portion has been removed according to the second embodiment.
 図31に示すように、第2光学膜パターンニング工程S126では、第2光学膜82の一部83のみを洗浄液に対し不溶化する。洗浄液としては、第2光学膜用塗布液81の溶媒と同じものが用いられてよく、例えば水が用いられてよい。この場合、水に対する不溶化が行われる。 As shown in FIG. 31, in the second optical film patterning step S126, only a part 83 of the second optical film 82 is insolubilized in the cleaning liquid. As the cleaning liquid, the same solvent as the solvent of the second optical film coating liquid 81 may be used. For example, water may be used. In this case, insolubilization with water is performed.
 第2光学膜82の一部83を不溶化する定着液120は、例えばインクジェット方式の塗布ノズル121から吐出される。塗布ノズル121は、下面に定着液120の液滴を吐出する吐出ノズルを複数有する。 The fixing liquid 120 that insolubilizes the part 83 of the second optical film 82 is discharged from, for example, an ink jet type application nozzle 121. The coating nozzle 121 has a plurality of ejection nozzles that eject droplets of the fixing liquid 120 on the lower surface.
 塗布ノズル121と基板10とを相対的に移動させながら、塗布ノズル121から定着液120の液滴を吐出することで、第2光学膜82の一部83に定着液120を選択的に塗布する。これにより、第2光学膜82の一部83が不溶化される。 The fixing liquid 120 is selectively applied to a part 83 of the second optical film 82 by discharging droplets of the fixing liquid 120 from the application nozzle 121 while relatively moving the application nozzle 121 and the substrate 10. . Thereby, a part 83 of the second optical film 82 is insolubilized.
 定着液120が塗布される領域は、例えば画素エリアであってよい。 The area where the fixing liquid 120 is applied may be, for example, a pixel area.
 図32に示すように、第2光学膜パターンニング工程S126では、第2光学膜82の一部83のみを残し、第2光学膜82の残部を除去する。第2光学膜82の残部の除去には、例えば洗浄液が用いられる。 32, in the second optical film patterning step S126, only a part 83 of the second optical film 82 is left and the remaining part of the second optical film 82 is removed. For example, a cleaning liquid is used to remove the remaining portion of the second optical film 82.
 洗浄液は、例えばスピンチャックで基板10を回転させながら、基板10に供給される。基板10に供給された洗浄液は、遠心力によって基板10の全体に広がり、基板10の外周縁から振り切られる。 The cleaning liquid is supplied to the substrate 10 while rotating the substrate 10 with, for example, a spin chuck. The cleaning liquid supplied to the substrate 10 spreads over the entire substrate 10 by centrifugal force and is shaken off from the outer peripheral edge of the substrate 10.
 第2光学膜82の一部83は、洗浄液に対し不溶化されているため、洗浄液によって型崩れしない。一方、第2光学膜82の残部は、洗浄液に対し不溶化されていないため、洗浄液で溶かされ、除去される。 The part 83 of the second optical film 82 is insolubilized in the cleaning liquid, so that it does not lose its shape due to the cleaning liquid. On the other hand, since the remaining portion of the second optical film 82 is not insolubilized in the cleaning liquid, it is dissolved and removed by the cleaning liquid.
 尚、洗浄液は洗浄槽に貯えられ、洗浄槽の洗浄液に基板10を浸漬することで、第2光学膜82の一部83を残しつつ、第2光学膜82の残部を溶かして除去してもよい。洗浄槽の洗浄液は、撹拌翼などで撹拌されてもよい。 The cleaning liquid is stored in the cleaning tank, and the substrate 10 is immersed in the cleaning liquid in the cleaning tank so that the remaining portion of the second optical film 82 can be dissolved and removed while leaving the portion 83 of the second optical film 82. Good. The cleaning liquid in the cleaning tank may be stirred with a stirring blade or the like.
 図32に示すように、本実施形態では、保護膜92(図34参照)が形成される前に、第2光学膜82の一部83を残し第2光学膜82の残部が除去され、第2光学膜82がパターンニングされる。 As shown in FIG. 32, in this embodiment, before the protective film 92 (see FIG. 34) is formed, a part 83 of the second optical film 82 is left and the remaining part of the second optical film 82 is removed. Two optical films 82 are patterned.
 上記第2光学膜形成工程S124では、せん断応力を加えながら第2光学膜用塗布液81を塗布するため、画素エリアのみに第2光学膜用塗布液81を塗布するのは困難である。従って、第2光学膜パターンニング工程S126を行うことは有効である。 In the second optical film forming step S124, since the second optical film coating liquid 81 is applied while applying a shear stress, it is difficult to apply the second optical film coating liquid 81 only to the pixel area. Therefore, it is effective to perform the second optical film patterning step S126.
 以下、第2光学膜パターンニング工程S126で残る第2光学膜82の一部83を、「第2光学膜83」とも称する。 Hereinafter, the part 83 of the second optical film 82 remaining in the second optical film patterning step S126 is also referred to as “second optical film 83”.
 <第2実施形態の保護膜形成工程>
 図25の保護膜形成工程S125では、図33~図34に示すように、第2光学膜用塗布液81とは異なる保護膜用塗布液91を第2光学膜83上に塗布して乾燥することにより保護膜92を形成する。
<Protective film formation process of 2nd Embodiment>
In the protective film forming step S125 of FIG. 25, as shown in FIGS. 33 to 34, a protective film coating liquid 91 different from the second optical film coating liquid 81 is applied onto the second optical film 83 and dried. Thereby, the protective film 92 is formed.
 図33は、第2実施形態による第2光学膜上に塗布された保護膜用塗布液の液膜を示す側面図である。図34は、第2実施形態による保護膜用塗布液の液膜の乾燥により形成された保護膜を示す側面図である。 FIG. 33 is a side view showing a liquid film of a coating liquid for a protective film applied on the second optical film according to the second embodiment. FIG. 34 is a side view showing the protective film formed by drying the liquid film of the protective film coating liquid according to the second embodiment.
 図33に示すように、保護膜形成工程S125では、第2光学膜83が形成された基板10上に塗布ノズル90から保護膜用塗布液91を塗布する。塗布ノズル90は、インクジェット方式であってよく、下面に保護膜用塗布液91の液滴を吐出する吐出ノズルを複数有する。 As shown in FIG. 33, in the protective film forming step S125, the protective film coating liquid 91 is applied from the coating nozzle 90 onto the substrate 10 on which the second optical film 83 is formed. The coating nozzle 90 may be an ink jet system, and has a plurality of ejection nozzles that eject droplets of the protective film coating liquid 91 on the lower surface.
 塗布ノズル90と基板10とを相対的に移動させながら、塗布ノズル90から保護膜用塗布液91の液滴を吐出することで、第2光学膜83およびその近傍のみ(例えば画素エリアおよびその近傍のみ)に保護膜用塗布液91を選択的に塗布する。 By ejecting droplets of the coating liquid 91 for the protective film from the coating nozzle 90 while relatively moving the coating nozzle 90 and the substrate 10, only the second optical film 83 and the vicinity thereof (for example, the pixel area and the vicinity thereof). Only) is selectively applied with the coating liquid 91 for the protective film.
 保護膜用塗布液91は、第2光学膜83上に塗布される。そのため、第2光学膜83を形成する液晶分子は、保護膜用塗布液91の溶媒に対し不溶性を有してよい。保護膜用塗布液91の塗布によって第2光学膜83が溶けることを防止できる。 The protective film coating solution 91 is applied onto the second optical film 83. Therefore, the liquid crystal molecules forming the second optical film 83 may be insoluble in the solvent of the protective film coating solution 91. It is possible to prevent the second optical film 83 from being melted by the application of the protective film coating liquid 91.
 保護膜用塗布液91は、保護膜92を形成する有機材料と、その有機材料を溶かす溶媒とを含む。 The protective film coating solution 91 includes an organic material that forms the protective film 92 and a solvent that dissolves the organic material.
 保護膜用塗布液91としては、例えば、熱硬化型の透明塗料、化学反応型の透明塗料、乾燥硬化型の透明塗料などが用いられる。具体的には、油性エナメル塗料、フタル酸樹脂塗料などが用いられる。 As the protective film coating liquid 91, for example, a thermosetting transparent paint, a chemical reaction type transparent paint, a dry curing type transparent paint, or the like is used. Specifically, oil-based enamel paint, phthalate resin paint, or the like is used.
 熱硬化型の透明塗料、化学反応型の透明塗料、乾燥硬化型の透明塗料などは、熱硬化や化学反応または乾燥硬化によって高分子化されるため、緻密な保護膜92を形成できる。 A thermosetting transparent coating, a chemical reaction type transparent coating, a dry curing type transparent coating, and the like are polymerized by thermal curing, chemical reaction, or drying curing, so that a dense protective film 92 can be formed.
 保護膜用塗布液91は、図33に示すように、第2光学膜83の主表面だけではなく、第2光学膜83の端面を覆うように塗布されてよい。第2光学膜83の主表面のみならず、第2光学膜83の端面に傷や異物が付かないように、第2光学膜83を保護膜92で保護できる。 As shown in FIG. 33, the protective film coating liquid 91 may be applied so as to cover not only the main surface of the second optical film 83 but also the end surface of the second optical film 83. The second optical film 83 can be protected by the protective film 92 so that not only the main surface of the second optical film 83 but also the end surface of the second optical film 83 is not damaged or foreign matter.
 尚、保護膜用塗布液91は、図33では中間膜72の端面を覆っていないが、中間膜72の端面を覆うように塗布されてもよい。 The protective film coating solution 91 does not cover the end face of the intermediate film 72 in FIG. 33, but may be applied so as to cover the end face of the intermediate film 72.
 保護膜用塗布液91が塗布される領域は、基板10上の画素エリアおよびその近傍に限定されてよい。 The region where the protective film coating liquid 91 is applied may be limited to the pixel area on the substrate 10 and the vicinity thereof.
 尚、保護膜用塗布液91が塗布される領域を限定するため、基板10上にフィルムなどのマスクを貼り付けてもよい。このマスクは、後で剥離される際に第2光学膜83を損傷しないように、第2光学膜83との間に隙間を形成してよい。 Note that a mask such as a film may be affixed on the substrate 10 in order to limit the region to which the protective film coating solution 91 is applied. A gap may be formed between the mask and the second optical film 83 so as not to damage the second optical film 83 when it is later peeled off.
 図34に示すように、保護膜形成工程S125では、基板10上に塗布された保護膜用塗布液91の液膜(図33参照)を乾燥して、保護膜92を形成する。保護膜用塗布液91の液膜から溶媒が除去され、保護膜92が形成される。 As shown in FIG. 34, in the protective film forming step S125, the liquid film (see FIG. 33) of the protective film coating liquid 91 applied on the substrate 10 is dried to form the protective film 92. The solvent is removed from the liquid film of the protective film coating liquid 91 to form a protective film 92.
 保護膜92は、第2光学膜83とは異なり、等方的な光学特性を有する。保護膜92の可視光透過率は95%以上であることが好ましい。また、保護膜92の膜厚は、10μm以下であることが好ましい。また、保護膜92の残留応力は、光学部材の変形を抑制するため、小さいほど好ましい。 Unlike the second optical film 83, the protective film 92 has isotropic optical characteristics. The visible light transmittance of the protective film 92 is preferably 95% or more. The film thickness of the protective film 92 is preferably 10 μm or less. Further, the residual stress of the protective film 92 is preferably as small as possible in order to suppress deformation of the optical member.
 保護膜92は、第2光学膜83の主表面のみならず第2光学膜83の端面を覆う。保護膜92は、第2光学膜83に傷や異物などが付かないように、第2光学膜83を保護する役割を果たす。保護膜92の鉛筆硬度は、2H以上であることが好ましい。 The protective film 92 covers not only the main surface of the second optical film 83 but also the end surface of the second optical film 83. The protective film 92 serves to protect the second optical film 83 so that the second optical film 83 is not scratched or foreign. The pencil hardness of the protective film 92 is preferably 2H or higher.
 保護膜92は、基板10上の画素エリアおよびその近傍のみに形成され、基板10上に間隔をおいて複数形成される。尚、画素エリアの周辺に設けられた端子の取出しが不要である場合、基板10の略全体に保護膜92が形成されてもよい。 The protective film 92 is formed only in the pixel area on the substrate 10 and in the vicinity thereof, and a plurality of protective films 92 are formed on the substrate 10 at intervals. Note that when it is not necessary to take out terminals provided around the pixel area, the protective film 92 may be formed on substantially the entire substrate 10.
 尚、本実施形態の保護膜92は、保護膜用塗布液91を第2光学膜83上に塗布して乾燥することにより形成するが、フィルムの形態で第2光学膜83に貼り付けられてもよい。 The protective film 92 of the present embodiment is formed by applying the protective film coating liquid 91 on the second optical film 83 and drying it. The protective film 92 is attached to the second optical film 83 in the form of a film. Also good.
 本実施形態によれば、図34に示すように、第1光学膜63、中間膜72、第2光学膜83および保護膜92で構成される光学部材50が、基板10上に間隔をおいて複数形成される。よって、光学部材50の多面取りが可能であり、有機ELディスプレイ1の多面取りが可能である。また、光学部材50は画素エリアおよびその近傍に選択的に形成されるため、画素エリアの周囲に設けられた端子が適切に機能できる。 According to the present embodiment, as shown in FIG. 34, the optical member 50 including the first optical film 63, the intermediate film 72, the second optical film 83, and the protective film 92 is spaced apart on the substrate 10. A plurality are formed. Therefore, the optical member 50 can be multi-surfaced, and the organic EL display 1 can be multi-surfaced. Moreover, since the optical member 50 is selectively formed in the pixel area and its vicinity, the terminals provided around the pixel area can function appropriately.
 <第2実施形態の光学部材形成工程のまとめ>
 以上説明したように、本実施形態によれば、第1光学膜形成工程S121と、中間膜形成工程S122と、第2光学膜形成工程S124とがこの順で行われる。第1光学膜63と第2光学膜83との間に中間膜72が形成される。中間膜72は、第1光学膜63に傷や異物などが付かないように、第1光学膜63を保護できる。よって、光学部材50の品質を向上できる。光学部材50の製造が途中で一時的に中断され、再開までに時間がかかる場合、傷や異物が付くリスクが高いため、特に有効である。
<Summary of Optical Member Forming Process of Second Embodiment>
As described above, according to the present embodiment, the first optical film forming step S121, the intermediate film forming step S122, and the second optical film forming step S124 are performed in this order. An intermediate film 72 is formed between the first optical film 63 and the second optical film 83. The intermediate film 72 can protect the first optical film 63 so that the first optical film 63 is not damaged or foreign matter. Therefore, the quality of the optical member 50 can be improved. This is particularly effective when the production of the optical member 50 is temporarily interrupted and it takes a long time to resume, since there is a high risk of scratches and foreign matter.
 本実施形態によれば、第1光学膜形成工程S121の後であって中間膜形成工程S122の前に、第1光学膜62の一部63を残し第1光学膜62の残部を除去する第1光学膜パターンニング工程S123が行われる。よって、第1光学膜パターンニング工程S123の後に残る第1光学膜63の主表面のみならず第1光学膜63の端面を中間膜72で覆うことが可能になる。 According to this embodiment, after the first optical film forming step S121 and before the intermediate film forming step S122, the part 63 of the first optical film 62 is left and the remaining part of the first optical film 62 is removed. One optical film patterning step S123 is performed. Therefore, it is possible to cover not only the main surface of the first optical film 63 remaining after the first optical film patterning step S123 but also the end surface of the first optical film 63 with the intermediate film 72.
 本実施形態によれば、第1光学膜パターンニング工程S123では、第1光学膜62を溶かす洗浄液に対し第1光学膜62の一部63のみを不溶化し、その後、第1光学膜62の残部を洗浄液で溶かす。第1光学膜62の一部63は、洗浄液に対し不溶化されているため、洗浄液によって型崩れしない。一方、第1光学膜62の残部は、洗浄液に対し不溶化されていないため、洗浄液で溶かされ、除去される。 According to this embodiment, in the first optical film patterning step S123, only a part 63 of the first optical film 62 is insolubilized in the cleaning liquid that dissolves the first optical film 62, and then the remaining part of the first optical film 62 is obtained. Dissolve with cleaning solution. Since a part 63 of the first optical film 62 is insolubilized in the cleaning liquid, the mold is not lost by the cleaning liquid. On the other hand, the remaining portion of the first optical film 62 is not insolubilized in the cleaning liquid, and is dissolved and removed by the cleaning liquid.
 本実施形態によれば、中間膜形成工程S122では、第1光学膜63の主表面および第1光学膜63の端面を覆うように中間膜72を形成する。中間膜72は、第1光学膜63の主表面のみならず第1光学膜63の端面に傷や異物などが付かないように、第1光学膜63を保護できる。よって、光学部材50の品質を向上できる。光学部材50の製造が途中で一時的に中断され、再開までに時間がかかる場合、傷や異物が付くリスクが高いため、特に有効である。 According to the present embodiment, in the intermediate film forming step S122, the intermediate film 72 is formed so as to cover the main surface of the first optical film 63 and the end surface of the first optical film 63. The intermediate film 72 can protect the first optical film 63 so that not only the main surface of the first optical film 63 but also the end surface of the first optical film 63 is not damaged or foreign matter. Therefore, the quality of the optical member 50 can be improved. This is particularly effective when the production of the optical member 50 is temporarily interrupted and it takes a long time to resume, since there is a high risk of scratches and foreign matter.
 本実施形態によれば、第2光学膜83を保護する保護膜92を形成する保護膜形成工程S125が行われる。保護膜92は、光学部材50の製造後に、第2光学膜83に傷や異物などが付かないように、第2光学膜83を保護できる。よって、光学部材50の品質を向上できる。 According to the present embodiment, the protective film forming step S125 for forming the protective film 92 that protects the second optical film 83 is performed. The protective film 92 can protect the second optical film 83 so that the second optical film 83 is not damaged or foreign matter after the optical member 50 is manufactured. Therefore, the quality of the optical member 50 can be improved.
 本実施形態によれば、第2光学膜形成工程S124の後であって保護膜形成工程S125の前に、第2光学膜82の一部83を残し第2光学膜82の残部を除去する第2光学膜パターンニング工程S126が行われる。よって、第2光学膜パターンニング工程S126の後に残る第2光学膜83の主表面のみならず第2光学膜83の端面を保護膜92で覆うことが可能になる。 According to this embodiment, after the second optical film forming step S124 and before the protective film forming step S125, the second optical film 82 is left as a part 83 and the remaining portion of the second optical film 82 is removed. Two optical film patterning process S126 is performed. Therefore, it is possible to cover not only the main surface of the second optical film 83 remaining after the second optical film patterning step S126 but also the end surface of the second optical film 83 with the protective film 92.
 本実施形態によれば、第2光学膜パターンニング工程S126では、第2光学膜82を溶かす洗浄液に対し第2光学膜82の一部83のみを不溶化し、その後、第2光学膜82の残部を洗浄液で溶かす。第2光学膜82の一部83は、洗浄液に対し不溶化されているため、洗浄液によって型崩れしない。一方、第2光学膜82の残部は、洗浄液に対し不溶化されていないため、洗浄液で溶かされ、除去される。 According to the present embodiment, in the second optical film patterning step S126, only a part 83 of the second optical film 82 is insolubilized in the cleaning liquid that dissolves the second optical film 82, and then the remaining part of the second optical film 82 is obtained. Dissolve with cleaning solution. Since a part 83 of the second optical film 82 is insolubilized in the cleaning liquid, the mold is not lost by the cleaning liquid. On the other hand, since the remaining portion of the second optical film 82 is not insolubilized in the cleaning liquid, it is dissolved and removed by the cleaning liquid.
 本実施形態によれば、保護膜形成工程S125では、第2光学膜83の主表面および第2光学膜83の端面を覆うように保護膜92を形成する。保護膜92は、第2光学膜83の主表面のみならず第2光学膜83の端面に傷や異物などが付かないように、第2光学膜83を保護できる。よって、光学部材50の品質を向上できる。光学部材50の製造が途中で一時的に中断され、再開までに時間がかかる場合、傷や異物が付くリスクが高いため、特に有効である。 According to the present embodiment, in the protective film forming step S125, the protective film 92 is formed so as to cover the main surface of the second optical film 83 and the end surface of the second optical film 83. The protective film 92 can protect the second optical film 83 so that not only the main surface of the second optical film 83 but also the end surface of the second optical film 83 is not damaged or foreign matter. Therefore, the quality of the optical member 50 can be improved. This is particularly effective when the production of the optical member 50 is temporarily interrupted and it takes a long time to resume, since there is a high risk of scratches and foreign matter.
 <変形、改良>
 以上、有機ELディスプレイの製造方法の実施形態について説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
<Deformation and improvement>
As mentioned above, although embodiment of the manufacturing method of the organic EL display was described, this invention is not limited to the said embodiment etc., In the range of the summary of this invention described in the claim, various deformation | transformation and improvement Is possible.
 例えば、光学部材50は、上記実施形態では第1光学膜63、中間膜72、第2光学膜83および保護膜92を含むが、本発明はこれに限定されない。光学部材50は液晶分子が配向された光学膜を含んでいればよく、光学膜の数も限定されない。 For example, the optical member 50 includes the first optical film 63, the intermediate film 72, the second optical film 83, and the protective film 92 in the above embodiment, but the present invention is not limited to this. The optical member 50 only needs to include an optical film in which liquid crystal molecules are aligned, and the number of optical films is not limited.
 本出願は、2017年5月1日に日本国特許庁に出願された特願2017-091471号に基づく優先権を主張するものであり、特願2017-091471号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2017-091471 filed with the Japan Patent Office on May 1, 2017, and the entire contents of Japanese Patent Application No. 2017-091471 are incorporated herein by reference. To do.
10 基板
13 有機発光ダイオード
30 封止層
40 タッチセンサ
41 第1金属膜
43 絶縁膜
45 第2金属膜
47 タッチセンサ保護膜
50 光学部材
61 第1光学膜用塗布液
62 第1光学膜
63 第1光学膜
71 中間膜用塗布液
72 中間膜
81 第2光学膜用塗布液
82 第2光学膜
83 第2光学膜
91 保護膜用塗布液
92 保護膜
10 substrate 13 organic light emitting diode 30 sealing layer 40 touch sensor 41 first metal film 43 insulating film 45 second metal film 47 touch sensor protective film 50 optical member 61 first optical film coating liquid 62 first optical film 63 first Optical film 71 Intermediate film coating liquid 72 Intermediate film 81 Second optical film coating liquid 82 Second optical film 83 Second optical film 91 Protective film coating liquid 92 Protective film

Claims (19)

  1.  有機発光ダイオードが予め形成された基板上に、液晶分子と溶媒を含む光学膜用塗布液を塗布して乾燥することにより、液晶分子が配向された光学膜を形成する光学部材形成工程を有する、有機ELディスプレイの製造方法。 An optical member forming step of forming an optical film in which liquid crystal molecules are aligned by applying and drying an optical film coating liquid containing liquid crystal molecules and a solvent on a substrate on which an organic light emitting diode is formed in advance; Manufacturing method of organic EL display.
  2.  前記光学部材形成工程は、
     前記有機発光ダイオードが予め形成された前記基板上に、液晶分子と溶媒を含む第1光学膜用塗布液を塗布して乾燥することにより、位相差膜および偏光膜のいずれか1つとしての第1光学膜を形成する第1光学膜形成工程と、
     前記第1光学膜形成工程の後に、液晶分子と溶媒を含む第2光学膜用塗布液を前記第1光学膜上に塗布して乾燥することにより、前記位相差膜および前記偏光膜の残りの1つとしての第2光学膜を形成する第2光学膜形成工程とを有する、請求項1に記載の有機ELディスプレイの製造方法。
    The optical member forming step includes
    A first optical film coating liquid containing liquid crystal molecules and a solvent is applied onto the substrate on which the organic light emitting diodes are formed in advance, and dried, whereby the first optical film as a retardation film or a polarizing film is obtained. A first optical film forming step of forming one optical film;
    After the first optical film forming step, a coating liquid for a second optical film containing liquid crystal molecules and a solvent is applied onto the first optical film and dried, whereby the remaining portions of the retardation film and the polarizing film are dried. The manufacturing method of the organic electroluminescent display of Claim 1 which has a 2nd optical film formation process which forms the 2nd optical film as one.
  3.  前記光学部材形成工程は、
     前記第1光学膜形成工程の後であって前記第2光学膜形成工程の前に、前記第1光学膜用塗布液とは異なる中間膜用塗布液を前記第1光学膜上に塗布して乾燥することにより中間膜を形成する中間膜形成工程を有する、請求項2に記載の有機ELディスプレイの製造方法。
    The optical member forming step includes
    After the first optical film forming step and before the second optical film forming step, an intermediate film coating liquid different from the first optical film coating liquid is applied onto the first optical film. The manufacturing method of the organic electroluminescent display of Claim 2 which has an intermediate film formation process which forms an intermediate film by drying.
  4.  前記光学部材形成工程は、
     前記中間膜形成工程の後であって前記第2光学膜形成工程の前に、前記第1光学膜の一部のみを覆う前記中間膜をマスクとして用いて、前記第1光学膜の残部を除去する第1光学膜パターンニング工程を有する、請求項3に記載の有機ELディスプレイの製造方法。
    The optical member forming step includes
    After the intermediate film forming step and before the second optical film forming step, the intermediate film covering only a part of the first optical film is used as a mask to remove the remaining portion of the first optical film. The manufacturing method of the organic electroluminescent display of Claim 3 which has a 1st optical film patterning process to do.
  5.  前記第1光学膜パターンニング工程では、前記第1光学膜を溶かす洗浄液を用いる、請求項4に記載の有機ELディスプレイの製造方法。 The method for manufacturing an organic EL display according to claim 4, wherein a cleaning liquid that dissolves the first optical film is used in the first optical film patterning step.
  6.  前記第1光学膜形成工程では、前記第1光学膜の前記一部のみを前記第1光学膜パターンニング工程で用いられる前記洗浄液に対し不溶化する、請求項5に記載の有機ELディスプレイの製造方法。 6. The method of manufacturing an organic EL display according to claim 5, wherein, in the first optical film forming step, only the part of the first optical film is insolubilized in the cleaning liquid used in the first optical film patterning step. .
  7.  前記中間膜形成工程では、前記第1光学膜の前記一部のみに前記中間膜用塗布液を塗布することで、前記第1光学膜の前記一部のみを前記第1光学膜パターンニング工程で用いられる前記洗浄液に対し不溶化する、請求項5または6に記載の有機ELディスプレイの製造方法。 In the intermediate film forming step, the intermediate film coating liquid is applied only to the part of the first optical film, so that only the part of the first optical film is applied to the first optical film patterning step. The manufacturing method of the organic electroluminescent display of Claim 5 or 6 insolubilized with respect to the said washing | cleaning liquid used.
  8.  前記光学部材形成工程は、
     前記第1光学膜形成工程の後であって前記中間膜形成工程の前に、前記第1光学膜の一部を残し前記第1光学膜の残部を除去する第1光学膜パターンニング工程を有する、請求項3に記載の有機ELディスプレイの製造方法。
    The optical member forming step includes
    After the first optical film forming step and before the intermediate film forming step, there is a first optical film patterning step for leaving a part of the first optical film and removing the remaining part of the first optical film. The manufacturing method of the organic electroluminescent display of Claim 3.
  9.  前記第1光学膜パターンニング工程では、前記第1光学膜を溶かす洗浄液に対し前記第1光学膜の前記一部のみを不溶化し、その後、前記第1光学膜の前記残部を前記洗浄液で溶かす、請求項8に記載の有機ELディスプレイの製造方法。 In the first optical film patterning step, only the part of the first optical film is insolubilized in the cleaning liquid that dissolves the first optical film, and then the remaining part of the first optical film is dissolved in the cleaning liquid. The manufacturing method of the organic electroluminescent display of Claim 8.
  10.  前記中間膜形成工程では、前記第1光学膜の主表面および前記第1光学膜の端面を覆うように前記中間膜を形成する、請求項8または9に記載の有機ELディスプレイの製造方法。 The method for manufacturing an organic EL display according to claim 8 or 9, wherein, in the intermediate film forming step, the intermediate film is formed so as to cover a main surface of the first optical film and an end surface of the first optical film.
  11.  前記光学部材形成工程は、
     前記第2光学膜形成工程の後に、前記第2光学膜用塗布液とは異なる保護膜用塗布液を前記第2光学膜上に塗布して乾燥することにより前記第2光学膜を保護する保護膜を形成する保護膜形成工程を有する、請求項3~10のいずれか1項に記載の有機ELディスプレイの製造方法。
    The optical member forming step includes
    Protection for protecting the second optical film by applying a coating liquid for a protective film different from the coating liquid for the second optical film on the second optical film and drying after the second optical film forming step. The method for producing an organic EL display according to any one of claims 3 to 10, further comprising a protective film forming step of forming a film.
  12.  前記光学部材形成工程は、
     前記保護膜形成工程の後に、前記第2光学膜の一部のみを覆う前記保護膜をマスクとして用いて、前記第2光学膜の残部を除去する第2光学膜パターンニング工程を有する、請求項11に記載の有機ELディスプレイの製造方法。
    The optical member forming step includes
    The second optical film patterning step of removing a remaining portion of the second optical film using the protective film that covers only a part of the second optical film as a mask after the protective film forming step. 11. A method for producing an organic EL display according to 11.
  13.  前記第2光学膜パターンニング工程では、前記第2光学膜を溶かす洗浄液を用いる、請求項12に記載の有機ELディスプレイの製造方法。 The method for manufacturing an organic EL display according to claim 12, wherein a cleaning liquid that dissolves the second optical film is used in the second optical film patterning step.
  14.  前記第2光学膜形成工程では、前記第2光学膜の前記一部のみを前記第2光学膜パターンニング工程で用いられる前記洗浄液に対し不溶化する、請求項13に記載の有機ELディスプレイの製造方法。 14. The method of manufacturing an organic EL display according to claim 13, wherein in the second optical film forming step, only the part of the second optical film is insolubilized in the cleaning liquid used in the second optical film patterning step. .
  15.  前記保護膜形成工程では、前記第2光学膜の前記一部のみに前記保護膜用塗布液を塗布することで、前記第2光学膜の前記一部のみを前記第2光学膜パターンニング工程で用いられる前記洗浄液に対し不溶化する、請求項13または14に記載の有機ELディスプレイの製造方法。 In the protective film forming step, the protective film coating liquid is applied only to the part of the second optical film, so that only the part of the second optical film is applied to the second optical film patterning step. The method for producing an organic EL display according to claim 13 or 14, wherein the organic EL display is insolubilized with respect to the cleaning liquid used.
  16.  前記光学部材形成工程は、
     前記第2光学膜形成工程の後であって前記保護膜形成工程の前に、前記第2光学膜の一部を残し前記第2光学膜の残部を除去する第2光学膜パターンニング工程を有する、請求項11に記載の有機ELディスプレイの製造方法。
    The optical member forming step includes
    After the second optical film forming step and before the protective film forming step, there is a second optical film patterning step that leaves a part of the second optical film and removes the remaining part of the second optical film. The manufacturing method of the organic electroluminescent display of Claim 11.
  17.  前記第2光学膜パターンニング工程では、前記第2光学膜を溶かす洗浄液に対し前記第2光学膜の前記一部のみを不溶化し、その後、前記第2光学膜の前記残部を前記洗浄液で溶かす、請求項16に記載の有機ELディスプレイの製造方法。 In the second optical film patterning step, only the part of the second optical film is insolubilized in the cleaning liquid that dissolves the second optical film, and then the remaining part of the second optical film is dissolved in the cleaning liquid. The manufacturing method of the organic electroluminescent display of Claim 16.
  18.  前記保護膜形成工程では、前記第2光学膜の主表面および前記第2光学膜の端面を覆うように前記保護膜を形成する、請求項16または17に記載の有機ELディスプレイの製造方法。 The organic EL display manufacturing method according to claim 16 or 17, wherein, in the protective film forming step, the protective film is formed so as to cover a main surface of the second optical film and an end surface of the second optical film.
  19.  前記光学部材形成工程の前に、前記有機発光ダイオードが予め形成された前記基板上に、タッチセンサを形成するタッチセンサ形成工程を有し、
     前記タッチセンサ形成工程は、
     前記有機発光ダイオードが予め形成された前記基板上に、遮光性の第1金属膜を形成する工程と、
     フォトリソグラフィ法およびエッチング法によって前記第1金属膜の一部を選択的に除去する工程と、
     一部が選択的に除去された前記第1金属膜上に絶縁膜を形成する工程と、
     前記絶縁膜上に、遮光性の第2金属膜を形成する工程と、
     フォトリソグラフィ法およびエッチング法によって前記第2金属膜の一部を選択的に除去する工程とを有する、請求項1~18のいずれか1項に記載の有機ELディスプレイの製造方法。
    Before the optical member forming step, a touch sensor forming step of forming a touch sensor on the substrate on which the organic light emitting diode is previously formed,
    The touch sensor forming step includes
    Forming a light-shielding first metal film on the substrate on which the organic light emitting diode is previously formed;
    Selectively removing a part of the first metal film by photolithography and etching;
    Forming an insulating film on the first metal film partially removed, and
    Forming a light-shielding second metal film on the insulating film;
    The method for manufacturing an organic EL display according to claim 1, further comprising a step of selectively removing a part of the second metal film by a photolithography method and an etching method.
PCT/JP2018/015998 2017-05-01 2018-04-18 Method for producing organic el display WO2018203478A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197034306A KR102502812B1 (en) 2017-05-01 2018-04-18 Manufacturing method of organic EL display
CN201880028327.6A CN110574495B (en) 2017-05-01 2018-04-18 Method for manufacturing organic EL display
JP2019515695A JP6749485B2 (en) 2017-05-01 2018-04-18 Method for manufacturing organic EL display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017091471 2017-05-01
JP2017-091471 2017-05-01

Publications (1)

Publication Number Publication Date
WO2018203478A1 true WO2018203478A1 (en) 2018-11-08

Family

ID=64016648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015998 WO2018203478A1 (en) 2017-05-01 2018-04-18 Method for producing organic el display

Country Status (5)

Country Link
JP (1) JP6749485B2 (en)
KR (1) KR102502812B1 (en)
CN (1) CN110574495B (en)
TW (1) TWI759462B (en)
WO (1) WO2018203478A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111906003A (en) * 2019-05-10 2020-11-10 东京毅力科创株式会社 Coating film forming method and coating film forming apparatus
WO2021107404A1 (en) * 2019-11-28 2021-06-03 엘지디스플레이 주식회사 Polarizer, polarizer manufacturing method, and display device having same
WO2022050313A1 (en) * 2020-09-04 2022-03-10 富士フイルム株式会社 Method for manufacturing organic layer pattern, and method for manufacturing semiconductor device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110175070A1 (en) * 2010-01-21 2011-07-21 Tae-Kyu Kim Organic light emitting display device
JP2014049409A (en) * 2012-09-04 2014-03-17 Dic Corp Optical member, and organic electroluminescent element using the same
CN104637976A (en) * 2013-11-12 2015-05-20 宸鸿光电科技股份有限公司 Organic light-emitting diode touch display device
WO2016016156A1 (en) * 2014-07-31 2016-02-04 Rolic Ag Encapsulation structure for an oled display incorporating antireflection properties
WO2016194801A1 (en) * 2015-05-29 2016-12-08 富士フイルム株式会社 Organic electroluminescent display device
JP2017504918A (en) * 2013-12-27 2017-02-09 昆山工研院新型平板顕示技術中心有限公司Kunshan New Flat Panel Display Technology Center Co., Ltd. Touch display device and manufacturing method thereof
WO2017043438A1 (en) * 2015-09-07 2017-03-16 富士フイルム株式会社 Polymerizable liquid crystal composition, retardation film, polarizing plate, liquid crystal display device and organic electroluminescent device
US20170115438A1 (en) * 2015-10-26 2017-04-27 Samsung Display Co., Ltd. Flexible display apparatus
CN106952941A (en) * 2017-05-26 2017-07-14 上海天马有机发光显示技术有限公司 A kind of display panel, preparation method and electronic equipment
US20170222188A1 (en) * 2016-02-03 2017-08-03 Samsung Display Co., Ltd. Display device
JP2018022558A (en) * 2016-08-01 2018-02-08 株式会社ジャパンディスプレイ Display device and method of manufacturing display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270021A (en) * 2001-03-13 2002-09-20 Nec Corp Display device
JP2005062502A (en) 2003-08-13 2005-03-10 Nakan Corp Polarizing film printer
KR100719706B1 (en) * 2005-09-13 2007-05-17 삼성에스디아이 주식회사 Flat Panel Display and Organic Light Emitting Display
JP4565507B2 (en) * 2006-01-30 2010-10-20 日東電工株式会社 Production method of retardation plate, retardation plate, polarizing plate with retardation plate, liquid crystal panel, and liquid crystal display device
KR101243828B1 (en) * 2011-06-22 2013-03-18 엘지디스플레이 주식회사 Organic light emitting device
KR102067159B1 (en) * 2013-05-24 2020-01-16 삼성전자주식회사 Optical film for reducing color shift and organic light emitting display employing the same
KR102092082B1 (en) * 2013-11-11 2020-03-23 엘지디스플레이 주식회사 Organic Light Emitting Display Device and Method of manufacturing the same
CN109062448B (en) * 2013-11-12 2021-07-02 宸鸿光电科技股份有限公司 Organic light emitting diode touch display device
CN106298861A (en) * 2016-10-24 2017-01-04 上海天马微电子有限公司 Organic light emitting display panel and method of manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110175070A1 (en) * 2010-01-21 2011-07-21 Tae-Kyu Kim Organic light emitting display device
JP2014049409A (en) * 2012-09-04 2014-03-17 Dic Corp Optical member, and organic electroluminescent element using the same
CN104637976A (en) * 2013-11-12 2015-05-20 宸鸿光电科技股份有限公司 Organic light-emitting diode touch display device
JP2017504918A (en) * 2013-12-27 2017-02-09 昆山工研院新型平板顕示技術中心有限公司Kunshan New Flat Panel Display Technology Center Co., Ltd. Touch display device and manufacturing method thereof
WO2016016156A1 (en) * 2014-07-31 2016-02-04 Rolic Ag Encapsulation structure for an oled display incorporating antireflection properties
WO2016194801A1 (en) * 2015-05-29 2016-12-08 富士フイルム株式会社 Organic electroluminescent display device
WO2017043438A1 (en) * 2015-09-07 2017-03-16 富士フイルム株式会社 Polymerizable liquid crystal composition, retardation film, polarizing plate, liquid crystal display device and organic electroluminescent device
US20170115438A1 (en) * 2015-10-26 2017-04-27 Samsung Display Co., Ltd. Flexible display apparatus
US20170222188A1 (en) * 2016-02-03 2017-08-03 Samsung Display Co., Ltd. Display device
JP2018022558A (en) * 2016-08-01 2018-02-08 株式会社ジャパンディスプレイ Display device and method of manufacturing display device
CN106952941A (en) * 2017-05-26 2017-07-14 上海天马有机发光显示技术有限公司 A kind of display panel, preparation method and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111906003A (en) * 2019-05-10 2020-11-10 东京毅力科创株式会社 Coating film forming method and coating film forming apparatus
CN111906003B (en) * 2019-05-10 2023-05-26 东京毅力科创株式会社 Coating film forming method and coating film forming apparatus
WO2021107404A1 (en) * 2019-11-28 2021-06-03 엘지디스플레이 주식회사 Polarizer, polarizer manufacturing method, and display device having same
WO2022050313A1 (en) * 2020-09-04 2022-03-10 富士フイルム株式会社 Method for manufacturing organic layer pattern, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP6749485B2 (en) 2020-09-02
CN110574495B (en) 2022-04-19
TW201904103A (en) 2019-01-16
KR102502812B1 (en) 2023-02-22
KR20200002948A (en) 2020-01-08
TWI759462B (en) 2022-04-01
JPWO2018203478A1 (en) 2020-05-14
CN110574495A (en) 2019-12-13

Similar Documents

Publication Publication Date Title
US10522599B2 (en) Foldable, flexible display apparatus and method of manufacturing the same
US7936122B2 (en) Organic EL display apparatus
US20180294415A1 (en) Method for manufacturing organic el apparatus, organic el apparatus, and electronic device
US8664017B2 (en) Method of manufacturing organic light emitting device
US9991321B2 (en) Organic light emitting diode display device and method of fabricating the same
WO2018203478A1 (en) Method for producing organic el display
KR101903774B1 (en) Organic light emitting diode display device and method for fabricating the same
KR20170116303A (en) Display apparatus
KR20130017916A (en) Organic light emitting device and manufacturing method therof
KR20140067645A (en) Organic electro-luminescent device and method of fabricating the same
KR20150010232A (en) Organic light emitting display apparatus and method of manufacturing the same
JP5196665B2 (en) Manufacturing method of organic EL display
WO2021088144A1 (en) Oled backplate preparation method and oled backplate
WO2018203477A1 (en) Method for producing optical member
US9751096B2 (en) Dispenser and method of fabricating organic light emitting display device using the same
JP2015170416A (en) Method of producing thin film transistor substrate, thin film transistor substrate
JP4263474B2 (en) Method for manufacturing element substrate for display device and transfer body
KR20150044451A (en) Organic electro-luminescent device and method of fabricating the same
JP2009009031A (en) Substrate for organic electroluminescent display device and method of manufacturing the same
US10553625B2 (en) Method of manufacturing display device including multilayered lines arranged at fine intervals
US12117634B2 (en) Flexible display device, method for manufacturing flexible display device, and foldable display device
JP2010045050A (en) Electroluminescent element and its manufacturing method
KR20110097743A (en) Methode for manufacturing substrate for flexible display device and method for manufacturing organic light emitting device using the same
JP2008145922A (en) Method for manufacturing resin letterpress plate, developing device for resin letterpress plate and printed material
KR20220005676A (en) Display apparatus and manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515695

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197034306

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18794767

Country of ref document: EP

Kind code of ref document: A1