WO2021107404A1 - Polarizer, polarizer manufacturing method, and display device having same - Google Patents

Polarizer, polarizer manufacturing method, and display device having same Download PDF

Info

Publication number
WO2021107404A1
WO2021107404A1 PCT/KR2020/014325 KR2020014325W WO2021107404A1 WO 2021107404 A1 WO2021107404 A1 WO 2021107404A1 KR 2020014325 W KR2020014325 W KR 2020014325W WO 2021107404 A1 WO2021107404 A1 WO 2021107404A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
discotic liquid
polarizer
fluorenone
Prior art date
Application number
PCT/KR2020/014325
Other languages
French (fr)
Korean (ko)
Inventor
윤동기
지광환
장기석
박건형
Original Assignee
엘지디스플레이 주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사, 한국과학기술원 filed Critical 엘지디스플레이 주식회사
Publication of WO2021107404A1 publication Critical patent/WO2021107404A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to a polarizer, a method for manufacturing a polarizer, and a display device having the same, and more particularly, to a coating-type polarizer capable of absorbing a wide visible light region and strong against moisture, a polarizer manufacturing method, and a display device having the same.
  • the polarizing plate absorbs light components vibrating in one direction and transmits light vibrating only in the other axis direction, thereby causing natural light to vibrate in only one direction.
  • Such a polarizing plate is applied to a display device such as a liquid crystal display device and an organic light emitting display device to realize an image by controlling the transmittance of light passing through the display device (liquid crystal display device) or to block the reflection of external light input from the outside to display the display device to improve the visibility (organic light emitting display device).
  • the polarizing plate Since the polarizing plate is manufactured as a structure separate from the display panel and attached to both sides or the front surface of the display panel, it is a major cause of an increase in the volume and weight of the display device when manufacturing the display device.
  • a polarizing plate is not only an expensive component, but also has a problem in that the manufacturing process is complicated because the polarizing plate must be attached to both sides or the front side of the display panel in a module process separate from the manufacturing process of the display panel.
  • An object of the present invention is to provide a polarizer having good polarization characteristics in the entire visible light band and strong resistance to moisture and temperature, and a method for manufacturing the same in order to solve the above problems.
  • Another object of the present invention is to provide a display device including the polarizer.
  • a polarizer according to the present invention is composed of a supramolecular structure including a discotic liquid crystal molecule of Formula 1 and a fluorenone derivative of Formula 2, and the supramolecular structure includes a plurality of discotic liquid crystal molecules and a flow It is characterized in that the lenone derivatives are alternately arranged with each other along the first direction to form a long axis.
  • R is C 6 H 11 , C 6 H 13 and C 8 H 17
  • substituents M and N are both NO 2 , M is H and N is HO 2 , or both M and M are H.
  • the fluorenone derivative is 2,4,7-Trinitro-9-Fluorenone, and when M is H and N is HO 2 , the fluorenone derivative is 2,4-Dinitro-9-Fluorenone and when M and M are both H, the fluorenone derivative is 2-Nitro-9-Fluorenone.
  • the supramolecular structure absorbs light vibrating in a direction parallel to the long axis.
  • the polarizer includes a support on which a supramolecular structure is applied, and an alkyl group is substituted on the support to alternately arrange the discotic liquid crystal molecules and the fluorenone derivative in a first direction.
  • the method for manufacturing a polarizer according to the present invention comprises the steps of mixing a discotic liquid crystal molecule of Formula 1 and a fluorenone derivative of Formula 2 to form a supramolecular structure; dropping a mixture of the discotic liquid crystal molecule and the fluorenone derivative onto a support substituted with an alkyl group on a predetermined region; and the discotic liquid crystal molecules along a first direction perpendicular to the second direction by applying a mixture of the discotic liquid crystal molecules and the fluorenone derivatives to the support by moving the blade along the second direction according to the liquid phase shearing method and alternatingly arranging a mixture of the fluorenone derivative.
  • R is C 6 H 11 , C 6 H 13 and C 8 H 17 .
  • substituents M and N are both NO 2 , M is H and N is HO 2 , or both M and M are H.
  • the mixing of the discotic liquid crystal molecule and the fluorenone derivative may include: mixing the discotic liquid crystal molecule and the fluorenone derivative in a 1:1 molar ratio; and stirring the mixed discotic liquid crystal molecules and the fluorenone derivative at a temperature of 60° C. for 2 hours.
  • the step of applying the mixture of the discotic liquid crystal molecules and the fluorenone derivative to the support is 70° C. and applying a mixture of discotic liquid crystal molecules and the fluorenone derivative to the support by moving the blade of the blade at a shear rate of 10-20 ⁇ m/s in the second direction.
  • the display device includes a display panel that implements an image and a polarizing layer formed on at least one side of the display panel.
  • the display device may include an organic light emitting display panel and a liquid crystal display panel.
  • the polarizer can be formed by applying the supramolecular structure to the display device by a coating process after making the supramolecular structure, it is possible to shorten the manufacturing process time of the polarizer and reduce the manufacturing cost.
  • the display panel and the polarizer can be formed by a continuous series of processes, which greatly simplifies the manufacturing process and reduces the manufacturing time of the display device. can be shortened, greatly reducing the manufacturing cost of the display device and improving the yield.
  • the polarization layer applied to the display device can be formed very thinly in the form of a thin film, a thin display device can be manufactured.
  • FIG. 1 is a circuit diagram conceptually illustrating one pixel of an organic light emitting display device according to the present invention.
  • FIG. 2 is a cross-sectional view specifically illustrating one pixel of an organic light emitting display device according to the present invention.
  • 3 is a view showing the arrangement of the supramolecular structure.
  • FIG. 4 is a view showing a polarizer in which supramolecular structures are arranged.
  • 5 is a graph showing the light absorption by wavelength of the supramolecular structure according to the present invention.
  • FIG. 6 is a flowchart illustrating a method for manufacturing a polarizer according to the present invention.
  • FIGS. 7A to 7D are diagrams illustrating an actual manufacturing method of a polarizer according to the present invention.
  • FIG. 8 is a graph showing total transmittance and degree of polarization of the polarizer according to the present invention.
  • FIG. 9 is a flowchart illustrating a method of manufacturing a display device according to the present invention.
  • FIGS. 10A and 10B are cross-sectional views specifically illustrating one pixel of the liquid crystal display according to the present invention.
  • the present invention provides a coated polarizer.
  • Coated-type polarizer is formed by applying directly to the front surface or inner substrate of the display device, so it is composed of a polyvinyl alcohol (PVA)-based resin film and a cellulose acetate-based polarizer protective film represented by cetyl cellulose (TAC).
  • PVA polyvinyl alcohol
  • TAC cetyl cellulose
  • the present invention provides a coating-type polarizer that is resistant to heat and absorbs light in a wide wavelength band, that is, a visible light wavelength band, and thus can be excellently applied to a display device.
  • FIG. 1 is a circuit diagram conceptually illustrating one pixel of an organic light emitting display device according to the present invention.
  • the organic light emitting display device includes a gate line GL, a data line DL, and a power line PL that cross each other to define a pixel P, and the pixel A switching thin film transistor (Ts), a driving thin film transistor (Td), a storage capacitor (Cst) and an organic light emitting device (D) are disposed in (P).
  • Ts switching thin film transistor
  • Td driving thin film transistor
  • Cst storage capacitor
  • D organic light emitting device
  • the switching thin film transistor Ts is connected to the gate line GL and the data line DL, and the driving thin film transistor Td and the storage capacitor Cst are connected between the switching thin film transistor Ts and the power line PL. connected, and the organic light emitting diode (D) is connected to the driving thin film transistor (Td).
  • the switching thin film transistor Ts when the switching thin film transistor Ts is turned on according to the gate signal applied to the gate line GL, the data signal applied to the data line DL is It is applied to the gate electrode of the driving thin film transistor Td and one electrode of the storage capacitor Cst through the switching thin film transistor Ts.
  • the driving thin film transistor Td is turned on according to the data signal applied to the gate electrode, and as a result, a current proportional to the data signal is generated from the power wiring PL through the driving thin film transistor Td to the organic light emitting diode D ), and the organic light emitting device D emits light with a luminance proportional to the current flowing through the driving thin film transistor Td.
  • the storage capacitor Cst is charged with a voltage proportional to the data signal, so that the voltage of the gate electrode of the driving thin film transistor Td is constantly maintained for one frame.
  • FIG. 2 is a cross-sectional view illustrating an actual structure of one pixel of an organic light emitting display panel according to an exemplary embodiment of the present invention.
  • a buffer layer 112 is formed on the first substrate 110 , and a driving thin film transistor is disposed thereon.
  • the substrate 110 may be made of a transparent material such as glass or a transparent and flexible plastic such as polyimide.
  • the buffer layer 112 may be formed of a single layer or a plurality of layers made of an inorganic material such as SiOx or SiNx.
  • the driving thin film transistor is formed in each of the plurality of pixels.
  • the driving thin film transistor includes a semiconductor layer 122 formed in a pixel on the buffer layer 112 , a gate insulating layer 123 formed in a partial region of the semiconductor layer 122 , and a gate insulating layer 123 formed on the gate insulating layer 123 .
  • the gate electrode 125 Through the gate electrode 125 , the interlayer insulating layer 114 formed over the entire substrate 110 to cover the gate electrode 125 , and the first contact hole 114a formed in the interlayer insulating layer 114 . It includes a source electrode 127 and a drain electrode 128 in contact with the semiconductor layer 122 .
  • a switching thin film transistor is disposed on the first substrate 110 .
  • the switching thin film transistor may have the same structure as the driving thin film transistor.
  • the semiconductor layer 122 may be formed of crystalline silicon or an oxide semiconductor such as IGZO (Indium Gallium Zinc Oxide), and includes a channel layer in the central region and doped layers on both sides of the source electrode 127 and the drain electrode 128 . ) is in contact with the doped layer.
  • IGZO Indium Gallium Zinc Oxide
  • the gate electrode 125 may be formed of a metal such as Cr, Mo, Ta, Cu, Ti, Al or Al alloy, and the gate insulating layer 123 and the interlayer insulating layer 114 may be formed of SiO x or SiNx. It may be made of a single layer made of an inorganic insulating material or an inorganic layer having a two-layer structure of SiO x and SiNx.
  • the source electrode 127 and the drain electrode 128 may be formed of Cr, Mo, Ta, Cu, Ti, Al, or an Al alloy.
  • the driving thin film transistor has a specific structure in the drawings and the above description, the driving thin film transistor of the present invention is not limited to the illustrated structure, and any driving thin film transistor of any structure may be applied.
  • a protective layer 116 is formed on the substrate 110 on which the driving thin film transistor is formed.
  • the protective layer 116 may be formed of an organic material such as photoacrylic, but may also include a plurality of layers including an inorganic layer and an organic layer.
  • a second contact hole 116a is formed in the protective layer 116 .
  • a first electrode 130 electrically connected to the drain electrode 128 of the driving thin film transistor through a second contact hole 116a is formed on the protective layer 116 .
  • the first electrode 130 is made of a single layer or a plurality of layers made of a metal such as Ca, Ba, Mg, Al, Ag, or an alloy thereof, and is connected to the drain electrode 128 of the driving thin film transistor from the outside. An image signal is applied.
  • a first bank layer 142 and a second bank layer 144 are formed at the boundary of each pixel P on the passivation layer 116 .
  • the first bank layer 142 and the second bank layer 144 are a kind of barrier ribs, and by dividing each pixel P, light of a specific color output from adjacent pixels can be prevented from being mixed and output.
  • the first bank layer 142 is formed on the protective layer 116 and the second bank layer 144 is formed on the first bank layer 142 , but the first bank layer 142 is formed on the first electrode. It may be formed over 130 . Also, the first electrode 130 may extend to side surfaces of the first bank layer 142 and the second bank layer 144 .
  • the organic light emitting layer 132 is formed on the first electrode 130 and the bank layers 142 and 144 .
  • the organic light-emitting layer 132 may be an R-organic light-emitting layer formed in the R, G, and B pixels to emit red light, a G-organic light-emitting layer to emit green light, and a B-organic light-emitting layer to emit blue light.
  • the organic light emitting layer 132 not only the light emitting layer, but also an electron injection layer and a hole injection layer for respectively injecting electrons and holes into the light emitting layer, and an electron transport layer and a hole transport layer for respectively transporting the injected electrons and holes to the organic layer, etc. may be formed.
  • the organic light emitting layer 132 may be formed by thermal evaporation of an organic light emitting material, or may be formed by coating an organic light emitting material in a solution state on the first electrode 130 and drying the organic light emitting material.
  • a second electrode 134 is formed on the organic light emitting layer 132 .
  • the second electrode 134 may be made of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) or a thin metal through which visible light is transmitted, but is not limited thereto.
  • An adhesive layer 162 is applied on the second electrode 134 , and a second substrate 160 is disposed on the adhesive layer 162 , so that the second substrate 160 is attached to the display panel.
  • the adhesive layer any material may be used as long as it has good adhesion and good heat resistance and water resistance, but in the present invention, a thermosetting resin such as an epoxy-based compound, an acrylate-based compound, or an acrylic rubber may be used.
  • a photocurable resin may be used as the adhesive, and in this case, the adhesive layer 162 is cured by irradiating the adhesive layer with light such as ultraviolet rays.
  • the adhesive layer 162 may serve as an encapsulant for not only bonding the first substrate 110 and the second substrate 160 to each other, but also preventing moisture from penetrating into the electroluminescent display panel. Accordingly, in the detailed description of the present invention, the term of reference numeral 162 is expressed as an adhesive, but this is for convenience, and the adhesive layer may be referred to as an encapsulant.
  • the second substrate 160 is an encapsulation cap for encapsulating the electroluminescent display panel, such as a polystyrene (PS) film, a polyethylene (PE) film, a polyethylene naphthalate (PEN) film, or a polyimide (PI) film.
  • PS polystyrene
  • PE polyethylene
  • PEN polyethylene naphthalate
  • PI polyimide
  • a protective film may be used, or glass may be used.
  • a planarization layer may be formed between the second electrode 134 and the adhesive layer 162 .
  • the planarization layer may be composed of an organic layer, and may be composed of a plurality of layers composed of an inorganic layer and an organic layer.
  • SiOx and SiNx may be used as the inorganic layer
  • photoacrylic may be used as the organic layer, but is not limited thereto.
  • a separate encapsulation layer may be formed between the second electrode 134 and the adhesive layer 162 .
  • the encapsulation layer may include at least one inorganic layer and at least one organic layer.
  • the first electrode 130 , the organic light emitting layer 132 , and the second electrode 134 form an organic light emitting diode.
  • first electrode 130 When the first electrode 130 is a cathode of the organic light emitting diode and the second electrode 134 is an anode, voltage is applied to the first electrode 130 and the second electrode 134, Electrons from the first electrode 130 are injected into the organic light emitting layer 132 and holes are injected from the second electrode 134 into the organic light emitting layer 132, and excitons are generated in the organic light emitting layer 132, , as these excitons decay, light corresponding to the energy difference between the Lowest Unoccupied Molecular Orbital (LUMO) and the Highest Occupied Molecular Orbital (HOMO) of the emission layer is generated and emitted to the outside (the second substrate 160 side).
  • LUMO Lowest Unoccupied Molecular Orbital
  • HOMO Highest Occupied Molecular Orbital
  • the first electrode 130 is made of a transparent conductive material such as ITO or IZO or a thin metal through which visible light is transmitted
  • the second electrode 134 is formed of Ca, Ba, Mg, Al, A single layer or a plurality of layers made of a metal such as Ag or an alloy thereof, light generated from the organic light emitting layer 132 may be emitted in a downward direction (first substrate 110 side).
  • the first electrode 130 is made of a metal and the second electrode 134 is made of a transparent conductive material or a thin metal through which visible light is transmitted. It may radiate in the upper direction (second substrate 160 side).
  • the structure as described above may be applied to various organic light emitting devices currently known as well as organic light emitting devices.
  • each pixel is partitioned by a bank layer, and an organic light emitting device including an R-organic light emitting layer, a G- organic light emitting layer, and a B- organic light emitting layer is disposed in each pixel.
  • the bank layer dividing the pixel is composed of a double layer of the first bank layer 142 and the second bank layer 144 thereon.
  • the first bank layer 142 may be formed of a hydrophilic material and the second bank layer 144 may be formed of a hydrophobic material.
  • the width of the first bank layer 142 is formed to be greater than the width of the second bank layer 144, so that the first bank layer 142 is exposed on both sides of the second bank layer 144, and the organic light emitting layer 132 is exposed. It is formed on the first electrode 130 and the exposed first bank layer 142 .
  • the width of the first bank layer 142 is the same as the width of the second bank layer 144, and the first bank layer 142 and the second bank layer 144 are aligned and formed.
  • the organic light emitting layer 132 may be formed only on the first electrode 130 .
  • a phase delay layer 166 and a polarization layer 170 are formed on a lower surface of the first substrate 110 .
  • the external light input from the outside of the polarization layer 170 is changed to linearly polarized light in a specific direction, and the phase delay layer 166 delays the ⁇ /4 phase of the linearly polarized light from the polarization layer 170 . converted into circularly polarized light.
  • the phase delay layer 166 and the polarization layer 170 are formed on the upper surface of the second substrate 160 .
  • Light input from the outside and converted into, for example, left circularly polarized light by the polarization layer 170 and the phase delay layer 166 is reflected by the second substrate 160 or a structure below it and is then right circularly polarized light , and the right circularly polarized light is blocked without passing through the polarization layer 170 and the phase delay layer 166 , so that the reflected light from the display panel can be blocked.
  • the light emitted from the organic light emitting layer 132 to the outside is linearly polarized and output while passing through the phase delay layer 166 and the polarization layer 170 .
  • the phase delay layer 166 may be formed by being applied to the first substrate 110 or the second substrate 160, or may be formed and attached in the form of a film.
  • the phase delay layer 166 includes polyether sulfone (PES), tri-acetyl cellulose (TAC), polycarbonate (PC), and polyethylene terephthalate. :PET) and cyclo olefin polymer (COP) may be used, but the present invention is not limited thereto.
  • the polarization layer 170 may be formed by being applied to the phase delay layer 166).
  • the polarization layer 170 is made of a coating-type polarizing material, and is formed by being applied to the phase delay layer 166 .
  • the coating-type polarizer forming the polarization layer 170 will be described in more detail.
  • FIG. 3 is a view showing the supramolecular structure 272 formed by the charge transfer complex of the polarizer 270 according to the present invention
  • FIG. 4 is a view showing the polarizer 270 in which the charge transfer complex is aligned.
  • discotic liquid crystal molecules 272a and 9-Fluorenone derivatives 272b are alternately arranged along one direction. It is composed of a supramolecular structure (272).
  • the discotic liquid crystal molecule 272a may be expressed by the following Chemical Formula 1.
  • the discotic liquid crystal molecule 272a has a triphenylene central molecule in which six alkoxy groups are substituted, and R is substituted in the alkoxy group.
  • the substituent R may be C 6 H 11 , C 6 H 13 and C 8 H 17 depending on the absorption wavelength in the supramolecular structure formed by the charge transfer complex, but is not limited thereto.
  • fluorenone derivative 272b may be represented by the following Chemical Formula 2.
  • both of the substituents M and N may be NO 2
  • M may be H and N may be HO 2
  • both M and M may be H.
  • the fluorenone derivative 272b 1 to 3 nitro groups are substituted in the fluorenone molecular sieve.
  • the fluorenone derivative 272b is 2,4,7-Trinitro-9-Fluorenone
  • M is H
  • N is HO 2
  • the fluorenone derivative 272b is 2,4 -Dinitro-9-Fluorenone
  • the fluorenone derivative (272b) is 2-Nitro-9-Fluorenone.
  • the wavelength of the supramolecular structure 272 formed by the charge transfer complex can be adjusted.
  • the discotic liquid crystal molecules 272a and the fluorenone derivative 272b form a charge transfer complex.
  • the discotic liquid crystal molecule 272a and the fluorenone derivative 272b are mixed at a set temperature for a set time, six alkoxy groups that are donors of the discotic liquid crystal molecule 272a transfer electrons to the triphenyline group.
  • the molecular center of the discotic liquid crystal molecules 272a forms a relatively high electron density.
  • the electron-rich discotic liquid crystal molecule 272a acts as an electron donor and the fluorenone derivative 272b acts as an electron acceptor.
  • the discotic liquid crystal molecules 272a and the fluorenone derivative 272b form an electron transfer complex by electrostatic attraction by
  • the supramolecular structure 272 is formed by an electron transfer complex by electrostatic attraction between the discotic liquid crystal molecules 272a and the fluorenone derivative 272b, and the supramolecular structure 272 is a discotic liquid crystal.
  • An electron transfer path is formed between the molecule 272a and the fluorenone derivative 272b, and light energy is absorbed when electrons are excited in the electron transfer path.
  • the supramolecular structure 272 according to the present invention when electrons are excited in the electron movement path, light in the visible ray region of about 400-700 nm wavelength is absorbed.
  • FIG. 5 is a view showing the light absorptivity for each wavelength of the supramolecular structure 272 according to the present invention, wherein the dashed-dotted line represents the light absorptivity of the fluorenone derivative 272b, and the double-dotted line represents the light absorptivity of the discotic liquid crystal molecule 272a. and the solid line indicates the light absorption rate of the supramolecular structure 272 .
  • the discotic liquid crystal molecule 272a has a light absorptivity of about 0.1 or less, and the fluorenone derivative 272b has a light absorptivity of about 0.6-0.65.
  • the supramolecular structure 272 has a light absorptivity of about 0.4-1.2. Accordingly, it can be seen that the light absorptivity of the supramolecular structure 272 formed by the electron transfer complex is much greater than that of the discotic liquid crystal molecules 272a and the fluorenone derivative 272b.
  • the light absorptivity of the supramolecular structure 272 is much greater than that of the fluorenone derivative 272b over the entire visible light region except for the wavelength band of about 690-700 nm.
  • the light absorptivity of the supramolecular structure 272 is nearly twice as large as that of the fluorenone derivative 272b.
  • the fluorenone derivative (272b) described in Chemical Formula 2 is 2,4,7-Trinitro-9-Fluorenone, 2,4-Dinitro-, each having different light absorption rates depending on 1 to 3 substituents on the fluorenone molecular sieve.
  • 9-Fluorenone, and 2-Nitro-9-Fluorenone, and the light absorptance of the supramolecular structure 272 also changes according to the change in the light absorptivity of the fluorenone derivative 272b.
  • the light absorptance of the supramolecular structure 272 be adjusted according to the substituent of the fluorenone derivative 272b, but also the light absorptance for each wavelength band can be adjusted by changing the type of the substituent.
  • the supramolecular structure 272 formed by the electron transfer complex of the discotic liquid crystal molecule 272a and the fluorenone derivative 272b absorbs light in the visible region
  • the supramolecular structure 272 It is possible to form a polarizer that absorbs a light component in a specific direction and transmits a light component in a different direction for the house ray.
  • discotic liquid crystal molecules (272a) and fluorenone derivatives (272b) are alternately arranged along a specific direction to form a supramolecular structure 272, so that discotic liquid crystal molecules ( 272a) and the arrangement direction of the fluorenone derivative 272b, that is, a light component parallel to the long axis direction of the supramolecular structure 272 (that is, light vibrating in the long axis direction of the supramolecular structure 272) is absorbed and the supramolecular structure 272 ) (light vibrating in a direction perpendicular to the long axis direction of the supramolecular structure 272) is transmitted perpendicular to the long axis direction of the supramolecular structure 272 as a polarizer for polarizing light.
  • FIGS. 7A to 7D are diagrams specifically illustrating a method for actually manufacturing a polarizer according to the present invention.
  • discotic liquid crystal molecules 272a and fluorenone derivatives 272b are added to 1,2-dichlorobenzene in a molar ratio of 1:1 and mixed to form a supramolecular structure 272. (S101).
  • the discotic liquid crystal molecules 272a and the fluorenone derivative 272b are stirred at a temperature of about 60° C. for about 2 hours, but the present invention is not limited thereto, but depending on various conditions such as a substituent of the fluorenone derivative 272b. Stirring temperature and stirring time can be adjusted.
  • the discotic liquid crystal molecules 272a and the fluorenone derivative 272b are stirred at the set temperature and time, the discotic liquid crystal molecules 272a and the fluorenone derivative 272b are charged by electrostatic force due to charge transfer. A mobile complex is formed to form the supramolecular structure 272 .
  • the surface of the support 274 is treated to substitute the alkyl group 276 on the surface of the support 274 ( S102 ).
  • Substitution of the alkyl group 276 to the surface of the support 274 may be accomplished by various methods.
  • the treatment of the support 274 may be formed by applying a polymer having an alkyl group 276 to the surface of the support 274 , but is not limited thereto.
  • the support 274 may be made of glass or a transparent film.
  • a polymer film containing a polyvinyl alcohol (PVA)-based resin as a main component may be used, but is not limited thereto.
  • the supramolecular structure 272c in a solution state is coated on the support 274 by a solution shearing process (S103), and then a polarizer is formed by curing the supramolecular structure 272c in a solution state. do.
  • the supramolecular structure 272c in a solution state is dropped or applied to a specific region of the support 274, and the blade 277 is placed on the applied supramolecular structure 272c, and then the temperature set
  • the blade 277 is moved at a set speed along the shear direction of the first direction
  • the supramolecular structure 272 is combined with an alkyl group substituted on the support 274 to form a dipole formed in the supramolecular structure 272.
  • Moments ( ⁇ + , ⁇ - ) are arranged along one direction. Accordingly, the discotic liquid crystal molecules 272a and the fluorenone derivatives 272b are alternately arranged along one direction so that the supramolecular structure 272 is arranged along a specific direction.
  • the blade 277 is moved along the shearing direction (first direction) at a speed of about 10-20 ⁇ m/s. By doing so, the supramolecular structure 272 is applied over the entire support 274 .
  • the supramolecular structure 272 applied to the support 274 by this solution shearing method is arranged along the first direction and the second direction perpendicular to the shearing direction.
  • the polarizer is formed by curing the supramolecular structure 272c in the solution state as described above and removing the solvent.
  • the polarizer according to the present invention is formed by stirring the discotic liquid crystal molecules 272a and the fluorenone derivative 272b to form the supramolecular structure 272, and then applying the same.
  • FIG 8 is a graph showing total transmittance and degree of polarization of the polarizer according to the present invention.
  • the solid line represents the degree of polarization (DOP) and the dotted line represents the total transmittance (TT).
  • the manufactured polarizer has an average transmittance of about 40% or less as a whole in a wavelength band of about 400-700 nm, which is a visible ray region, and in particular, an average transmittance of about 20% in a wavelength band of 600 nm or less. Therefore, when such a polarizer is used in a display device, an image passes through the polarizer and reaches the user.
  • the manufactured polarizer exhibits a polarization efficiency of about 90.3% near 470 nm for a light component vibrating in the arrangement direction of the supramolecular structure 272, that is, in the long axis direction, and a polarization efficiency of about 85% in the visible light band of 400-700 nm.
  • the polarizer according to the present invention not only has good polarization degree, but also exhibits good polarization characteristics over a wide wavelength band of the entire household ray band, so that it can be usefully applied as a polarizing plate for a display device.
  • the polarizer according to the present invention is strong against moisture, deformation does not occur by water vapor in the atmosphere, and the structure does not deform even at a high temperature of 150° C.
  • the polarizer according to the present invention can be formed by directly coating the supramolecular structure 272 on the front surface or inner substrate of the display device during the process of the display device, it is easier to manufacture compared to a general polarizing plate. do.
  • the process time is shortened and the manufacturing cost is reduced.
  • the present invention provides a coating-type polarizer that is resistant to heat and absorbs light in a wide wavelength band, that is, a visible light wavelength band, and thus can be excellently applied to a display device.
  • the polarizer can be manufactured by coating the supramolecular structure 272 in the form of a thin film, the thickness of the display device can be reduced.
  • FIG. 9 is a flowchart schematically illustrating a method of manufacturing an organic light emitting display device according to the present invention, and with reference to this, a method of manufacturing an organic light emitting display device having a polarizer according to the present invention will be briefly described.
  • an organic light emitting display panel is first manufactured ( S201 ).
  • the organic light emitting display panel has the structure shown in FIG. 2 , and a driving thin film transistor and an organic light emitting device are disposed on a first substrate 110 , and a second substrate 160 is provided thereon.
  • the organic light emitting display panel is a bottom light emitting organic light emitting display panel, and the light emitted from the organic light emitting device is outputted to the outside through the first substrate 110 to display an image.
  • the organic light emitting display panel of the present invention is not limited to such a structure, but may be applied to display panels having various structures currently known.
  • a polymer including an alkyl group is coated on the rear surface of the first substrate 110 of the manufactured organic light emitting display panel, that is, the outer surface of the first substrate 110 on which an image is displayed, to the surface of the first substrate 110 . is substituted with an alkyl group (S203).
  • the solution-state supramolecular structure 272 is applied to the rear surface of the first substrate 110 by the solution shearing method, and then dried, the discotic liquid crystal molecules are located on the rear surface of the first substrate 110 along a specific direction.
  • 272a and the fluorenone derivative 272b are alternately arranged so that the long axes of the supramolecular structure 272 are arranged along the direction to form the polarization layer 170 on the image display surface of the organic light emitting display device (S204) .
  • a polarizer can be formed, so that the manufacturing process of the display device can be simplified. do.
  • the display panel and the polarizer can be formed by a continuous series of processes, which greatly simplifies the manufacturing process and improves the display device. It is possible to shorten the manufacturing time of the display device, greatly reducing the manufacturing cost of the display device and improving the yield.
  • the supramolecular structure 272 is formed by being coated on the rear surface of the first substrate 110 of the organic light emitting display panel, but the supramolecular structure 272 according to the present invention is applied only to the rear surface of the first substrate 110 . it is not When the display device is a top emission type organic light emitting display panel, the supramolecular structure 272 is applied to the upper surface of the second substrate 160 so that the polarization layer 170 can be formed on the upper surface of the second substrate 160 . have.
  • the supramolecular structure 272 according to the present invention is applied to a desired area as needed, so that a polarizer having a desired shape can be formed in the corresponding area by a quick and simple method.
  • an organic light emitting display device has been described as an example of a display device to which the polarizer of the present invention is applied, but the display device to which the polarizer according to the present invention is applied is not limited to the organic light emitting display device.
  • FIGS. 10A and 10B are views each showing a liquid crystal display device to which a polarizer according to the present invention is applied.
  • a gate electrode 325 is formed on the first substrate 310 , and a gate insulating layer 312 is stacked over the entire first substrate 325 .
  • a semiconductor layer 332 is formed on the gate insulating layer 312 , and a source electrode 327 and a drain electrode 328 are formed thereon.
  • a passivation layer 314 is formed over the entire first substrate 310 .
  • a plurality of common electrodes 330 are formed on the gate insulating layer 312 , a pixel electrode 333 is formed on the protective layer 314 , and a contact hole in which the pixel electrode 333 is formed in the protective layer 314 . As it is electrically connected to the pixel electrode 333 through , and a signal is applied to the pixel electrode 333 , an electric field E is generated between the common electrode 330 and the pixel electrode 333 .
  • the common electrode 330 is formed over the entire area of the pixel in a dummy shape, and a plurality of pixel electrodes 330 are formed at regular intervals.
  • the common electrode 330 may be formed on the first substrate 310 or the passivation layer 314 , and the pixel electrode 330 is formed on the first substrate 310 or the gate insulating layer. It may be formed over 312 .
  • both the common electrode 330 and the pixel electrode 330 may be formed in a band shape of a predetermined width and alternately disposed.
  • a black matrix 363 and a color filter layer 365 are formed on the second substrate 360 .
  • the black matrix 363 is used to prevent light from leaking to a region where liquid crystal molecules do not operate. As shown in the figure, the black matrix 363 is located in the thin film transistor region and between the pixel and the pixel (ie, the gate line and the data line region). mainly formed
  • the color filter layer 365 is composed of R (Red), B (Blue), and G (Green) to realize actual colors.
  • An overcoat layer for protecting the color filter layer 365 and improving the flatness of the substrate may be formed on the color filter layer 365 .
  • a liquid crystal layer 368 is formed between the first substrate 310 and the second substrate 360 .
  • an electric field is generated in the liquid crystal layer 368 by the common electrode 330 and the pixel electrode 333, and the liquid crystal molecules in the liquid crystal layer 368 are moved on a plane by the electric field. Since it rotates, an image can be displayed by adjusting the transmittance of light passing through the liquid crystal layer 368 by the refractive index anisotropy of the liquid crystal molecules.
  • first and second polarization layers 370a and 370b are formed on the upper and lower surfaces of the liquid crystal display panel, that is, the rear surface of the first substrate 310 and the upper surface of the second substrate 360, respectively.
  • the image can be realized by controlling the transmittance of the light.
  • first and second polarization layers 370a and 370b may be formed on the first substrate 310 and the second substrate 360 inside the liquid crystal display.
  • first and second buffer layers 374a and 374b may be respectively formed between the first polarization layer 370a and the gate insulating layer 312 and between the second polarization layer 370b and the color filter layer 365 .
  • the first and second buffer layers 374a and 374b may be formed of an inorganic material and/or an organic material, but are not limited thereto.
  • the first and second polarization layers 370a and 370b are formed of a supramolecular structure in which discotic liquid crystal molecules and fluorenones are alternately arranged along one direction.
  • the arrangement direction of the discotic liquid crystal molecules and the fluorenone of the first and second polarization layers 370a and 370b that is, the long axis of the supramolecular structure is mutual vertical, and when the liquid crystal display is in a normally white mode, the long axes of the supramolecular structures of the first and second polarization layers 370a and 370b are parallel to each other.
  • the liquid crystal molecules are arranged in a direction parallel to each other in the entire area of the liquid crystal layer 368 of the liquid crystal display having the above structure, when no signal is applied to the liquid crystal display, the liquid crystal molecules are arranged along the x-axis direction. , the light incident on the liquid crystal layer 368 is linearly polarized along the x-axis direction and passes through the liquid crystal layer 368 as it is.
  • the short axis of the supramolecular structure of the second polarization layer 140 that is, the light transmission axis, is perpendicular to the polarization direction of the light transmitted through the liquid crystal layer 368, the light transmitted through the liquid crystal layer 368 is transmitted through the second polarization layer 370b. ), so that no light is output to the outside of the second polarization layer 370b, the screen is displayed in black.
  • first and second polarizing layers 370a and 370b may be formed by applying a supramolecular structure to the first and/or second surfaces of the first and second substrates 310 and 360, respectively, separate separate polarizing plates for manufacturing the polarizing plate may be formed. Since there is no need for a manufacturing process or a separate attaching process for attaching the polarizing plate, it is possible to shorten the manufacturing time and reduce the manufacturing cost.
  • first and second polarization layers 370a and 370b can be formed very thinly in the form of a thin film, a thin liquid crystal display device can be manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A polarizer according to the present invention is composed of a supramolecular structure comprising a discotic liquid crystal molecule of Chemical Formula 1 and a fluorenone derivative of Chemical Formula 2, wherein the supramolecular structure is characterized in that a plurality of the discotic liquid crystal molecules and the fluorenone derivatives are alternately arranged with each other along a first direction to form a long axis. [Chemical Formula 1] wherein R is C6H11, C6H13 and C8H17. [Chemical Formula 2] wherein substituents M and N are both NO2, M is H and N is HO2, or both M and N are H.

Description

편광자, 편광자 제조방법 및 이를 구비한 표시장치Polarizer, polarizer manufacturing method, and display device having same
본 발명은 편광자, 편광자 제조방법 및 이를 구비한 표시장치에 관한 것으로, 특히 넓은 가시광선 영역의 흡수가 가능하고 습기에 강한 코팅형 편광자, 편광자 제조방법 및 이를 구비한 표시장치에 관한 것이다.The present invention relates to a polarizer, a method for manufacturing a polarizer, and a display device having the same, and more particularly, to a coating-type polarizer capable of absorbing a wide visible light region and strong against moisture, a polarizer manufacturing method, and a display device having the same.
편광판은 일측방향으로 진동하는 광성분을 흡수하여 타축방향으로만 진동하는 광을 투과시킴으로써, 자연광을 한방향으로만 진동하도록 한다. The polarizing plate absorbs light components vibrating in one direction and transmits light vibrating only in the other axis direction, thereby causing natural light to vibrate in only one direction.
이러한 편광판은 액정표시장치 및 유기전계발광 표시장치와 같은 표시장치에 적용되어 표시장치를 투과하는 광의 투과율을 조절하여 화상을 구현하거나(액정표시장치) 외부로부터 입력되는 외부광의 반사를 차단하여 표시장치의 시인성을 향상시킨다(유기전계발광 표시장치).Such a polarizing plate is applied to a display device such as a liquid crystal display device and an organic light emitting display device to realize an image by controlling the transmittance of light passing through the display device (liquid crystal display device) or to block the reflection of external light input from the outside to display the display device to improve the visibility (organic light emitting display device).
이러한 편광판은 표시패널과는 별도의 구조물로 제작되어 표시패널의 양면 또는 전면(front surface)에 부착되어야 하므로, 표시장치의 제작시 표시장치의 부피가 증가하고 무게가 증가하는 주요한 원인이 된다.Since the polarizing plate is manufactured as a structure separate from the display panel and attached to both sides or the front surface of the display panel, it is a major cause of an increase in the volume and weight of the display device when manufacturing the display device.
또한, 이러한 편광판은 고가의 부품일 뿐만 아니라, 표시패널의 제조공정과는 별개의 모듈공정에서 표시패널에 양면 또는 전면에 편광판을 부착해야만 하므로 제조공정이 복잡해지는 문제가 있었다.In addition, such a polarizing plate is not only an expensive component, but also has a problem in that the manufacturing process is complicated because the polarizing plate must be attached to both sides or the front side of the display panel in a module process separate from the manufacturing process of the display panel.
본 발명은 상기한 문제를 해결하기 위한 것으로, 가시광선 전체 대역에서 편광특성이 좋고 수분과 온도에 강한 편광자 및 그 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a polarizer having good polarization characteristics in the entire visible light band and strong resistance to moisture and temperature, and a method for manufacturing the same in order to solve the above problems.
본 발명은 다른 목적은 상기 편광자를 포함하는 표시장치를 제공하는 것이다.Another object of the present invention is to provide a display device including the polarizer.
상기 목적을 달성하기 위해, 본 발명에 따른 편광자는 화학식1의 디스코틱 액정분자 및 화학식2의 플로오레논 유도체를 포함하는 초분자구조체로 구성되며, 상기 초분자구조체는 복수의 디스코틱 액정분자와 플로오레논 유도체가 제1방향을 따라 서로 교대로 배열되어 장축을 형성하는 것을 특징으로 한다.In order to achieve the above object, a polarizer according to the present invention is composed of a supramolecular structure including a discotic liquid crystal molecule of Formula 1 and a fluorenone derivative of Formula 2, and the supramolecular structure includes a plurality of discotic liquid crystal molecules and a flow It is characterized in that the lenone derivatives are alternately arranged with each other along the first direction to form a long axis.
[화학식 1][Formula 1]
Figure PCTKR2020014325-appb-img-000001
Figure PCTKR2020014325-appb-img-000001
여기서, R은 C 6H 11, C 6H 13 및 C 8H 17 where R is C 6 H 11 , C 6 H 13 and C 8 H 17
[화학식 2][Formula 2]
Figure PCTKR2020014325-appb-img-000002
Figure PCTKR2020014325-appb-img-000002
여기서, 치환기 M과 N이 모두 NO 2, M은 H이고 N은 HO 2,또는 M과 M이 모두 H이다.Here, the substituents M and N are both NO 2 , M is H and N is HO 2 , or both M and M are H.
치환기 M과 N이 모두 NO 2일 경우 플루오레논 유도체는 2,4,7-Trinitro-9-Fluorenone이고, M은 H이고 N이 HO 2일 경우 플루오레논 유도체는 2,4-Dinitro-9-Fluorenone이며, M과 M이 모두 H일 경우 플루오레논 유도체는 2-Nitro-9-Fluorenone이다.When the substituents M and N are both NO 2 , the fluorenone derivative is 2,4,7-Trinitro-9-Fluorenone, and when M is H and N is HO 2 , the fluorenone derivative is 2,4-Dinitro-9-Fluorenone and when M and M are both H, the fluorenone derivative is 2-Nitro-9-Fluorenone.
상기 초분자구조체는 장축과 평행한 방향으로 진동하는 광을 흡수한다.The supramolecular structure absorbs light vibrating in a direction parallel to the long axis.
편광자는 초분자구조체가 도포되는 지지체를 포함하며, 지지체에는 알킬기가 치환되어 상기 디스코틱 액정분자와 상기 플로오레논 유도체를 제1방향을 따라 교대로 배열한다.The polarizer includes a support on which a supramolecular structure is applied, and an alkyl group is substituted on the support to alternately arrange the discotic liquid crystal molecules and the fluorenone derivative in a first direction.
또한, 본 발명에 따른 편광자 제조방법은 화학식1의 디스코틱 액정분자 및 화학식2의 플로오레논 유도체를 혼합하여 초분자구조체를 형성하는 단계; 상기 디스코틱 액정분자와 상기 플로오레논 유도체의 혼합물을 알키기가 치환된 지지체에 일정 영역에 적하하는 단계; 및 액상전단법에 따라 블레이드를 제2방향을 따라 이동하여 상기 디스코틱 액정분자와 상기 플로오레논 유도체의 혼합물을 상기 지지체에 도포하여 제2방향과 수직인 제1방향을 따라 상기 디스코틱 액정분자와 상기 플로오레논 유도체의 혼합물을 교대로 배열하는 단계로 구성된다.In addition, the method for manufacturing a polarizer according to the present invention comprises the steps of mixing a discotic liquid crystal molecule of Formula 1 and a fluorenone derivative of Formula 2 to form a supramolecular structure; dropping a mixture of the discotic liquid crystal molecule and the fluorenone derivative onto a support substituted with an alkyl group on a predetermined region; and the discotic liquid crystal molecules along a first direction perpendicular to the second direction by applying a mixture of the discotic liquid crystal molecules and the fluorenone derivatives to the support by moving the blade along the second direction according to the liquid phase shearing method and alternatingly arranging a mixture of the fluorenone derivative.
[화학식 1][Formula 1]
Figure PCTKR2020014325-appb-img-000003
Figure PCTKR2020014325-appb-img-000003
여기서, R은 C 6H 11, C 6H 13 및 C 8H 17. where R is C 6 H 11 , C 6 H 13 and C 8 H 17 .
[화학식 2][Formula 2]
Figure PCTKR2020014325-appb-img-000004
Figure PCTKR2020014325-appb-img-000004
여기서, 치환기 M과 N이 모두 NO 2, M은 H이고 N은 HO 2,또는 M과 M이 모두 H.Here, the substituents M and N are both NO 2 , M is H and N is HO 2 , or both M and M are H.
상기 디스코틱 액정분자와 상기 플로오레논 유도체를 혼합하는 단계는, 상기 디스코틱 액정분자와 상기 플로오레논 유도체를 1:1 몰비율로 혼합하는 단계; 및 혼합된 디스코틱 액정분자와 플로오레논 유도체를 60℃의 온도에서 2시간 동안 교반하는 단계를 포함하며, 디스코틱 액정분자와 상기 플로오레논 유도체의 혼합물을 상기 지지체에 도포하는 단계는 70℃의 상기 블레이드를 제2방향을 따라 10-20㎛/s의 전단속도로 이동하여 디스코틱 액정분자와 상기 플로오레논 유도체의 혼합물을 상기 지지체에 도포하는 단계를 포함한다.The mixing of the discotic liquid crystal molecule and the fluorenone derivative may include: mixing the discotic liquid crystal molecule and the fluorenone derivative in a 1:1 molar ratio; and stirring the mixed discotic liquid crystal molecules and the fluorenone derivative at a temperature of 60° C. for 2 hours. The step of applying the mixture of the discotic liquid crystal molecules and the fluorenone derivative to the support is 70° C. and applying a mixture of discotic liquid crystal molecules and the fluorenone derivative to the support by moving the blade of the blade at a shear rate of 10-20 μm/s in the second direction.
또한, 본 발명에 따른 표시장치는 화상을 구현하는 표시패널 및 상기 표시패널에 적어도 일측에 형성된 편광층으로 구성된다. 이때, 표시장치는 유기전계발광 표시패널 및 액정표시패널을 포함할 수 있다.In addition, the display device according to the present invention includes a display panel that implements an image and a polarizing layer formed on at least one side of the display panel. In this case, the display device may include an organic light emitting display panel and a liquid crystal display panel.
본 발명에서는 초분자구조체를 만든 후 코팅공정에 의해 표시장치에 상기 초분자구조를 도포함으로써, 편광자를 형성할 수 있게 되므로, 편광자의 제조공정 시간을 단축할 수 있으며, 제조비용을 절감할 수 있게 된다.In the present invention, since the polarizer can be formed by applying the supramolecular structure to the display device by a coating process after making the supramolecular structure, it is possible to shorten the manufacturing process time of the polarizer and reduce the manufacturing cost.
또한, 초분자구조체는 표시장치의 제조공정과 인라인(in-line)으로 구성하여, 연속적인 일련의 공정에 의해 표시패널과 편광자를 형성할 수 있게 되므로, 제조공정을 대폭 단순화하고 표시장치의 제조시간을 단축할 수 있게 되어, 표시장치의 제조단가를 대폭 감축하고 수율을 향상시킬 수 있게 된다.In addition, since the supramolecular structure is configured in-line with the manufacturing process of the display device, the display panel and the polarizer can be formed by a continuous series of processes, which greatly simplifies the manufacturing process and reduces the manufacturing time of the display device. can be shortened, greatly reducing the manufacturing cost of the display device and improving the yield.
더욱이, 표시장치에 적용되는 편광층은 박막형태로 매우 얇게 형성할 수 있으므로, 박형의 표시장치의 제작이 가능하게 된다.Furthermore, since the polarization layer applied to the display device can be formed very thinly in the form of a thin film, a thin display device can be manufactured.
도 1은 본 발명에 따른 유기전계발광 표시장치의 하나의 화소를 개념적으로 나타내는 회로도이다.1 is a circuit diagram conceptually illustrating one pixel of an organic light emitting display device according to the present invention.
도 2는 본 발명에 따른 유기전계발광 표시장치의 하나의 화소를 구체적으로 나타내는 단면도이다.2 is a cross-sectional view specifically illustrating one pixel of an organic light emitting display device according to the present invention.
도 3은 초분자구조체의 배열을 나타내는 도면이다.3 is a view showing the arrangement of the supramolecular structure.
도 4는 초분자구조체가 배열된 편광자를 나타내는 도면이다.4 is a view showing a polarizer in which supramolecular structures are arranged.
도 5는 본 발명에 따른 초분자구조체의 파장별 광흡수율을 나타내는 그래프이다.5 is a graph showing the light absorption by wavelength of the supramolecular structure according to the present invention.
도 6은 본 발명에 따른 편광자의 제조방법을 나타내는 플로우챠트이다.6 is a flowchart illustrating a method for manufacturing a polarizer according to the present invention.
도 7a 내지 도 7d는 본 발명에 따른 편광자의 실제 제조방법을 나타내는 도면이다.7A to 7D are diagrams illustrating an actual manufacturing method of a polarizer according to the present invention.
도 8은 본 발명에 따른 편광자의 전체 투과도(Total Transmitance) 및 편광정도(Degree Of Polarization)를 나타내는 그래프이다.8 is a graph showing total transmittance and degree of polarization of the polarizer according to the present invention.
도 9는 본 발명에 따른 표시장치의 제조방법을 나타내는 플로우챠트이다.9 is a flowchart illustrating a method of manufacturing a display device according to the present invention.
도 10a 및 도 10b는 각각 본 발명에 따른 액정표시장치의 하나의 화소를 구체적으로 나타내는 단면도이다.10A and 10B are cross-sectional views specifically illustrating one pixel of the liquid crystal display according to the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 권리의 범위는 첨부된 청구항에 의해 결정되어야만 한다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be embodied in various different forms, only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the technical field to which the present invention belongs It is provided to fully inform the possessor of the scope of the invention, and the scope of the rights of the present invention should be determined by the appended claims.
이하, 첨부한 도면을 참조하여 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
본 발명에서는 코팅형 편광자를 제공한다. 코팅형 편광자는 표시장치의 전면(front surface)나 내측의 기판에 직접 도포하여 형성되므로, 폴리비닐알콜(PVA)계 수지필름과 세틸셀룰로오스(TAC)로 대표되는 아세트산 셀룰로오스계의 편광자 보호필름으로 구성된 필름형태로 구성되어 표시장치에 부착하는 일반적인 편광판에 비해 제작이 용이할 뿐만 아니라 두께로 감소시킬 수 있게 된다. 또한, 별도의 연신공정이나 염색 공정 등이 필요없게 되므로, 공정시간이 단축되고 제조비용이 절감된다.The present invention provides a coated polarizer. Coated-type polarizer is formed by applying directly to the front surface or inner substrate of the display device, so it is composed of a polyvinyl alcohol (PVA)-based resin film and a cellulose acetate-based polarizer protective film represented by cetyl cellulose (TAC). Compared to a general polarizing plate that is configured in a film form and attached to a display device, it is easy to manufacture and can be reduced in thickness. In addition, since there is no need for a separate stretching process or dyeing process, the process time is shortened and the manufacturing cost is reduced.
특히, 본 발명에서는 열에 강하고 넓은 파장대역, 즉 가시광선 파장대역의 광을 흡수함으로써 표시장치에 훌룡하게 적용할 수 있는 코팅형 편광자를 제공한다.In particular, the present invention provides a coating-type polarizer that is resistant to heat and absorbs light in a wide wavelength band, that is, a visible light wavelength band, and thus can be excellently applied to a display device.
이하에서는 이러한 코팅형 편광자가 구비된 표시장치를 자세히 설명한다.Hereinafter, a display device equipped with such a coated polarizer will be described in detail.
도 1은 본 발명에 따른 유기전계발광 표시장치의 하나의 화소를 개념적으로 나타내는 회로도이다.1 is a circuit diagram conceptually illustrating one pixel of an organic light emitting display device according to the present invention.
도 1에 도시한 바와 같이, 본 발명에 따른 유기전계발광 표시장치는 서로 교차하여 화소(P)를 정의하는 게이트배선(GL), 데이터배선(DL) 및 파워배선(PL)을 포함하며, 화소(P)에는 스위칭박막트랜지스터(Ts), 구동박막트랜지스터(Td), 스토리지캐패시터(Cst) 및 유기발광소자(D)가 배치된다.As shown in FIG. 1 , the organic light emitting display device according to the present invention includes a gate line GL, a data line DL, and a power line PL that cross each other to define a pixel P, and the pixel A switching thin film transistor (Ts), a driving thin film transistor (Td), a storage capacitor (Cst) and an organic light emitting device (D) are disposed in (P).
상기 스위칭박막트랜지스터(Ts)는 게이트배선(GL) 및 데이터배선(DL)에 연결되고 상기 구동박막트랜지스터(Td) 및 스토리지 캐패시터(Cst)는 스위칭 박막트랜지스터(Ts)와 파워배선(PL) 사이에 연결되며, 상기 유기발광소자(D)는 구동박막트랜지스터(Td)에 연결된다. The switching thin film transistor Ts is connected to the gate line GL and the data line DL, and the driving thin film transistor Td and the storage capacitor Cst are connected between the switching thin film transistor Ts and the power line PL. connected, and the organic light emitting diode (D) is connected to the driving thin film transistor (Td).
이러한 구조의 유기전계발광 표시패널에서, 게이트배선(GL)에 인가된 게이트신호에 따라 스위칭박막트랜지스터(Ts)가 턴-온(turn-on) 되면, 데이터배선(DL)에 인가된 데이터신호가 스위칭박막트랜지스터(Ts)를 통해 구동박막트랜지스터(Td)의 게이트전극과 스토리지 캐패시터(Cst)의 일전극에 인가된다. In the organic light emitting display panel having such a structure, when the switching thin film transistor Ts is turned on according to the gate signal applied to the gate line GL, the data signal applied to the data line DL is It is applied to the gate electrode of the driving thin film transistor Td and one electrode of the storage capacitor Cst through the switching thin film transistor Ts.
상기 구동박막트랜지스터(Td)는 게이트전극에 인가된 데이터신호에 따라 턴-온 되며, 그 결과 데이터신호에 비례하는 전류가 파워배선(PL)으로부터 구동박막트랜지스터(Td)를 통하여 유기발광소자(D)로 흐르게 되고, 유기발광소자(D)는 구동박막트랜지스터(Td)를 통하여 흐르는 전류에 비례하는 휘도로 발광한다. The driving thin film transistor Td is turned on according to the data signal applied to the gate electrode, and as a result, a current proportional to the data signal is generated from the power wiring PL through the driving thin film transistor Td to the organic light emitting diode D ), and the organic light emitting device D emits light with a luminance proportional to the current flowing through the driving thin film transistor Td.
이때, 스토리지캐패시터(Cst)에는 데이터신호에 비례하는 전압으로 충전되어, 일프레임(frame) 동안 구동박막트랜지스터(Td)의 게이트전극의 전압이 일정하게 유지되도록 한다. At this time, the storage capacitor Cst is charged with a voltage proportional to the data signal, so that the voltage of the gate electrode of the driving thin film transistor Td is constantly maintained for one frame.
도 2 는 본 발명의 일실시예에 따른 유기전계발광 표시패널의 한 화소의 실제 구조를 나타내는 단면도이다.2 is a cross-sectional view illustrating an actual structure of one pixel of an organic light emitting display panel according to an exemplary embodiment of the present invention.
도 2에 도시된 바와 같이, 제1기판(110) 위에는 버퍼층(112)이 형성되며, 그 위에 구동박막트랜지스터가 배치된다. 상기 기판(110)은 유리와 같은 투명한 물질로 구성될 수도 있고 폴리이미드(polyimide)와 같이 투명하고 플렉서블(flexible)한 플라스틱으로 구성될 수도 있다. 또한, 버퍼층(112)은 SiOx나 SiNx와 같은 무기물질로 이루어진 단일층 또는 복수의 층으로 구성될 수 있다.As shown in FIG. 2 , a buffer layer 112 is formed on the first substrate 110 , and a driving thin film transistor is disposed thereon. The substrate 110 may be made of a transparent material such as glass or a transparent and flexible plastic such as polyimide. Also, the buffer layer 112 may be formed of a single layer or a plurality of layers made of an inorganic material such as SiOx or SiNx.
구동박막트랜지스터는 복수의 화소에 각각 형성된다. 상기 구동박막트랜지스터는 상기 버퍼층(112) 위의 화소에 형성된 반도체층(122)과, 상기 반도체층(122)의 일부 영역에 형성된 게이트절연층(123)과, 상기 게이트절연층(123) 위에 형성된 게이트전극(125)과, 상기 게이트전극(125)을 덮도록 기판(110) 전체에 걸쳐 형성된 층간절연층(114)과, 상기 층간절연층(114)에 형성된 제1컨택홀(114a)을 통해 반도체층(122)과 접촉하는 소스전극(127) 및 드레인전극(128)으로 구성된다.The driving thin film transistor is formed in each of the plurality of pixels. The driving thin film transistor includes a semiconductor layer 122 formed in a pixel on the buffer layer 112 , a gate insulating layer 123 formed in a partial region of the semiconductor layer 122 , and a gate insulating layer 123 formed on the gate insulating layer 123 . Through the gate electrode 125 , the interlayer insulating layer 114 formed over the entire substrate 110 to cover the gate electrode 125 , and the first contact hole 114a formed in the interlayer insulating layer 114 . It includes a source electrode 127 and a drain electrode 128 in contact with the semiconductor layer 122 .
또한, 도면에는 도시하지 않았지만, 상기 제1기판(110) 위에는 스위칭박막트랜지스터가 배치되며, 이때 상기 스위칭박막트랜지스터는 상기 구동박막트랜지스터와 동일한 구조로 이루어질 수 있다.In addition, although not shown in the drawings, a switching thin film transistor is disposed on the first substrate 110 . In this case, the switching thin film transistor may have the same structure as the driving thin film transistor.
상기 반도체층(122)은 결정질 실리콘, 또는 IGZO(Indium Gallium Zinc Oxide)와 같은 산화물반도체로 형성할 수 있으며, 중앙영역의 채널층과 양측면의 도핑층으로 이루어져 소스전극(127) 및 드레인전극(128)이 상기 도핑층과 접촉한다.The semiconductor layer 122 may be formed of crystalline silicon or an oxide semiconductor such as IGZO (Indium Gallium Zinc Oxide), and includes a channel layer in the central region and doped layers on both sides of the source electrode 127 and the drain electrode 128 . ) is in contact with the doped layer.
상기 게이트전극(125)은 Cr, Mo, Ta, Cu, Ti, Al 또는 Al합금 등의 금속으로 형성될 수 있으며, 게이트절연층(123) 및 층간절연층(114)은 SiO x나 SiNx와 같은 무기절연물질로 이루어진 단일층 또는 SiO x과 SiNx의 2층 구조의 무기층으로 이루어질 수 있다. 그리고, 소스전극(127) 및 드레인전극(128)은 Cr, Mo, Ta, Cu, Ti, Al 또는 Al합금으로 형성할 수 있다.The gate electrode 125 may be formed of a metal such as Cr, Mo, Ta, Cu, Ti, Al or Al alloy, and the gate insulating layer 123 and the interlayer insulating layer 114 may be formed of SiO x or SiNx. It may be made of a single layer made of an inorganic insulating material or an inorganic layer having a two-layer structure of SiO x and SiNx. In addition, the source electrode 127 and the drain electrode 128 may be formed of Cr, Mo, Ta, Cu, Ti, Al, or an Al alloy.
그리고, 도면 및 상술한 설명에서는 구동 박막트랜지스터가 특정 구조로 구성되지만, 본 발명의 구동 박막트랜지스터가 도시된 구조에 한정되는 것이 아니라, 모든 구조의 구동 박막트랜지스터가 적용될 수 있다.In addition, although the driving thin film transistor has a specific structure in the drawings and the above description, the driving thin film transistor of the present invention is not limited to the illustrated structure, and any driving thin film transistor of any structure may be applied.
상기 구동박막트랜지스터가 형성된 기판(110)에는 보호층(116)이 형성된다. 보호층(116)은 포토아크릴과 같은 유기물질로 형성될 수 있지만, 무기층 및 유기층으로 이루어진 복수의 층으로 구성될 수도 있다. 상기 보호층(116)에는 제2컨택홀(116a)이 형성된다.A protective layer 116 is formed on the substrate 110 on which the driving thin film transistor is formed. The protective layer 116 may be formed of an organic material such as photoacrylic, but may also include a plurality of layers including an inorganic layer and an organic layer. A second contact hole 116a is formed in the protective layer 116 .
상기 보호층(116) 위에는 제2컨택홀(116a)을 통해 구동박막트랜지스터의 드레인전극(128)과 전기적으로 접속되는 제1전극(130)이 형성된다. 그리고, 상기 제1전극(130)은 Ca, Ba, Mg, Al, Ag 등과 같은 금속이나 이들의 합금으로 이루어진 단일층 또는 복수의 층으로 이루어져 구동박막트랜지스터의 드레인전극(128)과 접속되어 외부로부터 화상신호가 인가된다.A first electrode 130 electrically connected to the drain electrode 128 of the driving thin film transistor through a second contact hole 116a is formed on the protective layer 116 . In addition, the first electrode 130 is made of a single layer or a plurality of layers made of a metal such as Ca, Ba, Mg, Al, Ag, or an alloy thereof, and is connected to the drain electrode 128 of the driving thin film transistor from the outside. An image signal is applied.
상기 보호층(116) 위의 각 화소(P)의 경계에는 제1뱅크층(142) 및 제2뱅크층(144)이 형성된다. 상기 제1뱅크층(142) 및 제2뱅크층(144)은 일종의 격벽으로서, 각 화소(P)를 구획하여 인접하는 화소에서 출력되는 특정 컬러의 광이 혼합되어 출력되는 것을 방지할 수 있다. 도면에서는 상기 제1뱅크층(142)이 보호층(116) 위에 형성되고 제2뱅크층(144)이 제1뱅크층(142) 위에 형성되지만, 상기 제1뱅크층(142)이 제1전극(130) 위에 형성될 수도 있다. 또한, 상기 제1전극(130)이 제1뱅크층(142) 및 제2뱅크층(144)의 측면으로 연장될 수 있다.A first bank layer 142 and a second bank layer 144 are formed at the boundary of each pixel P on the passivation layer 116 . The first bank layer 142 and the second bank layer 144 are a kind of barrier ribs, and by dividing each pixel P, light of a specific color output from adjacent pixels can be prevented from being mixed and output. In the drawing, the first bank layer 142 is formed on the protective layer 116 and the second bank layer 144 is formed on the first bank layer 142 , but the first bank layer 142 is formed on the first electrode. It may be formed over 130 . Also, the first electrode 130 may extend to side surfaces of the first bank layer 142 and the second bank layer 144 .
상기 제1전극(130) 및 뱅크층(142,144) 위에는 유기발광층(132)이 형성된다. 상기 유기발광층(132)은 R,G,B화소에 형성되어 적색광을 발광하는 R-유기발광층, 녹색광을 발광하는 G-유기발광층, 청색광을 발광하는 B-유기발광층일 수 있다.An organic light emitting layer 132 is formed on the first electrode 130 and the bank layers 142 and 144 . The organic light-emitting layer 132 may be an R-organic light-emitting layer formed in the R, G, and B pixels to emit red light, a G-organic light-emitting layer to emit green light, and a B-organic light-emitting layer to emit blue light.
상기 유기발광층(132)에는 발광층뿐만 아니라 발광층에 전자 및 정공을 각각 주입하는 전자주입층 및 정공주입층과 주입된 전자 및 정공을 유기층으로 각각 수송하는 전자수송층 및 정공수송층 등이 형성될 수도 있다.In the organic light emitting layer 132, not only the light emitting layer, but also an electron injection layer and a hole injection layer for respectively injecting electrons and holes into the light emitting layer, and an electron transport layer and a hole transport layer for respectively transporting the injected electrons and holes to the organic layer, etc. may be formed.
상기 유기발광층(132)은 유기발광물질을 열증착에 의해 형성할 수도 있고 용액상태의 유기발광물질을 제1전극(130) 위에 도포한 후 건조함으로써 형성할 수 있다. The organic light emitting layer 132 may be formed by thermal evaporation of an organic light emitting material, or may be formed by coating an organic light emitting material in a solution state on the first electrode 130 and drying the organic light emitting material.
상기 유기발광층(132) 위에는 제2전극(134)이 형성된다. 상기 제2전극(134)은 ITO(Indium Tin Oxide)나 IZO(Indium Zinc Oixde)와 같은 투명한 도전물질 또는 가시광선이 투과되는 얇은 두께의 금속으로 이루어질 수 있으며, 이에 한정되는 것은 아니다.A second electrode 134 is formed on the organic light emitting layer 132 . The second electrode 134 may be made of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) or a thin metal through which visible light is transmitted, but is not limited thereto.
상기 제2전극(134) 위에는 접착층(162)이 도포되고 접착층(162) 위에 제2기판(160)이 배치되어 상기 제2기판(160)이 표시패널에 부착된다. 상기 접착층으로는 부착력이 좋고 내열성 및 내수성이 좋은 물질이라면 어떠한 물질을 사용할 수 있지만, 본 발명에서는 에폭시계 화합물, 아크릴레이트계 화합물 또는 아크릴계 러버과 같은 열경화성 수지를 사용할 수 있다. 그리고, 상기 접착제로서 광경화성 수지를 사용할 수도 있으며, 이 경우 접착층에 자외선과 같은 광을 조사함으로써 접착층(162)을 경화시킨다.An adhesive layer 162 is applied on the second electrode 134 , and a second substrate 160 is disposed on the adhesive layer 162 , so that the second substrate 160 is attached to the display panel. As the adhesive layer, any material may be used as long as it has good adhesion and good heat resistance and water resistance, but in the present invention, a thermosetting resin such as an epoxy-based compound, an acrylate-based compound, or an acrylic rubber may be used. In addition, a photocurable resin may be used as the adhesive, and in this case, the adhesive layer 162 is cured by irradiating the adhesive layer with light such as ultraviolet rays.
상기 접착층(162)은 제1기판(110) 및 제2기판(160)을 합착할 뿐만 아니라 상기 전계발광 표시패널 내부로 수분이 침투하는 것을 방지하기 위한 봉지제의 역할도 할 수 있다. 따라서, 본 발명의 상세한 설명에서 도면부호 162의 용어를 접착제라고 표현하고 있지만, 이는 편의를 위한 것이며, 이 접착층을 봉지제라고 할 수도 있다.The adhesive layer 162 may serve as an encapsulant for not only bonding the first substrate 110 and the second substrate 160 to each other, but also preventing moisture from penetrating into the electroluminescent display panel. Accordingly, in the detailed description of the present invention, the term of reference numeral 162 is expressed as an adhesive, but this is for convenience, and the adhesive layer may be referred to as an encapsulant.
상기 제2기판(160)은 전계발광 표시패널을 봉지하기 위한 봉지캡(encapsulation cap)으로서, PS(Polystyrene)필름, PE(Polyethylene)필름, PEN(Polyethylene Naphthalate)필름 또는 PI(Polyimide)필름 등과 같은 보호필름을 사용할 수 있고 유리를 사용할 수도 있다.The second substrate 160 is an encapsulation cap for encapsulating the electroluminescent display panel, such as a polystyrene (PS) film, a polyethylene (PE) film, a polyethylene naphthalate (PEN) film, or a polyimide (PI) film. A protective film may be used, or glass may be used.
도면에는 도시하지 않았지만, 상기 제2전극(134)과 접착층(162) 사이에는 평탄화층이 형성될 수 있다. 이때, 상기 평탄화층은 유기층으로 구성될 수 있고 무기층 및 유기층으로 이루어진 복수의 층으로 구성될 수 있다. 예를 들어, 상기 무기층으로는 SiOx와 SiNx 등이 사용될 수 있고 유기층으로는 포토아크릴 등이 사용될 수 있지만, 이에 한정되는 것은 아니다.Although not shown in the drawings, a planarization layer may be formed between the second electrode 134 and the adhesive layer 162 . In this case, the planarization layer may be composed of an organic layer, and may be composed of a plurality of layers composed of an inorganic layer and an organic layer. For example, SiOx and SiNx may be used as the inorganic layer, and photoacrylic may be used as the organic layer, but is not limited thereto.
또한, 상기 제2전극(134)과 접착층(162) 사이에는 별도의 봉지층이 형성될 수 있다. 이때, 상기 봉지층은 적어도 하나의 무기층 및 적어도 하나의 유기층으로 구성될 수 있다.In addition, a separate encapsulation layer may be formed between the second electrode 134 and the adhesive layer 162 . In this case, the encapsulation layer may include at least one inorganic layer and at least one organic layer.
상기 제1전극(130) 및 유기발광층(132) 및 제2전극(134)은 유기발광소자를 형성한다. The first electrode 130 , the organic light emitting layer 132 , and the second electrode 134 form an organic light emitting diode.
상기 제1전극(130)이 유기전계발광소자의 음극(cathode)이고 제2전극(134)이 양극(anode)으로서, 제1전극(130)과 제2전극(134)에 전압이 인가되면, 상기 제1전극(130)으로부터 전자가 유기발광층(132)으로 주입되고 제2전극(134)으로부터 정공이 유기발광층(132)으로 주입되어, 유기발광층(132)내에는 여기자(exciton)가 생성되며, 이 여기자가 소멸(decay)함에 따라 발광층의 LUMO(Lowest Unoccupied Molecular Orbital)와 HOMO(Highest Occupied Molecular Orbital)의 에너지 차이에 해당하는 광이 발생하게 되어 외부(제2기판(160)측)으로 발산하게 된다. When the first electrode 130 is a cathode of the organic light emitting diode and the second electrode 134 is an anode, voltage is applied to the first electrode 130 and the second electrode 134, Electrons from the first electrode 130 are injected into the organic light emitting layer 132 and holes are injected from the second electrode 134 into the organic light emitting layer 132, and excitons are generated in the organic light emitting layer 132, , as these excitons decay, light corresponding to the energy difference between the Lowest Unoccupied Molecular Orbital (LUMO) and the Highest Occupied Molecular Orbital (HOMO) of the emission layer is generated and emitted to the outside (the second substrate 160 side). will do
또한, 상기 유기발광소자는 제1전극(130)이 ITO나 IZO와 같은 투명 도전물질이나 가시광선이 투과되는 얇은 두께의 금속으로 이루어지고 제2전극(134)이 Ca, Ba, Mg, Al, Ag 등과 같은 금속이나 이들의 합금으로 이루어진 단일층 또는 복수의 층으로 이루어져 유기발광층(132)에서 발생한 광이 하부방향(제1기판(110)측)으로 발산할 수 있다.In addition, in the organic light emitting device, the first electrode 130 is made of a transparent conductive material such as ITO or IZO or a thin metal through which visible light is transmitted, and the second electrode 134 is formed of Ca, Ba, Mg, Al, A single layer or a plurality of layers made of a metal such as Ag or an alloy thereof, light generated from the organic light emitting layer 132 may be emitted in a downward direction (first substrate 110 side).
또한, 상기 유기발광소자는 제1전극(130)이 금속으로 이루어지고 제2전극(134)이 투명 도전물질이나 가시광선이 투과되는 얇은 두께의 금속으로 이루어져, 유기발광층(132)에서 발생한 광이 상부방향(제2기판(160)측)으로 발산할 수도 있다.In addition, in the organic light emitting device, the first electrode 130 is made of a metal and the second electrode 134 is made of a transparent conductive material or a thin metal through which visible light is transmitted. It may radiate in the upper direction (second substrate 160 side).
본 발명의 유기전계발광 표시패널에서는 상기와 같은 구조는 유기발광소자 뿐만 아니라 현재 알려진 다양한 유기발광소자가 적용될 수 있을 것이다.In the organic light emitting display panel of the present invention, the structure as described above may be applied to various organic light emitting devices currently known as well as organic light emitting devices.
이러한 구조의 유기전계발광 표시패널에서는 각각의 화소가 뱅크층에 의해 구획되며, 각각의 화소에는 R-유기발광층, G-유기발광층, B-유기발광층을 포함하는 유기발광소자가 배치된다.In the organic light emitting display panel having such a structure, each pixel is partitioned by a bank layer, and an organic light emitting device including an R-organic light emitting layer, a G- organic light emitting layer, and a B- organic light emitting layer is disposed in each pixel.
또한, 본 발명에서는 화소를 구획하는 뱅크층이 제1뱅크층(142) 및 그 상부의 제2뱅크층(144)의 이중의 층으로 구성된다. 이때, 상기 제1뱅크층(142)은 친수성물질로 구성되고 제2뱅크층(144)은 소수성 물질로 구성될 수 있다. 상기 제1뱅크층(142)의 폭은 제2뱅크층(144)의 폭보다 크게 형성되어 제2뱅크층(144)의 양측으로 제1뱅크층(142)이 노출되어, 유기발광층(132)이 제1전극(130) 및 노출된 제1뱅크층(142) 위에 형성된다.In addition, in the present invention, the bank layer dividing the pixel is composed of a double layer of the first bank layer 142 and the second bank layer 144 thereon. In this case, the first bank layer 142 may be formed of a hydrophilic material and the second bank layer 144 may be formed of a hydrophobic material. The width of the first bank layer 142 is formed to be greater than the width of the second bank layer 144, so that the first bank layer 142 is exposed on both sides of the second bank layer 144, and the organic light emitting layer 132 is exposed. It is formed on the first electrode 130 and the exposed first bank layer 142 .
또한, 상기 제1뱅크층(142)의 폭은 제2뱅크층(144)의 폭과 동일하게 구성되어, 상기 제1뱅크층(142) 및 제2뱅크층(144)이 정렬되어 형성되며, 유기발광층(132)은 제1전극(130) 위에만 형성될 수도 있다.In addition, the width of the first bank layer 142 is the same as the width of the second bank layer 144, and the first bank layer 142 and the second bank layer 144 are aligned and formed. The organic light emitting layer 132 may be formed only on the first electrode 130 .
상기 제1기판(110)의 하면에는 위상지연층(166) 및 편광층(170)이 형성된다. 상기 편광층(170)의 외부로부터 입력되는 외부광을 특정 방향으로 선형 편광된 광으로 변경시키며, 상기 위상지연층(166)은 상기 편광층(170)에서 선형 편광된 광을 λ/4 위상지연시켜 원편광된 광으로 변환시킨다.A phase delay layer 166 and a polarization layer 170 are formed on a lower surface of the first substrate 110 . The external light input from the outside of the polarization layer 170 is changed to linearly polarized light in a specific direction, and the phase delay layer 166 delays the λ/4 phase of the linearly polarized light from the polarization layer 170 . converted into circularly polarized light.
유기발광층(132)에서 발광된 광이 상부방향, 즉 제2기판(160)측으로 출사되는 경우 상기 위상지연층(166) 및 편광층(170)은 제2기판(160)의 상면에 형성된다.When the light emitted from the organic light emitting layer 132 is emitted in the upper direction, that is, toward the second substrate 160 , the phase delay layer 166 and the polarization layer 170 are formed on the upper surface of the second substrate 160 .
외부로부터 입력되어 편광층(170) 및 위상지연층(166)에 의해, 예를 들어, 좌원편광된 광으로 변환된 광은 제2기판(160)이나 그 하부의 구조물에서 반사되어 우원편광된 광으로 변환되며, 상기 우원편광된 광이 상기 편광층(170) 및 위상지연층(166)을 투과하지 않고 차단되므로 표시패널에서의 반사광을 차단할 수 있게 된다.Light input from the outside and converted into, for example, left circularly polarized light by the polarization layer 170 and the phase delay layer 166 is reflected by the second substrate 160 or a structure below it and is then right circularly polarized light , and the right circularly polarized light is blocked without passing through the polarization layer 170 and the phase delay layer 166 , so that the reflected light from the display panel can be blocked.
또한, 유기발광층(132)에서 발광되는 외부로 출력되는 광은 상기 위상지연층(166) 및 편광층(170)을 투과하면서 선형 편광되어 출력된다.In addition, the light emitted from the organic light emitting layer 132 to the outside is linearly polarized and output while passing through the phase delay layer 166 and the polarization layer 170 .
상기 위상지연층(166)은 제1기판(110) 또는 제2기판(160)에 도포되어 형성할 수도 있고, 필름형태로 형성되어 부착될 수도 있다. 이때, 상기 위상지연층(166)으로는 폴리에테르 술폰(polyether sulfone,PES), 트리-아세틸 셀룰로오스(tri-acetyl cellulose:TAC), 폴리카보네이 트(polycarbonate:PC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate:PET), 싸이클로 올레핀 폴리머(cyclo olefin polymer:COP)를 사용할 수 있지만, 이에 한정되는 것은 아니다.The phase delay layer 166 may be formed by being applied to the first substrate 110 or the second substrate 160, or may be formed and attached in the form of a film. In this case, the phase delay layer 166 includes polyether sulfone (PES), tri-acetyl cellulose (TAC), polycarbonate (PC), and polyethylene terephthalate. :PET) and cyclo olefin polymer (COP) may be used, but the present invention is not limited thereto.
상기 편광층(170)은 상기 위상지연층(166))에 도포됨으로써 형성될 수 있다. 상기 편광층(170)은 코팅형 편광물질로 구성되며, 상기 위상지연층(166)에 도포됨으로써 형성되는데, 이하에서는 상기 편광층(170)을 형성하는 코팅형 편광자에 대해 좀더 자세히 설명한다.The polarization layer 170 may be formed by being applied to the phase delay layer 166). The polarization layer 170 is made of a coating-type polarizing material, and is formed by being applied to the phase delay layer 166 . Hereinafter, the coating-type polarizer forming the polarization layer 170 will be described in more detail.
도 3은 본 발명에 따른 편광자(270)의 전하이동착물에 의해 형성된 초분자구조체(272)를 나타내는 도면이고, 도 4는 전하이동착물이 정렬된 편광자(270)를 나타내는 도면이다.3 is a view showing the supramolecular structure 272 formed by the charge transfer complex of the polarizer 270 according to the present invention, and FIG. 4 is a view showing the polarizer 270 in which the charge transfer complex is aligned.
도 3 및 도 4에 도시된 바와 같이, 본 발명에 따른 편광자(270)는 일방향을 따라 디스코틱(discotic) 액정분자(272a)와 플루오레논(9-Fluorenone) 유도체(272b)가 교대로 배열된 초분자구조체(272)으로 구성된다.3 and 4, in the polarizer 270 according to the present invention, discotic liquid crystal molecules 272a and 9-Fluorenone derivatives 272b are alternately arranged along one direction. It is composed of a supramolecular structure (272).
디스코틱 액정분자(272a)는 다음의 화학식1로 표현될 수 있다.The discotic liquid crystal molecule 272a may be expressed by the following Chemical Formula 1.
[화학식 1][Formula 1]
Figure PCTKR2020014325-appb-img-000005
Figure PCTKR2020014325-appb-img-000005
화학식 1에 나타낸 바와 같이, 디스코틱 액정분자(272a)는 트리페닐린(Triphenylene) 중심분자에 6개의 알콕시기가 치환된 형태이며, 알콕시기에는 R이 치환된다. 이때, 전하이동착물에 의해 형성된 초분자구조체에서의 흡수파장에 따라 치환기 R은 C 6H 11, C 6H 13 및 C 8H 17일 수 있지만, 이에 한정되는 것은 아니다.As shown in Formula 1, the discotic liquid crystal molecule 272a has a triphenylene central molecule in which six alkoxy groups are substituted, and R is substituted in the alkoxy group. In this case, the substituent R may be C 6 H 11 , C 6 H 13 and C 8 H 17 depending on the absorption wavelength in the supramolecular structure formed by the charge transfer complex, but is not limited thereto.
또한, 플루오레논 유도체(272b)는 다음의 화학식2로 표현될 수 있다.In addition, the fluorenone derivative 272b may be represented by the following Chemical Formula 2.
[화학식 2][Formula 2]
Figure PCTKR2020014325-appb-img-000006
Figure PCTKR2020014325-appb-img-000006
여기서, 치환기 M과 N이 모두 NO 2일 수 있고 M은 H이고 N은 HO 2일 수 있으며, M과 M이 모두 H일 수 있다.Here, both of the substituents M and N may be NO 2 , M may be H and N may be HO 2 , and both M and M may be H.
화학식 2에 나타낸 바와 같이, 플루오레논 유도체(272b)는 플루오레논 분자체에 1 내지 3개의 니트로(nitro)기가 치환된다. 치환기 M과 N이 모두 NO 2일 경우 플루오레논 유도체(272b)는 2,4,7-Trinitro-9-Fluorenone이고, M은 H이고 N이 HO 2일 경우 플루오레논 유도체(272b)는 2,4-Dinitro-9-Fluorenone이며, M과 M이 모두 H일 경우 플루오레논 유도체(272b)는 2-Nitro-9-Fluorenone이다.As shown in Formula 2, in the fluorenone derivative 272b, 1 to 3 nitro groups are substituted in the fluorenone molecular sieve. When the substituents M and N are both NO 2 , the fluorenone derivative 272b is 2,4,7-Trinitro-9-Fluorenone, M is H and N is HO 2 When the fluorenone derivative 272b is 2,4 -Dinitro-9-Fluorenone, and when M and M are both H, the fluorenone derivative (272b) is 2-Nitro-9-Fluorenone.
이러한 치환기를 조절함에 따라 전하이동착물에 의해 형성된 초분자구조체(272)의 파장을 조절할 수 있게 된다.By adjusting these substituents, the wavelength of the supramolecular structure 272 formed by the charge transfer complex can be adjusted.
상기 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)는 전하이동착물을 형성한다. 상기 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)를 설정된 온도에서 설정된 시간동안 혼합하면, 디스코틱 액정분자(272a)의 도너(doner)인 6개의 알콕시기가 트리페닐린기에 전자를 전달하여 디스코틱 액정분자(272a)의 분자 중심부가 상대적으로 높은 전자밀도를 형성한다.The discotic liquid crystal molecules 272a and the fluorenone derivative 272b form a charge transfer complex. When the discotic liquid crystal molecule 272a and the fluorenone derivative 272b are mixed at a set temperature for a set time, six alkoxy groups that are donors of the discotic liquid crystal molecule 272a transfer electrons to the triphenyline group. The molecular center of the discotic liquid crystal molecules 272a forms a relatively high electron density.
반면에, 플루오레논 유도체(272b)에서는 플로오레논 분자체의 전자가 어셉터(acceptor)인 1 내지 3개의 니트로기로 전달되어 플루오레논 유도체(272b)의 분자 중심부에 상대적으로 낮은 전자밀도가 형성된다.On the other hand, in the fluorenone derivative 272b, electrons of the fluorenone molecular sieve are transferred to 1 to 3 nitro groups that are acceptors, so that a relatively low electron density is formed in the molecular center of the fluorenone derivative 272b. .
따라서, 전자가 풍부한 디스코틱 액정분자(272a)는 전자도너의 역할을 하고 플루오레논 유도체(272b)는 전자어셉터의 역할을 하여, 이러한 전자밀도차이로 인해 전하의 이동이 발생하고 이러한 전하의 이동에 의한 정전기적 인력에 의해 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)가 전자이동착물을 형성한다.Therefore, the electron-rich discotic liquid crystal molecule 272a acts as an electron donor and the fluorenone derivative 272b acts as an electron acceptor. The discotic liquid crystal molecules 272a and the fluorenone derivative 272b form an electron transfer complex by electrostatic attraction by
본 발명에서는 상기와 같이 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)의 정전기적 인력에 의한 전자이동착물에 의해 초분자구조체(272)가 형성하며, 이러한 초분자구조체(272)는 디스코틱 액정분자(272a)와 플루오레논 유도체(272b) 사이에 전자이동 경로를 형성하며, 이 전자이동경로에서 전자가 여기할 때 광에너지를 흡수한다. 특히, 본 발명에 따른 초분자구조체(272)에서는 전자이동 경로에서 전자가 여기될 때, 약 400-700nm 파장대의 가시광선 영역의 광을 흡수한다.In the present invention, as described above, the supramolecular structure 272 is formed by an electron transfer complex by electrostatic attraction between the discotic liquid crystal molecules 272a and the fluorenone derivative 272b, and the supramolecular structure 272 is a discotic liquid crystal. An electron transfer path is formed between the molecule 272a and the fluorenone derivative 272b, and light energy is absorbed when electrons are excited in the electron transfer path. In particular, in the supramolecular structure 272 according to the present invention, when electrons are excited in the electron movement path, light in the visible ray region of about 400-700 nm wavelength is absorbed.
도 5는 본 발명에 따른 초분자구조체(272)의 파장별 광흡수율을 나타내는 도면으로, 일점쇄선은 플루오레논 유도체(272b)의 광흡수율을 나타내고 이점쇄선은 디스코틱 액정분자(272a)의 광흡수율을 나타내며, 실선은 초분자구조체(272)의 광흡수율을 나타낸다.5 is a view showing the light absorptivity for each wavelength of the supramolecular structure 272 according to the present invention, wherein the dashed-dotted line represents the light absorptivity of the fluorenone derivative 272b, and the double-dotted line represents the light absorptivity of the discotic liquid crystal molecule 272a. and the solid line indicates the light absorption rate of the supramolecular structure 272 .
도 5에 도시된 바와 같이, 약 400-700nm의 파장대의 가시광선 영역에서 디스코틱 액정분자(272a)는 약 0.1 이하의 광흡수율을 가지고 플루오레논 유도체(272b)는 약 0.6-0.65의 광흡수율을 가지지만, 초분자구조체(272)는 약 0.4-1.2의 광흡수율을 가진다. 따라서, 전자이동착물에 의해 형성된 초분자구조체(272)의 광흡수율은 디스코틱 액정분자(272a) 및 플루오레논 유도체(272b)의 광흡수율에 비해 훨씬 큼을 알 수 있다.As shown in FIG. 5, in the visible light region of about 400-700 nm, the discotic liquid crystal molecule 272a has a light absorptivity of about 0.1 or less, and the fluorenone derivative 272b has a light absorptivity of about 0.6-0.65. However, the supramolecular structure 272 has a light absorptivity of about 0.4-1.2. Accordingly, it can be seen that the light absorptivity of the supramolecular structure 272 formed by the electron transfer complex is much greater than that of the discotic liquid crystal molecules 272a and the fluorenone derivative 272b.
특히, 초분자구조체(272)의 광 흡수율은 약 690-700nm의 파장대를 제외한 가시광선 영역 전체에 걸쳐서 플루오레논 유도체(272b)의 광흡수율에 비해 훨씬 크다. 더욱이, R,G,B 컬러의 파장대를 포함하는 약 470-630nm의 파장대에서는 초분자구조체(272)의 광흡수율이 플루오레논 유도체(272b)의 광흡수율에 비해 2배 가깝게 크다.In particular, the light absorptivity of the supramolecular structure 272 is much greater than that of the fluorenone derivative 272b over the entire visible light region except for the wavelength band of about 690-700 nm. Moreover, in the wavelength band of about 470-630 nm including the wavelength bands of R, G, and B colors, the light absorptivity of the supramolecular structure 272 is nearly twice as large as that of the fluorenone derivative 272b.
한편, 화학식 2에 기재된 플루오레논 유도체(272b)는 플로오레논 분자체에 1 내지 3개의 치환기에 따라 각각 광흡수율이 서로 다른 2,4,7-Trinitro-9-Fluorenone, 2,4-Dinitro-9-Fluorenone, 및 2-Nitro-9-Fluorenone가 되며, 플루오레논 유도체(272b)의 광흡수율의 변화에 따라 초분자구조체(272)의 광흡수율도 변하게 된다.On the other hand, the fluorenone derivative (272b) described in Chemical Formula 2 is 2,4,7-Trinitro-9-Fluorenone, 2,4-Dinitro-, each having different light absorption rates depending on 1 to 3 substituents on the fluorenone molecular sieve. 9-Fluorenone, and 2-Nitro-9-Fluorenone, and the light absorptance of the supramolecular structure 272 also changes according to the change in the light absorptivity of the fluorenone derivative 272b.
따라서, 본 발명에서는 플루오레논 유도체(272b)의 치환기에 따라 초분자구조체(272)의 광흡수율을 조절할 수 있을 뿐만 아니라 치환기의 종류를 달리함에 따라 파장대별 광흡수율도 조절할 있게 된다.Accordingly, in the present invention, not only can the light absorptance of the supramolecular structure 272 be adjusted according to the substituent of the fluorenone derivative 272b, but also the light absorptance for each wavelength band can be adjusted by changing the type of the substituent.
이와 같이, 본 발명에서는 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)의 전자이동착물에 의해 형성된 초분자구조체(272)가 가시광선 영역의 광을 흡수하므로, 상기 초분자구조체(272)에 의해 가사광선을 특정 방향의 광성분을 흡수하고 다른 방향의 광성분은 투과시키는 편광자를 형성할 수 있게 된다.As described above, in the present invention, since the supramolecular structure 272 formed by the electron transfer complex of the discotic liquid crystal molecule 272a and the fluorenone derivative 272b absorbs light in the visible region, the supramolecular structure 272 It is possible to form a polarizer that absorbs a light component in a specific direction and transmits a light component in a different direction for the house ray.
특히, 도 3에 도시된 바와 같이, 본 발명에서는 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)를 특정방향을 따라 교대로 배열하여 초분자구조체(272)를 형성함으로써, 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)의 배열방향, 즉 초분자구조체(272)의 장축방향과 평행한 광성분(즉, 초분자구조체(272)의 장축방향으로 진동하는 광)은 흡수하고 초분자구조체(272)의 장축방향과 수직한 광성분(초분자구조체(272)의 장축방향과 수직방향으로 진동하는 광)은 투과함으로써, 초분자구조체(272)를 광을 편광시키는 편광자로서 형성할 수 있게 된다.In particular, as shown in Fig. 3, in the present invention, discotic liquid crystal molecules (272a) and fluorenone derivatives (272b) are alternately arranged along a specific direction to form a supramolecular structure 272, so that discotic liquid crystal molecules ( 272a) and the arrangement direction of the fluorenone derivative 272b, that is, a light component parallel to the long axis direction of the supramolecular structure 272 (that is, light vibrating in the long axis direction of the supramolecular structure 272) is absorbed and the supramolecular structure 272 ) (light vibrating in a direction perpendicular to the long axis direction of the supramolecular structure 272) is transmitted perpendicular to the long axis direction of the supramolecular structure 272 as a polarizer for polarizing light.
이하에서는 상기와 같은 초분자구조체(272)에 의한 편광자 제조방법을 상세히 설명한다.Hereinafter, a method of manufacturing the polarizer using the supramolecular structure 272 as described above will be described in detail.
도 6은 본 발명에 따른 편광자를 제조하는 방법을 나타내는 플로우챠트이고 도 7a 내지 도7d는 본 발명에 따른 편광자를 실제 제조하는 방법을 구체적으로 나타내는 도면이다.6 is a flowchart illustrating a method for manufacturing a polarizer according to the present invention, and FIGS. 7A to 7D are diagrams specifically illustrating a method for actually manufacturing a polarizer according to the present invention.
우선, 도 6에 도시된 바와 같이, 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)를 1,2-디클로로벤젠에 1:1의 몰비로 첨가하고 혼합하여 초분자구조체(272)를 형성한다(S101). 이때, 상기 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)는 약 60℃의 온도에서 약 2시간 동안 교반하지만, 이에 한정되는 것이 아니라 플루오레논 유도체(272b)의 치환기 등과 같은 다양한 조건에 따라 교반온도 및 교반시간을 조절할 수 있다.First, as shown in FIG. 6, discotic liquid crystal molecules 272a and fluorenone derivatives 272b are added to 1,2-dichlorobenzene in a molar ratio of 1:1 and mixed to form a supramolecular structure 272. (S101). At this time, the discotic liquid crystal molecules 272a and the fluorenone derivative 272b are stirred at a temperature of about 60° C. for about 2 hours, but the present invention is not limited thereto, but depending on various conditions such as a substituent of the fluorenone derivative 272b. Stirring temperature and stirring time can be adjusted.
이와 같이, 설정된 온도 및 시간으로 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)를 교반함에 따라 상기 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)가 전하이동에 따른 정전기력에 의해 전하이동착물을 형성하여 초분자구조체(272)를 형성한다.As described above, as the discotic liquid crystal molecules 272a and the fluorenone derivative 272b are stirred at the set temperature and time, the discotic liquid crystal molecules 272a and the fluorenone derivative 272b are charged by electrostatic force due to charge transfer. A mobile complex is formed to form the supramolecular structure 272 .
이어서, 도 7a에 도시된 바와 같이, 지지체(274)를 준비한 후, 상기 지지체(274) 표면을 처리하여 지지체(274)의 표면에 알킬기(276)를 치환시킨다(S102). 지지체(274) 표면으로의 알킬기(276)의 치환은 다양한 방법에 의해 이루어질 수 있다. 예를 들어, 지지체(274)의 처리는 알킬기(276)를 가진 중합체를 지지체(274) 표면에 도포함으로써 형성할 수 있지만, 이에 한정되는 것은 아니다.Subsequently, as shown in FIG. 7A , after preparing the support 274 , the surface of the support 274 is treated to substitute the alkyl group 276 on the surface of the support 274 ( S102 ). Substitution of the alkyl group 276 to the surface of the support 274 may be accomplished by various methods. For example, the treatment of the support 274 may be formed by applying a polymer having an alkyl group 276 to the surface of the support 274 , but is not limited thereto.
상기 지지체(274)는 유리로 구성될 수도 있고 투명한 필름으로 구성될 수도 있다, 투명한 필름으로는 폴리비닐알코올(PVA)계 수지를 주성분으로 하는 고분자필름을 사용할 수 있지만, 이에 한정되는 것은 아니다.The support 274 may be made of glass or a transparent film. As the transparent film, a polymer film containing a polyvinyl alcohol (PVA)-based resin as a main component may be used, but is not limited thereto.
그 후, 용액전단법(sheer coating process)에 의해 상기 지지체(274)에 용액상태의 초분자구조체(272c)를 도포한 후(S103), 상기 용액상태의 초분자구조체(272c)를 경화함으로써 편광자를 형성한다.After that, the supramolecular structure 272c in a solution state is coated on the support 274 by a solution shearing process (S103), and then a polarizer is formed by curing the supramolecular structure 272c in a solution state. do.
즉, 도 7b에 도시된 바와 같이, 지지체(274)의 특정 영역에 용액상태의 초분자구조체(272c)를 적하 또는 도포하고 블레이드(277)를 도포된 초분자구조체(272c) 위에 배치한 후, 설정된 온도에서 상기 블레이드(277)를 제1방향의 전단방향(sheer direction)을 따라 설정된 속도로 이동시키면, 초분자구조체(272)가 지지체(274)에 치환된 알킬기와 결합하여 초분자구조체(272)에 형성된 쌍극자모멘트(δ +-)가 일방향을 따라 배치된다. 따라서, 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)가 일방향을 따라 교대로 배치되어 상기 초분자구조체(272)가 특정 방향을 따라 배열된다.That is, as shown in FIG. 7b, the supramolecular structure 272c in a solution state is dropped or applied to a specific region of the support 274, and the blade 277 is placed on the applied supramolecular structure 272c, and then the temperature set When the blade 277 is moved at a set speed along the shear direction of the first direction, the supramolecular structure 272 is combined with an alkyl group substituted on the support 274 to form a dipole formed in the supramolecular structure 272. Moments (δ + , δ - ) are arranged along one direction. Accordingly, the discotic liquid crystal molecules 272a and the fluorenone derivatives 272b are alternately arranged along one direction so that the supramolecular structure 272 is arranged along a specific direction.
이때, 용액전단법은 지지체(274) 및 블레이드(277)를 약 70℃로 가열한 상태에서 상기 블레이드(277)를 전단방향(제1방향)을 따라 약 10-20㎛/s의 속도로 이동시킴으로써, 지지체(274) 전체에 걸쳐 초분자구조체(272)가 도포된다.At this time, in the solution shearing method, in a state in which the support 274 and the blade 277 are heated to about 70° C., the blade 277 is moved along the shearing direction (first direction) at a speed of about 10-20 μm/s. By doing so, the supramolecular structure 272 is applied over the entire support 274 .
도 7c 및 도 7d에 도시된 바와 같이, 이러한 용액전단법에 의해 지지체(274)에 도포된 초분자구조체(272)는 전단방향인 제1방향과 수직인 제2방향을 따라 배열된다. 상기와 같은 용액상태의 초분자구조체(272c)를 경화하여 솔벤트를 제거함으로써 편광자를 형성한다.7c and 7d, the supramolecular structure 272 applied to the support 274 by this solution shearing method is arranged along the first direction and the second direction perpendicular to the shearing direction. The polarizer is formed by curing the supramolecular structure 272c in the solution state as described above and removing the solvent.
상기 제1방향을 따라 배열된 초분자구조체(272)를 광이 투과할 때, 제1방향과 수평인 광성분은 흡수하고 수직인 광은 투과하므로, 제작된 편광자의 광흡수축은 제1방향을 따라 형성되고 광투과축은 제2방향을 따라 형성된다.When light transmits through the supramolecular structures 272 arranged along the first direction, light components horizontal to the first direction are absorbed and light perpendicular to the first direction is transmitted, so the light absorption axis of the manufactured polarizer is in the first direction. and the light transmission axis is formed along the second direction.
상술한 바와 같이, 본 발명에 따른 편광자는 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)를 교반하여 초분자구조체(272)를 형성한 후, 이를 도포함으로써 형성된다. As described above, the polarizer according to the present invention is formed by stirring the discotic liquid crystal molecules 272a and the fluorenone derivative 272b to form the supramolecular structure 272, and then applying the same.
도 8은 본 발명에 따른 편광자의 전체 투과도(Total Transmitance) 및 편광정도(Degree Of Polarization)를 나타내는 그래프이다. 이때, 실선은 편광정도(DOP)를 나타내고 점선은 전체 투과도(TT)를 나타낸다.8 is a graph showing total transmittance and degree of polarization of the polarizer according to the present invention. In this case, the solid line represents the degree of polarization (DOP) and the dotted line represents the total transmittance (TT).
도 8에 도시된 바와 같이, 제작된 편광자는 가시광선 영역인 약 400-700nm파장 대역에서 평균투과율이 전체적으로 약 40% 이하, 특히 600nm 이하의 파장대역에서는 평균투과율이 약 20%로 된다. 따라서 이러한 편광자를 표시장치에 사용하는 경우 영상이 상기 편광자를 투과하여 사용자에게 도달하게 된다.As shown in FIG. 8 , the manufactured polarizer has an average transmittance of about 40% or less as a whole in a wavelength band of about 400-700 nm, which is a visible ray region, and in particular, an average transmittance of about 20% in a wavelength band of 600 nm or less. Therefore, when such a polarizer is used in a display device, an image passes through the polarizer and reaches the user.
또한, 제작된 편광자는 초분자구조체(272)의 배열방향, 즉 장축방향으로 진동하는 광성분에 대해서는 470nm 근처에서는 약 90.3%의 편광효율을 나타내고 400-700nm의 가시광선 대역에서는 약 85%의 편광효율을 나타낸다.In addition, the manufactured polarizer exhibits a polarization efficiency of about 90.3% near 470 nm for a light component vibrating in the arrangement direction of the supramolecular structure 272, that is, in the long axis direction, and a polarization efficiency of about 85% in the visible light band of 400-700 nm. indicates
따라서, 본 발명에 따른 편광자는 편광정도가 좋을 뿐만 아니라, 특히 가사광선 대역 전체의 넓은 파장대에 걸쳐서도 좋은 편광특성을 나타내므로, 표시장치의 편광판으로 유용하게 적용할 수 있게 된다.Therefore, the polarizer according to the present invention not only has good polarization degree, but also exhibits good polarization characteristics over a wide wavelength band of the entire household ray band, so that it can be usefully applied as a polarizing plate for a display device.
또한, 본 발명에 따른 편광자는 수분에 강하여 대기중의 수증기에 의해 변형이 발생하지 않으며, 150℃ 이상의 고온에서도 구조가 변형되지 않는다.In addition, since the polarizer according to the present invention is strong against moisture, deformation does not occur by water vapor in the atmosphere, and the structure does not deform even at a high temperature of 150° C.
한편, 본 발명에 따른 편광자는 표시장치의 공정 중 표시장치의 전면(front surface)나 내측의 기판에 직접 상기 초분자구조체(272)를 도포함으로써 형성할 수 있게 되므로, 일반적인 편광판에 비해 제작이 용이하게 된다. 또한, 별도의 연신공정이나 염색 공정 등이 필요없게 되므로, 공정시간이 단축되고 제조비용이 절감된다.On the other hand, since the polarizer according to the present invention can be formed by directly coating the supramolecular structure 272 on the front surface or inner substrate of the display device during the process of the display device, it is easier to manufacture compared to a general polarizing plate. do. In addition, since there is no need for a separate stretching process or dyeing process, the process time is shortened and the manufacturing cost is reduced.
특히, 본 발명에서는 열에 강하고 넓은 파장대역, 즉 가시광선 파장대역의 광을 흡수함으로써 표시장치에 훌룡하게 적용할 수 있는 코팅형 편광자를 제공한다.In particular, the present invention provides a coating-type polarizer that is resistant to heat and absorbs light in a wide wavelength band, that is, a visible light wavelength band, and thus can be excellently applied to a display device.
그리고, 본 발명에서는 초분자구조체(272)를 얇은 박막형태로 도포함으로써 편광자를 제작할 수 있으므로, 표시장치를 두께를 감축시킬 수 있게 된다.Further, in the present invention, since the polarizer can be manufactured by coating the supramolecular structure 272 in the form of a thin film, the thickness of the display device can be reduced.
도 9는 본 발명에 따른 유기전계발광 표시장치의 제조방법을 간략하게 나타내는 플로우챠트로서, 이를 참조하여 본 발명의 편광자가 구비된 유기전계발광 표시장치의 제조방법을 간략하게 설명한다.9 is a flowchart schematically illustrating a method of manufacturing an organic light emitting display device according to the present invention, and with reference to this, a method of manufacturing an organic light emitting display device having a polarizer according to the present invention will be briefly described.
도 9에 도시된 바와 같이, 우선 유기전계발광 표시패널을 제작한다(S201). 이때, 상기 유기전계발광 표시패널은 도 2에 도시된 구조로서, 제1기판(110) 위에 구동 박막트랜지스터와 유기발광소자가 배치되고 그 위에 제2기판(160)이 구비된다. 이때, 상기 유기전계발광 표시패널은 하부발광 유기전계발광 표시패널로서, 유기발광소자에서 발광된 광이 제1기판(110)을 통해 외부로 출력되어 영상을 표시한다. 물론, 본 발명의 유기전계발광 표시패널이 이러한 구조에 한정되는 것이 아니라 현재 알려진 다양한 구조의 표시패널에 적용될 수 있을 것이다.As shown in FIG. 9 , an organic light emitting display panel is first manufactured ( S201 ). In this case, the organic light emitting display panel has the structure shown in FIG. 2 , and a driving thin film transistor and an organic light emitting device are disposed on a first substrate 110 , and a second substrate 160 is provided thereon. In this case, the organic light emitting display panel is a bottom light emitting organic light emitting display panel, and the light emitted from the organic light emitting device is outputted to the outside through the first substrate 110 to display an image. Of course, the organic light emitting display panel of the present invention is not limited to such a structure, but may be applied to display panels having various structures currently known.
이후, 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)를 1,2-디클로로벤젠에 혼합한 후, 설정된 온도(예를 들어, 약 60℃의 온도)에서 설정된 시간 동안(예를 들어, 약 2시간 동안) 교반하여 용액 상태의 초분자구조체(272)를 형성한다(S202).Thereafter, after mixing the discotic liquid crystal molecules 272a and the fluorenone derivative 272b in 1,2-dichlorobenzene, at a set temperature (for example, a temperature of about 60° C.) for a set time (for example, for about 2 hours) to form the supramolecular structure 272 in a solution state (S202).
이어서, 제작된 유기전계발광 표시패널의 제1기판(110)의 배면, 즉 영상이 표시되는 제1기판(110)의 외면을 알킬기를 포함하는 중합체 등을 도포하여 제1기판(110)의 표면을 알킬기로 치환한다(S203).Next, a polymer including an alkyl group is coated on the rear surface of the first substrate 110 of the manufactured organic light emitting display panel, that is, the outer surface of the first substrate 110 on which an image is displayed, to the surface of the first substrate 110 . is substituted with an alkyl group (S203).
그 후, 용액 상태의 초분자구조체(272)를 용액전단법에 의해 제1기판(110)의 배면에 도포한 후, 건조하면 상기 제1기판(110)의 배면에는 특정 방향을 따라 디스코틱 액정분자(272a)와 플루오레논 유도체(272b)가 교대로 배열되어 상기 방향을 따라 초분자구조체(272)의 장축이 배열되어 유기전계발광 표시장치의 영상 표시면에 편광층(170)이 형성된다(S204).After that, the solution-state supramolecular structure 272 is applied to the rear surface of the first substrate 110 by the solution shearing method, and then dried, the discotic liquid crystal molecules are located on the rear surface of the first substrate 110 along a specific direction. 272a and the fluorenone derivative 272b are alternately arranged so that the long axes of the supramolecular structure 272 are arranged along the direction to form the polarization layer 170 on the image display surface of the organic light emitting display device (S204) .
이와 같이, 본 발명에서는 초분자구조체(272)를 만든 후, 코팅공정에 의해 표시장치에 상기 초분자구조(272)를 도포함으로써, 편광자를 형성할 수 있게 되므로, 표시장치의 제조공정을 단순화할 수 있게 된다.As described above, in the present invention, after making the supramolecular structure 272, by coating the supramolecular structure 272 on the display device by a coating process, a polarizer can be formed, so that the manufacturing process of the display device can be simplified. do.
더욱이, 초분자구조체(272)는 표시장치의 제조공정과 인라인(in-line)으로 구성하여, 연속적인 일련의 공정에 의해 표시패널과 편광자를 형성할 수 있게 되므로, 제조공정을 대폭 단순화하고 표시장치의 제조시간을 단축할 수 있게 되어, 표시장치의 제조단가를 대폭 감축하고 수율을 향상시킬 수 있게 된다.Moreover, since the supramolecular structure 272 is configured in-line with the manufacturing process of the display device, the display panel and the polarizer can be formed by a continuous series of processes, which greatly simplifies the manufacturing process and improves the display device. It is possible to shorten the manufacturing time of the display device, greatly reducing the manufacturing cost of the display device and improving the yield.
한편, 상기 초분자구조체(272)는 유기전계발광 표시패널의 제1기판(110)의 배면에 도포되어 형성되지만, 본 발명에 따른 초분자구조체(272)가 제1기판(110)의 배면에만 도포되는 것이 아니다. 표시장치가 상부발광형 유기전계발광 표시패널의 경우, 상기 초분자구조체(272)가 제2기판(160)의 상면에 도포되어 편광층(170)이 제2기판(160)의 상면에 형성될 수 있다.On the other hand, the supramolecular structure 272 is formed by being coated on the rear surface of the first substrate 110 of the organic light emitting display panel, but the supramolecular structure 272 according to the present invention is applied only to the rear surface of the first substrate 110 . it is not When the display device is a top emission type organic light emitting display panel, the supramolecular structure 272 is applied to the upper surface of the second substrate 160 so that the polarization layer 170 can be formed on the upper surface of the second substrate 160 . have.
즉, 본 발명에 따른 초분자구조체(272)는 필요에 따른 원하는 영역에 도포함으로써 해당 영역에 원하는 형상의 편광자를 신속하고 단순한 방법에 의해 형성할 수 있게 된다.That is, the supramolecular structure 272 according to the present invention is applied to a desired area as needed, so that a polarizer having a desired shape can be formed in the corresponding area by a quick and simple method.
또한, 상술한 설명에서는 본 발명의 편광자가 적용되는 표시장치로서 유기전계발광 표시장치를 예를 들어 설명했지만, 본 발명에 따른 편광자가 적용되는 표시장치가 유기전계발광 표시장치에만 한정되는 것은 아니다.Also, in the above description, an organic light emitting display device has been described as an example of a display device to which the polarizer of the present invention is applied, but the display device to which the polarizer according to the present invention is applied is not limited to the organic light emitting display device.
도 10a 및 도 10b는 본 발명에 따른 편광자가 적용된 액정표시장치를 각각 나타내는 도면이다.10A and 10B are views each showing a liquid crystal display device to which a polarizer according to the present invention is applied.
도 10 및 도 10b에 도시된 바와 같이, 제1기판(310) 위에는 게이트전극(325)이 형성되어 있으며, 상기 제1기판(325) 전체에 걸쳐 게이트절연층(312)이 적층되어 있다. 상기 게이트절연층(312) 위에는 반도체층(332)이 형성되어 있으며, 그 위에 소스전극(327) 및 드레인전극(328)이 형성되어 있다. 또한, 상기 제1기판(310) 전체에 걸쳐 보호층(passivation layer;314)이 형성되어 있다.As shown in FIGS. 10 and 10B , a gate electrode 325 is formed on the first substrate 310 , and a gate insulating layer 312 is stacked over the entire first substrate 325 . A semiconductor layer 332 is formed on the gate insulating layer 312 , and a source electrode 327 and a drain electrode 328 are formed thereon. In addition, a passivation layer 314 is formed over the entire first substrate 310 .
상기 게이트절연층(312) 위에는 복수의 공통전극(330)이 형성되어 있고 보호층(314) 위에는 화소전극(333)이 형성되며, 상기 화소전극(333)이 보호층(314)에 형성된 컨택홀을 통해 화소전극(333)과 전기적으로 연결되어 상기 화소전극(333)에 신호가 인가됨에 따라 상기 공통전극(330)과 화소전극(333) 사이에 전계(E)가 발생한다.A plurality of common electrodes 330 are formed on the gate insulating layer 312 , a pixel electrode 333 is formed on the protective layer 314 , and a contact hole in which the pixel electrode 333 is formed in the protective layer 314 . As it is electrically connected to the pixel electrode 333 through , and a signal is applied to the pixel electrode 333 , an electric field E is generated between the common electrode 330 and the pixel electrode 333 .
이때, 공통전극(330)은 더미(dummy)형태로 화소의 전체 영역에 걸쳐 형성되며, 화소전극(330)은 일정 간격을 두고 복수개 형성된다. 또한, 도면에는 도시하지 않았지만, 상기 공통전극(330)은 제1기판(310) 또는 보호층(314) 위에 형성될 수도 있으며, 상기 화소전극(330)은 제1기판(310) 또는 게이트절연층(312) 위에 형성될 수도 있다.In this case, the common electrode 330 is formed over the entire area of the pixel in a dummy shape, and a plurality of pixel electrodes 330 are formed at regular intervals. In addition, although not shown in the drawings, the common electrode 330 may be formed on the first substrate 310 or the passivation layer 314 , and the pixel electrode 330 is formed on the first substrate 310 or the gate insulating layer. It may be formed over 312 .
또한, 공통전극(330)과 화소전극(330)이 모두 일정 폭의 띠형상으로 형성되어 교대로 배치될 수도 있다.In addition, both the common electrode 330 and the pixel electrode 330 may be formed in a band shape of a predetermined width and alternately disposed.
제2기판(360)에는 블랙매트릭스(363)와 컬러필터층(365)이 형성되어 있다. 상기 블랙매트릭스(363)는 액정분자가 동작하지 않는 영역으로 광이 누설되는 것을 방지하기 위한 것으로, 도면에 도시한 바와 같이 박막트랜지스터 영역 및 화소와 화소 사이(즉, 게이트라인 및 데이터라인 영역)에 주로 형성된다. 컬러필터층(365)은 R(Red), B(Blue), G(Green)로 구성되어 실제 컬러를 구현하기 위한 것이다. 컬러필터층(365) 위에는 상기 컬러필터층(365)을 보호하고 기판의 평탄성을 향상시키기 위한 오버코트층(overcoat layer)이 형성될 수 있다.A black matrix 363 and a color filter layer 365 are formed on the second substrate 360 . The black matrix 363 is used to prevent light from leaking to a region where liquid crystal molecules do not operate. As shown in the figure, the black matrix 363 is located in the thin film transistor region and between the pixel and the pixel (ie, the gate line and the data line region). mainly formed The color filter layer 365 is composed of R (Red), B (Blue), and G (Green) to realize actual colors. An overcoat layer for protecting the color filter layer 365 and improving the flatness of the substrate may be formed on the color filter layer 365 .
상기 제1기판(310) 및 제2기판(360) 사이에는 액정층(368)이 형성된다.A liquid crystal layer 368 is formed between the first substrate 310 and the second substrate 360 .
상기한 바와 같이, 액정표시패널에서는 공통전극(330)과 화소전극(333)에 의해 액정층(368) 내부에 전계가 발생하며, 이 전계에 의해 액정층(368) 내부의 액정분자를 평면상에서 회전하게 되므로, 액정분자의 굴절율 이방성에 의해 액정층(368)을 투과하는 광투과율을 조절함으로써 영상을 표시할 수 있게 된다.As described above, in the liquid crystal display panel, an electric field is generated in the liquid crystal layer 368 by the common electrode 330 and the pixel electrode 333, and the liquid crystal molecules in the liquid crystal layer 368 are moved on a plane by the electric field. Since it rotates, an image can be displayed by adjusting the transmittance of light passing through the liquid crystal layer 368 by the refractive index anisotropy of the liquid crystal molecules.
도 10a에 도시된 바와 같이, 액정표시패널의 상면 및 하면, 즉 제1기판(310)의 배면 및 제2기판(360)의 상면에는 각각 제1 및 제2편광층(370a,370b)이 형성되어 액정층(368)을 투과하는 광을 선편광시킴으로써, 광의 투과율을 조절하여 화상을 구현할 수 있게 된다.As shown in FIG. 10A , first and second polarization layers 370a and 370b are formed on the upper and lower surfaces of the liquid crystal display panel, that is, the rear surface of the first substrate 310 and the upper surface of the second substrate 360, respectively. By linearly polarizing the light passing through the liquid crystal layer 368, the image can be realized by controlling the transmittance of the light.
또한, 도 10b에 도시된 바와 같이, 제1 및 제2편광층(370a,370b)은 액정표시장치의 내측의 제1기판(310) 및 제2기판(360)에 형성될 수도 있다. 이때, 제1편광층(370a)과 게이트절연층(312) 사이 및 제2편광층(370b)과 컬러필터층(365) 사이에는 각각 제1 및 제2버퍼층(374a,374b)이 형성될 수도 있다. 상기 제1 및 제2버퍼층(374a,374b)은 무기물질 및/또는 유기물질로 형성될 수 있지만, 이에 한정되는 것은 아니다.Also, as shown in FIG. 10B , the first and second polarization layers 370a and 370b may be formed on the first substrate 310 and the second substrate 360 inside the liquid crystal display. In this case, first and second buffer layers 374a and 374b may be respectively formed between the first polarization layer 370a and the gate insulating layer 312 and between the second polarization layer 370b and the color filter layer 365 . . The first and second buffer layers 374a and 374b may be formed of an inorganic material and/or an organic material, but are not limited thereto.
상기 제1 및 제2편광층(370a,370b)은 일방향을 따라 디스코틱 액정분자와 플루오레논이 교대로 배열된 초분자구조체로 구성된다.The first and second polarization layers 370a and 370b are formed of a supramolecular structure in which discotic liquid crystal molecules and fluorenones are alternately arranged along one direction.
이때, 액정표시장치가 노멀리블랙모드(Normally Black Mode)인 경우, 상기 제1 및 제2편광층(370a,370b)의 디스코틱 액정분자와 플루오레논의 배열방향, 즉 초분자구조체의 장축은 서로 수직으로 되며, 액정표시장치가 노멀리화이트모드(Normally White Mode)인 경우, 상기제1 및 제2편광층(370a,370b)의 초분자구조체의 장축은 서로 평행하게 형성된다. At this time, when the liquid crystal display device is in the normally black mode, the arrangement direction of the discotic liquid crystal molecules and the fluorenone of the first and second polarization layers 370a and 370b, that is, the long axis of the supramolecular structure is mutual vertical, and when the liquid crystal display is in a normally white mode, the long axes of the supramolecular structures of the first and second polarization layers 370a and 370b are parallel to each other.
예를 들어, 노멀리블랙모드에서는, 제1편광층(370a)을 투과한 광이 x-축방향으로 선형편광되어 액정층(368)로 입력된다. 상기 구조의 액정표시장치의 액정층(368) 전체 영역에서 액정분자가 서로 평행한 방향으로 배열되는 경우, 액정표시장치에 신호가 인가되지 않았을 때, 상기 액정분자는 x-축방향을 따라 배열되므로, 상기 액정층(368)로 입사된 광은 x축방향을 따라 선편광된 상태로 액정층(368)을 그대로 투과한다. For example, in the normally black mode, light passing through the first polarization layer 370a is linearly polarized in the x-axis direction and input to the liquid crystal layer 368 . When the liquid crystal molecules are arranged in a direction parallel to each other in the entire area of the liquid crystal layer 368 of the liquid crystal display having the above structure, when no signal is applied to the liquid crystal display, the liquid crystal molecules are arranged along the x-axis direction. , the light incident on the liquid crystal layer 368 is linearly polarized along the x-axis direction and passes through the liquid crystal layer 368 as it is.
제2편광층(140)의 초분자구조체의 단축, 즉 광투과축은 액정층(368)을 투과한 광의 편광방향과는 수직이므로, 액정층(368)을 투과한 광이 상기 제2편광층(370b)에 의해 모두 흡수되어 상기 제2편광층(370b)의 외부로 광이 출력되지 않게 되어 화면이 블랙으로 표시된다.Since the short axis of the supramolecular structure of the second polarization layer 140, that is, the light transmission axis, is perpendicular to the polarization direction of the light transmitted through the liquid crystal layer 368, the light transmitted through the liquid crystal layer 368 is transmitted through the second polarization layer 370b. ), so that no light is output to the outside of the second polarization layer 370b, the screen is displayed in black.
상기 제1 및 제2편광층(370a,370b)는 각각 제1 및 제2기판(310,360)의 제1 및 또는 제2면에 초분자구조체를 도포함으로써 형성될 수 있으므로, 편광판을 제작하기 위한 별도의 제조공정이나 편광판을 부착하기 위한 별도의 부착공정이 필요없게 되므로, 제조시간이 단축되고 제조비용을 절감할 수 있게 된다.Since the first and second polarizing layers 370a and 370b may be formed by applying a supramolecular structure to the first and/or second surfaces of the first and second substrates 310 and 360, respectively, separate separate polarizing plates for manufacturing the polarizing plate may be formed. Since there is no need for a manufacturing process or a separate attaching process for attaching the polarizing plate, it is possible to shorten the manufacturing time and reduce the manufacturing cost.
또한, 제1 및 제2편광층(370a,370b)은 박막형태로 매우 얇게 형성할 수 있으므로, 박형의 액정표시장치의 제작이 가능하게 된다.In addition, since the first and second polarization layers 370a and 370b can be formed very thinly in the form of a thin film, a thin liquid crystal display device can be manufactured.
본 발명의 다양한 변형예나 본 발명을 기초로 용이하게 창안할 수 있는 구조 등도 본 발명의 범위에 포함되어야만 할 것이다. 따라서, 본 발명의 권리범위는 상술한 상세한 설명에 의해 결정되는 것이 아니라 첨부한 특허청구범위에 의해 결정되어야만 할 것이다.Various modifications of the present invention or structures that can be easily devised based on the present invention should also be included in the scope of the present invention. Accordingly, the scope of the present invention should not be determined by the above detailed description, but should be determined by the appended claims.

Claims (14)

  1. 화학식1의 디스코틱 액정분자 및 화학식2의 플로오레논 유도체를 포함하는 초분자구조체로 구성되며,It is composed of a supramolecular structure comprising a discotic liquid crystal molecule of Formula 1 and a fluorenone derivative of Formula 2,
    상기 초분자구조체는 복수의 디스코틱 액정분자와 플로오레논 유도체가 제1방향을 따라 서로 교대로 배열되어 장축을 형성하는 것을 특징으로 하는 편광자.The supramolecular structure is a polarizer, characterized in that a plurality of discotic liquid crystal molecules and fluorenone derivatives are alternately arranged with each other in a first direction to form a long axis.
    [화학식 1][Formula 1]
    Figure PCTKR2020014325-appb-img-000007
    Figure PCTKR2020014325-appb-img-000007
    여기서, R은 C 6H 11, C 6H 13 및 C 8H 17 where R is C 6 H 11 , C 6 H 13 and C 8 H 17
    [화학식 2][Formula 2]
    Figure PCTKR2020014325-appb-img-000008
    Figure PCTKR2020014325-appb-img-000008
    여기서, 치환기 M과 N이 모두 NO 2, M은 H이고 N은 HO 2,또는 M과 M이 모두 H.Here, the substituents M and N are both NO 2 , M is H and N is HO 2 , or both M and M are H.
  2. 제1항에 있어서, 상기 디스코틱 액정분자와 상기 플로오레논 유도체는 전하이동착물을 형성하는 것을 특징으로 하는 편광자.The polarizer according to claim 1, wherein the discotic liquid crystal molecule and the fluorenone derivative form a charge transfer complex.
  3. 제1항에 있어서, 치환기 M과 N이 모두 NO 2일 경우 플루오레논 유도체는 2,4,7-Trinitro-9-Fluorenone이고, M은 H이고 N이 HO 2일 경우 플루오레논 유도체는 2,4-Dinitro-9-Fluorenone이며, M과 M이 모두 H일 경우 플루오레논 유도체는 2-Nitro-9-Fluorenone인 것을 특징으로 하는 편광자.The fluorenone derivative according to claim 1, wherein when both of the substituents M and N are NO 2 , the fluorenone derivative is 2,4,7-Trinitro-9-Fluorenone, M is H and N is HO 2 When the fluorenone derivative is 2,4 -Dinitro-9-Fluorenone, and when M and M are both H, the fluorenone derivative is 2-Nitro-9-Fluorenone.
  4. 제1항에 있어서, 상기 초분자구조체는 장축과 평행한 방향으로 진동하는 광을 흡수하는 것을 특징으로 하는 편광자.The polarizer according to claim 1, wherein the supramolecular structure absorbs light vibrating in a direction parallel to the long axis.
  5. 제1항에 있어서, 상기 초분자구조체가 도포되는 지지체를 더 포함하며,According to claim 1, further comprising a support to which the supramolecular structure is applied,
    상기 지지체에는 알킬기가 치환되어 상기 디스코틱 액정분자와 상기 플로오레논 유도체를 제1방향을 따라 교대로 배열하는 것을 특징으로 하는 편광자.A polarizer, characterized in that the support is substituted with an alkyl group to alternately arrange the discotic liquid crystal molecules and the fluorenone derivative in a first direction.
  6. 화학식1의 디스코틱 액정분자 및 화학식2의 플로오레논 유도체를 혼합하여 초분자구조체를 형성하는 단계;Forming a supramolecular structure by mixing the discotic liquid crystal molecule of Formula 1 and the fluorenone derivative of Formula 2;
    상기 디스코틱 액정분자와 상기 플로오레논 유도체의 혼합물을 알킬기가 치환된 지지체에 일정 영역에 적하하는 단계; 및dropping a mixture of the discotic liquid crystal molecule and the fluorenone derivative onto a support substituted with an alkyl group on a predetermined region; and
    액상전단법에 따라 블레이드를 제2방향을 따라 이동하여 상기 디스코틱 액정분자와 상기 플로오레논 유도체의 혼합물을 상기 지지체에 도포하여 제2방향과 수직인 제1방향을 따라 상기 디스코틱 액정분자와 상기 플로오레논 유도체의 혼합물을 교대로 배열하는 단계로 구성된 편광자 제조방법.By moving the blade in the second direction according to the liquid-phase shearing method, a mixture of the discotic liquid crystal molecules and the fluorenone derivative is applied to the support, and the discotic liquid crystal molecules are combined with the discotic liquid crystal molecules along the first direction perpendicular to the second direction. A method for manufacturing a polarizer comprising the steps of alternately arranging a mixture of the fluorenone derivative.
    [화학식 1][Formula 1]
    Figure PCTKR2020014325-appb-img-000009
    Figure PCTKR2020014325-appb-img-000009
    여기서, R은 C 6H 11, C 6H 13 및 C 8H 17 where R is C 6 H 11 , C 6 H 13 and C 8 H 17
    [화학식 2][Formula 2]
    Figure PCTKR2020014325-appb-img-000010
    Figure PCTKR2020014325-appb-img-000010
    여기서, 치환기 M과 N이 모두 NO 2, M은 H이고 N은 HO 2,또는 M과 M이 모두 H.Here, the substituents M and N are both NO 2 , M is H and N is HO 2 , or both M and M are H.
  7. 제6항에 있어서, 상기 디스코틱 액정분자와 상기 플로오레논 유도체를 혼합하는 단계는,The method of claim 6, wherein the mixing of the discotic liquid crystal molecule and the fluorenone derivative comprises:
    상기 디스코틱 액정분자와 상기 플로오레논 유도체를 1:1 몰비율로 혼합하는 단계; 및mixing the discotic liquid crystal molecule and the fluorenone derivative in a 1:1 molar ratio; and
    혼합된 디스코틱 액정분자와 플로오레논 유도체를 60℃의 온도에서 2시간 동안 교반하는 단계를 포함하는 것을 특징으로 하는 편광자 제조방법.A method for producing a polarizer, comprising the step of stirring the mixed discotic liquid crystal molecules and the fluorenone derivative at a temperature of 60° C. for 2 hours.
  8. 제6항에 있어서, 상기 디스코틱 액정분자와 상기 플로오레논 유도체의 혼합물을 상기 지지체에 도포하는 단계는 70℃의 상기 블레이드를 제2방향을 따라 10-20㎛/s의 전단속도로 이동하여 디스코틱 액정분자와 상기 플로오레논 유도체의 혼합물을 상기 지지체에 도포하는 단계를 포함하는 편광자 제조방법.The method of claim 6, wherein the step of applying the mixture of the discotic liquid crystal molecules and the fluorenone derivative to the support is performed by moving the blade at 70° C. along the second direction at a shear rate of 10-20 μm/s. A method for manufacturing a polarizer comprising applying a mixture of discotic liquid crystal molecules and the fluorenone derivative to the support.
  9. 화상을 구현하는 표시패널;a display panel that implements an image;
    상기 표시패널에 적어도 일측에 형성된 제1항 내지 제5항에 기재된 편광층으로 구성된 표시장치.A display device comprising the polarizing layer according to any one of claims 1 to 5 formed on at least one side of the display panel.
  10. 제9항에 있어서, 상기 표시패널은 유기전계발광 표시패널인 것을 특징으로 하는 표시장치.The display device of claim 9 , wherein the display panel is an organic light emitting display panel.
  11. 제10항에 있어서, 상기 편광층은 상기 유기전계발광 표시패널의 상면 또는 배면에 형성되는 것을 특징으로 하는 표시장치.The display device of claim 10 , wherein the polarization layer is formed on an upper surface or a rear surface of the organic light emitting display panel.
  12. 제9항에 있어서, 상기 표시패널은 액정표시패널인 것을 특징으로 하는 표시장치.The display device according to claim 9, wherein the display panel is a liquid crystal display panel.
  13. 제12항에 있어서, 상기 편광층은 액정표시패널의 상하면에 각각 형성되는 것을 특징으로 하는 표시장치.The display device of claim 12 , wherein the polarization layer is formed on upper and lower surfaces of the liquid crystal display panel, respectively.
  14. 제12항에 있어서, 상기 편광층은 액정표시패널의 상하 기판의 내측면에 각각 형성되는 것을 특징으로 하는 표시장치.The display device of claim 12 , wherein the polarization layer is formed on inner surfaces of the upper and lower substrates of the liquid crystal display panel, respectively.
PCT/KR2020/014325 2019-11-28 2020-10-20 Polarizer, polarizer manufacturing method, and display device having same WO2021107404A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0155538 2019-11-28
KR1020190155538A KR20210066374A (en) 2019-11-28 2019-11-28 Polarizer, polarizer fabricating method, and display device having thereof

Publications (1)

Publication Number Publication Date
WO2021107404A1 true WO2021107404A1 (en) 2021-06-03

Family

ID=76129468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014325 WO2021107404A1 (en) 2019-11-28 2020-10-20 Polarizer, polarizer manufacturing method, and display device having same

Country Status (2)

Country Link
KR (1) KR20210066374A (en)
WO (1) WO2021107404A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036291A2 (en) * 2002-10-16 2004-04-29 Optiva, Inc. Color liquid crystal display with internal rear polarizer
KR20080000667A (en) * 2005-04-21 2008-01-02 미쓰비시 가가꾸 가부시키가이샤 Composition for anisotropic dye film, anisotropic dye film, and polarizing device
WO2018203478A1 (en) * 2017-05-01 2018-11-08 東京エレクトロン株式会社 Method for producing organic el display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036291A2 (en) * 2002-10-16 2004-04-29 Optiva, Inc. Color liquid crystal display with internal rear polarizer
KR20080000667A (en) * 2005-04-21 2008-01-02 미쓰비시 가가꾸 가부시키가이샤 Composition for anisotropic dye film, anisotropic dye film, and polarizing device
WO2018203478A1 (en) * 2017-05-01 2018-11-08 東京エレクトロン株式会社 Method for producing organic el display

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARKOVITSI DIMITRA, PFEFFER NICOLA, CHARRA FABRICE, NUNZI JEAN-MICHEL, BENGS HOLGER, RINGSDORF HELMUT: "Charge-transfer complexes of discogenic molecules : a time-resolved study based on Kerr ellipsometry", JOURNAL OF THE CHEMICAL SOCIETY. FARADAY TRANSACTIONS, vol. 89, no. 1, 1 January 1993 (1993-01-01), GB, pages 37 - 42, XP055815683, ISSN: 0956-5000, DOI: 10.1039/ft9938900037 *
OGAWA KIMIYA, YONEHARA HISATOMO, PAC CHYONGJIN, MAEKAWA ETURÔ: "In-Plane Anisotropy in Mixed Langmuir–Blodgett Films of Triphenylene Derivatives and 2,4,7-Trinitro-9-fluorenone", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 66, no. 5, 1 May 1993 (1993-05-01), JP, pages 1378 - 1385, XP009528187, ISSN: 0009-2673, DOI: 10.1246/bcsj.66.1378 *

Also Published As

Publication number Publication date
KR20210066374A (en) 2021-06-07

Similar Documents

Publication Publication Date Title
US11327353B2 (en) Display panel, manufacturing method thereof and display device
US7576812B2 (en) Liquid crystal display device and method for fabricating the same
US8921837B2 (en) Organic light emitting display device with light compensation layer
US9541807B2 (en) Flexible display device
CN101661949B (en) Organic light emitting diode display
WO2015037889A1 (en) Smart window comprising electrochromatic device and organic light-emitting device
KR100839750B1 (en) Organic light emitting display
WO2020122492A1 (en) Display module, display apparatus including the same and method of manufacturing display module
KR100699254B1 (en) Manufacturing method of display device and display device thereby
US20100072482A1 (en) Organic light emitting display and method of manufacturing the same
KR20160106825A (en) Fabrication method of display device and display device
KR20110061317A (en) Organic light emitting diode display
US9905619B2 (en) Display device and manufacturing method of the same
KR102083785B1 (en) Method for Manufacturing of Organic light Emitting Display Device
TW201413933A (en) Organic light-emitting display apparatus and method of manufacturing the same
KR20170048656A (en) Flexible display apparatus
KR20100024709A (en) Organic light emitting diode display
KR20170124438A (en) Display device
WO2016182283A1 (en) Organic light-emitting display device
KR102204756B1 (en) Display device and manufacturing method of the same
US9515128B2 (en) Display device and manufacturing method of the same
KR100661642B1 (en) Method of making display device and display device therefrom
WO2021107404A1 (en) Polarizer, polarizer manufacturing method, and display device having same
WO2017061776A1 (en) Display device
KR102442415B1 (en) Organic light emitting diode display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892792

Country of ref document: EP

Kind code of ref document: A1