WO2018202145A1 - 通信方法、终端和网络设备 - Google Patents

通信方法、终端和网络设备 Download PDF

Info

Publication number
WO2018202145A1
WO2018202145A1 PCT/CN2018/085651 CN2018085651W WO2018202145A1 WO 2018202145 A1 WO2018202145 A1 WO 2018202145A1 CN 2018085651 W CN2018085651 W CN 2018085651W WO 2018202145 A1 WO2018202145 A1 WO 2018202145A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
data segment
orthogonal cover
network device
uplink control
Prior art date
Application number
PCT/CN2018/085651
Other languages
English (en)
French (fr)
Inventor
吴丹
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18794038.2A priority Critical patent/EP3614605B1/en
Publication of WO2018202145A1 publication Critical patent/WO2018202145A1/zh
Priority to US16/674,239 priority patent/US11109365B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2604Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0019Time-frequency-code in which one code is applied, as a temporal sequence, to all frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation

Definitions

  • the present application relates to the field of communications and, more particularly, to communication methods, terminals, and network devices.
  • uplink control information (UCI) of different lengths can be transmitted using physical uplink control channels (PUCCHs) of different formats.
  • PUCCHs physical uplink control channels
  • the uplink control information of length 1 to 2 bits can be transmitted in the format 1a/1b format of the PUCCH in the long term evolution (LTE) system; the uplink is longer than the X bits.
  • the control information can be transmitted in the format 4 format of the PUCCH in the LTE system. Among them, the value of X is to be determined.
  • the present application provides a communication method, a terminal, and a network device, which are capable of transmitting uplink control information, and help improve frequency gain and transmission flexibility of uplink control information, and contribute to resource utilization.
  • a communication method includes: the first terminal repeats the uplink control information to be transmitted N times to obtain a first data segment, where N is a positive integer; the first terminal determines an orthogonal cover code according to N; the first terminal sets the first data segment with The orthogonal cover codes are multiplied to obtain a second data segment; the first terminal transmits the second data segment.
  • the first terminal repeats the uplink control information to be transmitted N times, which helps to improve the frequency diversity gain of the uplink control information to be transmitted.
  • the first terminal multiplies the uplink control information to be transmitted and the orthogonal cover code, so that the uplink control information to be transmitted can present a comb structure in the frequency domain, and the comb structure can be multiplied with the uplink control information of other terminals.
  • the orthogonal cover code After the orthogonal cover code, the comb structures in the frequency domain are staggered, so that multiple terminals multiplex the same time-frequency resources to transmit uplink control information, thereby improving resource utilization.
  • the repetition number of the uplink control information of the terminal and the orthogonal coverage code can be flexibly determined, thereby improving the transmission flexibility of the uplink control information.
  • the first terminal determines the orthogonal cover code according to the number of repetitions N, including: the correspondence between the first terminal according to the number of repetitions N and the number of repetitions N and the orthogonal cover code , determine the orthogonal cover code.
  • the different repetition times correspond to different orthogonal coverage codes, so that when different terminals multiplex the same resource to send uplink control information, the repetition times of the respective uplink control information may be different, thereby improving the uplink control information. Transmission flexibility.
  • the communications method further includes: the first terminal receiving the indication information sent by the network device, the indication information is used to indicate the N, and the first terminal N is determined according to the indication information.
  • the network device determines the number of repetitions of the uplink control information of the terminal. Since the network device can learn the communication information of multiple terminals, the network device can determine a reasonable number of repetitions for each terminal, thereby helping to improve resource utilization.
  • the communications method further includes: determining, by the first terminal, N according to the uplink signal quality.
  • the communications method further includes: determining, by the first terminal, the number of constellation point symbols M of the uplink control information to be transmitted, determining that N, M are A positive integer.
  • the first terminal determines N according to the number of constellation point symbols M of the uplink control information to be transmitted, including: the first terminal includes the first resource.
  • the ratio of the number of carriers to M is determined to be N.
  • the communications method further includes: the first terminal sends the indication information to the network device, where the indication information is used to indicate N.
  • the terminal When the terminal determines the number of repetitions, the terminal sends the number of repetitions to the network device, so that the network device can receive the uplink control information of the terminal according to the repetition quantity, thereby improving the efficiency of the network device.
  • the first terminal sends the second data segment, including: the first terminal is in the first The second data segment is sent on the resource, and the third data segment is further sent on the first resource.
  • the third data segment is obtained by performing K times of uplink control information of the second terminal, where K is not equal to N, and K is a positive integer.
  • the number of repetitions of different terminals may be different, which can improve the transmission flexibility of the uplink control information and improve the resource utilization.
  • a communication method includes: the network device receives the second data segment sent by the first terminal, where the second data segment is obtained by processing, by the first terminal, the first data segment according to the orthogonal cover code, where the first data segment is the first terminal After the uplink control information is repeated N times, N is a positive integer; the network device determines the orthogonal coverage code according to N; the network device multiplies the solution orthogonal cover code by the second data segment to obtain the first data segment; the network device The first data segment is subjected to de-duplication processing N times to obtain uplink control information of the first terminal.
  • the first terminal repeats the uplink control information to be transmitted N times, which helps to improve the frequency diversity gain of the uplink control information to be transmitted.
  • the first terminal multiplies the uplink control information to be transmitted and the orthogonal cover code, so that the uplink control information to be transmitted can present a comb structure in the frequency domain, and the comb structure can be multiplied with the uplink control information of other terminals.
  • the orthogonal cover code After the orthogonal cover code, the comb structures in the frequency domain are staggered, so that multiple terminals multiplex the same time-frequency resources to transmit uplink control information.
  • the network device determines, according to the N, the solution of the orthogonal coverage code, the network device, according to the N, and the correspondence between the number of repetitions N and the solution orthogonal cover code, determining the solution orthogonal coverage. code.
  • the different repetition times correspond to different orthogonal coverage codes, so that when different terminals multiplex the same resource to send uplink control information, the repetition times of the respective uplink control information may be different, thereby improving the uplink control information. Transmission flexibility.
  • the communications method further includes: the network device receiving the indication information sent by the first terminal, where the indication information is used to indicate N.
  • the communications method further includes: determining, by the network device, the at least one of the uplink channel state information and the uplink channel signal to noise ratio of the first terminal N: The network device sends indication information to the first terminal, where the indication information is used to indicate N.
  • the network device determines the number of repetitions of the uplink control information of the terminal. Since the network device can learn the communication information of multiple terminals, the network device can determine a reasonable number of repetitions for each terminal, thereby helping to improve resource utilization.
  • the network device receives the second data segment sent by the first terminal, including: the network device Receiving, by the first resource, the second data segment sent by the first terminal, where the communications method further includes: the network device receiving, on the first resource, the third data segment sent by the second terminal; and the network device performing the third data segment
  • the orthogonal coverage code and the K de-duplication processing are performed to obtain uplink control information of the second terminal, where K is not equal to N, and K is a positive integer.
  • the number of repetitions of different terminals may be different, which can improve the transmission flexibility of the uplink control information and improve the resource utilization.
  • the present application provides a terminal.
  • the terminal comprises means for performing the communication method of the first aspect or any of the possible implementations of the first aspect.
  • the application provides a network device.
  • the network device comprises means for performing the communication method of the first aspect or any of the possible implementations of the first aspect.
  • the application provides a terminal.
  • the terminal includes a processor and a transmitter. This processor is used to execute the code.
  • the processor and the transmitter implement the communication method of any of the possible implementations of the first aspect or the first aspect when the processor executes the code.
  • the terminal may further include a memory for storing code executed by the processor.
  • the terminal may further include a receiver for receiving information sent by other devices.
  • the application provides a network device.
  • the network device includes a processor and a receiver. This processor is used to execute the code.
  • the processor and the receiver implement the communication method of the first aspect or any of the possible implementations of the first aspect when the processor executes the code.
  • the network device may further comprise a memory for storing code executed by the processor.
  • the network device can also include a transmitter for transmitting information to other devices.
  • the application provides a computer readable storage medium.
  • the computer readable storage medium stores program code for execution by a terminal, the program code comprising instructions for performing the communication method of the first aspect or any of the possible implementations of the first aspect.
  • the application provides a computer readable storage medium.
  • the computer readable storage medium stores program code for execution by a network device, the program code comprising instructions for performing the communication method of the first aspect or any of the possible implementations of the first aspect.
  • the application provides a computer program product comprising instructions.
  • the terminal is caused to perform the communication method of the first aspect or any of the possible implementations of the first aspect.
  • the application provides a computer program product comprising instructions.
  • the computer program product is run on a network device, the network device is caused to perform the communication method of any of the possible implementations of the first aspect or the first aspect.
  • FIG. 1 is an exemplary structural diagram of a communication system to which a communication method of an embodiment of the present application can be applied.
  • FIG. 2 is an exemplary flow chart of a communication method of one embodiment of the present application.
  • FIG. 3 is a diagram showing an example of a frequency domain comb structure of uplink control information according to an embodiment of the present application.
  • FIG. 4 is an exemplary flow chart of a communication method of another embodiment of the present application.
  • FIG. 5 is a diagram showing an example of a frequency domain comb structure of uplink control information according to another embodiment of the present application.
  • FIG. 6 is an exemplary flowchart of a communication method of another embodiment of the present application.
  • FIG. 7 is an exemplary flowchart of a communication method of another embodiment of the present application.
  • FIG. 8 is an exemplary flowchart of a communication method of another embodiment of the present application.
  • FIG. 9 is an exemplary structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 10 is an exemplary structural diagram of a network device according to an embodiment of the present application.
  • FIG. 11 is an exemplary structural diagram of a terminal of another embodiment of the present application.
  • FIG. 12 is an exemplary structural diagram of a network device of another embodiment of the present application.
  • FIG. 1 is an exemplary structural diagram of a communication system to which a communication method of an embodiment of the present application can be applied. It should be understood that the embodiment of the present application is not limited to the system architecture shown in FIG. 1.
  • the device in FIG. 1 may be hardware, functionally divided software, or a combination of the two.
  • a specific example of the communication system shown in FIG. 1 may be LTE or NR, where NR may also be referred to as 5G.
  • Network device 110 in Figure 1 can be a base station. It should be understood that the specific type of the base station is not limited in the embodiment of the present application. In systems with different wireless access technologies, the names of devices with base station functions may vary. For convenience of description, in all embodiments of the present application, the foregoing apparatus for providing a wireless communication function to a terminal is collectively referred to as a base station, such as a base station device, a small base station device (Pico), and the like in a future network.
  • a base station such as a base station device, a small base station device (Pico), and the like in a future network.
  • the terminal 120 in FIG. 1 may be a User Equipment (UE).
  • the UE may communicate with one or more core networks via a Radio Access Network (RAN).
  • the terminal may also be referred to as an access terminal, a terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a wireless network device, a user agent, or a user device.
  • the terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless communication function.
  • the network device 110 and the terminal 120 communicate with each other.
  • the terminal 120 may send the UCI to the network device 110 at the PUCCH.
  • the network device 110 receives the UCI sent by the terminal 120 to implement other uplink and downlink transmissions between the terminal 120 and the network device 110.
  • the UCI sent by the terminal 120 to the network device may include hybrid automatic repeat request (HARQ) acknowledgement (ACK) information, channel state information (CSI), and/or scheduling request information. Wait.
  • HARQ hybrid automatic repeat request
  • ACK acknowledgement
  • CSI channel state information
  • Wait scheduling request information
  • each repetition number may correspond to a plurality of orthogonal cover codes.
  • the correspondence between the number of repetitions and the conjugate of the orthogonal cover code may be configured on the terminal 120.
  • the conjugate of the orthogonal cover code may be referred to as a solution orthogonal cover code.
  • the number of repetitions M may correspond to M orthogonal cover codes
  • the M orthogonal cover codes may be: [1, 1, 1, 1, 1],
  • the four orthogonal cover codes corresponding to the repetition number 4 include: [1, 1, 1, 1], [1, j, -1, -j], [1, -1, 1, -1], [1,-j,-1,-j].
  • the two orthogonal cover codes corresponding to the repetition number 2 include: [1, 1] [1, j].
  • the network device 110 may be configured with a correspondence between the number of repetitions and the orthogonal cover code, or a correspondence between the number of repetitions and the conjugate of the orthogonal cover code.
  • the conjugate of the orthogonal cover code can be referred to as a de-orthogonal cover code.
  • each repetition number may correspond to multiple orthogonal cover codes or multiple solution orthogonal cover codes.
  • the correspondence between the number of repetitions and the orthogonal coverage code is configured on the network device 110, the correspondence may be the same as the correspondence between the number of repetitions configured on the terminal 120 and the orthogonal coverage code; if the network device 110 Configured on the corresponding relationship between the number of repetitions and the solution orthogonal cover code, the solution orthogonal cover code may be a conjugate of the orthogonal cover code on the terminal.
  • FIG. 2 is a schematic flow chart of a communication method performed by a terminal. It should be understood that FIG. 2 illustrates steps or operations of the communication method, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the operations in FIG. 2. Moreover, the various steps in FIG. 2 may be performed in a different order than that presented in FIG. 2, and it is possible that not all operations in FIG. 2 are to be performed.
  • the terminal repeats the uplink control information to be transmitted N times to obtain a first data segment.
  • N is a positive integer.
  • the terminal repeats the uplink control information to be transmitted N times, and may include: the terminal repeats the constellation point symbol modulated by the uplink control information to be transmitted N times. For example, if the constellation point symbols modulated by the uplink control information to be transmitted are three, the three constellation point symbols are repeated four times to obtain 12 constellation point symbols, and the twelve constellation point symbols are the first data segments.
  • the constellation point symbol of the uplink control information to be transmitted may be a QPSK symbol obtained by the quadrature phase shift keying (QPSK) modulation of the uplink control information to be transmitted, or may be the uplink control information to be transmitted.
  • QPSK quadrature phase shift keying
  • BPSK symbol obtained by phase shift key (BPSK) modulation.
  • the terminal may determine the number of coded bits of the uplink control information of the terminal 120 according to the number of subcarriers and the number of repetitions.
  • the number of subcarriers used by the uplink control channel of the uplink control information of the terminal 120 is 12, the number of repetitions of the uplink control information is 2, and the modulation mode of the terminal 120 is QPSK, and the QPSK before the uplink control information of the terminal 120 is repeated is described.
  • the symbol is 6. Also, since every two coded bits can be modulated into one QPSK symbol, the coded bits of the uplink control information should be twelve.
  • the terminal determines an orthogonal cover code according to the number of repetitions N.
  • the terminal may determine an orthogonal cover code corresponding to N according to the correspondence between the N and the repetition number configured on the terminal and the orthogonal cover code.
  • the terminal 120 may further perform multiple orthogonal coverages corresponding to the number of repetitions N according to the index of the orthogonal coverage code sent by the network device 110.
  • the orthogonal cover code corresponding to the index is determined in the code.
  • the terminal multiplies the first data segment by the orthogonal cover code to obtain a second data segment.
  • the terminal multiplies the first data segment obtained in S210 by the orthogonal cover code obtained in S220 to obtain a second data end.
  • the terminal multiplies the repeatedly obtained data segment by the orthogonal cover code, so that the frequency domain data of the uplink control information is staggered on the carrier, thereby facilitating the multiple terminals to multiplex the same resource to transmit the respective uplink control information.
  • the three QSPK symbols obtained by repeating the first time of the three QSPK symbols to be transmitted may be multiplied by one of the orthogonal cover codes [1, j, -1, -j], and the three QSPKs are added.
  • the three QSPK symbols obtained by repeating the symbol for the second time are multiplied by j in the orthogonal cover code [1, j, -1, -j], and the three QSPK symbols obtained by repeating the third time are multiplied by the third QSPK.
  • the terminal multiplies the repeatedly obtained data segment by the orthogonal cover code, so that the frequency domain data of the uplink control information is staggered on the carrier, thereby facilitating the multiple terminals to multiplex the same resource to transmit the respective uplink control information.
  • Each uplink control information to be transmitted of each terminal includes three QPSK symbols; each terminal repeats three QPSK symbols four times, respectively.
  • the frequency domain comb structures of the four terminals are staggered and do not conflict with each other.
  • the terminal sends the second data segment.
  • the terminal that sends the second data segment may specifically include: performing a discrete fourier transform (DFT) on the second data segment; and mapping the data obtained by the DFT to the uplink control channel.
  • DFT discrete fourier transform
  • the data obtained by the DFT may be mapped to the subcarrier corresponding to the uplink control channel, and the data obtained by the mapping may be inverse fast Fourier transform (IFFT) to obtain the time domain.
  • IFFT inverse fast Fourier transform
  • the number of repetitions N may be determined by the terminal itself, or may be acquired by the terminal from the network device.
  • the terminal may determine the number of repetitions N according to the uplink channel state information, or the terminal may determine the number of repetitions N according to the number M of constellation points of the uplink control information to be transmitted.
  • the terminal determines the number of repetitions N according to the uplink channel state information, the better the signal quality indicated by the uplink channel state information, the larger the number of repetitions.
  • the number of repetitions is determined to be 8; when the threshold is less than a certain threshold, the number of repetitions is determined to be 2.
  • the terminal determines the number of repetitions of the uplink control information to be transmitted according to the uplink state information, and helps the terminal to properly use the resource to transmit the uplink control information.
  • the terminal can use the downlink reference signal to perform channel measurement, and utilize the reciprocity of the uplink and downlink channels to obtain state information of the uplink channel.
  • the terminal determines the number of repetitions
  • the information of other terminals may also be referred to, which is not limited in this application.
  • the determining, by the terminal, the number of repetitions N according to the number of constellation point symbols M of the uplink control information to be transmitted may specifically include: determining, by the terminal, the ratio of the number of subcarriers included in the first resource to M is N.
  • the first resource is a resource used by the uplink control channel carrying the uplink control information to be transmitted.
  • the number of subcarriers included in the first resource is 12, that is, the first resource includes 12 subcarriers, and when the number of constellation point symbols of the uplink control information to be transmitted is three, the result 4 obtained by dividing 12 by 3 is determined as The number of repetitions of the three constellation point symbols of the uplink control information to be transmitted.
  • the terminal may send the indication information to the network device, where the indication information indicates the number of repetitions N, so that the network device can receive the uplink control information of the terminal according to the repetition number N.
  • the terminal obtains the number of repetitions N from the network device, which may include: the terminal receives the indication information sent by the network device, where the indication information indicates the number of repetitions N; and the terminal determines the number of repetitions N according to the indication information.
  • the number of repetitions N determined by the terminal itself or the number of repetitions N determined by the network device for the terminal the number of repetitions of the uplink control information of the terminal may be uplink control with other terminals. The number of times the information is repeated is different.
  • three terminals multiplex the same resources to transmit their respective uplink control information.
  • the number of repetitions of the uplink control information to be sent by the first terminal may be two, and the number of repetitions of the uplink control information to be sent by the second terminal and the third terminal may be four.
  • the orthogonal coverage code of the first terminal may be [1, 1]
  • the orthogonal cover code of the second terminal may be [1, j, -1, -j]
  • the orthogonality of the third terminal The cover code can be [1, -j, -1, j].
  • the uplink control information to be sent of the first terminal includes six QPSK symbols, and the uplink control information to be sent by the second terminal and the third terminal respectively include three QPSK symbols, the three terminals will each send uplink control.
  • the frequency domain comb structure diagram after multiplying the corresponding orthogonal cover code is as shown in FIG. 5.
  • FIG. 6 is a schematic flow chart of a communication method performed by a network device. It should be understood that FIG. 6 illustrates steps or operations of the communication method, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the operations in FIG. 6. Moreover, the various steps in FIG. 6 may be performed in a different order than that presented in FIG. 6, and it is possible that not all operations in FIG. 6 are to be performed.
  • S610 The network device receives the second data segment sent by the terminal, where the second data segment is obtained by processing, by the first terminal, the first data segment according to the orthogonal cover code, where the first data segment is the uplink control information of the first terminal.
  • N is a positive integer.
  • the second data segment received by the network device may be the second data segment sent by the terminal in S240.
  • the receiving, by the network device, the second data segment may include: receiving time domain data sent by the terminal; performing fast Fourier transform (FFT) transformation on the time domain data, and extracting data on the subcarrier corresponding to the uplink control resource, Perform channel equalization; perform DFT processing on the equalized data to obtain a second data segment.
  • FFT fast Fourier transform
  • the network device 110 may further determine, from the plurality of orthogonal coverage codes, an orthogonal coverage code that the terminal 120 should use after repeating the uplink control information N times. Generally, the network device 110 may send, to the terminal 120, indication information indicating an index of an orthogonal coverage code of the plurality of orthogonal coverage codes corresponding to the number of repetitions N in the plurality of orthogonal coverage codes.
  • the orthogonal coverage codes determined by the network device 110 for different terminals should be different as much as possible. In this way, the uplink control information of the multiple terminals can be staggered on the same resource without affecting each other, thereby improving communication reliability.
  • the network device determines, according to N, a solution orthogonal error code.
  • the network device may determine an orthogonal coverage code corresponding to N according to the correspondence between the number of repetitions configured on the network device and the orthogonal coverage code, and then determine the conjugate of the orthogonal coverage code as the solution orthogonal coverage. code.
  • the network device may find multiple orthogonal coverage codes corresponding to the repetition number N according to N and the correspondence between the number of repetitions and the orthogonal coverage code; An index of the orthogonal cover code, determining an orthogonal cover code from the plurality of orthogonal cover codes; and finally determining a conjugate of the orthogonal cover code as a solution orthogonal cover code,
  • the network device may determine, according to the correspondence between the number of repetitions configured by the N and the network device and the solution orthogonal cover code, the N-corrected solution orthogonal code.
  • the network device may find multiple solution orthogonal cover codes corresponding to the number of repetitions N from the correspondence between the number of repetitions and the solution of the orthogonal cover codes.
  • a solution orthogonal cover code is determined from the plurality of solution orthogonal cover codes based on an index of the orthogonal cover code used by the terminal 120.
  • the network device multiplies the solution orthogonal cover code by the second data segment to obtain the first data segment.
  • the network device multiplies the second data end obtained in S610 by the solution orthogonal cover code obtained in S620 to obtain a first data segment. For example, a first data segment containing 12 constellation point symbols can be obtained.
  • S640 The network device performs N deduplication processing on the first data segment to obtain uplink control information of the first terminal.
  • N 4
  • the first data segment containing 12 constellation point symbols is de-duided 4 times, and 3 constellation point symbols can be obtained.
  • These three constellation point symbols are the constellation point symbols of the uplink control information.
  • the network device can demodulate the dequantized constellation point symbols and decode the demodulated data ends to obtain uplink control information.
  • the number of repetitions N may be determined by the network device itself or may be acquired from the terminal.
  • the number of repetitions may be determined according to the uplink channel state information of the terminal or the uplink channel signal to noise ratio or both.
  • the number of repetitions is determined to be 8; when the signal to noise ratio of the terminal is less than a certain threshold, the number of repetitions is determined to be 2.
  • the network device determines the number of repetitions of the uplink control information of the terminal according to the information of the terminal, and helps the terminal to properly use the resource to transmit the uplink control information.
  • the network device determines the number of repetitions N, it may also refer to information of other terminals, such as CSI or signal to noise ratio of other terminals or the number of repetitions of other terminals. In this way, each terminal can be appropriately multiplexed with the same resource to transmit respective uplink control information.
  • the network device may also send indication information to the terminal, indicating the number of repetitions, so that the terminal can send the uplink control information according to the repetition number.
  • the network device may send the indication information to the terminal by using system information, high-layer signaling, or the like, or send the indication information by using downlink control information (DCI).
  • DCI downlink control information
  • the network device may further send, to the terminal, an index of the orthogonal coverage codes that the terminal should use in the multiple orthogonal coverage codes corresponding to the number of repetitions N, so that the terminal can The index determines an orthogonal cover code.
  • the network device may include: the network device receives the indication information sent by the terminal, where the indication information indicates the number of repetitions N.
  • the network device may determine different repetition times for different terminals that send uplink control information on the same resource, so as to fully utilize resources and improve resource utilization.
  • the network device receives uplink control information sent by multiple terminals on a certain resource, where the number of repetitions of uplink control information of one terminal is N, and the number of repetitions of uplink control information of one terminal is K, and K and N are not equal.
  • FIG. 7 illustrates steps or operations of the communication method, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the operations in FIG. Moreover, the various steps in FIG. 7 may be performed in a different order than that presented in FIG. 7, and it is possible that not all operations in FIG. 7 are to be performed.
  • the network device 110 determines the number N of times that the uplink control information should be repeated when the terminal 120 sends the uplink control information.
  • the network device 110 determines the implementation manner of the number N of repetitions of the uplink control information of the terminal 120. Referring to the communication method shown in FIG. 6, the network device determines the implementation manner of the number N of repetitions of the uplink control information of the terminal. Narration.
  • the network device 110 may further determine, from the plurality of orthogonal coverage codes, an orthogonal coverage code that the terminal 120 should use after repeating the uplink control information N times. Generally, the network device 110 may send, to the terminal 120, indication information indicating an index of an orthogonal coverage code of the plurality of orthogonal coverage codes corresponding to the number of repetitions N in the plurality of orthogonal coverage codes.
  • the network device 110 sends the indication information to the terminal 120, indicating the number of repetitions N. Accordingly, the terminal 120 receives the indication information.
  • the network device may send the indication information to the terminal by using system information, high layer signaling, or the like, or send the indication information by using a DCI.
  • the terminal 120 may repeat the uplink control information N times to obtain the first data segment.
  • the terminal 120 performs QPSK modulation on the coded bit to obtain three QPSK symbols.
  • N the number of repetitions N is 4, then 3 QPSK symbols are repeated 4 times to obtain 12 QPSK symbols.
  • the terminal 120 determines an orthogonal cover code according to the number of repetitions N.
  • the terminal 120 multiplies the first data segment obtained in S260 by the orthogonal cover code obtained in S208 to obtain a second data segment.
  • S230 for the step, reference may be made to S230 in the communication method shown in FIG. 2, and details are not described herein again.
  • the terminal 120 sends the second data segment. Accordingly, network device 110 receives the second data segment.
  • the network device 110 determines a solution orthogonal coverage code according to the number N of repetitions of the uplink control information of the terminal 120.
  • the network device 110 performs the N-th repetition processing on the first data segment to obtain uplink control information.
  • the step reference may be made to S640 in the communication method shown in FIG. 6, and details are not described herein again.
  • FIG. 8 illustrates steps or operations of the communication method, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the operations of FIG. Moreover, the various steps in FIG. 8 may be performed in a different order than that presented in FIG. 8, and it is possible that not all operations in FIG. 8 are to be performed.
  • the terminal 120 determines the number N of repetitions of the uplink control information. For this step, reference may be made to the specific implementation manner in which the terminal itself determines the number of repetitions in the communication method shown in FIG. 2, and details are not described herein again.
  • the number of repetitions is determined to be 8; when the threshold is less than a certain threshold, the number of repetitions is determined to be 2.
  • the terminal 120 determines the number of repetitions of the uplink control information of the terminal according to the information of the terminal, and helps the terminal to properly use the resource to transmit the uplink control information.
  • the terminal 120 repeats the uplink control information N times to obtain a first data segment. For this step, refer to S210, and details are not described herein again.
  • the terminal 120 determines an orthogonal cover code according to the number of repetitions N. For the step, refer to S220, and details are not described here.
  • S806 can be located before S804.
  • the terminal 120 multiplies the first data segment by the orthogonal cover code obtained in S806 to obtain a second data segment. For this step, refer to S230, and details are not described herein again.
  • the terminal 120 sends a second data segment.
  • the terminal 120 sends a second data segment.
  • network device 110 receives the second data segment.
  • step refer to S610, and details are not described here.
  • the terminal 120 sends indication information indicating the number of repetitions N. Accordingly, network device 110 receives the indication information.
  • the terminal 120 may send the indication information by using high layer signaling.
  • the terminal 120 may further send an index of the orthogonal cover codes used by the terminal 120 in the plurality of orthogonal cover codes corresponding to the number of repetitions N.
  • S812 may be located at any position after S802.
  • the network device 110 determines the number of repetitions N according to the indication information, and determines a solution orthogonal coverage code corresponding to the number of repetitions N according to the number of repetitions N.
  • the network device 110 determines the solution of the orthogonal coverage code according to the number of repetitions N, reference may be made to S620, and details are not described herein again.
  • the network device 110 multiplies the second data segment by the determined solution orthogonal cover code to obtain a first data segment. For this step, refer to S630, and details are not described here.
  • the network device 110 performs the N data processing on the first data segment to obtain uplink control information. For this step, refer to S640, and details are not described here.
  • the first data segment includes 12 QPSK symbols, after 4 repetitions of processing, 3 QPSK symbols can be obtained.
  • the terminal transmits longer uplink control information, or needs to add a terminal.
  • the frequency diversity gain of the uplink control information (that is, the number of repetitions of the uplink control information is large) can be implemented by adding frequency domain resources.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present application. It should be understood that the terminal 900 shown in FIG. 9 is only an example, and the terminal in the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG. 9, or not included in FIG. All modules.
  • the processing module 910 is configured to repeat the uplink control information to be transmitted N times to obtain a first data segment, where N is a positive integer.
  • the processing module 910 is further configured to determine an orthogonal cover code according to the number of repetitions N.
  • the processing module 910 is further configured to multiply the first data segment by the orthogonal cover code to obtain the second data segment.
  • the communication module 920 is configured to send the second data segment.
  • the terminal repeats the uplink control information to be transmitted N times, which helps to improve the frequency diversity gain of the uplink control information to be transmitted.
  • the terminal multiplies the uplink control information to be transmitted and the orthogonal cover code, so that the uplink control information to be transmitted can present a comb structure in the frequency domain, and the comb structure can be orthogonalized with the uplink control information of other terminals.
  • the cover code After the cover code, the comb structures in the frequency domain are staggered, so that multiple terminals multiplex the same time-frequency resources to transmit uplink control information, thereby improving resource utilization.
  • the repetition number of the uplink control information of the terminal and the orthogonal coverage code can be flexibly determined, thereby improving the transmission flexibility of the uplink control information.
  • the processing module 910 is specifically configured to determine the orthogonal cover code according to the repetition number N and the correspondence between the repetition number N and the orthogonal cover code.
  • the communication module 920 is further configured to receive indication information sent by the network device, where the indication information is used to indicate N.
  • the processing module 910 is further configured to determine N according to the indication information.
  • the processing module 910 is further configured to determine N according to the uplink channel state information.
  • the processing module 910 is further configured to determine that N, M are positive integers according to the number of constellation point symbols M of the uplink control information to be transmitted.
  • the processing module 910 is specifically configured to determine that the ratio of the number of subcarriers included in the first resource to the M is N.
  • the communication module 920 is further configured to send indication information to the network device, where the indication information is used to indicate N.
  • the communication module 920 is specifically configured to send the second data segment on the first resource, where the third data segment is further sent, and the third data segment is the uplink control information of the second terminal K is not equal to N, and K is a positive integer.
  • the terminal shown in FIG. 9 can perform various steps in the communication method shown in FIG. 2, and details are not described herein for brevity.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present application. It should be understood that the network device 1000 illustrated in FIG. 10 is only an example, and the network device in the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 10, or All modules in 10.
  • the communication module 1010 is configured to receive a second data segment sent by the first terminal, where the second data segment is obtained by processing, by the first terminal, the first data segment according to the orthogonal cover code, where the first data segment is an uplink of the first terminal.
  • the control information is obtained after repeating N times, and N is a positive integer.
  • the processing module 1020 is configured to determine a solution orthogonal offset code according to N.
  • the processing module 1020 is further configured to multiply the solution orthogonal cover code by the second data segment to obtain the first data segment.
  • the processing module 1020 is further configured to perform N deduplication processing on the first data segment to obtain uplink control information of the first terminal.
  • the terminal repeats the uplink control information to be transmitted N times, which helps to improve the frequency diversity gain of the uplink control information to be transmitted.
  • the first terminal multiplies the uplink control information to be transmitted and the orthogonal cover code, so that the uplink control information to be transmitted can present a comb structure in the frequency domain, and the comb structure can be multiplied with the uplink control information of other terminals.
  • the orthogonal cover code After the orthogonal cover code, the comb structures in the frequency domain are staggered, so that multiple terminals multiplex the same time-frequency resources to transmit uplink control information.
  • the processing module 1020 is specifically configured to determine a solution orthogonal cover code according to the correspondence between the N and the number of repetitions N and the solution orthogonal cover code.
  • the communication module 1010 is further configured to receive indication information sent by the first terminal, where the indication information is used to indicate N.
  • the processing module 1020 is further configured to determine, according to at least one of the uplink channel state information of the first terminal and the uplink channel signal to noise ratio, the communication module 1010 is further configured to send the indication information to the first terminal, where the indication information is used. Indicates N.
  • the communication module 1010 is specifically configured to receive, by using the first resource, the second data segment that is sent by the first terminal, where the communications module 1010 is further configured to receive, by using the first resource, the third data that is sent by the second terminal.
  • the processing module 1020 is further configured to perform orthogonal orthogonal cover code processing and K de-duplication processing on the third data segment to obtain uplink control information of the second terminal, where K is not equal to N, and K is a positive integer.
  • the network device shown in FIG. 10 can perform various steps in the communication method shown in FIG. 6. For brevity, details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a terminal according to another embodiment of the present application. It should be understood that the terminal 1100 shown in FIG. 11 is only an example, and the terminal in the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG. 11.
  • the processor 1110 can be used to implement the operations or steps that can be implemented by the processing module 910 in FIG. 9, and the transmitter 1120 can be used to implement the operations or steps that the communication module 920 in FIG. 9 can implement.
  • the terminal shown in FIG. 11 may further include a receiver for receiving information transmitted by other devices.
  • the receiver and transmitter can be integrated together, called a transceiver.
  • the terminal shown in FIG. 11 may also include a memory for storing program code executed by the processor.
  • a memory can be integrated in the processor 1110.
  • FIG. 12 is a schematic structural diagram of a network device according to another embodiment of the present application. It should be understood that the network device 1200 illustrated in FIG. 12 is merely an example, and the network device in the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG.
  • the processor 1220 can be used to implement the operations or steps that the processing module 1020 in FIG. 10 can implement.
  • the receiver 1210 can be used to implement the operations or steps that the communication module 1010 in FIG. 10 can implement.
  • the network device shown in FIG. 12 may further include a transmitter for transmitting information to other devices.
  • the receiver and transmitter can be integrated together, called a transceiver.
  • the network device shown in Figure 12 can also include a memory for storing program code executed by the processor.
  • a memory may be integrated in the processor 1220.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了通信方法、终端和网络设备。该通信方法包括:第一终端将待传输上行控制信息重复N次,得到第一数据段,N为正整数;第一终端根据N,确定正交覆盖码;第一终端将第一数据段与正交覆盖码相乘,得到第二数据段;第一终端发送第二数据段。本申请提供的通信方法、终端和网络设备,有助于提高上行控制信息的频率分集增益和传输灵活性,以及有助于提高资源利用率。

Description

通信方法、终端和网络设备
本申请要求于2017年05月05日提交中国专利局、申请号为201710313853.4、申请名称为“通信方法、终端和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信方法、终端和网络设备。
背景技术
新无线(new radio,NR)通信系统中,不同长度的上行控制信息(uplink control indicator,UCI)可以使用不同格式的物理上行控制信道(physical uplink control channel,PUCCH)来传输。
目前,NR通信系统中已经确定,长度为1至2比特的上行控制信息,可以沿用长期演进(long term evolution,LTE)系统中PUCCH的format 1a/1b格式来传输;长度大于X个比特的上行控制信息,可以沿用LTE系统中PUCCH的format 4格式来传输。其中,X的取值待定。
对于长度位于2至X比特之间的上行控制信息,虽然NR通信系统中提出了可以采用统一的传输方法,但是,如何传输,确还没有给出定论。
发明内容
本申请提供一种通信方法、终端和网络设备,能够传输上行控制信息,并且有助于提高上行控制信息的频率增益和传输灵活性,以及有助于资源的利用率。
第一方面,提供了一种通信方法。该通信方法包括:第一终端将待传输上行控制信息重复N次,得到第一数据段,N为正整数;第一终端根据N,确定正交覆盖码;第一终端将第一数据段与正交覆盖码相乘,得到第二数据段;第一终端发送第二数据段。
第一终端将待传输上行控制信息重复N次,有助于提高待传输上行控制信息的频率分集增益。
此外,第一终端将待传输上行控制信息与正交覆盖码相乘,使得待传输上行控制信息在频域上可以呈现梳状结构,且该梳状结构可以与其他终端的上行控制信息乘上正交覆盖码后在频域上的梳状结构错开排列,从而使得多个终端复用相同的时频资源传输上行控制信息,从而可以提高资源的利用率。
并且,终端的上行控制信息的重复次数和正交覆盖码可以灵活确定,从而可以提高上行控制信息的传输灵活性。
结合第一方面,在第一种可能的实现方式中,第一终端根据重复次数N,确定正交覆盖码,包括:第一终端根据重复次数N以及重复次数N和正交覆盖码的对应关系,确定 正交覆盖码。
也即是说,不同的重复次数对应不同的正交覆盖码,可以使得不同的终端复用相同资源发送上行控制信息时,各自的上行控制信息的重复次数可以不同,从而可以提高上行控制信息的传输灵活性。
结合第一方面或第一种可能的实现方式,在第二种可能的实现方式中,该通信方法还包括:第一终端接收网络设备发送的指示信息,指示信息用于指示N;第一终端根据指示信息确定N。
该实现方式中,由网络设备确定终端的上行控制信息的重复次数。由于网络设备可以获知多个终端的通信信息,因此网络设备可以为各个终端确定合理的重复次数,从而有助于提高资源的利用率。
结合第一方面或第一种可能的实现方式,在第三种可能的实现方式中,该通信方法还包括:第一终端根据上行信号质量,确定N。
结合第一方面或第一种可能的实现方式,在第四种可能的实现方式中,该通信方法还包括:第一终端根据待传输上行控制信息的星座点符号数M,确定N,M为正整数。
结合第四种可能的实现方式,在第五种可能的实现方式中,第一终端根据待传输上行控制信息的星座点符号数M,确定N,包括:第一终端将第一资源包括的子载波数量与M的比值确定为N。
结合第三种至第四种中任意一种可能的实现方式,在第六种可能的实现方式中,该通信方法还包括:第一终端向网络设备发送指示信息,指示信息用于指示N。
由终端确定重复次数的情况下,终端向网络设备发送重复次数,可以使得网络设备可以根据该重复次数接收终端的上行控制信息,从而提高网络设备的效率。
结合第一方面或第一种至第四种中任意一种可能的实现方式,在第七种可能的实现方式中,第一终端发送所述第二数据段,包括:第一终端在第一资源上发送第二数据段,第一资源上还发送第三数据段,第三数据段是第二终端的上行控制信息进行K次重复得到的,K不等于N,K为正整数。
不同的终端复用相同的资源发送上行控制信息时,不同终端的重复次数可以不同,这样可以提高上行控制信息的传输灵活性,也可以提高资源的利用率。
第二方面,提供了一种通信方法。该通信方法包括:网络设备接收第一终端发送的第二数据段,第二数据段为第一终端根据正交覆盖码对第一数据段进行处理得到的,第一数据段为第一终端的上行控制信息重复N次后得到的,N为正整数;网络设备根据N确定解正交覆盖码;网络设备将解正交覆盖码与第二数据段相乘,得到第一数据段;网络设备对第一数据段进行N次去重复处理,得到第一终端的上行控制信息。
第一终端将待传输上行控制信息重复N次,有助于提高待传输上行控制信息的频率分集增益。此外,第一终端将待传输上行控制信息与正交覆盖码相乘,使得待传输上行控制信息在频域上可以呈现梳状结构,且该梳状结构可以与其他终端的上行控制信息乘上正交覆盖码后在频域上的梳状结构错开排列,从而使得多个终端复用相同的时频资源传输上行控制信息。
结合第二方面,在第一种可能的实现方式中,网络设备根据N确定解正交覆盖码,包括:网络设备根据N以及重复次数N和解正交覆盖码的对应关系,确定解正交覆盖码。
也即是说,不同的重复次数对应不同的正交覆盖码,可以使得不同的终端复用相同资源发送上行控制信息时,各自的上行控制信息的重复次数可以不同,从而可以提高上行控制信息的传输灵活性。
结合第二方面或第一种可能的实现方式,在第二种可能的实现方式中,该通信方法还包括:网络设备接收第一终端发送的指示信息,指示信息用于指示N。
结合第二方面或第一种可能的实现方式,在第三种可能的实现方式中,该通信方法还包括:网络设备根据第一终端的上行信道状态信息和上行信道信噪比中至少一个确定N;网络设备向第一终端发送指示信息,指示信息用于指示N。
该实现方式中,由网络设备确定终端的上行控制信息的重复次数。由于网络设备可以获知多个终端的通信信息,因此网络设备可以为各个终端确定合理的重复次数,从而有助于提高资源的利用率。
结合第二方面或第一种至第三种中任意一种可能的实现方式,在第四种可能的实现方式中,所述网络设备接收第一终端发送的第二数据段,包括:网络设备在第一资源上接收第一终端发送的第二数据段;其中,该通信方法还包括:网络设备在第一资源上接收第二终端发送的第三数据段;网络设备对第三数据段进行解正交覆盖码和K次去重复处理,得到第二终端的上行控制信息,K不等于N,K为正整数。
不同的终端复用相同的资源发送上行控制信息时,不同终端的重复次数可以不同,这样可以提高上行控制信息的传输灵活性,也可以提高资源的利用率。
第三方面,本申请提供了一种终端。该终端包括用于执行第一方面或第一方面中任意一种可能的实现方式中的通信方法的模块。
第四方面,本申请提供了一种网络设备。该网络设备包括用于执行第一方面或第一方面中任意一种可能的实现方式中的通信方法的模块。
第五方面,本申请提供了一种终端。该终端包括处理器和发送器。该处理器用于执行代码。当处理器执行代码时,处理器和发送器实现第一方面或第一方面中任意一种可能的实现方式中的通信方法。
可选地,该终端还可以包括存储器,用于存储处理器执行的代码。该终端还可以包括接收器,用于接收其他设备发送的信息。
第六方面,本申请提供了一种网络设备。该网络设备包括处理器和接收器。该处理器用于执行代码。当处理器执行代码时,处理器和接收器实现第一方面或第一方面中任意一种可能的实现方式中的通信方法。
可选地,该网络设备还可以包括存储器,用于存储处理器执行的代码。该网络设备还可以包括发送器,用于向其他设备发送信息。
第七方面,本申请提供了一种计算机可读存储介质。该计算机可读存储介质存储用于终端执行的程序代码,所述程序代码包括用于执行第一方面中或第一方面中任意一种可能的实现方式中的通信方法的指令。
第八方面,本申请提供了一种计算机可读存储介质。该计算机可读存储介质存储用于网络设备执行的程序代码,所述程序代码包括用于执行第一方面中或第一方面中任意一种可能的实现方式中的通信方法的指令。
第九方面,本申请提供了一种包含指令的计算机程序产品。当该计算机程序产品在终 端上运行时,使得终端执行第一方面或第一方面中任意一种可能的实现方式中的通信方法。
第十方面,本申请提供了一种包含指令的计算机程序产品。当该计算机程序产品在网络设备上运行时,使得网络设备执行第一方面或第一方面中任意一种可能的实现方式中的通信方法。
附图说明
图1是可以应用本申请实施例的通信方法的通信系统的示例性结构图。
图2是本申请一个实施例的通信方法的示例性流程图。
图3是本申请一个实施例的上行控制信息的频域梳状结构示例图。
图4是本申请另一个实施例的通信方法的示例性流程图。
图5是本申请另一个实施例的上行控制信息的频域梳状结构示例图。
图6是本申请另一个实施例的通信方法的示例性流程图。
图7是本申请另一个实施例的通信方法的示例性流程图。
图8是本申请另一个实施例的通信方法的示例性流程图。
图9是本申请一个实施例的终端的示例性结构图。
图10是本申请一个实施例的网络设备的示例性结构图。
图11是本申请另一个实施例的终端的示例性结构图。
图12是本申请另一个实施例的网络设备的示例性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是可以应用本申请实施例的通信方法的通信系统的示例性结构图。应理解,本申请实施例并不限于图1所示的系统架构中,此外,图1中的装置可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。图1所示的通信系统的具体实例可以是LTE或NR,其中,NR也可以称为5G。
图1中的网络设备110可以是基站。应理解,本申请实施例对基站的具体类型不作限定。采用不同无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。为方便描述,本申请所有实施例中,上述为终端提供无线通信功能的装置统称为基站,例如未来网络中的基站设备、小基站设备(Pico)等。
图1中的终端120可以是用户设备(User Equipment,UE)。UE可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信。终端又可称为接入终端、终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、用户代理或用户装置。终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备或物联网、车辆网中的终端设备以及未来网络中的任意形态的终端设备等。
在图1所示的通信系统下,网络设备110和终端120间相互通信。如,终端120可以 在PUCCH向网络设备110发送UCI,相应地,网络设备110接收终端120发送的UCI,以实现终端120与网络设备110之间的其他上下行传输。
具体地,终端120向网络设备发送的UCI可以包括混合自动重传请求(hybrid automatic repeat request,HARQ)确认(acknowledgement,ACK)信息、信道状态信息(channel state information,CSI)和/或调度请求信息等。
终端120上可以配置有重复次数与正交覆盖码的对应关系。其中,每个重复次数可以对应多个正交覆盖码。终端120上也可以配置有重复次数和正交覆盖码的共轭的对应关系。正交覆盖码的共轭可以称为解正交覆盖码。
如重复次数M可以对应M个正交覆盖码,这M个正交覆盖码可以为:[1,1,1,…1],
Figure PCTCN2018085651-appb-000001
具体地,重复次数4对应的4个正交覆盖码包括:[1,1,1,1],[1,j,-1,-j],[1,-1,1,-1],[1,-j,-1,-j]。重复次数2对应的2个正交覆盖码包括:[1,1][1,j]。
网络设备110上可以配置有重复次数与正交覆盖码的对应关系,或者重复次数与正交覆盖码的共轭的对应关系。可以将正交覆盖码的共轭称为解正交覆盖码。同理,每个重复次数可以对应多个正交覆盖码或多个解正交覆盖码。
通常情况下,若网络设备110上配置的是重复次数与正交覆盖码的对应关系,则该对应关系可以与终端120上配置的重复次数与正交覆盖码的对应关系相同;若网络设备110上配置的是重复次数与解正交覆盖码的对应关系,则该解正交覆盖码可以为终端上的正交覆盖码的共轭。
图2是由终端执行的通信方法的示意性流程图。应理解,图2示出了通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图2中的各个操作的变形。此外,图2中的各个步骤可以按照与图2呈现的不同的顺序来执行,并且有可能并非要执行图2中的全部操作。
S210,终端将待传输上行控制信息重复N次,得到第一数据段。其中,N为正整数。
具体地,终端将待传输上行控制信息重复N次,可以包括:终端将待传输上行控制信息调制所得的星座点符号重复N次。如,待传输上行控制信息调制后的星座点符号为3个,则这3个星座点符号重复4次后得到12个星座点符号,这12个星座点符号即为第一数据段。
其中,待传输上行控制信息的星座点符号可以是待传输上行控制信息经过正交相移键控(quadrature phase shift keyin,QPSK)调制,得到的QPSK符号;或者,也可以是待传输上行控制信息经过移相键控(binary phase shift key,BPSK)调制,得到的BPSK符号。
其中,若承载终端120的上行控制信息的上行控制信道所使用的子载波数是确定的,则终端可以根据子载波数和重复次数确定终端120的上行控制信息的编码比特数。
例如,终端120的上行控制信息的上行控制信道所使用的子载波数为12,上行控制信息的重复次数为2,终端120的调制方式为QPSK,则说明终端120的上行控制信息重复前的QPSK符号为6个。又因为每两个编码比特可以调制为1个QPSK符号,则说明上行控制信息的编码比特应为12个。
S220,终端根据重复次数N,确定正交覆盖码。
具体地,终端可以根据N以及终端上配置的重复次数与正交覆盖码的对应关系,确定与N对应的正交覆盖码。
如终端上配置了重复次数4对应的正交覆盖码包括[1,j,-1,-j],则终端可以根据N=4和该对应关系,得到正交覆盖码[1,j,-1,-j]。
可选的,若终端120根据重复次数N确定的正交覆盖码为多个,则终端120还可以根据网络设备110发送的正交覆盖码的索引,从重复次数N对应的多个正交覆盖码中确定该索引对应的正交覆盖码。
应注意,本申请实施例并不限制S210和S220的执行顺序,如S220也可以位于S210之前。
S230,终端将第一数据段与正交覆盖码相乘,得到第二数据段。
也就是说,终端将S210中得到的第一数据段与S220中得到的正交覆盖码相乘,得到第二数据端。终端将重复得到的数据段与正交覆盖码相乘,可以使得上行控制信息的频域数据在载波上交错排列,从而有助于多个终端复用相同的资源传输各自的上行控制信息。
例如,可以将待传输上行控制信息的3个QSPK符号重复第一次得到的3个QSPK符号乘上正交覆盖码[1,j,-1,-j]中的1,将这3个QSPK符号重复第二次得到的3个QSPK符号乘上正交覆盖码[1,j,-1,-j]中的j,将这3个QSPK符号重复第三次得到的3个QSPK乘上正交覆盖码[1,j,-1,-j]中的-1,将这3个QSPK符号重复第四次得到的3个QSPK乘上正交覆盖码[1,j,-1,-j]中的-j。最终,12个QSPK符号乘上正交覆盖码[1,j,-1,-j]得到的结果即为第二数据段。
终端将重复得到的数据段与正交覆盖码相乘,可以使得上行控制信息的频域数据在载波上交错排列,从而有助于多个终端复用相同的资源传输各自的上行控制信息。
例如,有4个终端:终端1、终端2、终端3和终端4,每个终端的待传输上行控制信息分别包括3个QPSK符号;每个终端将各自的3个QPSK符号重复4次,分别得到12个QPSK符号;四个终端的正交覆盖码与[1,1,1,1],[1,j,-1,-j],[1,-1,1,-1],[1,-j,-1,-j]一一对应,每个终端分别将自己的QPSK符号与对应的正交覆盖码相乘,并进行DFT处理,可以得到如图3所示的频域梳状结构图。从图3可知,这四个终端的频域梳状结构交错排列,互不冲突。
S240,终端发送第二数据段。
此处所说的终端发送第二数据段,如图4所示,具体可以包括:对第二数据段进行离散傅里叶变换(discrete fourier transform,DFT);将DFT得到的数据映射到上行控制信道对应的资源上,具体地,可以是将DFT得到的数据映射到上行控制信道对应的子载波上;将映射得到的数据进行快速傅里叶逆变换(inverse fast fourier transform,IFFT),得到时域数据;发送时域数据。
图2所示的通信方法中,可选地,重复次数N可以是终端自己确定的,也可以是终端从网络设备获取的。
终端自己确定重复次数N时,具体地,终端可以根据上行信道状态信息确定重复次数N,或者,终端可以根据待传输上行控制信息的星座点符号数M确定重复次数N。
终端根据上行信道状态信息确定重复次数N时,上行信道状态信息指示的信号质量越好,重复次数可以越大。
例如,在终端的上行信号质量大于某个阈值时,确定重复次数为8;小于某个阈值时,确定重复次数为2。
终端根据上行状态信息确定待传输上行控制信息的重复次数,有助于终端合理利用资源传输上行控制信息。
终端可以利用下行参考信号进行信道测量,并利用上下行信道互惠性,获取上行信道的状态信息。
应理解,终端确定重复次数时,还可以参考其他终端的信息,本申请对此不作限制。
终端根据待传输上行控制信息的星座点符号数M确定重复次数N,具体可以包括:终端将第一资源包括的子载波数量与M的比值确定为N。第一资源为承载待传输上行控制信息的上行控制信道所使用的资源。
例如,第一资源包括的子载波数量为12,即第一资源包括12个子载波,且待传输上行控制信息的星座点符号数为3个时,可以将12除以3得到的结果4确定为待传输上行控制信息的3个星座点符号的重复次数。
终端自己确定重复次数N时,终端可以向网络设备发送指示信息,该指示信息指示重复次数N,以便于网络设备可以根据该重复次数N接收终端的上行控制信息。
终端从网络设备获取重复次数N,具体可以包括;终端接收网络设备发送的指示信息,该指示信息指示重复次数N;终端根据该指示信息确定重复次数N。
图2所示的通信方法中,不论是终端自己确定的重复次数N,还是网络设备为终端确定的重复次数N,可选地,该终端的上行控制信息的重复次数可以与其他终端的上行控制信息的重复次数不同。
例如,有3个终端复用相同的资源发送各自的上行控制信息。其中,第一个终端的待发送上行控制信息的重复次数可以为2,第二个终端和第三个终端的待发送上行控制信息的重复次数可以为4。此时,第一个终端的正交覆盖码可以为[1,1],第二个终端的正交覆盖码可以为[1,j,-1,-j],第三个终端的正交覆盖码可以为[1,-j,-1,j]。
若第一个终端的待发送上行控制信息包括6个QPSK符号,第二个终端和第三个终端的待发送上行控制信息分别包括3个QPSK符号,则这三个终端将各自待发送上行控制信息的QPSK符号重复相应次数后,再乘上相应正交覆盖码后的频域梳状结构图如图5所示。
由图5可知,这三个终端的上行控制信息的重复次数虽然不同,但各自的上行控制信息的梳状结构交错排列,并不会产生冲突。
图6是由网络设备执行的通信方法的示意性流程图。应理解,图6示出了通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图6中的各个操作的变形。此外,图6中的各个步骤可以按照与图6呈现的不同的顺序来执行,并且有可能并非要执行图6中的全部操作。
S610,网络设备接收终端发送的第二数据段,第二数据段为第一终端根据正交覆盖码对第一数据段进行处理得到的,第一数据段为第一终端的上行控制信息重复N次后得到的,N为正整数。
换句话说,网络设备接收的第二数据段可以为S240中终端发送的第二数据段。
网络设备接收第二数据段具体可以包括:接收终端发送的时域数据;对时域数据进行快速傅里叶变换(fast fourier transformation,FFT)变换,取出上行控制资源对应的子载波 上的数据,进行信道均衡;对均衡后的数据进行DFT处理,得到第二数据段。
若终端的重复次数N对应多个正交覆盖码,则网络设备110还可以从这多个正交覆盖码中确定终端120对上行控制信息重复N次后应使用的正交覆盖码。通常情况下,网络设备110可以向终端120发送指示信息,指示重复次数N对应的多个正交覆盖码中的某个正交覆盖码在这多个正交覆盖码中的索引。
如果是多个终端复用相同的资源发送各自的上行控制信息,且每个终端的上行控制信息的重复次数相同,则网络设备110为不同的终端确定的正交覆盖码应尽量不同。这样,可以使得这多个终端的上行控制信息在相同的资源上交错排列,不会相互影响,从而可以提高通信可靠性。
S620,网络设备根据N确定解正交覆盖码。
具体地,网络设备可以根据N以及网络设备上配置的重复次数和正交覆盖码的对应关系,确定N对应的正交覆盖码,然后将该正交覆盖码的共轭确定为解正交覆盖码。
可选的,如果重复次数N对应多个正交覆盖码,网络设备可以根据N以及重复次数和正交覆盖码的对应关系,找到重复次数N对应的多个正交覆盖码;然后根据终端使用的正交覆盖码的索引,从这多个正交覆盖码中确定一个正交覆盖码;最后将该正交覆盖码的共轭确定为解正交覆盖码,
或者,网络设备可以根据N以及网络设备上配置的重复次数和解正交覆盖码的对应关系,确定N对应的解正交覆盖码。
可选的,如果重复次数N对应多个解正交覆盖码,则网络设备从重复次数与解正交覆盖码的对应关系中,找到重复次数N对应的多个解正交覆盖码后,可以根据终端120使用的正交覆盖码的索引,从这多个解正交覆盖码中确定一个解正交覆盖码。
应注意,本申请实施例并不限制S610与S620的执行顺序。
S630,网络设备将解正交覆盖码与第二数据段相乘,得到第一数据段。
具体地,网络设备将S610中得到的第二数据端与S620中得到的解正交覆盖码相乘,得到第一数据段。如可以得到包含12个星座点符号的第一数据段。
S640,网络设备对第一数据段进行N次去重复处理,得到第一终端的上行控制信息。
如N为4,则对包含12个星座点符号的第一数据段进行4次去重,则可以得到3个星座点符号。这3个星座点符号即为上行控制信息的星座点符号。
此后,网络设备可以对去重后的星座点符号进行解调,并对解调得到的数据端进行解码,即可以得到上行控制信息。
图6所示的通信方法中,重复次数N可以是网络设备自己确定的,也可以是从终端获取的。
网络设备自己确定重复次数N时,可以根据终端的上行信道状态信息或上行信道信噪比或这二者确定重复次数。
如,在终端的CSI大于某个阈值时,确定重复次数为8;在终端的信噪比小于某个阈值时,确定重复次数为2。
网络设备根据终端的信息确定终端的上行控制信息的重复次数,有助于终端合理利用资源传输上行控制信息。
应理解,网络设备确定重复次数N时,还可以参考其他终端的信息,如其他终端的 CSI或信噪比或其他终端的重复次数。这样,可以有助于各个终端合理地复用相同的资源传输各自的上行控制信息。
网络设备自己确定重复次数N时,网络设备还可以向终端发送指示信息,指示该重复次数,以便于终端可以根据该重复次数发送上行控制信息。可选地,网络设备可通过系统信息或高层信令等向终端发送该指示信息,或通过下行控制信息(downlink control information,DCI)发送该指示信息。
若重复次数N对应多个正交覆盖码,则网络设备还可以向终端发送该终端应使用的正交覆盖码在重复次数N对应的多个正交覆盖码中的索引,以便于终端可以根据该索引确定正交覆盖码。
网络设备从终端获取重复次数N时,可以包括:网络设备接收终端发送的指示信息,该指示信息指示重复次数N。
图6所示的通信方法中,可选地,网络设备可以为在相同资源上发送上行控制信息的不同的终端确定不同的重复次数,以充分利用资源,提高资源的利用率。
例如,网络设备在某个资源上接收多个终端发送的上行控制信息,其中一个终端的上行控制信息的重复次数为N,一个终端的上行控制信息的重复次数为K,K与N不相等。
下面结合图1中的终端120和网络设备110,详细介绍本申请的通信方法的部分实施例。
终端120与网络设备110之间进行上行控制信息通信的一个实施例的示意性流程图如图7所示。应理解,图7示出了通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图7中的各个操作的变形。此外,图7中的各个步骤可以按照与图7呈现的不同的顺序来执行,并且有可能并非要执行图7中的全部操作。
S702,网络设备110确定终端120发送上行控制信息时,上行控制信息的应重复的次数N。
网络设备110确定终端120的上行控制信息的重复次数N的实施方式,可以参考图6所示的通信方法中,网络设备自己确定终端的上行控制信息的重复次数N的实施方式,此处不再赘述。
若终端的重复次数N对应多个正交覆盖码,则网络设备110还可以从这多个正交覆盖码中确定终端120对上行控制信息重复N次后应使用的正交覆盖码。通常情况下,网络设备110可以向终端120发送指示信息,指示重复次数N对应的多个正交覆盖码中的某个正交覆盖码在这多个正交覆盖码中的索引。
S704,网络设备110向终端120发送指示信息,指示重复次数N。相应地,终端120接收该指示信息。
可选地,网络设备可通过系统信息或高层信令等向终端发送该指示信息,或通过DCI发送该指示信息。
S706,终端120接收指示重复次数N的指示信息后,可以将上行控制信息重复N次,得到第一数据段。
终端120对上行控制信息进行N次重复以得到第一数据段的具体实施方式,可以参考图2所示的通信方法中的S210,此处不再赘述。
例如,终端120的上行控制信息的编码比特为6比特,则终端120对该编码比特进行 QPSK调制后,可以得到3个QPSK符号。
若重复次数N为4,则3个QPSK符号重复4次后得到12个QPSK符号。
S708,终端120根据重复次数N,确定正交覆盖码。该步骤可以参考图2所示的通信方法中的S220,此处不再赘述。
应注意,本申请实施例并不限制S206和S208的顺序,如S208可以在S206之前执行。
S710,终端120将S260中得到的第一数据段与S208中得到的正交覆盖码相乘,得到第二数据段。该步骤可以参考图2所示的通信方法中的S230,此处不再赘述。
S712,终端120发送第二数据段。相应地,网络设备110接收第二数据段。
终端120发送第二数据段的具体实施方式可以参考图2所示的通信方法中的S240,网络设备110接收第二数据段的具体实施方式可以参考图6所示的通信方法中的S610,此处不再赘述。
S714,网络设备110根据终端120的上行控制信息的重复次数N,确定解正交覆盖码。
该步骤可以参考图6所示的通信方法中的S620,此处不再赘述。
S716,将第二数据段与解正交覆盖码相乘,得到第一数据段。该步骤可以参考图6所示的通信方法中的S630,此处不再赘述。
S718,网络设备110对第一数据段进行去N次重复处理,得到上行控制信息。该步骤可以参考图6所示的通信方法中的S640,此处不再赘述。
终端120与网络设备110之间进行上行控制信息通信的另一个实施例的示意性流程图如图8所示。应理解,图8示出了通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图8中的各个操作的变形。此外,图8中的各个步骤可以按照与图8呈现的不同的顺序来执行,并且有可能并非要执行图8中的全部操作。
S802,终端120确定上行控制信息的重复次数N。该步骤可以参考图2所示的通信方法中终端自己确定重复次数的具体实施方式,此处不再赘述。
例如,在终端120的上行信号质量大于某个阈值时,确定重复次数为8;小于某个阈值时,确定重复次数为2。
终端120根据终端的信息确定终端的上行控制信息的重复次数,有助于终端合理利用资源传输上行控制信息。
S804,终端120对上行控制信息进行N次重复,得到第一数据段。该步骤可以参考S210,此处不再赘述。
S806,终端120根据重复次数N,确定正交覆盖码。该步骤可以参考S220,此处不再赘述。
应注意,本申请实施例不限制S804与S806的顺序。如S806可以位于S804之前。
S808,终端120将第一数据段与S806中得到的正交覆盖码相乘,得到第二数据段。该步骤可以参考S230,此处不再赘述。
S810,终端120发送第二数据段。该步骤可以参考S240,此处不再赘述。
相应地,网络设备110接收第二数据段。该步骤可以参考S610,此处不再赘述。
S812,终端120发送指示重复次数N的指示信息。相应地,网络设备110接收该指示信息。其中,终端120可以通过高层信令发送该指示信息。
可选地,终端120还可以发送终端120使用的正交覆盖码在重复次数N对应的多个正 交覆盖码中的索引。
应注意,本申请实施例不限制S812的顺序,如S812可以位于S802之后任意一个位置。
S814,网络设备110根据指示信息确定重复次数N,并根据重复次数N确定重复次数N对应的解正交覆盖码。
网络设备110根据重复次数N确定解正交覆盖码的具体实施方式可以参考S620,此处不再赘述。
S816,网络设备110将第二数据段与确定的解正交覆盖码相乘,得到第一数据段。该步骤可以参考S630,此处不再赘述。
S818,网络设备110对第一数据段进行去N次重复处理,得到上行控制信息。该步骤可以参考S640,此处不再赘述。
如第一数据段包括12个QPSK符号,则去4次重复处理后,可以得到3个QPSK符号。
在图2或图6所示的通信方法中,可选地,如果有较多的终端复用相同的资源传输各自的上行控制信息,或者终端传输长度较长的上行控制信息,或者需要增加终端的上行控制信息的频率分集增益(即上行控制信息的重复次数较多),可以通过增加频域资源来实现。
图9是本申请一个实施例的终端的示意性结构图。应理解,图9示出的终端900仅是示例,本申请实施例的终端还可包括其他模块或单元,或者包括与图9中的各个模块的功能相似的模块,或者并非要包括图9中所有模块。
处理模块910,用于将待传输上行控制信息重复N次,得到第一数据段,N为正整数。
处理模块910还用于根据重复次数N,确定正交覆盖码。
处理模块910还用于将第一数据段与正交覆盖码相乘,得到第二数据段。
通信模块920,用于发送第二数据段。
终端将待传输上行控制信息重复N次,有助于提高待传输上行控制信息的频率分集增益。
此外,终端将待传输上行控制信息与正交覆盖码相乘,使得待传输上行控制信息在频域上可以呈现梳状结构,且该梳状结构可以与其他终端的上行控制信息乘上正交覆盖码后在频域上的梳状结构错开排列,从而使得多个终端复用相同的时频资源传输上行控制信息,从而可以提高资源的利用率。
并且,终端的上行控制信息的重复次数和正交覆盖码可以灵活确定,从而可以提高上行控制信息的传输灵活性。
可选地,处理模块910具体可以用于根据重复次数N以及重复次数N和正交覆盖码的对应关系,确定正交覆盖码。
可选地,通信模块920还可以用于接收网络设备发送的指示信息,指示信息用于指示N。其中,处理模块910还用于根据指示信息确定N。
可选地,处理模块910还可以用于根据上行信道状态信息,确定N。
可选地,处理模块910还用于根据待传输上行控制信息的星座点符号数M,确定N,M为正整数。
可选地,处理模块910具体可以用于将第一资源包括的子载波数量与M的比值确定为N。
可选地,通信模块920还可以用于向网络设备发送指示信息,指示信息用于指示N。
可选地,通信模块920具体可以用于在第一资源上发送第二数据段,第一资源上还发送第三数据段,第三数据段是第二终端的上行控制信息进行K次重复得到的,K不等于N,K为正整数。
图9所示的终端可以执行图2所示的通信方法中各个步骤,为了简洁,此处不再赘述。
图10是本申请一个实施例的网络设备的示意性结构图。应理解,图10示出的网络设备1000仅是示例,本申请实施例的网络设备还可包括其他模块或单元,或者包括与图10中的各个模块的功能相似的模块,或者并非要包括图10中所有模块。
通信模块1010,用于接收第一终端发送的第二数据段,第二数据段为第一终端根据正交覆盖码对第一数据段进行处理得到的,第一数据段为第一终端的上行控制信息重复N次后得到的,N为正整数。
处理模块1020,用于根据N确定解正交覆盖码。
处理模块1020还用于将解正交覆盖码与第二数据段相乘,得到第一数据段。
处理模块1020还用于对第一数据段进行N次去重复处理,得到第一终端的上行控制信息。
终端将待传输上行控制信息重复N次,有助于提高待传输上行控制信息的频率分集增益。此外,第一终端将待传输上行控制信息与正交覆盖码相乘,使得待传输上行控制信息在频域上可以呈现梳状结构,且该梳状结构可以与其他终端的上行控制信息乘上正交覆盖码后在频域上的梳状结构错开排列,从而使得多个终端复用相同的时频资源传输上行控制信息。
可选地,处理模块1020具体可以用于根据N以及重复次数N和解正交覆盖码的对应关系,确定解正交覆盖码。
可选地,通信模块1010还可以用于接收第一终端发送的指示信息,指示信息用于指示N。
可选地,处理模块1020还可以用于根据第一终端的上行信道状态信息和上行信道信噪比中至少一个确定N;通信模块1010还可以用于向第一终端发送指示信息,指示信息用于指示N。
可选地,通信模块1010具体可以用于在第一资源上接收第一终端发送的第二数据段;其中,通信模块1010还可以用于在第一资源上接收第二终端发送的第三数据段;处理模块1020还可以用于对第三数据段进行解正交覆盖码处理和K次去重复处理,得到第二终端的上行控制信息,K不等于N,K为正整数。
图10所示的网络设备可以执行图6所示的通信方法中各个步骤,为了简洁,此处不再赘述。
图11是本申请另一个实施例的终端的示意性结构图。应理解,图11示出的终端1100仅是示例,本申请实施例的终端还可包括其他模块或单元,或者包括与图11中的各个模块的功能相似的模块。
其中,处理器1110可以用于实现图9中的处理模块910能够实现的操作或步骤,发 送器1120可以用于实现图9中的通信模块920能够实现的操作或步骤。
图11所示的终端还可以包括接收器,用于接收其他设备发送的信息。接收器和发送器可以集成在一起,称为收发器。
图11所示的终端也可以包括存储器,用于存储处理器执行的程序代码。其中,处理器1110中可以集成有存储器。
图12是本申请另一个实施例的网络设备的示意性结构图。应理解,图12示出的网络设备1200仅是示例,本申请实施例的网络设备还可包括其他模块或单元,或者包括与图12中的各个模块的功能相似的模块。
其中,处理器1220可以用于实现图10中的处理模块1020能够实现的操作或步骤,接收器1210可以用于实现图10中的通信模块1010能够实现的操作或步骤。
图12所示的网络设备还可以包括发送器,用于向其他设备发送信息。接收器和发送器可以集成在一起,称为收发器。
图12所示的网络设备也可以包括存储器,用于存储处理器执行的程序代码。其中,处理器1220中可以集成有存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、 数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种通信方法,其特征在于,包括:
    第一终端将待传输上行控制信息重复N次,得到第一数据段,N为正整数;
    所述第一终端根据所述重复次数N,确定正交覆盖码;
    所述第一终端将所述第一数据段与所述正交覆盖码相乘,得到第二数据段;
    所述第一终端发送所述第二数据段。
  2. 根据权利要求1所述的通信方法,其特征在于,所述第一终端根据所述重复次数N,确定正交覆盖码,包括:
    所述第一终端根据所述重复次数N以及所述重复次数N和所述正交覆盖码的对应关系,确定所述正交覆盖码。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述通信方法还包括:
    所述第一终端接收网络设备发送的指示信息,所述指示信息用于指示N;
    所述第一终端根据所述指示信息确定N。
  4. 根据权利要求1或2所述的通信方法,其特征在于,所述通信方法还包括:
    所述第一终端根据上行信道状态信息,确定N。
  5. 根据权利要求1或2所述的通信方法,其特征在于,所述通信方法还包括:
    所述第一终端根据所述待传输上行控制信息的星座点符号数M,确定N,M为正整数。
  6. 根据权利要求5所述的通信方法,其特征在于,所述第一终端根据所述待传输上行控制信息的星座点符号数M,确定N,包括:
    所述第一终端将第一资源包括的子载波数量与M的比值确定为N。
  7. 根据权利要求4至6中任一项所述的通信方法,其特征在于,所述通信方法还包括:
    所述第一终端向网络设备发送指示信息,所述指示信息用于指示N。
  8. 根据权利要求1至7中任一项所述的通信方法,其特征在于,所述第一终端发送所述第二数据段,包括:
    所述第一终端在第一资源上发送所述第二数据段,所述第一资源上还发送第三数据段,所述第三数据段是第二终端的上行控制信息进行K次重复得到的,K不等于N,K为正整数。
  9. 一种通信方法,其特征在于,包括:
    网络设备接收第一终端发送的第二数据段,所述第二数据段为所述第一终端根据正交覆盖码对第一数据段进行处理得到的,所述第一数据段为所述第一终端的上行控制信息重复N次后得到的,N为正整数;
    所述网络设备根据N确定解正交覆盖码;
    所述网络设备将所述解正交覆盖码与所述第二数据段相乘,得到所述第一数据段;
    所述网络设备对所述第一数据段进行N次去重复处理,得到所述第一终端的上行控制信息。
  10. 根据权利要求9所述的通信方法,其特征在于,所述网络设备根据N确定解正交覆盖码,包括:
    所述网络设备根据N以及所述重复次数N和所述解正交覆盖码的对应关系,确定所述解正交覆盖码。
  11. 根据权利要求9或10所述的通信方法,其特征在于,所述通信方法还包括:
    所述网络设备接收所述第一终端发送的指示信息,所述指示信息用于指示N。
  12. 根据权利要求9或10所述的通信方法,其特征在于,所述通信方法还包括:
    所述网络设备根据第一终端的上行信道状态信息和上行信道信噪比中至少一个确定N;
    所述网络设备向所述第一终端发送指示信息,所述指示信息用于指示N。
  13. 根据权利要求9至12中任一项所述的通信方法,其特征在于,所述网络设备接收第一终端发送的第二数据段,包括:
    所述网络设备在第一资源上接收所述第一终端发送的第二数据段;
    其中,所述通信方法还包括:
    所述网络设备在所述第一资源上接收第二终端发送的第三数据段;
    所述网络设备对所述第三数据段进行解正交覆盖码处理和K次去重复处理,得到所述第二终端的上行控制信息,K不等于N,K为正整数。
  14. 一种终端,其特征在于,包括:
    处理模块,用于将待传输上行控制信息重复N次,得到第一数据段,N为正整数;
    所述处理模块还用于根据所述重复次数N,确定正交覆盖码;
    所述处理模块还用于将所述第一数据段与所述正交覆盖码相乘,得到第二数据段;
    通信模块,用于发送所述第二数据段。
  15. 根据权利要求14所述的终端,其特征在于,所述处理模块具体用于根据所述重复次数N以及所述重复次数N和所述正交覆盖码的对应关系,确定所述正交覆盖码。
  16. 根据权利要求14或15所述的终端,其特征在于,所述通信模块还用于接收网络设备发送的指示信息,所述指示信息用于指示N;
    所述处理模块还用于根据所述指示信息确定N。
  17. 根据权利要求14或15所述的终端,其特征在于,所述处理模块还用于根据上行信道状态信息,确定N。
  18. 根据权利要求14或15所述的终端,其特征在于,所述处理模块还用于根据所述待传输上行控制信息的星座点符号数M,确定N,M为正整数。
  19. 根据权利要求18所述的终端,其特征在于,所述处理模块具体用于将第一资源包括的子载波数量与M的比值确定为N。
  20. 根据权利要求17至19中任一项所述的终端,其特征在于,所述通信模块还用于向网络设备发送指示信息,所述指示信息用于指示N。
  21. 根据权利要求14至20中任一项所述的终端,其特征在于,所述通信模块具体用于在第一资源上发送所述第二数据段,所述第一资源上还发送第三数据段,所述第三数据段是第二终端的上行控制信息进行K次重复得到的,K不等于N,K为正整数。
  22. 一种网络设备,其特征在于,包括:
    通信模块,用于接收第一终端发送的第二数据段,所述第二数据段为所述第一终端根据正交覆盖码对第一数据段进行处理得到的,所述第一数据段为所述第一终端的上行控制信息重复N次后得到的,N为正整数;
    处理模块,用于根据N确定解正交覆盖码;
    所述处理模块还用于将所述解正交覆盖码与所述第二数据段相乘,得到所述第一数据段;
    所述处理模块还用于对所述第一数据段进行N次去重复处理,得到所述第一终端的上行控制信息。
  23. 根据权利要求22所述的网络设备,其特征在于,所述处理模块具体用于根据N以及所述重复次数N和所述解正交覆盖码的对应关系,确定所述解正交覆盖码。
  24. 根据权利要求22或23所述的网络设备,其特征在于,所述通信模块还用于接收所述第一终端发送的指示信息,所述指示信息用于指示N。
  25. 根据权利要求22或23所述的网络设备,其特征在于,所述处理模块还用于根据第一终端的上行信道状态信息和上行信道信噪比中至少一个确定N;
    所述通信模块还用于向所述第一终端发送指示信息,所述指示信息用于指示N。
  26. 根据权利要求22至25中任一项所述的网络设备,其特征在于,所述通信模块具体用于在第一资源上接收所述第一终端发送的第二数据段;
    其中,所述通信模块还用于在所述第一资源上接收第二终端发送的第三数据段;
    所述处理模块还用于对所述第三数据段进行解正交覆盖码处理和K次去重复处理,得到所述第二终端的上行控制信息,K不等于N,K为正整数。
  27. 一种终端,其特征在于,包括处理器和发送器;
    所述处理器用于:将待传输上行控制信息重复N次,得到第一数据段,N为正整数;根据所述重复次数N,确定正交覆盖码;将所述第一数据段与所述正交覆盖码相乘,得到第二数据段;
    所述发送器用于发送所述第二数据段。
  28. 根据权利要求27所述的终端,其特征在于,
    所述根据所述重复次数N,确定正交覆盖码包括:
    重复次数N对应N个正交覆盖码,所述N个正交覆盖码为:
    Figure PCTCN2018085651-appb-100001
    Figure PCTCN2018085651-appb-100002
  29. 根据权利要求28所述的终端,其特征在于,
    N=4。
  30. 根据权利要求29所述的终端,其特征在于,
    所述4个正交覆盖码为:[1,1,1,1],[1,j,-1,-j],[1,-1,1,-1],[1,-j,-1,j]。
  31. 一种通信方法,其特征在于,包括:
    第一终端将待传输上行控制信息重复4次,得到第一数据段;
    所述第一终端根据所述重复次数4,确定正交覆盖码;
    所述第一终端将所述第一数据段与所述正交覆盖码相乘,得到第二数据段;
    所述第一终端发送所述第二数据段。
  32. 根据权利要求31所述的通信方法,其特征在于,
    所述根据所述重复次数4,确定正交覆盖码包括:
    重复次数4对应4个正交覆盖码,所述4个正交覆盖码为:[1,1,1,1],[1,j,-1,-j],[1,-1,1,-1],[1,-j,-1,j]。
  33. 一种通信方法,其特征在于,包括:
    将待传输上行控制信息的3个QSPK符号重复第一次得到的3个QSPK符号乘上正交覆盖码[1,j,-1,-j]中的1,得到第二数据段的第一部分;
    将这3个QSPK符号重复第二次得到的3个QSPK符号乘上正交覆盖码[1,j,-1,-j]中的j,得到第二数据段的第二部分;
    将这3个QSPK符号重复第三次得到的3个QSPK乘上正交覆盖码[1,j,-1,-j]中的-1,得到第二数据段的第三部分;
    将这3个QSPK符号重复第四次得到的3个QSPK乘上正交覆盖码[1,j,-1,-j]中的-j,得到第二数据段的第四部分;
    所述第一终端发送所述第二数据段。
  34. 一种通信方法,其特征在于,包括:
    将待传输上行控制信息的3个QSPK符号重复第一次得到的3个QSPK符号乘上正交覆盖码[1,-j,-1,j]中的1,得到第二数据段的第一部分;
    将这3个QSPK符号重复第二次得到的3个QSPK符号乘上正交覆盖码[1,-j,-1,j]中的-j,得到第二数据段的第二部分;
    将这3个QSPK符号重复第三次得到的3个QSPK乘上正交覆盖码[1,-j,-1,j]中的-1,得到第二数据段的第三部分;
    将这3个QSPK符号重复第四次得到的3个QSPK乘上正交覆盖码[1,-j,-1,j]中的j,得到第二数据段的第四部分;
    所述第一终端发送所述第二数据段。
  35. 一种通信方法,其特征在于,包括:
    将待传输上行控制信息的3个QSPK符号重复第一次得到的3个QSPK符号乘上正交覆盖码[1,-1,1,-1]中的1,得到第二数据段的第一部分;
    将这3个QSPK符号重复第二次得到的3个QSPK符号乘上正交覆盖码[1,-1,1,-1]中的-1,得到第二数据段的第二部分;
    将这3个QSPK符号重复第三次得到的3个QSPK乘上正交覆盖码[1,-1,1,-1]中的1,得到第二数据段的第三部分;
    将这3个QSPK符号重复第四次得到的3个QSPK乘上正交覆盖码[1,-1,1,-1]中的-1,得到第二数据段的第四部分;
    所述第一终端发送所述第二数据段。
  36. 一种通信方法,其特征在于,包括:
    将待传输上行控制信息的3个QSPK符号重复第一次得到的3个QSPK符号乘上正交覆盖码[1,1,1,1]中的1,得到第二数据段的第一部分;
    将这3个QSPK符号重复第二次得到的3个QSPK符号乘上正交覆盖码[1,1,1,1]中的1,得到第二数据段的第二部分;
    将这3个QSPK符号重复第三次得到的3个QSPK乘上正交覆盖码[1,1,1,1]中的1,得到第二数据段的第三部分;
    将这3个QSPK符号重复第四次得到的3个QSPK乘上正交覆盖码[1,1,1,1]中的1,得到第二数据段的第四部分;
    所述第一终端发送所述第二数据段。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储用于终端执行的程序代码,所述程序代码包括用于执行权利要求1-8以及31-36任一项所述的方法的指令。
  38. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在终端上运行时,使得所述终端执行权利要求1-8以及31-36任一项所述的方法。
PCT/CN2018/085651 2017-05-05 2018-05-04 通信方法、终端和网络设备 WO2018202145A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18794038.2A EP3614605B1 (en) 2017-05-05 2018-05-04 Communications method, terminal and network device
US16/674,239 US11109365B2 (en) 2017-05-05 2019-11-05 Communication method, terminal, and network device for repeating uplink control information to obtain data segment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313853.4 2017-05-05
CN201710313853.4A CN108809589A (zh) 2017-05-05 2017-05-05 通信方法、终端和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/674,239 Continuation US11109365B2 (en) 2017-05-05 2019-11-05 Communication method, terminal, and network device for repeating uplink control information to obtain data segment

Publications (1)

Publication Number Publication Date
WO2018202145A1 true WO2018202145A1 (zh) 2018-11-08

Family

ID=64015868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085651 WO2018202145A1 (zh) 2017-05-05 2018-05-04 通信方法、终端和网络设备

Country Status (4)

Country Link
US (1) US11109365B2 (zh)
EP (1) EP3614605B1 (zh)
CN (1) CN108809589A (zh)
WO (1) WO2018202145A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615142B (zh) * 2019-04-30 2023-09-22 维沃移动通信有限公司 信道状态信息csi报告的传输方法、终端及网络设备
CN114598365B (zh) * 2020-12-01 2023-10-17 维沃移动通信有限公司 传输方法、装置、设备及可读存储介质
EP4170946A1 (en) * 2021-10-22 2023-04-26 Panasonic Intellectual Property Corporation of America User equipment and base station involved in transmission of uplink control information

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007073093A2 (en) * 2005-12-20 2007-06-28 Lg Electronics Inc. Method of generating code sequence and method of transmitting signal using the same
CN101227261A (zh) * 2008-02-04 2008-07-23 中兴通讯股份有限公司 一种物理混合重传指示信道资源的分配方法
CN101247166A (zh) * 2007-02-16 2008-08-20 北京三星通信技术研究有限公司 传输调度请求信息的设备和方法
WO2016093573A1 (ko) * 2014-12-08 2016-06-16 엘지전자 주식회사 5개를 초과하는 셀들을 반송파 집성에 따라 사용할 때의 pucch 전송 방법 및 사용자 장치
CN106165510A (zh) * 2014-03-30 2016-11-23 Lg电子株式会社 在支持设备到设备通信的无线通信系统中传输/接收下行链路控制信息的方法及其设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829831B1 (ko) * 2010-05-06 2018-02-19 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US20130128821A1 (en) * 2011-11-18 2013-05-23 Nokia Siemens Networks Oy Demodulation Reference Signal Arrangement For Uplink Coordinated Multi-Point Reception
CN104335517B (zh) * 2012-05-31 2017-10-20 Lg电子株式会社 用于收发控制信号的方法及其装置
CN110838891B (zh) * 2012-08-03 2022-09-16 苹果公司 用于上行链路控制信息传输的方法、设备和介质
JP6107932B2 (ja) * 2013-03-25 2017-04-05 富士通株式会社 無線通信システム、基地局および無線通信方法
US9635621B2 (en) * 2014-01-17 2017-04-25 Samsung Electronics Co., Ltd. Adaptations of dual connectivity operation to UE capability
JP6621758B2 (ja) * 2014-11-14 2019-12-18 株式会社Nttドコモ ユーザ装置、フィードバック制御方法、及び再送制御方法
US10326493B2 (en) * 2015-05-13 2019-06-18 Samsung Electronics Co., Ltd. Control channel transmission and frequency error correction
JP2019145865A (ja) * 2016-07-05 2019-08-29 シャープ株式会社 基地局装置、端末装置およびその通信方法
US10873423B2 (en) * 2018-02-15 2020-12-22 Huawei Technologies Co., Ltd. Systems and methods for allocation of uplink control channel resources in unlicensed spectrum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007073093A2 (en) * 2005-12-20 2007-06-28 Lg Electronics Inc. Method of generating code sequence and method of transmitting signal using the same
CN101247166A (zh) * 2007-02-16 2008-08-20 北京三星通信技术研究有限公司 传输调度请求信息的设备和方法
CN101227261A (zh) * 2008-02-04 2008-07-23 中兴通讯股份有限公司 一种物理混合重传指示信道资源的分配方法
CN106165510A (zh) * 2014-03-30 2016-11-23 Lg电子株式会社 在支持设备到设备通信的无线通信系统中传输/接收下行链路控制信息的方法及其设备
WO2016093573A1 (ko) * 2014-12-08 2016-06-16 엘지전자 주식회사 5개를 초과하는 셀들을 반송파 집성에 따라 사용할 때의 pucch 전송 방법 및 사용자 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On UCI Repetition", 3GPP TSG-RAN WG1 MEETING#88BIS, R1-1706045, 7 April 2017 (2017-04-07), XP051252304, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88b/Docs/> *

Also Published As

Publication number Publication date
EP3614605B1 (en) 2023-10-18
US20200077384A1 (en) 2020-03-05
CN108809589A (zh) 2018-11-13
US11109365B2 (en) 2021-08-31
EP3614605A1 (en) 2020-02-26
EP3614605A4 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
US20230299884A1 (en) Data and control multiplexing in pusch in wireless networks
JP4972694B2 (ja) Phich送信資源領域情報の獲得方法及びこれを用いるpdcch受信方法
KR100800795B1 (ko) 통신 시스템에서 상향 링크 응답 정보 송/수신 방법 및 장치
CN101755399B (zh) 单载波频分多址通信系统中发送信道质量指示符和应答信号的装置和方法
RU2554550C2 (ru) Базовая радиостанция и пользовательское оборудование и способы в них
US8755806B2 (en) Transmission of feedback information on PUSCH in wireless networks
EP3585022A1 (en) Data transmission method, device and system
WO2018086147A1 (zh) 传输上行数据的方法、终端设备和网络设备
KR102352674B1 (ko) 시퀀스 기반의 신호 처리 방법 및 장치
EP2507932A2 (en) Determining hybrid automatic repeat request (harq) timing
WO2018126872A1 (zh) 请求资源的方法和装置
KR20190103343A (ko) 정보 전송 방법 및 장치
WO2018202145A1 (zh) 通信方法、终端和网络设备
CN109995484B (zh) 一种数据传输、接收方法、终端及基站
WO2018106001A1 (ko) 폴라 코드를 이용한 제어 정보 전송 방법 및 장치
KR20100102233A (ko) 물리적 하이브리드 자동 재전송 요구 표시자 채널 자원들의 매핑
EP3567819B1 (en) Method, device and system for use in wireless communication
JP2020533879A (ja) 系列に基づく信号処理方法および装置
TWI420852B (zh) 用以於無線通訊系統中傳送確認/未確認(ack/nack)訊號之方法及裝置
WO2017124950A1 (zh) 上行控制信号的发送方法及装置
CN115486109A (zh) 一种跳频间隔确定、指示方法及装置
CN111585930A (zh) 信息处理方法和装置
CN114884639B (zh) 一种信息接收方法、装置和存储介质
KR101627163B1 (ko) 직교주파수분할 다중접속방식 통신시스템에서 상향링크 제어채널을 통해 정보를 전송하기 위한 장치 및 방법
JP6845951B2 (ja) 基地局、受信方法及び集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018794038

Country of ref document: EP

Effective date: 20191120