WO2018202019A1 - 一种通信方法、终端设备及网络设备 - Google Patents

一种通信方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2018202019A1
WO2018202019A1 PCT/CN2018/085183 CN2018085183W WO2018202019A1 WO 2018202019 A1 WO2018202019 A1 WO 2018202019A1 CN 2018085183 W CN2018085183 W CN 2018085183W WO 2018202019 A1 WO2018202019 A1 WO 2018202019A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
power
uplink signal
transmit power
terminal device
Prior art date
Application number
PCT/CN2018/085183
Other languages
English (en)
French (fr)
Inventor
孙伟
郭志恒
谢信乾
费永强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018202019A1 publication Critical patent/WO2018202019A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method, a terminal device, and a network device.
  • the system's Frequency Division Duplexing (FDD) uplink (UL) frequency band is less utilized.
  • the NR system can use part of the bandwidth of these bands, or a part of the sub-frames of these bands.
  • the NR system supports and the LTE system multiplexes in one frequency band, sharing the same frequency band resources, thereby efficiently utilizing the frequency band resources.
  • both the terminal device transmits the LTE signal, and the terminal device transmits the NR signal, but only the LTE terminal device can receive the LTE signal in the carrier F3.
  • the NR cell adopts a high frequency (HF) carrier F2 through Time Division Duplexing (TDD) mode, and the carrier F2 is only used to transmit the NR signal, and the NR terminal device can only receive the NR on the carrier F2.
  • HF high frequency
  • TDD Time Division Duplexing
  • the terminal device receives the received power of the downlink reference signal on the carrier F2 according to the conventional method, the terminal device is estimated to be in the carrier.
  • the downlink path loss estimate of the NR signal transmitted on F1 has a large error, resulting in a decrease in the accuracy of the uplink transmit power determined according to the downlink path loss estimate.
  • the uplink carrier and the downlink carrier are decoupled in the deployment mode of the NR, that is, the duplex distance of the uplink carrier and the downlink carrier of the NR can be flexible. If the uplink is deployed on the low frequency carrier F4, the downlink and uplink are deployed on the high frequency carrier F5. In this scenario, the same problem also exists.
  • the network device sends the first information to the terminal device, where the first information indicates that the terminal device sends an uplink signal in the first carrier by using the first transmit power, where the first transmit power is in the second carrier according to the terminal device. Determining, by the power information of the second transmit power of the uplink signal;
  • the network device indicates, by using the first information, that the terminal device sends the uplink signal in the first carrier by using the first transmit power, and the first transmit power is sent according to the second transmit power of the uplink signal sent by the terminal device in the second carrier. It is determined that the network device can indicate the transmit power of the terminal device on the first carrier, and the terminal device does not need to determine the transmit power according to the power control parameter and the path loss of the first carrier, thereby preventing the terminal device from using the inaccurate path loss. The power is calculated, so the network device can more accurately control the uplink transmit power of the uplink signal sent by the terminal device in the first carrier.
  • the first transmit power is determined according to the power information of the second transmit power of the uplink signal sent by the terminal device in the second carrier, and includes:
  • the first transmit power is determined according to a second power control parameter that the terminal device sends a second uplink signal in the second carrier.
  • the first transmit power determined according to the second transmit power is any one of the following:
  • the first transmit power is equal to the second transmit power
  • the first transmit power is equal to a sum of the second transmit power and an offset value
  • the first transmit power is determined according to a power spectral density of the second transmit power, the offset value, and a bandwidth of the first uplink signal;
  • the first transmit power is determined according to a power of the resource unit of the second transmit power, the offset value, and a number of resource units of the first uplink signal.
  • the first transmit power is determined according to the second power control parameter, and includes:
  • the first transmit power is determined according to the second power control parameter, a path loss of the second carrier, a number of resource blocks of the first uplink signal, and an uplink power control formula;
  • the first transmit power is determined according to the second power control parameter, the path loss of the second carrier, the number of resource blocks of the first uplink signal, an offset value, and an uplink power control formula.
  • the offset value is sent by the network device to the terminal device, and/or the offset value satisfies the following formula:
  • offset is the offset value
  • is a path loss compensation factor
  • f1 is a carrier frequency of the first carrier
  • f2 is a carrier frequency of the second carrier.
  • the method further includes:
  • the network device sends power adjustment information to the terminal device, where the power adjustment information is determined by the network device according to the received first uplink signal and the second uplink signal.
  • the power adjustment information may be determined, and the determined power adjustment information is sent to the terminal device.
  • the power adjustment information obtained according to the foregoing method can more accurately determine the path loss of the first carrier, or the power control parameter, so that the path loss of the first carrier can be more accurately adapted, so the terminal device receives the power adjustment information.
  • the uplink transmit power of the uplink signal sent in the first carrier can be determined more accurately according to the power adjustment information.
  • the path loss offset value PL offset satisfies the following formula:
  • the path loss offset value PL offset is an estimated path loss offset value.
  • Mean, where the path loss offset is estimated Meet the following formula:
  • P TX1 in the above two formulas is the first transmit power
  • P TX2 is the second transmit power
  • P RX1 is a receive power of the network device receiving the first uplink signal
  • P RX2 is a The network device receives the received power of the second uplink signal.
  • the first power control parameter satisfies the following formula:
  • P 0_UE_2 P 0_UE_1 + ⁇ PL offset
  • P 0_UE_2 is the first power control parameter
  • PL offset is the path loss offset value
  • is a path loss compensation factor
  • P 0_UE_1 is a preset parameter.
  • the first power control parameter satisfies the following formula:
  • P 0_UE_2 P 0_UE_1 -P offset
  • P 0_UE_2 is the first power control parameter
  • P 0_UE_1 is a preset parameter
  • P offset is a power offset value of the received power of the first uplink signal and the received power of the second uplink signal
  • the power offset value P offset satisfies the following formula:
  • the power offset value P offset is a power offset estimation value.
  • Average of the power offset estimate The following formula is satisfied by satisfying the following formula:
  • the P RX1 of the above two formulas is that the network device receives the received power of the first uplink signal, and the P RX2 is the received power of the network device that receives the second uplink signal.
  • the frequency of the first carrier is lower than the frequency of the second carrier, and the first carrier is an uplink carrier, and the second carrier is a time division duplex carrier.
  • the first carrier is used to carry an uplink signal of a long term evolution LTE system and an uplink signal of a new wireless NR system;
  • the second carrier is used to carry an uplink signal and a downlink signal of the NR system.
  • the method further includes:
  • the network device sends second information to the terminal device, where the second information indicates that the terminal device determines, according to the path loss offset value, that the uplink signal is sent to the network device in the first carrier.
  • Uplink transmit power
  • An embodiment of the present application provides a communication method, where the method includes:
  • the terminal device sends the first uplink signal to the network device by using the first transmit power in the first carrier, and sends the second uplink to the network device by using the second transmit power in the second carrier signal.
  • the terminal transmits the uplink signal in the first carrier by using the first transmit power according to the first information, and the first transmit power is determined according to the second transmit power of the uplink signal sent by the terminal device in the second carrier, that is, The transmitting power of the terminal device in the first carrier does not require the terminal device to determine the transmitting power according to the power control parameter and the path loss of the first carrier, thereby avoiding the situation that the terminal device uses the inaccurate path loss to calculate the power, so the terminal device is The uplink transmit power of the uplink signal transmitted in the first carrier is more accurate.
  • the first transmit power is determined according to the power information of the second transmit power of the uplink signal sent by the terminal device in the second carrier, and includes:
  • the first transmit power is determined according to a second transmit power of the second uplink signal sent by the terminal device in the second carrier;
  • the first transmit power is determined according to a second power control parameter that the terminal device sends a second uplink signal in the second carrier.
  • the first transmit power determined according to the second transmit power is any one of the following:
  • the first transmit power is equal to a sum of the second transmit power and an offset value
  • the first transmit power is determined according to a power spectral density of the second transmit power and a bandwidth of the first uplink signal
  • the first transmit power is determined according to a power of a resource unit of the second transmit power and a number of resource units of the first uplink signal;
  • the first transmit power is determined according to a power of the resource unit of the second transmit power, the offset value, and a number of resource units of the first uplink signal.
  • the first transmit power is determined according to the second power control parameter, and includes:
  • the first transmit power is determined according to the second power control parameter, a path loss of the second carrier, a number of resource blocks of the first uplink signal, and an uplink power control formula;
  • the first transmit power is determined according to the second power control parameter, the path loss of the second carrier, the number of resource blocks of the first uplink signal, an offset value, and an uplink power control formula.
  • the offset value is sent by the network device to the terminal device, and/or the offset value satisfies the following formula:
  • offset is the offset value
  • is a path loss compensation factor
  • f1 is a carrier frequency of the first carrier
  • f2 is a carrier frequency of the second carrier.
  • the method further includes:
  • the terminal device determines, according to the power adjustment information, an uplink transmit power used by the third uplink signal to send to the network device in the first carrier.
  • the power adjustment information is a path loss offset value of the first carrier and the second carrier.
  • the power adjustment information is a first power control parameter.
  • the path loss offset value PL offset satisfies the following formula:
  • the first power control parameter satisfies the following formula:
  • P 0_UE_2 is the first power control parameter
  • PL offset is the path loss offset value
  • is a path loss compensation factor
  • P 0_UE_1 is a preset parameter.
  • P 0_UE_2 P 0_UE_1 -P offset
  • P 0_UE_2 is the first power control parameter
  • P 0_UE_1 is a preset parameter
  • P offset is a power offset value of the received power of the first uplink signal and the received power of the second uplink signal
  • the power offset value P offset satisfies the following formula:
  • the power offset value P offset is a power offset estimation value.
  • Average of the power offset estimate The following formula is satisfied by satisfying the following formula:
  • the P RX1 of the above two formulas is that the network device receives the received power of the first uplink signal, and the P RX2 is the received power of the network device that receives the second uplink signal.
  • the embodiment of the present application provides a network device, including: a processor and a transceiver.
  • the processor is configured to send, by using the transceiver, first information to a terminal device, where the first information indicates that the terminal device sends an uplink signal in a first carrier by using a first transmit power, where the first transmit power is Determining, according to the power information of the second transmit power of the uplink signal sent by the terminal device in the second carrier;
  • the processor is further configured to receive, by using the first carrier, a first uplink signal that is sent by the terminal device by using the first transmit power, and receive, by using the second carrier, the terminal device by using the first carrier.
  • the second uplink signal sent by the second transmit power is further configured to receive, by using the first carrier, a first uplink signal that is sent by the terminal device by using the first transmit power, and receive, by using the second carrier, the terminal device by using the first carrier.
  • the second uplink signal sent by the second transmit power.
  • the processor is further configured to:
  • the processor is configured to receive, by the transceiver, first information from a network device, where the first information indicates that the terminal device sends an uplink signal in a first carrier by using a first transmit power, where the first transmit power is Determining, by the terminal device, the power information of the second transmit power of the uplink signal sent by the terminal device in the second carrier;
  • the processor is further configured to send, by using the first transmit power, the first uplink power to the network device by using the first carrier, and adopting the second transmit power to the second carrier.
  • the network device sends a second uplink signal.
  • the processor is further configured to:
  • the embodiment of the present application provides a network device, including:
  • a sending unit configured to send the first information to the terminal device, where the first information indicates that the terminal device sends an uplink signal in the first carrier by using the first transmit power, where the first transmit power is in accordance with the terminal device Determining, by the power information of the second transmit power of the uplink signal in the two carriers;
  • a receiving unit configured to receive, by using the first carrier, a first uplink signal sent by the terminal device by using the first transmit power, and receiving, by using the second carrier, the terminal device by using the second transmit power The second upstream signal.
  • the sending unit is further configured to: send power adjustment information to the terminal device, where the power adjustment information is determined by the network device according to the received first uplink signal and the second uplink signal.
  • the network device includes a processing unit, configured to generate the power adjustment information.
  • the network device includes a processing unit, configured to generate the first information.
  • the embodiment of the present application provides a terminal device, including:
  • a receiving unit configured to receive the first information from the network device, where the first information indicates that the terminal device sends an uplink signal in the first carrier by using the first transmit power, where the first transmit power is Determining, by the terminal device, the power information of the second transmit power of the uplink signal sent by the second carrier;
  • a sending unit configured to send, by using the first transmit power, the first uplink signal to the network device, and send, by using the second transmit power, the second transmit power to the network device Uplink signal.
  • the terminal device further includes a processing unit:
  • the receiving unit is further configured to: receive power adjustment information from the network device, where the power adjustment information is determined by the network device according to the received first uplink signal and a second uplink signal;
  • the communication device includes at least one processor coupled to at least one memory:
  • the at least one processor is configured to execute a computer program or instruction stored in the at least one memory to cause the apparatus to perform the method of any of the above.
  • the present application also provides a computer readable storage medium for storing computer software instructions for performing a function designed for any of the above-described communication methods, comprising a communication method for performing any of the above designs Designed program.
  • the embodiment of the present application further provides a communication system, which includes the terminal device or the network device provided by any one of the foregoing designs.
  • the system may further include the terminal device provided by the embodiment of the present application. Or other device that the network device interacts with.
  • the embodiment of the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the communication method described in the above aspects.
  • FIG. 1 is a schematic diagram of a scenario applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of resource allocation in a carrier according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Wideband Code Division Multiple Access
  • Code Division Multiple Access (WCDMA) system General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced Long Term Evolution (LTE-A) system, general purpose Other mobile communication systems such as a Universal Mobile Telecommunication System (UMTS), an evolved Long Term Evolution (eLTE) system, and a 5G system (for example, an NR system).
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • eLTE evolved Long Term Evolution
  • 5G system for example, an NR system
  • a terminal device also called a User Equipment (UE) is a device that provides voice and/or data connectivity to a user, for example, a handheld device with a wireless connection function, an in-vehicle device, and the like.
  • UE User Equipment
  • Common terminal devices include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices, such as smart watches, smart bracelets, pedometers, and the like.
  • the network device which may be a common base station (such as a NodeB or an eNB), may be a new radio controller (NR controller), may be a gNB in the NR system, or may be a centralized network element (Centralized Unit) It may be a new radio base station, which may be a radio remote module, may be a micro base station, may be a relay, may be a distributed network element (Distributed Unit), and may be a reception point (TRP). Or a transmission point (TP) or any other wireless access device, but the embodiment of the present application is not limited thereto.
  • NR controller new radio controller
  • gNB in the NR system
  • Centralized Unit Centralized Unit
  • the network device 101 can work in both the LTE system and the NR system.
  • the terminal device 102 and the terminal device 103 can share the uplink carrier.
  • the terminal device 102 performs uplink communication with the network device 101 by using the carrier f1, and performs downlink communication with the network device 101 by using the carrier f3.
  • the terminal device 103 performs uplink communication with the network device 101 by using the carrier f1, and performs uplink and downlink communication with the network device 101 by using the carrier f2 in the TDD mode.
  • the carrier f1 and the carrier f3 may be a pair of paired spectrums, and both are low frequency carriers; the carrier f3 may be a high frequency carrier.
  • the resource allocation in the carrier f1 can be referred to FIG. 2.
  • resources in the carrier f1 may be classified into LTE UL resources, NRUL resources, and the like.
  • the terminal device 102 may transmit the LTE signal to the network device 101 by using the LTE UL resource in the carrier f1
  • the terminal device 103 may transmit the NR signal to the network device 101 by using the NR UL resource in the carrier f1.
  • FIG. 3 it is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the method includes:
  • Step 301 The network device sends the first information to the terminal device, where the first information indicates that the terminal device sends an uplink signal in the first carrier by using the first transmit power, where the first transmit power is in accordance with the terminal device.
  • the power information of the second transmit power that sends the uplink signal in the two carriers is determined, or the first information indicates that the terminal device determines, according to the power information of the second transmit power, the first transmit power that sends the uplink signal in the first carrier.
  • Step 302 The terminal device receives the first information from the network device, where the first information indicates that the terminal device sends an uplink signal in the first carrier by using the first transmit power, where the first transmit power is Determining, by the terminal device, the power information of the second transmit power of the uplink signal sent by the second carrier, or the first information indicating that the terminal device determines, according to the power information of the second transmit power, that the uplink signal is sent in the first carrier a transmit power;
  • Step 303 The terminal device sends the first uplink signal to the network device by using the first transmit power in the first carrier, and sends the second transmit power to the network device by using the second transmit power in the second carrier.
  • the second uplink signal The first uplink signal.
  • Step 304 The network device receives, by using the first carrier, a first uplink signal that is sent by the terminal device by using the first transmit power, and receiving, by using the second carrier, that the terminal device uses the second The second uplink signal sent by the power.
  • the frequency of the first carrier is lower than the frequency of the second carrier, and the first carrier is an uplink carrier, and the second carrier is a TDD carrier.
  • the first carrier is used to carry an uplink signal of the LTE system and an uplink signal of the NR system;
  • the second carrier is used to carry an uplink signal and a downlink signal of the NR system, for example, the second carrier may carry the NR system.
  • the downlink reference signal can also carry the uplink reference signal of the NR system.
  • the scenario in which the network device sends the first information may be multiple.
  • the network device when the terminal device initially accesses the cell, the network device has no path loss information of the terminal device in the first carrier. The network device sends the first information to the terminal device.
  • the network device determines that the path loss estimation of the terminal device in the first carrier is inaccurate, such as the received power of the uplink signal of the terminal device received by the network device and the target receiving power of the network device.
  • the network device determines that the transmission power of the uplink signal of the terminal device on the first carrier is deviated, that is, the path loss of the terminal device on the first carrier changes, that is, the path of the terminal device on the first carrier
  • the loss and the path loss value of the path loss of the terminal device in the second carrier change, and need to be re-measured.
  • the change of the path loss offset value is due to the movement of the terminal device, and the antenna gain of the terminal device in the first carrier is caused. And the difference between the antenna gain of the second carrier is changed, and the network device can send the first information to the terminal device.
  • the first information indicates that the terminal device determines, according to the power information of the second transmit power, the first transmit power that sends the uplink signal in the first carrier, or the first information indicates that the terminal device uses the first transmit power in the first
  • the terminal device may first determine the power information of the second transmit power that sends the uplink signal in the second carrier, and then determine the first transmit power according to the power information of the second transmit power.
  • the power information of the second transmit power may be the second transmit power that the terminal device sends the uplink signal in the second carrier, or may be the second power control parameter that the terminal device sends the second uplink signal in the second carrier.
  • the power information of the second transmit power is when the terminal device sends the second transmit power of the uplink signal in the second carrier, and the first transmit power determined according to the second transmit power is any one of the following:
  • the first transmit power is equal to the second transmit power
  • the first transmit power is equal to a sum of the second transmit power and an offset value
  • the first transmit power is determined according to a power spectral density of the second transmit power and a bandwidth of the first uplink signal
  • the first transmit power is determined according to the power of the resource unit of the second transmit power and the number of resource units of the first uplink signal;
  • the first transmit power is determined according to a power of the resource unit of the second transmit power, the offset value, and a number of resource units of the first uplink signal.
  • the offset value is sent by the network device to the terminal device.
  • the offset value sent by the network device to the terminal device may be preset, or the offset value may satisfy the following formula:
  • offset is the offset value
  • is a path loss compensation factor
  • the path loss compensation factor may be a parameter configured by the network device through high layer signaling
  • f1 is a carrier frequency of the first carrier
  • f2 is a carrier frequency of the second carrier.
  • the offset value may not be sent by the network device to the terminal device, but is pre-agreed by the network device and the terminal device.
  • the network device and the terminal device pre-determine to determine the offset value according to formula (1).
  • the device does not need to send the offset value to the terminal device.
  • the method for determining the second transmit power may be implemented by using the prior art, for example, may be implemented according to an existing uplink transmit power control formula, and details are not described herein again.
  • the terminal device may determine, according to the calculation method of the existing uplink transmit power, the second transmit power that sends the uplink signal in the second carrier, and then determine that the first transmit power is equal to the second transmit power. Or determining the offset value according to formula (1), determining the sum of the second transmit power and the offset value as the first transmit power, or according to the offset value sent by the network side, and then using the second transmit power and offset The sum of the values is determined as the first transmit power.
  • the power information of the second transmit power is when the terminal device sends the second power control parameter of the second uplink signal in the second carrier, where the first transmit power may be according to the second power control parameter, the second carrier The path loss, the number of resource blocks of the first uplink signal, and an uplink power control formula are determined; or the first transmit power may further be based on the second power control parameter, a path loss of the second carrier, The number of resource blocks of the first uplink signal, the offset value, and the uplink power control formula are determined.
  • the second power control parameter may refer to a power control parameter that is configured by the network device to the terminal device and calculates an uplink transmit power when the second carrier sends an uplink signal, and may refer to the prior art, and may include, but is not limited to, path loss compensation.
  • the factor a the target received power P O , is not described here again.
  • the path loss of the second carrier can be determined by the terminal device transmitting the uplink signal on the second carrier and the receiving power of the network device receiving the uplink signal, and no longer The description of the description of the prior art is omitted.
  • the first information may be carried in a system message, or a radio resource control (RRC) signaling, or a downlink control information (Downlink Control Information, DCI).
  • the uplink signal may be an uplink reference signal, such as a periodic Sounding Reference Signal (SRS), or an aperiodic SRS.
  • SRS periodic Sounding Reference Signal
  • the uplink signal may also be physical uplink data channel information, or physical uplink control channel information, or physical uplink random access channel information.
  • the terminal device may first determine the power information of the second transmit power of the second uplink signal in the second carrier, and then determine the first transmit power according to the power information of the second transmit power. For details, refer to step 301. Description, no longer repeat here.
  • the terminal device may send the first uplink signal in the first carrier and the second uplink signal in the second carrier, or may send the first uplink signal in the first carrier and send the second uplink signal in the second carrier.
  • the second uplink signal is not limited by this embodiment of the present application.
  • the first bandwidth of the first uplink signal sent by the terminal device in the first carrier and the second bandwidth of the second uplink signal sent on the second carrier may be the same or different.
  • the first transmit power is equal to the second transmit power, indicating that the terminal device is in the first
  • the transmit power of the first bandwidth when the first uplink signal is sent in one carrier is equal to the transmit power of the second bandwidth when the second uplink signal is sent by the terminal device in the second carrier; the first transmit power is equal to the second transmit power and
  • the sum of the offset values indicates that the transmit power of the first bandwidth when the terminal device sends the first uplink signal is equal to the sum of the transmit power of the second bandwidth and the offset value when the terminal device sends the second uplink signal.
  • step 304 when the network device receives the first uplink signal, the network device can calculate the received power of the first uplink signal, and correspondingly, when the network device receives the second uplink signal, the network device can calculate the second uplink signal. Receive power.
  • the specific method for determining the received power can be implemented by using the prior art. The embodiments of the present application are not limited thereto, and details are not described herein again.
  • the network device may send power adjustment information to the terminal device, where the power adjustment information is used by the network device according to the received first uplink signal and The second uplink signal is determined.
  • the power adjustment information may be a path loss offset value of the first carrier and the second carrier, or the power adjustment information may also be a first power control parameter.
  • the network device can thereby determine the path loss of the first carrier, namely:
  • the PL F1 is the path loss of the first carrier
  • P TX1 is the first transmit power
  • P RX1 is the received power of the network device to receive the first uplink signal.
  • the network device can determine the path loss of the second carrier, namely:
  • the PL F2 is the path loss of the second carrier
  • P TX2 is the second transmit power
  • P RX2 is the received power of the network device to receive the second uplink signal.
  • the network device determines the difference between the path loss of the first carrier and the path loss of the second carrier as the path loss offset value, that is, the path loss offset value determined by the network device can satisfy the following formula:
  • the PL offset is the path loss offset value
  • P TX1 is the first transmit power
  • P TX2 is the second transmit power
  • P RX1 is the receive power of the network device receiving the first uplink signal.
  • P RX2 is the received power of the network device to receive the second uplink signal.
  • the path loss offset may also be estimated.
  • the average value is determined as the path loss offset value.
  • a plurality of path loss offset estimates are determined according to formula (5), and then the average value of the determined plurality of path loss offset estimates is determined as the path loss Move the value.
  • the network device may determine the first power control parameter by:
  • the first mode the first power control parameter determined by the network device satisfies the following formula:
  • P 0_UE_2 is the first power control parameter
  • PL offset is the path loss offset value
  • is a path loss compensation factor
  • P 0_UE_1 is a preset parameter
  • the parameter may be an initial configuration of the network device for the terminal device. Proprietary power control parameters.
  • the second mode the first power control parameter determined by the network device satisfies the following formula:
  • the P 0_UE_2 is the first power control parameter
  • the P 0_UE_1 is a preset parameter, where the parameter may be a dedicated power control parameter initially configured by the network device, and the P offset is the received power of the first uplink signal. a power offset value with a received power of the second uplink signal;
  • the power offset value P offset satisfies the following formula:
  • the power offset value P offset is a power offset estimation value.
  • Average of the power offset estimate The following formula is satisfied by satisfying the following formula:
  • the P RX1 in the above formula (8) and the formula (9) is the received power of the network device to receive the first uplink signal
  • the P RX2 is the received power of the network device to receive the second uplink signal.
  • the power control parameter P O when the terminal device determines the uplink transmit power for transmitting the uplink signal, the power control parameter P O needs to be used, and the P O can be further embodied as P O_PUSCH .
  • the power control parameter P O includes two parts: a common power control parameter and a dedicated power control parameter.
  • the common power control parameter is a parameter common to each cell in the cell, that is, the same common power control parameter used by all terminal devices in one cell when determining the transmit power.
  • the dedicated power control parameter is a parameter that the network device separately configures for each terminal device, and the dedicated power control parameters of each terminal device in one cell are not necessarily the same.
  • the first power control parameter determined by the network device is used to modify the power control parameter P O of the terminal device. Further, since the first power control parameter of each terminal device may be different, the first A power control parameter is used to modify the dedicated power control parameter.
  • the terminal device can directly determine the sum of the first power control parameter and the common power control parameter as the power control parameter P O , thereby controlling according to the power.
  • the parameter P O calculates the uplink transmit power.
  • the network device may send power adjustment information to the terminal device by using system messages, RRC signaling, or downlink control information.
  • the terminal device may determine, according to the power adjustment information, an uplink transmit power used by the third carrier to send the third uplink signal to the network device.
  • the terminal device determines, according to the power adjustment information, a path loss of the corrected first carrier, and according to the The modified path loss of the first carrier determines an uplink transmit power used by the third uplink signal to send to the network device in the first carrier.
  • the path loss of the modified first carrier is the sum of the path loss of the second carrier and the path loss offset value, that is, the path loss of the corrected first carrier satisfies the following formula:
  • the terminal device may determine, according to the modified path loss of the first carrier, an uplink transmit power used by the third uplink signal to send to the network device in the first carrier.
  • the third uplink signal sent by the terminal device includes, but is not limited to, an uplink signal such as a sounding reference signal and physical uplink data channel information.
  • the physical uplink data channel information may be physical uplink shared channel (PUSCH) information, physical uplink control channel (PUCCH) information, and the like.
  • the terminal device determines the uplink transmit power of the third uplink signal, such as the sounding reference signal, the physical uplink data channel information, and the physical uplink control channel information.
  • the third uplink signal such as the sounding reference signal, the physical uplink data channel information, and the physical uplink control channel information.
  • the uplink transmit power P PUSCH (i) of the physical uplink shared channel information may be Meet the following formula:
  • P CMAX (i) is the maximum transmission power of the terminal equipment configured on the network side
  • M PUSCH (i) is the corresponding number of resource blocks in the frequency domain of the physical uplink data channel
  • P O_PUSCH (j) is the power control parameter
  • is The path loss compensation factor may be a parameter configured by the network device through high layer signaling
  • PL is the path loss of the modified first carrier
  • ⁇ TF (i) is a power offset based on the modulation and coding strategy
  • f(i ) is a closed loop power control parameter configured through downlink control information.
  • the uplink transmit power P PUCCH (i) of the physical uplink control channel information may be Meet the following formula:
  • P O_PUCCH is a power control parameter
  • h(n CQI , n HARQ , n SR ) is a power offset set according to the carried channel quality information and the number of response response bits
  • ⁇ F_PUCCH (F) is configured for higher layer signaling.
  • the parameter related to the physical uplink control channel format, ⁇ TxD (F') is the power offset determined according to the adjustment coding mode and the data type
  • g(i) is the adjustment value of the closed-loop power control of the terminal device
  • PL is the corrected value.
  • the path loss of the first carrier is a power control parameter
  • h(n CQI , n HARQ , n SR ) is a power offset set according to the carried channel quality information and the number of response response bits
  • ⁇ F_PUCCH (F) is configured for higher layer signaling.
  • the parameter related to the physical uplink control channel format, ⁇ TxD (F') is the power offset determined
  • the uplink transmit power P SRS (i) of the sounding reference signal may satisfy the following formula:
  • P CMAX (i) is the maximum transmission power of the terminal equipment configured on the network side
  • P SRS_OFFSET is the power offset configured for the high layer signaling
  • M SRS (i) is the corresponding number of resource blocks in the SRS frequency domain
  • P O_PUSCH (j) is the path loss compensation factor, which can be a parameter configured by the network device through high layer signaling
  • PL is the path loss of the modified first carrier
  • f(i) is configured by the downlink control information. Closed loop power control parameters.
  • the terminal device When the terminal device receives the path loss offset value sent by the network device, in the formulas (11) to (13), except for the modified path loss PL of the first carrier, other parameters may be considered as known. Parameters, the physical meaning of these parameters and the method of determination are not repeated here.
  • the transmission time unit may refer to the length of time specified by the protocol, and may be, for example, the length of time of one time slot, or the length of time of one subframe. This is not limited.
  • the terminal device may determine the power control parameter according to the power adjustment information, and determine, according to the power control parameter, to send, to the network device, the The uplink transmit power used by the third uplink signal.
  • the terminal device may determine the sum of the first power control parameter and the common power control parameter as the power control parameter P O , so as to determine, according to the power control parameter P O , to send the third uplink signal to the network device in the first carrier.
  • the power control parameter may be substituted into the formula (11) to the formula (13) to calculate the uplink transmit power.
  • the parameter PL in the formulas (11) to (13) can be regarded as a known value, and the second carrier measured by the terminal device is used.
  • the network device may send the second information to the terminal device, where the second information indicates that the terminal device determines the first carrier according to the path loss offset value or the first power control parameter.
  • the uplink transmit power used when transmitting the third uplink signal to the network device.
  • the terminal device After receiving the second information, the terminal device determines, according to the path loss offset value or the first power control parameter, a third uplink used when sending a third uplink signal to the network device in the first carrier. Transmit power.
  • the terminal device After receiving the second information, the terminal device determines, according to the path loss offset value or the first power control parameter, a third uplink used when sending a third uplink signal to the network device in the first carrier. Transmit power.
  • the network device may send the second information to the terminal device by using a system message, RRC signaling, or downlink control information.
  • the embodiment of the present application further provides a network device, where the network device can perform the foregoing method embodiments.
  • FIG. 4 a schematic structural diagram of a network device 400 is provided in this embodiment of the present application.
  • the network device can perform step 301, step 304, and content related to step 301 and step 304 in the flow shown in FIG.
  • the network device 400 includes:
  • the sending unit 401 is configured to send the first information to the terminal device, where the first information indicates that the terminal device sends an uplink signal in the first carrier by using the first transmit power, where the first transmit power is according to the terminal device Determining, by the power information of the second transmit power of the uplink signal in the second carrier;
  • the receiving unit 402 is configured to receive, by using the first carrier, a first uplink signal that is sent by the terminal device by using the first transmit power, and receive, by using the second carrier, the second transmit power by using the second carrier The second uplink signal sent.
  • FIG. 5 a schematic structural diagram of a network device is provided in this embodiment of the present application.
  • the network device can perform step 301, step 304, and content related to step 301 and step 304 in the flow shown in FIG.
  • the network device 500 includes a processor 501 and a transceiver 502.
  • the processor 501 is configured to send the first information to the terminal device by using the transceiver 502, where the first information indicates that the terminal device sends an uplink signal in the first carrier by using the first transmit power, where the first The transmit power is determined according to the power information of the second transmit power of the uplink signal sent by the terminal device in the second carrier;
  • the processor 501 is further configured to receive, by using the first carrier, the first uplink signal that is sent by the terminal device by using the first transmit power by using the first carrier, and receiving the terminal by using the second carrier.
  • the device uses the second uplink signal sent by the second transmit power.
  • the network device 500 may further include a memory 503, which may be used to store programs/codes pre-installed at the time of shipment of the network device 500, and program code or the like including computer operation instructions for execution by the processor 501.
  • the embodiment of the present application further provides a terminal device, where the terminal device can perform the foregoing method embodiments.
  • FIG. 6 a schematic structural diagram of a terminal device is provided in this embodiment of the present application.
  • the network device can perform step 302, step 303, and steps 302 and 303 in the flow shown in FIG.
  • the terminal device 600 includes:
  • the receiving unit 601 is configured to receive, by the network device, the first information, where the first information indicates that the terminal device sends an uplink signal in the first carrier by using the first transmit power, where the first transmit power is Determining, by the terminal device, the power information of the second transmit power of the uplink signal in the second carrier;
  • the sending unit 602 is configured to send, by using the first transmit power, the first uplink signal to the network device in the first carrier, and send the second transmit power to the network device by using the second transmit power in the second carrier. Two uplink signals.
  • the terminal device 600 further includes a processing unit 603: the receiving unit 601 is further configured to:
  • the processing unit 603 is configured to determine, according to the power adjustment information, an uplink transmit power used by the third uplink signal to send to the network device in the first carrier.
  • terminal device 600 For other content that the terminal device 600 can perform, reference may be made to the foregoing description, and details are not described herein again.
  • FIG. 7 a schematic structural diagram of a terminal device is provided in this embodiment of the present application.
  • the terminal device can perform step 302, step 303, and content related to step 302 and step 303 in the flow shown in FIG.
  • the terminal device 700 includes a processor 701 and a transceiver 702.
  • the processor 701 is configured to receive, by the transceiver 702, first information from a network device, where the first information indicates that the terminal device sends an uplink signal in a first carrier by using a first transmit power, where the first Transmitting power is determined by the terminal device according to power information of a second transmit power that the terminal device sends an uplink signal in the second carrier;
  • the processor 701 is further configured to send, by using the transceiver 702, the first uplink signal to the network device by using the first transmit power in the first carrier, and adopting the second transmit signal in a second carrier.
  • the power sends a second uplink signal to the network device.
  • terminal device 700 For other content that the terminal device 700 can perform, reference may be made to the foregoing description, and details are not described herein again.
  • the terminal device 700 may further include a memory 703 for storing a program/code pre-installed at the time when the terminal device 700 is shipped, or a program code including a computer operation instruction when the processor 701 is executed.
  • processing units in the foregoing network device and the terminal device may each include a plurality of processing units, and similarly, the processor may also include multiple processors.
  • the embodiment of the present application further provides a computer readable storage medium for storing computer software instructions required to execute the foregoing processor, which includes a program for executing the above-mentioned processor.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、终端设备及网络设备,其中方法包括:网络设备向终端设备发送第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定;所述网络设备通过所述第一载波接收所述终端设备采用所述第一发射功率发送的第一上行信号,以及通过所述第二载波接收所述终端设备采用所述第二发射功率发送的第二上行信号。

Description

一种通信方法、终端设备及网络设备
本申请要求在2017年5月5日提交国家专利局、申请号为201710313897.7、发明名称为“一种系统信息广播、系统信息接收方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉涉及通信技术领域,尤其涉及一种通信方法、终端设备及网络设备。
背景技术
在通信系统的演进中,下一代的通信系统被要求能够与上一代的通信系统共存,即不影响上一代通信系统的性能,如长期演进(Long Term Evolution,LTE)系统要求能够与3G系统在邻频共存。目前的讨论中,在6GHz以下的频带,可以同时部署5G的新无线(New Radio,NR)系统和LTE系统,且NR系统和LTE系统可以是同频共存。具体来说,从频带利用的角度来看,由于业务量的需求和变化,部署了LTE系统的频带有可能存在频带使用率比较低的情况,如对于上行频带,由于上行业务量比较小,LTE系统的频分双工(Frequency Division Duplexing,FDD)上行链路(uplink,UL)频带的利用率较低,在这些频带,NR系统可以使用这些频带的一部分带宽,或者这些频带的一部分子帧用来承载NR系统的业务传输,即NR系统支持和LTE系统复用在一个频带,共享相同的频带资源,从而高效率地利用频带资源。
基站同时部署NR小区与LTE小区时,NR小区与LTE小区可以共享LTE小区的上行频带,此时LTE终端设备可以在LTE小区的上行载波中发送LTE信号或NR终端设备可以在LTE小区的上行载波中发送NR信号。例如,LTE小区的上行载波采用低频(Low Frequency,LF)载波F1,LTE小区的下行载波采用LF载波F3,F1和F3是LTE系统FDD的一对成对频谱。在载波F1中既有终端设备发送LTE信号,也有终端设备发送NR信号,但只有LTE的终端设备能在载波F3中接收到LTE信号。在该场景下,NR小区通过时分双工(Time Division Duplexing,TDD)方式采用高频(High Frequency,HF)载波F2,载波F2只用于传输NR信号,NR终端设备只能在载波F2接收NR下行信号。
终端设备在发送上行信号之前需要通过下行路损估计值确定上行发射功率,对于LTE终端设备,可以通过承载在载波F3的LTE下行参考信号测量得到载波F1的下行路损估计值。对于NR终端设备,可以通过承载在载波F2的NR下行参考信号测量得到载波F2的下行路损估计值,但是,由于HF载波和LF载波在频域上相隔较远,例如HF载波在3.5GHz,LF载波在1.8GHz,信道特性往往不同,且HF载波和LF载波的天线配置也可能不同,如果按照传统方法,NR终端设备利用在载波F2上接收下行参考信号的接收功率,估计终端设备在载波F1上发送NR信号的下行路损估计值会有较大的误差,从而导致根据该下行路损估计值确定出的上行发射功率的准确性降低。
还有一种可能的场景,网络设备在部署NR小区时,一种部署方式为NR的上行载波和下行载波解耦,即NR的上行载波和下行载波的双工间距(duplex distance)可以是灵活 的,如在低频载波F4部署上行,在高频载波F5部署下行和上行。在这种场景下,同样存在上述问题。
因此上述场景下,如何确定终端设备在该小区发送上行信号的上行发射功率,是一个亟待解决的问题。
发明内容
本申请实施例提供一种通信方法、终端设备及网络设备,用于确定终端设备发送上行信号的上行发射功率。
本申请实施例提供了一种通信方法,该方法包括:
网络设备向终端设备发送第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定;
所述网络设备通过所述第一载波接收所述终端设备采用所述第一发射功率发送的第一上行信号,以及通过所述第二载波接收所述终端设备采用所述第二发射功率发送的第二上行信号。
根据上述方法,网络设备通过第一信息指示终端设备采用第一发射功率在第一载波中发送上行信号,且第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率确定,也即网络设备可以指示终端设备在第一载波的发射功率,而不需要终端设备根据第一载波的功率控制参数和路损来确定发射功率,避免了终端设备使用不准确的路损来计算功率的情况,因此网络设备可以更准确的控制终端设备在第一载波中发送上行信号的上行发射功率。
可选的,所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定,包括:
所述第一发射功率根据所述终端设备在第二载波中发送第二上行信号的第二发射功率确定;或者
所述第一发射功率根据所述终端设备在第二载波中发送第二上行信号的第二功率控制参数确定。
可选的,根据所述第二发射功率确定的所述第一发射功率为以下任意一种:
所述第一发射功率等于所述第二发射功率;
所述第一发射功率等于所述第二发射功率与偏移值的和;
所述第一发射功率根据所述第二发射功率的功率谱密度和所述第一上行信号的带宽确定;
所述第一发射功率根据所述第二发射功率的功率谱密度、所述偏移值和所述第一上行信号的带宽确定;
所述第一发射功率根据所述第二发射功率的资源单元的功率和所述第一上行信号的资源单元数目确定;
所述第一发射功率根据所述第二发射功率的资源单元的功率、所述偏移值和所述第一上行信号的资源单元数目确定。
可选的,所述第一发射功率根据所述第二功率控制参数确定,包括:
所述第一发射功率根据所述第二功率控制参数、所述第二载波的路损、所述第一上行 信号的资源块数目和上行功率控制公式确定;或者
所述第一发射功率根据所述第二功率控制参数、所述第二载波的路损、所述第一上行信号的资源块数目、偏移值和上行功率控制公式确定。
可选的,所述偏移值为所述网络设备发送给所述终端设备的,和/或所述偏移值满足以下公式:
Figure PCTCN2018085183-appb-000001
其中,offset为所述偏移值,α为路损补偿因子,f1为第一载波的载频,f2为第二载波的载频。
可选的,所述方法还包括:
所述网络设备向所述终端设备发送功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定。
通过上述方法,网络设备通过第一载波接收到第一上行信号以及通过第二载波接收到第二上行信号之后,可以确定功率调整信息,并将确定出的功率调整信息发送给终端设备。由于根据上述方法获得的功率调整信息可以更准确的确定出第一载波的路损,或者功率控制参数,从而可以更准确的适配第一载波的路损,因此终端设备在接收到功率调整信息之后,可以更准确的根据功率调整信息确定出在第一载波中发送上行信号的上行发射功率。
可选的,所述功率调整信息为所述第一载波和所述第二载波的路损偏移值;或者
所述功率调整信息为第一功率控制参数。
可选的,所述路损偏移值PL offset满足以下公式:
PL offset=(P TX1-P TX2)-(P RX1-P RX2)
或者,所述路损偏移值PL offset为路损偏移估计值
Figure PCTCN2018085183-appb-000002
的平均值,其中,所述路损偏移估计值
Figure PCTCN2018085183-appb-000003
满足以下公式:
Figure PCTCN2018085183-appb-000004
其中,上述两个公式中的P TX1为所述第一发射功率,P TX2为所述第二发射功率,P RX1为所述网络设备接收所述第一上行信号的接收功率,P RX2为所述网络设备接收所述第二上行信号的接收功率。
可选的,所述第一功率控制参数满足以下公式:
P 0_UE_2=P 0_UE_1+α×PL offset
其中,P 0_UE_2为所述第一功率控制参数,PL offset为所述路损偏移值,α为路损补偿因子,P 0_UE_1为预设参数。
可选的,所述第一功率控制参数满足以下公式:
P 0_UE_2=P 0_UE_1-P offset
其中,P 0_UE_2为所述第一功率控制参数,P 0_UE_1为预设参数,P offset为所述第一上行信号的接收功率与所述第二上行信号的接收功率的功率偏移值;
其中,所述功率偏移值P offset满足以下公式:
P offset=P RX1-P RX2
或者,所述功率偏移值P offset为功率偏移估计值
Figure PCTCN2018085183-appb-000005
的平均值,其中,所述功率偏移估计值
Figure PCTCN2018085183-appb-000006
满足以下公式满足以下公式:
Figure PCTCN2018085183-appb-000007
其中,上述两个公式中的P RX1为所述网络设备接收所述第一上行信号的接收功率,P RX2为所述网络设备接收所述第二上行信号的接收功率。
可选的,所述第一载波的频率低于所述第二载波的频率,且所述第一载波为上行载波、所述第二载波为时分双工载波。
可选的,所述第一载波用于承载长期演进LTE系统的上行信号以及新无线NR系统的上行信号;
所述第二载波用于承载NR系统的上行信号和下行信号。
可选的,所述方法还包括:
所述网络设备向所述终端设备发送第二信息,所述第二信息指示所述终端设备根据所述路损偏移值确定在第一载波中向所述网络设备发送上行信号时所使用的上行发射功率。
本申请实施例提供了一种通信方法,所述方法包括:
终端设备从网络设备接收第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率为所述终端设备根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定的;
所述终端设备在所述第一载波中采用所述第一发射功率向所述网络设备发送第一上行信号,在第二载波中采用所述第二发射功率向所述网络设备发送第二上行信号。
根据上述方法,终端根据第一信息采用第一发射功率在第一载波中发送上行信号,且第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率确定,也即终端设备在第一载波的发射功率,不需要终端设备根据第一载波的功率控制参数和路损来确定发射功率,避免了终端设备使用不准确的路损来计算功率的情况,因此终端设备在第一载波中发送上行信号的上行发射功率更准确。
可选的,所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定,包括:
所述第一发射功率根据所述终端设备在第二载波中发送第二上行信号的第二发射功率确定;或者
所述第一发射功率根据所述终端设备在第二载波中发送第二上行信号的第二功率控制参数确定。
可选的,根据所述第二发射功率确定的所述第一发射功率为以下任意一种:
所述第一发射功率等于所述第二发射功率;
所述第一发射功率等于所述第二发射功率与偏移值的和;
所述第一发射功率根据所述第二发射功率的功率谱密度和所述第一上行信号的带宽确定;
所述第一发射功率根据所述第二发射功率的功率谱密度、所述偏移值和所述第一上行信号的带宽确定;
所述第一发射功率根据所述第二发射功率的资源单元的功率和所述第一上行信号的 资源单元数目确定;
所述第一发射功率根据所述第二发射功率的资源单元的功率、所述偏移值和所述第一上行信号的资源单元数目确定。
可选的,所述第一发射功率根据所述第二功率控制参数确定,包括:
所述第一发射功率根据所述第二功率控制参数、所述第二载波的路损、所述第一上行信号的资源块数目和上行功率控制公式确定;或者
所述第一发射功率根据所述第二功率控制参数、所述第二载波的路损、所述第一上行信号的资源块数目、偏移值和上行功率控制公式确定。
可选的,所述偏移值为所述网络设备发送给所述终端设备的,和/或所述偏移值满足以下公式:
Figure PCTCN2018085183-appb-000008
其中,offset为所述偏移值,α为路损补偿因子,f1为第一载波的载频,f2为第二载波的载频。
可选的,所述方法还包括:
所述终端设备从所述网络设备接收功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定;
所述终端设备根据所述功率调整信息确定在所述第一载波中向所述网络设备发送第三上行信号所采用的上行发射功率。
通过上述方法,终端设备可以获得功率调整信息,而由于根据上述方法获得的功率调整信息可以更准确的确定出第一载波的路损,或者功率控制参数,从而可以更准确的适配第一载波的路损,因此终端设备在接收到功率调整信息之后,可以更准确的根据功率调整信息确定出在第一载波中发送上行信号的上行发射功率。
可选的,所述功率调整信息为所述第一载波和所述第二载波的路损偏移值;或者
所述功率调整信息为第一功率控制参数。
可选的,所述路损偏移值PL offset满足以下公式:
PL offset=(P TX1-P TX2)-(P RX1-P RX2)
或者,所述路损偏移值PL offset为路损偏移估计值
Figure PCTCN2018085183-appb-000009
的平均值,其中,所述路损偏移估计值
Figure PCTCN2018085183-appb-000010
满足以下公式:
Figure PCTCN2018085183-appb-000011
其中,上述两个公式中的P TX1为所述第一发射功率,P TX2为所述第二发射功率,P RX1为所述网络设备接收所述第一上行信号的接收功率,P RX2为所述网络设备接收所述第二上行信号的接收功率。
可选的,所述第一功率控制参数满足以下公式:
P 0_UE_2=P 0_UE_1+α×PL offset
其中,P 0_UE_2为所述第一功率控制参数,PL offset为所述路损偏移值,α为路损补偿因子,P 0_UE_1为预设参数。
可选的,所述第一功率控制参数满足以下公式:
P 0_UE_2=P 0_UE_1-P offset
其中,P 0_UE_2为所述第一功率控制参数,P 0_UE_1为预设参数,P offset为所述第一上行信号的接收功率与所述第二上行信号的接收功率的功率偏移值;
其中,所述功率偏移值P offset满足以下公式:
P offset=P RX1-P RX2
或者,所述功率偏移值P offset为功率偏移估计值
Figure PCTCN2018085183-appb-000012
的平均值,其中,所述功率偏移估计值
Figure PCTCN2018085183-appb-000013
满足以下公式满足以下公式:
Figure PCTCN2018085183-appb-000014
其中,上述两个公式中的P RX1为所述网络设备接收所述第一上行信号的接收功率,P RX2为所述网络设备接收所述第二上行信号的接收功率。
可选的,所述终端设备根据所述功率调整信息确定在所述第一载波中向所述网络设备发送第三上行信号所采用的上行发射功率,包括:
所述终端设备根据所述功率调整信息确定修正后的第一载波的路损,并根据所述修正后的第一载波的路损确定在所述第一载波中向所述网络设备发送所述第三上行信号所采用的上行发射功率;或者
所述终端设备根据所述功率调整信息确定第三功率控制参数,并根据所述第三功率控制参数确定在所述第一载波中向所述网络设备发送所述第三上行信号所采用的上行发射功率。
本申请实施例提供了一种网络设备,包括:处理器和收发机
所述处理器,用于通过所述收发机向终端设备发送第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定;
所述处理器还用于通过所述收发机通过所述第一载波接收所述终端设备采用所述第一发射功率发送的第一上行信号,以及通过所述第二载波接收所述终端设备采用所述第二发射功率发送的第二上行信号。
可选的,所述处理器还用于:
通过所述收发机向所述终端设备发送功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定。
本申请实施例提供了一种终端设备,包括:处理器和收发机
所述处理器,用于通过所述收发机从网络设备接收第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率为所述终端设备根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定的;
所述处理器还用于通过所述收发机在所述第一载波中采用所述第一发射功率向所述网络设备发送第一上行信号,在第二载波中采用所述第二发射功率向所述网络设备发送第二上行信号。
可选的,所述处理器还用于:
通过所述收发机从所述网络设备接收功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定;
根据所述功率调整信息确定在所述第一载波中向所述网络设备发送第三上行信号所采用的上行发射功率。
本申请实施例提供了一种网络设备,包括:
发送单元,用于向终端设备发送第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定;
接收单元,用于通过所述第一载波接收所述终端设备采用所述第一发射功率发送的第一上行信号,以及通过所述第二载波接收所述终端设备采用所述第二发射功率发送的第二上行信号。
可选的,所述发送单元还用于:向所述终端设备发送功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定。
可选的,所述网络设备包括处理单元,用于生成所述功率调整信息。
可选的,所述网络设备包括处理单元,用于生成所述第一信息。
本申请实施例提供了一种终端设备,包括:
接收单元,用于从网络设备接收第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率为所述终端设备根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定的;
发送单元,用于在所述第一载波中采用所述第一发射功率向所述网络设备发送第一上行信号,在第二载波中采用所述第二发射功率向所述网络设备发送第二上行信号。
可选的,所述终端设备还包括处理单元:
所述接收单元还用于:从所述网络设备接收功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定;
所述处理单元,用于根据所述功率调整信息确定在所述第一载波中向所述网络设备发送第三上行信号所采用的上行发射功率。
本申请还提供了一种通信装置,用于执行上述任一所述的方法。
所述通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行上述任一所述的方法。
本申请还提供了一种计算机可读存储介质,用于存储为执行上述任一通信方法的任意一种设计的功能所用的计算机软件指令,其包含用于执行上述任意一种设计的通信方法所设计的程序。
本申请实施例还提供了一种通信系统,该系统包括上述任意一种设计提供的终端设备或网络设备,可选的,该系统还可以包括本申请实施例提供的方案中与所述终端设备或网络设备进行交互的其他设备。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的通信方法。
附图说明
图1为适用于本申请实施例的一种场景示意图;
图2为本申请实施例提供的一种载波中资源分配示意图;
图3为本申请实施例提供的一种通信方法流程示意图;
图4为本申请实施例提供的一种网络设备结构示意图;
图5为本申请实施例提供的一种网络设备结构示意图;
图6为本申请实施例提供的一种终端设备结构示意图;
图7为本申请实施例提供的一种终端设备结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例可以应用于各种移动通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、演进的长期演进(evolved Long Term Evolution,eLTE)系统、5G系统(例如NR系统)等其它移动通信系统。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端设备,又称之为用户设备(User Equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端设备例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
2)、网络设备,可以是普通的基站(如NodeB或eNB),可以是新无线控制器(New Radio controller,NR controller),可以是NR系统中的gNB,可以是集中式网元(Centralized Unit),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是中继(relay),可以是分布式网元(Distributed Unit),可以是接收点(Transmission Reception Point,TRP)或传输点(Transmission Point,TP)或者任何其它无线接入设备,但本申请实施例不限于此。
如图1所示,为适用于本申请实施例的一种场景示意图。图1中,网络设备101可以同时工作在LTE系统与NR系统。终端设备102和终端设备103可以共享上行载波,具体的,终端设备102采用载波f1与网络设备101进行上行通信、采用载波f3与网络设备101进行下行通信。终端设备103采用载波f1与网络设备101进行上行通信、并通过TDD方式采用载波f2与网络设备101进行上下行通信。其中,载波f1和载波f3可以为一对成对频谱,且均为低频载波;载波f3可以为高频载波。
终端设备102和终端设备103共享载波f1时,载波f1中的资源分配可以参考图2所示。图2中,载波f1中的资源可以划分为LTE UL资源以及NRUL资源等。终端设备102可以采用载波f1中的LTE UL资源向网络设备101发送LTE信号,终端设备103可以采用载波f1中的NR UL资源向网络设备101发送NR信号。
基于上述描述,参见图3,为本申请实施例提供的一种通信方法流程示意图。该方法包括:
步骤301:网络设备向终端设备发送第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定,或者所述第一信息指示所述终端设备 根据第二发射功率的功率信息确定在第一载波中发送上行信号的第一发射功率。
步骤302:终端设备从网络设备接收第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率为所述终端设备根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定的,或者所述第一信息指示终端设备根据第二发射功率的功率信息确定在第一载波中发送上行信号的第一发射功率;
步骤303:所述终端设备在所述第一载波中采用所述第一发射功率向所述网络设备发送第一上行信号,在第二载波中采用所述第二发射功率向所述网络设备发送第二上行信号。
步骤304:所述网络设备通过所述第一载波接收所述终端设备采用所述第一发射功率发送的第一上行信号,以及通过所述第二载波接收所述终端设备采用所述第二发射功率发送的第二上行信号。
本申请实施例中,所述第一载波的频率低于所述第二载波的频率,且所述第一载波为上行载波、所述第二载波为TDD载波。
可选的,所述第一载波用于承载LTE系统的上行信号以及NR系统的上行信号;所述第二载波用于承载NR系统的上行信号和下行信号,例如第二载波可以承载NR系统的下行参考信号,也可以承载NR系统的上行参考信号。
步骤301中,网络设备发送第一信息的场景可能存在多种,一种可能的场景中,当终端设备初始接入到小区时,网络设备完全没有终端设备在第一载波的路损信息,此时网络设备向终端设备发送所述第一信息。另一种可能的场景中,当网络设备判断终端设备在第一载波的路损估计不准确,如网络设备接收到的终端设备在第一载波的上行信号的接收功率与网络设备的目标接收功率相差比较大时,网络设备判断终端设备在第一载波上的上行信号的发射功率出现了偏差,即终端设备在第一载波上的路损发生了变化,也即终端设备在第一载波的路损与终端设备在第二载波的路损的路损偏移值发生了变化,需要重新测量,该路损偏移值的变化是由于终端设备的移动,导致终端设备在第一载波的天线增益和在第二载波的天线增益之间的差值发生了变化导致的,此时网络设备可以向终端设备发送所述第一信息。
所述第一信息指示终端设备根据第二发射功率的功率信息确定在第一载波中发送上行信号的第一发射功率,或者所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号时,终端设备可以先确定在第二载波中发送上行信号的第二发射功率的功率信息,然后根据第二发射功率的功率信息确定第一发射功率。
第二发射功率的功率信息可以是指终端设备在第二载波中发送上行信号的第二发射功率,也可以是指终端设备在第二载波中发送第二上行信号的第二功率控制参数。
第二发射功率的功率信息是指终端设备在第二载波中发送上行信号的第二发射功率时,根据所述第二发射功率确定的所述第一发射功率为以下任意一种:
所述第一发射功率等于所述第二发射功率;
所述第一发射功率等于所述第二发射功率与偏移值的和;
所述第一发射功率根据所述第二发射功率的功率谱密度和所述第一上行信号的带宽确定;
所述第一发射功率根据所述第二发射功率的功率谱密度、所述偏移值和所述第一上行信号的带宽确定;
所述第一发射功率根据所述第二发射功率的资源单元的功率和所述第一上行信号的资源单元数目确定;
所述第一发射功率根据所述第二发射功率的资源单元的功率、所述偏移值和所述第一上行信号的资源单元数目确定。
其中,所述偏移值为网络设备发送给所述终端设备的,此时所述网络设备发送给所述终端设备的偏移值可以为预设的,也可以偏移值满足以下公式:
Figure PCTCN2018085183-appb-000015
其中,offset为所述偏移值,α为路损补偿因子,路损补偿因子可以为网络设备通过高层信令配置的参数,f1为第一载波的载频,f2为第二载波的载频。
所述偏移值也可以不是由网络设备发送给终端设备的,而是由网络设备与终端设备预先约定的,例如网络设备与终端设备预先预定根据公式(1)确定偏移值,此时网络设备不需要向终端设备发送所述偏移值。
需要说明的是,本申请实施例中,第二发射功率的确定方法可以采用现有技术实现,例如可以根据现有的上行发射功率控制公式实现,在此不再赘述。
举例来说,终端设备接收到第一信息之后,可以根据现有的上行发射功率的计算方法确定在第二载波中发送上行信号的第二发射功率,然后确定第一发射功率等于第二发射功率,或者根据公式(1)确定偏移值,再将第二发射功率与偏移值的和确定为第一发射功率,或者根据网络侧发送的偏移值,再将第二发射功率与偏移值的和确定为第一发射功率。
第二发射功率的功率信息是指终端设备在第二载波中发送第二上行信号的第二功率控制参数时,所述第一发射功率可以根据所述第二功率控制参数、所述第二载波的路损、所述第一上行信号的资源块数目和上行功率控制公式确定;或者所述第一发射功率还可以根据所述第二功率控制参数、所述第二载波的路损、所述第一上行信号的资源块数目、偏移值和上行功率控制公式确定。
其中,第二功率控制参数可以是指网络设备配置给终端设备的、在第二载波发送上行信号时计算上行发射功率的功率控制参数,可以参考现有技术,如可以包括但不限于路损补偿因子α,目标接收功率P O,在此不再赘述,第二载波的路损可以通过终端设备在第二载波上发送上行信号以及网络设备接收所述上行信号的接收功率确定,在此不再赘述;第一上行信号的资源块数目由网络设备进行调度,具体根据实际情况确定;上行功率控制公式可以参考现有技术中的描述,在此不再赘述。
需要说明的是,本申请实施例中,所述第一信息可以承载在系统消息,或者无线资源控制(Radio Resource Control,RRC)信令,或者下行控制信息(Downlink Control Information,DCI)中。上行信号可以是上行参考信号,如周期性的探测参考信号(Sounding Reference Signal,SRS),或者非周期的SRS。上行信号也可以是物理上行数据信道信息,或者物理上行控制信道信息,或者物理上行随机接入信道信息。
步骤302中,终端设备可以先确定在第二载波中发送第二上行信号的第二发射功率的功率信息,然后根据第二发射功率的功率信息确定第一发射功率,具体可以参考步骤301中的描述,在此不再赘述。
步骤303中,终端设备可以同时在第一载波中发送第一上行信号以及在第二载波发送 中第二上行信号,也可以分别在第一载波中发送第一上行信号以及在第二载波中发送第二上行信号,本申请实施例对此并不限定。
需要说明的是,终端设备在第一载波中发送第一上行信号的第一带宽与在第二载波上发送第二上行信号的第二带宽,可以相同,也可以不同。当终端设备在第一载波中发送第一上行信号的第一带宽与在第二载波上发送第二上行信号的第二带宽相同时,第一发射功率等于第二发送功率,表示终端设备在第一载波中发送第一上行信号时第一带宽的发射功率等于终端设备在第二载波中发送第二上行信号时第二带宽的发射功率;所述第一发射功率等于所述第二发射功率与偏移值的和,表示终端设备发送第一上行信号时第一带宽的发射功率等于终端设备发送第二上行信号时第二带宽的发射功率与偏移值的和。
当终端设备在第一载波中发送第一上行信号的第一带宽与在第二载波上发送第二上行信号的第二带宽不同时,第一发射功率等于第二发送功率,表示单位带宽内,如180KHz,或者如一个物理资源块(PRB,Physical Resource Block),终端设备发送第一上行信号时的发射功率等于终端设备发送第二上行信号时的发射功率;所述第一发射功率等于所述第二发射功率与偏移值的和,表示单位带宽内,终端设备发送第一上行信号时的发射功率等于终端设备发送第二上行信号时的发射功率与偏移值的和。
步骤304中,网络设备接收第一上行信号时,可以计算出接收所述第一上行信号的接收功率,相应的,网络设备接收第二上行信号时,可以计算出接收所述第二上行信号的接收功率。接收功率的具体确定方法,可以采用现有技术实现,本申请实施例对此并不限定,在此不再赘述。
网络设备接收第一上行信号以及第二上行信号之后,所述网络设备可以向所述终端设备发送功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定。
本申请实施例中,功率调整信息可以为所述第一载波和所述第二载波的路损偏移值,或者所述功率调整信息还可以为第一功率控制参数。
功率调整信息为所述第一载波和所述第二载波的路损偏移值时,网络设备可以通过以下方式确定路损偏移值:
网络设备从而可以确定出第一载波的路损,即:
PL F1=P TX1-P RX1······(2)
其中,PL F1为所述第一载波的路损,P TX1为所述第一发射功率,P RX1为所述网络设备接收所述第一上行信号的接收功率。
同样的,网络设备可以确定出第二载波的路损,即:
PL F2=P TX2-P RX2······(3)
其中,PL F2为所述第二载波的路损,P TX2为所述第二发射功率,P RX2为所述网络设备接收所述第二上行信号的接收功率。
最终,网络设备将第一载波的路损与第二载波的路损的差值确定为所述路损偏移值,即网络设备确定出的路损偏移值可以满足以下公式:
PL offset=(P TX1-P TX2)-(P RX1-P RX2)······(4)
其中,PL offset为所述路损偏移值,P TX1为所述第一发射功率,P TX2为所述第二发射功率,P RX1为所述网络设备接收所述第一上行信号的接收功率,P RX2为所述网络设备接收所 述第二上行信号的接收功率。
可选的,本申请实施例中,还可以将路损偏移估计值
Figure PCTCN2018085183-appb-000016
的平均值确定为路损偏移值,具体的,根据公式(5)确定多个路损偏移估计值,然后将确定出的多个路损偏移估计值的平均值确定为路损偏移值。
其中,所述路损偏移估计值
Figure PCTCN2018085183-appb-000017
满足以下公式:
Figure PCTCN2018085183-appb-000018
功率调整信息为第一功率控制参数时,网络设备可以通过以下方式确定第一功率控制参数:
第一种方式:网络设备确定出的所述第一功率控制参数满足以下公式:
P 0_UE_2=P 0_UE_1+α×PL offset······(6)
其中,P 0_UE_2为所述第一功率控制参数,PL offset为所述路损偏移值,α为路损补偿因子,P 0_UE_1为预设参数,该参数可以为网络设备为终端设备初始配置的专有功率控制参数。
第二种方式:网络设备确定出的所述第一功率控制参数满足以下公式:
P 0_UE_2=P 0_UE_1-P offset······(7)
其中,P 0_UE_2为所述第一功率控制参数,P 0_UE_1为预设参数,该参数可以为网络设备为终端设备初始配置的专有功率控制参数,P offset为所述第一上行信号的接收功率与所述第二上行信号的接收功率的功率偏移值;
其中,所述功率偏移值P offset满足以下公式:
P offset=P RX1-P RX2······(8)
或者,所述功率偏移值P offset为功率偏移估计值
Figure PCTCN2018085183-appb-000019
的平均值,其中,所述功率偏移估计值
Figure PCTCN2018085183-appb-000020
满足以下公式满足以下公式:
Figure PCTCN2018085183-appb-000021
其中,上述公式(8)和公式(9)中的P RX1为所述网络设备接收所述第一上行信号的接收功率,P RX2为所述网络设备接收所述第二上行信号的接收功率。
需要说明的是,在终端设备确定发送上行信号的上行发射功率时,需要用到功率控制参数P O,P O还可以进一步具体化为P O_PUSCH
Figure PCTCN2018085183-appb-000022
P O_PUCCH,功率控制参数P O包括两个部分:公共功率控制参数和专用功率控制参数。公共功率控制参数为小区中每个小区公共的参数,即一个小区中的所有终端设备在确定发射功率时,使用的相同的公共功率控制参数。专用功率控制参数为网络设备为每个终端设备分别配置的参数,一个小区中每个终端设备的专用功率控制参数并不一定相同。本申请实施例中,网络设备确定出的第一功率控制参数用于对终端设备的功率控制参数P O进行修正,进一步的,由于每个终端设备的该第一功率控制参数可能不同,该第一功率控制参数用于对专用功率控制参数进行修正,在计 算上行发射功率时,终端设备可以直接将第一功率控制参数与公共功率控制参数的和确定为功率控制参数P O,从而根据功率控制参数P O计算上行发射功率。
需要说明的是,网络设备可以通过系统消息,RRC信令,或者下行控制信息向终端设备发送功率调整信息。
所述终端设备若接收到网络设备发送的功率调整信息,则可以根据所述功率调整信息确定在所述第一载波中向所述网络设备发送第三上行信号所采用的上行发射功率。
具体的,功率调整信息为所述第一载波和所述第二载波的路损偏移值时,所述终端设备根据所述功率调整信息确定修正后的第一载波的路损,并根据所述修正后的第一载波的路损确定在所述第一载波中向所述网络设备发送所述第三上行信号所采用的上行发射功率。
其中,所述修正后的第一载波的路损为第二载波的路损与所述路损偏移值的和,即所述修正后的第一载波的路损满足以下公式:
PL=PL F2+PL offset······(10)
其中,PL为所述修正后的第一载波的路损。
然后,所述终端设备可以根据所述修正后的第一载波的路损确定在第一载波中向所述网络设备发送第三上行信号所采用的上行发射功率。
终端设备发送的第三上行信号包括但不限于探测参考信号、物理上行数据信道信息等上行信号。其中,物理上行数据信道信息可以是指物理上行共享信道(Physical Uplink Shared Channel,PUSCH)信息、物理上行控制信道(Physical Uplink Control Channel,PUCCH)信息等。
下面具体描述终端设备如何确定发送探测参考信号、物理上行数据信道信息、物理上行控制信道信息等第三上行信号的上行发射功率。
第一种可能的场景中,在第i个传输时间单元中,终端设备在第一载波中进行物理上行共享信道信息传输时,所述物理上行共享信道信息的上行发射功率P PUSCH(i)可以满足以下公式:
Figure PCTCN2018085183-appb-000023
其中:P CMAX(i)为网络侧配置的终端设备的最大传输功率,M PUSCH(i)为物理上行数据信道频域上对应的资源块数,P O_PUSCH(j)为功率控制参数、α为路损补偿因子,可以为网络设备通过高层信令配置的参数,PL为所述修正后的第一载波的路损,Δ TF(i)为基于调制与编码策略的功率偏移,f(i)为通过下行控制信息配置的闭环功率控制参数。
第二种可能的场景中,在第i个传输时间单元中,终端设备在第一载波中进行物理上行控制信道信息传输时,所述物理上行控制信道信息的上行发射功率P PUCCH(i)可以满足以下公式:
Figure PCTCN2018085183-appb-000024
其中:P O_PUCCH为功率控制参数,h(n CQI,n HARQ,n SR)为根据所承载的信道质量信息和应答响应比特数设置的功率偏置,Δ F_PUCCH(F)为高层信令配置的与物理上行控制信道格式相关的参数,Δ TxD(F′)为根据调整编码方式和数据类型确定的功率偏置,g(i)为终端设备闭环功率控制的调整值,PL为所述修正后的第一载波的路损。
第三种可能的场景中,在第i个传输时间单元中,终端设备在第一载波中发送探测参考信号时,所述探测参考信号的上行发射功率P SRS(i)可以满足以下公式:
Figure PCTCN2018085183-appb-000025
其中:P CMAX(i)为网络侧配置的终端设备最大传输功率,P SRS_OFFSET为高层信令配置的功率偏置,M SRS(i)为SRS频域上对应的资源块数,P O_PUSCH(j)为功率控制参数、α为路损补偿因子,可以为网络设备通过高层信令配置的参数,PL为所述修正后的第一载波的路损,f(i)为通过下行控制信息配置的闭环功率控制参数。
当终端设备接收到网络设备发送的路损偏移值时,公式(11)至公式(13)中,除了修正后的第一载波的路损PL之外,其他参数都可以认为是已知的参数,在此不再赘述这些参数的物理意义以及确定方法。
需要说明的是,本申请实施例中,传输时间单元可以是指协议规定的时间长度,例如可以是指一个时隙的时间长度,也可以是指一个子帧的时间长度等,本申请实施例对此并不限定。
功率调整信息为第一功率控制参数时,所述终端设备可以根据所述功率调整信息确定功率控制参数,并根据所述功率控制参数确定在所述第一载波中向所述网络设备发送所述第三上行信号所采用的上行发射功率。
具体的,终端设备可以将第一功率控制参数与公共功率控制参数的和确定为功率控制参数P O,从而根据功率控制参数P O确定在第一载波中向所述网络设备发送第三上行信号所采用的上行发射功率。具体的,可以将所述功率控制参数代入到公式(11)至公式(13),计算出上行发射功率。
需要说明的是,当终端设备接收到网络设备发送的专有功率控制参数时,公式(11)至公式(13)中的参数PL可以认为是已知值,为终端设备测量得到的第二载波的路损值,而其他参数都可以认为是已知的参数,在此不再赘述这些参数的物理意义以及确定方法。
可选的,所述网络设备可以向所述终端设备发送第二信息,所述第二信息指示所述终端设备根据所述路损偏移值或者所述第一功率控制参数确定在第一载波中向所述网络设 备发送第三上行信号时所使用的上行发射功率。
终端设备接收到所述第二信息后,根据所述路损偏移值或者所述第一功率控制参数确定在第一载波中向所述网络设备发送第三上行信号时所使用的第三上行发射功率。具体过程可以参考前面的描述,在此不再赘述。
需要说明的是,网络设备可以通过系统消息,RRC信令,或者下行控制信息向终端设备发送所述第二信息。
基于相同的技术构思,本申请实施例还提供一种网络设备,该网络设备可执行上述方法实施例。
如图4所示,为本申请实施例提供一种网络设备400结构示意图。该网络设备可以执行图3所示的流程中的步骤301、步骤304,以及与步骤301、步骤304相关的内容。
参见图4,该网络设备400包括:
发送单元401,用于向终端设备发送第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定;
接收单元402,用于通过所述第一载波接收所述终端设备采用所述第一发射功率发送的第一上行信号,以及通过所述第二载波接收所述终端设备采用所述第二发射功率发送的第二上行信号。
该网络设备400可以执行的其他内容可以参考前面的描述,在此不再赘述。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。
如图5所示,为本申请实施例提供一种网络设备结构示意图。该网络设备可以执行图3所示的流程中的步骤301、步骤304,以及与步骤301、步骤304相关的内容。
参见图5,该网络设备500包括:处理器501和收发机502。
所述处理器501,用于通过所述收发机502向终端设备发送第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定;
所述处理器501还用于通过所述收发机502通过所述第一载波接收所述终端设备采用所述第一发射功率发送的第一上行信号,以及通过所述第二载波接收所述终端设备采用所述第二发射功率发送的第二上行信号。
该网络设备500可以执行的其他内容可以参考前面的描述,在此不再赘述。
该网络设备500还可以包括存储器503,该存储器503可以用于存储网络设备500出厂时预装的程序/代码,也可以存储用于处理器501执行时的包括计算机操作指令的程序代码等。
基于相同的技术构思,本申请实施例还提供一种终端设备,该终端设备可执行上述方法实施例。
如图6所示,为本申请实施例提供一种终端设备结构示意图。该网络设备可以执行图3所示的流程中的步骤302、步骤303,以及与步骤302、步骤303相关的内容。
参见图6,该终端设备600包括:
接收单元601,用于从网络设备接收第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率为所述终端设备根据所述终 端设备在第二载波中发送上行信号的第二发射功率的功率信息确定的;
发送单元602,用于在所述第一载波中采用所述第一发射功率向所述网络设备发送第一上行信号,在第二载波中采用所述第二发射功率向所述网络设备发送第二上行信号。
所述终端设备600还包括处理单元603:所述接收单元601还用于:
从所述网络设备接收功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定;
所述处理单元603,用于根据所述功率调整信息确定在所述第一载波中向所述网络设备发送第三上行信号所采用的上行发射功率。
该终端设备600可以执行的其他内容可以参考前面的描述,在此不再赘述。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。
如图7所示,为本申请实施例提供一种终端设备结构示意图。该终端设备可以执行图3所示的流程中的步骤302、步骤303,以及与步骤302、步骤303相关的内容。
参见图7,该终端设备700包括:处理器701和收发机702。
所述处理器701,用于通过所述收发机702从网络设备接收第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率为所述终端设备根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定的;
所述处理器701还用于通过所述收发机702在所述第一载波中采用所述第一发射功率向所述网络设备发送第一上行信号,在第二载波中采用所述第二发射功率向所述网络设备发送第二上行信号。
该终端设备700可以执行的其他内容可以参考前面的描述,在此不再赘述。
其中,该终端设备700还可以包括存储器703,用于存储终端设备700出厂时预装的程序/代码,也可以存储用于处理器701执行时的包括计算机操作指令的程序代码等。
另外,上述网络设备和终端设备中的处理单元均可以包括多个处理单元,类似地,处理器也可以包括多个处理器。
本申请实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种通信方法,其特征在于,该方法包括:
    网络设备向终端设备发送第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定;
    所述网络设备通过所述第一载波接收所述终端设备采用所述第一发射功率发送的第一上行信号,以及通过所述第二载波接收所述终端设备采用所述第二发射功率发送的第二上行信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定。
  3. 一种通信方法,其特征在于,所述方法包括:
    终端设备从网络设备接收第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率为所述终端设备根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定的;
    所述终端设备在所述第一载波中采用所述第一发射功率向所述网络设备发送第一上行信号,在第二载波中采用所述第二发射功率向所述网络设备发送第二上行信号。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定;
    所述终端设备根据所述功率调整信息确定在所述第一载波中向所述网络设备发送第三上行信号所采用的上行发射功率。
  5. 一种网络设备,其特征在于,包括:处理器和收发机,
    所述处理器,用于通过所述收发机向终端设备发送第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定;
    所述处理器还用于通过所述收发机通过所述第一载波接收所述终端设备采用所述第一发射功率发送的第一上行信号,以及通过所述第二载波接收所述终端设备采用所述第二发射功率发送的第二上行信号。
  6. 根据权利要求5所述的网络设备,其特征在于,所述处理器还用于:
    通过所述收发机向所述终端设备发送功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定。
  7. 一种终端设备,其特征在于,包括:处理器和收发机,
    所述处理器,用于通过收发机从网络设备接收第一信息,所述第一信息指示所述终端设备采用第一发射功率在第一载波中发送上行信号,所述第一发射功率为所述终端设备根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定的;
    所述所述处理器还用于通过所述收发机在所述第一载波中采用所述第一发射功率向所述网络设备发送第一上行信号,在第二载波中采用所述第二发射功率向所述网络设备发送第二上行信号。
  8. 根据权利要求7所述的终端设备,其特征在于,所述处理器还用于:
    通过所述收发机从所述网络设备接收功率调整信息,所述功率调整信息为所述网络设备根据接收到的所述第一上行信号以及第二上行信号确定;
    根据所述功率调整信息确定在所述第一载波中向所述网络设备发送第三上行信号所采用的上行发射功率。
  9. 根据权利要求1至4任一项所述的方法,或5或6所述的网络设备,或7或8所述的终端设备,其特征在于,
    所述第一发射功率根据所述终端设备在第二载波中发送上行信号的第二发射功率的功率信息确定,包括:
    所述第一发射功率根据所述终端设备在第二载波中发送第二上行信号的第二发射功率确定;或者
    所述第一发射功率根据所述终端设备在第二载波中发送第二上行信号的第二功率控制参数确定。
  10. 根据权利要求9所述的方法或网络设备或终端设备,其特征在于,根据所述第二发射功率确定的所述第一发射功率为以下任意一种:
    所述第一发射功率等于所述第二发射功率;
    所述第一发射功率等于所述第二发射功率与偏移值的和;
    所述第一发射功率根据所述第二发射功率的功率谱密度和所述第一上行信号的带宽确定;
    所述第一发射功率根据所述第二发射功率的功率谱密度、所述偏移值和所述第一上行信号的带宽确定;
    所述第一发射功率根据所述第二发射功率的资源单元的功率和所述第一上行信号的资源单元数目确定;
    所述第一发射功率根据所述第二发射功率的资源单元的功率、所述偏移值和所述第一上行信号的资源单元数目确定。
  11. 根据权利要求9所述的方法或网络设备或终端设备,其特征在于,所述第一发射功率根据所述第二功率控制参数确定,包括:
    所述第一发射功率根据所述第二功率控制参数、所述第二载波的路损、所述第一上行信号的资源块数目和上行功率控制公式确定;或者
    所述第一发射功率根据所述第二功率控制参数、所述第二载波的路损、所述第一上行信号的资源块数目、偏移值和上行功率控制公式确定。
  12. 根据权利要求10或11所述的方法或网络设备或终端设备,其特征在于,所述偏移值为所述网络设备发送给所述终端设备的,和/或所述偏移值满足以下公式:
    Figure PCTCN2018085183-appb-100001
    其中,offset为所述偏移值,α为路损补偿因子,f1为第一载波的载频,f2为第二载波的载频。
  13. 根据权利要求2或4所述的方法,或权利要求6所述的网络设备,或权利要求8所述的终端设备,其特征在于,所述功率调整信息为所述第一载波和所述第二载波的路损偏移值;或者
    所述功率调整信息为第一功率控制参数。
  14. 根据权利要求13所述的方法或网络设备或终端设备,其特征在于,所述路损偏移值PL offset满足以下公式:
    PL offset=(P TX1-P TX2)-(P RX1-P RX2)
    或者,所述路损偏移值PL offset为路损偏移估计值
    Figure PCTCN2018085183-appb-100002
    的平均值,其中,所述路损偏移估计值
    Figure PCTCN2018085183-appb-100003
    满足以下公式:
    Figure PCTCN2018085183-appb-100004
    其中,上述两个公式中的P TX1为所述第一发射功率,P TX2为所述第二发射功率,P RX1为所述网络设备接收所述第一上行信号的接收功率,P RX2为所述网络设备接收所述第二上行信号的接收功率。
  15. 根据权利要求14所述的方法或网络设备或终端设备,其特征在于,所述第一功率控制参数满足以下公式:
    P 0_UE_2=P 0_UE_1+α×PL offset
    其中,P 0_UE_2为所述第一功率控制参数,PL offset为所述路损偏移值,α为路损补偿因子,P 0_UE_1为预设参数。
  16. 根据权利要求13所述的方法或网络设备或终端设备,其特征在于,所述第一功率控制参数满足以下公式:
    P 0_UE_2=P 0_UE_1-P offset
    其中,P 0_UE_2为所述第一功率控制参数,P 0_UE_1为预设参数,P offset为所述第一上行信号的接收功率与所述第二上行信号的接收功率的功率偏移值;
    其中,所述功率偏移值P offset满足以下公式:
    P offset=P RX1-P RX2
    或者,所述功率偏移值P offset为功率偏移估计值
    Figure PCTCN2018085183-appb-100005
    的平均值,其中,所述功率偏移估计值
    Figure PCTCN2018085183-appb-100006
    满足以下公式满足以下公式:
    Figure PCTCN2018085183-appb-100007
    其中,上述两个公式中的P RX1为所述网络设备接收所述第一上行信号的接收功率,P RX2为所述网络设备接收所述第二上行信号的接收功率。
  17. 根据权利要求1至16任一所述的方法或网络设备或终端设备,其特征在于,所述第一载波的频率低于所述第二载波的频率,且所述第一载波为上行载波、所述第二载波为时分双工载波。
  18. 根据权利要求17所述的方法或网络设备或终端设备,其特征在于,所述第一载波用于承载长期演进LTE系统的上行信号以及新无线NR系统的上行信号;
    所述第二载波用于承载NR系统的上行信号和下行信号。
  19. 根据权利要求4所述的方法,或根据权利要求8所述的终端设备,其特征在于,所述根据所述功率调整信息确定在所述第一载波中向所述网络设备发送第三上行信号所 采用的上行发射功率,包括:
    根据所述功率调整信息确定修正后的第一载波的路损,并根据所述修正后的第一载波的路损确定在所述第一载波中向所述网络设备发送所述第三上行信号所采用的上行发射功率;或者
    根据所述功率调整信息确定第三功率控制参数,并根据所述第三功率控制参数确定在所述第一载波中向所述网络设备发送所述第三上行信号所采用的上行发射功率。
  20. 一种通信装置,其特征在于,用于执行如权利要求1至4中任一项所述的方法。
  21. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至4中任一项所述的方法。
  22. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1至4中任意一项所述的方法被执行。
PCT/CN2018/085183 2017-05-05 2018-04-28 一种通信方法、终端设备及网络设备 WO2018202019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313897.7A CN108811062A (zh) 2017-05-05 2017-05-05 一种通信方法、终端设备及网络设备
CN201710313897.7 2017-05-05

Publications (1)

Publication Number Publication Date
WO2018202019A1 true WO2018202019A1 (zh) 2018-11-08

Family

ID=64016800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085183 WO2018202019A1 (zh) 2017-05-05 2018-04-28 一种通信方法、终端设备及网络设备

Country Status (2)

Country Link
CN (1) CN108811062A (zh)
WO (1) WO2018202019A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220015040A1 (en) * 2018-12-24 2022-01-13 Telefonaktiebolaget Lm Ericsson (Publ) IAB Power Control

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381576A (zh) * 2019-06-10 2019-10-25 华为技术有限公司 功率配置方法及装置
CN111148151B (zh) * 2019-12-27 2023-08-15 宇龙计算机通信科技(深圳)有限公司 发射功率的调整方法、装置、存储介质及终端设备
CN111526594B (zh) * 2020-04-17 2022-08-05 蓓安科仪(北京)技术有限公司 一种基于5g通信的医用机器人上行传输方法及系统
CN114070366A (zh) 2020-07-30 2022-02-18 华为技术有限公司 一种通信方法及装置
CN115776733A (zh) * 2021-09-06 2023-03-10 华为技术有限公司 无线通信方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102577530A (zh) * 2009-10-05 2012-07-11 瑞典爱立信有限公司 移动电信网络中的方法和装置
WO2014092435A1 (en) * 2012-12-11 2014-06-19 Samsung Electronics Co., Ltd. Transmissions/receptions of uplink acknowledgement signals in wireless networks
CN104254117A (zh) * 2013-06-26 2014-12-31 华为技术有限公司 一种功率控制方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102577530A (zh) * 2009-10-05 2012-07-11 瑞典爱立信有限公司 移动电信网络中的方法和装置
WO2014092435A1 (en) * 2012-12-11 2014-06-19 Samsung Electronics Co., Ltd. Transmissions/receptions of uplink acknowledgement signals in wireless networks
CN104254117A (zh) * 2013-06-26 2014-12-31 华为技术有限公司 一种功率控制方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220015040A1 (en) * 2018-12-24 2022-01-13 Telefonaktiebolaget Lm Ericsson (Publ) IAB Power Control

Also Published As

Publication number Publication date
CN108811062A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
JP7157845B2 (ja) 多入力多出力無線システムのためのサウンディング基準信号の電力制御
WO2018202019A1 (zh) 一种通信方法、终端设备及网络设备
RU2752694C1 (ru) Указание луча для управления мощностью восходящей линии связи
US11218974B2 (en) Method, terminal device and network device for transmitting signals
US10560902B2 (en) Method, device and apparatus for controlling uplink transmission power, and storage medium
JP5912001B2 (ja) Cqiオフセットに基づく変調及び符号化スキーム(mcs)の回復
EP2761940B1 (en) Techniques for uplink power control
US10939383B2 (en) Power control method, terminal device and network device
JP7301902B2 (ja) 電力制御方法及び端末
KR20190071655A (ko) 무선 통신 시스템에서 csi 보고를 수행하기 위한 방법 및 이를 위한 장치
CN113613322B (zh) 用于确定发射功率的方法和装置
US20210410080A1 (en) Power Control Method and Power Control Apparatus
WO2018171674A1 (zh) 一种通信方法、终端及网络设备
WO2018028427A1 (zh) 下行控制信令的发送及接收方法、装置、基站、终端
CN112534890B (zh) 上行链路数据信道上的上行链路控制信息传输的功率控制的频谱效率确定
US20220116882A1 (en) Reference signal determination method and device, and ue
WO2021000939A1 (zh) 确定定时提前ta参考时刻的方法和装置
CN114503763A (zh) 用于多分量载波的路径损耗参考信号信息
US20230137907A1 (en) Wireless communication method, terminal device, and network device
WO2022147621A1 (en) Method and apparatus for wireless communication with phase continuity
WO2019095785A1 (zh) 通信方法、系统及存储介质和处理器
WO2020143654A1 (zh) 信号测量方法和通信装置
WO2021062836A1 (zh) 功率调整方法及装置
EP3619897B1 (en) Discontinued transmission of uplink sounding reference signals
WO2022147735A1 (zh) 确定发送功率的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794530

Country of ref document: EP

Kind code of ref document: A1