WO2019095785A1 - 通信方法、系统及存储介质和处理器 - Google Patents

通信方法、系统及存储介质和处理器 Download PDF

Info

Publication number
WO2019095785A1
WO2019095785A1 PCT/CN2018/103355 CN2018103355W WO2019095785A1 WO 2019095785 A1 WO2019095785 A1 WO 2019095785A1 CN 2018103355 W CN2018103355 W CN 2018103355W WO 2019095785 A1 WO2019095785 A1 WO 2019095785A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
srs
communication node
base sequence
uplink
Prior art date
Application number
PCT/CN2018/103355
Other languages
English (en)
French (fr)
Inventor
王瑜新
蒋创新
鲁照华
李儒岳
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/760,053 priority Critical patent/US11424879B2/en
Publication of WO2019095785A1 publication Critical patent/WO2019095785A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu

Definitions

  • the present invention relates to the field of communications, and in particular to a communication method and system, a storage medium, and a processor.
  • a Physical Downlink Control Channel (PDCCH) is used to carry uplink and downlink scheduling information and uplink power control information.
  • the Downlink Control Information (DCI) format is divided into DCI formats 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 3, and 3A, and later evolved to LTE-A Release 12.
  • DCI formats 2B, 2C, 2D have been added in (LTE-A Release 12) to support a variety of different applications and transmission modes.
  • the first communication node may configure the second communication node device (User Equipment, UE for short) through the downlink control information, or the second communication node device may receive the configuration of the higher layers. It is also referred to as configuring the UE through higher layer signaling.
  • the Sounding Reference Signal is a signal used by the second communication node device and the first communication node to measure Channel State Information (CSI).
  • the UE periodically transmits the uplink SRS on the last data symbol of the transmission subframe according to parameters such as the frequency band indicated by the eNB, the frequency domain position, the sequence cyclic shift, the period, and the subframe offset.
  • the eNB determines the uplink CSI of the UE according to the received SRS, and performs operations such as frequency domain selection scheduling, closed loop power control, and the like according to the obtained CSI.
  • Non-precoded SRS ie antenna-specific SRS, and PUSCH reference signal for demodulation should be used.
  • DMRS De Modulation Reference Signal
  • the first communication node can estimate the original CSI of the uplink by receiving the non-precoded SRS, and the pre-coded DMRS cannot enable the first communication node to estimate the original CSI of the uplink.
  • the UE transmits the non-precoded SRS by using multiple antennas the SRS resources required by each UE are increased, which results in a decrease in the number of UEs that can be simultaneously multiplexed in the system.
  • the UE may send the SRS by using the high-level signaling (also referred to as triggered by the trigger type 0) or the downlink control information (also referred to as triggering by the trigger type 1), and the periodic SRS is triggered based on the high-level signaling, and is based on the downlink.
  • the control information triggers a non-periodic SRS.
  • the manner of aperiodic transmission of SRS is added, which improves the utilization of SRS resources to some extent and improves the flexibility of resource scheduling.
  • the number of available SRS root sequences is 30; when the length of the SRS sequence is greater than or equal to 72, and the group jump function is disabled, the available The number of SRS root sequences is 60, otherwise the number of available SRS root sequences is 30.
  • High-frequency carrier communication has a large available bandwidth and can provide efficient high-speed data communication.
  • a big technical challenge faced by high-frequency carrier communication is that the high-frequency signal has a large fading in space compared with the low-frequency signal. This characteristic of the high-frequency signal causes space for the communication of the high-frequency signal in the outdoor.
  • the fading loss problem but due to its reduced wavelength, more antennas can usually be used, allowing communication based on the beam to compensate for fading losses in space.
  • the high-frequency communication system configures a large number of antennas to form a downlink transmission beam to compensate for the spatial fading of high-frequency communication, and the second communication node is also the same.
  • a large number of antennas are also configured to form an uplink transmission beam, and the transmission of the SRS will also be transmitted in the form of a beam.
  • the capacity requirement of the SRS increases, so it is necessary to further increase the number of root sequences of the SRS, especially in the case where the sequence group jump of the SRS is enabled.
  • the frame structure is significantly changed compared to the frame structure of the evolved system (LTE/LTE-A) system, and the NR increases the frequency hopping in the time slot based on the frequency hopping between slots.
  • LTE/LTE-A evolved system
  • Embodiments of the present invention provide a communication method and system, a storage medium, and a processor to provide at least one manner of transmitting an uplink reference signal in an NR system.
  • a communication method applied to a first communication node, comprising: determining a base sequence in which a second communication node transmits a reference signal; receiving the second communication node transmitting using the base sequence Reference signal.
  • another communication method applied to a first communication node, comprising: determining a radio resource used by a second communication node to transmit a reference signal; and receiving the second communication node to use the wireless The reference signal sent by the resource.
  • another communication method comprising: determining a base sequence for transmitting a reference signal; and transmitting the reference signal to the first communication node using the base sequence.
  • a communication method comprising: determining a radio resource used for transmitting the reference signal; and transmitting the reference signal to the first communication node using the radio resource.
  • a communication system comprising a first communication node and a second communication node; wherein
  • the second communication node is configured to determine a radio resource used for transmitting the reference signal, and send the reference signal by using the radio resource;
  • the first communication node is configured to determine a radio resource used by the second communication node to transmit the reference signal, and receive a reference signal sent by the second communication node by using the radio resource.
  • a storage medium comprising a stored program, wherein the program is executed to perform the above-described application to the first communication node and/or the second communication node Communication method.
  • a processor for running a program wherein the program is executed to perform communication as described above applied to a first communication node and/or a second communication node method.
  • a method for transmitting an uplink reference signal in an NR system is provided by determining a base sequence used by a second communication node to transmit an uplink reference signal.
  • FIG. 1 is a flow chart of a communication method in accordance with an embodiment of the present invention.
  • FIG. 2 is a flow chart of another communication method according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of still another communication method according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a communication system according to an embodiment of the present invention.
  • the network architecture that can be run by the embodiment of the present application includes: a first communication node and a second communication node.
  • the first communication node and the second communication node are capable of interacting.
  • the first communication node refers to a node for determining a transmission mode of the second communication node and signaling to the second communication node
  • the second communication node refers to a node for receiving the signaling.
  • the first communication node may be a base station of a macro cell, a base station or a transmission node of a small cell, a sending node in a high frequency communication system, and a sending node in an Internet of Things system.
  • the second communication node may be a node in a communication system such as a user terminal (UE), a mobile phone, a portable device, or a car.
  • the base station of the macro cell, the base station or the transmission node of the small cell, the transmitting node in the high frequency communication system, the sending node in the Internet of Things system, or the like may serve as the second communication node, and the UE or the like may be the first Communication node.
  • FIG. 1 is a flow chart of a communication method applied to a first communication node in accordance with an embodiment of the present invention. As shown in Figure 1, the process includes the following steps:
  • Step S102 determining a base sequence in which the second communication node sends the reference signal
  • Step S104 receiving a reference signal sent by the second communication node using the base sequence.
  • the reference signal is an uplink reference signal
  • a method for transmitting an uplink reference signal in the NR system is provided by determining a base sequence used by the second communication node to transmit the uplink reference signal.
  • the uplink reference signal may be a measurement reference signal (SRS), or an uplink demodulation reference signal, or an uplink signal for random access.
  • SRS measurement reference signal
  • uplink demodulation reference signal or an uplink signal for random access.
  • the generating manner of the uplink reference signal includes: when the group jump enable of the uplink reference signal, the first communication node sends the pseudo random number corresponding to the slot index where the uplink reference signal is sent according to the second communication node. Determine the base sequence number of the upstream reference signal.
  • the group jump enable is when the group jump function is turned on, or the group jump function is used.
  • the method for generating the uplink reference signal includes: determining, by the first communications node, the base sequence number of the uplink reference signal according to the sequence group number, the sequence length, and/or the sequence identifier on the time slot in which the uplink reference signal sent by the second communication node is located. .
  • the first communication node determines the base sequence number of the uplink reference signal according to the sequence group number on the time slot in which the uplink reference signal sent by the second communication node is located, determining the base sequence number of the reference signal by using one of the following methods: :
  • v is the base sequence number of the uplink reference signal
  • n s is the slot number
  • u(n s ) is the sequence group number on different time slots.
  • the first communication node determines the base sequence number of the uplink reference signal according to the sequence group number and the sequence identifier on the time slot in which the uplink reference signal sent by the second communication node is located, the following manner is included:
  • v is the base sequence number of the uplink reference signal
  • n s is the slot number
  • u(n s ) is the sequence group number on different time slots.
  • FIG. 2 is a flow chart of another communication method in accordance with an embodiment of the present invention. As shown in Figure 2, the process includes the following steps:
  • Step S202 determining a radio resource used by the second communication node to send the reference signal
  • Step S204 Receive a reference signal that is sent by the second communication node by using the radio resource.
  • the wireless resource includes a time domain resource, and the time domain resource satisfies at least one of the following relationships:
  • n f is the system frame number.
  • T offset is the slot offset of the SRS
  • T SRS is the period of the SRS; wherein the uplink reference signal is the uplink measurement reference signal SRS.
  • the radio resource includes a frequency domain resource.
  • the frequency domain resource includes: determining a frequency domain location of the SRS according to the number or number of transmissions of the uplink SRS in the time domain.
  • the number or number of transmissions of the uplink SRS in the time domain is obtained based on at least one of the following parameters:
  • the slot index in the frame the system frame number, the SRS period, the slot offset of the SRS, the number of slots included in one subframe, the number of slots included in one system frame, and the number of time domain symbols in the SRS.
  • the number or number of transmissions of the uplink SRS in the time domain is obtained by one of the following formulas:
  • n f is the system frame number.
  • the number of time slots contained in a subframe The number of time slots included in a system frame
  • T SRS is the period of the SRS
  • N is the number of time domain symbols of the transmitted SRS configured in the time slot
  • R is the number of time domain symbols repeated in the time slot or the same in the time slot.
  • the number of SRS time domain symbols in the frequency domain location, and n SRS is the number or number of transmissions of the uplink SRS in the time domain.
  • FIG. 3 is a flowchart of still another communication method according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 determining a base sequence for transmitting the reference signal
  • Step S304 the reference signal is sent to the first communication node by using the base sequence.
  • determining that the base sequence of the second communication node sends the reference signal includes at least one of the following:
  • the embodiment further provides another communication method, the application and the second communication node, comprising: determining a radio resource used for transmitting the reference signal; and transmitting the reference signal to the first communication node by using the radio resource.
  • the radio resource includes at least one of the following: a time domain resource, a frequency domain resource, and a code domain resource.
  • the code domain resource includes a base sequence for transmitting a reference signal
  • the radio resource indication information is a base sequence number indication information for transmitting the reference signal
  • the wireless resource includes a time domain resource, and the time domain resource satisfies at least one of the following relationships:
  • n f is the system frame number.
  • T offset is the slot offset of the SRS
  • T SRS is the period of the SRS; wherein, the uplink reference signal is the uplink measurement reference signal SRS.
  • the radio resource includes a frequency domain resource.
  • the frequency domain resource includes: determining a frequency domain location of the SRS according to the number or number of transmissions of the uplink SRS in the time domain.
  • the number or number of transmissions of the uplink SRS in the time domain is obtained according to at least one of the following parameters: a slot index in the frame, a system frame number, an SRS period, a slot offset of the SRS, and a time included in one subframe.
  • the number or number of transmissions of the uplink SRS in the time domain is obtained by one of the following formulas:
  • n f is the system frame number.
  • the number of time slots contained in a subframe The number of time slots included in a system frame
  • T SRS is the period of the SRS
  • N is the number of time domain symbols of the transmitted SRS configured in the time slot
  • R is the number of time domain symbols repeated in the time slot or the same in the time slot.
  • the number of SRS time domain symbols in the frequency domain location, and n SRS is the number or number of transmissions of the uplink SRS in the time domain.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • the embodiment is used to describe that the first communication node indicates, by signaling, the radio resource used by the second communication node to send the uplink reference signal, and the second communication node receives the signaling sent by the first communication node, and the wireless indicated by the signaling A reference signal is sent on the resource.
  • the radio resources include: time domain resources, frequency domain resources, and code domain resources, and the code domain resources may be base sequences.
  • the determining, by the second communications node, the base sequence for transmitting the reference signal includes at least one of the following:
  • determining a base sequence number of the reference signal according to a sequence group number on a time slot in which the reference signal is sent by the second communication node including determining, according to the following formula, the base sequence to determine the base sequence number:
  • v c(n s ), where v is the base sequence number of the uplink reference signal, n s is the slot number, and c(n s ) is the pseudo-random number on different time slots.
  • determining, according to the sequence group number on the time slot in which the reference signal is sent by the second communications node, the base sequence number of the uplink reference signal includes one of the following:
  • v is the base sequence number of the uplink reference signal
  • n s is the slot number
  • u(n s ) is the sequence group number on different time slots.
  • determining, according to the sequence group number and the sequence identifier on the time slot in which the second communication node sends the reference signal, the base sequence number of the uplink reference signal includes one of the following:
  • v is the base sequence number of the uplink reference signal
  • n s is the slot number
  • u(n s ) is the sequence group number on different time slots.
  • the reference signal includes one of the following: an uplink measurement reference signal SRS, an uplink demodulation reference signal, and an uplink signal for random access.
  • the radio resource includes a time domain resource, where the time domain resource satisfies at least one of the following relationships:
  • n f is the system frame number.
  • T offset is the slot offset of the SRS
  • T SRS is the period of the SRS; wherein the uplink reference signal is the uplink measurement reference signal SRS.
  • the radio resource includes a frequency domain resource.
  • the frequency domain resource includes: determining a frequency domain location of the SRS according to the number or number of transmissions of the uplink SRS in the time domain.
  • the number or number of transmissions of the uplink SRS in the time domain is obtained based on at least one of the following parameters:
  • the slot index in the frame the system frame number, the SRS period, the slot offset of the SRS, the number of slots included in one subframe, the number of slots included in one system frame, and the number of time domain symbols in the SRS.
  • the number or number of transmissions of the uplink SRS in the time domain is obtained by one of the following formulas:
  • n f is the system frame number.
  • the number of time slots contained in a subframe The number of time slots included in a system frame
  • T SRS is the period of the SRS
  • N is the number of time domain symbols of the transmitted SRS configured in the time slot
  • R is the number of time domain symbols repeated in the time slot or the same in the time slot.
  • the number of SRS time domain symbols in the frequency domain location, and n SRS is the number or number of transmissions of the uplink SRS in the time domain.
  • module may implement a combination of software and/or hardware of a predetermined function.
  • apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 4 is a structural block diagram of a communication system according to an embodiment of the present invention. As shown in FIG. 4, the method includes: a first communication node 40 and a second communication node 42;
  • the second communication node 42 is configured to determine a radio resource used for transmitting the reference signal, and send the reference signal by using the radio resource;
  • the first communication node 40 is configured to determine a radio resource used by the second communication node to send the reference signal, and receive a reference signal that is sent by the second communication node by using the radio resource;
  • the second communication node 42 is configured to determine a base sequence for transmitting a reference signal, and send the reference signal to the first communication node by using the base sequence;
  • the first communication node 40 is configured to determine a base sequence in which the second communication node transmits the reference signal; and receive a reference signal that is sent by the second communication node using the base sequence.
  • the first communication node 40 includes:
  • a first determining module configured to determine a radio resource used by the second communications node to send the reference signal
  • a receiving module configured to receive a reference signal sent by the second communications node by using a wireless resource
  • the second communication node includes:
  • a second determining module configured to determine a radio resource used to send the reference signal
  • a sending module configured to transmit a reference signal using a wireless resource.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • the high-frequency communication system configures a large number of antennas to form a downlink transmission beam to compensate for the spatial fading of the high-frequency communication
  • the second communication node of the user also configures a large number of antennas to form an uplink transmission beam.
  • the transmission of the SRS will also be sent in the form of a beam.
  • the frame structure is significantly changed compared to the frame structure of the LTE/LTE-A system, and the NR increases the frequency hopping in the time slot based on the frequency hopping between the slots.
  • the SRS frequency hopping calculation method of NR is redesigned to determine whether the SRS is transmitted on the time slot in which the condition is met. The following describes the embodiment in three aspects of the time domain frequency domain code domain:
  • the first communication node indicates, by signaling, the resource used by the second communication node to send the uplink reference signal, or both the first communication node and the second communication node pre-define the second communication node to send the uplink signal The resources used.
  • the resource includes at least one of the following: a time domain resource, a frequency domain resource, and a generation manner of an uplink reference signal sequence (code domain resource).
  • the manner of generating the uplink reference signal sequence includes at least one of the following:
  • the first communication node determines the base sequence number of the uplink reference signal according to the pseudo-random number corresponding to the slot index in which the second communication node sends the uplink reference signal;
  • the first communication node determines the base sequence number of the uplink reference signal according to the sequence group number, the sequence length, and/or the sequence identifier on the time slot in which the uplink reference signal is transmitted by the second communication node;
  • the first communication node determines a base sequence number of the uplink reference signal according to a pseudo random number corresponding to the slot index in which the second communication node sends the uplink reference signal, including at least one of the following:
  • v c(n s ), where c(i) is a pseudo-random sequence.
  • the first communication node determines, according to the sequence group number on the time slot in which the uplink reference signal is sent by the second communication node, the base sequence number of the uplink reference signal, including at least one of the following:
  • the first communication node determines the base sequence number of the uplink reference signal according to the sequence group number and the sequence identifier on the time slot of the uplink reference signal sent by the second communication node, including at least one of the following:
  • the first communication node indicates, by signaling, the resource used by the second communication node to send the uplink reference signal, or both the first communication node and the second communication node pre-define the second communication node to send the uplink signal The resources used.
  • the resource includes at least one of the following: a time domain resource, a frequency domain resource, and a generation manner of an uplink reference signal sequence.
  • the time domain resource includes at least one of the following: sending an uplink reference signal on a time slot that satisfies the following relationship:
  • n f is the system frame number.
  • T offset is the slot offset of the SRS
  • T SRS is the period of the SRS.
  • the configuration table of the SRS cycle and time slot offset is shown in Table 1.
  • the first communication node indicates, by signaling, the resource used by the second communication node to send the uplink reference signal, or both the first communication node and the second communication node pre-define the second communication node to send the uplink signal The resources used.
  • the resource includes at least one of the following: a time domain resource, a frequency domain resource, and a generation manner of an uplink reference signal sequence.
  • the frequency domain resource includes at least one of: determining a frequency domain location of the SRS according to the number or number of transmissions of the SRS in the time domain, where the number or number of transmissions of the SRS in the time domain is obtained based on at least one of the following parameters: : slot index in the frame, system frame number, SRS period, slot offset of SRS, number of slots included in one subframe, number of slots included in one system frame, number of time domain symbols in which SRS is transmitted in a slot The number of time domain symbols repeated in the time slot or the number of SRS time domain symbols occupying the same frequency domain position in the time slot.
  • the frequency domain location of the SRS is determined according to the number or number of transmissions of the SRS in the time domain, wherein the number or number of transmissions of the SRS in the time domain is obtained according to at least one of the following manners:
  • n f is the system frame number.
  • T SRS is the period of the SRS
  • N is the number of time domain symbols of the transmitted SRS configured in the time slot
  • R is the number of time domain symbols repeated in the time slot or the same in the time slot.
  • the first communication node indicates, by signaling, the resource used by the second communication node to send the uplink reference signal, or both the first communication node and the second communication node pre-define the second communication node to send the uplink signal The resources used.
  • the resource includes at least one of the following: a manner of generating an uplink reference signal sequence (code domain resource).
  • the manner of generating the uplink reference signal sequence includes at least one of the following:
  • the first communication node determines the base sequence number of the uplink reference signal according to the sequence group number, the sequence length, and/or the sequence identifier on the time slot in which the uplink reference signal transmitted by the second communication node is located;
  • the base sequence number of the uplink reference signal when the sequence length is less than 72, the base sequence number of the uplink reference signal is fixed to 0; when the sequence length is greater than or equal to 72 and less than 144, the base sequence number of the uplink reference signal is 0 or 1; When it is greater than or equal to 144, the base sequence number of the uplink reference signal is 0 or 1 or 2 or -1.
  • Embodiments of the present invention also provide a storage medium including a stored program, wherein the program is executed to perform the above-described communication method applied to the first communication node and/or applied to the second communication node.
  • the above storage medium may be arranged to store program code for performing the following steps:
  • Step S3 determining a radio resource used by the second communication node to send the reference signal
  • Step S4 Receive a reference signal sent by the second communication node by using a radio resource.
  • the foregoing storage medium may be configured to store program code for further performing the following steps:
  • Determining a base sequence for transmitting a reference signal Determining a base sequence for transmitting a reference signal; transmitting the reference signal to the first communication node using the base sequence;
  • And/or program code for performing the steps of: determining a radio resource used to transmit the reference signal; transmitting the reference signal to the first communication node using the radio resource.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present invention also provide a processor for running a program, wherein the program is executed to perform the above-described communication method applied to the first communication node and/or applied to the second communication node.
  • the foregoing program is used to perform the following steps:
  • Step S3 determining a radio resource used by the second communication node to send the reference signal
  • Step S4 Receive a reference signal sent by the second communication node by using a radio resource.
  • the foregoing program is used to execute the program code of the following steps:
  • Determining a base sequence for transmitting a reference signal Determining a base sequence for transmitting a reference signal; transmitting the reference signal to the first communication node using the base sequence;
  • And/or program code for performing the steps of: determining a radio resource used to transmit the reference signal; transmitting the reference signal to the first communication node using the radio resource.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Abstract

本发明实施例提供了一种通信方法及系统,其中,该方法至少包括:确定第二通信节点发送参考信号的基序列;接收所述第二通信节点使用所述基序列发送的参考信号。

Description

通信方法、系统及存储介质和处理器
相关申请的交叉引用
本申请基于申请号为201711148876.0、申请日为2017年11月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的内容在此以引入方式并入本申请。
技术领域
本发明涉及通信领域,具体而言,涉及一种通信方法及系统、存储介质和处理器。
背景技术
在相关技术中,在长期演进(Long Term Evolution,简称为LTE)中,物理下行控制信道(Physical Downlink Control Channel,简称为PDCCH)用于承载上、下行调度信息,以及上行功率控制信息。下行控制信息(Downlink Control Information,简称为DCI)格式(format)分为DCI format 0、1、1A、1B、1C、1D、2、2A、3、及3A等,后面演进至LTE-A Release 12(LTE-A版本12)中又增加了DCI format 2B、2C、2D以支持多种不同的应用和传输模式。第一通信节点(e-Node-B,简称为eNB)可以通过下行控制信息配置第二通信节点设备(User Equipment,简称为UE),或者第二通信节点设备接受高层(higher layers)的配置,也称为通过高层信令来配置UE。
测量参考信号(Sounding Reference Signal,简称为SRS)是一种第二通信节点设备与第一通信节点间用来测量无线信道信息(Channel State Information,简称为CSI)的信号。在长期演进系统中,UE按照eNB指示的频带、频域位置、序列循环移位、周期和子帧偏置等参数,定时在发送 子帧的最后一个数据符号上发送上行SRS。eNB根据接收到的SRS判断UE上行的CSI,并根据得到的CSI进行频域选择调度、闭环功率控制等操作。
在LTE-A Release 10(LTE-A版本10)的研究中提出:在上行通信中,应该使用非预编码的SRS,即:天线专有的SRS,而对PUSCH的用于解调的参考信号(De Modulation Reference Signal,简称为DMRS)则进行预编码。第一通信节点通过接收非预编码的SRS,可估计出上行的原始CSI,而经过了预编码的DMRS则不能使第一通信节点估计出上行原始的CSI。此时,当UE使用多天线发送非预编码的SRS时,每个UE所需要的SRS资源都会增加,也就造成了系统内可以同时复用的UE数量下降。UE可通过高层信令(也称为通过trigger type 0触发)或下行控制信息(也称为通过trigger type 1触发)这两种触发方式发送SRS,基于高层信令触发的为周期SRS,基于下行控制信息触发的为非周期SRS。在LTE-A Release 10中增加了非周期发送SRS的方式,一定程度上改善了SRS资源的利用率,提高资源调度的灵活性。
LTE/LTE-A系统中,当SRS序列的长度小于72时,则可用的SRS根序列的数量为30;当SRS序列的长度大于或等于72,且组跳转功能不使能时,则可用的SRS根序列的数量为60,否则可用的SRS根序列的数量为30。
随着通信技术的发展,数据业务需求量不断增加,可用的低频载波也已经非常稀缺,由此,基于还未充分利用的高频(30~300GHz)载波通信成为解决未来高速数据通信的重要通信手段之一。高频载波通信的可用带宽很大,可以提供有效的高速数据通信。但是,高频载波通信面临的一个很大的技术挑战就是与低频信号相比高频信号在空间的衰落非常大,高频信号的这种特性虽然会导致高频信号在室外的通信出现了空间的衰落损耗问题,但是由于其波长的减小,通常可以使用更多的天线,从而可以基于 波束进行通信以补偿在空间的衰落损耗。
但是,当天线数增多时,由于此时需要每个天线都有一套射频链路,基于数字波束成型也带来了增加成本和功率损耗的问题。因此,目前的研究中比较倾向于混合波束赋形,即射频波束和数字波束共同形成最终的波束。
在新的无线接入技术(New Radio Access Technology,简称NR)中,高频通信系统除了第一通信节点会配置大量的天线形成下行传输波束以补偿高频通信的空间衰落,第二通信节点同样也会配置大量的天线形成上行传输波束,此时SRS的发送也将会采用波束的形式发送。随着NR系统里面用户数的增多,SRS的容量需求会增大,因此有必要进一步增加SRS的根序列数量,特别是在SRS的序列组跳转使能的情况下。另外,在NR系统中,帧结构相比演进系统(LTE/LTE-A)系统的帧结构发生了很明显的变化,而且NR在时隙间跳频的基础上增加了时隙内的跳频,但相关技术中还没有对应的通信方案。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种通信方法及系统、存储介质和处理器,以至少提供一种NR系统中发送上行参考信号的方式。
根据本发明的一个实施例,提供了一种通信方法,应用于第一通信节点,包括:确定第二通信节点发送参考信号的基序列;接收所述第二通信节点使用所述基序列发送的参考信号。
根据本发明的一个实施例,提供了另一种通信方法,应用于第一通信节点,包括:确定第二通信节点发送参考信号所使用的无线资源;接收所述第二通信节点使用所述无线资源发送的参考信号。
根据本发明的一个实施例,提供了另一种通信方法,应用与第二通信 节点,包括:确定发送参考信号的基序列;使用所述基序列发送参考信号给第一通信节点。
根据本发明的另一个实施例,提供了一种通信方法,应用与第二通信节点,包括:确定发送参考信号所使用的无线资源;使用所述无线资源发送参考信号给第一通信节点。
根据本发明的另一个实施例,提供了通信系统,包括第一通信节点和第二通信节点;其中,
所述第二通信节点,配置为确定发送参考信号所使用的无线资源;使用所述无线资源上发送所述参考信号;
所述第一通信节点,配置为确定第二通信节点发送参考信号所使用的无线资源;接收所述第二通信节点使用所述无线资源发送的参考信号。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述应用于第一通信节点和/或第二通信节点中的通信方法。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述应用于第一通信节点和/或第二通信节点中的通信方法。
本发明实施例中,通过确定第二通信节点发送上行参考信号所使用的基序列,提供了一种NR系统中发送上行参考信号的方式。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种通信方法的流程图;
图2是根据本发明实施例的另一种通信方法的流程图;
图3是根据本发明实施例的又一种通信方法的流程图;
图4是根据本发明实施例的通信系统的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例可以运行的网络架构包括:第一通信节点、第二通信节点。第一通信节点和第二通信节点能够进行交互。
所述第一通信节点是指用于确定第二通信节点发送方式并向第二通信节点进行信令指示的节点,所述第二通信节点是指用于接收所述信令的节点。一种实现方式中,第一通信节点可以为宏小区的基站、小小区(small cell)的基站或传输节点、高频通信系统中的发送节点、物联网系统中的发送节点等节点。第二通信节点可以为用户终端(UE)、手机、便携设备、汽车等通信系统中的节点。另一种实现方式中,宏小区的基站、小小区的基站或传输节点、高频通信系统中的发送节点、物联网系统中的发送节点等可作为第二通信节点,UE等可作为第一通信节点。
在本实施例中提供了一种运行于上述网络架构的通信方法。图1是根据本发明实施例的一种通信方法的流程图,应用于第一通信节点。如图1所示,该流程包括如下步骤:
步骤S102,确定第二通信节点发送参考信号的基序列;
步骤S104,接收第二通信节点使用基序列发送的参考信号。
通过上述步骤,参考信号为上行参考信号,通过确定第二通信节点发送上行参考信号所使用的基序列,提供了一种NR系统中发送上行参考信号的方式。
上行参考信号可以为测量参考信号(SRS),或者为上行解调参考信号,或者为进行随机接入的上行信号。
可选地,上行参考信号的生成方式包括:在上行参考信号的组跳转使能(enable)时,第一通信节点根据第二通信节点发送上行参考信号所在的时隙索引对应的伪随机数确定上行参考信号的基序列编号。组跳转使能是组跳转功能开启时,或者是使用组跳转功能。
可选地,上行参考信号的生成方式包括:第一通信节点根据第二通信节点发送的上行参考信号所在时隙上的序列组编号、序列长度和/或序列标识确定上行参考信号的基序列编号。
具体的,通过以下方式确定上行参考信号的基序列编号:v=c(n s),其中,v为上行参考信号的基序列编号,n s为时隙编号,c(n s)为在不同时隙上的伪随机数。
可选地,在第一通信节点根据第二通信节点发送的上行参考信号所在时隙上的序列组编号确定上行参考信号的基序列编号时,通过上行以下之一方式确定参考信号的基序列编号:
v=u(n s)mod 2;
Figure PCTCN2018103355-appb-000001
Figure PCTCN2018103355-appb-000002
其中,v为上行参考信号的基序列编号,n s为时隙编号,u(n s)为在不同时隙上的序列组编号。
可选地,在第一通信节点根据第二通信节点发送的上行参考信号所在时隙上的序列组编号和序列标识确定上行参考信号的基序列编号时,包括 以下之一方式:
当序列标识大于等于0且小于252时,v=0,当序列标识大于等于0且小于252时,v=1;
当序列标识大于等于0且小于252时,v=1,当序列标识大于等于0且小于252时,v=0;
当序列标识大于等于0且小于504时,v=u(n s)mod 2;
Figure PCTCN2018103355-appb-000003
Figure PCTCN2018103355-appb-000004
Figure PCTCN2018103355-appb-000005
Figure PCTCN2018103355-appb-000006
其中,v为上行参考信号的基序列编号,n s为时隙编号,u(n s)为在不同时隙上的序列组编号。
在本实施例中提供了一种运行于上述网络架构的通信方法。图2是根据本发明实施例的另一种通信方法的流程图。如图2所示,该流程包括如下步骤:
步骤S202,确定第二通信节点发送参考信号所使用的无线资源;
步骤S204,接收第二通信节点使用无线资源发送的参考信号。
无线资源包括时域资源,时域资源满足以下关系至少之一:
Figure PCTCN2018103355-appb-000007
Figure PCTCN2018103355-appb-000008
其中,
Figure PCTCN2018103355-appb-000009
为帧内的时隙索引,n f为系统帧编号,
Figure PCTCN2018103355-appb-000010
为一个子帧包含的时隙数量,
Figure PCTCN2018103355-appb-000011
为一个系统帧包含的时隙数量,T offset为SRS的时隙偏置,T SRS为SRS的周期;其中,上行参考信号为上行测量参考信号SRS。
可选的,无线资源包括频域资源,在参考信号为SRS时,频域资源包括:根据上行SRS在时域上的发送数量或编号确定SRS的频域位置。
可选的,上行SRS在时域上的发送数量或编号基于以下参数至少之一得到:
帧内的时隙索引、系统帧编号、SRS周期、SRS的时隙偏置、一个子帧包含的时隙数量、一个系统帧包含的时隙数量、时隙内发送SRS的时域符号数量、时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量。
可选的,上行SRS在时域上的发送数量或编号通过以下公式之一得到:
Figure PCTCN2018103355-appb-000012
Figure PCTCN2018103355-appb-000013
Figure PCTCN2018103355-appb-000014
Figure PCTCN2018103355-appb-000015
其中,
Figure PCTCN2018103355-appb-000016
为帧内的时隙索引,n f为系统帧编号,
Figure PCTCN2018103355-appb-000017
为一个子帧包含的时隙数量,
Figure PCTCN2018103355-appb-000018
为一个系统帧包含的时隙数量,T SRS为SRS的周期,N为时隙内配置的发送SRS的时域符号数量,R为时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量,n SRS为上行SRS在时域上的发送数量或编号。
在本实施例中提供了一种运行于上述网络架构的通信方法,图3是根 据本发明实施例的又一种通信方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,确定发送参考信号的基序列;
步骤S304,使用基序列发送参考信号给第一通信节点。
可选的,确定第二通信节点发送参考信号的基序列包括以下至少之一:
根据第二通信节点发送参考信号所在的时隙索引对应的伪随机数确定参考信号的基序列编号;
根据第二通信节点发送的参考信号所在时隙上的序列组编号确定参考信号的基序列编号;
根据第二通信节点发送的参考信号所在时隙上的序列长度确定参考信号的基序列编号;
根据第二通信节点发送的参考信号所在时隙上的序列标识确定参考信号的基序列编号。
本实施例还提供了另一种通信方法,应用与第二通信节点,包括:确定发送参考信号所使用的无线资源;使用无线资源发送参考信号给第一通信节点。
可选的,无线资源包括以下至少之一:时域资源、频域资源、码域资源。
可选的,码域资源包括发送参考信号的基序列,无线资源指示信息为发送参考信号的基序列编号指示信息。
可选的,无线资源包括时域资源,时域资源满足以下关系至少之一:
Figure PCTCN2018103355-appb-000019
Figure PCTCN2018103355-appb-000020
其中,
Figure PCTCN2018103355-appb-000021
为帧内的时隙索引,n f为系统帧编号,
Figure PCTCN2018103355-appb-000022
为一个子帧包含的时隙数量,
Figure PCTCN2018103355-appb-000023
为一个系统帧包含的时隙数量, T offset为SRS的时隙偏置,T SRS为SRS的周期;其中,上行参考信号为上行测量参考信号SRS。
可选的,无线资源包括频域资源,在参考信号为SRS时,频域资源包括:根据上行SRS在时域上的发送数量或编号确定SRS的频域位置。
可选的,上行SRS在时域上的发送数量或编号基于以下参数至少之一得到:帧内的时隙索引、系统帧编号、SRS周期、SRS的时隙偏置、一个子帧包含的时隙数量、一个系统帧包含的时隙数量、时隙内发送SRS的时域符号数量、时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量。
可选的,上行SRS在时域上的发送数量或编号通过以下公式之一得到:
Figure PCTCN2018103355-appb-000024
Figure PCTCN2018103355-appb-000025
Figure PCTCN2018103355-appb-000026
Figure PCTCN2018103355-appb-000027
其中,
Figure PCTCN2018103355-appb-000028
为帧内的时隙索引,n f为系统帧编号,
Figure PCTCN2018103355-appb-000029
为一个子帧包含的时隙数量,
Figure PCTCN2018103355-appb-000030
为一个系统帧包含的时隙数量,T SRS为SRS的周期,N为时隙内配置的发送SRS的时域符号数量,R为时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量,n SRS为上行SRS在时域上的发送数量或编号。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理 解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
本实施例用于描述第一通信节点通过信令指示第二通信节点发送上行参考信号所使用的无线资源,第二通信节点接收第一通信节点发送的信令,并在信令所指示的无线资源上发送参考信号。
无线资源包括:时域资源、频域资源、码域资源,码域资源可以是基序列。
可选的,所述确定第二通信节点发送参考信号的基序列包括以下至少之一:
根据第二通信节点发送所述参考信号所在的时隙索引对应的伪随机数确定所述参考信号的基序列编号;
根据第二通信节点发送的所述参考信号所在时隙上的序列组编号确定所述参考信号的基序列编号;
根据第二通信节点发送的所述参考信号所在时隙上的序列长度确定所述参考信号的基序列编号;
根据第二通信节点发送的所述参考信号所在时隙上的序列标识确定所述参考信号的基序列编号。
可选的,根据第二通信节点发送的所述参考信号所在时隙上的序列组编号确定所述参考信号的基序列编号,包括根据以下公式确定所述基序列确定所述基序列编号:
v=c(n s),其中,v为上行参考信号的基序列编号,n s为时隙编号,c(n s) 为在不同时隙上的伪随机数。
可选的,根据第二通信节点发送的所述参考信号所在时隙上的序列组编号确定上行参考信号的基序列编号包括以下之一:
v=u(n s)mod 2;
Figure PCTCN2018103355-appb-000031
Figure PCTCN2018103355-appb-000032
其中,v为上行参考信号的基序列编号,n s为时隙编号,u(n s)为在不同时隙上的序列组编号。
可选的,根据第二通信节点发送所述参考信号所在时隙上的序列组编号和序列标识确定上行参考信号的基序列编号包括以下之一:
当序列标识大于等于0且小于252时,v=0,当序列标识大于等于0且小于252时,v=1;
当序列标识大于等于0且小于252时,v=1,当序列标识大于等于0且小于252时,v=0;
当序列标识大于等于0且小于504时,v=u(n s)mod 2;
Figure PCTCN2018103355-appb-000033
Figure PCTCN2018103355-appb-000034
Figure PCTCN2018103355-appb-000035
Figure PCTCN2018103355-appb-000036
其中,v为上行参考信号的基序列编号,n s为时隙编号,u(n s)为在不同时隙上的序列组编号。
可选的,所述参考信号包括以下之一:上行测量参考信号SRS,上行 解调参考信号,进行随机接入的上行信号。
可选的,所述无线资源包括时域资源,所述时域资源满足以下关系至少之一:
Figure PCTCN2018103355-appb-000037
Figure PCTCN2018103355-appb-000038
其中,
Figure PCTCN2018103355-appb-000039
为帧内的时隙索引,n f为系统帧编号,
Figure PCTCN2018103355-appb-000040
为一个子帧包含的时隙数量,
Figure PCTCN2018103355-appb-000041
为一个系统帧包含的时隙数量,T offset为SRS的时隙偏置,T SRS为SRS的周期;其中,所述上行参考信号为上行测量参考信号SRS。
可选的,所述无线资源包括频域资源,在所述参考信号为SRS时,所述频域资源包括:根据所述上行SRS在时域上的发送数量或编号确定SRS的频域位置。
可选的,所述上行SRS在时域上的发送数量或编号基于以下参数至少之一得到:
帧内的时隙索引、系统帧编号、SRS周期、SRS的时隙偏置、一个子帧包含的时隙数量、一个系统帧包含的时隙数量、时隙内发送SRS的时域符号数量、时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量。
所述上行SRS在时域上的发送数量或编号通过以下公式之一得到:
Figure PCTCN2018103355-appb-000042
Figure PCTCN2018103355-appb-000043
Figure PCTCN2018103355-appb-000044
Figure PCTCN2018103355-appb-000045
其中,
Figure PCTCN2018103355-appb-000046
为帧内的时隙索引,n f为系统帧编号,
Figure PCTCN2018103355-appb-000047
为一个子帧包含的时隙数量,
Figure PCTCN2018103355-appb-000048
为一个系统帧包含的时隙数量,T SRS为SRS的周期,N为时隙内配置的发送SRS的时域符号数量,R为时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量,n SRS为上行SRS在时域上的发送数量或编号。
实施例3
在本实施例中还提供了一种通信系统,用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的通信系统的结构框图,如图4所示,包括:第一通信节点40和第二通信节点42;其中,
所述第二通信节点42,配置为确定发送参考信号所使用的无线资源;使用所述无线资源上发送所述参考信号;
所述第一通信节点40,配置为确定第二通信节点发送参考信号所使用的无线资源;接收所述第二通信节点使用所述无线资源发送的参考信号;
和/或,
所述第二通信节点42,配置为确定发送参考信号的基序列;使用所述基序列发送参考信号给第一通信节点;
所述第一通信节点40,配置为确定第二通信节点发送参考信号的基序列;接收所述第二通信节点使用所述基序列发送的参考信号。
其中,针对确定无线资源的情形:
第一通信节点40包括:
第一确定模块,配置为确定第二通信节点发送参考信号所使用的无线资源;
接收模块,配置为接收第二通信节点使用无线资源发送的参考信号;
第二通信节点包括:
第二确定模块,配置为确定发送参考信号所使用的无线资源;
发送模块,配置为使用无线资源上发送参考信号。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例4
在NR中,高频通信系统除了第一通信节点会配置大量的天线形成下行传输波束以补偿高频通信的空间衰落,用户第二通信节点同样也会配置大量的天线形成上行传输波束,此时SRS的发送也将会采用波束的形式发送。随着NR系统里面用户数的增多,SRS的容量需求会增大,因此有必要进一步增加SRS的根序列数量,特别是在SRS的序列组跳转使能的情况下。另外,在NR系统中,帧结构相比LTE/LTE-A系统的帧结构发生了很明显的变化,而且NR在时隙间跳频的基础上增加了时隙内的跳频,本实施例将NR的SRS跳频计算方式进行了重新设计,确定了在满足什么条件的时隙上发送SRS。下面分在在时域频域码域三个方面对本实施例进行说明:
实施方式一
第一通信节点通过信令指示第二通信节点发送上行参考信号所使用的资源,或者,所述第一通信节点和所述第二通信节点双方预定义所述第二通信节点发送所述上行信号所使用的资源。
所述资源包括以下至少之一:时域资源、频域资源、上行参考信号序 列的生成方式(码域资源)。
所述上行参考信号序列的生成方式包括以下至少之一:
(1)上行参考信号序列的组跳转使能时,第一通信节点根据第二通信节点发送上行参考信号所在的时隙索引对应的伪随机数确定上行参考信号的基序列编号;
(2)第一通信节点根据第二通信节点发送的上行参考信号所在时隙上的序列组编号、序列长度和/或序列标识确定上行参考信号的基序列编号;
第一通信节点根据第二通信节点发送上行参考信号所在的时隙索引对应的伪随机数确定上行参考信号的基序列编号,包括以下至少之一:
v=c(n s),其中c(i)为伪随机序列。
第一通信节点根据第二通信节点发送的上行参考信号所在时隙上的序列组编号确定上行参考信号的基序列编号,包括以下至少之一:
(1)v=u(n s)mod 2,
Figure PCTCN2018103355-appb-000049
Figure PCTCN2018103355-appb-000050
第一通信节点根据第二通信节点发送的上行参考信号所在时隙上的序列组编号和序列标识确定上行参考信号的基序列编号,包括以下至少之一:
当序列标识大于等于0且小于252时,v=0,当序列标识大于等于0且小于252时,v=1;
当序列标识大于等于0且小于252时,v=1,当序列标识大于等于0且小于252时,v=0;
当序列标识大于等于0且小于504时,v=u(n s)mod 2;
Figure PCTCN2018103355-appb-000051
Figure PCTCN2018103355-appb-000052
Figure PCTCN2018103355-appb-000053
Figure PCTCN2018103355-appb-000054
实施方式二
第一通信节点通过信令指示第二通信节点发送上行参考信号所使用的资源,或者,所述第一通信节点和所述第二通信节点双方预定义所述第二通信节点发送所述上行信号所使用的资源。
所述资源包括以下至少之一:时域资源、频域资源、上行参考信号序列的生成方式。
所述时域资源包括以下至少之一:在满足以下关系的时隙上发送上行参考信号:
Figure PCTCN2018103355-appb-000055
或者,
Figure PCTCN2018103355-appb-000056
其中,
Figure PCTCN2018103355-appb-000057
为帧内的时隙索引,n f为系统帧编号,
Figure PCTCN2018103355-appb-000058
为一个子帧包含的时隙数量,
Figure PCTCN2018103355-appb-000059
为一个系统帧包含的时隙数量,T offset为SRS的时隙偏置,T SRS为SRS的周期。
SRS的周期和时隙偏置的配置表格如表格1所示
表1
Figure PCTCN2018103355-appb-000060
Figure PCTCN2018103355-appb-000061
实施方式三
第一通信节点通过信令指示第二通信节点发送上行参考信号所使用的资源,或者,所述第一通信节点和所述第二通信节点双方预定义所述第二通信节点发送所述上行信号所使用的资源。
所述资源包括以下至少之一:时域资源、频域资源、上行参考信号序列的生成方式。
所述频域资源包括以下至少之一:根据SRS在时域上的发送数量或编号确定SRS的频域位置,其中,所述SRS在时域上的发送数量或编号基于以下参数至少之一得到:帧内的时隙索引、系统帧编号、SRS周期、SRS的时隙偏置、一个子帧包含的时隙数量、一个系统帧包含的时隙数量、时隙内发送SRS的时域符号数量、时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量。
根据SRS在时域上的发送数量或编号确定SRS的频域位置,其中,所述SRS在时域上的发送数量或编号基于以下方式至少之一得到:
Figure PCTCN2018103355-appb-000062
Figure PCTCN2018103355-appb-000063
Figure PCTCN2018103355-appb-000064
Figure PCTCN2018103355-appb-000065
其中,
Figure PCTCN2018103355-appb-000066
为帧内的时隙索引,n f为系统帧编号,
Figure PCTCN2018103355-appb-000067
为一个子帧包含的时隙数量,
Figure PCTCN2018103355-appb-000068
为一个系统帧包含的时隙数量,T SRS为SRS的周期,N为时隙内配置的发送SRS的时域符号数量,R为时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量。
实施方式四
第一通信节点通过信令指示第二通信节点发送上行参考信号所使用的资源,或者,所述第一通信节点和所述第二通信节点双方预定义所述第二通信节点发送所述上行信号所使用的资源。
所述资源包括以下至少之一:上行参考信号序列的生成方式(码域资源)。
所述上行参考信号序列的生成方式包括以下至少之一:
(1)第一通信节点根据第二通信节点发送的上行参考信号所在时隙上的序列组编号、序列长度和/或序列标识确定上行参考信号的基序列编号;
例如,当序列长度为小于72时,上行参考信号的基序列编号固定为0;当序列长度为大于或等于72且小于144时,上行参考信号的基序列编号为0或1;当序列长度为大于或等于144时,上行参考信号的基序列编号为0或1或2或-1。
实施例五
本发明的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述应用于第一通信节点和/或应用于第二通信节点中的通信方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以 下步骤的程序代码:
S1,确定第二通信节点发送参考信号的基序列;
S2,接收所述第二通信节点使用所述基序列发送的参考信号;
和/或执行以下步骤的程序代码:
步骤S3,确定第二通信节点发送参考信号所使用的无线资源;
步骤S4,接收第二通信节点使用无线资源发送的参考信号。
可选地,在本实施例中,上述存储介质可以被设置为存储用于还执行以下步骤的程序代码:
确定发送参考信号的基序列;使用所述基序列发送参考信号给第一通信节点;
和/或执行以下步骤的程序代码:确定发送参考信号所使用的无线资源;使用所述无线资源发送参考信号给第一通信节点。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本发明的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述应用于第一通信节点和/或应用于第二通信节点中的通信方法。
可选地,在本实施例中,上述程序用于执行以下步骤:
S1,确定第二通信节点发送参考信号的基序列;
S2,接收所述第二通信节点使用所述基序列发送的参考信号;
和/或执行以下步骤的程序代码:
步骤S3,确定第二通信节点发送参考信号所使用的无线资源;
步骤S4,接收第二通信节点使用无线资源发送的参考信号。
可选地,在本实施例中,上述程序用于执行以下步骤的程序代码:
确定发送参考信号的基序列;使用所述基序列发送参考信号给第一通信节点;
和/或执行以下步骤的程序代码:确定发送参考信号所使用的无线资源;使用所述无线资源发送参考信号给第一通信节点。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (23)

  1. 一种通信方法,应用于第一通信节点,包括:
    确定第二通信节点发送参考信号的基序列;
    接收所述第二通信节点使用所述基序列发送的参考信号。
  2. 根据权利要求1所述的方法,其中,所述确定第二通信节点发送参考信号的基序列包括以下至少之一:
    根据第二通信节点发送所述参考信号所在的时隙索引对应的伪随机数确定所述参考信号的基序列编号;
    根据第二通信节点发送的所述参考信号所在时隙上的序列组编号确定所述参考信号的基序列编号;
    根据第二通信节点发送的所述参考信号所在时隙上的序列长度确定所述参考信号的基序列编号;
    根据第二通信节点发送的所述参考信号所在时隙上的序列标识确定所述参考信号的基序列编号。
  3. 根据权利要求2所述的方法,其中,根据第二通信节点发送的所述参考信号所在时隙上的序列组编号确定所述参考信号的基序列编号,包括根据以下公式确定所述基序列确定所述基序列编号:
    v=c(n s),其中,v为上行参考信号的基序列编号,n s为时隙编号,c(n s)为在不同时隙上的伪随机数。
  4. 根据权利要求2所述的方法,其中,根据第二通信节点发送的所述参考信号所在时隙上的序列组编号确定上行参考信号的基序列编号包括以下之一:
    v=u(n s)mod2;
    Figure PCTCN2018103355-appb-100001
    Figure PCTCN2018103355-appb-100002
    其中,v为上行参考信号的基序列编号,n s为时隙编号,u(n s)为在不同时隙上的序列组编号。
  5. 根据权利要求2所述的方法,其中,根据第二通信节点发送所述参考信号所在时隙上的序列组编号和序列标识确定上行参考信号的基序列编号包括以下之一:
    当序列标识大于等于0且小于252时,v=0,当序列标识大于等于0且小于252时,v=1;
    当序列标识大于等于0且小于252时,v=1,当序列标识大于等于0且小于252时,v=0;
    当序列标识大于等于0且小于504时,v=u(n s)mod2;
    Figure PCTCN2018103355-appb-100003
    Figure PCTCN2018103355-appb-100004
    Figure PCTCN2018103355-appb-100005
    Figure PCTCN2018103355-appb-100006
    其中,v为上行参考信号的基序列编号,n s为时隙编号,u(n s)为在不同时隙上的序列组编号。
  6. 根据权利要求1至5任一项所述的方法,其中,所述参考信号包括以下之一:上行测量参考信号SRS,上行解调参考信号,用于随机接入的上行信号。
  7. 一种通信方法,应用于第一通信节点,包括:
    确定第二通信节点发送参考信号所使用的无线资源;
    接收所述第二通信节点使用所述无线资源发送的参考信号。
  8. 根据权利要求7所述的方法,其中,所述无线资源包括时域资源,所述时域资源满足以下关系至少之一:
    Figure PCTCN2018103355-appb-100007
    Figure PCTCN2018103355-appb-100008
    其中,
    Figure PCTCN2018103355-appb-100009
    为帧内的时隙索引,n f为系统帧编号,
    Figure PCTCN2018103355-appb-100010
    为一个子帧包含的时隙数量,
    Figure PCTCN2018103355-appb-100011
    为一个系统帧包含的时隙数量,T offset为SRS的时隙偏置,T SRS为SRS的周期;其中,上行参考信号为上行测量参考信号SRS。
  9. 根据权利要求7所述的方法,其中,所述无线资源包括频域资源,在所述参考信号为SRS时,所述频域资源包括:根据所述上行SRS在时域上的发送数量或编号确定SRS的频域位置。
  10. 根据权利要求9所述的方法,其中,所述上行SRS在时域上的发送数量或编号基于以下参数至少之一得到:
    帧内的时隙索引、系统帧编号、SRS周期、SRS的时隙偏置、一个子帧包含的时隙数量、一个系统帧包含的时隙数量、时隙内发送SRS的时域符号数量、时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量。
  11. 根据权利要求10所述的方法,其中,所述上行SRS在时域上的发送数量或编号通过以下公式之一得到:
    Figure PCTCN2018103355-appb-100012
    Figure PCTCN2018103355-appb-100013
    Figure PCTCN2018103355-appb-100014
    Figure PCTCN2018103355-appb-100015
    其中,
    Figure PCTCN2018103355-appb-100016
    为帧内的时隙索引,n f为系统帧编号,
    Figure PCTCN2018103355-appb-100017
    为一个子帧包含的时隙数量,
    Figure PCTCN2018103355-appb-100018
    为一个系统帧包含的时隙数量,T SRS为上行测量参考信号SRS的周期,N为时隙内配置的发送SRS的时域符号数量,R为时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量,n SRS为上行SRS在时域上的发送数量或编号。
  12. 一种通信方法,一种通信方法,应用于第二通信节点,包括:
    确定发送参考信号的基序列;
    使用所述基序列发送参考信号给第一通信节点。
  13. 根据权利要求12所述的方法,其中,所述确定第二通信节点发送参考信号的基序列包括以下至少之一:
    根据第二通信节点发送所述参考信号所在的时隙索引对应的伪随机数确定所述参考信号的基序列编号;
    根据第二通信节点发送的所述参考信号所在时隙上的序列组编号确定所述参考信号的基序列编号;
    根据第二通信节点发送的所述参考信号所在时隙上的序列长度确定所述参考信号的基序列编号;
    根据第二通信节点发送的所述参考信号所在时隙上的序列标识确定所述参考信号的基序列编号。
  14. 一种通信方法,一种通信方法,应用于第二通信节点,包括:
    确定发送参考信号所使用的无线资源;
    使用所述无线资源发送参考信号给第一通信节点。
  15. 根据权利要求14所述的方法,其中,所述无线资源包括以下至少之一:时域资源、频域资源、码域资源。
  16. 根据权利要求15所述的方法,其中,所述码域资源包括发送所述参考信号的基序列,所述无线资源指示信息为发送所述参考信号的基序列编号指示信息。
  17. 根据权利要求14所述的方法,其中,所述无线资源包括时域资源,所述时域资源满足以下关系至少之一:
    Figure PCTCN2018103355-appb-100019
    Figure PCTCN2018103355-appb-100020
    其中,
    Figure PCTCN2018103355-appb-100021
    为帧内的时隙索引,n f为系统帧编号,
    Figure PCTCN2018103355-appb-100022
    为一个子帧包含的时隙数量,
    Figure PCTCN2018103355-appb-100023
    为一个系统帧包含的时隙数量,T offset为SRS的时隙偏置,T SRS为SRS的周期;其中,上行参考信号为上行测量参考信号SRS。
  18. 根据权利要求14所述的方法,其中,所述无线资源包括频域资源,在所述参考信号为SRS时,所述频域资源包括:根据所述上行SRS在时域上的发送数量或编号确定SRS的频域位置。
  19. 根据权利要求18所述的方法,其中,所述上行SRS在时域上的发送数量或编号基于以下参数至少之一得到:
    帧内的时隙索引、系统帧编号、SRS周期、SRS的时隙偏置、一个子帧包含的时隙数量、一个系统帧包含的时隙数量、时隙内发送SRS的时域符号数量、时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量。
  20. 根据权利要求19所述的方法,其中,所述上行SRS在时域上的发送数量或编号通过以下公式之一得到:
    Figure PCTCN2018103355-appb-100024
    Figure PCTCN2018103355-appb-100025
    Figure PCTCN2018103355-appb-100026
    Figure PCTCN2018103355-appb-100027
    其中,
    Figure PCTCN2018103355-appb-100028
    为帧内的时隙索引,n f为系统帧编号,
    Figure PCTCN2018103355-appb-100029
    为一个子帧包含的时隙数量,
    Figure PCTCN2018103355-appb-100030
    为一个系统帧包含的时隙数量,T SRS为SRS的周期,N为时隙内配置的发送SRS的时域符号数量,R为时隙内重复的时域符号数量或者为时隙内占用相同频域位置的SRS时域符号数量,n SRS为上行SRS在时域上的发送数量或编号。
  21. 一种通信系统,包括第一通信节点和第二通信节点;其中,
    所述第二通信节点,配置为确定发送参考信号所使用的无线资源;使用所述无线资源上发送所述参考信号;
    所述第一通信节点,配置为确定第二通信节点发送参考信号所使用的无线资源;接收所述第二通信节点使用所述无线资源发送的参考信号。
  22. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至6、7至11、12至13、和/或权利要求14至20中任一项所述的通信方法。
  23. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至6、7至11、12至13、和/或权利要求14至20中任一项所述的方法。
PCT/CN2018/103355 2017-11-17 2018-08-30 通信方法、系统及存储介质和处理器 WO2019095785A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/760,053 US11424879B2 (en) 2017-11-17 2018-08-30 Communication method and system, storage medium and processor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711148876.0A CN108123785B (zh) 2017-11-17 2017-11-17 通信方法及系统
CN201711148876.0 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019095785A1 true WO2019095785A1 (zh) 2019-05-23

Family

ID=62227847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103355 WO2019095785A1 (zh) 2017-11-17 2018-08-30 通信方法、系统及存储介质和处理器

Country Status (3)

Country Link
US (1) US11424879B2 (zh)
CN (1) CN108123785B (zh)
WO (1) WO2019095785A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123785B (zh) 2017-11-17 2023-09-26 中兴通讯股份有限公司 通信方法及系统
WO2020220176A1 (zh) * 2019-04-28 2020-11-05 华为技术有限公司 通信方法和装置
WO2020237437A1 (zh) * 2019-05-24 2020-12-03 北京小米移动软件有限公司 反馈信息的传输方法、装置、设备及存储介质
CN113810997A (zh) * 2020-06-12 2021-12-17 维沃移动通信有限公司 Srs资源指示方法、srs资源确定方法及相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761968A (zh) * 2011-04-27 2012-10-31 艾利森电话股份有限公司 多用户设备的探测参考信号上行资源分配方法及基站
CN103686861A (zh) * 2012-09-06 2014-03-26 华为技术有限公司 设备间d2d通信中传输参考信号的方法和装置
CN103973392A (zh) * 2013-01-24 2014-08-06 中兴通讯股份有限公司 参数发送方法和装置、上行解调参考信号发射方法和装置
US20160345352A1 (en) * 2015-05-19 2016-11-24 Telefonaktiebolaget L M Ericsson (Publ) Methods assigning resources for dedicated scheduling requests using mac messages and related wireless terminals and base stations
CN106817210A (zh) * 2015-12-02 2017-06-09 华为技术有限公司 参考信号序列的传输方法和设备
CN108123785A (zh) * 2017-11-17 2018-06-05 中兴通讯股份有限公司 通信方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651469B (zh) * 2008-08-15 2013-07-24 三星电子株式会社 用于lte系统中发送上行监测参考符号的跳频方法
JP5567688B2 (ja) * 2010-01-07 2014-08-06 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける参照信号シーケンス生成方法及び装置
EP2571182A4 (en) * 2010-05-13 2015-09-09 Lg Electronics Inc METHOD AND DEVICE FOR GENERATING A REFERENCE SIGNAL SEQUENCE IN A WIRELESS COMMUNICATION SYSTEM
CN102223726A (zh) * 2011-06-10 2011-10-19 中兴通讯股份有限公司 一种srs的发送方法和系统
WO2013151280A1 (ko) * 2012-04-03 2013-10-10 엘지전자 주식회사 데이터 전송 방법 및 장치
US9106386B2 (en) * 2012-08-03 2015-08-11 Intel Corporation Reference signal configuration for coordinated multipoint

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761968A (zh) * 2011-04-27 2012-10-31 艾利森电话股份有限公司 多用户设备的探测参考信号上行资源分配方法及基站
CN103686861A (zh) * 2012-09-06 2014-03-26 华为技术有限公司 设备间d2d通信中传输参考信号的方法和装置
CN103973392A (zh) * 2013-01-24 2014-08-06 中兴通讯股份有限公司 参数发送方法和装置、上行解调参考信号发射方法和装置
US20160345352A1 (en) * 2015-05-19 2016-11-24 Telefonaktiebolaget L M Ericsson (Publ) Methods assigning resources for dedicated scheduling requests using mac messages and related wireless terminals and base stations
CN106817210A (zh) * 2015-12-02 2017-06-09 华为技术有限公司 参考信号序列的传输方法和设备
CN108123785A (zh) * 2017-11-17 2018-06-05 中兴通讯股份有限公司 通信方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion on SRS Design for NR", 3GPP TSG RAN WG1 #90B RL-1717435, 3 October 2017 (2017-10-03), XP051340624 *

Also Published As

Publication number Publication date
CN108123785B (zh) 2023-09-26
CN108123785A (zh) 2018-06-05
US11424879B2 (en) 2022-08-23
US20200382251A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6657474B2 (ja) 無線通信システムにおけるcsi報告を遂行するための方法及びそのための装置
WO2019192405A1 (zh) 上行信号的发送、接收方法及装置、存储介质、电子设备
WO2021073508A1 (zh) 传输方法、装置、第一通信节点、第二通信节点及介质
WO2019170089A1 (zh) 信息传输的方法、装置和通信节点
WO2019062399A1 (zh) 一种信息传输方法及装置
CN108112076B (zh) 配置上行信号的方法及装置
JP2020503710A (ja) 無線通信システムにおけるcsi報告を遂行するための方法及びそのための装置
CN110754043B (zh) 用于新无线电的频率选择性上行链路预编码
US11088796B2 (en) Method and device for indicating uplink reference signal information, and storage medium
WO2021208779A1 (zh) Srs的传输方法、装置、系统、存储介质及电子装置
WO2019047940A1 (zh) 参考信号配置、信息的发送、信息的接收方法及装置
WO2018028714A1 (zh) 参考信号的发送方法及装置
WO2019095785A1 (zh) 通信方法、系统及存储介质和处理器
WO2021161272A1 (en) Pusch reliability enhancements with multiple trps
WO2018028427A1 (zh) 下行控制信令的发送及接收方法、装置、基站、终端
WO2017076182A1 (zh) 测量参考信号srs的发送方法及装置
WO2018059547A1 (zh) 上行参考信号的发送方法、装置及系统,基站和终端
CN110622459B (zh) 信道状态信息参考信号的方法和设备
US20220385424A1 (en) Communication node of a reference signal and storage medium
US9655135B2 (en) Robust systematic multi-user (MU) grouping and scheduling
WO2020030158A1 (zh) 上行信号的资源确定方法、设备和计算机可读存储介质
WO2017020578A1 (zh) Srs的指示发送方法、srs的发送方法和装置
WO2018228339A1 (zh) 参考信号的信令指示、参考信号的发送方法及装置
CN108631835B (zh) 一种传输方式的信令指示方法及装置
WO2020143702A1 (zh) 参考信号的接收、发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18879615

Country of ref document: EP

Kind code of ref document: A1