WO2021000939A1 - 确定定时提前ta参考时刻的方法和装置 - Google Patents

确定定时提前ta参考时刻的方法和装置 Download PDF

Info

Publication number
WO2021000939A1
WO2021000939A1 PCT/CN2020/100145 CN2020100145W WO2021000939A1 WO 2021000939 A1 WO2021000939 A1 WO 2021000939A1 CN 2020100145 W CN2020100145 W CN 2020100145W WO 2021000939 A1 WO2021000939 A1 WO 2021000939A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time unit
terminal device
unit
downlink reception
Prior art date
Application number
PCT/CN2020/100145
Other languages
English (en)
French (fr)
Inventor
吴晔
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021000939A1 publication Critical patent/WO2021000939A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communications, and more specifically, to a method and device for determining a reference time for timing advance TA.
  • an important feature of uplink transmission is orthogonal multiple access in time and frequency for different terminal devices, that is, the uplink transmissions of different terminal devices from the same cell do not interfere with each other.
  • the network equipment requires that the uplink signals from different terminal equipments in the same frame but with different frequency domain resources arrive at the network equipment at the same time.
  • the network device receives the uplink data sent by the terminal device within the cyclic prefix (CP) range, it can decode the uplink data correctly. Therefore, the uplink synchronization requires the time when the signals from different terminal devices in the same frame arrive at the network device. All fall within the CP.
  • CP cyclic prefix
  • LTE proposes an uplink timing advance (TA) mechanism.
  • TA is essentially the start time of the received downlink frame and the start of the uplink transmission frame.
  • the existing protocol does not specify the realization of the start time of the downlink frame, that is to say, the start time of different downlink frames corresponding to different uplink frames are independent of each other, so The network equipment cannot obtain the precise transmission time of the uplink frame and realize accurate channel estimation or channel prediction.
  • This application provides a method and device for determining the TA reference time in advance.
  • determining the time difference and the preset offset, and based on the time difference and the offset and the start time of a downlink receiving time unit another downlink receiving unit is determined.
  • the starting time of the time unit establishes the relationship between the starting time of different downlink receiving time units corresponding to different uplink sending time units, so that the network equipment can obtain the precise sending time of the uplink sending time unit, thereby achieving Accurate channel estimation or channel prediction.
  • a method for determining a TA reference time for timing advance including: a terminal device determines a time difference and an offset, where the time difference is a first downlink reception time unit and a second downlink reception time unit corresponding to the first uplink transmission time unit The time difference between the second downlink reception time unit corresponding to the uplink transmission time unit, the offset is a preset value; the terminal device determines the TA, and the TA is the time difference of the second uplink transmission time unit The start time is earlier than the duration of the start time of the second downlink reception time unit, wherein the start time of the second downlink reception time unit is based on the start time of the first downlink reception time unit, and the The time difference and the offset are determined.
  • the terminal device determines the first downlink receiving time unit corresponding to the first uplink sending time unit and the second downlink receiving time unit corresponding to the second uplink sending time unit. And a preset offset, and then determine the start time of the second downlink reception time unit based on the time difference and the offset and the start time of the first downlink reception time unit, and the second downlink reception time unit
  • the start time of the time unit is the TA reference time, thereby establishing the relationship between the start time of different downlink receiving time units corresponding to different uplink sending time units, so that network equipment can obtain accurate uplink sending time units Sending time, so as to achieve accurate channel estimation or channel prediction.
  • the time difference and offset between the first downlink reception time unit corresponding to the first uplink transmission time unit and the second downlink reception time unit corresponding to the second uplink transmission time unit in this application are compared with the first downlink transmission time unit.
  • the method of determining the starting time of the second downlink receiving time unit by the start time of the receiving time unit can also be applied to other situations where it is necessary to establish the relationship between the starting time of different downlink receiving time units corresponding to different uplink sending time units.
  • the reference time for determining TA is not limited only.
  • a method for determining the start time of a downlink reception time unit includes: a terminal device determines a time difference and an offset, where the time difference is the first downlink reception time unit and the second uplink transmission time unit corresponding to the first uplink transmission time unit The time difference between the second downlink reception time unit corresponding to the time unit, the offset is a preset value; the terminal device determines the start time of the second downlink reception time unit; wherein, the second downlink reception The start time of the time unit is determined based on the start time of the first downlink receiving time unit, the time difference and the offset.
  • the method before the terminal device determines the start time of the second downlink receiving time unit, the method further includes: the terminal device receives the first time sent by the network device An indication information, the first indication information is used to instruct the terminal device to enable a first function, and the first function is based on the start time of the first downlink reception time unit and the time difference and the The offset determines the start time of the second downlink receiving time unit.
  • the terminal device can determine based on the first indication information received from the network device that the start time of the first downlink reception time unit and the The time difference and the offset determine the start time of the second downlink reception time unit, and improve the accuracy of determining the start time of the second downlink reception time unit.
  • the method further includes: the terminal device receiving second indication information sent by the network device, the second indication information being used to indicate that the indication information is valid The moment.
  • the received second indication information can determine the time when the first indication information becomes effective, and then It is determined that it can determine the effective time of the start time of the second downlink reception time unit according to the start time of the first downlink reception time unit and the time difference and the offset, so as to be able to determine the second downlink reception time unit
  • the effective moment of the start moment of the downlink receiving time unit provides a feasible solution.
  • the above-mentioned second indication information is carried in the first indication information and sent by the network device to the terminal device.
  • the first indication information includes delay information, indicating that the terminal device receives After the first indication information, the content indicated by the first indication information will take effect at a certain time after a certain time delay, where the delay information can be understood as the aforementioned second indication information;
  • the first indication information includes the effective time of the first indication information, where the effective time included in the first indication information may be understood as the aforementioned second indication information.
  • the above-mentioned second instruction information is another piece of instruction information sent by the network device to the terminal device, and is not carried in the first instruction information.
  • the network device first sends to the terminal device
  • the first indication information is then sent to the terminal device
  • the above-mentioned second indication information is sent to the terminal device.
  • the second indication information indicates the effective moment of the first indication information received by the terminal device.
  • the method further includes: the terminal device sends first capability information to the network device, where the first capability information is used to report that the terminal device can The start time of the first downlink reception time unit and the time difference and the offset determine the start time of the second downlink reception time unit.
  • the first capability information is used to report that the terminal device is capable of determining the second downlink receiving time according to the start time of the first downlink receiving unit, the time difference and the offset The capacity of the unit at the beginning.
  • the terminal device can report its own capability to the network device and notify the network device that it can be based on the start time of the first downlink receiving time unit and the time difference sum The offset determines the start time of the second downlink receiving time unit, so that the network device can learn the capabilities of the terminal device.
  • the method further includes: the terminal device sends second capability information to the network device, and the second capability information is also used to report the first uplink
  • the sending time unit and the second uplink sending time unit are used to carry at least one of an uplink physical channel or a reference signal.
  • the uplink physical channel is one or more kinds of uplink physical channels
  • the reference signal is one or more kinds of reference signals.
  • the second capability information reported by the terminal device may also notify the network device that it can carry at least one uplink physical channel and/or at least one reference on the uplink transmission time unit.
  • the signal provides a feasible solution for the network equipment to learn the capabilities of the terminal equipment.
  • the foregoing second capability information may be carried in the first capability information, that is, the first capability information sent by the terminal device to the network device may also report its own calculation of the start time of the second downlink receiving time unit The ability to carry certain information on the uplink transmission time unit.
  • the foregoing second capability information and the first capability information are two different pieces of information.
  • the method further includes: the terminal device receiving function indication information sent by the network device, the function indication information being used to indicate the first uplink transmission time
  • the unit and the second uplink sending time unit are used to carry at least one uplink physical channel and/or at least one reference signal.
  • the terminal device can receive function indication information from the network device, and based on the function indication information, learn that the uplink transmission time unit can carry at least one of the uplink physical channel and the reference signal One is to provide a feasible solution for the terminal device to learn the bearer function on the uplink transmission time unit via the network device.
  • the first uplink transmission time unit and the second uplink transmission time unit are used to carry a channel sounding reference signal SRS.
  • the above-mentioned first uplink transmission time unit and the second uplink transmission time unit may be used to carry SRS, which provides the possibility for network equipment to perform CSI prediction.
  • the method further includes: the terminal device reporting the offset to the network device.
  • the terminal device can report the preset offset to the network device, so that the network device knows the offset.
  • the manner in which the terminal device reports the offset to the network device includes periodic reporting, or semi-static reporting, or aperiodic reporting.
  • the method for the terminal device to report the above offset can be periodic reporting, or semi-static reporting, or non-periodic reporting, providing flexibility for the terminal device to report the offset Escalation method.
  • the terminal device actively reports the offset.
  • the terminal device may report the above-mentioned offset actively, which provides a flexible reporting method for the terminal device to report the offset.
  • the terminal device reports to the network device the length of time during which the offset takes effect.
  • the terminal device may also report the effective duration of the offset, so that the network device can learn the effective duration of the offset.
  • the start time of the second downlink reception time unit includes: the start time of the second downlink reception time unit and the first downlink reception
  • the duration of the difference between the start moments of the time unit is the sum of the time difference and the offset.
  • the terminal device determines the start time of the second downlink receiving time unit based on the start time of the first downlink receiving time unit and the time difference
  • the start time of a downlink reception time unit plus the time difference and the offset is determined as the start time of the second downlink reception time unit, providing a simple and feasible way to determine the start of the second downlink reception time unit The plan at the moment.
  • a method for determining a TA reference time in advance including: a network device sends first indication information to a terminal device, where the first indication information is used to instruct the terminal device to enable a first function, and the first The function is to determine the start time of the second downlink reception time unit based on the start time of the first downlink reception time unit and the time difference and offset, where the time difference is the first uplink transmission time unit corresponding to the first The time difference between a downlink receiving time unit and the second downlink receiving time unit corresponding to the second uplink sending time unit, where the offset is a preset value; the length of time the network device sends TA to the terminal device , The duration of the TA and the start time of the second downlink receiving time unit are used to determine the TA.
  • the network device can instruct the terminal device to enable the second downlink according to the start time of the first downlink reception time unit and the time difference and offset through the first indication information.
  • the method further includes: the network device sends second indication information to the terminal device, where the second indication information is used to indicate the first indication information The moment of entry into force.
  • the network device when the network device sends the first indication information to the terminal device, it can also notify the terminal device of the effective time of the first indication information through the second indication information, which is The ability to determine the effective time of the start time of the second downlink receiving time unit provides a feasible solution.
  • the method further includes: the network device receives first capability information sent by the terminal device, where the first capability information is used to report the terminal The device can determine the start time of the second downlink reception time unit according to the start time of the first downlink reception time unit and the time difference and offset.
  • the network device can learn that the terminal device can learn from the received first capability information of the terminal device according to the start time of the first downlink receiving time unit and all The time difference and the offset are used to determine the start time of the second downlink receiving time unit, so that the network device can learn the capabilities of the terminal device.
  • the method further includes: the network device receives second capability information sent by the terminal device, where the second capability information is used to report the second capability information
  • An uplink sending time unit and the second uplink sending time unit are used to carry at least one uplink physical channel and/or at least one reference signal.
  • the network device can also learn the uplink information that the terminal device can transmit in the uplink transmission time unit through the received second capability information of the terminal device.
  • the network device sends function indication information to the terminal device, where the function indication information is used to indicate the first uplink transmission time unit and the first uplink transmission time unit.
  • the second uplink transmission time unit is used to carry at least one uplink physical channel and/or at least one reference signal.
  • the network device can send function indication information to the terminal device to instruct the terminal device to transmit the uplink information in the above uplink transmission time unit.
  • the first uplink transmission time unit and the second uplink transmission time unit are used to carry the channel sounding reference signal SRS.
  • the above-mentioned uplink transmission time unit can be used to carry the SRS, which provides the possibility for network equipment to perform CSI prediction.
  • the network device receives the offset reported by the terminal device.
  • the network device determines the value of the offset by receiving the above-mentioned offset reported by the terminal device.
  • the method further includes: the network device sends report mode indication information to the terminal device, where the report mode indication information is used to instruct the terminal device.
  • the manner of reporting the offset includes periodic reporting, or semi-static reporting, or non-periodic reporting, which provides a flexible reporting manner for the terminal device to report the offset.
  • the network device can instruct the terminal device to report the capability.
  • the network device receives the length of time during which the offset reported by the terminal device becomes effective.
  • the network device determines the effective duration of the offset by receiving the effective duration of the offset reported by the terminal device, so that the network device can learn the effectiveness of the offset duration.
  • the first function is: determining one of the start time of the first downlink receiving time unit, the time difference, and the offset And is determined as the start time of the second downlink receiving time unit.
  • the terminal device determines the start time of the second downlink receiving time unit based on the start time of the first downlink receiving time unit and the time difference
  • the start time of a downlink reception time unit, and the sum of the time difference and the offset is determined as the start time of the second downlink reception time unit, providing a simple and feasible way to determine the second downlink reception time unit At the beginning of the program.
  • a method for determining a TA reference time for timing advance including: a terminal device determines a time difference, where the time difference is a first downlink reception time unit and a second uplink transmission time unit corresponding to a first uplink transmission time unit The time difference between the corresponding second downlink reception time unit; the terminal device determines the TA, and the TA is the start time of the second uplink transmission time unit earlier than the start time of the second downlink reception time unit The duration of the start time, wherein the start time of the second downlink reception time unit is determined based on the start time of the first downlink reception time unit and the time difference.
  • the terminal device determines the first downlink receiving time unit corresponding to the first uplink sending time unit and the second downlink receiving time unit corresponding to the second uplink sending time unit. Then, based on the time difference and the start time of the first downlink reception time unit, the start time of the second downlink reception time unit is determined, and the start time of the second downlink reception time unit is the TA reference time, thereby establishing The relationship between the start moments of different downlink reception time units corresponding to different uplink transmission time units is established, so that the network device can obtain the accurate transmission time of the uplink transmission time unit, thereby achieving accurate channel estimation or channel prediction.
  • this application is based on the time difference between the first downlink reception time unit corresponding to the first uplink transmission time unit and the second downlink reception time unit corresponding to the second uplink transmission time unit and the difference between the first downlink reception time unit
  • the method of determining the starting time of the second downlink receiving time unit by the starting time can also be applied in other scenarios where the relationship between the starting time of different downlink receiving time units corresponding to different uplink sending time units needs to be established.
  • the reference time for determining TA is not limited only.
  • a method for determining the start time of a downlink reception time unit includes: a terminal device determines a time difference, where the time difference is a first downlink reception time unit corresponding to a first uplink transmission time unit and a second uplink transmission time unit The time difference between the second downlink reception time unit; the terminal device determines the start time of the second downlink reception time unit; wherein the start time of the second downlink reception time unit is based on the first downlink reception time unit The starting time and the time difference are determined, and the first downlink receiving time unit is a downlink receiving time unit corresponding to the first uplink sending time unit.
  • the method before the terminal device determines the start time of the second downlink receiving time unit, the method further includes: the terminal device receives the first downlink receiving time unit sent by the network device. Three indication information, the third indication information is used to instruct the terminal device to enable a second function, and the second function is to determine the time difference based on the start time of the first downlink reception time unit and the time difference The start time of the second downlink receiving time unit.
  • the terminal device may determine based on the third indication information received from the network device that it can be based on the start time of the first downlink reception time unit and the The time difference determines the start time of the second downlink reception time unit, and improves the accuracy of determining the start time of the second downlink reception time unit.
  • the method further includes: the terminal device receives fourth indication information sent by the network device, where the fourth indication information is used to indicate the third indication The moment when the information becomes effective.
  • the received fourth instruction information can determine the time when the third instruction information becomes effective, and then It is determined that it can determine the effective time of the start time of the second downlink reception time unit according to the start time of the first downlink reception time unit and the time difference, which is capable of determining the start time of the second downlink reception time unit.
  • the effective moment of the initial moment provides a feasible solution.
  • the above-mentioned fourth instruction information is carried in the third instruction information, which is sent by the network device to the terminal device.
  • the third instruction information includes delay information, indicating that the terminal device receives After the third indication information, the content indicated by the third indication information will take effect at a certain time after a certain time delay, where the delay information can be understood as the aforementioned fourth indication information;
  • the third indication information includes the effective time of the third indication information, where the effective time included in the third indication information may be understood as the foregoing fourth indication information.
  • the above-mentioned fourth instruction information is another piece of instruction information sent by the network device to the terminal device, and is not carried in the third instruction information.
  • the network device first sends to the terminal device The third instruction information, and then the foregoing fourth instruction information is sent to the terminal device.
  • the fourth instruction information indicates the effective moment of the third instruction information received by the terminal device.
  • the method further includes: the terminal device sends first capability information to the network device, where the first capability information is used to report that the terminal device can The start time of the first downlink reception time unit and the time difference determine the start time of the second downlink reception time unit.
  • the terminal device can report its own capability to the network device and notify the network device that it can use the start time of the first downlink reception time unit and the time difference, The start time of the second downlink receiving time unit is determined, so that the network device can learn the capabilities of the terminal device.
  • the method further includes: the terminal device sends second capability information to the network device, and the second capability information is used to report the first uplink transmission
  • the time unit and the second uplink sending time unit are used to carry at least one of an uplink physical channel and a reference signal.
  • the second capability information reported by the terminal device can inform the network device that it can carry at least one uplink physical channel and/or at least one reference signal on the uplink transmission time unit.
  • the method further includes: the terminal device receiving function indication information sent by the network device, the function indication information being used to indicate the first uplink transmission time
  • the unit and the second uplink sending time unit are used to carry at least one uplink physical channel and/or at least one reference signal.
  • the terminal device can receive function indication information from the network device, and based on the function indication information, learn that the uplink transmission time unit can carry at least one uplink physical channel and/or At least one reference signal provides a feasible solution for the terminal device to learn about the bearer function on the uplink transmission time unit via the network device.
  • the first uplink transmission time unit and the second uplink transmission time unit are used to carry a channel sounding reference signal SRS.
  • the above-mentioned uplink transmission time unit can be used to carry the SRS, which provides the possibility for network equipment to perform CSI prediction.
  • the start time of the second downlink reception time unit includes: the start time of the second downlink reception time unit and the first downlink reception The time difference between the start moments of the time unit is the time difference.
  • the terminal device determines the start time of the second downlink receiving time unit based on the start time of the first downlink receiving time unit and the time difference
  • the start time of a downlink reception time unit plus the time difference is determined as the start time of the second downlink reception time unit, providing a simple and feasible solution for determining the start time of the second downlink reception time unit.
  • a method for determining a TA reference time in advance which includes: a network device sends third indication information to a terminal device, where the third indication information is used to instruct the terminal device to enable a second function, and the second The function is to determine the start time of the second downlink reception time unit based on the start time of the first downlink reception time unit and the time difference, where the time difference is the first downlink reception corresponding to the first uplink transmission time unit The time difference between the time unit and the second downlink receiving time unit corresponding to the second uplink sending time unit; the time length of the network device sending TA to the terminal device, the time length of the TA and the second downlink receiving time unit Is used to determine the TA.
  • the network device can instruct the terminal device to enable the determination of the second downlink receiving time unit based on the start time and the time difference of the first downlink receiving time unit through the third indication information.
  • the method further includes: the network device sends fourth indication information to the terminal device, where the fourth indication information is used to indicate the third indication information The moment of entry into force.
  • the network device when the network device sends the third instruction information to the terminal device, it may also notify the terminal device of the effective time of the third instruction information through the fourth instruction information, which is The ability to determine the effective time of the start time of the second downlink receiving time unit provides a feasible solution.
  • the method further includes: the network device receives first capability information sent by the terminal device, where the first capability information is used to report to the terminal The device can determine the start time of the second downlink reception time unit according to the start time of the first downlink reception time unit and the time difference.
  • the network device can learn that the terminal device can learn from the received first capability information of the terminal device according to the start time of the first downlink receiving time unit and all The time difference determines the start time of the second downlink receiving time unit, so that the network device can learn the capabilities of the terminal device.
  • the method further includes: the network device receives second capability information sent by the terminal device, and the second capability information is used to report the second capability information.
  • An uplink sending time unit and the second uplink sending time unit are used to carry at least one uplink physical channel and/or at least one reference signal.
  • the network device can also learn the uplink information that the terminal device can transmit in the uplink transmission time unit through the received second capability information of the terminal device.
  • the network device sends function indication information to the terminal device, where the function indication information is used to indicate the first uplink sending time unit and the second The second uplink transmission time unit is used to carry at least one uplink physical channel and/or at least one reference signal.
  • the network device can send function indication information to the terminal device to instruct the terminal device to transmit the uplink information in the aforementioned uplink transmission time unit.
  • the first uplink transmission time unit and the second uplink transmission time unit are used to carry a channel sounding reference signal SRS.
  • the above-mentioned uplink transmission time unit can be used to carry the SRS, which provides the possibility for network equipment to perform CSI prediction.
  • the start time of the second downlink reception time unit includes: the start time of the second downlink reception time unit and the first downlink reception The time difference between the start moments of the time unit is the time difference.
  • the terminal device determines the start time of the second downlink receiving time unit based on the start time of the first downlink receiving time unit and the time difference
  • the start time of a downlink reception time unit plus the time difference is determined as the start time of the second downlink reception time unit, providing a simple and feasible solution for determining the start time of the second downlink reception time unit.
  • an apparatus for determining a TA reference time for timing advance is provided.
  • the apparatus can be used to perform operations of terminal equipment in the first and third aspects and any possible implementation of the first and third aspects.
  • the device for determining the TA reference time of the timing advance includes means for executing the steps or functions described in the first and third aspects and any possible implementation of the first and third aspects.
  • the steps or functions can be realized by software, or by hardware, or by a combination of hardware and software.
  • a device for determining a TA reference time for timing advance is provided.
  • the device can be used to implement the network equipment in the second and fourth aspects and any possible implementation of the second and fourth aspects. Operation.
  • the apparatus for determining the timing advance TA reference time may include components corresponding to the steps or functions described in any possible implementation manners of the second and fourth aspects and the second and fourth aspects. (means) may be the network device of the second aspect and the fourth aspect or the chip or functional module inside the network device.
  • the steps or functions can be realized by software, or by hardware, or by a combination of hardware and software.
  • a communication device including a processor, a transceiver, and a memory, where the memory is used to store a computer program, and the transceiver is used to execute any one of the possible implementations of the first to fourth aspects
  • the processor is configured to call and run the computer program from the memory, so that the communication device executes the determined timing in any one of the possible implementations of the first to fourth aspects The method of TA reference time in advance.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the transceiver includes a transmitter (transmitter) and a receiver (receiver).
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the communication device executes the first and third aspects, as well as the first and third aspects.
  • the method in any possible implementation of the three aspects.
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the communication device executes the second and fourth aspects, as well as the second and third aspects. Any of the four possible implementation methods.
  • a system in an eighth aspect, includes the apparatuses for determining a timing advance TA reference time provided in the fifth and sixth aspects.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes the computer to execute any one of the first to fourth aspects above One of the possible implementation methods.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the above-mentioned first to fourth aspects Any one of the possible implementation methods.
  • a chip system including a memory and a processor, the memory is used to store a computer program, the processor is used to call and run the computer program from the memory, so that the communication device installed with the chip system executes The method in any one of the possible implementation manners of the foregoing first to fourth aspects.
  • FIG. 1 is a schematic diagram of a communication system 100 to which the method for determining a TA reference time provided by an embodiment of the present application is applicable.
  • Fig. 2 is a schematic diagram of another communication system to which the method for determining a TA reference time provided by an embodiment of the present application is applicable.
  • Fig. 3 is a schematic diagram of a TA provided by an embodiment of the present application.
  • Fig. 4 is a schematic flowchart of a method for determining a TA reference time provided by an embodiment of the present application.
  • FIG. 5 are schematic diagrams of the time difference provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the relationship between the start moments of different downlink reception time units according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another method for determining a TA reference time provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another relationship between the start times of different downlink receiving time units provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the device 10 for determining the TA reference time proposed by the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device 20 applicable to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the device 30 for determining the TA reference time proposed by the present application.
  • FIG. 12 is a schematic structural diagram of a network device 40 applicable to an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal equipment (terminal equipment) in the embodiments of the present application may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, relay station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent, terminal or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device in the embodiment of the present application may be any device with wireless transceiving function used to communicate with terminal devices.
  • This equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC) , Base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home Node B, HNB), baseband unit (baseBand unit, BBU), wireless fidelity (wireless fidelity, WIFI) system access Point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR, system GNB, or transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or, it can also be a network node that constitutes a gNB or transmission point, such as base
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements part of the functions of gNB
  • DU implements part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), or the CU can be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a communication system 100 to which the method for determining a timing advance TA reference time provided by an embodiment of the present application is applicable.
  • the system 100 includes a network device 102, and the network device 102 may include one antenna or multiple antennas.
  • the network device 102 may additionally include a transmitter and a receiver.
  • both the transmitter and the receiver may include multiple components related to signal transmission and reception (for example, a processor, a modulator, a multiplexer, a demodulator, a demultiplexer or an antenna, etc. ).
  • the network device 102 may communicate with terminal devices (for example, the terminal device 116 and the terminal device 122 shown in FIG. 1). However, it is understood that the network device 102 can communicate with any number of terminal devices similar to the terminal device 116 or the terminal device 122.
  • the terminal devices 116 and 122 may be various devices that communicate with the network device 102.
  • the terminal device 116 may be a cellular phone, a smart phone, a portable computer, a handheld communication device, a handheld computing device, a satellite radio device, a global positioning system, or a PDA. And/or any other suitable device for communicating on the wireless communication system 100.
  • the terminal device 116 communicates with the network device through antennas 112 and 114.
  • the antennas 112 and 114 transmit information to the terminal device 116 through the forward link (also referred to as the downlink) 118, and receive information from the terminal device 116 through the reverse link (also referred to as the uplink) 120.
  • the terminal device 122 communicates with the network device through the antennas 104 and 106.
  • the antennas 104 and 106 send information to the terminal device 122 through the forward link 124, and receive information from the terminal device 122 through the reverse link 126.
  • forward link 118 and reverse link 120 may use different frequency bands
  • forward link 124 and reverse link 126 may use different frequency bands.
  • the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link The link 126 may use a common frequency band.
  • Each antenna (or antenna group composed of multiple antennas) and/or area designed for communication is referred to as a sector of the network device 102.
  • the antenna group may be designed to communicate with terminal devices in a sector of the area covered by the network device 102.
  • the network device can transmit signals to all terminal devices in its corresponding sector through a single antenna or multi-antenna transmit diversity.
  • the transmitting antenna of the network device 102 can also use beamforming to improve the signal-to-noise ratio of the forward links 118 and 124.
  • the network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication sending device and/or a wireless communication receiving device.
  • the wireless communication sending device can encode the data for transmission.
  • the wireless communication sending device can acquire (for example, generate, receive from other communication devices, or store in a memory, etc.) a certain number of data bits to be sent to the wireless communication receiving device through a channel.
  • Such data bits may be included in a transmission block (or multiple transmission blocks) of data, and the transmission block may be segmented to generate multiple code blocks.
  • the communication system 100 may be a PLMN network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, an Internet of things (IoT) network, or other networks.
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT Internet of things
  • 1 is only a simplified schematic diagram of an example.
  • the communication system shown in FIG. 1 may also include other network devices and/or other terminal devices, which are not shown in FIG. 1 for simplicity.
  • the communication system shown in Figure 1 can be a network device communicating with multiple terminal devices, that is, a single network device can transmit data or control signaling to a single or multiple terminal devices; or, the communication system shown in Figure 1 It may be that multiple network devices communicate with one terminal device, that is, multiple network devices can also simultaneously transmit data or control signaling for a single terminal device.
  • FIG. 1 is only a simple schematic diagram to illustrate the applicable scenarios of the method for determining the timing advance TA reference time provided in the embodiment of the present application, and does not constitute any limitation on the present application.
  • the method for determining the timing advance TA reference time provided by the embodiment of the present application can also be applied to the vehicle to everything (V2X) communication system as shown in FIG. 2.
  • FIG. 2 shows the determination of TA provided by the embodiment of the present application.
  • V2X technology was proposed under the LTE system proposed by the 3rd generation partnership project (3GPP).
  • 3GPP 3rd generation partnership project
  • the communication methods in the V2X system are collectively referred to as V2X communication.
  • the V2X communication includes: vehicle-to-vehicle (V2V) communication, vehicle to roadside infrastructure (vehicle to infrastructure, V2I) communication, vehicle to pedestrian communication (vehicle to vehicle, V2V) pedestrian, V2P) or vehicle-to-network (V2N) communication, etc.
  • V2V vehicle-to-vehicle
  • V2I vehicle to roadside infrastructure
  • V2V vehicle to pedestrian communication
  • V2P vehicle to pedestrian
  • V2N vehicle-to-network
  • V2X communication can be collectively referred to as V2X communication.
  • Figure 2 is a schematic diagram of a V2X system in the prior art. The diagram includes V2V communication, V2P communication, and V2I/N communication. V2X communication is aimed at high-speed devices represented by vehicles. It is the basic technology and key technology applied in scenarios with very high communication delay requirements in the future, such as smart cars, autonomous driving, and intelligent transportation systems.
  • the terminal described in this application may also be a connected vehicle or a vehicle component applied to a vehicle.
  • a delay in signal transmission in space there is a delay in signal transmission in space. For example, some terminal equipment is moving away from the network equipment. The farther the terminal equipment is from the network equipment, the later it will receive the downlink signal from the network equipment. At the same time, the terminal equipment farther away from the network equipment will send Uplink signals will arrive at the network equipment later. At the same time, some terminal equipment is moving closer to the network equipment. The terminal equipment closer to the network equipment receives the downlink signal from the network equipment earlier. At the same time, the terminal equipment closer to the network equipment sends out The upstream signal will reach the network equipment sooner. Different delays will cause the uplink signals sent by these terminal devices to interfere with each other.
  • the network device needs to monitor the time when the uplink signal from the terminal device reaches the network device, and send an instruction on the downlink channel to the terminal device to instruct the terminal device to send the uplink signal relative to the downlink signal reference point in advance, that is, TA.
  • the network device can control the time when the uplink signals from different terminal devices reach the network device. For the terminal equipment far away from the network equipment, due to the larger transmission delay, it must send the uplink data earlier than the terminal equipment closer to the network equipment. Therefore, the TA of the terminal equipment far away from the network equipment is greater than that of the network equipment. TA of the nearest terminal equipment.
  • Fig. 3 is a schematic diagram of a TA provided by an embodiment of the present application.
  • the schematic diagram includes a downlink received frame and an uplink transmission frame. It can be seen from Figure 3 that the start time of the uplink transmission frame is TA earlier than the start time of the downlink reception frame, and the reference time of TA is the start time of the downlink reception frame.
  • this application mainly relates to the design of the relationship between the start moments of the downlink received frames corresponding to different uplink transmission frames. It should be understood that in the existing protocol, the start time of the downlink reception frame corresponding to each uplink transmission frame as shown in FIG.
  • the start time of the downlink reception frame corresponding to each uplink transmission frame is independent , Then it is possible that the time difference between the start time of the downlink reception frame corresponding to the first uplink transmission frame and the start time of the downlink reception frame corresponding to the last uplink transmission frame within the duration (T L ) is not A T L , that is, the time difference between the first uplink transmission frame and the last uplink transmission frame is a T L , but the time difference between the start moments of their respective corresponding downlink received frames is not a T L , but there is a deviation (t L ) from T L and the value of t L may vary based on at least one of the following factors:
  • the distance between the terminal device and the network device changes. For example, terminal equipment on a running high-speed rail;
  • the current transmission path of the terminal device disappears and switches to a new transmission path. For example, in a city with dense buildings, when walking to the corner of the building;
  • the method for determining the TA reference time of timing advance can be used to accurately predict/estimate CSI when applied in the scenario of uplink transmission channel sound reference signal (SRS).
  • SRS uplink transmission channel sound reference signal
  • the network device receives the SRS sent by the terminal device at the current time (T), and measures the CSI at the current time T based on the SRS, and secondly, the network device predicts the T L duration based on the CSI The next CSI after that.
  • timing advance in the embodiments of the present application is only an example, and does not constitute any limitation on the protection scope of the present application. For example, it may also be referred to as advance time, timing advance, or advance time. No more examples here.
  • Fig. 4 is a schematic flowchart of a method for determining a TA reference time provided by an embodiment of the present application.
  • the flowchart includes terminal equipment and network equipment.
  • the method for determining the TA reference time includes the following steps:
  • S110 The terminal device determines the time difference.
  • the time difference is the time difference between the first downlink reception time unit corresponding to the first uplink transmission time unit and the second downlink reception time unit corresponding to the second uplink transmission time unit.
  • first uplink transmission time unit and the second uplink transmission time unit in the embodiment of this application do not specifically refer to certain two uplink transmission time units.
  • the "first” and “second” in this application are only used for Distinguishing the description should not constitute any limitation to this application.
  • the first uplink transmission time unit and the second uplink transmission time unit only distinguish different uplink transmission time units
  • the second uplink transmission time unit is an uplink transmission time unit after the first uplink transmission time unit.
  • a possible implementation manner is that the second uplink transmission time unit is the next uplink transmission time unit immediately after the first uplink transmission time unit; or, another possible implementation manner is the second uplink transmission time unit At least one uplink transmission time unit is separated from the first uplink transmission time unit; or, the uplink transmission time unit is transmitted in P time units according to the period, and the interval between the second uplink transmission time unit and the first uplink transmission time unit is at least There are n*P slots, where n is an integer greater than or equal to 1.
  • the time unit involved in the embodiment of the present application may be, but is not limited to, a frame, a time slot, a subframe, or a symbol.
  • the above-mentioned first uplink transmission time unit is the first uplink transmission frame
  • the second uplink transmission time unit is the second uplink transmission frame, where the first uplink transmission frame is located before the second uplink transmission frame Frames.
  • FIG. 5 A schematic diagram of the time difference provided in the application embodiment.
  • the schematic diagram includes a first downlink reception time unit and a second downlink reception time unit.
  • the time difference between the first downlink reception time unit and the second downlink reception time unit is the first downlink reception time
  • the time length is defined as the time difference.
  • the time difference can only be determined based on the first downlink reception time unit and the length of the downlink reception time unit between the first downlink reception time unit and the second downlink reception time unit.
  • the first downlink reception time unit is the Xth downlink reception time unit in the total time units in the system
  • the second downlink reception time unit is the Yth downlink reception time unit in the total time units in the system.
  • Receiving time unit X is a positive integer
  • Y is an integer greater than X.
  • the time difference the duration of the first downlink reception time unit + the duration of each downlink reception time unit between the first downlink reception time unit and the second downlink reception time unit.
  • the time difference the length of time between the starting position of the first downlink receiving time unit and the starting position of the second downlink receiving time unit.
  • the time difference (YX)*T C ;
  • the first downlink reception time unit and the case where the duration of each downlink reception time unit between the first downlink reception time unit and the second downlink reception time unit is not equal as shown in Figure 5(c)
  • the time difference the duration of the first downlink receiving time unit + the duration of the X + 1 downstream receiving time unit + the duration of the X + 2 downstream receiving time unit... + the Y-1 downstream receiving time unit The length of time.
  • time difference the length of time between the start position of the first downlink reception time unit and the start position of the second downlink reception time unit.
  • the aforementioned time length of the downlink receiving time unit is specified by the system, and the terminal device can determine the aforementioned time difference value based on the time length of the downlink receiving time unit. Specifically, when the duration of a certain downlink reception time unit changes, the network device needs to notify the terminal device that the duration of the certain downlink reception time unit changes. For example, the network device notifies the terminal device that the duration of the first downlink receiving time unit is changed from T C to T C1 .
  • the start time of the first uplink transmission time unit is earlier than the start time of the first downlink reception time unit, and the start time of the second uplink transmission time unit is earlier than the second downlink reception time unit
  • the above time difference can also be understood as the time difference between the first uplink transmission time unit and the second uplink transmission time unit, then the downlink reception time unit shown in Figure 5 can be replaced by the uplink
  • the specific situation of the sending time unit is similar to that shown in FIG. 5, and will not be repeated here.
  • S120 The terminal device determines the TA.
  • the embodiment shown in FIG. 4 determines the terminal device TA in the TA refers to determining the reference time T r and length L.
  • Long starting time receiving a second downlink time unit Specifically, the length L of the TA as a starting time point of the second uplink transmission time units earlier than the corresponding, reference TA time T r is a second downlink reception unit time The beginning of the moment.
  • the embodiments of this application do not limit how the terminal device learns the duration L of the TA.
  • the network device notifies the terminal device of the TA duration as L, then the method flow shown in FIG. 4 It also includes S111, the length of time the network device sends TA to the terminal device. That is the focus of this application is how to determine embodiment timing reference TA T r, i.e. the second downlink reception start time of the time unit.
  • the start time of the second downlink reception time unit in this embodiment of the application is different from the start time of the first downlink reception time unit. There is a certain connection between the times. The relationship between the start time of the second downlink reception time unit and the start time of the first downlink reception time unit will be described in detail below:
  • the start time of the second downlink reception time unit is determined based on the start time of the first downlink reception time unit and the time difference determined by the terminal device in S110.
  • the first downlink reception time unit is the first downlink reception time unit described above.
  • the downlink receiving time unit corresponding to the uplink sending time unit.
  • the start time of the first downlink reception time unit in the embodiment of the present application is known, and may be determined based on the method for determining the start time of the downlink reception time unit specified in the existing protocol, or, It may be determined based on the method for determining the TA reference time provided by the present application, which will not be repeated here, and only the starting time of the first downlink receiving time unit is limited to be known.
  • the first downlink reception time unit is a downlink reception time unit determined by the terminal device at the current moment
  • the second downlink reception time unit is a target downlink reception time unit that the terminal device needs to determine the starting moment
  • the second downlink reception time unit is a downlink reception time unit that the current terminal device needs to determine
  • the first downlink reception time unit is a downlink reception time unit for which the terminal device has determined the start time last time.
  • the starting time of the first downlink receiving time unit may be recorded as T1
  • the starting time of the second downlink receiving time unit may be recorded as T2
  • the first downlink corresponding to the first uplink sending time unit The time difference between the line receiving time unit and the second downlink receiving time unit corresponding to the second uplink sending time unit is denoted as TX. It can be seen from FIG. 5 that the TX is a positive value.
  • FIG. 6 is a schematic diagram of the relationship between the start moments of different downlink reception time units according to an embodiment of the present application.
  • the start time of the first uplink transmission time unit is earlier than the corresponding start time of the first downlink reception time unit, and the time length is TA0; the start time of the second uplink transmission time unit is earlier than the corresponding The duration of the start time of the second downlink receiving time unit of is TA1.
  • the time difference between the first downlink reception time unit and the second downlink reception time unit is TX, the start time of the first downlink reception time unit is T1, and the start time of the second downlink reception time unit is T1+ TX.
  • the terminal device may determine that it can determine the second downlink based on the start time of the first downlink reception time unit based on the third indication information received from the network device and the time difference.
  • the start time of the receiving time unit before the terminal device determines the start time of the second downlink receiving time unit, the method flow shown in FIG. 4 further includes S121.
  • the network device sends third indication information to the terminal device.
  • the third indication information is used to instruct the terminal device to enable the second function; or, it can also be said that the third indication information is used to instruct the terminal device to activate the second function, and the second function is based on the first downlink reception
  • the start time of the time unit and the time difference determine the start time of the second downlink receiving time unit.
  • the terminal device may determine the time when the third instruction information takes effect based on the fourth instruction information received from the network device, that is, the method flow shown in optional map 4 further includes S1211, The network device sends fourth instruction information to the terminal device.
  • the time when the third indication information becomes effective may also be considered as the time when the second function becomes effective.
  • the foregoing fourth instruction information is carried in the third instruction information, and is sent by the network device to the terminal device:
  • the terminal device receives the above-mentioned third indication information on time slot k, the third indication information includes time delay information, and the time delay information indicates that the third indication information takes effect after n time slots, then the terminal device determines 3.
  • the time when the indication information takes effect is the time slot k+n, where the delay information carried in the third indication information can be understood as the fourth indication information mentioned above.
  • the foregoing third instruction information includes the effective time of the third instruction information.
  • the terminal device receives the above-mentioned third indication information on time slot k, and the effective time of the third indication information included in the third indication information is time slot m, then the terminal device determines that the time when the third indication information takes effect is time slot m,
  • the time slot m is a certain time slot after the time slot k, where the effective time carried in the third indication information can be understood as the fourth indication information mentioned above.
  • the effective moment of the third indication information included in the third indication information is the moment when the terminal device receives the third indication information.
  • the terminal device receives the above-mentioned third indication information in time slot k, and the effective time of the third indication information included in the third indication information is the moment when the terminal device receives the third indication information, then the terminal device determines the third indication information
  • the effective time is time slot k, where the time when the terminal device receives the third indication information can be understood as the aforementioned fourth indication information.
  • the foregoing fourth instruction information is another piece of instruction information sent by the network device to the terminal device, and is not carried in the third instruction information:
  • the terminal device receives the above-mentioned third indication information and fourth indication information on time slot k, where the fourth indication information indicates a time delay (n time slots), the terminal device determines that the time when the third indication information becomes effective is Time slot k+n.
  • the terminal device receives the aforementioned third indication information on time slot k, and the terminal device receives the aforementioned fourth indication information on time slot k+n, where the fourth indication information indicates the time delay (m time slots, m is greater than or equal to n), the terminal device determines that the time when the third indication information becomes effective is the time slot k+m.
  • the terminal device receives the foregoing third indication information on time slot k, and the terminal device receives the foregoing fourth indication information on time slot k+n, where the fourth indication information indicates the time delay (m time slots) , The terminal device determines that the time when the third indication information becomes effective is the time slot k+n+m.
  • the terminal device receives the above-mentioned fourth indication information on time slot k, and the terminal device receives the above-mentioned third indication information on time slot k+n, where the fourth indication information indicates the time delay (m time slots, m is greater than or equal to n), the terminal device determines that the time when the third indication information becomes effective is the time slot k+m.
  • the terminal device receives the foregoing fourth indication information on time slot k, and the terminal device receives the foregoing third indication information on time slot k+n, where the fourth indication information indicates the time delay (m time slots) , The terminal device determines that the time when the third indication information becomes effective is the time slot k+n+m.
  • the terminal device may determine the time when the aforementioned third indication information becomes effective based on the judgment of the terminal device's own capabilities.
  • the terminal device receives the above-mentioned third indication information on time slot k, and the terminal device determines the time delay information, and the time delay information indicates that the third indication information takes effect after n time slots, then the terminal device determines the third indication information
  • the effective moment is time slot k+n.
  • the delay information determined by the terminal device may be a duration specified in the protocol, and the duration is n time slots; or, the delay information determined by the terminal device may be based on a preset calculation formula to calculate a duration, and the duration is n time slots.
  • the third indication information is also used to instruct the terminal device to disable the above-mentioned second function; or, it can also be said that the third indication information is also used to instruct the terminal device not to enable the above-mentioned second function Or, it can also be said that the third indication information is also used to instruct the terminal device to deactivate the above-mentioned second function; or, it can also be said that the third indication information is also used to indicate that the terminal device can be based on the existing protocol
  • the method for determining the start time of the second downlink reception time unit is to determine the start time of the second downlink reception time unit.
  • the third indication information is carried in RRC signaling or media access control control element (Media access control-control element, MAC CE) signaling or downlink control information (downlink control information, DCI) and sent to the terminal device.
  • media access control control element Media access control-control element, MAC CE
  • DCI downlink control information
  • the terminal device may also report to the network device whether it can support the start time based on the first downlink reception time unit, and the time difference to determine the start time of the second downlink reception time unit.
  • the method flow shown in FIG. 4 further includes S122.
  • the terminal device sends first capability information to the network device, where the first capability information is used to report that the terminal device is able to report that the terminal device can start according to the first downlink reception time unit.
  • the time and the time difference determine the start time of the second downlink receiving time unit.
  • the terminal device may also send second capability information to the network device.
  • the method flow shown in FIG. 4 further includes S1221.
  • the terminal device sends the second capability information to the network device.
  • the uplink transmission time unit involved in the embodiment of the present application may be used to carry at least one reference signal, and the type of reference signal is not limited, and the reference signal involved in the embodiment of the present application may also be referred to as Pilot.
  • the uplink transmission time unit involved in the embodiments of the present application is used to carry at least one type of uplink physical channel means that the uplink transmission time unit can be used to carry at least one type of uplink physical channel among various uplink physical channels.
  • the uplink transmission time unit involved in the embodiments of the present application is used to carry at least one reference signal, which means that the uplink transmission time unit may also be used to carry at least one reference signal among various reference signals.
  • the network device may determine the capability of the terminal device based on the first capability information reported by the terminal device, and send function indication information to the terminal device, where the function indication information is used to indicate the first uplink sending time unit and the second
  • the second uplink sending time unit is used to carry at least one type of uplink physical channel, or at least one type of reference signal, or at least one type of uplink physical channel and at least one reference signal.
  • the method flow shown in FIG. 4 also includes S123, the network device sends function indication information to the terminal device.
  • the embodiment of the present application does not limit the terminal device to necessarily send the first capability information to the network device.
  • the terminal device does not report the first capability information, and the terminal device supports the transmission of any uplink information in the uplink transmission time unit by default, and the network device can indicate the function of the terminal device; or another
  • the protocol specifies the functions of the terminal equipment, and the network equipment indicates that all or part of the functions specified in the protocol are the functions of the terminal equipment. It should be understood that, in general, the network device indicates that the function of the terminal device does not exceed the capability range that the terminal device can support.
  • the foregoing first uplink transmission time unit and the second uplink transmission time unit are used to carry the channel sounding reference signal SRS.
  • the SRS is scheduled periodically or semi-persistently.
  • SRS is used to measure channel state information CSI
  • the first uplink transmission time unit corresponds to the first CSI
  • the first CSI is used to predict the second CSI corresponding to the second uplink transmission time unit. Since, in the embodiment shown in FIG. 4, the interval between the start time of the first downlink reception time unit and the start time of the second downlink reception time unit is a known value, it will not be used when predicting the second CSI. The existing problem of inaccuracy in predicting CSI arises.
  • FIG. 7 is a schematic flowchart of another method for determining a TA reference time provided by an embodiment of the present application.
  • the flowchart includes terminal equipment and network equipment.
  • the method for determining the TA reference time includes the following steps:
  • S210 The terminal device determines the time difference and the offset.
  • the time difference is the time difference between the first downlink receiving time unit corresponding to the first uplink sending time unit and the second downlink receiving time unit corresponding to the second uplink sending time unit
  • the offset is a preset value.
  • the offset is a value preset by the terminal device based on the communication status, or a value preset by other management devices, and the preset value is notified to the terminal device.
  • first uplink transmission time unit and the second uplink transmission time unit in the embodiment of this application do not specifically refer to certain two uplink transmission time units.
  • the “first” and “second” in this application are only used for Distinguishing the description should not constitute any limitation to this application.
  • the first uplink transmission time unit and the second uplink transmission time unit only distinguish different uplink transmission time units
  • the second uplink transmission time unit is an uplink transmission time unit after the first uplink transmission time unit.
  • the second downlink reception time unit is the next downlink reception time unit adjacent to the first downlink reception time unit; or, another possible implementation is that the second downlink reception time unit is There is at least one downlink reception time unit between the first downlink reception time unit; or, the uplink transmission time unit performs uplink transmission according to a period of P time units, and the interval between the second uplink transmission time unit and the first uplink transmission time unit is at least There are n*P slots, where n is an integer greater than or equal to 1.
  • the above time difference can also be understood as the time difference between the first uplink sending time unit and the second uplink sending time unit.
  • the possible time difference between the first downlink reception time unit and the second downlink reception time unit in the embodiment shown in FIG. 7 is as shown in FIG. 5 above, and will not be repeated here.
  • the terminal device can determine multiple different offsets, where the first downlink reception time unit is the last time the downlink reception time unit is calculated by applying the previous offset.
  • the time unit, the second downlink receiving time unit is a time unit that uses the current offset to calculate the start time of the downlink receiving time unit.
  • the above offset is a preset determined by the terminal equipment to correct the time difference between the first downlink reception time unit corresponding to the first uplink transmission time unit and the second downlink reception time unit corresponding to the second uplink transmission time unit value.
  • the offset can also be referred to as an error value or a correction amount.
  • the second is determined based on the time difference and the offset and the start time of the first downlink reception time unit in the embodiment shown in FIG.
  • the start time of the downlink reception time unit is similar to the determination of the start time of the second downlink reception time unit based on the time difference and the start time of the first downlink reception time unit in the method flow shown in FIG. 4.
  • S220 The terminal device determines the TA.
  • the terminal device in the embodiment shown in FIG. 7 determines that the TA TA refers to determining the reference time T r and length L.
  • Long starting time receiving a second downlink time unit Specifically, the length L of the TA as a starting time point of the second uplink transmission time units earlier than the corresponding, reference TA time T r is a second downlink reception unit time The beginning of the moment.
  • the embodiments of this application do not limit how the terminal device learns the duration L of the TA.
  • the network device notifies the terminal device of the TA duration as L, then the method flow shown in FIG. 7 It also includes S211, the time length for the network device to send the TA to the terminal device. That is the focus of this application is how to determine embodiment timing reference TA T r, i.e. the second downlink reception start time of the time unit. Different from the random determination of the start time of the second downlink reception time unit specified in the existing protocol, the start time of the second downlink reception time unit in the embodiment of the present application is different from the start time of the first downlink reception time unit. There is a certain connection between them, and the relationship between the start time of the second downlink reception time unit and the start time of the first downlink reception time unit will be described in detail below:
  • the start time of the second downlink reception time unit is determined based on the start time of the first downlink reception time unit and the time difference and offset determined by the terminal equipment in S210.
  • the first downlink reception time unit Is the downlink receiving time unit corresponding to the above-mentioned first uplink sending time unit.
  • the start time of the first downlink reception time unit in the embodiment of the present application is known, and may be determined based on the method for determining the start time of the downlink reception time unit specified in the existing protocol, or, It may be determined based on the method for determining the TA reference time provided by this application (for example, based on the embodiment shown in FIG. 4, or the method for determining the start time of the downlink receiving time unit in the embodiment shown in FIG. Confirmed), which will not be repeated here, only the starting time of the first downlink receiving time unit is limited to be known.
  • the first downlink reception time unit is a downlink reception time unit determined by the terminal device at the current moment
  • the second downlink reception time unit is a target downlink reception time unit that the terminal device needs to determine the starting moment
  • the second downlink reception time unit is a downlink reception time unit that the current terminal device needs to determine
  • the first downlink reception time unit is a downlink reception time unit for which the terminal device has determined the start time last time.
  • the starting time of the first downlink receiving time unit may be recorded as T1
  • the starting time of the second downlink receiving time unit may be recorded as T2
  • the first downlink corresponding to the first uplink sending time unit The time difference between the line receiving time unit and the second downlink receiving time unit corresponding to the second uplink sending time unit is denoted as TX, and the offset is denoted as t1.
  • FIG. 8 is a schematic diagram of another relationship between the start times of different downlink receiving time units provided in an embodiment of the present application.
  • the start time of the first uplink transmission time unit is earlier than the corresponding first downlink reception time unit, and the time length is TA0; the first second uplink transmission time unit in Figure 8 The start time is earlier than the start time of the corresponding first second downlink receiving time unit, TA1; the start time of the second second uplink sending time unit in Figure 8 is earlier than the corresponding second second The duration of the start time of the downlink receiving time unit is TA2.
  • the time difference between the first downlink reception time unit and the first second downlink reception time unit is TX1
  • the time difference between the first downlink reception time unit and the second downlink reception time unit is TX2
  • the starting time of the first downlink receiving time unit is T1
  • the starting time of the first second downlink receiving time unit is T1+TX1+t1
  • Figure 8 shows that t1 can remain unchanged for a period of time, then
  • the second one can also be determined based on the time difference between the first uplink sending time unit and the second second uplink sending time unit and t1.
  • the start time of the second downlink receiving time unit is T1+TX2+t1.
  • the terminal device may be based on the first indication information received from the network device to determine that it may be based on the start time of the first downlink reception time unit, and the time difference and offset To determine the start time of the second downlink reception time unit, before the terminal device determines the start time of the second downlink reception time unit, the method flow shown in FIG. 7 further includes S221: the network device sends the first indication information to the terminal device , The first indication information is used to instruct the terminal device to activate the first function; or, it can also be said that the first indication information is used to instruct the terminal device to activate the first function, and the first function is based on the first function.
  • the start time of a downlink reception time unit, the time difference and the offset determine the start time of the second downlink reception time unit.
  • the terminal device may determine the time when the above-mentioned first instruction information becomes effective based on the second instruction information received from the network device, that is, the method flow shown in optional map 7 further includes S2211, The network device sends the second instruction information to the terminal device.
  • the moment when the first indication information becomes effective may also be considered as the moment when the first function becomes effective.
  • the terminal device receives the above-mentioned first indication information on time slot k, the first indication information includes delay information, and the delay information indicates that the first indication information takes effect after n timeslots, then the terminal device determines The time when the indication information becomes effective is the time slot k+n, where the delay information can be understood as the second indication information mentioned above.
  • the first indication information includes the effective time of the first indication information.
  • the terminal device receives the above-mentioned first indication information on time slot k, and the effective time of the first indication information included in the first indication information is time slot m, then the terminal device determines that the time when the first indication information takes effect is time slot m,
  • the time slot m is a certain time slot after the time slot k, where the effective time included in the first indication information can be understood as the aforementioned second indication information.
  • the effective time at which the first indication information is included in the first indication information is the time when the terminal device receives the first indication information.
  • the terminal device receives the above-mentioned first indication information in the time slot k, and the effective time of the first indication information included in the first indication information is the moment when the terminal device receives the first indication information, then the terminal device determines the first indication information
  • the effective time is time slot k, where the time when the terminal device receives the first indication information can be understood as the aforementioned second indication information.
  • the foregoing second instruction information is another piece of instruction information sent by the network device to the terminal device, and is not carried in the first instruction information:
  • the terminal device receives the above-mentioned first indication information and second indication information on time slot k, where the second indication information indicates a time delay (n time slots), the terminal device determines that the time when the first indication information becomes effective is Time slot k+n.
  • the terminal device receives the above-mentioned first indication information on the time slot k, and the terminal device receives the above-mentioned second indication information on the time slot k+n, where the second indication information indicates the time delay (m time slots, m is greater than or equal to n), the terminal device determines that the time when the first indication information becomes effective is the time slot k+m.
  • the terminal device receives the above-mentioned first indication information on the time slot k, and the terminal device receives the above-mentioned second indication information on the time slot k+n, where the second indication information indicates the time delay (m time slots) , The terminal device determines that the time when the first indication information becomes effective is the time slot k+n+m.
  • the terminal device receives the above-mentioned second indication information on the time slot k, and the terminal device receives the above-mentioned first indication information on the time slot k+n, where the second indication information indicates the time delay (m time slots, m is greater than or equal to n), the terminal device determines that the time when the first indication information becomes effective is the time slot k+m.
  • the terminal device receives the above-mentioned second indication information on time slot k, and the terminal device receives the above-mentioned first indication information on time slot k+n, where the second indication information indicates the time delay (m time slots) , The terminal device determines that the time when the first indication information becomes effective is the time slot k+n+m.
  • the terminal device may determine the time when the foregoing first indication information becomes effective based on the judgment of the terminal device's own capabilities.
  • the terminal device receives the above-mentioned first indication information on time slot k, and the terminal device determines the time delay information, and the time delay information indicates that the first indication information takes effect after n time slots, then the terminal device determines the first indication information
  • the effective moment is time slot k+n.
  • the time delay information determined by the terminal device may be a time length specified in the protocol, and the time length is n time slots; or, the time delay information determined by the terminal device may be calculated based on a preset calculation formula, and the time length is n time slots.
  • the first indication information is also used to instruct the terminal device to disable the above-mentioned first function; or, it can also be said that the first indication information is also used to instruct the terminal device not to enable the above-mentioned first function Or, it can also be said that the first indication information is also used to instruct the terminal device to deactivate the above-mentioned first function; or, it can also be said that the first indication information is also used to indicate that the terminal device can be based on the existing protocol
  • the method for determining the start time of the second downlink reception time unit is to determine the start time of the second downlink reception time unit.
  • the embodiment shown in FIG. 4 and the embodiment shown in FIG. 7 can be combined, that is, the terminal device simultaneously supports the determination of the second downlink reception time unit based on the start time of the first downlink reception time unit and the time difference
  • the start time of the second downlink reception time unit is determined based on the start time of the first downlink reception time unit, and the time difference and offset.
  • the terminal device has both the second function in the embodiment shown in FIG. 4 and the first function in the embodiment shown in FIG. 7.
  • the third indication information in the embodiment shown in FIG. 4 and The first indication information in the embodiment shown in FIG. 7 may be a piece of indication information, called fifth indication information.
  • the fifth indication information may be used to instruct the terminal device to enable the first function, or may be used to instruct the terminal device to enable The second function, alternatively, can be used to instruct the terminal device to enable the first function and the second function.
  • the terminal device can arbitrarily choose a capability to determine the start time of the second downlink receiving time unit to determine the TA reference time, or
  • the first function and the second function in the embodiment shown in FIG. 4 and the embodiment shown in FIG. 7 are integrated and regarded as one function.
  • the function includes two optional functions.
  • the first indication information is carried in RRC signaling or MAC CE signaling or DCI and sent to the terminal device.
  • the terminal device may also report to the network device whether it can support the start time of the first downlink reception time unit, and the time difference and offset to determine the second downlink reception time unit. The function of the starting moment. Then the method flow shown in FIG. 7 further includes S222.
  • the terminal device sends first capability information to the network device, where the first capability information is used to report that the terminal device is able to report that the terminal device can start according to the first downlink reception time unit.
  • the time and the time difference and offset determine the start time of the second downlink receiving time unit.
  • the terminal device may also send second capability information to the network device.
  • the method flow shown in FIG. 7 further includes S2221.
  • the terminal device sends the second capability information to the network device.
  • the reported first uplink transmission time unit and the second uplink transmission time unit are used to carry at least one type of uplink physical channel and/or at least one type of reference signal.
  • the uplink transmission time unit involved in the embodiment of the present application may be used to carry at least one reference signal, and the type of reference signal is not limited, and the reference signal involved in the embodiment of the present application may also be referred to as Pilot.
  • the uplink transmission time unit involved in the embodiments of the present application is used to carry at least one type of uplink physical channel means that the uplink transmission time unit can be used to carry at least one type of uplink physical channel among various uplink physical channels.
  • the uplink transmission time unit involved in the embodiments of the present application is used to carry at least one reference signal, which means that the uplink transmission time unit may also be used to carry at least one reference signal among various reference signals.
  • the network device may determine the capability of the terminal device based on the first capability information reported by the terminal device, and send function indication information to the terminal device, where the function indication information is used to indicate the first uplink sending time unit and the second
  • the second uplink transmission time unit is used to carry at least one type of uplink physical channel, or at least one type of reference signal, or at least one type of uplink physical channel and at least one reference signal.
  • the method flow shown in FIG. 7 further includes S223, the network device sends function indication information to the terminal device.
  • the embodiment of the present application does not limit the terminal device to necessarily send the first capability information to the network device.
  • the terminal device does not report the first capability information, and the terminal device supports the transmission of any uplink information in the uplink transmission time unit by default, and the network device can indicate the function of the terminal device; or another
  • the protocol specifies the functions of the terminal device, and the network device indicates that all or part of the capabilities specified in the protocol are the functions of the terminal device. It should be understood that, in general, the network device indicates that the function of the terminal device does not exceed the capability range that the terminal device can support.
  • the foregoing first uplink transmission time unit and the second uplink transmission time unit are used to carry the channel sounding reference signal SRS.
  • the SRS is scheduled periodically or semi-persistently.
  • SRS is used to measure channel state information CSI
  • the first uplink transmission time unit corresponds to the first CSI
  • the first CSI is used to predict the second CSI corresponding to the second uplink transmission time unit. Since, in the embodiment shown in FIG. 7, the interval between the start time of the first downlink reception time unit and the start time of the second downlink reception time unit is a known value, the second CSI will not be predicted. The existing problem of inaccuracy in predicting CSI arises.
  • the terminal device may report the aforementioned offset to the network device. That is, the method embodiment shown in FIG. 7 also includes S224, the terminal The device sends the offset to the network device.
  • a possible implementation is the way the network device instructs the terminal device to report the offset.
  • the way the terminal device reports the offset to the network device includes periodic reporting, or semi-static reporting, or non-periodic reporting; or, Another possible implementation is that the terminal device actively reports the offset.
  • the terminal device may also report the length of time the offset takes effect to the network device, and the network device can determine the length of time that the offset can be used based on the time length during which the offset takes effect.
  • the terminal device may also report the moment when the offset becomes effective to the network device, and the network device can determine when the offset becomes effective based on the moment when the offset becomes effective.
  • the network device determines that the offset takes effect The time at is the time slot k1+n1.
  • the network device determines the delay information, and the delay information indicates that the offset takes effect after n1 time slots, then the network device determines that the offset takes effect The time is the time slot k1+n1.
  • the delay information determined by the network device may be a duration specified by the protocol, and the duration is n1 time slots; or, the delay information determined by the network device may be calculated based on a preset calculation formula to calculate a duration, and the duration is n1 Time slots.
  • the offset includes the effective time of the offset.
  • the network device receives the above offset on the time slot k1, and the effective time of the offset included in the offset is time slot m1, then the time when the network device determines that the offset takes effect is time slot m1, and time slot m1 is Some time slot after time slot k1.
  • the effective moment of the offset included in the offset is the moment when the network device receives the offset.
  • the network device receives the above offset on the time slot k1, and the offset includes the effective moment of the offset as the moment when the network device receives the offset, then the network device determines that the moment when the offset becomes effective is time Gap k1.
  • the embodiment shown in FIG. 7 can be used in combination with the embodiment shown in FIG. 4.
  • the second downlink reception time unit is calculated for the first time.
  • the start time considers the offset, and when calculating the start time of the downlink reception time unit after the second downlink reception time unit based on the start time of the second downlink reception time unit again, based on the previous downlink reception time unit
  • the start time and the start time of the next downlink receiving time unit after the above time difference is determined, no longer consider the offset.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not correspond to the implementation process of the embodiments of this application. Constitute any limitation.
  • the method for determining the timing advance TA reference time provided by the embodiments of the present application is described in detail above with reference to FIGS. 4-8, and the device for determining the timing advance TA reference time provided by the embodiments of the present application is described in detail below with reference to FIGS. 9-12.
  • FIG. 9 is a schematic diagram of the apparatus 10 for determining the timing advance TA reference time proposed in the present application.
  • the device 10 includes a receiving unit 110, a sending unit 130 and a processing unit 120.
  • the receiving unit 110 is configured to receive instruction information sent by a network device, where the instruction information is used to instruct the terminal device to determine the second downlink according to the start time of the first downlink receiving time unit and the time difference The start time of the receiving time unit;
  • the processing unit 120 is configured to determine a time difference and an offset, where the time difference is the difference between the first downlink reception time unit corresponding to the first uplink transmission time unit and the second downlink reception time unit corresponding to the second uplink transmission time unit Time difference, the offset is a preset value;
  • the processing unit 120 is further configured to determine a TA, where the TA is the length of time that the start time of the second uplink transmission time unit is earlier than the start time of the second downlink reception time unit, wherein the first Second, the start time of the downlink reception time unit is determined based on the start time of the first downlink reception time unit, the time difference and the offset.
  • the sending unit 130 is configured to send first capability information to the network device, where the first capability information is used to report the starting time that the terminal device can receive according to the first downlink receiving time unit and the time difference, Determine the start time of the second downlink receiving time unit.
  • the sending unit 130 is further configured to send second capability information to the network device, where the second capability information is used to report the first uplink transmission time unit and the second uplink transmission time unit is used to carry at least one Uplink physical channel and/or at least one reference signal.
  • the apparatus 10 completely corresponds to the terminal equipment in the method embodiment, and the apparatus 10 may be the terminal equipment in the method embodiment, or a chip or functional module inside the terminal equipment in the method embodiment.
  • the corresponding unit of the apparatus 10 is used to execute the corresponding steps performed by the terminal device in the method embodiments shown in FIGS. 4-8.
  • the receiving unit 110 in the apparatus 10 executes the steps of the terminal device receiving in the method embodiment. For example, perform step 111 of FIG. 4 for receiving the time length of TA sent by the network device, perform step 121 of FIG. 4 for receiving the third instruction information sent by the network device, and perform step 1211 of FIG. 4 for receiving the fourth instruction information sent by the network device.
  • the processing unit 120 executes the steps implemented or processed inside the terminal device in the method embodiment. For example, perform step 110 of determining the time difference in FIG. 4, perform step 120 of determining TA in FIG. 4, perform step 210 of determining time difference in FIG. 7, and perform step 220 of determining TA in FIG.
  • the sending unit 130 executes the steps sent by the terminal device in the method embodiment. For example, perform step 122 of sending first capability information to the network device in FIG. 4, perform step 1221 of sending second capability information to the network device in FIG. 4, and perform step 222, sending first capability information to the network device in FIG. Step 2221 of sending the second capability information to the network device in FIG. 7 is performed, and step 224 of sending the offset to the network device in FIG. 7 is performed.
  • the receiving unit 110 and the sending unit 130 may constitute a transceiver unit, and have both receiving and sending functions.
  • the processing unit 120 may be a processor.
  • the sending unit 130 may be a receiver.
  • the receiving unit 110 may be a transmitter. The receiver and transmitter can be integrated to form a transceiver.
  • FIG. 10 is a schematic structural diagram of a terminal device 20 applicable to an embodiment of the present application.
  • the terminal device 20 can be applied to the system shown in FIG. 1 and FIG. 2.
  • FIG. 10 only shows the main components of the terminal device.
  • the terminal device 20 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is used to control the antenna and the input and output devices to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory to execute the method for determining the timing advance TA reference time proposed by the application. The corresponding process and/or operation performed. I won't repeat them here.
  • FIG. 8 only shows a memory and a processor. In actual terminal devices, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • FIG. 11 is a schematic diagram of the device 30 for determining the timing advance TA reference time proposed in the present application.
  • the device 30 includes a sending unit 310 and a receiving unit 320.
  • the sending unit 310 is configured to send instruction information to a terminal device, where the instruction information is used to instruct the terminal device to enable a first function, and the first function is based on the start time of the first downlink receiving time unit and The time difference and offset determine the start time of the second downlink reception time unit, where the time difference is the first downlink reception time unit corresponding to the first uplink transmission time unit and the second uplink transmission time unit corresponding to the The time difference between the second downlink receiving time units, where the offset is a preset value.
  • the receiving unit 320 is configured to receive first capability information sent by the terminal device, where the first capability information is used to report that the terminal device can report the start time of the first downlink receiving time unit and the time difference And the offset to determine the start time of the second downlink receiving time unit.
  • the receiving unit 320 is further configured to receive second capability information sent by the terminal device, where the second capability information is used to report the first uplink sending time unit and the second uplink sending time unit for carrying at least one One kind of uplink physical channel and/or at least one kind of reference signal.
  • the apparatus 30 completely corresponds to the network equipment in the method embodiment, and the apparatus 30 may be the network equipment in the method embodiment, or a chip or functional module inside the network equipment in the method embodiment.
  • the corresponding unit of the device 30 is used to execute the corresponding steps executed by the network device in the method embodiments shown in FIGS. 4-8.
  • the sending unit 310 in the apparatus 30 executes the steps of the network device sending in the method embodiment. For example, perform step 111 of sending the TA duration to the terminal device in FIG. 4, perform step 121 of sending the third instruction information to the terminal device in FIG. 4, perform step 1211 of sending the fourth instruction information to the terminal device in FIG. Step 123 of sending function instruction information to the terminal device in FIG. 4, step 211 of sending the TA duration to the terminal device in FIG. 7, execute step 221 of sending the first instruction information to the terminal device in FIG. 7, and execute step 221 of sending the first instruction information to the terminal device in FIG. Step 2211 in which the terminal device sends the second instruction information performs step 223 in FIG. 7 of sending function instruction information to the terminal device.
  • the receiving unit 320 executes the steps of the network device receiving in the method embodiment. For example, perform step 122 of receiving terminal device sending first capability information in FIG. 4, perform step 1221 of receiving terminal device sending second capability information in FIG. 4, perform step 222 of receiving terminal device sending capability information in FIG. 7, execution diagram Step 2221 of the receiving terminal device sending the second capability information in 7 performs step 224 of sending the offset of the receiving terminal device in FIG. 7.
  • the apparatus 30 may further include a processing unit, which is configured to execute the steps implemented or processed inside the network device in the method embodiment.
  • the receiving unit 320 and the sending unit 310 may constitute a transceiving unit, and have both receiving and sending functions.
  • the processing unit may be a processor.
  • the transmitting unit 310 may be a receiver.
  • the receiving unit 320 may be a transmitter. The receiver and transmitter can be integrated to form a transceiver.
  • Fig. 12 is a schematic structural diagram of a network device 40 applicable to an embodiment of the present application, which can be used to implement the function of the network device in the above method for determining the timing advance TA reference time. It can be a schematic diagram of the structure of a network device.
  • the network equipment 40 may include CU, DU, and AAU.
  • the network equipment consists of one or more radio frequency units, such as a remote radio unit (RRU) 401 and one or For multiple baseband units (BBU):
  • RRU remote radio unit
  • BBU For multiple baseband units
  • the non-real-time part of the original BBU will be divided and redefined as CU, which is responsible for processing non-real-time protocols and services.
  • Part of the physical layer processing functions of the BBU are merged with the original RRU and passive antenna into AAU, and the remaining functions of the BBU are redefined as DU.
  • CU and DU are distinguished by the real-time nature of processing content, and AAU is a combination of RRU and antenna.
  • FIG. 12 is only an example, and does not limit the scope of protection of this application.
  • the deployment form may also be DU deployment in a 4G BBU computer room, CU centralized deployment or DU centralized deployment, and higher-level centralized CU.
  • the AAU 401 that can implement the transceiving function is called a transceiving unit 401, which corresponds to the transmitting unit 310 in FIG. 8.
  • the transceiver unit 401 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 4011 and a radio frequency unit 4012.
  • the transceiving unit 401 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the CU and DU 402 that can implement internal processing functions are called the processing unit 402, which corresponds to the processing unit 330 in FIG. 8.
  • the processing unit 402 may control network devices, etc., and may be referred to as a controller.
  • the AAU 401, the CU and the DU 402 may be physically set together, or may be physically separated.
  • the network equipment is not limited to the form shown in FIG. 12, but may also be in other forms: for example, including BBU and adaptive radio unit (ARU), or including BBU and active antenna unit (AAU). ); It can also be customer premises equipment (CPE), or other forms, which are not limited in this application.
  • BBU and adaptive radio unit ARU
  • BBU and active antenna unit AAU
  • CPE customer premises equipment
  • the network device 40 shown in FIG. 12 can implement the network device functions involved in the method embodiments of FIG. 4 and FIG. 5.
  • the operations and/or functions of each unit in the network device 40 are respectively for implementing the corresponding process executed by the network device in the method embodiment of the present application. To avoid repetition, detailed description is omitted here.
  • the structure of the network device illustrated in FIG. 10 is only a possible form, and should not constitute any limitation in the embodiment of the present application. This application does not exclude the possibility of other network device structures that may appear in the future.
  • the network device 40 shown in FIG. 12 can implement the network device functions involved in the method embodiments of FIGS. 4-8.
  • the operations and/or functions of each unit in the network device 40 are respectively for implementing the corresponding process executed by the network device in the method embodiment of the present application. To avoid repetition, detailed description is omitted here.
  • the structure of the network device shown in FIG. 12 is only a possible form, and should not constitute any limitation in the embodiment of the present application. This application does not exclude the possibility of other network device structures that may appear in the future.
  • the network equipment in the above device embodiments corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or sending in the method embodiments.
  • other steps can be executed by the processing unit (processor).
  • the processing unit processor
  • An embodiment of the present application also provides a communication system, which includes the aforementioned network device and one or more terminal devices.
  • This application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the network device in the method shown in FIGS. 4-8. The various steps performed.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the above-mentioned method shown in FIG. 4 to FIG. 8. The various steps performed.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the network device in the method shown in FIGS. 4-8.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the terminal device in the method shown in FIGS. 4-8.
  • This application also provides a chip including a processor.
  • the processor is used to read and run the computer program stored in the memory to execute the corresponding operation and/or process performed by the terminal device in the method for determining the timing advance TA reference time provided in this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • This application also provides a chip including a processor.
  • the processor is used to call and run a computer program stored in the memory to execute the corresponding operation and/or process executed by the network device in the method for determining the timing advance TA reference time provided in this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the foregoing storage media include: transitory storage media, non-transitory storage media, USB flash drives, mobile hard drives, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes.
  • the term "and/or” in this application is only an association relationship describing the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, and both A and B exist. , There are three cases of B alone.
  • the character "/" in this text generally means that the associated objects before and after are in an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of, B and C can mean: A alone exists, B alone exists, C exists alone, A and B exist alone, A and C exist simultaneously, C and B exist simultaneously, and A and B and C exist simultaneously, this Seven situations.
  • A, B, or C refers to any of A, B, and C; A, B, and C refer to the three possibilities of A, B, and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了确定TA参考时刻的方法和装置,该方法包括:终端设备确定时间差和偏移量,时间差为第一下行接收时间单元与第二下行接收时间单元之间的时间差,第一下行接收时间单元与第一上行发送时间单元对应,第二下行接收时间单元与第二上行发送时间单元对应;终端设备确定第二上行发送时间单元的起始时刻早于第二下行接收时间单元的起始时刻的时长TA,第二下行接收时间单元的起始时刻基于第一下行接收时间单元的起始时刻、时间差和偏移量确定。通过基于时间差、偏移量和一个下行接收时间单元的起始时刻,确定另一个下行接收时间单元的起始时刻,使得网络设备能够获得精确的上行发送时间单元的发送时刻,实现准确的信道估计或信道预测。

Description

确定定时提前TA参考时刻的方法和装置
本申请要求于2019年07月04日提交中国专利局、申请号为201910600805.2、申请名称为“确定定时提前TA参考时刻的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种确定定时提前TA参考时刻的方法和装置。
背景技术
现有的通信系统中,上行传输的一个重要特征是不同终端设备在时频上正交多址接入(orthogonal multiple access),即来自同一小区的不同终端设备的上行传输之间互不干扰。为了保证上行传输的正交性,避免小区内(intra-cell)干扰,网络设备要求来自同一帧但不同频域资源的不同终端设备的上行信号到达网络设备的时间基本上是对齐的。网络设备只要在循环前缀(cyclic prefix,CP)范围内接收到终端设备所发送的上行数据,就能够正确地解码上行数据,因此上行同步要求来自同一帧的不同终端设备的信号到达网络设备的时间都落在CP之内。为了保证网络设备侧的时间同步,LTE提出了上行定时提前(timing advance,TA)的机制,在终端设备侧看来,TA本质上是接收到下行帧的起始时间与上行传输帧的起始时间之间的一个负偏移,但是现有协议中并没有规定下行帧的起始时间的实现,也就是说不同的上行帧分别对应的不同的下行帧的起始时间是互相是独立,使得网络设备无法获得精确的上行帧的发送时刻,实现准确的信道估计或信道预测。
发明内容
本申请提供一种确定定时提前TA参考时刻的方法和装置,通过确定时间差和预设的偏移量,并基于时间差和偏移量以及一个下行接收时间单元的起始时刻,确定另一个下行接收时间单元的起始时刻,建立了不同的上行发送时间单元分别对应的不同的下行接收时间单元的起始时刻之间的关系,使得网络设备能够获得精确的上行发送时间单元的发送时刻,从而实现准确的信道估计或信道预测。
第一方面,提供了一种确定定时提前TA参考时刻的方法,包括:终端设备确定时间差和偏移量,所述时间差为第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差,所述偏移量为预设的值;所述终端设备确定所述TA,所述TA为所述第二上行发送时间单元的起始时刻早于所述第二下行接收时间单元的起始时刻的时长,其中,所述第二下行接收时间单元的起始时刻基于第一下行接收时间单元的起始时刻,以及所述时间差和所述偏移量确定。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备通过确定第一上行 发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差,以及预设的一个偏移量,再基于该时间差和偏移量以及第一下行接收时间单元的起始时刻确定第二下行接收时间单元的起始时刻,而第二下行接收时间单元的起始时刻为TA参考时刻,从而建立了不同的上行发送时间单元分别对应的不同的下行接收时间单元的起始时刻之间的关系,使得网络设备能够获得精确的上行发送时间单元的发送时刻,从而实现准确的信道估计或信道预测。
应理解,本申请中基于第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差以及偏移量和第一下行接收时间单元的起始时刻确定第二下行接收时间单元的起始时刻的方法也可以应用在其他需要建立不同的上行发送时间单元分别对应的不同的下行接收时间单元的起始时刻之间的关系的场景下,并不仅仅限定用于确定TA的参考时刻。
例如,一种确定下行接收时间单元起始时刻的方法,包括:终端设备确定时间差和偏移量,所述时间差为第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差,所述偏移量为预设的值;所述终端设备确定第二下行接收时间单元的起始时刻;其中,所述第二下行接收时间单元的起始时刻基于第一下行接收时间单元的起始时刻,以及所述时间差和所述偏移量确定。
结合第一方面,在第一方面的某些实现方式中,在所述终端设备确定第二下行接收时间单元的起始时刻之前,所述方法还包括:所述终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备启用第一功能,所述第一功能为:基于所述第一下行接收时间单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时间单元的起始时刻。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备可以基于从网络设备处接收到的第一指示信息,确定能够根据所述第一下行接收时间单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时间单元的起始时刻,提高确定第二下行接收时间单元的起始时刻的准确性。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述指示信息生效的时刻。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备从网络设备处接收到的第一指示信息之后,通过接收到的第二指示信息可以确定该第一指示信息生效的时刻,进而确定自身能够根据所述第一下行接收时间单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时间单元的起始时刻的生效时刻,为能够确定第二下行接收时间单元的起始时刻的生效时刻提供可行的方案。
可选地,上述的第二指示信息携带在第一指示信息中,由网络设备发送给终端设备,例如,一种可能的实现方式,第一指示信息中包括时延信息,指示终端设备接收到第一指示信息之后,延时一定时长之后的某一时刻,该第一指示信息所指示的内容才会生效,其中,时延信息可以理解为上述的第二指示信息;
另一种可能的实现方式,第一指示信息中包括该第一指示信息的生效时刻,其中,第一指示信息中包括的生效时刻可以理解为上述的第二指示信息。
可选地,上述的第二指示信息为网络设备发送给终端设备的另一条指示信息,并不是 携带在第一指示信息中的,例如,一种可能的实现方式,网络设备先向终端设备发送第一指示信息,然后再向终端设备发送上述的第二指示信息,第二指示信息指示终端设备接收到的第一指示信息的生效时刻。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备向网络设备发送第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时间单元的起始时刻。换句话说,所述第一能力信息用于上报所述终端设备具备根据所述第一下行接收单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时间单元的起始时刻的能力。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备可以向网络设备上报自身的能力,通知网络设备自身可以根据所述第一下行接收时间单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时间单元的起始时刻,使得网络设备可以获知终端设备的能力。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备向网络设备发送第二能力信息,所述第二能力信息还用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载上行物理信道或参考信号中的至少一种。本文中,所述上行物理信道为一种或多种上行物理信道,所述参考信号为一种或多种参考信号。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备上报的第二能力信息还可以通知网络设备自身在上行发送时间单元上可以承载至少一种上行物理信道和/或至少一种参考信号,为网络设备获知终端设备的能力提供可行的方案。
作为一种可能的实现方式,上述第二能力信息可以携带在第一能力信息中,即终端设备向网络设备发送的第一能力信息可以同时上报自身的计算第二下行接收时间单元的起始时刻的能力,以及在上行发送时间单元上可以承载某些信息的能力。
作为另一种可能的实现方式,上述第二能力信息和第一能力信息为两条不同的信息。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备接收网络设备发送的功能指示信息,所述功能指示信息用于指示所述第一上行发送时间单元和所述第二上行发送时间单元用于承载至少一种上行物理信道和/或至少一种参考信号。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备可以从网络设备处接收功能指示信息,基于该功能指示信息获知在上行发送时间单元上可以承载上行物理信道和参考信号中的至少一种,为终端设备经由网络设备获知上行发送时间单元上承载功能提供可行的方案。
结合第一方面,在第一方面的某些实现方式中,所述第一上行发送时间单元和所述第二上行发送时间单元用于承载信道探测参考信号SRS。
本申请实施例提供的确定定时提前TA参考时刻的方法,上述的第一上行发送时间单元和第二上行发送时间单元可以用于承载SRS,为网络设备进行CSI预测提供可能性。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备向网络设备上报所述偏移量。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备可以将预设的偏移量上报给网络设备,使得网络设备获知该偏移量。
结合第一方面,在第一方面的某些实现方式中,所述终端设备向所述网络设备上报所述偏移量的方式包括周期性上报,或半静态上报,或非周期上报。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备上报上述偏移量的方式可以是周期性上报,或半静态上报,或非周期上报的,为终端设备上报偏移量提供灵活的上报方式。
结合第一方面,在第一方面的某些实现方式中,所述终端设备主动上报所述偏移量。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备上报上述偏移量的方式可以是终端设备主动上报的,为终端设备上报偏移量提供灵活的上报方式。
结合第一方面,在第一方面的某些实现方式中,所述终端设备向网络设备上报所述偏移量生效的时长。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备还可以上报上述的偏移量的生效时长,使得网络设备能够获知上述偏移量的生效时长。
结合第一方面,在第一方面的某些实现方式中,所述第二下行接收时间单元的起始时刻包括:所述第二下行接收时间单元的起始时刻与所述第一下行接收时间单元的起始时刻之间相差的时长为所述时间差与所述偏移量之和。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备基于第一下行接收时间单元的起始时刻,以及所述时间差确定第二下行接收时间单元的起始时刻时,可以将第一下行接收时间单元的起始时刻加上所述时间差和所述偏移量确定为第二下行接收时间单元的起始时刻,提供一种简单可行的确定第二下行接收时间单元的起始时刻的方案。
第二方面,提供了一种确定定时提前TA参考时刻的方法,包括:网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示终端设备启用第一功能,所述第一功能为基于第一下行接收时间单元的起始时刻以及时间差和偏移量,确定第二下行接收时间单元的起始时刻,其中,所述时间差为第一上行发送时间单元对应的所述第一下行接收时间单元和第二上行发送时间单元对应的所述第二下行接收时间单元之间的时间差,所述偏移量为预设的值;所述网络设备向终端设备发送TA的时长,所述TA的时长和所述第二下行接收时间单元的起始时刻用于确定所述TA。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备可以通过第一指示信息指示终端设备启用根据第一下行接收时间单元的起始时刻以及时间差和偏移量,确定第二下行接收时间单元的起始时刻的第一功能。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备向终端设备发送第二指示信息,所述第二指示信息用于指示所述第一指示信息生效的时刻。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备在向终端设备发送第一指示信息的情况下,还可以通过第二指示信息通知终端设备该第一指示信息的生效时刻,为能够确定第二下行接收时间单元的起始时刻的生效时刻提供可行的方案。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备接收所述终端设备发送的第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差和偏移量,确定所述第二下行接收时间单元的起始时刻。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备可以通过接收到的 终端设备的第一能力信息,获知终端设备可以根据所述第一下行接收时间单元的起始时刻以及所述时间差和偏移量,确定所述第二下行接收时间单元的起始时刻,使得网络设备可以获知终端设备的能力。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备接收所述终端设备发送的第二能力信息,所述第二能力信息用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载至少一种上行物理信道和/或至少一种参考信号。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备还可以通过接收到的终端设备的第二能力信息,获知终端设备可以在上行发送时间单元上传输的上行信息。
结合第二方面,在第二方面的某些实现方式中,所述网络设备向所述终端设备发送功能指示信息,所述功能指示信息用于指示所述第一上行发送时间单元和所述第二上行发送时间单元用于承载至少一种上行物理信道和/或至少一种参考信号。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备可以通过向终端设备发送功能指示信息,指示终端设备在上述的上行发送时间单元上可以传输的上行信息。
结合第二方面,在第二方面的某些实现方式中,所述第一上行发送时间单元和所述第二上行发送时间单元用于承载信道探测参考信号SRS。
本申请实施例提供的确定定时提前TA参考时刻的方法,上述的上行发送时间单元可以用于承载SRS,为网络设备进行CSI预测提供可能性。
结合第二方面,在第二方面的某些实现方式中,网络设备接收终端设备上报的偏移量。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备通过接收终端设备上报的上述偏移量,确定偏移量的值。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备向所述终端设备发送上报方式指示信息,所述上报方式指示信息用于指示所述终端设备上报的所述偏移量的方式包括周期性上报,或半静态上报,或非周期上报,为终端设备上报偏移量提供灵活的上报方式。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备可以指示终端设备上报能力的方式。
结合第二方面,在第二方面的某些实现方式中,网络设备接收终端设备上报的偏移量生效的时长。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备通过接收终端设备上报的上述偏移量生效的时长,确定偏移量生效的时长,使得网络设备能够获知上述偏移量的生效时长。
结合第二方面,在第二方面的某些实现方式中,所述第一功能为:将所述第一下行接收时间单元的起始时刻、所述时间差和所述偏移量三者之和确定为所述第二下行接收时间单元的起始时刻。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备基于第一下行接收时间单元的起始时刻,以及所述时间差确定第二下行接收时间单元的起始时刻时,可以将第一下行接收时间单元的起始时刻,以及所述时间差和所述偏移量的和值确定为第二下行接收时间单元的起始时刻,提供一种简单可行的确定第二下行接收时间单元的起始时刻的 方案。
第三方面,提供了一种确定定时提前TA参考时刻的方法,包括:终端设备确定时间差,所述时间差为第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差;所述终端设备确定所述TA,所述TA为所述第二上行发送时间单元的起始时刻早于所述第二下行接收时间单元的起始时刻的时长,其中,所述第二下行接收时间单元的起始时刻基于所述第一下行接收时间单元的起始时刻,以及所述时间差确定。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备通过确定第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差,再基于该时间差和第一下行接收时间单元的起始时刻确定第二下行接收时间单元的起始时刻,而第二下行接收时间单元的起始时刻为TA参考时刻,从而建立了不同的上行发送时间单元分别对应的不同的下行接收时间单元的起始时刻之间的关系,使得网络设备能够获得精确的上行发送时间单元的发送时刻,从而实现准确的信道估计或信道预测。
应理解,本申请中基于第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差和第一下行接收时间单元的起始时刻确定第二下行接收时间单元的起始时刻的方法也可以应用在其他需要建立不同的上行发送时间单元分别对应的不同的下行接收时间单元的起始时刻之间的关系的场景下,并不仅仅限定用于确定TA的参考时刻。
例如,一种确定下行接收时间单元起始时刻的方法,包括:终端设备确定时间差,所述时间差为第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差;所述终端设备确定第二下行接收时间单元的起始时刻;其中,所述第二下行接收时间单元的起始时刻基于第一下行接收时间单元的起始时刻,以及所述时间差确定,所述第一下行接收时间单元为所述第一上行发送时间单元对应的下行接收时间单元。
结合第三方面,在第三方面的某些实现方式中,在所述终端设备确定第二下行接收时间单元的起始时刻之前,所述方法还包括:所述终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备启用第二功能,所述第二功能为基于所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备可以基于从网络设备处接收到的第三指示信息,确定能够根据所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻,提高确定第二下行接收时间单元的起始时刻的准确性。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述终端设备接收网络设备发送的第四指示信息,所述第四指示信息用于指示所述第三指示信息生效的时刻。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备从网络设备处接收到的第三指示信息之后,通过接收到的第四指示信息可以确定该第三指示信息生效的时 刻,进而确定自身能够根据所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻的生效时刻,为能够确定第二下行接收时间单元的起始时刻的生效时刻提供可行的方案。
可选地,上述的第四指示信息携带在第三指示信息中,由网络设备发送给终端设备,例如,一种可能的实现方式,第三指示信息中包括时延信息,指示终端设备接收到第三指示信息之后,延时一定时长之后的某一时刻,该第三指示信息所指示的内容才会生效,其中,时延信息可以理解为上述的第四指示信息;
另一种可能的实现方式,第三指示信息中包括该第三指示信息的生效时刻,其中,第三指示信息中包括的生效时刻可以理解为上述的第四指示信息。
可选地,上述的第四指示信息为网络设备发送给终端设备的另一条指示信息,并不是携带在第三指示信息中的,例如,一种可能的实现方式,网络设备先向终端设备发送第三指示信息,然后再向终端设备发送上述的第四指示信息,第四指示信息指示终端设备接收到的第三指示信息的生效时刻。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述终端设备向网络设备发送第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备可以向网络设备上报自身的能力,通知网络设备自身可以根据所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻,使得网络设备可以获知终端设备的能力。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述终端设备向网络设备发送第二能力信息,所述第二能力信息用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载上行物理信道和参考信号中的至少一种。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备上报的第二能力信息可以通知网络设备自身在上行发送时间单元上可以承载至少一种上行物理信道和/或至少一种参考信号,为网络设备获知终端设备的能力提供可行的方案。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述终端设备接收网络设备发送的功能指示信息,所述功能指示信息用于指示所述第一上行发送时间单元和所述第二上行发送时间单元用于承载至少一种上行物理信道和/或至少一种参考信号。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备可以从网络设备处接收功能指示信息,基于该功能指示信息获知在上行发送时间单元上可以承载至少一种上行物理信道和/或至少一种参考信号,为终端设备经由网络设备获知上行发送时间单元上承载功能提供可行的方案。
结合第三方面,在第三方面的某些实现方式中,所述第一上行发送时间单元和所述第二上行发送时间单元用于承载信道探测参考信号SRS。
本申请实施例提供的确定定时提前TA参考时刻的方法,上述的上行发送时间单元可以用于承载SRS,为网络设备进行CSI预测提供可能性。
结合第三方面,在第三方面的某些实现方式中,所述第二下行接收时间单元的起始时 刻包括:所述第二下行接收时间单元的起始时刻与所述第一下行接收时间单元的起始时刻之间相差的时长为时间差。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备基于第一下行接收时间单元的起始时刻,以及所述时间差确定第二下行接收时间单元的起始时刻时,可以将第一下行接收时间单元的起始时刻加上所述时间差确定为第二下行接收时间单元的起始时刻,提供一种简单可行的确定第二下行接收时间单元的起始时刻的方案。
第四方面,提供了一种确定定时提前TA参考时刻的方法,包括:网络设备向终端设备发送第三指示信息,所述第三指示信息用于指示终端设备启用第二功能,所述第二功能为基于第一下行接收时间单元的起始时刻以及时间差,确定第二下行接收时间单元的起始时刻,其中,所述时间差为第一上行发送时间单元对应的所述第一下行接收时间单元和第二上行发送时间单元对应的所述第二下行接收时间单元之间的时间差;所述网络设备向终端设备发送TA的时长,所述TA的时长和所述第二下行接收时间单元的起始时刻用于确定所述TA。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备可以通过第三指示信息指示终端设备启用根据第一下行接收时间单元的起始时刻以及时间差,确定第二下行接收时间单元的起始时刻的第二功能。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述网络设备向终端设备发送第四指示信息,所述第四指示信息用于指示所述第三指示信息生效的时刻。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备在向终端设备发送第三指示信息的情况下,还可以通过第四指示信息通知终端设备该第三指示信息的生效时刻,为能够确定第二下行接收时间单元的起始时刻的生效时刻提供可行的方案。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述网络设备接收所述终端设备发送的第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备可以通过接收到的终端设备的第一能力信息,获知终端设备可以根据所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻,使得网络设备可以获知终端设备的能力。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述网络设备接收所述终端设备发送的第二能力信息,所述第二能力信息用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载至少一种上行物理信道和/或至少一种参考信号。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备还可以通过接收到的终端设备的第二能力信息,获知终端设备可以在上行发送时间单元上传输的上行信息。
结合第四方面,在第四方面的某些实现方式中,所述网络设备向所述终端设备发送功能指示信息,所述功能指示信息用于指示所述第一上行发送时间单元和所述第二上行发送时间单元用于承载至少一种上行物理信道和/或至少一种参考信号。
本申请实施例提供的确定定时提前TA参考时刻的方法,网络设备可以通过向终端设 备发送功能指示信息,指示终端设备在上述的上行发送时间单元上可以传输的上行信息。
结合第四方面,在第四方面的某些实现方式中,所述第一上行发送时间单元和所述第二上行发送时间单元用于承载信道探测参考信号SRS。
本申请实施例提供的确定定时提前TA参考时刻的方法,上述的上行发送时间单元可以用于承载SRS,为网络设备进行CSI预测提供可能性。
结合第四方面,在第四方面的某些实现方式中,所述第二下行接收时间单元的起始时刻包括:所述第二下行接收时间单元的起始时刻与所述第一下行接收时间单元的起始时刻之间相差的时长为所述时间差。
本申请实施例提供的确定定时提前TA参考时刻的方法,终端设备基于第一下行接收时间单元的起始时刻,以及所述时间差确定第二下行接收时间单元的起始时刻时,可以将第一下行接收时间单元的起始时刻加上所述时间差确定为第二下行接收时间单元的起始时刻,提供一种简单可行的确定第二下行接收时间单元的起始时刻的方案。
第五方面,提供了一种确定定时提前TA参考时刻的装置,该装置可以用来执行第一方面和第三方面以及第一方面和第三方面的任意可能的实现方式中的终端设备的操作。具体地,确定定时提前TA参考时刻的装置包括用于执行上述第一方面和第三方面以及第一方面和第三方面的任意可能的实现方式中所描述的步骤或功能相对应的部件(means)可以是第一方面和第三方面中的终端设备或终端设备内部的芯片或功能模块。步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第六方面,提供了一种确定定时提前TA参考时刻的装置,该装置可以用来用于执行第二方面和第四方面以及第二方面和第四方面的任意可能的实现方式中的网络设备的操作。具体地,该确定定时提前TA参考时刻的装置可以包括用于执行上述第二方面和第四方面以及第二方面和第四方面的任意可能的实现方式中所描述的步骤或功能相对应的部件(means)可以是第二方面和第四方面的网络设备或网络设备内部的芯片或功能模块。步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第七方面,提供了一种通信设备,包括,处理器,收发器,存储器,该存储器用于存储计算机程序,该收发器,用于执行第一至第四方面中任一种可能实现方式中的确定定时提前TA参考时刻的方法中的收发步骤,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一至第四方面中任一种可能实现方式中的确定定时提前TA参考时刻的方法。
可选地,处理器为一个或多个,存储器为一个或多个。
可选地,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
可选的,收发器包括,发射机(发射器)和接收机(接收器)。
一个可能的设计中,提供了一种通信设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一方面和第三方面以及第一方面和第三方面的任意可能的实现方式中的方法。
另一个可能的设计中,提供了一种通信设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第二方面和第四方面以及第二方面和第四方 面的任意可能的实现方式中的方法。
第八方面,提供了一种系统,系统包括第五方面和第六方面提供的确定定时提前TA参考时刻的装置。
第九方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第一至第四方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一至第四方面中任一种可能实现方式中的方法。
第十一方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一至第四方面中任一种可能实现方式中的方法。
附图说明
图1是本申请实施例提供的确定TA参考时刻的方法适用的一种通信系统100示意图。
图2是本申请实施例提供的确定TA参考时刻的方法适用的另一种通信系统示意图。
图3是本申请实施例提供的一种TA的示意图。
图4是本申请实施例提供的一种确定TA参考时刻的方法示意性流程图。
图5中(a)、(b)和(c)是本申请实施例提供的时间差的示意图。
图6是本申请实施例提供的一种不同下行接收时间单元的起始时刻之间的关系示意图。
图7是本申请实施例提供的另一种确定TA参考时刻的方法示意性流程图。
图8是本申请实施例提供的另一种不同下行接收时间单元的起始时刻之间的关系示意图。
图9是本申请提出的确定TA参考时刻的装置10的示意图。
图10是适用于本申请实施例的终端设备20的结构示意图。
图11是本申请提出的确定TA参考时刻的装置30的示意图。
图12是适用于本申请实施例的网络设备40的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备(terminal equipment)可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、终端(terminal)或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方 法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请实施例提供的确定定时提前TA参考时刻的方法适用的一种通信系统100示意图。
如图1所示,该系统100包括网络设备102,网络设备102可包括1个天线或多个天线。例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括:发射机和接收机。
本领域普通技术人员可以理解,发射机和接收机均可包括与信号发送和接收相关的多个部件(例如,处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与终端设备(例如,图1所示的终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是各种与网络设备102通信的设备,例如,终端设备116可以是蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116通过天线112和114与网络设备通信。其中,天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路)120从终端设备116接收信息。
此外,终端设备122通过天线104和106与网络设备通信。其中,天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中。例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者,由多个天线组成的天线组)和/或区域称为网络设备102的扇区。
例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。网络设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。
此外,与网络设备通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络,图1只是举例的简化示意图,图1所示的通信系统中还可以包括其他网络设备和/或其他的终端设备,为了简便图1中未予以画出。例如,图1所示的通信系统可以是一个网络设备与多个终端设备进行通信,即单个网络设备可以向单个或多个终端设备传输数据或控制信令;或者,图1所示的通信系统可以是多个网络设备与一个终端设备进行通信,即多个网络设备也可以同时为单个终端设备传输数据或控制信令。
应理解,图1仅仅是一种简单的示意图,用于说明本申请实施例中提供的确定定时提前TA参考时刻的方法适用的场景,并不能对本申请构成任何的限定。
例如,本申请实施例提供的确定定时提前TA参考时刻的方法还可以应用在如图2所示的车联网(vehicle to everything,V2X)通信系统中,图2是本申请实施例提供的确定TA参考时刻的方法适用的另一种通信系统示意图。在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出的LTE系统下,V2X技术被提出。V2X系统中的通信方式统称为V2X通信。例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)之间的通信,车辆与路边基础设施(vehicle to infrastructure,V2I)之间的通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)之间的通信等。V2X系统中所涉及的终端设备之间进行的通信被广泛称为侧行链路(slidelink,SL)通信。
目前,车辆可以通过V2V、V2I、V2P或者V2N通信方式,及时获取路况信息或接收服务信息,这些通信方式可以统称为V2X通信。图2是现有技术中的V2X系统的示意图。该示意图包括V2V通信、V2P通信以及V2I/N通信。V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。本申请所述的终端也可以为网联车或应用于车辆中的车辆组件。
下面,为了便于对本申请实施例中提供的确定定时提前TA参考时刻的方法的理解,首先介绍本申请实施例中涉及到的几个基本的概念。
1、TA。
在通信系统中,信号在空间传输是有延迟的。例如,有些终端设备正在向远离网络设备的方向移动,离网络设备越远的终端设备,从网络设备接收到下行信号的时间越晚,与此同时,离网络设备越远的终端设备的发出的上行信号也会越晚到达网络设备。同时,还有些终端设备正在向靠近网络设备的方向移动,离网络设备越近的终端设备,从网络设备 接收到下行信号的时间越早,与此同时,离网络设备越近的终端设备的发出的上行信号也会越早到达网络设备。不同的延迟会导致这些终端设备发出的上行信号彼此之间发生干扰。因此网络设备需要监视终端设备的发出上行信号到达网络设备的时间,并在下行信道上向终端设备发送指令,指示终端设备发送的上行信号相对于下行信号参考点的定时提前,即TA。
网络设备通过适当地控制每个终端设备的TA,可以控制来自不同终端设备的上行信号到达网络设备的时间。对于离网络设备较远的终端设备,由于有较大的传输延迟,就要比离网络设备较近的终端设备提前发送上行数据,因此,离网络设备较远的终端设备的TA大于离网络设备较近的终端设备的TA。
图3是本申请实施例提供的一种TA的示意图。结合图3简单说明TA,该示意图包括下行接收帧和上行传输帧。从图3中可以看出上行传输帧的起始时刻比下行接收帧的起始时刻早TA,TA的参考时刻为下行接收帧的起始时刻。
具体地,本申请中主要涉及不同的上行传输帧对应的下行接收帧的起始时刻之间的关系的设计。应理解在现有协议中,对于如图3所示的每个上行传输帧对应的下行接收帧的起始时刻并不进行限制,每个上行传输帧对应的下行接收帧的起始时刻为独立的,那么就有可能导致时长(T L)内的第一个上行传输帧对应的下行接收帧的起始时刻与最后一个上行传输帧对应的下行接收帧的起始时刻之间的时间差并不是一个T L,也即,第一个上行传输帧与最后一个上行传输帧之间的时间差是一个T L,但它们各自对应的对应的下行接收帧的起始时刻之间的时间差并不是一个T L,而是与T L存在一个偏差(t L)并且该t L的值可能基于以下至少一种因素变化:
1)终端设备与网络设备之间的距离发生变化。例如,在运行的高铁上的终端设备;
2)终端设备当前传输路径消失,切换到新的传输路径。例如,在建筑物密集的城市,走到建筑物转角时;
3)终端设备的晶振偏移。
2、预测/估计信道状态信息(channel state information,CSI)。
本申请实施例提供的确定定时提前TA参考时刻的方法应用在上行传输信道探测参考信号(sound reference signal,SRS)的场景下时,可以用于准确预测/估计CSI。在移动(mobility)场景下,往往需要利用当前时刻接收到的SRS测量得到的CSI,预测未来时刻的CSI。
简单介绍现有的一种预测CSI的方法,首先网络设备在当前时刻(T)接收到终端设备发送的SRS,并基于该SRS测量当前时刻T的CSI,其次网络设备基于该CSI预测T L时长之后的下一个CSI。应理解,网络设备预测的下一个CSI对应的SRS接收时刻应该为T+T L,但是按照现有协议中规定的上行传输帧的起始时刻与下行接收帧的起始时刻之间的关系,由于不同的上行传输帧的起始时刻对应的下行接收帧的起始时刻为独立的,所以实际上,接收下一个SRS的时刻T2应该是T2=T+T L+t L,t L是个随机数,也就是说实际上接收下一个SRS的时刻T2与预测的接收下一个SRS的时刻T+T L之间会有一个偏差t L,在此情况下网络设备预测的下一个CSI的上行传输帧并不准确。
上面结合图1和图2简单介绍了本申请实施例能够应用的场景,以及简单介绍本申请实施例中涉及到的几个基本的概念。下面结合图4-图8详细介绍本申请实施例提供的用于 确定定时提前TA参考时刻的方法。
应理解,本申请实施例中将timing advance称为定时提前只是一种举例,并不对本申请的保护范围构成任何限定,例如,还可以称之为提前时间、定时提前量或提前时间量等。这里不再一一举例说明。
图4是本申请实施例提供的一种确定TA参考时刻的方法示意性流程图。该流程图包括终端设备和网络设备。
该确定TA参考时刻的方法包括以下步骤:
S110,终端设备确定时间差。
该时间差为第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差。应理解,本申请实施例中的第一上行发送时间单元和第二上行发送时间单元并不特指某两个上行发送时间单元,本申请中的“第一”、“第二”仅用于区分说明,而不应对本申请构成任何限定。其中,第一上行发送时间单元和第二上行发送时间单元只是区分不同的上行发送时间单元,该第二上行发送时间单元为第一上行发送时间单元之后的一个上行发送时间单元。
一种可能的实现方式是,第二上行发送时间单元是第一上行发送时间单元之后的紧接着的下一个上行发送时间单元;或者,另一种可能的实现方式是,第二上行发送时间单元与第一上行发送时间单元之间至少间隔一个上行发送时间单元;或者,上行发送时间单元按周期为P个时间单元进行上行发送,第二上行发送时间单元与第一上行发送时间单元之间至少间隔n*P个slot,n为大于或者等于1的整数。
本申请实施例中所涉及的时间单元可以是但不限于帧、时隙、子帧或符号。例如,以帧为例,上述的第一上行发送时间单元为第一上行发送帧、第二上行发送时间单元为第二上行发送帧,其中,第一上行发送帧为位于第二上行发送帧之前的帧。
下面结合图5详细说明上述的第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差可能的情况,图5是本申请实施例提供的一种时间差的示意图。该示意图中包括第一下行接收时间单元和第二下行接收时间单元,如图5所示,第一下行接收时间单元与第二下行接收时间单元之间的时间差为第一下行接收时间单元的起始时刻与第二下行接收时间单元的起始时刻之间的时长,本申请实施例中将该时长定义为时间差,应理解,当第二下行接收时间单元的起始时刻未确定之前,只能基于第一下行接收时间单元以及第一下行接收时间单元与第二下行接收时间单元之间的下行接收时间单元的时长确定该时间差。
一种可能的实现方式是,第二下行接收时间单元为与第一下行接收时间单元相邻的下一个下行接收时间单元,如图5的(a)所示,在该实现方式下,时间差=第一下行接收时间单元的时长。
另一种可能的实现方式是,第一下行接收时间单元为系统中总的时间单元中第X个下行接收时间单元,第二下行接收时间单元为系统中总的时间单元中第Y个下行接收时间单元,X为正整数,Y为大于X的整数。在该实现方式下,时间差=第一下行接收时间单元的时长+第一下行接收时间单元与第二下行接收时间单元之间每个下行接收时间单元的时长。或者,时间差=第一下行接收时间单元的起始位置到第二下行接收时间单元的起始位置之间的时长。
可选地,第一下行接收时间单元,以及第一下行接收时间单元与第二下行接收时间单元之间每个下行接收时间单元的时长相等(均为T C)的情况下,如图5的(b)所示,时间差=(Y-X)*T C
可选地,第一下行接收时间单元,以及第一下行接收时间单元与第二下行接收时间单元之间每个下行接收时间单元的时长不相等的情况下,如图5的(c)所示,时间差=第一下行接收时间单元的时长+第X+1个下行接收时间单元的时长+第X+2个下行接收时间单元的时长….+第Y-1个下行接收时间单元的时长。
5的(b)和5的(c)两种情况中,时间差也可以表示为时间差=第一下行接收时间单元的起始位置到第二下行接收时间单元的起始位置之间的时长。
应理解,上述的下行接收时间单元的时长为系统规定的,终端设备能够基于下行接收时间单元的时长确定上述的时间差的值。具体地,当某个下行接收时间单元的时长发生变化的情况下,网络设备需要通知终端设备,该某个下行接收时间单元的时长发生变化。例如,网络设备通知终端设备第一下行接收时间单元的时长由T C转变为T C1
还应理解,当第一上行发送时间单元的起始时刻早于第一下行接收时间单元的起始时刻的时长,与第二上行发送时间单元的起始时刻早于第二下行接收时间单元的起始时刻的时长相等的情况下,上述时间差也可以理解为第一上行发送时间单元和第二上行发送时间单元之间的时间差,则图5中所示的下行接收时间单元可以替换为上行发送时间单元,具体情况与图5所示的类似,这里不再赘述。
S120,终端设备确定TA。
由图3可知,TA由参考时刻T r和时长L确定,则图4所示的实施例中终端设备确定TA指的是确定该TA的参考时刻T r和时长L。具体地,该TA的时长L为上述第二上行发送时间单元的起始时刻早于对应的第二下行接收时间单元的起始时刻的时长,TA的参考时刻T r为第二下行接收时间单元的起始时刻。
应理解,本申请实施例中并不限制终端设备如何获知TA的时长L,例如,可以参考现有协议中规定的,网络设备通知终端设备TA的时长为L,则图4所示的方法流程还包括S111,网络设备向终端设备发送TA的时长。也就是说本申请实施例的重点在于如何确定TA的参考时刻T r,即第二下行接收时间单元的起始时刻。与现有协议中的对第二下行接收时间单元的起始时刻不进行规定不同的是,本申请实施例中第二下行接收时间单元的起始时刻与第一下行接收时间单元的起始时刻之间存在一定的联系,下面将详细说明第二下行接收时间单元的起始时刻与第一下行接收时间单元的起始时刻之间的关系:
具体地,第二下行接收时间单元的起始时刻是基于第一下行接收时间单元的起始时刻,以及S110中终端设备确定的时间差共同确定的,第一下行接收时间单元为上述第一上行发送时间单元对应的下行接收时间单元。
应理解,本申请实施例中第一下行接收时间单元的起始时刻为已知的,可以是基于现有协议中规定的确定下行接收时间单元的起始时刻的方法确定的,或者,还可以是基于本申请提供的用于确定TA参考时刻的方法确定的,这里不再赘述,只限定该第一下行接收时间单元的起始时刻为已知。
一种可能的实现方式是,第一下行接收时间单元为当前时刻终端设备确定的下行接收时间单元,第二下行接收时间单元为终端设备需要确定起始时刻的目标下行接收时间单 元;或者,另一种可能的实现方式是,第二下行接收时间单元为当前终端设备需要确定的下行接收时间单元,第一下行接收时间单元为上一次终端设备已经确定起始时刻的下行接收时间单元。
为了便于描述本申请实施例中可以将第一下行接收时间单元的起始时刻记为T1,第二下行接收时间单元的起始时刻记为T2,第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差记为TX,从图5中可以看出该TX为一个正值。
可选地,上述的第二下行接收时间单元的起始时刻基于第一下行接收时间单元的起始时刻,以及时间差确定可以是T2=T1+TX;或者,T2=T1+TX+C(其中,C为常数);或者,T2=(T1+TX)*C(其中,C为常数);或者,T2=T1*C1+TX*C2(其中,C1和C2为常数)等,应理解,本申请实施例中并不限定T2如何基于T1和TX计算得到,只限定T2与T1之间满足已知的关系,能够基于T1计算得到T2。
下面结合图6以T2=T1+TX为例简单说明第二下行接收时间单元的起始时刻与第一下行接收时间单元的起始时刻之间的关系。图6是本申请实施例提供的一种不同下行接收时间单元的起始时刻之间的关系示意图。
从图6中可以看出第一上行发送时间单元的起始时刻早于对应的第一下行接收时间单元的起始时刻的时长为TA0;第二上行发送时间单元的起始时刻早于对应的第二下行接收时间单元的起始时刻的时长为TA1。其中,第一下行接收时间单元与第二下行接收时间单元之间的时间差为TX,第一下行接收时间单元的起始时刻为T1,第二下行接收时间单元的起始时刻为T1+TX。
图4所示的实施例中,终端设备可以是基于从网络设备处接收到的第三指示信息,确定自身可以基于第一下行接收时间单元的起始时刻,以及所述时间差确定第二下行接收时间单元的起始时刻,则在终端设备确定第二下行接收时间单元的起始时刻之前,图4所示的方法流程还包括S121,网络设备向终端设备发送第三指示信息,所述第三指示信息用于指示所述终端设备启用第二功能;或者,还可以说,该第三指示信息用于指示终端设备激活第二功能,所述第二功能为基于所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻。
作为一种可能的实现方式,终端设备可以是基于从网络设备处接收到的第四指示信息,确定上述的第三指示信息生效的时刻,即可选地图4所示的方法流程还包括S1211,网络设备向终端设备发送第四指示信息。其中,第三指示信息生效的时刻也可以认为是第二功能生效的时刻。
可选地,上述的第四指示信息携带在第三指示信息中,由网络设备发送给终端设备:
例如,终端设备在时隙k上接收到上述第三指示信息,第三指示信息中包括时延信息,该时延信息指示该第三指示信息在n个时隙之后生效,则终端设备确定第三指示信息生效的时刻为时隙k+n,其中,第三指示信息中携带的时延信息可以理解为上述的第四指示信息。
还例如,上述第三指示信息中包括该第三指示信息的生效时刻。终端设备在时隙k上接收到上述第三指示信息,第三指示信息中包括该第三指示信息的生效时刻为时隙m,则终端设备确定第三指示信息生效的时刻为时隙m,时隙m为时隙k之后的某个时隙,其 中,第三指示信息中携带的生效时刻可以理解为上述的第四指示信息。
还例如,上述第三指示信息中包括该第三指示信息的生效时刻为终端设备接收到该第三指示信息的时刻。终端设备在时隙k上接收到上述第三指示信息,第三指示信息中包括该第三指示信息的生效时刻为终端设备接收到该第三指示信息的时刻,则终端设备确定第三指示信息生效的时刻为时隙k,其中,终端设备接收到该第三指示信息的时刻可以理解为上述的第四指示信息。
可选地,上述的第四指示信息为网络设备发送给终端设备的另一条指示信息,并不是携带在第三指示信息中的:
例如,终端设备在时隙k上接收到上述第三指示信息和第四指示信息,其中,第四指示信息指示时延(n个时隙),则终端设备确定第三指示信息生效的时刻为时隙k+n。
还例如,终端设备在时隙k上接收到上述第三指示信息,终端设备在时隙k+n上接收到上述第四指示信息,其中,第四指示信息指示时延(m个时隙,m大于或者等于n),则终端设备确定第三指示信息生效的时刻为时隙k+m。
还例如,终端设备在时隙k上接收到上述第三指示信息,终端设备在时隙k+n上接收到上述第四指示信息,其中,第四指示信息指示时延(m个时隙),则终端设备确定第三指示信息生效的时刻为时隙k+n+m。
还例如,终端设备在时隙k上接收到上述第四指示信息,终端设备在时隙k+n上接收到上述第三指示信息,其中,第四指示信息指示时延(m个时隙,m大于或者等于n),则终端设备确定第三指示信息生效的时刻为时隙k+m。
还例如,终端设备在时隙k上接收到上述第四指示信息,终端设备在时隙k+n上接收到上述第三指示信息,其中,第四指示信息指示时延(m个时隙),则终端设备确定第三指示信息生效的时刻为时隙k+n+m。
作为一种可能的实现方式,终端设备可以是基于终端设备自身能力的判断,确定上述的第三指示信息生效的时刻。
例如,终端设备在时隙k上接收到上述第三指示信息,终端设备确定时延信息,该时延信息指示该第三指示信息在n个时隙之后生效,则终端设备确定第三指示信息生效的时刻为时隙k+n。其中,终端设备确定的时延信息可以是协议规定的一个时长,该时长为n个时隙;或者,终端设备确定时延信息可以是基于预设的计算公式,计算出一个时长,该时长为n个时隙。
另一种可能的实现方式,该第三指示信息还用于指示终端设备禁用上述的第二功能;或者,还可以说,该第三指示信息还用于指示终端设备不启用上述的第二功能;或者,还可以说,该第三指示信息还用于指示终端设备去激活上述的第二功能;或者,还可以说,该第三指示信息还用于指示终端设备能够基于现有协议规定的确定第二下行接收时间单元的起始时刻的方法,确定第二下行接收时间单元的起始时刻。
可选地,第三指示信息携带在RRC信令或媒体接入控制控制单元(Media access control-control element,MAC CE)信令或下行控制信息(downlink control information,DCI)中发送给终端设备。
图4所示的实施例中,终端设备还可以向网络设备上报自身是否能够支持基于第一下行接收时间单元的起始时刻,以及所述时间差确定第二下行接收时间单元的起始时刻的功 能。则图4所示的方法流程还包括S122,终端设备向网络设备发送第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻。
作为一种可能的实现方式,终端设备还可以向网络设备发送第二能力信息,则图4所示的方法流程还包括S1221,终端设备向网络设备发送第二能力信息,该第二能力信息用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载至少一种上行物理信道,或承载至少一种参考信号,或者承载至少一种上行物理信道和至少一种参考信号。
应理解,本申请实施例中所涉及的上行发送时间单元可以用于承载至少一种参考信号,对于参考信号的种类并不限定,并且本申请实施例中所涉及的参考信号还可以称之为导频。
还应理解,本申请实施例中所涉及的上行发送时间单元用于承载至少一种上行物理信道指的是,该上行发送时间单元可以用于承载各种上行物理信道中的至少一种上行物理信道,本申请实施例中所涉及的上行发送时间单元用于承载至少一种参考信号,指的是,该上行发送时间单元还可以用于承载各种参考信号中的至少一种参考信号。
进一步地,网络设备可以基于终端设备上报的第一能力信息确定终端设备的能力,并向终端设备发送功能指示信息,所述功能指示信息用于指示所述第一上行发送时间单元和所述第二上行发送时间单元用于承载至少一种上行物理信道,或承载至少一种参考信号,或者承载至少一种上行物理信道和至少一种参考信号。则图4所示的方法流程还包括S123,网络设备向终端设备发送功能指示信息。
应理解,本申请实施例中并不限定终端设备一定会向网络设备发送第一能力信息。
例如,一种可能的实现方式,终端设备不上报第一能力信息,默认终端设备支持在上行发送时间单元上传输任何的上行信息,网络设备可以对终端设备的功能进行指示;或者,另一种可能的实现方式是,协议规定终端设备的功能,网络设备指示协议规定中的全部或部分功能为终端设备的功能。应理解,一般情况下网络设备指示终端设备的功能不会超过终端设备能够支持的能力范围。
作为一种可能的实现方式,上述的第一上行发送时间单元和所述第二上行发送时间单元用于承载信道探测参考信号SRS。可选地,该SRS为周期性或半静态调度的。
一种可能的实现方式,SRS用于测量信道状态信息CSI,第一上行发送时间单元对应第一CSI,第一CSI用于预测所述第二上行发送时间单元对应的第二CSI。由于,图4所示的实施例中,第一下行接收时间单元起始时刻和第二下行接收时间单元的起始时刻之间的间隔为已知值,则在预测第二CSI时不会产生现有的预测CSI存在的不准确的问题。
图7是本申请实施例提供的另一种确定TA参考时刻的方法示意性流程图。该流程图包括终端设备、网络设备。
该确定TA参考时刻的方法包括以下步骤:
S210,终端设备确定时间差和偏移量。
该时间差为:第一上行发送时间单元对应的第一下行接收时间单元,和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差,偏移量为预设的值。可选地,偏移量为终端设备基于通信状况预设的值,或者,其他管理设备预设的值,并将该预设值通知 给终端设备。
应理解,本申请实施例中的第一上行发送时间单元和第二上行发送时间单元并不特指某两个上行发送时间单元,本申请中的“第一”、“第二”仅用于区分说明,而不应对本申请构成任何限定。其中,第一上行发送时间单元和第二上行发送时间单元只是区分不同的上行发送时间单元,该第二上行发送时间单元为第一上行发送时间单元之后的一个上行发送时间单元。
一种可能的实现方式是,第二下行接收时间单元是第一下行接收时间单元相邻的下一个下行接收时间单元;或者,另一种可能的实现方式是,第二下行接收时间单元与第一下行接收时间单元之间至少间隔一个下行接收时间单元;或者,上行发送时间单元按周期为P个时间单元进行上行发送,第二上行发送时间单元与第一上行发送时间单元之间至少间隔n*P个slot,n为大于或者等于1的整数。
还应理解,当第一上行发送时间单元的起始时刻早于第一下行接收时间单元的起始时刻的时长,与第二上行发送时间单元的起始时刻早于第二下行接收时间单元的起始时刻的时长相等的情况下,上述时间差也可以理解为第一上行发送时间单元和第二上行发送时间单元之间的时间差。具体地,图7中所示的实施例中的第一下行接收时间单元与第二下行接收时间单元之间的时间差可能的情况如上述图5所示,这里不再赘述。图7所示的实施例中,终端设备可以确定多个不同的偏移量,其中,第一下行接收时间单元为最后一个应用上一个偏移量计算得到的下行接收时间单元起始时刻的时间单元,第二下行接收时间单元为一个应用当前偏移量计算下行接收时间单元起始时刻的时间单元。
上述偏移量为终端设备确定的用于修正第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差的一个预设值。图7所示的实施例中还可以称偏移量为误差值或校正量等。
可选地,当偏移量的值为0的时候,图7所示的实施例中所述的基于时间差和所述偏移量以及第一下行接收时间单元的起始时刻,确定第二下行接收时间单元的起始时刻与图4所示的方法流程中基于时间差和第一下行接收时间单元的起始时刻,确定第二下行接收时间单元的起始时刻类似。
S220,终端设备确定TA。
由图3可知,TA由参考时刻T r和时长L确定,则图7所示的实施例中终端设备确定TA指的是确定该TA的参考时刻T r和时长L。具体地,该TA的时长L为上述第二上行发送时间单元的起始时刻早于对应的第二下行接收时间单元的起始时刻的时长,TA的参考时刻T r为第二下行接收时间单元的起始时刻。
应理解,本申请实施例中并不限制终端设备如何获知TA的时长L,例如,可以参考现有协议中规定的,网络设备通知终端设备TA的时长为L,则图7所示的方法流程还包括S211,网络设备向终端设备发送TA的时长。也就是说本申请实施例的重点在于如何确定TA的参考时刻T r,即第二下行接收时间单元的起始时刻。与现有协议中规定的随机确定第二下行接收时间单元的起始时刻不同的是,本申请实施例中第二下行接收时间单元的起始时刻与第一下行接收时间单元的起始时刻之间存在一定的联系,下面将详细说明第二下行接收时间单元的起始时刻与第一下行接收时间单元的起始时刻之间的关系:
具体地,第二下行接收时间单元的起始时刻是基于第一下行接收时间单元的起始时 刻,以及S210中终端设备确定的时间差和偏移量共同确定的,第一下行接收时间单元为上述第一上行发送时间单元对应的下行接收时间单元。
应理解,本申请实施例中第一下行接收时间单元的起始时刻为已知的,可以是基于现有协议中规定的确定下行接收时间单元的起始时刻的方法确定的,或者,还可以是基于本申请提供的用于确定TA参考时刻的方法确定的(例如,基于图4所示的实施例,或,图7所示的实施例中确定下行接收时间单元的起始时刻的方法确定的),这里不再赘述,只限定该第一下行接收时间单元的起始时刻为已知。
一种可能的实现方式是,第一下行接收时间单元为当前时刻终端设备确定的下行接收时间单元,第二下行接收时间单元为终端设备需要确定起始时刻的目标下行接收时间单元;或者,另一种可能的实现方式是,第二下行接收时间单元为当前终端设备需要确定的下行接收时间单元,第一下行接收时间单元为上一次终端设备已经确定起始时刻的下行接收时间单元。
为了便于描述本申请实施例中可以将第一下行接收时间单元的起始时刻记为T1,第二下行接收时间单元的起始时刻记为T2,第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差记为TX,偏移量记为t1。
可选地,上述的第二下行接收时间单元的起始时刻基于第一下行接收时间单元的起始时刻,以及时间差确定可以是T2=T1+TX+t1;或者,T2=T1+TX+t1+C(其中,C为常数);或者,T2=(T1+TX+t1)*C(其中,C为常数);或者,T2=T1*C1+TX*C2+t1*C3(其中,C1、C2和C3为常数)等,应理解,本申请实施例中并不限定T2如何基于T1和TX计算得到,只限定T2与T1之间满足已知的关系,能够基于T1计算得到T2。
下面结合图8以T2=T1+TX+t1为例简单说明第二下行接收时间单元的起始时刻与第一下行接收时间单元的起始时刻之间的关系。图8是本申请实施例提供的另一种不同下行接收时间单元的起始时刻之间的关系示意图。
从图8中可以看出第一上行发送时间单元的起始时刻早于对应的第一下行接收时间单元的起始时刻的时长为TA0;图8中第一个第二上行发送时间单元的起始时刻早于对应的第一个第二下行接收时间单元的起始时刻的时长为TA1;图8中第二个第二上行发送时间单元的起始时刻早于对应的第二个第二下行接收时间单元的起始时刻的时长为TA2。其中,第一下行接收时间单元和第一个第二下行接收时间单元之间的时间差为TX1,第一下行接收时间单元和第二个第二下行接收时间单元之间的时间差为TX2,第一下行接收时间单元的起始时刻为T1,第一个第二下行接收时间单元的起始时刻为T1+TX1+t1;图8所示的为该t1可以保持一段时间不变,则在确定图8中第二个第二下行接收时间单元的起始时刻的时候,还可以基于第一上行发送时间单元和第二个第二上行发送时间单元之间的时间差与t1确定第二个第二下行接收时间单元的起始时刻为T1+TX2+t1。
图7所示的实施例中,终端设备可以是基于从网络设备处接收到的第一指示信息,确定自身可以基于第一下行接收时间单元的起始时刻,以及所述时间差和偏移量确定第二下行接收时间单元的起始时刻,则在终端设备确定第二下行接收时间单元的起始时刻之前,图7所示的方法流程还包括S221,网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备启用第一功能;或者,还可以说,该第一指示信息用于指示 终端设备激活第一功能,所述第一功能为基于所述第一下行接收时间单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时间单元的起始时刻。
作为一种可能的实现方式,终端设备可以是基于从网络设备处接收到的第二指示信息,确定上述的第一指示信息生效的时刻,即可选地图7所示的方法流程还包括S2211,网络设备向终端设备发送第二指示信息。其中,第一指示信息生效的时刻也可以认为是第一功能生效的时刻。
例如,终端设备在时隙k上接收到上述第一指示信息,第一指示信息中包括时延信息,该时延信息指示该第一指示信息在n个时隙之后生效,则终端设备确定第一指示信息生效的时刻为时隙k+n,其中,该时延信息可以理解为上述的第二指示信息。
还例如,上述第一指示信息中包括该第一指示信息的生效时刻。终端设备在时隙k上接收到上述第一指示信息,第一指示信息中包括该第一指示信息的生效时刻为时隙m,则终端设备确定第一指示信息生效的时刻为时隙m,时隙m为时隙k之后的某个时隙,其中,第一指示信息中包括的生效时刻可以理解为上述的第二指示信息。
还例如,上述第一指示信息中包括该第一指示信息的生效时刻为终端设备接收到该第一指示信息的时刻。终端设备在时隙k上接收到上述第一指示信息,第一指示信息中包括该第一指示信息的生效时刻为终端设备接收到该第一指示信息的时刻,则终端设备确定第一指示信息生效的时刻为时隙k,其中,终端设备接收到该第一指示信息的时刻可以理解为上述的第二指示信息。
可选地,上述的第二指示信息为网络设备发送给终端设备的另一条指示信息,并不是携带在第一指示信息中的:
例如,终端设备在时隙k上接收到上述第一指示信息和第二指示信息,其中,第二指示信息指示时延(n个时隙),则终端设备确定第一指示信息生效的时刻为时隙k+n。
还例如,终端设备在时隙k上接收到上述第一指示信息,终端设备在时隙k+n上接收到上述第二指示信息,其中,第二指示信息指示时延(m个时隙,m大于或者等于n),则终端设备确定第一指示信息生效的时刻为时隙k+m。
还例如,终端设备在时隙k上接收到上述第一指示信息,终端设备在时隙k+n上接收到上述第二指示信息,其中,第二指示信息指示时延(m个时隙),则终端设备确定第一指示信息生效的时刻为时隙k+n+m。
还例如,终端设备在时隙k上接收到上述第二指示信息,终端设备在时隙k+n上接收到上述第一指示信息,其中,第二指示信息指示时延(m个时隙,m大于或者等于n),则终端设备确定第一指示信息生效的时刻为时隙k+m。
还例如,终端设备在时隙k上接收到上述第二指示信息,终端设备在时隙k+n上接收到上述第一指示信息,其中,第二指示信息指示时延(m个时隙),则终端设备确定第一指示信息生效的时刻为时隙k+n+m。
作为一种可能的实现方式,终端设备可以是基于终端设备自身能力的判断,确定上述的第一指示信息生效的时刻。
例如,终端设备在时隙k上接收到上述第一指示信息,终端设备确定时延信息,该时延信息指示该第一指示信息在n个时隙之后生效,则终端设备确定第一指示信息生效的时刻为时隙k+n。其中,终端设备确定的时延信息可以是协议规定的一个时长,该时长为n 个时隙;或者,终端设备确定时延信息可以是基于预设的计算公式,计算出一个时长,该时长为n个时隙。
另一种可能的实现方式,该第一指示信息还用于指示终端设备禁用上述的第一功能;或者,还可以说,该第一指示信息还用于指示终端设备不启用上述的第一功能;或者,还可以说,该第一指示信息还用于指示终端设备去激活上述的第一功能;或者,还可以说,该第一指示信息还用于指示终端设备能够基于现有协议规定的确定第二下行接收时间单元的起始时刻的方法,确定第二下行接收时间单元的起始时刻。
进一步地,图4所示的实施例和图7所示的实施例可以结合,即终端设备同时支持基于第一下行接收时间单元的起始时刻,以及所述时间差确定第二下行接收时间单元的起始时刻,和基于第一下行接收时间单元的起始时刻,以及所述时间差和偏移量确定第二下行接收时间单元的起始时刻。终端设备同时具备图4所示的实施例中的第二功能和图7所示的实施例中的第一功能,在此情况下,上述图4所示的实施例中的第三指示信息和图7所示的实施例中的第一指示信息可以为一条指示信息,称为第五指示信息,第五指示信息可以用于指示终端设备启用第一功能,或者,可以用于指示终端设备启用第二功能,或者,可以用于指示终端设备启用第一功能和第二功能,终端设备可以任意选择一种确定第二下行接收时间单元的起始时刻的能力确定TA参考时刻,或者,可以将图4所示的实施例和图7所示的实施例中的第一功能和第二功能综合起来,看成一个功能,该功能中包括两种可选的功能,当第五指示信息指示终端设备启用该功能时,终端设备可以任意选择一种确定第二下行接收时间单元的起始时刻的能力确定TA参考时刻。
可选地,第一指示信息携带在RRC信令或MAC CE信令或DCI中发送给终端设备。
图7所示的实施例中,终端设备还可以向网络设备上报自身是否能够支持基于第一下行接收时间单元的起始时刻,以及所述时间差和偏移量确定第二下行接收时间单元的起始时刻的功能。则图7所示的方法流程还包括S222,终端设备向网络设备发送第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差和偏移量,确定所述第二下行接收时间单元的起始时刻。
作为一种可能的实现方式,终端设备还可以向网络设备发送第二能力信息,则图7所示的方法流程还包括S2221,终端设备向网络设备发送第二能力信息,该第二能力信息用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载至少一种上行物理信道和/或至少一种参考信号。
应理解,本申请实施例中所涉及的上行发送时间单元可以用于承载至少一种参考信号,对于参考信号的种类并不限定,并且本申请实施例中所涉及的参考信号还可以称之为导频。
还应理解,本申请实施例中所涉及的上行发送时间单元用于承载至少一种上行物理信道指的是,该上行发送时间单元可以用于承载各种上行物理信道中的至少一种上行物理信道,本申请实施例中所涉及的上行发送时间单元用于承载至少一种参考信号,指的是,该上行发送时间单元还可以用于承载各种参考信号中的至少一种参考信号。
进一步地,网络设备可以基于终端设备上报的第一能力信息确定终端设备的能力,并向终端设备发送功能指示信息,所述功能指示信息用于指示所述第一上行发送时间单元和所述第二上行发送时间单元于承载至少一种上行物理信道,或承载至少一种参考信号,或 者承载至少一种上行物理信道和至少一种参考信号。则图7所示的方法流程还包括S223,网络设备向终端设备发送功能指示信息。
应理解,本申请实施例中并不限定终端设备一定会向网络设备发送第一能力信息。
例如,一种可能的实现方式,终端设备不上报第一能力信息,默认终端设备支持在上行发送时间单元上传输任何的上行信息,网络设备可以对终端设备的功能进行指示;或者,另一种可能的实现方式是,协议规定终端设备的功能,网络设备指示协议规定中的全部或部分能力为终端设备的功能。应理解,一般情况下网络设备指示终端设备的功能不会超过终端设备能够支持的能力范围。
作为一种可能的实现方式,上述的第一上行发送时间单元和所述第二上行发送时间单元用于承载信道探测参考信号SRS。可选地,该SRS为周期性地或半静态调度的。
一种可能的实现方式,SRS用于测量信道状态信息CSI,第一上行发送时间单元对应第一CSI,第一CSI用于预测所述第二上行发送时间单元对应的第二CSI。由于,图7所示的实施例中,第一下行接收时间单元起始时刻和第二下行接收时间单元的起始时刻之间的间隔为已知值,则在预测第二CSI时不会产生现有的预测CSI存在的不准确的问题。
进一步地,为了使得网络设备能够预测第二上行发送时间单元上承载的上行信息,终端设备可以将上述的偏移量上报给网络设备,即图7所示的方法实施例中还包括S224,终端设备向网络设备发送偏移量。
一种可能的实现方式是,网络设备指示终端设备上报偏移量的方式,例如,终端设备向网络设备上报偏移量的方式包括周期性上报,或半静态上报,或非周期上报;或者,另一种可能的实现方式是,终端设备主动上报偏移量。
可选地,终端设备还可以向网络设备上报偏移量生效的时长,网络设备基于该偏移量生效的时长能够确定该偏移量可以使用的时长。
可选地,终端设备还可以向网络设备上报偏移量生效的时刻,网络设备基于该偏移量生效的时刻能够确定该偏移量从何时开始生效。
例如,网络设备在时隙k1上接收到上述偏移量,偏移量中包括时延信息,该时延信息指示该偏移量在n1个时隙之后生效,则网络设备确定偏移量生效的时刻为时隙k1+n1。
还例如,网络设备在时隙k1上接收到上述偏移量,网络设备确定时延信息,该时延信息指示该偏移量在n1个时隙之后生效,则网络设备确定偏移量生效的时刻为时隙k1+n1。其中,网络设备确定时延信息可以是协议规定的一个时长,该时长为n1个时隙;或者,网络设备确定时延信息可以是基于预设的计算公式,计算出一个时长,该时长为n1个时隙。
还例如,偏移量中包括该偏移量的生效时刻。网络设备在时隙k1上接收到上述偏移量,偏移量中包括该偏移量的生效时刻为时隙m1,则网络设备确定偏移量生效的时刻为时隙m1,时隙m1为时隙k1之后的某个时隙。
还例如,偏移量中包括该偏移量的生效时刻为网络设备接收到该偏移量的时刻。网络设备在时隙k1上接收到上述偏移量,偏移量中包括该偏移量的生效时刻为网络设备接收到该偏移量的时刻,则网络设备确定偏移量生效的时刻为时隙k1。
作为一种可选地的实施方法,图7所示的实施例与图4所示的实施例能够结合使用,例如,终端设备上报偏移量后,第一次计算第二下行接收时间单元的起始时刻考虑该偏移 量,再次基于该第二下行接收时间单元的起始时刻计算该第二下行接收时间单元之后的下行接收时间单元的起始时刻时,基于前一个下行接收时间单元的起始时刻和上述时间差确定后一个下行接收时间单元的起始时刻,不再考虑偏移量。
应理解,上述各个方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上面结合图4-图8详细介绍了本申请实施例提供的确定定时提前TA参考时刻的方法,下面结合图9-图12详细介绍本申请实施例提供的确定定时提前TA参考时刻的装置。
参见图9,图9是本申请提出的确定定时提前TA参考时刻的装置10的示意图。如图9所示,装置10包括接收单元110、发送单元130以及处理单元120。
接收单元110,用于接收网络设备发送的指示信息,所述指示信息用于指示所述终端设备根据所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻;
处理单元120,用于确定时间差和偏移量,所述时间差为第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差,所述偏移量为预设的值;
所述处理单元120,还用于确定TA,所述TA为所述第二上行发送时间单元的起始时刻早于所述第二下行接收时间单元的起始时刻的时长,其中,所述第二下行接收时间单元的起始时刻基于所述第一下行接收时间单元的起始时刻,以及所述时间差和所述偏移量确定。
发送单元130,用于向所述网络设备发送第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻。
发送单元130,还用于向所述网络设备发送第二能力信息,所述第二能力信息用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载至少一种上行物理信道和/或至少一种参考信号。
装置10和方法实施例中的终端设备设备完全对应,装置10可以是方法实施例中的终端设备,或者方法实施例中的终端设备内部的芯片或功能模块。装置10的相应单元用于执行图4-图8所示的方法实施例中由终端设备执行的相应步骤。
其中,装置10中的接收单元110执行方法实施例中终端设备接收的步骤。例如,执行图4中接收网络设备发送TA的时长的步骤111、执行图4中接收网络设备发送第三指示信息的步骤121、执行图4中接收网络设备发送第四指示信息的步骤1211、执行图4中接收网络设备发送功能指示信息的步骤123、执行图7中接收网络设备发送TA的时长的步骤211、执行图7中接收网络设备发送第一指示信息的步骤221、执行图7中接收网络设备发送第二指示信息的步骤2211、执行图7中接收网络设备发送功能指示信息的步骤223。处理单元120执行方法实施例中终端设备内部实现或处理的步骤。例如,执行图4中确定时间差的步骤110、执行图4中确定TA的步骤120、执行图7中确定时间差的步骤210、执行图7中确定TA的步骤220。发送单元130执行方法实施例中终端设备发送的步骤。例如,执行图4中向网络设备发送第一能力信息的步骤122、执行图4中向网络 设备发送第二能力信息的步骤1221、执行图7中向网络设备发送第一能力信息的步骤222、执行图7中向网络设备发送第二能力信息的步骤2221、执行图7中向网络设备发送偏移量的步骤224。
接收单元110和发送单元130可以组成收发单元,同时具有接收和发送的功能。其中,处理单元120可以是处理器。发送单元130可以是接收器。接收单元110可以是发射器。接收器和发射器可以集成在一起组成收发器。
参见图10,图10是适用于本申请实施例的终端设备20的结构示意图。该终端设备20可应用于图1和图2所示出的系统中。为了便于说明,图10仅示出了终端设备的主要部件。如图10所示,终端设备20包括处理器、存储器、控制电路、天线以及输入输出装置。处理器用于控制天线以及输入输出装置收发信号,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请提出的确定定时提前TA参考时刻的方法中由终端设备执行的相应流程和/或操作。此处不再赘述。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
参见图11,图11是本申请提出的确定定时提前TA参考时刻的装置30的示意图。如图11所示,装置30包括发送单元310以及接收单元320。
发送单元310,用于向终端设备发送指示信息,所述指示信息用于指示所述终端设备启用第一功能,所述第一功能为基于所述第一下行接收时间单元的起始时刻以及时间差和偏移量,确定所述第二下行接收时间单元的起始时刻,其中,所述时间差为第一上行发送时间单元对应的第一下行接收时间单元和第二上行发送时间单元对应的第二下行接收时间单元之间的时间差,所述偏移量为预设的值。
接收单元320,用于接收所述终端设备发送的第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差和偏移量,确定所述第二下行接收时间单元的起始时刻。
接收单元320,还用于接收所述终端设备发送的第二能力信息,所述第二能力信息用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载至少一种上行物理信道和/或至少一种参考信号。
装置30和方法实施例中的网络设备完全对应,装置30可以是方法实施例中的网络设备,或者方法实施例中的网络设备内部的芯片或功能模块。装置30的相应单元用于执行图4-图8所示的方法实施例中由网络设备执行的相应步骤。
其中,装置30中的发送单元310执行方法实施例中网络设备发送的步骤。例如,执行图4中向终端设备发送TA的时长的步骤111、执行图4中向终端设备发送第三指示信息的步骤121、执行图4中向终端设备发送第四指示信息的步骤1211、执行图4中向终端设备发送功能指示信息的步骤123、执行图7中向终端设备发送TA的时长的步骤211、执行图7中向终端设备发送第一指示信息的步骤221、执行图7中向终端设备发送第二指示信息的步骤2211、执行图7中向终端设备发送功能指示信息的步骤223。接收单元320执行方法实施例中网络设备接收的步骤。例如,执行图4中接收终端设备发送第一能力信息的步骤122、执行图4中接收终端设备发送第二能力信息的步骤1221、执行图7中接收 终端设备发送能力信息的步骤222、执行图7中接收终端设备发送第二能力信息的步骤2221、执行图7中接收终端设备发送偏移量的步骤224。
可选地,装置30还可以包括处理单元,用于执行方法实施例中网络设备内部实现或处理的步骤。接收单元320和发送单元310可以组成收发单元,同时具有接收和发送的功能。其中,处理单元可以是处理器。发送单元310可以是接收器。接收单元320可以是发射器。接收器和发射器可以集成在一起组成收发器。
参见图12,图12是适用于本申请实施例的网络设备40的结构示意图,可以用于实现上述确定定时提前TA参考时刻的方法中的网络设备的功能。可以为网络设备的结构示意图。
在5G通信系统中,网络设备40可以包括CU、DU和AAU相比于LTE通信系统中的网络设备由一个或多个射频单元,如远端射频单元(remote radio unit,RRU)401和一个或多个基带单元(base band unit,BBU)来说:
原BBU的非实时部分将分割出来,重新定义为CU,负责处理非实时协议和服务、BBU的部分物理层处理功能与原RRU及无源天线合并为AAU、BBU的剩余功能重新定义为DU,负责处理物理层协议和实时服务。简而言之,CU和DU,以处理内容的实时性进行区分、AAU为RRU和天线的组合。
CU、DU、AAU可以采取分离或合设的方式,所以,会出现多种网络部署形态,一种可能的部署形态如图12所示与传统4G网络设备一致,CU与DU共硬件部署。应理解,图12只是一种示例,对本申请的保护范围并不限制,例如,部署形态还可以是DU部署在4G BBU机房,CU集中部署或DU集中部署,CU更高层次集中等。
所述AAU 401可以实现收发功能称为收发单元401,与图8中的发送单元310对应。可选地,该收发单元401还可以称为收发机、收发电路、或者收发器等,其可以包括至少一个天线4011和射频单元4012。可选地,收发单元401可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述CU和DU 402可以实现内部处理功能称为处理单元402,与图8中的处理单元330对应。可选地,该处理单元402可以对网络设备进行控制等,可以称为控制器。所述AAU 401与CU和DU 402可以是物理上设置在一起,也可以物理上分离设置的。
另外,网络设备不限于图12所示的形态,也可以是其它形态:例如:包括BBU和自适应无线单元(adaptive radio unit,ARU),或者包括BBU和有源天线单元(active antenna unit,AAU);也可以为客户用户设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
应理解,图12所示的网络设备40能够实现图4和图5的方法实施例中涉及的网络设备功能。网络设备40中的各个单元的操作和/或功能,分别为了实现本申请方法实施例中由网络设备执行的相应流程。为避免重复,此处适当省略详述描述。图10示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
应理解,图12所示的网络设备40能够实现图4-图8的方法实施例中涉及的网络设备功能。网络设备40中的各个单元的操作和/或功能,分别为了实现本申请方法实施例中由 网络设备执行的相应流程。为避免重复,此处适当省略详述描述。图12所示的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多个终端设备。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图4-图8所示的方法中网络设备执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图4-图8所示的方法中终端设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图4-图8所示的方法中网络设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图4-图8所示的方法中终端设备执行的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的确定定时提前TA参考时刻的方法中由终端设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请还提供一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行本申请提供的确定定时提前TA参考时刻的方法中由网络设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:瞬时性(transitory)存储介质、非瞬时性(non-transitory)存储介质、U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。还例如,A、B或C指的是A和B和C中的任意一个;A、B和C指的是A和B和C这3个可能。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (48)

  1. 一种确定定时提前TA参考时刻的方法,其特征在于,包括:
    终端设备确定时间差和偏移量,所述时间差为第一下行接收时间单元与第二下行接收时间单元之间的时间差,所述第一下行接收时间单元与第一上行发送时间单元对应,所述第二下行接收时间单元与第二上行发送时间单元对应,所述偏移量为预设的值;
    所述终端设备确定所述TA,所述TA为所述第二上行发送时间单元的起始时刻早于所述第二下行接收时间单元的起始时刻的时长,其中,所述第二下行接收时间单元的起始时刻基于所述第一下行接收时间单元的起始时刻,以及所述时间差和所述偏移量确定。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端设备确定第二下行接收时间单元的起始时刻之前,所述方法还包括:
    所述终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备启用第一功能,所述第一功能为基于所述第一下行接收时间单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时间单元的起始时刻。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一指示信息生效的时刻。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备发送第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时间单元的起始时刻。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备发送第二能力信息,所述第二能力信息用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载上行物理信道或参考信号中的至少一种。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的功能指示信息,所述功能指示信息用于指示所述第一上行发送时间单元和所述第二上行发送时间单元用于承载上行物理信道或参考信号中的至少一种。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述第一上行发送时间单元和所述第二上行发送时间单元用于承载信道探测参考信号SRS。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备上报所述偏移量。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备向所述网络设备上报所述偏移量的方式包括周期性上报,或半静态上报,或非周期上报。
  10. 根据权利要求8所述的方法,其特征在于,所述终端设备主动上报所述偏移量。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述终端设备向网络设备上报所述偏移量生效的时长。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述第二下行接收时间单元的起始时刻包括:
    所述第二下行接收时间单元的起始时刻与所述第一下行接收时间单元的起始时刻之间相差的时长为所述时间差与所述偏移量之和。
  13. 一种确定定时提前TA参考时刻的方法,其特征在于,包括:
    终端设备确定时间差,所述时间差为第一下行接收时间单元与第二下行接收时间单元之间的时间差,所述第一下行接收时间单元与第一上行发送时间单元对应,所述第二下行接收时间单元与第二上行发送时间单元对应;
    所述终端设备确定所述TA,所述TA为所述第二上行发送时间单元的起始时刻早于所述第二下行接收时间单元的起始时刻的时长,
    其中,所述第二下行接收时间单元的起始时刻基于所述第一下行接收时间单元的起始时刻,以及所述时间差确定。
  14. 一种确定定时提前TA参考时刻的方法,其特征在于,包括:
    网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示终端设备启用第一功能,所述第一功能为基于第一下行接收时间单元的起始时刻以及所述时间差和偏移量,确定第二下行接收时间单元的起始时刻,
    其中,所述时间差为第一下行接收时间单元与第二下行接收时间单元之间的时间差,所述第一下行接收时间单元与第一上行发送时间单元对应,所述第二下行接收时间单元与第二上行发送时间单元对应,所述偏移量为预设的值;
    所述网络设备向终端设备发送TA的时长,所述TA的时长和所述第二下行接收时间单元的起始时刻用于确定所述TA。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息还用于指示所述第一指示信息生效的时刻。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时间单元的起始时刻。
  17. 根据权利要求14-16中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第二能力信息,所述第二能力信息用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载上行物理信道或参考信号中的至少一种。
  18. 根据权利要求14-17中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送功能指示信息,所述功能指示信息用于指示所述第一上行发送时间单元和所述第二上行发送时间单元用于承载上行物理信道或参考信号中的至少一种。
  19. 根据权利要求14-18中任一项所述的方法,其特征在于,所述第一上行发送时间单元和所述第二上行发送时间单元用于承载信道探测参考信号SRS。
  20. 根据权利要求14-19中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备上报的所述偏移量。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送上报方式指示信息,所述上报方式指示信息用于指示所述终端设备上报的所述偏移量的方式包括周期性上报,或半静态上报,或非周期上报。
  22. 根据权利要求14-21中任一项所述的方法,其特征在于,所述第一功能为:
    将所述第一下行接收时间单元的起始时刻、所述时间差与所述偏移量三者之和确定为所述第二下行接收时间单元的起始时刻。
  23. 一种确定定时提前TA参考时刻的方法,其特征在于,包括:
    网络设备向终端设备发送第三指示信息,所述第三指示信息用于指示终端设备启用第二功能,所述第二功能为基于第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻,
    其中,所述时间差为第一下行接收时间单元与第二下行接收时间单元之间的时间差,所述第一下行接收时间单元与第一上行发送时间单元对应,所述第二下行接收时间单元与第二上行发送时间单元对应;
    所述网络设备向终端设备发送TA的时长,所述TA的时长和所述第二下行接收时间单元的起始时刻用于确定所述TA。
  24. 一种确定定时提前TA参考时刻的装置,其特征在于,包括:
    处理器,用于确定时间差和偏移量,所述时间差为第一下行接收时间单元与第二下行接收时间单元之间的时间差,所述第一下行接收时间单元与第一上行发送时间单元对应,所述第二下下行接收时间单元与第二上行发送时间单元对应,所述偏移量为预设的值;
    所述处理器,还用于确定所述TA,所述TA为所述第二上行发送时间单元的起始时刻早于所述第二下行接收时间单元的起始时刻的时长,
    其中,所述第二下行接收时间单元的起始时刻基于所述第一下行接收时间单元的起始时刻,以及所述时间差和所述偏移量确定。
  25. 根据权利要求24所述的装置,其特征在于,在所述处理器确定第二下行接收时间单元的起始时刻之前,所述装置还包括:
    收发器,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备启用第一功能,所述第一功能为基于所述第一下行接收时间单元的起始时刻以及所述时间差,确定所述第二下行接收时间单元的起始时刻。
  26. 根据权利要求25所述的装置,其特征在于,所述收发器,还用于接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一指示信息生效的时刻。
  27. 根据权利要求24-26中任一项所述的装置,其特征在于,所述装置还包括:
    收发器,用于向网络设备上报第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时间单元的起始时刻。
  28. 根据权利要求24-27中任一项所述的装置,其特征在于,所述装置还包括:
    收发器,用于向网络设备上报第二能力信息,所述第二能力信息用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载上行物理信道或参考信号中的至少一种。
  29. 根据权利要求24-28中任一项所述的装置,其特征在于,所述装置还包括:
    收发器,用于接收网络设备发送的功能指示信息,所述功能指示信息用于指示所述第一上行发送时间单元和所述第二上行发送时间单元用于承载上行物理信道或参考信号中的至少一种。
  30. 根据权利要求24-29中任一项所述的装置,其特征在于,所述第一上行发送时间单元和所述第二上行发送时间单元用于承载信道探测参考信号SRS。
  31. 根据权利要求24-28中任一项所述的装置,其特征在于,所述装置还包括:
    收发器,用于向网络设备上报所述偏移量。
  32. 根据权利要求31所述的装置,其特征在于,所述收发器向所述网络设备上报所述偏移量的方式包括周期性上报,或半静态上报,或非周期上报。
  33. 根据权利要求31所述的装置,其特征在于,所述收发器主动上报所述偏移量。
  34. 根据权利要求24-33中任一项所述的装置,其特征在于,所述装置还包括:
    收发器,用于向网络设备上报所述偏移量生效的时长。
  35. 根据权利要求24-34中任一项所述的装置,其特征在于,所述第二下行接收时间单元的起始时刻包括:
    所述第二下行接收时间单元的起始时刻与所述第一下行接收时间单元的起始时刻之间相差的时长为所述时间差。
  36. 一种确定定时提前TA参考时刻的装置,其特征在于,包括:
    处理器,用于确定时间差,所述时间差为第一下行接收时间单元与第二下行接收时间单元之间的时间差,所述第一下行接收时间单元与第一上行发送时间单元对应,所述第二下行接收时间单元与第二上行发送时间单元对应;
    处理器,还用于确定所述TA,所述TA为所述第二上行发送时间单元的起始时刻早于所述第二下行接收时间单元的起始时刻的时长,
    其中,所述第二下行接收时间单元的起始时刻基于所述第一下行接收时间单元的起始时刻,以及所述时间差确定。
  37. 一种确定定时提前TA参考时刻的装置,其特征在于,包括:
    收发器,用于向终端设备发送第一指示信息,所述第一指示信息用于指示终端设备启用第一功能,所述第一功能为基于第一下行接收时间单元的起始时刻以及时间差和偏移量,确定第二下行接收时间单元的起始时刻,
    其中,所述时间差为第一下行接收时间单元与第二下行接收时间单元之间的时间差,所述第一下行接收时间单元与第一上行发送时间单元对应,所述第二下行接收时间单元与第二上行发送时间单元对应,所述偏移量为预设的值;
    所述收发器,还用于向终端设备发送TA的时长,所述TA的时长和所述第二下行接收时间单元的起始时刻用于确定所述TA。
  38. 根据权利要求37所述的装置,其特征在于,所述收发器,还用于向终端设备发送第二指示信息,所述第二指示信息用于指示所述第一指示信息生效的时刻。
  39. 根据权利要求37或38所述的装置,其特征在于,所述收发器,还用于接收所述终端设备发送的第一能力信息,所述第一能力信息用于上报所述终端设备能够根据所述第一下行接收时间单元的起始时刻以及所述时间差和所述偏移量,确定所述第二下行接收时 间单元的起始时刻。
  40. 根据权利要求37-39中任一项所述的装置,其特征在于,所述收发器,还用于接收所述终端设备发送的第二能力信息,所述第二能力信息用于上报所述第一上行发送时间单元和所述第二上行发送时间单元用于承载上行物理信道或参考信号中的至少一种。
  41. 根据权利要求37-40中任一项所述的装置,其特征在于,所述收发器,还用于向所述终端设备发送功能指示信息,所述功能指示信息用于指示所述第一上行发送时间单元和所述第二上行发送时间单元用于承载上行物理信道或参考信号中的至少一种。
  42. 根据权利要求37-41中任一项所述的装置,其特征在于,所述第一上行发送时间单元和所述第二上行发送时间单元用于承载信道探测参考信号SRS。
  43. 根据权利要求42所述的装置,其特征在于,所述收发器,还用于向所述终端设备发送上报方式指示信息,所述上报方式指示信息用于指示所述终端设备上报的所述偏移量的方式包括周期性上报,或半静态上报,或非周期上报。
  44. 根据权利要求37-43中任一项所述的装置,其特征在于,所述第一功能为:
    将所述第一下行接收时间单元的起始时刻、所述时间差与所述偏移量三者之和确定为所述第二下行接收时间单元的起始时刻。
  45. 一种确定定时提前TA参考时刻的装置,其特征在于,包括:
    收发器,用于向终端设备发送第三指示信息,所述第三指示信息用于指示终端设备启用第二功能,所述第二功能为基于第一下行接收时间单元的起始时刻以及时间差,确定第二下行接收时间单元的起始时刻,
    其中,所述时间差为第一下行接收时间单元与第二下行接收时间单元之间的时间差,所述第一下行接收时间单元与第一上行发送时间单元对应,所述第二下行接收时间单元与第二上行发送时间单元对应;
    所述收发器,还用于向终端设备发送TA的时长,所述TA的时长和所述第二下行接收时间单元的起始时刻用于确定所述TA。
  46. 一种芯片,其特征在于,包括至少一个处理器和接口;
    至少一个所述处理器,用于调用并运行计算机程序,以使所述芯片执行权利要求1-23中任一项所述的方法。
  47. 一种计算机可读存储介质,其特征在于,包括:所述计算机可读介质存储有计算机程序;所述计算机程序在计算机上运行时,使得计算机执行权利要求1-23中任一项所述的方法。
  48. 一种通信系统,其特征在于,包括:
    权利要求24-35中任一项所述的确定定时提前TA参考时刻的装置和权利要求36-45中任一项所述的确定定时提前TA参考时刻的装置。
PCT/CN2020/100145 2019-07-04 2020-07-03 确定定时提前ta参考时刻的方法和装置 WO2021000939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910600805.2 2019-07-04
CN201910600805.2A CN112188609B (zh) 2019-07-04 2019-07-04 确定定时提前ta参考时刻的方法和装置

Publications (1)

Publication Number Publication Date
WO2021000939A1 true WO2021000939A1 (zh) 2021-01-07

Family

ID=73915985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100145 WO2021000939A1 (zh) 2019-07-04 2020-07-03 确定定时提前ta参考时刻的方法和装置

Country Status (2)

Country Link
CN (1) CN112188609B (zh)
WO (1) WO2021000939A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087295A1 (zh) * 2021-11-22 2023-05-25 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115474207A (zh) * 2021-06-10 2022-12-13 华为技术有限公司 一种波束时间同步的方法、终端设备以及接入网设备
CN116647906A (zh) * 2022-02-15 2023-08-25 大唐移动通信设备有限公司 一种通信方法及装置
WO2024026806A1 (en) * 2022-08-05 2024-02-08 Qualcomm Incorporated Implicitly updating timing advance in l1/l2 mobility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035802A1 (en) * 2016-08-25 2018-03-01 Nokia Technologies Oy Contention-based channel access in wireless system
CN109451586A (zh) * 2018-05-11 2019-03-08 华为技术有限公司 通信方法和通信装置
CN109474986A (zh) * 2018-12-27 2019-03-15 西安电子科技大学 上行同步方法、装置、设备、存储介质及lte通信系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1821429A3 (en) * 2005-10-26 2007-09-05 Mitsubishi Electric Information Technology Centre Europe B.V. Method and apparatus for communicating downlink and uplink sub-frames in a half duplex communication system
CN101626269A (zh) * 2009-08-17 2010-01-13 中兴通讯股份有限公司 一种下行同步发射控制方法及系统
WO2012103683A1 (en) * 2011-02-01 2012-08-09 Renesas Mobile Corporation Timing advance without random access channel access
CN102111257B (zh) * 2011-03-04 2015-04-01 中兴通讯股份有限公司 一种时间提前量的调整方法及系统
WO2013051991A1 (en) * 2011-10-07 2013-04-11 Telefonaktiebolaget L M Ericsson (Publ) Uplink synchronization method and user equipment
US8989128B2 (en) * 2012-04-20 2015-03-24 Ofinno Technologies, Llc Cell timing in a wireless device and base station
US9756613B2 (en) * 2012-12-06 2017-09-05 Qualcomm Incorporated Transmission and reception timing for device-to-device communication system embedded in a cellular system
CN107707279B (zh) * 2016-08-09 2021-06-29 华为技术有限公司 一种接收定时的配置方法及通信设备
US10244499B2 (en) * 2016-10-28 2019-03-26 Telefonaktiebolaget Lm Ericsson (Publ) UE compensated timing advance
CN106488550B (zh) * 2016-12-20 2019-11-12 华为技术有限公司 确定终端与基站时钟时间偏差的方法与装置
CN108289325B (zh) * 2017-01-09 2022-03-01 中兴通讯股份有限公司 上行和下行传输对齐的方法及装置
CN108964819B (zh) * 2017-05-19 2019-11-26 华为技术有限公司 一种时钟调整、时钟偏差计算方法、设备及系统
CN109120382B (zh) * 2017-06-22 2020-07-28 华为技术有限公司 信号发送和接收方法、装置
CN109547174B (zh) * 2017-08-10 2022-05-24 华为技术有限公司 一种时间配置的方法、网络设备及ue
US11064439B2 (en) * 2017-10-09 2021-07-13 Qualcomm Incorporated Asynchronous carrier aggregation
CN110350998B (zh) * 2019-08-06 2021-07-20 上海无线电设备研究所 一种高动态下站间高精度时频同步方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035802A1 (en) * 2016-08-25 2018-03-01 Nokia Technologies Oy Contention-based channel access in wireless system
CN109451586A (zh) * 2018-05-11 2019-03-08 华为技术有限公司 通信方法和通信装置
CN109474986A (zh) * 2018-12-27 2019-03-15 西安电子科技大学 上行同步方法、装置、设备、存储介质及lte通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Enhancements to support NR backhaul links", 3GPP DRAFT; R1-1804835, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, CHINA; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051427101 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023087295A1 (zh) * 2021-11-22 2023-05-25 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN112188609A (zh) 2021-01-05
CN112188609B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2021000939A1 (zh) 确定定时提前ta参考时刻的方法和装置
US20200022172A1 (en) Signal transmission method, apparatus, and system
JP7040617B2 (ja) シグナリング指示及び受信方法、装置及び通信システム
US11489630B2 (en) Method for transmitting uplink signal and terminal device
JP6846512B2 (ja) 無線通信ネットワークのためのノード及び動作方法
EP3817474B1 (en) Method and device for transmitting uplink signal
US20210218620A1 (en) Transmission parameter configuration method and apparatus
WO2018137703A1 (zh) 一种信息传输方法和装置
CN110035444B (zh) 一种资源确定的方法和装置
US20210368377A1 (en) Wireless communication method, terminal device and network device
US20230137907A1 (en) Wireless communication method, terminal device, and network device
WO2021003624A1 (zh) Bwp切换方法和终端设备
WO2021088158A1 (zh) 无线通信方法、终端设备和网络设备
WO2021258369A1 (zh) 无线通信方法、终端设备和网络设备
US20230239875A1 (en) Wireless Communication Method and Terminal Device
WO2019161563A1 (en) Handling of smtc information at user equipment
CN114466376B (zh) 数据传输方法、装置、设备及存储介质
CN113170330A (zh) 数据传输的方法和设备
WO2022133692A1 (zh) 状态切换的方法、终端设备和网络设备
CN114070528B (zh) 一种信号传输方法、装置及存储介质
JP7437425B2 (ja) アップリンク伝送方法、電子機器及び記憶媒体
CN112703808B (zh) Bwp切换的方法和设备
CN113543213B (zh) 基于复制数据的传输方法和设备
WO2021062869A1 (zh) 无线通信方法和终端设备
WO2021056544A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835146

Country of ref document: EP

Kind code of ref document: A1