WO2018201868A1 - 一种基于多摄像头跟踪定位的反无人机装置及方法 - Google Patents

一种基于多摄像头跟踪定位的反无人机装置及方法 Download PDF

Info

Publication number
WO2018201868A1
WO2018201868A1 PCT/CN2018/082657 CN2018082657W WO2018201868A1 WO 2018201868 A1 WO2018201868 A1 WO 2018201868A1 CN 2018082657 W CN2018082657 W CN 2018082657W WO 2018201868 A1 WO2018201868 A1 WO 2018201868A1
Authority
WO
WIPO (PCT)
Prior art keywords
cameras
bracket
camera tracking
center
camera
Prior art date
Application number
PCT/CN2018/082657
Other languages
English (en)
French (fr)
Inventor
郭森
任仙怡
胡涛
Original Assignee
深圳信息职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳信息职业技术学院 filed Critical 深圳信息职业技术学院
Priority to US16/497,439 priority Critical patent/US11629937B2/en
Publication of WO2018201868A1 publication Critical patent/WO2018201868A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/14Indirect aiming means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/17Terrestrial scenes taken from planes or by drones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications

Definitions

  • the invention relates to an anti-UAV device, in particular to a multi-camera based anti-UAV device.
  • the common anti-UAV equipment has an anti-UAV electromagnetic gun, which is similar in shape to a rifle.
  • the gun body is an electromagnetic pulse transmitter.
  • the barrel is a transmitting antenna (many are spiral).
  • the specific working principle is: operation After aiming the anti-UAV gun at the drone, the person fired a beam of directional electromagnetic pulse interference wave with high power to interfere with the electronic system of the drone, causing the communication navigation system to malfunction, lose control, and then land on the ground or even crash.
  • the existing equipment of this type has a low degree of automation: the target tracking, aiming and shooting by the operator, the operator needs special training, mastering the skills of aiming and shooting, and also needs to remain alert at all times, The operator's energy and physical strength have higher requirements.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art described above, and to provide an anti-UAV device based on multi-camera tracking and positioning, which can greatly improve the automation degree of tracking, aiming and attack.
  • the present invention provides an anti-UAV device based on multi-camera tracking and positioning for the above technical problem, comprising: a bracket defining a center, a circumference surrounding the center of the circle, and a central axis penetrating the center; at least three cameras, the cameras Evenly distributed, and disposed obliquely outward on the circumference of the bracket, the center line of sight of the cameras forms an inverted cone; the directional antenna is disposed on the central axis of the bracket; the electromagnetic module is coupled with the directional antenna; Connected to the center of the bracket for driving the bracket to rotate; and a control unit for controlling the target to track the target and lock the target according to the video image provided by the cameras, thereby controlling the electromagnetic module to attack the target .
  • the fields of view of the cameras are all rectangular, and the overlapping areas shared by the cameras correspond to the central axis of the bracket.
  • imaging in all the cameras means that the target is Directional antenna alignment.
  • the greater the radius of the circumference defined by the bracket the smaller the angle between the centerline of the camera and the central axis defined by the bracket.
  • the bracket is a cross bracket and the number of these cameras is four.
  • the range of the anti-UAV device is set to be within two hundred meters.
  • the camera uses an infrared camera with infrared capabilities.
  • the directional antenna uses a Yagi antenna.
  • the pan/tilt selects an omnidirectional pan/tilt.
  • control unit includes an image analysis module for analyzing video images provided by the cameras, thereby controlling the pan/tilt and/or the electromagnetic module according to the analysis result; and the communication module for external communication; A power module that provides operating power.
  • the present invention also proposes an anti-UAV method based on multi-camera tracking and positioning for the above technical problem, which implements an anti-UAV using the anti-UAV device as described above, and includes the following steps:
  • the cameras are photographed against the monitoring airspace, and the collected video images are sent to the control unit in real time;
  • control unit After the control unit analyzes and finds that there is a drone entering the monitoring airspace, it sends an instruction to the cloud platform to control the pan/tilt rotation and track the drone;
  • the control unit sends a command to the electromagnetic module, and the electromagnetic module transmits electromagnetic waves of a specific frequency through the directional antenna to the unmanned The machine attacks.
  • the anti-UAV device and method based on multi-camera tracking and positioning of the present invention by cleverly using the bracket, set a plurality of cameras uniformly distributed on the circumference, the pan/tilt on the center of the circle, and the center
  • the directional antennas on the shaft and the organic combination of these cameras, pan/tilt and electromagnetic modules coupled to the directional antennas through the control unit greatly improve the automation of tracking, aiming and attack.
  • FIG. 1 is a schematic view showing the outline of a bracket in an anti-UAV apparatus based on multi-camera tracking and positioning according to the present invention.
  • FIG. 2 is a schematic structural diagram of an anti-UAV apparatus based on multi-camera tracking and positioning according to the present invention.
  • FIG. 3 is a schematic structural view showing the camber arrangement of four cameras in the anti-UAV apparatus based on multi-camera tracking and positioning according to the present invention.
  • FIG. 4 is a schematic diagram of a monitoring area of four cameras in an anti-UAV apparatus based on multi-camera tracking and positioning according to the present invention.
  • FIG. 5 is a flow chart showing the operation principle of the multi-camera tracking and positioning based anti-UAV apparatus of the present invention.
  • the reference numerals are as follows: 10 anti-UAV device 1 bracket 15 center 17 end point 19 center axis 2 camera 29 center axis 3 directional antenna 4 electromagnetic control module 5 pan/tilt 6 control unit 7 electromagnetic gun 8 angle 9 cone top 31, 32, 33, 34 monitoring area 310, 320, 330, 340 basic area 301 first area 302 second area 303 third area 304 fourth area 305 fifth area 306 sixth area 307 seventh area 308 eighth area 309 ninth area.
  • FIG. 1 is a schematic diagram showing the outline of a bracket in an anti-UAV apparatus based on multi-camera tracking and positioning according to the present invention.
  • 2 is a schematic structural diagram of an anti-UAV apparatus based on multi-camera tracking and positioning according to the present invention.
  • FIG. 3 is a schematic structural view showing the camber arrangement of four cameras in the anti-UAV apparatus based on multi-camera tracking and positioning according to the present invention.
  • the invention provides an anti-UAV device 10 based on multi-camera tracking and positioning, which generally comprises: a bracket 1 , four cameras 2 mounted on the bracket 1 , a directional antenna 3 and an electromagnetic module 4 , and A pan head 5 mated with the bracket 1 and a control unit 6.
  • the combination of the directional antenna 3 and the electromagnetic module 4 may be collectively referred to as an electromagnetic gun 7.
  • the bracket 1 defines a center 15 , a circumference surrounding the center 15 and a central axis 19 extending through the center 15 .
  • the bracket 1 has a cross shape with four end points 17 which are equidistant from the center 15 (also called the center point).
  • the center 15 of the bracket 1 rests on the platform 5.
  • a camera 2 is mounted on each end point. These cameras 2 are disposed obliquely outwardly on the circumference of the bracket 1, and the center line of sight 29 of these cameras 2 forms an inverted cone, that is, the cone top 9 is facing away from the sky. Specifically, the larger the radius of the circumference defined by the bracket 1, the smaller the angle 8 between the center line of sight 29 of the camera 2 and the central axis 19 defined by the bracket 1.
  • the directional antenna 3 is disposed on a central axis 19 defined by the bracket 1. That is, the center line of the directional antenna 3 overlaps the center axis 19.
  • the electromagnetic module 4 is coupled to the directional antenna 3. In the present embodiment, the electromagnetic module 4 is disposed under the directional antenna 3.
  • the control unit 6 includes: an image analysis module for analyzing video images provided by the cameras 2, and then controlling the pan/tilt 5 and/or the electromagnetic module 4 according to the analysis result; a communication module for external communication; and a power supply Module for providing working power.
  • the four cameras 2 pass through a video line
  • the electromagnetic module 4 passes through a control line
  • the platform 5 is connected to the control unit 6 through a control line.
  • the camera 2 selects an HD camera with an infrared function.
  • the directional antenna 3 uses an Yagi antenna.
  • the electromagnetic module 4 is capable of transmitting electromagnetic waves of a set frequency via the directional antenna 3.
  • the pan/tilt head 5 selects an omnidirectional pan/tilt head, and the omnidirectional pan/tilt head includes two motors, which are respectively responsible for the rotation of the gimbal in two vertical coordinate directions (for example, up and down and left and right).
  • FIG. 4 is a schematic diagram of a monitoring area of four cameras in an anti-UAV apparatus based on multi-camera tracking and positioning according to the present invention.
  • the fields of view of the four cameras 2 of the anti-hand drone device 10 correspond to four rectangular monitoring areas 31, 32, 33, 34, respectively.
  • Each of the monitoring areas 31, 32, 33, 34 has a basic area 310, 320, 330, 340 dedicated to its own camera 2.
  • the area where the fields of view of at least two cameras 2 overlap includes: a first area 301, a second area 302, a third area 303, a fourth area 304, a fifth area 305, a sixth area 306, a seventh area 307, Eight regions 308 and a ninth region 309.
  • the field of view 31 of the camera 2 located above is composed of a basic area 310, a first area 301, a second area 302, a third area 303, a fourth area 304, a fifth area 305, and a sixth area 306.
  • the field of view 32 of the camera 2 located below is composed of a basic area 320, a fourth area 304, a fifth area 305, a sixth area 306, a seventh area 307, an eighth area 308, and a ninth area 309.
  • the field of view 33 of the camera 2 located on the left side is composed of a basic area 330, a first area 301, a second area 302, a fourth area 304, a fifth area 305, a seventh area 307, and an eighth area 308.
  • the field of view 34 of the camera 2 on the side is composed of a basic area 340, a second area 302, a third area 303, a fifth area 305, a sixth area 306, an eighth area 308, and a ninth area 309.
  • the fifth area 305 is an overlapping area shared by the fields of view of the four cameras 2, corresponding to the central axis 19 of the bracket 1, that is, in theory, the extension of the central axis 19 is from the fifth area 305.
  • the center passes through.
  • the drone enters the fifth zone 305 it means that the drone is aligned by the directional antenna 3.
  • the range of the anti-UAV device 10 is set within two hundred meters.
  • the fifth region 305 of the four cameras 2 has an effective distance of 50 meters to 300 meters.
  • the set range of the anti-UAV device 10 can be appropriately expanded, for example, three hundred meters, depending on the needs of the actual application. Accordingly, the effective distance of the fifth region 305 of the four cameras 2 can be adjusted from 150 meters to 400 meters.
  • FIG. 5 is a flow chart showing the working principle of the anti-UAV apparatus based on multi-camera tracking and positioning according to the present invention.
  • the working principle of the anti-UAV device 10, that is, the anti-UAV method implemented by the anti-UAV device 10, generally includes:
  • Step S501 The four cameras 2 shoot against the monitoring airspace, and send the collected video images to the control unit 6 in real time.
  • Step S503 After the control unit 6 analyzes, it is found that after the UAV enters the monitoring airspace, according to the current position of the drone, the command is given to the PTZ 5, and the PTZ 5 is controlled to track the UAV.
  • the imaging position of the machine in the field of view moves toward the field of view overlapping area.
  • Step S505 When the drone enters the predetermined locked position 305, that is, the drone is imaged on all the cameras 2, the control unit 6 issues an instruction to the electromagnetic module 4, and the electromagnetic module 4 transmits a specific frequency through the directional antenna 3. Electromagnetic waves, attacking drones.
  • the control unit 6 when it is found that there is an abnormal situation in the monitoring airspace 300, the control unit 6 first determines whether it is a drone according to the shape and moving speed of the flying object; Then, according to the position of the drone in FIG. 2 and FIG. 3, a control command is sent to the pan/tilt head 5, and the pan/tilt head 5 is controlled to rotate and track until the drone is in the imaging position in FIGS. 2 and 3. Moving to the position of the fifth area 305, the target lock is completed; then, the control unit 6 can issue a control command to instruct the electromagnetic module 4 to emit electromagnetic waves via the directional antenna 3 to attack the drone to shoot down the drone.
  • the multi-camera tracking and positioning based anti-UAV device 10 of the present invention provides a plurality of cameras 2 uniformly distributed on the circumference and a pan/tilt head 5 on the center 15 by skillfully using the bracket 1. And the directional antenna 3 on the central axis 19, and the organic combination of the camera 2, the pan/tilt 5 and the electromagnetic module 4 coupled to the directional antenna 3 through the control unit 6, can greatly improve the automation of tracking, aiming and attack. degree.
  • the four cameras 2 are evenly distributed on the circumference; in other embodiments, the number of cameras 2 uniformly distributed on the circumference may also be three, four, five. And more than five.
  • the four cameras 2 are carried by the cross-shaped bracket 1; in other embodiments, the bracket 1 for carrying the camera 2 may also adopt other forms such as a roulette, that is,
  • the structure of the bracket 1 can be various, as long as it is ensured that the cameras 2 can be evenly distributed on the same circumference, the center 15 of the bracket 1 is connected to the platform 5, and the directional antenna 3 is disposed at the central axis 19 of this circumference. on.

Abstract

一种基于多摄像头跟踪定位的反无人机装置及方法,该反无人机装置包括:包括:支架,其定义有圆心、环绕该圆心的圆周以及贯穿该圆心的中心轴;至少三个摄像头,这些摄像头均匀分布,并是向外倾斜地设置在该支架的圆周上,这些摄像头的中心视线形成一倒锥;定向天线,设置在该支架的中心轴上;电磁模块,与该定向天线耦合;云台,与该支架的圆心相连,用于带动该支架旋转;以及控制单元,用于根据这些摄像头提供的视频图像,控制该云台对目标进行跟踪并锁定目标,进而控制该电磁模块对目标进行攻击。本发明能够大大提高跟踪、瞄准和攻击的自动化程度。

Description

一种基于多摄像头跟踪定位的反无人机装置及方法 技术领域
本发明涉及一种反无人机的装置,尤其涉及一种基于多摄像头的反无人机装置。
背景技术
近年来,无人机市场增长迅猛。随着众多厂家的大规模研发和生产,使得商用无人机普及程度越来越高。然而,国内对无人机,尤其是对“黑飞”无人机的监管还处于空白状态,这些“黑飞”无人机所带来的骚扰与威胁程度随之升高。小至侵犯个人/家庭的隐私、造成伤人损物事件,大至危及国防安全。近期便有航班事故、黑飞高速伤人,可见黑飞无人机隐藏巨大的安全隐患。面对“黑飞”无人机监管的空白,唯有采取相应的的技术手段加以反制,才能保障空中的安全。
目前,常见的反无人机设备有反无人机电磁枪,外形类似步枪,枪身是一个电磁脉冲发射器,枪管是一个发射天线(很多是螺旋状),具体的工作原理就是:操作人员将反无人机枪瞄准无人机以后,发射一束强功率的定向电磁脉冲干扰波,以干扰无人机的电子系统,使其通信导航系统失灵,失去控制,然后降落地面甚至坠毁。现有的这类设备存在着自动化程度低的问题:要由操作人员来进行目标跟踪、瞄准和射击,操作人员需要经过专门的培训,掌握瞄准和射击的技能,还需要时刻保持警戒状态,对操作人员的精力、体力有较高的要求。
发明内容
本发明所要解决的技术问题在于克服上述现有技术所存在的不足,而提出一种基于多摄像头跟踪定位的反无人机装置,能够大大提高跟踪、瞄准和攻击的自动化程度。
本发明针对上述技术问题提出一种基于多摄像头跟踪定位的反无人机装置,包括:支架,其定义有圆心、环绕该圆心的圆周以及贯穿该圆心的中心轴;至少三个摄像头,这些摄像头均匀分布,并是向外倾斜地设置在该支架的圆周上,这些摄像头的中心视线形成一倒锥;定向天线,设置在该支架的中心轴上; 电磁模块,与该定向天线耦合;云台,与该支架的圆心相连,用于带动该支架旋转;以及控制单元,用于根据这些摄像头提供的视频图像,控制该云台对目标进行跟踪并锁定目标,进而控制该电磁模块对目标进行攻击。
在一些实施例中,这些摄像头的视场均为矩形,这些摄像头共有的重叠区域对应于该支架的中心轴,当目标进入到重叠区域时,在所有摄像头中均成像,则意味着目标被该定向天线对准。
在一些实施例中,该支架所定义的圆周的半径越大,该摄像头的中心视线与该支架所定义的中心轴的夹角越小。
在一些实施例中,该支架为十字支架,这些摄像头的数目为四个。
在一些实施例中,该反无人机装置的射程设定在两百米以内。
在一些实施例中,该摄像头选用带红外功能的高清摄像头。
在一些实施例中,该定向天线选用八木天线。
在一些实施例中,该云台选用全向云台。
在一些实施例中,该控制单元包括图像分析模块,用于对这些摄像头提供的视频图像进行分析,进而根据分析结果控制该云台和/或该电磁模块;通信模块,用于对外通信;以及电源模块,用于提供工作电源。
本发明针对上述技术问题还提出一种基于多摄像头跟踪定位的反无人机方法,其采用如上所述的反无人机装置实施反无人机,包括以下步骤:
使这些摄像头对着监视空域进行拍摄,将采集到的视频图像实时发送给该控制单元;
当控制单元经分析,发现有无人机进行入监视空域后,则发指令给该云台,控制该云台转动,对无人机进行跟踪;
当无人机进入所有摄像头的视场重叠区域,即无人机成像于所有摄像头,则该控制单元发指令给该电磁模块,由该电磁模块通过该定向天线发射特定频率的电磁波,对无人机进行攻击。
与现有技术相比,本发明的基于多摄像头跟踪定位的反无人机装置及方法,通过巧妙地借助支架,设置若干个在圆周上均匀分布的摄像头、在圆心上的云台以及在中心轴上的定向天线,并通过控制单元将这些摄像头、云台以及与定向天线耦合的电磁模块有机的结合到一起,能够大大提高跟踪、瞄准和攻击的自动化程度。
附图说明
图1是本发明的基于多摄像头跟踪定位的反无人机装置中支架的外观轮廓示意。
图2是本发明的基于多摄像头跟踪定位的反无人机装置的原理性结构示意。
图3是本发明的基于多摄像头跟踪定位的反无人机装置中四个摄像头外倾布置的结构示意。
图4是本发明的基于多摄像头跟踪定位的反无人机装置中四个摄像头的监控区域示意。
图5是本发明的基于多摄像头跟踪定位的反无人机装置的工作原理的流程示意。
其中,附图标记说明如下:10反无人机装置 1支架 15圆心 17端点 19中心轴 2摄像头 29中心轴线 3定向天线 4电磁控制模块 5云台 6控制单元 7电磁枪 8夹角 9锥顶 31、32、33、34监控区域 310、320、330、340基本区域 301第一区域 302第二区域 303第三区域 304第四区域305第五区域 306第六区域 307第七区域 308第八区域 309第九区域。
具体实施方式
以下结合本说明书的附图,对本发明的较佳实施例予以进一步地详尽阐述。
参见图1、图2和图3,图1是本发明的基于多摄像头跟踪定位的反无人机装置中支架的外观轮廓示意。图2是本发明的基于多摄像头跟踪定位的反无人机装置的原理性结构示意。图3是本发明的基于多摄像头跟踪定位的反无人机装置中四个摄像头外倾布置的结构示意。本发明提出一种基于多摄像头跟踪定位的反无人机装置10,其大致包括:支架1,装设在该支架1上的四个摄像头2、一个定向天线3和一个电磁模块4,与该支架1相配合的一个云台5,以及一个控制单元6。其中,定向天线3和电磁模块4的组合可以统称为电磁枪7。
该支架1定义有圆心15、环绕该圆心15的圆周以及贯穿该圆心15的中心轴19。在本实施例中,该支架1呈十字形,具有四个端点17,这四个端点17距离圆心15(也称中心点)的距离相等。该支架1的圆心15搁置在该云台5上。
在每个端点上装设有一个摄像头2。这些摄像头2是向外倾斜地设置在该支架1的圆周上,这些摄像头2的中心视线29形成一倒锥,也即锥顶9是背向天空的。具体而言,该支架1所定义的圆周的半径越大,该摄像头2的中心视线29与该支架1所定义的中心轴19的夹角8越小。
该定向天线3设置在该支架1定义的中心轴19上。也就是说,该定向天线 3的中心线与该中心轴19重叠。该电磁模块4与该定向天线3耦合。在本实施例中,该电磁模块4是设置在该定向天线3的下面。
该控制单元6包括:图像分析模块,用于对这些摄像头2提供的视频图像进行分析,进而根据分析结果控制该云台5和/或该电磁模块4;通信模块,用于对外通信;以及电源模块,用于提供工作电源。具体而言,这四个摄像头2通过视频线,该电磁模块4通过控制线,该云台5通过控制线,分别与该控制单元6相连。
在本实施例中,该摄像头2选用带红外功能的高清摄像头。该定向天线3选用八木天线。该电磁模块4能够将设定频率的电磁波,经由该定向天线3发射出去。该云台5选用全向云台,该全向云台内部包括两个电机,分别负责云台在两个垂直坐标方向(例如:上下和左右)上的转动。
参见图4,图4是本发明的基于多摄像头跟踪定位的反无人机装置中四个摄像头的监控区域示意。该反无人机装置10的四个摄像头2的视场分别对应于四个矩形的监控区域31、32、33、34。每个监控区域31、32、33、34具有一个专属于自身摄像头2的基本区域310、320、330、340。至少有两个摄像头2的视场重叠的区域包括:第一区域301、第二区域302、第三区域303、第四区域304、第五区域305、第六区域306、第七区域307、第八区域308和第九区域309。
位于上方的摄像头2的视场31由基本区域310、第一区域301、第二区域302、第三区域303、第四区域304、第五区域305、第六区域306组成。
位于下方的摄像头2的视场32由基本区域320、第四区域304、第五区域305、第六区域306、第七区域307、第八区域308、第九区域309组成。
位于左侧的摄像头2的视场33由基本区域330、第一区域301、第二区域302、第四区域304、第五区域305、第七区域307、第八区域308组成。
位于由侧的摄像头2的视场34由基本区域340、第二区域302、第三区域303、第五区域305、第六区域306、第八区域308、第九区域309组成。
可见,第五区域305是四个摄像头2的视场共有的重叠区域,对应于支架1的中心轴19,也就是说,在理论上,中心轴19的延长线是从该第五区域305的中心穿过的。当无人机进入到第五区域305时,意味着无人机被该定向天线3对准。
值得一提的是,在本实施例中,该反无人机装置10的射程设定在两百米以内。四个摄像头2的第五区域305的有效距离在50米至300米。在其他实施例中,根据实际应用的需要,可以适当地扩大该反无人机装置10的设置射程,例 如:三百米。相应地,可以调整四个摄像头2的第五区域305的有效距离在150米至400米。
参见图5,图5是本发明的基于多摄像头跟踪定位的反无人机装置的工作原理的流程示意。该反无人机装置10的工作原理,也即采用该反无人机装置10实现的反无人机的方法,大致包括:
步骤S501:四个摄像头2对着监视空域进行拍摄,将采集到的视频图像实时发送给控制单元6。
步骤S503:当控制单元6经分析,发现有无人机进行入监视空域后,根据无人机当前位置,指令给云台5,控制云台5转动,对无人机进行跟踪,将无人机在视场中的成像位置往视场重叠区域移动。
步骤S505:当无人机进入预定的被锁定的位置305,即无人机成像于所有摄像头2,则该控制单元6发指令给电磁模块4,由电磁模块4通过定向天线3发射特定频率的电磁波,对无人机进行攻击。
也就是说,结合图2和图3,当发现监控空域300有异常情况,则先由该控制单元6根据飞行物的形状和移动速度,作出判断是否为无人机;如果判断为无人机,则按照无人机在图2和图3中的位置,发控制指令给该云台5,控制该云台5转动,进行跟踪,直至将无人机在图2和图3中的成像位置移动到第五区域305的位置,完成目标锁定;然后,该控制单元6可发出控制指令,指示电磁模块4经由该定向天线3发射电磁波,对无人机进行攻击,以将无人机击落。
与现有技术相比,本发明的基于多摄像头跟踪定位的反无人机装置10,通过巧妙地借助支架1,设置若干个在圆周上均匀分布的摄像头2、在圆心15上的云台5以及在中心轴19上的定向天线3,并通过控制单元6将这些摄像头2、云台5以及与定向天线3耦合的电磁模块4有机的结合到一起,能够大大提高跟踪、瞄准和攻击的自动化程度。
值得一提的是,在上述实施例中,是四个摄像头2在圆周上均匀分布;在其他实施例中,在圆周上均匀分布的摄像头2的数目也可以是三个、四个、五个以及大于五个。在上述实施例中,是采用十字形的支架1来承载这四个摄像头2;在其他实施例中,用于承载摄像头2的支架1也可以采用诸如轮盘之类的其他形式,也就是说,支架1的结构形式可以多种多样,只要保证能够将这些摄像头2均匀地分布在同一个圆周上,支架1的圆心15与云台5相连,并且定向天线3设置在这个圆周的中心轴19上。
上述内容仅为本发明的较佳实施例,并非用于限制本发明的实施方案,本领域普通技术人员根据本发明的主要构思和精神,可以十分方便地进行相应的变通或修改,故本发明的保护范围应以权利要求书所要求的保护范围为准。

Claims (10)

  1. 一种基于多摄像头跟踪定位的反无人机装置,其特征在于,包括:支架,其定义有圆心、环绕该圆心的圆周以及贯穿该圆心的中心轴;至少三个摄像头,这些摄像头均匀分布,并是向外倾斜地设置在该支架的圆周上,这些摄像头的中心视线形成一倒锥;定向天线,设置在该支架的中心轴上;电磁模块,与该定向天线耦合;云台,与该支架的圆心相连,用于带动该支架旋转;以及控制单元,用于根据这些摄像头提供的视频图像,控制该云台对目标进行跟踪并锁定目标,进而控制该电磁模块对目标进行攻击。
  2. 依据权利要求1所述的基于多摄像头跟踪定位的反无人机装置,其特征在于,这些摄像头的视场均为矩形,这些摄像头共有的重叠区域对应于该支架的中心轴,当目标进入到重叠区域时,在所有摄像头中均成像,则意味着目标被该定向天线对准。
  3. 依据权利要求1所述的基于多摄像头跟踪定位的反无人机装置,其特征在于,该支架所定义的圆周的半径越大,该摄像头的中心视线与该支架所定义的中心轴的夹角越小。
  4. 依据权利要求1所述的基于多摄像头跟踪定位的反无人机装置,其特征在于,该支架为十字支架,这些摄像头的数目为四个。
  5. 依据权利要求4所述的基于多摄像头跟踪定位的反无人机装置,其特征在于,该反无人机装置的射程设定在两百米以内。
  6. 依据权利要求1所述的基于多摄像头跟踪定位的反无人机装置,其特征在于,该摄像头选用带红外功能的高清摄像头。
  7. 依据权利要求1所述的基于多摄像头跟踪定位的反无人机装置,其特征在于,该定向天线选用八木天线。
  8. 依据权利要求1所述的基于多摄像头跟踪定位的反无人机装置,其特征在于,该云台选用全向云台。
  9. 依据权利要求1所述的基于多摄像头跟踪定位的反无人机装置,其特征在于,该控制单元包括图像分析模块,用于对这些摄像头提供的视频图像进行分析,进而根据分析结果控制该云台和/或该电磁模块;通信模块,用于对外通信;以及电源模块,用于提供工作电源。
  10. 一种基于多摄像头跟踪定位的反无人机方法,其特征在于,采用如权利要求1至9任一项所述的反无人机装置实施反无人机,包括以下步骤:
    使这些摄像头对着监视空域进行拍摄,将采集到的视频图像实时发送给该控制单元;
    当控制单元经分析,发现有无人机进行入监视空域后,则发指令给该云台,控制该云台转动,对无人机进行跟踪;
    当无人机进入所有摄像头的视场重叠区域,即无人机成像于所有摄像头,则该控制单元发指令给该电磁模块,由该电磁模块通过该定向天线发射特定频率的电磁波,对无人机进行攻击。
PCT/CN2018/082657 2017-05-02 2018-04-11 一种基于多摄像头跟踪定位的反无人机装置及方法 WO2018201868A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/497,439 US11629937B2 (en) 2017-05-02 2018-04-11 Device and method of anti-unmanned aerial vehicle based on multi-camera tracking and positioning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710300094.8A CN107071364B (zh) 2017-05-02 2017-05-02 一种基于多摄像头跟踪定位的反无人机装置及方法
CN201710300094.8 2017-05-02

Publications (1)

Publication Number Publication Date
WO2018201868A1 true WO2018201868A1 (zh) 2018-11-08

Family

ID=59605459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082657 WO2018201868A1 (zh) 2017-05-02 2018-04-11 一种基于多摄像头跟踪定位的反无人机装置及方法

Country Status (3)

Country Link
US (1) US11629937B2 (zh)
CN (1) CN107071364B (zh)
WO (1) WO2018201868A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210006490A (ko) * 2019-02-15 2021-01-18 최춘화 무인항공기를 이용한 안티드론 대응시스템

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107071364B (zh) 2017-05-02 2023-08-18 深圳信息职业技术学院 一种基于多摄像头跟踪定位的反无人机装置及方法
CN108803683B (zh) * 2018-05-18 2021-09-10 南京邮电大学 基于ZigBee无线传感网络的多摄像头追踪拍摄系统和方法
CN111787216A (zh) * 2019-04-04 2020-10-16 南京非空航空科技有限公司 一种基于多摄像头的反无人机装置
US11800062B2 (en) * 2019-07-26 2023-10-24 Dedrone Holdings, Inc. Systems, methods, apparatuses, and devices for radar-based identifying, tracking, and managing of unmanned aerial vehicles
CN110716583A (zh) * 2019-10-18 2020-01-21 泰州市柯普尼通讯设备有限公司 无人机反制方法、系统、电子设备及存储介质
CN111208581B (zh) * 2019-12-16 2022-07-05 长春理工大学 一种无人机多维度识别系统及方法
CN115308813B (zh) * 2022-10-10 2023-08-22 成都本原聚能科技有限公司 基于深度学习的双定向天线无人机侦测系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1580518A1 (en) * 2004-03-25 2005-09-28 Rafael-Armament Development Authority Ltd. System and method for automatically acquiring a target with a narrow field-of-view gimbaled imaging sensor
CN105989612A (zh) * 2015-02-05 2016-10-05 王瑞 用于干扰无人机的隐私保护装置
CN106452658A (zh) * 2016-10-25 2017-02-22 成都紫瑞青云航空宇航技术有限公司 一种低空防御设备
CN107071364A (zh) * 2017-05-02 2017-08-18 深圳信息职业技术学院 一种基于多摄像头跟踪定位的反无人机装置及方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6843178B2 (en) * 2002-08-22 2005-01-18 Lockheed Martin Corporation Electromagnetic pulse transmitting system and method
DE102014014117A1 (de) * 2014-09-24 2016-03-24 Diehl Bgt Defence Gmbh & Co. Kg Abwehrvorrichtung zum Bekämpfen eines unbemannten Luftfahrzeugs, Schutzeinrichtung zum Bekämpfen eines unbemannten Luftfahrzeugs und Verfahren zum Betrieb einer Schutzeinrichtung
US9715009B1 (en) * 2014-12-19 2017-07-25 Xidrone Systems, Inc. Deterent for unmanned aerial systems
US9689976B2 (en) * 2014-12-19 2017-06-27 Xidrone Systems, Inc. Deterent for unmanned aerial systems
JP6376407B2 (ja) * 2015-06-30 2018-08-22 三菱重工業株式会社 電磁パルス照射方法及び電磁パルス照射システム
DE102015011058A1 (de) * 2015-08-27 2017-03-02 Rheinmetall Waffe Munition Gmbh System zur Abwehr von Bedrohungen
US10005556B2 (en) * 2015-11-25 2018-06-26 Mohammad Rastgaar Aagaah Drone having drone-catching feature
US20200284557A1 (en) * 2016-06-08 2020-09-10 The Boeing Company Drone deterrence system, method, and assembly
CN106291592B (zh) * 2016-07-14 2019-03-01 桂林长海发展有限责任公司 一种小型无人机的对抗系统
CN206060935U (zh) * 2016-08-31 2017-03-29 江苏三步网络科技有限公司 一种图像行为分析跟踪摄像机
GB2546353B (en) * 2016-09-19 2018-08-08 Citadel Defense Company Radio control transmissions
CN106452659A (zh) * 2016-10-25 2017-02-22 成都紫瑞青云航空宇航技术有限公司 一种反无人机装置
US10926875B2 (en) * 2016-12-14 2021-02-23 Sanmina Corporation Devices and methods for facilitating capture of unmanned aerial vehicles
CN206989809U (zh) * 2017-05-02 2018-02-09 深圳信息职业技术学院 全自动反无人机的电磁枪
WO2018227153A1 (en) * 2017-06-09 2018-12-13 Resnick Blake Drone implemented border patrol
US10495421B2 (en) * 2017-08-25 2019-12-03 Aurora Flight Sciences Corporation Aerial vehicle interception system
US11064184B2 (en) * 2017-08-25 2021-07-13 Aurora Flight Sciences Corporation Aerial vehicle imaging and targeting system
US10907940B1 (en) * 2017-12-12 2021-02-02 Xidrone Systems, Inc. Deterrent for unmanned aerial systems using data mining and/or machine learning for improved target detection and classification
US20210405654A1 (en) * 2018-03-22 2021-12-30 Infinium Robotics Pte Ltd Autonomous taking off, positioning and landing of unmanned aerial vehicles (uav) on a mobile platform
US11440656B2 (en) * 2018-10-03 2022-09-13 Sarcos Corp. Countermeasure deployment system facilitating neutralization of target aerial vehicles
US11465741B2 (en) * 2018-10-03 2022-10-11 Sarcos Corp. Deployable aerial countermeasures for neutralizing and capturing target aerial vehicles
US11697497B2 (en) * 2018-10-03 2023-07-11 Sarcos Corp. Aerial vehicles having countermeasures deployed from a platform for neutralizing target aerial vehicles
US11192646B2 (en) * 2018-10-03 2021-12-07 Sarcos Corp. Anchored aerial countermeasures for rapid deployment and neutralizing of target aerial vehicles
US10861172B2 (en) * 2018-11-28 2020-12-08 Battelle Memorial Institute Sensors and methods for monitoring flying objects
US11385659B2 (en) * 2019-05-17 2022-07-12 Anduril Industries, Inc. Counter drone system
US11800062B2 (en) * 2019-07-26 2023-10-24 Dedrone Holdings, Inc. Systems, methods, apparatuses, and devices for radar-based identifying, tracking, and managing of unmanned aerial vehicles
RU2746090C2 (ru) * 2019-09-30 2021-04-06 Акционерное общество "Лаборатория Касперского" Система и способ защиты от беспилотных летательных аппаратов в воздушном пространстве населенного пункта
US11401047B2 (en) * 2020-01-30 2022-08-02 Performance Drone Works Llc Unmanned aerial vehicle with latched net assembly
US11827352B2 (en) * 2020-05-07 2023-11-28 Skydio, Inc. Visual observer for unmanned aerial vehicles
US11187499B1 (en) * 2020-09-17 2021-11-30 Science Applications International Corporation Directional high-energy radio frequency weapon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1580518A1 (en) * 2004-03-25 2005-09-28 Rafael-Armament Development Authority Ltd. System and method for automatically acquiring a target with a narrow field-of-view gimbaled imaging sensor
CN105989612A (zh) * 2015-02-05 2016-10-05 王瑞 用于干扰无人机的隐私保护装置
CN106452658A (zh) * 2016-10-25 2017-02-22 成都紫瑞青云航空宇航技术有限公司 一种低空防御设备
CN107071364A (zh) * 2017-05-02 2017-08-18 深圳信息职业技术学院 一种基于多摄像头跟踪定位的反无人机装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210006490A (ko) * 2019-02-15 2021-01-18 최춘화 무인항공기를 이용한 안티드론 대응시스템
KR102334679B1 (ko) 2019-02-15 2021-12-02 최춘화 무인항공기를 이용한 안티드론 대응시스템

Also Published As

Publication number Publication date
CN107071364A (zh) 2017-08-18
US20210302131A1 (en) 2021-09-30
US11629937B2 (en) 2023-04-18
CN107071364B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2018201868A1 (zh) 一种基于多摄像头跟踪定位的反无人机装置及方法
US10495421B2 (en) Aerial vehicle interception system
US9632509B1 (en) Operating a UAV with a narrow obstacle-sensor field-of-view
CN108762291B (zh) 一种发现和跟踪黑飞无人机遥控者的方法与系统
CA3011476A1 (en) Aerial vehicle imaging and targeting system
US10486809B2 (en) Unmanned aerial system targeting
CN107505953B (zh) 一种无人机自动跟踪天线系统及其跟踪方法
US10620632B2 (en) Portable aerial reconnaissance targeting intelligence device
US20190278303A1 (en) Method of controlling obstacle avoidance for unmanned aerial vehicle and unmanned aerial vehicle
CN105573343A (zh) 一种无人机抓捕系统
CN110375585B (zh) 一种基于双转塔的飞行物入侵应对系统及方法
US11578952B2 (en) Directional high-energy radio frequency weapon
US11815914B2 (en) Adaptive anti-laser system
CN107943084B (zh) 一种针对民用多旋翼无人机的跟随式电磁干扰系统及方法
CN106155071A (zh) 一种用于巡线检修的无人机
US20180004203A1 (en) Unmanned Aerial Vehicle Weapon System and Method of Operation
CN110267004A (zh) 一种小型无人机探测监控系统
CN109324632A (zh) 无人机载激光武器反无人机系统
CN206989809U (zh) 全自动反无人机的电磁枪
CN219247855U (zh) 一种黑飞无人机智能抓捕装置
KR20200142133A (ko) 360도 촬영기능과 gps 보호기능을 갖춘 스텔스 드론
KR101866218B1 (ko) 드론을 이용한 함포 영점 조정 방법
CN205405272U (zh) 一种无人机抓捕系统
CN108225112A (zh) 一种光电式预警跟踪打击系统
JP6434764B2 (ja) 航空機の飛行制御方法及び航空機の飛行制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794162

Country of ref document: EP

Kind code of ref document: A1