WO2018201789A1 - Harq-ack反馈方法、harq-ack提取方法、基站和用户设备 - Google Patents

Harq-ack反馈方法、harq-ack提取方法、基站和用户设备 Download PDF

Info

Publication number
WO2018201789A1
WO2018201789A1 PCT/CN2018/078232 CN2018078232W WO2018201789A1 WO 2018201789 A1 WO2018201789 A1 WO 2018201789A1 CN 2018078232 W CN2018078232 W CN 2018078232W WO 2018201789 A1 WO2018201789 A1 WO 2018201789A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
control information
downlink control
harq
resource location
Prior art date
Application number
PCT/CN2018/078232
Other languages
English (en)
French (fr)
Inventor
刘佳慧
牟勤
刘柳
大久保尚人
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN201880027167.3A priority Critical patent/CN110583070A/zh
Priority to US16/609,594 priority patent/US11356207B2/en
Publication of WO2018201789A1 publication Critical patent/WO2018201789A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint

Definitions

  • the present invention relates to the field of communications, and in particular, to a hybrid automatic request retransmission request response HARQ-ACK feedback method at a base station, a HARQ-ACK extraction method at a user equipment end, a base station, and a user equipment.
  • the fifth-generation mobile communication technology 5G
  • 5G fifth-generation mobile communication technology
  • Rel-13 it is proposed to apply uplink data retransmission to improve network coverage.
  • the set of uplink data retransmission times can be defined as: ⁇ 1, 4, 8, 16, 32...2048 ⁇ .
  • the number of retransmissions for a particular User Equipment may be set to ⁇ 1, 4, 8, 16 ⁇ . Since the granularity of the uplink transmission is too large and the measurement is not accurate, the uplink data in the IoT application scenario should support the early confirmation of the base station, that is, the base station needs to send the HARQ-ACK to the user.
  • RRC Radio Resource Control
  • UE User Equipment
  • the HARQ-ACK fed back to the user equipment by the base station is an ACK, it indicates that the base station has correctly received and decoded the data sent by the user equipment, that is, the user equipment no longer needs to send the data to the base station.
  • the base station may indicate HARQ-ACK information for multiple user equipments in Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the base station may calculate a cyclic redundancy check code (CRC) based on HARQ-ACK information for multiple user equipments by using HARQ-RNTI (Radio Network Temporary Identifier). ) Perform scrambling.
  • CRC cyclic redundancy check code
  • the user equipment checks whether the received DCI is a DCI for feeding back HARQ-ACK by checking the received DCI information according to the HARQ-RNTI, and further determines the value of the HARQ-ACK belonging to itself.
  • the HARQ-ACK for each user equipment is carried in the DCI for HARQ-ACK feedback (shown in FIG. 1).
  • the base station In order to enable each user equipment to identify the HARQ-ACK information belonging to the user equipment, the base station notifies each user equipment of the bit position of the corresponding HARQ-ACK information through RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • a hybrid automatic repeat request acknowledgement HARQ-ACK feedback method performed by a base station for feeding back a corresponding HARQ-ACK to a plurality of user equipments, the method comprising: utilizing The plurality of HARQ-ACKs corresponding to the plurality of user equipments generate at least one downlink control information, where for each user equipment, between the user equipment and one or more information bits in the downlink control information There is an implicit mapping relationship; and the downlink control information is transmitted to the plurality of user equipments.
  • a hybrid automatic repeat request acknowledgment HARQ-ACK extraction method performed by a user equipment including: receiving, by a base station, at least a corresponding HARQ-ACK for feeding back a plurality of user equipments a downlink control information, wherein the plurality of user equipments include the user equipment and other user equipments; and determining an implicit mapping relationship between the user equipment and one or more information bits of the downlink control information HARQ-ACK corresponding to the user equipment.
  • a base station configured to perform a hybrid automatic retransmission request acknowledgement of a HARQ-ACK to a plurality of user equipments, comprising: a generating unit, configured to utilize the plurality of user equipments Corresponding multiple HARQ-ACKs generate at least one downlink control information, where for each user equipment, there is an implicit mapping relationship between the user equipment and one or more information bits in the downlink control information And a sending unit, configured to transmit the downlink control information to the plurality of user equipments.
  • a user equipment configured to perform hybrid automatic retransmission request confirmation from a base station, to extract an HARQ-ACK
  • a receiving unit configured to receive, by the base station, The user equipment feeds back at least one downlink control information of the corresponding HARQ-ACK, wherein the multiple user equipment includes the user equipment and other user equipment; and a determining unit, configured to base the downlink with the user equipment An implicit mapping relationship of one or more information bits of the control information determines a HARQ-ACK corresponding to the user equipment.
  • each user equipment can autonomously determine the corresponding HARQ-ACK in the downlink control information, and does not need to notify the user equipment to inform the information bits of the HARQ-ACK corresponding to each user equipment in the downlink control information. Therefore, the DL signaling overhead is significantly reduced compared to the prior art.
  • FIG. 1 is a schematic diagram illustrating DCI content for HARQ-ACK feedback in the prior art
  • FIG. 2 is a flowchart illustrating a procedure of a hybrid automatic repeat request acknowledgement HARQ-ACK feedback method performed by a base station according to the present invention
  • FIG. 3 is a schematic diagram illustrating a first example of a DCI format of scheme 1 according to the first embodiment of the present invention
  • FIG. 4 is a schematic diagram illustrating a second example of a DCI format of the first aspect of the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating a first example of a DCI format of scheme 2 according to the first embodiment of the present invention
  • FIG. 6 is a schematic diagram illustrating a second example of a DCI format of scheme 2 according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating a DCI format according to a second embodiment of the present invention.
  • FIG. 8 is a flowchart of a procedure of a hybrid automatic repeat request acknowledgement HARQ-ACK extraction method performed by a user equipment according to the present invention
  • FIG. 9 is a functional block diagram illustrating a configuration of a base station according to the present invention.
  • FIG. 10 is a functional block diagram illustrating a configuration of a user equipment according to the present invention.
  • FIG. 11 is a diagram showing an example of a hardware configuration of a base station and user equipment according to an embodiment of the present invention.
  • the HARQ-ACK feedback method is configured to feed back a corresponding HARQ-ACK to multiple user equipments. As shown in FIG. 2, the method includes the following steps.
  • step S201 at least one downlink control information (DCI) is generated by using a plurality of HARQ-ACKs corresponding to the plurality of user equipments, where the user equipment and the downlink are used for each user equipment There is an implicit mapping between one or more information bits in the control information.
  • DCI downlink control information
  • the value of the information bit in the downlink control information may take 1 or 0.
  • the value indicates that the HARQ-ACK is ACK, that is, the base station has correctly received and decoded the data, and the user equipment no longer needs to continue to retransmit.
  • the value indicates that the base station has not received the data or has not solved the data.
  • step S202 the downlink control information is transmitted to the plurality of user equipments.
  • each user equipment can autonomously determine a corresponding one of the downlink control information.
  • the HARQ-ACK does not need to notify the user equipment of the information bits of the HARQ-ACK corresponding to each user equipment in the downlink control information for the HARQ-ACK feedback by the DL RRC signaling, and thus is compared with the prior art.
  • the DL signaling overhead is significantly reduced.
  • implicit mapping is performed based on resource locations allocated by the base station to the user equipment for uplink data transmission.
  • a location such as a physical resource block (PRB) number or index, has an implicit mapping relationship between the user equipment and one or more information bits in the downlink control information.
  • PRB physical resource block
  • Option 1 HARQ-ACK feedback with one DCI
  • the at least one downlink control information is one downlink control information.
  • the resource location allocated by the base station to the user equipment for uplink data transmission may be a single PRB, multiple PRBs, or a group of PRBs or groups of PRBs.
  • the set of PRBs may be one Narrow Band (NB), that is, six PRBs, or may be three predefined PRBs.
  • NB Narrow Band
  • the base station allocates a single PRB to the user equipment, the user equipment There is an implicit mapping relationship with an information bit in the DCI.
  • the base station allocates multiple PRBs or multiple sets of PRBs to the user equipment
  • the base station allocates multiple PRBs, one or more sets of PRBs to the user equipment, it may also be based on the starting PRB index, the PRB group index, or the starting PRB group index, one of the user equipment and the DCI.
  • FIG. 3 is a schematic diagram illustrating a first example of performing HARQ-ACK feedback on the plurality of user equipments with one DCI.
  • a case where one information bit in the DCI corresponds to one PRB (ie, a single resource location) is shown.
  • PRB ie, a single resource location
  • there is an implicit mapping relationship between the user equipment and one information bit in the DCI that is, determining information corresponding to the user equipment in the DCI based on the initial PRB index.
  • the location of the bit is not limited to this.
  • FIG. 3 shows a case where the data information of the DCI for HARQ-ACK includes 100 information bits.
  • the DCI including 100 information bits is merely an example, and the present invention is not limited thereto.
  • the data information of the DCI for HARQ-ACK may also be other bits less than 100, or greater than 100.
  • the first bit corresponds to PRB 0
  • the second bit corresponds to PRB 1
  • the 99th bit corresponds to PRB 99.
  • a case where each of 100 bits corresponds to one PRB index is shown in FIG.
  • the present invention is not limited thereto.
  • FIG. 4 is a schematic diagram illustrating a second example of performing HARQ-ACK feedback on the plurality of user equipments with one DCI.
  • a group of PRBs (for example, NB0) corresponding to one information bit in the DCI
  • the group of PRBs may be allocated to one or more user equipments.
  • the information bit carries a value indicating the HARQ-ACK for the user equipment.
  • the pre-divided PRB group may be mapped to one information bit in the DCI regardless of the PRB group.
  • the HARQ-ACK values of the plurality of user equipments corresponding to the respective PRBs are the same.
  • the description includes three user equipments in the PRB group as an example. If the value of the HARQ-ACK corresponding to the three user equipments is 1, the value of the one information bit in the DCI is set to 1. If the value of the HARQ-ACK corresponding to the three user equipments is not all 1, that is, at least one of the values of the HARQ-ACK corresponding to the three user equipments is 0, the one information in the DCI is The value of the bit is set to 0. That is, in this case, as long as there is a user equipment in which the HARQ-ACK is a NACK among the plurality of different user equipments, the information bits in the DCI corresponding to the plurality of different user equipments are 0. value.
  • the step of generating at least one downlink control information further comprises: scrambling a cyclic redundancy check code (CRC) according to a fixed scrambling identifier (HARQ-RNTI), for identifying the downlink control information It is information for feeding back the corresponding HARQ-ACK to the plurality of user equipments.
  • the user equipment first determines downlink control information scrambled by the HARQ-RNTI, and then extracts a specific information bit value as a HARQ-ACK.
  • DCI Downlink Control Channel
  • DCI for resource allocation Downlink Control Channel
  • DCI for HARQ-ACK feedback Downlink Control Channel
  • the fixed scrambling identifier may be a conventionally defined value or a newly defined value as long as the value is fixed.
  • the at least one downlink control information is a plurality of downlink control information, and the multiple downlink control information respectively correspond to different resource location groups.
  • FIG. 5 shows a first implementation of scheme 2 in which feedback of HARQ-ACK is performed with two downlink control information.
  • PRB0 to PRB49 are divided into PRB group 0
  • PRB50 to PRB99 are divided into PRB group 1.
  • the resource location group identifier corresponding to the PRB group 0 is 1 and the resource location group identifier corresponding to the PRB group 1 is 0; or vice versa, the resource location group identifier corresponding to the PRB group 0 is 0, and the PRB group 1 corresponds to The resource location group ID is 1.
  • the step of generating at least one downlink control information further comprises: scrambling a cyclic redundancy check code (CRC) according to a fixed scrambling identifier (HARQ-RNTI) for identifying
  • CRC cyclic redundancy check code
  • HARQ-RNTI fixed scrambling identifier
  • the downlink control information is information for feeding back a corresponding HARQ-ACK to the multiple user equipments; and setting a resource location group identifier in each of the downlink control information, for identifying the downlink The resource location group corresponding to the link control information.
  • Figure 6 shows a second implementation of Scheme 2 in which feedback of HARQ-ACK is also performed with two downlink control information.
  • PRB0 to PRB49 are divided into PRB group
  • PRB50 to PRB99 are divided into PRB group 1.
  • PRB group 1 different but not fixed scrambling identifiers (HARQ) are used.
  • HARQ scrambling identifiers
  • - RNTI ie, resource location group specific HARQ-RNTI
  • the step of generating at least one piece of downlink control information further comprises: scrambling the cyclic redundancy check code according to the resource location group specific scrambling identifier (HARQ-RNTI),
  • HARQ-RNTI resource location group specific scrambling identifier
  • the information for identifying the downlink control information is used to feed back information about a corresponding HARQ-ACK to the multiple user equipments, and identify a resource location group corresponding to the downlink control information.
  • the present invention is not limited thereto.
  • the present invention can also be applied to the case of more pieces of DCI (for example, 4 DCIs).
  • the CRCs in the 4 DCIs can be scrambled with four different HARQ-RNTIs to distinguish the four PRB groups.
  • implicit mapping is performed based on the enhanced control channel element ECCE index allocated by the base station to the user equipment for uplink shared channel transmission.
  • a resource location for uplink data transmission allocated by the base station to the user equipment is used to establish a hidden between the user equipment and one or more information bits in the DCI.
  • an enhanced control channel unit ECCE for uplink shared channel transmission allocated by the base station to the user equipment may also be used for each user equipment.
  • An index has an implicit mapping relationship between the user equipment and the one or more information bits in the downlink control information.
  • FIG. 7 shows a schematic diagram of a DCI format in accordance with a second embodiment of the present invention.
  • a DCI comprising 24 information bits is shown.
  • the present invention is not limited thereto. Since the ECCE index is 24, the DCI including 24 information bits is merely an example, and the present invention is not limited thereto.
  • the data information of the DCI for HARQ-ACK may also be other bits less than 24 or greater than 24.
  • the first bit corresponds to ECCE 0
  • the second bit corresponds to ECCE1
  • the 24th bit corresponds to ECCE 23.
  • a case where each of 24 bits corresponds to one ECCE index is shown in FIG.
  • the present invention is not limited thereto.
  • the above enumerates the establishment of an implicit mapping relationship between the user equipment and one or more information bits in the DCI based on the PRB index and the ECCE index.
  • the present invention is not limited thereto. Any other information that uniquely corresponds to the user equipment can be similarly applied to the present invention and should be included in the scope of the present invention.
  • the hybrid automatic repeat request acknowledgment HARQ-ACK extraction method performed by the user equipment will be described with reference to FIG. As shown in Figure 8, the method includes the following steps.
  • step S801 the at least one downlink control information that is sent by the base station to feed back a corresponding HARQ-ACK to the multiple user equipments is received, where the multiple user equipments include the user equipment and other user equipments.
  • a HARQ-ACK corresponding to the user equipment is determined based on an implicit mapping relationship between the user equipment and one or more information bits of the downlink control information.
  • implicit mapping is performed based on resource locations allocated by the base station to the user equipment for uplink data transmission.
  • the implicit relationship is based on a resource location allocated by the base station to the user equipment for uplink data transmission, and in the user equipment and the downlink control information.
  • the determining of the HARQ-ACK corresponding to the user equipment comprises: determining the downlink control information based on a resource location allocated by the base station to the user equipment for uplink data transmission. And the one or more information bits corresponding to the user equipment, thereby extracting a HARQ-ACK corresponding to the user equipment.
  • Option 1 HARQ-ACK feedback with one DCI
  • the at least one downlink control information is one downlink control information.
  • HARQ-ACK feedback is performed on the plurality of user equipments in one DCI.
  • the resource location allocated by the base station to the user equipment for uplink data transmission may be a single PRB, multiple PRBs, or a group of PRBs or groups of PRBs.
  • the set of PRBs may be one Narrow Band (NB), that is, six PRBs, or may be three predefined PRBs.
  • NB Narrow Band
  • the base station allocates a single PRB to the user equipment, there is an implicit mapping relationship between the user equipment and one information bit in the DCI.
  • an implicit mapping relationship may exist between the user equipment and multiple information bits in the DCI; or, the base station allocates multiple PRBs to the user equipment.
  • a group of PRBs or groups of PRBs there may also be an implicit mapping relationship between the user equipment and an information bit in the DCI.
  • the step of determining the HARQ-ACK corresponding to the user equipment may include determining the uplink control information based on a resource location of the user equipment allocated by the base station for uplink data transmission. One of the corresponding information bits, and extracts the value of the information bit as HARQ-ACK. For example, if the PRB index of the user equipment is 50, the user equipment will read the 51st bit in the DCI. If the value in the 51st bit of the DCI is 1, it means ACK, that is, it is no longer necessary to continue to transmit uplink data. On the other hand, if the value in the 51st bit of the DCI is 0, it means NACK, that is, it is still necessary to continue to transmit the uplink data.
  • the step of determining the HARQ-ACK corresponding to the user equipment may include determining the uplink control information based on a resource location of the user equipment allocated by the base station for uplink data transmission.
  • a plurality of corresponding information bits in the medium as long as the value of one of the plurality of information bits has a value of 1, means ACK, that is, it is no longer necessary to continue to send the uplink data. If the value of all the bits in the multiple information bits is 0, it means NACK, that is, it still needs to continue to send the uplink data.
  • an implicit mapping relationship may exist between the user equipment and one information bit in the DCI, that is, based on the initial PRB index of the allocated PRB.
  • the step of determining the HARQ-ACK corresponding to the user equipment may include determining a corresponding information bit in the uplink control information based on the initial PRB index allocated by the base station of the user equipment. If the value of the information bit is 1, it means ACK, that is, it is no longer necessary to continue to send uplink data. If the value in the information bit is 0, it means NACK, that is, it still needs to continue to send uplink data.
  • the step of determining the HARQ-ACK corresponding to the user equipment may include: determining a corresponding information bit in the uplink control information based on the base station-assigned PRB group index of the user equipment, If the value in the information bit is 1, it means ACK, that is, it is no longer necessary to continue to send uplink data. If the value in the information bit is 0, it means NACK, that is, it still needs to continue to send uplink data.
  • one information bit in the DCI corresponds to one PRB (ie, a single resource location).
  • HARQ-ACK feedback is performed on the plurality of user equipments in one DCI.
  • one information bit of the DCI corresponds to a group of PRBs (ie, one resource location group).
  • a group of PRBs for example, NB0
  • NB0 a group of PRBs corresponding to one information bit in the DCI may be used by only one user or multiple users.
  • the information bit When a group of PRBs corresponding to one information bit in the DCI is allocated to only one user, the information bit carries a value indicating the HARQ-ACK for the user equipment.
  • the step of determining the HARQ-ACK corresponding to the user equipment may include: determining, according to the resource location of the user equipment allocated by the base station for uplink data transmission, a resource location corresponding to the user equipment And determining a corresponding information bit in the uplink control information based on the resource location group, and extracting a value of the information bit as a HARQ-ACK.
  • the pre-divided PRB group can be mapped to one information bit in the DCI regardless of the plurality of PRBs in the PRB group.
  • the HARQ-ACK value of the user equipment is the same.
  • the description includes three user equipments in the PRB group as an example. If the value of the HARQ-ACK corresponding to the three user equipments is 1, the value of the one information bit in the DCI is set to 1.
  • the one information in the DCI is The value of the bit is set to 0. That is to say, in this case, as long as the user equipment with the value of HARQ-ACK in the plurality of different user equipments exists, the information bits in the DCI corresponding to the multiple different user equipments are taken. The value of 0.
  • the step of determining the HARQ-ACK corresponding to the user equipment may include: determining, according to the resource location of the user equipment allocated by the base station for uplink data transmission, a resource location corresponding to the user equipment And determining a corresponding information bit in the uplink control information based on the resource location group, and extracting a value of the information bit as a HARQ-ACK.
  • Each of the downlink control information includes a cyclic redundancy check code that is scrambled according to a fixed scrambling identifier (HARQ-RNTI), and is used to identify that the downlink control information is used to feed back a corresponding response to the user equipment.
  • HARQ-RNTI a fixed scrambling identifier
  • the user equipment first determines downlink control information scrambled by the HARQ-RNTI, and then extracts a specific information bit value as a HARQ-ACK.
  • the at least one downlink control information is a plurality of downlink control information, and the multiple downlink control information respectively correspond to different resource location groups.
  • each of the downlink control information includes a cyclic redundancy check code that is scrambled according to a fixed scrambling identifier (HARQ-RNTI), and is used to identify that the downlink control information is used for the user equipment.
  • HARQ-RNTI fixed scrambling identifier
  • the corresponding HARQ-ACK information is fed back, and the different resource location groups are identified by the resource location group identifier in the downlink control information.
  • determining the HARQ-ACK corresponding to the user equipment includes determining a resource location group identifier corresponding to the resource location of the user equipment, and determining, according to the resource location group identifier, the user equipment corresponding to the user equipment Downlink control information and determining corresponding information bits in the corresponding downlink control information.
  • each of the downlink control information includes a cyclic redundancy check code scrambled according to the resource location group specific scrambling identifier (HARQ-RNTI), and is used to identify the downlink.
  • the path control information is information for feeding back a corresponding HARQ-ACK to the user equipment, and the different resource location group is identified by the resource location group specific scrambling identifier.
  • determining the HARQ-ACK corresponding to the user equipment includes: determining, according to the resource location of the user equipment, a scrambling identifier specific to the resource location group to which the user equipment belongs; for each downlink control information, Performing verification by using the determined scrambling identifier and the scrambled cyclic redundancy check code; if the check passes, determining that the downlink control information corresponds to a resource location group to which the user equipment belongs, and further based on The resource location of the user equipment determines a corresponding information bit in the corresponding downlink control information.
  • implicit mapping is performed based on the enhanced control channel element ECCE index allocated by the base station to the user equipment for uplink shared channel transmission.
  • a resource location for uplink data transmission allocated by the base station to the user equipment is used to establish a hidden between the user equipment and one or more information bits in the DCI.
  • the implicit relationship is based on uplink sharing allocated to the user equipment by the base station. An index of an enhanced control channel element ECCE for channel transmission, an implicit mapping relationship established between the user equipment and the one or more information bits in the downlink control information.
  • the CRC is scrambled by C-RNTI.
  • the user equipment may determine that the DCI is a DCI for resource allocation by descrambling the CRC scrambled by the C-RNTI. Thereafter, the user equipment can determine the ECCE index corresponding to the user equipment by reading the data information of the DCI for resource allocation.
  • the ECCE index is used to establish an implicit mapping relationship between the user equipment and the one or more information bits in the downlink control information.
  • determining the HARQ-ACK corresponding to the user equipment comprises: determining the downlink based on an index of an enhanced control channel unit ECCE allocated by the base station to the user equipment for uplink shared channel transmission The one or more information bits corresponding to the user equipment in the link control information, thereby extracting a HARQ-ACK corresponding to the user equipment.
  • the above enumerates the establishment of an implicit mapping relationship between the user equipment and one or more information bits in the DCI based on the PRB index and the ECCE index.
  • the present invention is not limited thereto. Any other information that uniquely corresponds to the user equipment can be similarly applied to the present invention and should be included in the scope of the present invention.
  • the base station according to the present invention is configured to perform feedback of a hybrid automatic repeat request acknowledgement HARQ-ACK to a plurality of user equipments.
  • the base station 10 includes a generating unit 101 and a transmitting unit 102.
  • the generating unit 101 generates at least one downlink control information by using a plurality of HARQ-ACKs corresponding to the plurality of user equipments, where for each user equipment, one of the user equipment and the downlink control information or There is an implicit mapping between multiple information bits.
  • the transmitting unit 102 transmits the downlink control information to the plurality of user equipments.
  • each user equipment can autonomously determine a corresponding one of the downlink control information.
  • the HARQ-ACK does not require DL signaling to inform the user equipment of the information bits of the downlink control information corresponding to the HARQ-ACK of each user equipment, and thus the DL signaling overhead is significantly reduced compared with the prior art.
  • implicit mapping is performed based on resource locations allocated by the base station to the user equipment for uplink data transmission.
  • the base station may further include: an allocating unit (not shown) for allocating resource locations for uplink data transmission to each of the plurality of devices.
  • the generating unit 101 is further configured to: for each user equipment, based on a resource location allocated by the allocation unit to the user equipment for uplink data transmission, at the user equipment and An implicit mapping relationship is established between the one or more information bits in the downlink control information.
  • Option 1 HARQ-ACK feedback with one DCI
  • the at least one downlink control information is one downlink control information.
  • HARQ-ACK feedback is performed on the plurality of user equipments with one DCI.
  • the data information of the DCI of the HARQ-ACK may include 100 information bits, but may also include less than 100, or more than 100 information bits.
  • Each information bit in the DCI may correspond to one PRB index, respectively. Of course, only a part of the information bits may correspond to the corresponding PRB index.
  • the resource location allocated by the base station to the user equipment for uplink data transmission may be a single PRB, multiple PRBs, or a group of PRBs or groups of PRBs.
  • the set of PRBs may be one Narrow Band (NB), that is, six PRBs, or may be three predefined PRBs.
  • NB Narrow Band
  • the base station allocates a single PRB to the user equipment, there is an implicit mapping relationship between the user equipment and one information bit in the DCI.
  • the base station allocates multiple PRBs or groups to the user equipment, there is an implicit mapping relationship between the user equipment and multiple information bits in the DCI.
  • an implicit mapping relationship may exist between the user equipment and one information bit in the DCI, that is, based on the allocated information.
  • the initial PRB index or the PRB group index or the initial PRB group index of the group PRB has an implicit mapping relationship between the user equipment and one information bit in the DCI.
  • FIG. 3 shows the case where one information bit in the DCI corresponds to one PRB (ie, a single resource location).
  • the invention is not limited to this.
  • one information bit in the DCI corresponds to a set of PRBs (ie, one resource location group).
  • a group of PRBs (for example, NB0) corresponding to one information bit in the DCI may be a PRB allocated by the base station to the same user equipment, or may be a PRB allocated by the base station to multiple different user equipments.
  • the information bit carries a value indicating the HARQ-ACK for the user equipment.
  • the base station-assigned PRBs of the plurality of user equipments of the same HARQ-ACK value may be corresponding to the DCI.
  • the pre-divided PRB group may also be corresponding to one of the DCIs.
  • Information bits, regardless of whether the HARQ-ACK values of multiple user equipments corresponding to each PRB in the PRB group are the same. In this case, as long as there is a user equipment in which the HARQ-ACK is a NACK among the plurality of different user equipments, the information bits in the DCI corresponding to the plurality of different user equipments take a value of 0.
  • the generating unit 101 further includes: a scrambling unit (not shown) for scrambling the cyclic redundancy check code according to a fixed scrambling identifier (HARQ-RNTI) for identifying the downlink
  • HARQ-RNTI a fixed scrambling identifier
  • the path control information is information for feeding back the corresponding HARQ-ACK to the plurality of user equipments.
  • the user equipment first determines downlink control information scrambled by the HARQ-RNTI, and then extracts a specific information bit value as a HARQ-ACK.
  • DCI Downlink Control Channel
  • DCI for resource allocation Downlink Control Channel
  • DCI for HARQ-ACK feedback Downlink Control Channel
  • the fixed scrambling identifier may be a conventionally defined value or a newly defined value as long as the value is fixed.
  • the at least one downlink control information is a plurality of downlink control information, and the multiple downlink control information respectively correspond to different resource location groups.
  • PRB0 to PRB49 are divided into PRB group 0
  • PRB50 to PRB99 are divided into PRB group 1.
  • the resource location group identifier corresponding to the PRB group 0 is 1
  • the resource location group identifier corresponding to the PRB group 1 is 0.
  • the generating unit 101 further includes: a scrambling unit (not shown) for adding a cyclic redundancy check code according to a fixed scrambling identifier (HARQ-RNTI). And the information that is used to identify the downlink control information is used to feed back the corresponding HARQ-ACK to the multiple user equipments; and the resource location group identifier setting unit (not shown) is used in the The resource location group identifier is set in the downlink control information, and is used to identify a resource location group corresponding to the downlink control information.
  • HARQ-RNTI a fixed scrambling identifier
  • the generating unit 101 further includes: a scrambling unit (not shown) for performing cyclic redundancy according to the resource location group specific scrambling identifier (HARQ-RNTI)
  • HARQ-RNTI resource location group specific scrambling identifier
  • a resource location for uplink data transmission allocated by the base station to the user equipment is used to establish a hidden between the user equipment and one or more information bits in the DCI.
  • an enhanced control channel unit ECCE for uplink shared channel transmission allocated by the base station to the user equipment may also be used for each user equipment.
  • An index has an implicit mapping relationship between the user equipment and the one or more information bits in the downlink control information.
  • the DCI may include 24 information bits.
  • the invention is not limited to this.
  • the DCI can also include other numbers of information bits.
  • the base station 10 may further include: an allocating unit (not shown) for allocating an enhanced control channel unit ECCE index for uplink shared channel transmission to each of the plurality of devices .
  • an allocating unit (not shown) for allocating an enhanced control channel unit ECCE index for uplink shared channel transmission to each of the plurality of devices .
  • the generating unit 101 is further configured to, for each user equipment, an enhanced control channel element ECCE index for uplink shared channel transmission allocated to the user equipment by the allocating unit, An implicit mapping relationship is established between the user equipment and the one or more information bits in the downlink control information.
  • the above enumerates the establishment of an implicit mapping relationship between the user equipment and one or more information bits in the DCI based on the PRB index and the ECCE index.
  • the present invention is not limited thereto. Any other information that uniquely corresponds to the user equipment can be similarly applied to the present invention and should be included in the scope of the present invention.
  • the user equipment according to the present invention is configured to perform hybrid automatic retransmission request confirmation from the base station to extract HARQ-ACK.
  • the user equipment 20 includes a receiving unit 201 and a determining unit 202.
  • the receiving unit 201 receives at least one downlink control information that is sent by the base station to feed back a corresponding HARQ-ACK to multiple user equipments, where the multiple user equipments include the user equipment and other user equipments.
  • the determining unit 202 determines an HARQ-ACK corresponding to the user equipment based on an implicit mapping relationship between the user equipment and one or more information bits of the downlink control information.
  • the implicit mapping relationship is based on a resource location allocated by the base station to the user equipment for uplink data transmission, where the user equipment and the downlink control information are used.
  • An implicit mapping relationship established between the one or more information bits in the medium.
  • the determining unit 202 is further configured to: determine, in the downlink control information, the user in the downlink control information based on a resource location allocated by the base station to the user equipment for uplink data transmission. The one or more information bits corresponding to the device, thereby extracting a HARQ-ACK corresponding to the user equipment.
  • Option 1 HARQ-ACK feedback with one DCI
  • the at least one downlink control information is one downlink control information.
  • HARQ-ACK feedback is performed on the plurality of user equipments in one DCI.
  • the resource location allocated by the base station to the user equipment for uplink data transmission may be a single PRB, multiple PRBs, or a group of PRBs or groups of PRBs.
  • the set of PRBs may be one Narrow Band (NB), that is, six PRBs, or may be three predefined PRBs.
  • NB Narrow Band
  • the determining unit 202 may be configured to: determine a corresponding information bit in the uplink control information based on a resource location allocated by the base station for uplink data transmission of the user equipment. And extract the value of this information bit as HARQ-ACK. For example, if the PRB index of the user equipment is 50, the user equipment will read the 51st bit in the DCI. If the value in the 51st bit of the DCI is 1, it means ACK, that is, it is no longer necessary to continue to transmit uplink data. On the other hand, if the value in the 51st bit of the DCI is 0, it means NACK, that is, it is still necessary to continue to transmit the uplink data.
  • the determining unit 202 may be configured to determine a plurality of corresponding information in the uplink control information based on a resource location of the user equipment allocated by the base station for uplink data transmission. Bit, as long as the value of one of the multiple information bits is 1, it means ACK, that is, it is no longer necessary to continue to send uplink data. If the value of all the bits in the multiple information bits is 0, it means NACK, that is, it is still necessary to continue to send the uplink data.
  • an implicit mapping relationship may exist between the user equipment and one information bit in the DCI, that is, based on the initial PRB index of the allocated PRB.
  • the determining unit 202 may be configured to: determine a corresponding information bit in the uplink control information based on a base station allocated initial PRB index of the user equipment, if the information bit A value of 1, it means ACK, that is, no longer need to continue to send uplink data. If the value of the information bit is 0, it means NACK, that is, it still needs to continue to send the uplink data.
  • the base station allocates a set of PRBs to the user equipment
  • there may also be an implicit mapping relationship between the user equipment and an information bit in the DCI that is, based on the assigned PRB group index of the group of PRBs
  • the determining unit 202 may be configured to: determine a corresponding information bit in the uplink control information based on a base station allocated initial PRB index of the user equipment, if the information bit A value of 1, it means ACK, that is, no longer need to continue to send uplink data. If the value of the information bit is 0, it means NACK, that is, it still needs to continue to send uplink data.
  • one information bit in the DCI corresponds to one PRB (ie, a single resource location).
  • HARQ-ACK feedback is performed on the plurality of user equipments in one DCI.
  • one information bit of the DCI corresponds to a group of PRBs (ie, one resource location group).
  • a group of PRBs (for example, NB0) corresponding to one information bit in the DCI may be a PRB allocated by the base station to the same user equipment, or may be a PRB allocated by the base station to multiple different user equipments.
  • the information bit carries a value indicating the HARQ-ACK for the user equipment.
  • the determining unit 202 may be configured to: determine, according to the resource location for the uplink data transmission allocated by the base station of the user equipment, a resource location group corresponding to the user equipment, based on the resource location. The group determines a corresponding information bit in the uplink control information, and extracts the value of the information bit as a HARQ-ACK.
  • the base station-assigned PRBs of the plurality of user equipments of the same HARQ-ACK value may be corresponding to the DCI.
  • the determining unit 202 may be configured to: determine, according to the resource location for the uplink data transmission allocated by the base station of the user equipment, a resource location group corresponding to the user equipment, based on the resource location. The group determines a corresponding information bit in the uplink control information, and extracts the value of the information bit as a HARQ-ACK.
  • the pre-divided PRB group may also be corresponding to one of the DCIs.
  • Information bits regardless of whether the HARQ-ACK values of multiple user equipments corresponding to each PRB in the PRB group are the same. In this case, as long as the user equipment with the HARQ-ACK being NACK is present in the multiple different user equipments, the information bits in the DCI corresponding to the multiple different user equipments take a value of 0.
  • the determining unit 202 may be configured to: determine, according to the resource location for the uplink data transmission allocated by the base station of the user equipment, a resource location group corresponding to the user equipment, based on the resource location.
  • the group determines a corresponding information bit in the uplink control information, and extracts the value of the information bit as a HARQ-ACK.
  • Each of the downlink control information includes a cyclic redundancy check code that is scrambled according to a fixed scrambling identifier (HARQ-RNTI), and is used to identify that the downlink control information is used to feed back a corresponding response to the user equipment.
  • HARQ-RNTI a fixed scrambling identifier
  • the user equipment first determines downlink control information scrambled by the HARQ-RNTI, and then extracts a specific information bit value as a HARQ-ACK.
  • the at least one downlink control information is a plurality of downlink control information, and the multiple downlink control information respectively correspond to different resource location groups.
  • each of the downlink control information includes a cyclic redundancy check code that is scrambled according to a fixed scrambling identifier (HARQ-RNTI), and is used to identify that the downlink control information is used for the user equipment.
  • HARQ-RNTI fixed scrambling identifier
  • the corresponding HARQ-ACK information is fed back, and the different resource location groups are identified by the resource location group identifier in the downlink control information.
  • the determining unit 202 is further configured to: determine a resource location group identifier corresponding to the resource location of the user equipment; and determine, according to the resource location group identifier, a downlink corresponding to the user equipment Link control information and determine corresponding information bits in the corresponding downlink control information.
  • each of the downlink control information includes a cyclic redundancy check code scrambled according to the resource location group specific scrambling identifier (HARQ-RNTI), and is used to identify the downlink.
  • the path control information is information for feeding back a corresponding HARQ-ACK to the user equipment, and the different resource location group is identified by the resource location group specific scrambling identifier.
  • the determining unit 202 is further configured to: determine, according to a resource location of the user equipment, a resource location group specific scrambling identifier to which the user equipment belongs; for each downlink control information, use the Determining the scrambling identifier and the scrambled cyclic redundancy check code to perform verification; if the check passes, determining that the downlink control information corresponds to a resource location group to which the user equipment belongs, and further based on the The resource location of the user equipment determines a corresponding information bit in the corresponding downlink control information.
  • a resource location for uplink data transmission allocated by the base station to the user equipment is used to establish a hidden between the user equipment and one or more information bits in the DCI.
  • the implicit relationship is based on uplink sharing allocated to the user equipment by the base station. An index of an enhanced control channel element ECCE for channel transmission, an implicit mapping relationship established between the user equipment and the one or more information bits in the downlink control information.
  • the CRC is scrambled by C-RNTI.
  • the user equipment may determine that the DCI is a DCI for resource allocation by descrambling the CRC scrambled by the C-RNTI. Thereafter, the user equipment can determine the ECCE index corresponding to the user equipment by reading the data information of the DCI for resource allocation.
  • the ECCE index is used to establish an implicit mapping relationship between the user equipment and the one or more information bits in the downlink control information.
  • the determining unit is further configured to: determine the downlink control based on an index of an enhanced control channel element ECCE allocated by the base station to the user equipment for uplink shared channel transmission The one or more information bits corresponding to the user equipment in the information, thereby extracting a HARQ-ACK corresponding to the user equipment.
  • the above enumerates the establishment of an implicit mapping relationship between the user equipment and one or more information bits in the DCI based on the PRB index and the ECCE index.
  • the present invention is not limited thereto. Any other information that uniquely corresponds to the user equipment can be similarly applied to the present invention and should be included in the scope of the present invention.
  • each functional block may be implemented by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated, directly and/or indirectly (eg, This is achieved by a plurality of devices as described above by a wired and/or wireless connection.
  • a base station, a user equipment, and the like in an embodiment of the present invention can function as a computer that performs processing of the wireless communication method of the present invention.
  • FIG. 11 is a diagram showing an example of a hardware configuration of a base station and a user equipment according to an embodiment of the present invention.
  • the base station 10 and the user equipment 20 described above may be configured as a computer device that physically includes the processor 1001, the memory 1002, the memory 1003, the communication device 1004, the input device 1005, the output device 1006, the bus 1007, and the like.
  • the hardware structure of the base station 10 and the user equipment 20 may include one or more of the devices shown in the figures, or may not include some of the devices.
  • the processor 1001 only illustrates one, but may be multiple processors.
  • the processing may be performed by one processor, or may be performed by one or more processors simultaneously, sequentially, or by other methods.
  • the processor 1001 can be installed by more than one chip.
  • Each function in the base station 10 and the user equipment 20 is realized, for example, by reading a predetermined software (program) into hardware such as the processor 1001 and the memory 1002, thereby causing the processor 1001 to perform an operation, and the communication device 1004 The communication performed is controlled, and the reading and/or writing of data in the memory 1002 and the memory 1003 is controlled.
  • a predetermined software program
  • the communication device 1004 The communication performed is controlled, and the reading and/or writing of data in the memory 1002 and the memory 1003 is controlled.
  • the processor 1001 causes the operating system to operate to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described generating unit 101, determining unit 202, and the like can be implemented by the processor 1001.
  • the processor 1001 reads out programs (program codes), software modules, data, and the like from the memory 1003 and/or the communication device 1004 to the memory 1002, and executes various processes in accordance therewith.
  • programs program codes
  • the program a program for causing a computer to execute at least a part of the operations described in the above embodiments can be employed.
  • the control unit 401 of the user device 20 can be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and can be similarly implemented for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and may be, for example, a read only memory (ROM), an EEPROM (Erasable Programmable ROM), an electrically programmable read only memory (EEPROM), or an electrically programmable read only memory (EEPROM). At least one of a random access memory (RAM) and other suitable storage medium is used.
  • the memory 1002 may also be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store an executable program (program code), a software module, and the like for implementing the wireless communication method according to the embodiment of the present invention.
  • the memory 1003 is a computer readable recording medium, and may be, for example, a flexible disk, a soft (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.). Digital Versatile Disc, Blu-ray (registered trademark) disc, removable disk, hard drive, smart card, flash device (eg card, stick, key driver), magnetic stripe, database At least one of a server, a server, and other suitable storage medium.
  • the memory 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission and reception device) for performing communication between computers through a wired and/or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like, for example.
  • the communication device 1004 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to implement, for example, Frequency Division Duplex (FDD) and/or Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-described transmitting unit 102, receiving unit 201, and the like can be implemented by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs an output to the outside.
  • the input device 1005 and the output device 1006 may also be an integrated structure (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected via a bus 1007 for communicating information.
  • the bus 1007 may be composed of a single bus or a different bus between devices.
  • the base station 10 and the user equipment 20 may include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD, Programmable Logic Device), Hardware such as Field Programmable Gate Array (FPGA) can realize some or all of each functional block by this hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • the processor 1001 can be installed by at least one of these hardwares.
  • the channel and/or symbol can also be a signal (signaling).
  • the signal can also be a message.
  • the reference signal may also be simply referred to as an RS (Reference Signal), and may also be referred to as a pilot (Pilot), a pilot signal, or the like according to applicable standards.
  • a component carrier may also be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may also be referred to as a subframe.
  • a subframe may be composed of one or more time slots in the time domain.
  • the subframe may be a fixed length of time (eg, 1 ms) that is independent of the numerology.
  • the time slot may have one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM), Single Carrier Frequency Division Multiple Access (SC-FDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA) Symbols, etc.).
  • the time slot can also be a time unit based on parameter configuration.
  • the time slot may also include a plurality of minislots. Each minislot may be composed of one or more symbols in the time domain.
  • a minislot can also be referred to as a subslot.
  • Radio frames, subframes, time slots, mini-slots, and symbols all represent time units when signals are transmitted. Radio frames, subframes, time slots, mini-slots, and symbols can also use other names that correspond to each other.
  • one subframe may be referred to as a Transmission Time Interval (TTI), and a plurality of consecutive subframes may also be referred to as a TTI.
  • TTI Transmission Time Interval
  • One slot or one minislot may also be referred to as a TTI. That is to say, the subframe and/or the TTI may be a subframe (1 ms) in the existing LTE, or may be a period shorter than 1 ms (for example, 1 to 13 symbols), or may be a period longer than 1 ms.
  • a unit indicating a TTI may also be referred to as a slot, a minislot, or the like instead of a subframe.
  • TTI refers to, for example, a minimum time unit scheduled in wireless communication.
  • the base station performs scheduling for all user equipments to allocate radio resources (bandwidth, transmission power, etc. usable in each user equipment) in units of TTIs.
  • radio resources bandwidth, transmission power, etc. usable in each user equipment
  • the definition of TTI is not limited to this.
  • the TTI may be a channel-coded data packet (transport block), a code block, and/or a codeword transmission time unit, or may be a processing unit such as scheduling, link adaptation, or the like.
  • the time interval e.g., the number of symbols
  • actually mapped to the transport block, code block, and/or codeword may also be shorter than the TTI.
  • TTI time slot or one mini time slot
  • more than one TTI ie, more than one time slot or more than one micro time slot
  • the number of slots (the number of microslots) constituting the minimum time unit of the scheduling can be controlled.
  • a TTI having a length of 1 ms may also be referred to as a regular TTI (TTI in LTE Rel. 8-12), a standard TTI, a long TTI, a regular subframe, a standard subframe, or a long subframe.
  • TTI shorter than a conventional TTI may also be referred to as a compressed TTI, a short TTI, a partial TTI (partial or fractional TTI), a compressed subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, a regular TTI, a subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • a short TTI eg, a compressed TTI, etc.
  • TTI length of the TTI may be replaced with 1 ms.
  • a resource block is a resource allocation unit of a time domain and a frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the RB may include one or more symbols in the time domain, and may also be one slot, one minislot, one subframe, or one TTI.
  • a TTI and a subframe may each be composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB, Physical RB), a sub-carrier group (SCG), a resource element group (REG, a resource element group), a PRG pair, an RB pair, and the like. .
  • the resource block may also be composed of one or more resource elements (REs, Resource Elements).
  • REs resource elements
  • Resource Elements For example, one RE can be a subcarrier and a symbol of a radio resource area.
  • radio frames, subframes, time slots, mini-slots, symbols, and the like are merely examples.
  • the number of subframes included in the radio frame, the number of slots of each subframe or radio frame, the number of microslots included in the slot, the number of symbols and RBs included in the slot or minislot, and the number of RBs included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, and the length of the cyclic prefix (CP, Cyclic Prefix) can be variously changed.
  • the information, parameters, and the like described in the present specification may be expressed by absolute values, may be represented by relative values with predetermined values, or may be represented by other corresponding information.
  • wireless resources can be indicated by a specified index.
  • the formula or the like using these parameters may be different from those explicitly disclosed in the present specification.
  • the information, signals, and the like described in this specification can be expressed using any of a variety of different techniques.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. which may be mentioned in all of the above description, may pass voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. Combined to represent.
  • information, signals, and the like may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via a plurality of network nodes.
  • Information or signals input or output can be stored in a specific place (such as memory) or managed by a management table. Information or signals input or output may be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
  • the notification of the information is not limited to the mode/embodiment described in the specification, and may be performed by other methods.
  • the notification of the information may be through physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), and upper layer signaling (for example, radio resource control).
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Media Access Control
  • the physical layer signaling may be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may also be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • the MAC signaling can be notified, for example, by a MAC Control Unit (MAC CE).
  • MAC CE MAC Control Unit
  • the notification of the predetermined information is not limited to being explicitly performed, and may be performed implicitly (for example, by not notifying the predetermined information or by notifying the other information).
  • the determination can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (boolean value) represented by true (true) or false (false), and can also be compared by numerical values ( For example, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, should be interpreted broadly to mean commands, command sets, code, code segments, program code, programs, sub- Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, steps, functions, and the like.
  • software, commands, information, and the like may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) from a website, server, or other remote source
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • base station base station
  • base station base station
  • eNB base station
  • gNB gNodeB
  • cell a cell group
  • carrier cell group
  • component carrier component carrier
  • the terms are used interchangeably.
  • the base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can also pass through the base station subsystem (for example, a small indoor base station (RFH, remote head (RRH), Remote Radio Head))) to provide communication services.
  • the term "cell” or “sector” refers to a portion or the entirety of the coverage area of a base station and/or base station subsystem that performs communication services in the coverage.
  • the base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
  • eNB eNodeB
  • Mobile stations are also sometimes used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless Terminals, remote terminals, handsets, user agents, mobile clients, clients, or several other appropriate terms are used.
  • the base station in this specification can also be replaced with a user equipment.
  • each mode/embodiment of the present invention can also be applied to a configuration in which communication between a base station and a user equipment is replaced by communication between a plurality of user equipment (D2D).
  • D2D user equipment
  • the function of the base station 10 described above can be regarded as a function of the user equipment 20.
  • words such as "upstream” and "downstream” can also be replaced with "side”.
  • the uplink channel can also be replaced with a side channel.
  • the user equipment in this specification can also be replaced with a base station.
  • the functions of the user equipment 20 described above can be regarded as functions of the base station 10.
  • the node may be considered, for example, but not limited to, a Mobility Management Entity (MME), a Serving-Gateway (S-GW, etc.), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-B Long-Term Evolution
  • LTE-Beyond Long-Term Evolution
  • Super 3rd generation mobile communication system SUPER 3G
  • IMT-Advanced advanced international mobile communication
  • 4th generation mobile communication system (4G, 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • future radio access FAA
  • new radio access technology New-RAT, Radio Access Technology
  • NR New Radio Access Technology
  • NX new radio access
  • FX Next Generation Wireless Access
  • GSM Registered trademark
  • GSM Global System for Mobile Communications
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra Wideband
  • any reference to a unit using the names "first”, “second”, etc., as used in this specification, does not fully limit the number or order of the units. These names can be used in this specification as a convenient method of distinguishing between two or more units. Thus, reference to a first element and a second element does not mean that only two elements may be employed or that the first element must prevail in the form of the second unit.
  • determination used in the present specification sometimes includes various actions. For example, regarding “judgment (determination)", calculation, calculation, processing, deriving, investigating, looking up (eg, table, database, or other) may be performed. Search in the data structure, ascertaining, etc. are considered to be “judgment (determination)”. Further, regarding “judgment (determination)”, reception (for example, receiving information), transmission (for example, transmission of information), input (input), output (output), and access (for example) may also be performed (for example, Accessing data in memory, etc. is considered to be “judgment (determination)”.
  • judgment (determination) it is also possible to consider “resolving”, “selecting”, selecting (choosing), establishing (comparing), comparing (comparing), etc. as “judging (determining)”. That is to say, regarding "judgment (determination)", several actions can be regarded as performing "judgment (determination)".
  • connection means any direct or indirect connection or combination between two or more units, This includes the case where there is one or more intermediate units between two units that are “connected” or “coupled” to each other.
  • the combination or connection between the units may be physical, logical, or a combination of the two.
  • connection can also be replaced with "access”.
  • two units may be considered to be electrically connected by using one or more wires, cables, and/or printed, and as a non-limiting and non-exhaustive example by using a radio frequency region.
  • the electromagnetic energy of the wavelength of the region, the microwave region, and/or the light is "connected” or "bonded” to each other.

Abstract

公开了HARQ-ACK反馈方法、HARQ-ACK提取方法、基站和用户设备。由基站执行的混合自动重发请求确认HARQ-ACK反馈方法,用于向多个用户设备反馈对应的HARQ-ACK,所述方法包括:利用与所述多个用户设备对应的多个HARQ-ACK产生至少一条下行链路控制信息,其中对于每个用户设备,在该用户设备与所述下行链路控制信息中的一个或多个信息位之间存在隐式映射关系;以及将所述下行链路控制信息传送至所述多个用户设备。

Description

HARQ-ACK反馈方法、HARQ-ACK提取方法、基站和用户设备 技术领域
本发明涉及通信领域,更具体地说,涉及基站端的混合自动请求重传请求应答HARQ-ACK反馈方法、用户设备端的HARQ-ACK提取方法、基站和用户设备。
背景技术
随着移动通信产业的发展以及对于移动数据业务需求的不断增长,人们对于移动通信的速率和服务质量(Qos)的要求越来越高。当前,网络多元化、宽带化、综合化、智能化的第五代移动通信技术(5G)标准正在制定并且走向应用。在物联网应用场景中,希望实现人与物以及物与物之间的海量连接,提高网络覆盖率和资源效率并且节约用户设备的功耗。在Rel-13中提出了通过应用上行链路数据重发,以提高网络覆盖率。例如,上行链路数据重发次数集合可以定义为:{1,4,8,16,32…2048}。对于由诸如无线资源控制(RRC)指示的最大重发次数16,特定用户设备(UE)的重发次数则可以设置为{1,4,8,16}。由于上行传输的粒度差距太大,并且测量不准确,物联网应用场景中的上行链路数据应该支持基站的早期确认,即基站需要向用户发送HARQ-ACK。
当基站反馈给用户设备的HARQ-ACK为ACK时,表示基站已经正确地接收并解码用户设备发送的数据,也就是说,用户设备不再需要向基站发送该数据。
为了实现物联网应用场景中的上行链路数据接收的早期确认,已经提出了一种基于群组(Group-based)的HARQ-ACK反馈机制。具体地,基站可以在下行链路控制信息(Downlink Control Information,简称为DCI)中指示针对多个用户设备的HARQ-ACK信息。对于用于HARQ-ACK反馈的DCI,基站可以通过利用HARQ-RNTI(Radio Network Temporary Identifier,无线网络临时标识)对基于针对多个用户设备的HARQ-ACK信息计算的循环冗余校验码(CRC)进行加扰。相应地,用户设备通过根据HARQ-RNTI对所接收的DCI信息进行校验,从而识别出所接收的DCI是否是用于反馈 HARQ-ACK的DCI,并进而确定属于自己的HARQ-ACK的值。
在此情况下,在用于HARQ-ACK反馈的DCI中携带有针对每个用户设备的HARQ-ACK(图1所示)。为了能够使得每个用户设备能够识别出属于该用户设备的HARQ-ACK信息,基站通过RRC(Radio Resource Control)信令向每个用户设备通知其所对应的HARQ-ACK信息的比特位置。然而,这样的问题在于,在用户设备很多的大规模连接场景下,下行链路(DL)信令的开销巨大。
发明内容
鉴于以上情形,期望提供能够有效地减小下行链路信令开销的HARQ-ACK反馈方法、HARQ-ACK提取方法、基站和用户设备。
根据本发明的第一方面,提供了一种由基站执行的混合自动重发请求确认HARQ-ACK反馈方法,用于向多个用户设备反馈对应的HARQ-ACK,所述方法包括:利用与所述多个用户设备对应的多个HARQ-ACK产生至少一条下行链路控制信息,其中对于每个用户设备,在该用户设备与所述下行链路控制信息中的一个或多个信息位之间存在隐式映射关系;以及将所述下行链路控制信息传送至所述多个用户设备。
根据本发明的第二方面,提供了一种由用户设备执行的混合自动重发请求确认HARQ-ACK提取方法,包括:接收基站发送的用于向多个用户设备反馈对应的HARQ-ACK的至少一条下行链路控制信息,其中所述多个用户设备包括该用户设备和其他用户设备;以及基于该用户设备与所述下行链路控制信息的一个或多个信息位的隐式映射关系,确定与该用户设备对应的HARQ-ACK。
根据本发明的第三方面,提供了一种基站,用于执行向多个用户设备的混合自动重发请求确认HARQ-ACK的反馈,包括:产生单元,用于利用与所述多个用户设备对应的多个HARQ-ACK产生至少一条下行链路控制信息,其中对于每个用户设备,在该用户设备与所述下行链路控制信息中的一个或多个信息位之间存在隐式映射关系;以及发送单元,用于将所述下行链路控制信息传送至所述多个用户设备。
根据本发明的第四方面,提供了一种用户设备,用于执行来自基站的混 合自动重发请求确认HARQ-ACK的提取,包括:接收单元,用于接收所述基站发送的用于向多个用户设备反馈对应的HARQ-ACK的至少一条下行链路控制信息,其中所述多个用户设备包括该用户设备和其他用户设备;以及确定单元,用于基于该用户设备与所述下行链路控制信息的一个或多个信息位的隐式映射关系,确定与该用户设备对应的HARQ-ACK。
通过根据本发明的HARQ-ACK反馈方法、HARQ-ACK提取方法、基站和用户设备,由于在所述多个用户设备与所述下行链路控制信息中的信息位之间建立隐式映射关系,从而每一个用户设备能够自主地确定下行链路控制信息中对应的HARQ-ACK,而无需DL信令逐个用户设备地通知下行链路控制信息中对应于各用户设备的HARQ-ACK所在的信息位,因此与现有技术相比,DL信令开销显著减小。
附图说明
图1是图示现有技术中用于HARQ-ACK反馈的DCI内容的示意图;
图2是图示根据本发明的由基站执行的混合自动重发请求确认HARQ-ACK反馈方法的过程的流程图;
图3是图示根据本发明的第一实施例的方案1的DCI格式的第一示例的示意图;
图4是图示根据本发明的第一实施例的方案1的DCI格式的第二示例的示意图;
图5是图示根据本发明的第一实施例的方案2的DCI格式的第一示例的示意图;
图6是图示根据本发明的第一实施例的方案2的DCI格式的第二示例的示意图;
图7是图示根据本发明的第二实施例的DCI格式的示意图;
图8是根据本发明的由用户设备执行的混合自动重发请求确认HARQ-ACK提取方法的过程的流程图;
图9是图示根据本发明的基站的配置的功能性框图;
图10是图示根据本发明的用户设备的配置的功能性框图;以及
图11是示出本发明的一实施方式所涉及的基站和用户设备的硬件结构 的一例的图。
具体实施方式
下面将参照附图对本发明的各个优选的实施方式进行描述。提供以下参照附图的描述,以帮助对由权利要求及其等价物所限定的本发明的示例实施方式的理解。其包括帮助理解的各种具体细节,但它们只能被看作是示例性的。因此,本领域技术人员将认识到,可对这里描述的实施方式进行各种改变和修改,而不脱离本发明的范围和精神。而且,为了使说明书更加清楚简洁,将省略对本领域熟知功能和构造的详细描述。
(一)基站侧的HARQ-ACK反馈方法
首先,将参照图2描述根据本发明的由基站执行的混合自动重发请求确认HARQ-ACK反馈方法。所述HARQ-ACK反馈方法用于向多个用户设备反馈对应的HARQ-ACK。如图2所示,所述方法包括如下步骤。
首先,在步骤S201,利用与所述多个用户设备对应的多个HARQ-ACK产生至少一条下行链路控制信息(DCI),其中对于每个用户设备,在该用户设备与所述下行链路控制信息中的一个或多个信息位之间存在隐式映射关系。
其中,所述下行链路控制信息中的信息位的值可以取1或0。当值为1时,表示HARQ-ACK为ACK,即基站已经正确接收并解码数据,用户设备不再需要继续重发。当值为0时,表示基站没有收到数据或者没有解对数据。
然后,在步骤S202,将所述下行链路控制信息传送至所述多个用户设备。
在本发明中,由于在所述多个用户设备与所述下行链路控制信息中的信息位之间建立隐式映射关系,从而每一个用户设备能够自主地确定下行链路控制信息中对应的HARQ-ACK,而无需通过DL RRC信令逐个用户设备地通知用于HARQ-ACK反馈的下行链路控制信息中对应于各用户设备的HARQ-ACK所在的信息位,因此与现有技术相比,DL信令开销显著减小。
在下文中,将在基于何种数据进行隐式映射、隐式映射中DCI的信息位与资源位置的对应关系等方面给出各种具体实施方式的描述。
第一实施例
在该第一实施例中,基于基站向用户设备分配的用于上行链路数据传输的资源位置进行隐式映射。
作为一种优选的实施方式,在根据本发明的由基站执行的HARQ-ACK反馈方法中,对于每个用户设备,基于由所述基站向该用户设备分配的用于上行链路数据传输的资源位置,例如:物理资源块(Physical Resource Block,PRB)的编号或索引,在该用户设备与所述下行链路控制信息中的一个或多个信息位之间存在隐式映射关系。
(1)方案1:以一条DCI进行HARQ-ACK反馈
在方案1中,所述至少一条下行链路控制信息为一条下行链路控制信息。基站向用户设备分配的用于上行链路数据传输的资源位置可以是单个PRB、多个PRB,也可以是一组PRB或多组PRB。例如,所述一组PRB可以是1个窄带(Narrow Band,NB)即6个PRB,也可以是预先定义好的3个PRB,在基站向用户设备分配单个PRB的情况下,在该用户设备与DCI中的一个信息位之间存在隐式映射关系。而在基站向用户设备分配多个PRB或多组PRB的情况下,可以基于多个PRB索引或多组PRB组索引,在该用户设备与DCI中的多个信息位之间存在隐式映射关系;或者,在基站向用户设备分配多个PRB、一组或多组PRB的情况下,也可以基于起始PRB索引、PRB组索引或起始PRB组索引,在该用户设备与DCI中的一个信息位之间存在隐式映射关系。
图3是图示以一条DCI对所述多个用户设备进行HARQ-ACK反馈的第一示例的示意图。在图3中,示出了DCI中的一个信息位对应于一个PRB(即,单个资源位置)的情况。例如,基于所分配的PRB的起始PRB索引,在该用户设备与DCI中的一个信息位之间存在隐式映射关系,即基于所述起始PRB索引确定DCI中与该用户设备对应的信息位的位置。然而,本发明并不仅限于此。
作为示例,图3示出了用于HARQ-ACK的DCI的数据信息包括100个信息位(bit)的情况。然而,本领域的技术人员应该理解,包括100个信息位的DCI仅为示例,本发明并不仅限于此。用于HARQ-ACK的DCI的数据信息还可以是小于100、或大于100的其他位数。
如图3所示,在DCI中,第1位对应于PRB 0,第2位对应于PRB 1,……,且第99位对应于PRB 99。在图3中示出了100个位中的每一位均对应于一个PRB索引的情况。然而,本领域的技术人员应该理解,本发明并不仅限于此。例如,在用户设备较少的情况下,也可以仅采用100个位中的一部分对应于相应的PRB索引。
可替代地,图4是图示以一条DCI对所述多个用户设备进行HARQ-ACK反馈的第二示例的示意图。在图4中,示出了DCI中的一个信息位对应于一组PRB(即,一个资源位置组)的情况。
在图4所示的情况下,DCI中的一个信息位所对应的一组PRB(例如NB0),该组PRB可以分配给一个或者多个用户设备。在DCI中的一个信息位所对应的一组PRB是基站分配给同一个用户设备的情况下,在该信息位中携带指示针对该用户设备的HARQ-ACK的值。在DCI中的一个信息位所对应的一组PRB是基站分配给多个不同的用户设备的情况下,可以将预先划分好的PRB组对应至DCI中的一个信息位,而不论PRB组内的各PRB所对应的多个用户设备的HARQ-ACK值是否相同。以该PRB组内包括三个用户设备为例进行说明。如果与所述三个用户设备对应的HARQ-ACK的值均为1,则将DCI中的所述一个信息位的值设置为1。如果与所述三个用户设备对应的HARQ-ACK的值并非均为1,即与所述三个用户设备对应的HARQ-ACK的值中至少一个为0,则将DCI中的所述一个信息位的值设置为0。也就是说,在这种情况下,只要所述多个不同的用户设备中存在HARQ-ACK为NACK的用户设备,则所述多个不同的用户设备所对应的DCI中的信息位取0的值。
另外,产生至少一条下行链路控制信息的步骤进一步包括:根据固定的加扰标识(HARQ-RNTI)对循环冗余校验码(CRC)进行加扰,用于标识所述下行链路控制信息是用于向所述多个用户设备反馈对应的HARQ-ACK的信息。用户设备首先确定由所述HARQ-RNTI加扰的下行链路控制信息,进而提取具体信息位值作为HARQ-ACK。
在基站与用户设备之间的通信过程中,存在诸如用于资源分配的DCI、用于HARQ-ACK反馈的DCI等多种类型的DCI。这里,在基站端,通过以HARQ-RNTI对CRC进行加扰,可以使得在用户设备端,通过利用 HARQ-RNTI以及所接收到的CRC进行校验,能够识别出该DCI是用于HARQ-ACK反馈的DCI。其中所述固定的加扰标识可以是传统限定的值,也可以是新限定的值,只要其值固定即可。
(2)方案2:以多条DCI进行HARQ-ACK反馈
在方案2中,所述至少一条下行链路控制信息为多条下行链路控制信息,所述多条下行链路控制信息分别对应于不同的资源位置组。
图5示出了方案2的第一种实施方式,其中以两条下行链路控制信息进行HARQ-ACK的反馈。如图5所示,将PRB0~PRB49划分至PRB组0,而将PRB50~PRB99划分至PRB组1。PRB组0对应于的资源位置组标识为1,而PRB组1对应于的资源位置组标识为0;或者反之,PRB组0对应于的资源位置组标识为0,而PRB组1对应于的资源位置组标识为1。
在图5所示的情况下,产生至少一条下行链路控制信息的步骤进一步包括:根据固定的加扰标识(HARQ-RNTI)对循环冗余校验码(CRC)进行加扰,用于标识所述下行链路控制信息是用于向所述多个用户设备反馈对应的HARQ-ACK的信息;以及在每条所述下行链路控制信息中设置资源位置组标识,用于标识所述下行链路控制信息所对应的资源位置组。
另外,在图5中仅示出了两条DCI,且以一个标志位(0、1)标识两个PRB组的情况。但是,本领域的技术人员应该理解,本发明并不仅限于此。例如,本发明还可以应用于更多条DCI(例如,4条DCI)的情况。当然,相应地,在4条DCI的情况下,可以以两个标志位(00、01、10、11)来区分四个PRB组。
图6示出了方案2的第二种实施方式,其中同样以两条下行链路控制信息进行HARQ-ACK的反馈。如图6所示,将PRB0~PRB49划分至PRB组0,而将PRB50~PRB99划分至PRB组1。与图5所示的第一种实施方式不同的是,在图6中并不依靠设置专门的资源位置组标识来区分不同的资源位置组,而是以不同而非固定的加扰标识(HARQ-RNTI)(即,资源位置组特定的HARQ-RNTI)对所述两条DCI进行加扰,进而区分不同的资源位置组。
在图6所示的情况下,其中产生至少一条下行链路控制信息的步骤进一步包括:根据所述资源位置组特定的加扰标识(HARQ-RNTI)对循环冗余校验码进行加扰,用于标识所述下行链路控制信息是用于向所述多个用户设 备反馈对应的HARQ-ACK的信息,并且标识所述下行链路控制信息所对应的资源位置组。
类似地,在图6中仅示出了两条DCI的情况。但是,本领域的技术人员应该理解,本发明并不仅限于此。例如,本发明还可以应用于更多条DCI(例如,4条DCI)的情况。当然,相应地,在4条DCI的情况下,可以以四个不同的HARQ-RNTI来加扰分别加扰这4条DCI中的CRC,以区分四个PRB组。
另外,在方案1中描述了DCI中的一个信息位对应于一个PRB索引或者PRB组索引的情况。但是,本领域的技术人员可以理解,在方案2中的多条DCI中,也可以存在DCI中的一个信息位对应于PRB索引或者PRB组索引的情况。
第二实施例
在该第二实施例中,基于基站向用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE索引进行隐式映射。
除了上文中所述的第一实施例中所描述的,基于基站向用户设备分配的用于上行链路数据传输的资源位置来在用户设备与DCI中的一个或多个信息位之间建立隐式映射关系之外,可替代地,在第二实施例中,还可以对于每个用户设备,基于由所述基站向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE索引,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间存在隐式映射关系。
图7示出了根据本发明的第二实施例的DCI格式的示意图。如图7所示,示出了包括24个信息位的DCI。然而,本领域的技术人员应该理解,本发明并不仅限于此。由于ECCE索引为24个,因此包括24个信息位的DCI仅为示例,本发明并不仅限于此。在第二实施例中,用于HARQ-ACK的DCI的数据信息还可以是小于24、或大于24的其他位数。
如图7所示,在DCI中,第1位对应于ECCE 0,第2位对应于ECCE1,……,且第24位对应于ECCE 23。在图7中示出了24个位中的每一位均对应于一个ECCE索引的情况。然而,本领域的技术人员应该理解,本发明并不仅限于此。例如,在用户设备较少的情况下,也可以仅采用24个位中的一部分对应于相应的ECCE索引。
当然,以上列举了基于PRB索引和ECCE索引,在用户设备与DCI中的一个或多个信息位之间建立隐式映射关系。但是,本领域的技术人员应该理解,本发明并不仅限于此。任何其他的能够与用户设备唯一对应的信息也可以类似地应用于本发明,且应包括在本发明的范围内。
(二)用户设备侧的HARQ-ACK提取方法
接下来,与由基站执行的混合自动重发请求确认HARQ-ACK反馈方法相对地,将参照图8描述由用户设备执行的混合自动重发请求确认HARQ-ACK提取方法。如图8所示,所述方法包括如下步骤。
首先,在步骤S801,接收基站发送的用于向多个用户设备反馈对应的HARQ-ACK的至少一条下行链路控制信息,其中所述多个用户设备包括该用户设备和其他用户设备。
然后,在步骤S802,基于该用户设备与所述下行链路控制信息的一个或多个信息位的隐式映射关系,确定与该用户设备对应的HARQ-ACK。
在下文中,将在基于何种数据进行隐式映射、隐式映射中DCI的信息位与资源位置的对应关系、以及基于这样的对应关系如何执行HARQ-ACK提取等方面给出各种具体实施方式的描述。
第一实施例
在该第一实施例中,基于基站向用户设备分配的用于上行链路数据传输的资源位置进行隐式映射。
作为一种优选的实施方式,所述隐式关系为基于由所述基站向该用户设备分配的用于上行链路数据传输的资源位置,而在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立的隐式映射关系。
在这种情况下,确定与该用户设备对应的HARQ-ACK的步骤包括:基于由所述基站向该用户设备分配的用于上行链路数据传输的资源位置,确定所述下行链路控制信息中与该用户设备对应的所述一个或多个信息位,从而提取与该用户设备对应的HARQ-ACK。
(1)方案1:以一条DCI进行HARQ-ACK反馈
在方案1中,所述至少一条下行链路控制信息为一条下行链路控制信息。如上文中参照图3描述的那样,以一条DCI对所述多个用户设备进行HARQ-ACK反馈。基站向用户设备分配的用于上行链路数据传输的资源位 置可以是单个PRB、多个PRB,也可以是一组PRB或多组PRB。例如,所述一组PRB可以是1个窄带(Narrow Band,NB)即6个PRB,也可以是预先定义好的3个PRB。在基站向用户设备分配单个PRB的情况下,在该用户设备与DCI中的一个信息位之间存在隐式映射关系。而在基站向用户设备分配多个PRB或多组PRB的情况下,可以在该用户设备与DCI中的多个信息位之间存在隐式映射关系;或者,在基站向用户设备分配多个PRB、一组PRB或多组PRB的情况下,也可以在该用户设备与DCI中的一个信息位之间存在隐式映射关系。
在基站向用户设备分配单个PRB的情况下,在该用户设备与DCI中的一个信息位之间存在隐式映射关系。在这种情况下,其中确定与该用户设备对应的HARQ-ACK的步骤可以包括:基于该用户设备的经基站分配的用于上行链路数据传输的资源位置,确定所述上行链路控制信息中的一个对应信息位,并提取该信息位的值作为HARQ-ACK。例如,如果用户设备的PRB索引为50,则该用户设备将读取DCI中的第51位。如果在该DCI的第51位中的值为1,则意味着ACK,即不再需要继续发送上行数据。另一方面,如果在该DCI的第51位中的值为0,则意味着NACK,即仍需要继续发送上行数据。
而在基站向用户设备分配多个PRB的情况下,在该用户设备与DCI中的多个信息位之间存在隐式映射关系。在这种情况下,其中确定与该用户设备对应的HARQ-ACK的步骤可以包括:基于该用户设备的经基站分配的用于上行链路数据传输的资源位置,确定所述上行链路控制信息中的多个对应信息位,只要该多个信息位中有一位的值为1,就意味着ACK,即不再需要继续发送上行数据。而如果该多个信息位中所有位的值均为0,就意味着NACK,即仍需要继续发送上行数据。
或者,在基站向用户设备分配多个PRB的情况下,也可以在该用户设备与DCI中的一个信息位之间存在隐式映射关系,即基于所分配的该组PRB的起始PRB索引,在该用户设备与DCI中的一个信息位之间存在隐式映射关系。在这种情况下,其中确定与该用户设备对应的HARQ-ACK的步骤可以包括:基于该用户设备的经基站分配的起始PRB索引,确定所述上行链路控制信息中的一个对应信息位,如果该信息位的值为1,就意味着ACK, 即不再需要继续发送上行数据。而如果该信息位中的值为0,就意味着NACK,即仍需要继续发送上行数据。
在基站向用户设备分配一组PRB的情况下,在该用户设备与DCI中的一个信息位之间存在隐式映射关系。在这种情况下,其中确定与该用户设备对应的HARQ-ACK的步骤可以包括:基于该用户设备的经基站分配的PRB组索引,确定所述上行链路控制信息中的一个对应信息位,如果该信息位中的值为1,就意味着ACK,即不再需要继续发送上行数据。而如果该信息位中的值为0,就意味着NACK,即仍需要继续发送上行数据。
并且,在图3中,DCI中的一个信息位对应于一个PRB(即,单个资源位置)。
另外,如上文中参照图4描述的那样,以一条DCI对所述多个用户设备进行HARQ-ACK反馈。所不同的是,在图4中,DCI的一个信息位对应于一组PRB(即,一个资源位置组)。DCI中的一个信息位所对应的一组PRB(例如NB0)可以只被同一个用户使用,也可以被多个用户使用。
在DCI中的一个信息位所对应的一组PRB只分配给一个用户使用时,在该信息位中携带指示针对该用户设备的HARQ-ACK的值。在这种情况下,其中确定与该用户设备对应的HARQ-ACK的步骤可以包括:基于该用户设备的经基站分配的用于上行链路数据传输的资源位置,确定该用户设备对应的资源位置组,基于该资源位置组确定所述上行链路控制信息中的一个对应信息位,并提取该信息位的值作为HARQ-ACK。
在DCI中的一个信息位所对应的一组PRB分配给多个用户使用时可以将预先划分好的PRB组对应至DCI中的一个信息位,而不论PRB组内的各PRB所对应的多个用户设备的HARQ-ACK值是否相同。以该PRB组内包括三个用户设备为例进行说明。如果与所述三个用户设备对应的HARQ-ACK的值均为1,则将DCI中的所述一个信息位的值设置为1。如果与所述三个用户设备对应的HARQ-ACK的值并非均为1,即与所述三个用户设备对应的HARQ-ACK的值中至少一个为0,则将DCI中的所述一个信息位的值设置为0。也就是说,在这种情况下,只要所述多个不同的用户设备中存在HARQ-ACK的值为0的用户设备,则所述多个不同的用户设备所对应的DCI中的信息位取0的值。在这种情况下,其中确定与该用户设备对 应的HARQ-ACK的步骤可以包括:基于该用户设备的经基站分配的用于上行链路数据传输的资源位置,确定该用户设备对应的资源位置组,基于该资源位置组确定所述上行链路控制信息中的一个对应信息位,并提取该信息位的值作为HARQ-ACK。
每条所述下行链路控制信息包括根据固定的加扰标识(HARQ-RNTI)加扰后的循环冗余校验码,用于标识所述下行链路控制信息是用于向用户设备反馈对应的HARQ-ACK的信息。用户设备首先确定由所述HARQ-RNTI加扰的下行链路控制信息,进而提取具体信息位值作为HARQ-ACK。
(2)方案2:以多条DCI进行HARQ-ACK反馈
在方案2中,所述至少一条下行链路控制信息为多条下行链路控制信息,所述多条下行链路控制信息分别对应于不同的资源位置组。
如上文中参照图5所描述的那样,在第一种实施方式中,以两条下行链路控制信息进行HARQ-ACK的反馈。其中,每条所述下行链路控制信息包括根据固定的加扰标识(HARQ-RNTI)加扰后的循环冗余校验码,用于标识所述下行链路控制信息是用于向用户设备反馈对应的HARQ-ACK的信息,并且所述不同的资源位置组通过所述下行链路控制信息中的资源位置组标识来标识。
在这种情况下,确定与该用户设备对应的HARQ-ACK包括:基于该用户设备的资源位置,确定其所对应的资源位置组标识;基于所述资源位置组标识,确定该用户设备对应的下行链路控制信息,并确定对应的下行链路控制信息中对应的信息位。
另外,如上文中参照图6所描述的那样,在第二种实施方式中,以两条下行链路控制信息进行HARQ-ACK的反馈。与第一种实施方式不同的是,在图6中并不依靠设置专门的资源位置组标识来区分不同的资源位置组,而是以不同而非固定的加扰标识(HARQ-RNTI)(即,资源位置组特定的HARQ-RNTI)对所述两条DCI进行加扰,进而区分不同的资源位置组。在这种情况下,每条所述下行链路控制信息包括根据所述资源位置组特定的加扰标识(HARQ-RNTI)加扰后的循环冗余校验码,用于标识所述下行链路控制信息是用于向用户设备反馈对应的HARQ-ACK的信息,并且所述不同的资源位置组通过所述资源位置组特定的加扰标识来标识。
在这种情况下,确定与该用户设备对应的HARQ-ACK包括:基于该用户设备的资源位置,确定该用户设备所属的资源位置组特定的加扰标识;对于每条下行链路控制信息,利用所确定的加扰标识以及经加扰的循环冗余校验码进行校验;如果校验通过,则确定所述下行链路控制信息对应于该用户设备所属的资源位置组,并进一步基于该用户设备的所述资源位置确定对应的下行链路控制信息中对应的信息位。
另外,在方案1中描述了DCI中的一个信息位对应于PRB索引或者PRB组索引的情况。但是,本领域的技术人员可以理解,在方案2中的多条DCI中,也可以存在DCI中的一个信息位对应于PRB索引或者PRB组索引的情况。
第二实施例
在该第二实施例中,基于基站向用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE索引进行隐式映射。
除了上文中所述的第一实施例中所描述的,基于基站向用户设备分配的用于上行链路数据传输的资源位置来在用户设备与DCI中的一个或多个信息位之间建立隐式映射关系之外,可替代地,如上文中参照图7所描述的那样,在第二实施例中,所述隐式关系为基于由所述基站向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE的索引,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立的隐式映射关系。
例如,在基站向用户设备发送的用于资源分配的DCI中,通过以C-RNTI加扰CRC。用户设备通过解扰经C-RNTI加扰的CRC可以确定该DCI是用于资源分配的DCI。此后,用户设备通过读取该用于资源分配的DCI的数据信息,可以确定与该用户设备对应的ECCE索引。在第二实施例中,采用该ECCE索引,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立的隐式映射关系。
在这种情况下,确定与该用户设备对应的HARQ-ACK包括:基于由所述基站向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE的索引,确定所述下行链路控制信息中与该用户设备对应的所述一个或多个信息位,从而提取与该用户设备对应的HARQ-ACK。
当然,以上列举了基于PRB索引和ECCE索引,在用户设备与DCI中的一个或多个信息位之间建立隐式映射关系。但是,本领域的技术人员应该理解,本发明并不仅限于此。任何其他的能够与用户设备唯一对应的信息也可以类似地应用于本发明,且应包括在本发明的范围内。
(三)基站
在下文中,将参照图9描述与上文中第(一)部分中描述的根据本发明的由基站执行的混合自动重发请求确认HARQ-ACK反馈方法对应的基站的具体配置。根据本发明的基站用于执行向多个用户设备的混合自动重发请求确认HARQ-ACK的反馈。
如图9所示,基站10包括:产生单元101和发送单元102。
产生单元101利用与所述多个用户设备对应的多个HARQ-ACK产生至少一条下行链路控制信息,其中对于每个用户设备,在该用户设备与所述下行链路控制信息中的一个或多个信息位之间存在隐式映射关系。
发送单元102将所述下行链路控制信息传送至所述多个用户设备。
在本发明中,由于在所述多个用户设备与所述下行链路控制信息中的信息位之间建立隐式映射关系,从而每一个用户设备能够自主地确定下行链路控制信息中对应的HARQ-ACK,而无需DL信令逐个用户设备地通知下行链路控制信息中对应于各用户设备的HARQ-ACK所在的信息位,因此与现有技术相比,DL信令开销显著减小。
在下文中,将在基于何种数据进行隐式映射、隐式映射中DCI的信息位与资源位置的对应关系等方面给出各种具体实施方式的描述。
第一实施例
在第一实施例中,基于基站向用户设备分配的用于上行链路数据传输的资源位置进行隐式映射。
在第一实施例中,基站可以进一步包括:分配单元(图中未示出),用于向所述多个设备中的每一个分配的用于上行链路数据传输的资源位置。
在这种情况下,所述产生单元101进一步被配置为:对于每个用户设备,基于由所述分配单元向该用户设备分配的用于上行链路数据传输的资源位置,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立隐式映射关系。
(1)方案1:以一条DCI进行HARQ-ACK反馈
在方案1中,所述至少一条下行链路控制信息为一条下行链路控制信息。
如上文中参照图3所描述的那样,以一条DCI对所述多个用户设备进行HARQ-ACK反馈。HARQ-ACK的DCI的数据信息可包括100个信息位(bit),但也可以包括小于100、或大于100个信息位。DCI中的各信息位可以分别对应于一个PRB索引,当然也可以仅一部分信息位对应于相应的PRB索引。基站向用户设备分配的用于上行链路数据传输的资源位置可以是单个PRB、多个PRB,也可以是一组PRB或多组PRB。例如,所述一组PRB可以是1个窄带(Narrow Band,NB)即6个PRB,也可以是预先定义好的3个PRB。在基站向用户设备分配单个PRB的情况下,在该用户设备与DCI中的一个信息位之间存在隐式映射关系。而在基站向用户设备分配多个PRB或多组的情况下,在该用户设备与DCI中的多个信息位之间存在隐式映射关系。或者,在基站向用户设备分配多个PRB或一组PRB或多组PRB的情况下,也可以在该用户设备与DCI中的一个信息位之间存在隐式映射关系,即基于所分配的该组PRB的起始PRB索引或PRB组索引或起始PRB组索引,在该用户设备与DCI中的一个信息位之间存在隐式映射关系。
尽管图3示出了DCI中的一个信息位对应于一个PRB(即,单个资源位置)的情况。然而,本发明并不仅限于此。
如在上文中参照图4所描述的那样,DCI中的一个信息位对应于一组PRB(即,一个资源位置组)。DCI中的一个信息位所对应的一组PRB(例如NB0)可以是基站分配给同一个用户设备的PRB,也可以是基站分配给多个不同用户设备的PRB。在DCI中的一个信息位所对应的一组PRB是基站分配给同一个用户设备的PRB的情况下,在该信息位中携带指示针对该用户设备的HARQ-ACK的值。在DCI中的一个信息位所对应的一组PRB是基站分配给多个不同用户设备的PRB的情况下,可以将相同HARQ-ACK值的多个用户设备的经基站分配的PRB均对应至DCI中的一个信息位。或者,可替代地,在DCI中的一个信息位所对应的一组PRB是基站分配给多个不同的用户设备的PRB的情况下,也可以将预先划分好的PRB组对应至DCI中的一个信息位,而不论PRB组内的各PRB所对应的多个用户设备的HARQ-ACK值是否相同。在这种情况下,只要所述多个不同的用户设备中 存在HARQ-ACK为NACK的用户设备,则所述多个不同的用户设备所对应的DCI中的信息位取0的值。
所述产生单元101进一步包括:加扰单元(图中未示出),用于根据固定的加扰标识(HARQ-RNTI)对循环冗余校验码进行加扰,用于标识所述下行链路控制信息是用于向所述多个用户设备反馈对应的HARQ-ACK的信息。用户设备首先确定由所述HARQ-RNTI加扰的下行链路控制信息,进而提取具体信息位值作为HARQ-ACK。
在基站与用户设备之间的通信过程中,存在诸如用于资源分配的DCI、用于HARQ-ACK反馈的DCI等多种类型的DCI。这里,在基站端,通过以HARQ-RNTI对CRC进行加扰,可以使得在用户设备端,通过对CRC解扰后能够识别出该DCI是用于HARQ-ACK反馈的DCI。其中所述固定的加扰标识可以是传统限定的值,也可以是新限定的值,只要其值固定即可。
(2)方案2:以多条DCI进行HARQ-ACK反馈
在方案2中,所述至少一条下行链路控制信息为多条下行链路控制信息,所述多条下行链路控制信息分别对应于不同的资源位置组。
如上文中参照图5所描述的那样,在方案2的第一种实施方式中,以两条下行链路控制信息进行HARQ-ACK的反馈。如图5所示,将PRB0~PRB49划分至PRB组0,而将PRB50~PRB99划分至PRB组1。PRB组0对应于的资源位置组标识为1,而PRB组1对应于的资源位置组标识为0。
在图5所示的情况下,所述产生单元101进一步包括:加扰单元(图中未示出),用于根据固定的加扰标识(HARQ-RNTI)对循环冗余校验码进行加扰,用于标识所述下行链路控制信息是用于向所述多个用户设备反馈对应的HARQ-ACK的信息;以及资源位置组标识设置单元(图中未示出),用于在所述下行链路控制信息中设置资源位置组标识,用于标识所述下行链路控制信息所对应的资源位置组。
如上文中参照图6所描述的那样,在方案2的第二种实施方式中,以两条下行链路控制信息进行HARQ-ACK的反馈。与第一种实施方式不同的是,在图6中并不依靠设置专门的资源位置组标识来区分不同的资源位置组,而是以不同而非固定的加扰标识(HARQ-RNTI)(即,资源位置组特定的HARQ-RNTI)对所述两条DCI进行加扰,进而区分不同的资源位置组。
在图6所示的情况下,所述产生单元101进一步包括:加扰单元(图中未示出),用于根据所述资源位置组特定的加扰标识(HARQ-RNTI)对循环冗余校验码进行加扰,用于标识所述下行链路控制信息是用于向所述多个用户设备反馈对应的HARQ-ACK的信息,并且标识所述下行链路控制信息所对应的资源位置组。
另外,在方案1中描述了DCI中的一个信息位对应于PRB索引或者PRB组索引的情况。但是,本领域的技术人员可以理解,在方案2中的多条DCI中,也可以存在DCI中的一个信息位对应于PRB索引或者PRB组索引的情况。
第二实施例
除了上文中所述的第一实施例中所描述的,基于基站向用户设备分配的用于上行链路数据传输的资源位置来在用户设备与DCI中的一个或多个信息位之间建立隐式映射关系之外,可替代地,在第二实施例中,还可以对于每个用户设备,基于由所述基站向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE索引,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间存在隐式映射关系。
如在上文中参照图7所描述的那样,DCI可以包括24个信息位。当然本发明并不仅限于此。DCI还可以包括其他数量的信息位。
在第二实施例中,基站10可以进一步包括:分配单元(未示出),用于向所述多个设备中的每一个分配的用于上行链路共享信道传输的增强控制信道单元ECCE索引。
在这种情况下,所述产生单元101进一步被配置为:对于每个用户设备,基于由所述分配单元向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE索引,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立隐式映射关系。
当然,以上列举了基于PRB索引和ECCE索引,在用户设备与DCI中的一个或多个信息位之间建立隐式映射关系。但是,本领域的技术人员应该理解,本发明并不仅限于此。任何其他的能够与用户设备唯一对应的信息也可以类似地应用于本发明,且应包括在本发明的范围内。
(四)用户设备
最后,将参照图10描述与上文中所述的由用户设备执行的混合自动重发请求确认HARQ-ACK提取方法对应的用户设备的具体配置。根据本发明的用户设备用于执行来自基站的混合自动重发请求确认HARQ-ACK的提取。
如图10所示,用户设备20包括:接收单元201和确定单元202。
接收单元201接收所述基站发送的用于向多个用户设备反馈对应的HARQ-ACK的至少一条下行链路控制信息,其中所述多个用户设备包括该用户设备和其他用户设备。
确定单元202基于该用户设备与所述下行链路控制信息的一个或多个信息位的隐式映射关系,确定与该用户设备对应的HARQ-ACK。
在下文中,将在基于何种数据进行隐式映射、隐式映射中DCI的信息位与资源位置的对应关系、以及基于这样的对应关系如何执行HARQ-ACK提取等方面给出各种具体实施方式的描述。
第一实施例
作为一种优选的实施方式,所述隐式映射关系为基于由所述基站向该用户设备分配的用于上行链路数据传输的资源位置,而在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立的隐式映射关系。
在这种情况下,所述确定单元202进一步被配置为:基于由所述基站向该用户设备分配的用于上行链路数据传输的资源位置,确定所述下行链路控制信息中与该用户设备对应的所述一个或多个信息位,从而提取与该用户设备对应的HARQ-ACK。
(1)方案1:以一条DCI进行HARQ-ACK反馈
在方案1中,所述至少一条下行链路控制信息为一条下行链路控制信息。如上文中参照图3描述的那样,以一条DCI对所述多个用户设备进行HARQ-ACK反馈。基站向用户设备分配的用于上行链路数据传输的资源位置可以是单个PRB、多个PRB,也可以是一组PRB或多组PRB。例如,所述一组PRB可以是1个窄带(Narrow Band,NB)即6个PRB,也可以是预先定义好的3个PRB。
在基站向用户设备分配单个PRB的情况下,在该用户设备与DCI中的一个信息位之间存在隐式映射关系。在这种情况下,所述确定单元202可以 被配置为:基于该用户设备的经基站分配的用于上行链路数据传输的资源位置,确定所述上行链路控制信息中的一个对应信息位,并提取该信息位的值作为HARQ-ACK。例如,如果用户设备的PRB索引为50,则该用户设备将读取DCI中的第51位。如果在该DCI的第51位中的值为1,则意味着ACK,即不再需要继续发送上行数据。另一方面,如果在该DCI的第51位中的值为0,则意味着NACK,即仍需要继续继续发送上行数据。
而在基站向用户设备分配多个PRB的情况下,在该用户设备与DCI中的多个信息位之间存在隐式映射关系。在这种情况下,所述确定单元202可以被配置为:基于该用户设备的经基站分配的用于上行链路数据传输的资源位置,确定所述上行链路控制信息中的多个对应信息位,只要该多个信息位中有一位的值为1,就意味着ACK,即不再需要继续发送上行数据。而如果该多个信息位中所有位的值均为0,就意味着NACK,即仍需要继续继续发送上行数据。
或者,在基站向用户设备分配多个PRB的情况下,也可以在该用户设备与DCI中的一个信息位之间存在隐式映射关系,即基于所分配的该组PRB的起始PRB索引,在该用户设备与DCI中的一个信息位之间存在隐式映射关系。在这种情况下,所述确定单元202可以被配置为:基于该用户设备的经基站分配的起始PRB索引,确定所述上行链路控制信息中的一个对应信息位,如果该信息位的值为1,就意味着ACK,即不再需要继续发送上行数据。而如果该信息位的值为0,就意味着NACK,即仍需要继续继续发送上行数据。
在基站向用户设备分配一组PRB的情况下,也可以在该用户设备与DCI中的一个信息位之间存在隐式映射关系,即基于所分配的该组PRB的PRB组索引,在该用户设备与DCI中的一个信息位之间存在隐式映射关系。在这种情况下,所述确定单元202可以被配置为:基于该用户设备的经基站分配的起始PRB索引,确定所述上行链路控制信息中的一个对应信息位,如果该信息位的值为1,就意味着ACK,即不再需要继续发送上行数据。而如果该信息位的值为0,就意味着NACK,即仍需要继续发送上行数据。
并且,在图3中,DCI中的一个信息位对应于一个PRB(即,单个资源位置)。
另外,如上文中参照图4描述的那样,以一条DCI对所述多个用户设备进行HARQ-ACK反馈。所不同的是,在图4中,DCI的一个信息位对应于一组PRB(即,一个资源位置组)。DCI中的一个信息位所对应的一组PRB(例如NB0)可以是基站分配给同一个用户设备的PRB,也可以是基站分配给多个不同用户设备的PRB。
在DCI中的一个信息位所对应的一组PRB是基站分配给同一个用户设备的PRB的情况下,在该信息位中携带指示针对该用户设备的HARQ-ACK的值。在这种情况下,所述确定单元202可以被配置为:基于该用户设备的经基站分配的用于上行链路数据传输的资源位置,确定该用户设备对应的资源位置组,基于该资源位置组确定所述上行链路控制信息中的一个对应信息位,并提取该信息位的值作为HARQ-ACK。
在DCI中的一个信息位所对应的一组PRB是基站分配给多个不同用户设备的PRB的情况下,可以将相同HARQ-ACK值的多个用户设备的经基站分配的PRB均对应至DCI中的一个信息位。在这种情况下,所述确定单元202可以被配置为:基于该用户设备的经基站分配的用于上行链路数据传输的资源位置,确定该用户设备对应的资源位置组,基于该资源位置组确定所述上行链路控制信息中的一个对应信息位,并提取该信息位的值作为HARQ-ACK。
或者,可替代地,在DCI中的一个信息位所对应的一组PRB是基站分配给多个不同的用户设备的PRB的情况下,也可以将预先划分好的PRB组对应至DCI中的一个信息位,而不论PRB组内的各PRB所对应的多个用户设备的HARQ-ACK值是否相同。在这种情况下,只要所述多个不同的用户设备中存在HARQ-ACK为NACK的用户设备,则所述多个不同的用户设备所对应的DCI中的信息位取0的值。在这种情况下,所述确定单元202可以被配置为:基于该用户设备的经基站分配的用于上行链路数据传输的资源位置,确定该用户设备对应的资源位置组,基于该资源位置组确定所述上行链路控制信息中的一个对应信息位,并提取该信息位的值作为HARQ-ACK。
每条所述下行链路控制信息包括根据固定的加扰标识(HARQ-RNTI)加扰后的循环冗余校验码,用于标识所述下行链路控制信息是用于向用户设备反馈对应的HARQ-ACK的信息。用户设备首先确定由所述HARQ-RNTI 加扰的下行链路控制信息,进而提取具体信息位值作为HARQ-ACK。
(2)方案2:以多条DCI进行HARQ-ACK反馈
在方案2中,所述至少一条下行链路控制信息为多条下行链路控制信息,所述多条下行链路控制信息分别对应于不同的资源位置组。
如上文中参照图5所描述的那样,在第一种实施方式中,以两条下行链路控制信息进行HARQ-ACK的反馈。其中,每条所述下行链路控制信息包括根据固定的加扰标识(HARQ-RNTI)加扰后的循环冗余校验码,用于标识所述下行链路控制信息是用于向用户设备反馈对应的HARQ-ACK的信息,并且所述不同的资源位置组通过所述下行链路控制信息中的资源位置组标识来标识。
在这种情况下,所述确定单元202进一步被配置为:基于该用户设备的资源位置,确定其所对应的资源位置组标识;以及基于所述资源位置组标识,确定该用户设备对应的下行链路控制信息,并确定对应的下行链路控制信息中对应的信息位。
另外,如上文中参照图6所描述的那样,在第二种实施方式中,以两条下行链路控制信息进行HARQ-ACK的反馈。与第一种实施方式不同的是,在图6中并不依靠设置专门的资源位置组标识来区分不同的资源位置组,而是以不同而非固定的加扰标识(HARQ-RNTI)(即,资源位置组特定的HARQ-RNTI)对所述两条DCI进行加扰,进而区分不同的资源位置组。在这种情况下,每条所述下行链路控制信息包括根据所述资源位置组特定的加扰标识(HARQ-RNTI)加扰后的循环冗余校验码,用于标识所述下行链路控制信息是用于向用户设备反馈对应的HARQ-ACK的信息,并且所述不同的资源位置组通过所述资源位置组特定的加扰标识来标识。
在这种情况下,所述确定单元202进一步被配置为:基于该用户设备的资源位置,确定该用户设备所属的资源位置组特定的加扰标识;对于每条下行链路控制信息,利用所确定的加扰标识、以及经加扰的循环冗余校验码进行校验;如果校验通过,则确定所述下行链路控制信息对应于该用户设备所属的资源位置组,并进一步基于该用户设备的所述资源位置确定对应的下行链路控制信息中对应的信息位。
另外,在方案1中描述了DCI中的一个信息位对应于PRB索引或者PRB 组索引的情况。但是,本领域的技术人员可以理解,在方案2中的多条DCI中,也可以存在DCI中的一个信息位对应于PRB索引或者PRB组索引的情况。
第二实施例
除了上文中所述的第一实施例中所描述的,基于基站向用户设备分配的用于上行链路数据传输的资源位置来在用户设备与DCI中的一个或多个信息位之间建立隐式映射关系之外,可替代地,如上文中参照图7所描述的那样,在第二实施例中,所述隐式关系为基于由所述基站向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE的索引,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立的隐式映射关系。
例如,在基站向用户设备发送的用于资源分配的DCI中,通过以C-RNTI加扰CRC。用户设备通过解扰经C-RNTI加扰的CRC可以确定该DCI是用于资源分配的DCI。此后,用户设备通过读取该用于资源分配的DCI的数据信息,可以确定与该用户设备对应的ECCE索引。在第二实施例中,采用该ECCE索引,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立的隐式映射关系。
在这种情况下,所述确定单元进一步被配置为:基于由所述基站向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE的索引,确定所述下行链路控制信息中与该用户设备对应的所述一个或多个信息位,从而提取与该用户设备对应的HARQ-ACK。
当然,以上列举了基于PRB索引和ECCE索引,在用户设备与DCI中的一个或多个信息位之间建立隐式映射关系。但是,本领域的技术人员应该理解,本发明并不仅限于此。任何其他的能够与用户设备唯一对应的信息也可以类似地应用于本发明,且应包括在本发明的范围内。
(五)硬件结构
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装 置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本发明的一实施方式中的基站、用户设备等可以作为执行本发明的无线通信方法的处理的计算机来发挥功能。图11是示出本发明的一实施方式所涉及的基站和用户设备的硬件结构的一例的图。上述的基站10和用户设备20可以作为在物理上包括处理器1001、内存1002、存储器1003、通信装置1004、输入装置1005、输出装置1006、总线1007等的计算机装置来构成。
另外,在以下的说明中,“单元”这样的文字也可替换为电路、设备、装置等。基站10和用户设备20的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器1001仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器1001可以通过一个以上的芯片来安装。
基站10和用户设备20中的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器1001、内存1002等硬件上,从而使处理器1001进行运算,对由通信装置1004进行的通信进行控制,并对内存1002和存储器1003中的数据的读出和/或写入进行控制。
处理器1001例如使操作系统进行工作从而对计算机整体进行控制。处理器1001可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的产生单元101、确定单元202等可以通过处理器1001实现。
此外,处理器1001将程序(程序代码)、软件模块、数据等从存储器1003和/或通信装置1004读出到内存1002,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,用户设备20的控制单元401可以通过保存在内存1002中并通过处理器1001来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。内存1002是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质 中的至少一个来构成。内存1002也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存1002可以保存用于实施本发明的一实施方式所涉及的无线通信方法的可执行程序(程序代码)、软件模块等。
存储器1003是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器1003也可以称为辅助存储装置。
通信装置1004是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置1004为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的发送单元102、接收单元201等可以通过通信装置1004来实现。
输入装置1005是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1006是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置1005和输出装置1006也可以为一体的结构(例如触控面板)。
此外,处理器1001、内存1002等各装置通过用于对信息进行通信的总线1007连接。总线1007可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,基站10和用户设备20可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器1001可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为 信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,无线帧在时域中可以由一个或多个期间(帧)构成。构成无线帧的该一个或多个期间(帧)中的每一个也可以称为子帧。进而,子帧在时域中可以由一个或多个时隙构成。子帧可以是不依赖于参数配置(numerology)的固定的时间长度(例如1ms)。
进而,时隙在时域中可以由一个或多个符号(正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号、单载波频分多址(SC-FDMA,Single Carrier Frequency Division Multiple Access)符号等)构成。此外,时隙也可以是基于参数配置的时间单元。此外,时隙还可以包括多个微时隙。各微时隙在时域中可以由一个或多个符号构成。此外,微时隙也可以称为子时隙。
无线帧、子帧、时隙、微时隙以及符号均表示传输信号时的时间单元。无线帧、子帧、时隙、微时隙以及符号也可以使用各自对应的其它名称。例如,一个子帧可以被称为传输时间间隔(TTI,Transmission Time Interval),多个连续的子帧也可以被称为TTI,一个时隙或一个微时隙也可以被称为TTI。也就是说,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是短于1ms的期间(例如1~13个符号),还可以是长于1ms的期间。另外,表示TTI的单元也可以称为时隙、微时隙等而非子帧。
在此,TTI例如是指无线通信中调度的最小时间单元。例如,在LTE系统中,基站对各用户设备进行以TTI为单位分配无线资源(在各用户设备中能够使用的频带宽度、发射功率等)的调度。另外,TTI的定义不限于此。
TTI可以是经过信道编码的数据包(传输块)、码块、和/或码字的发送时间单元,也可以是调度、链路适配等的处理单元。另外,在给出TTI时,实际上与传输块、码块、和/或码字映射的时间区间(例如符号数)也可以短于该TTI。
另外,一个时隙或一个微时隙被称为TTI时,一个以上的TTI(即一个以上的时隙或一个以上的微时隙)也可以成为调度的最小时间单元。此外,构成该调度的最小时间单元的时隙数(微时隙数)可以受到控制。
具有1ms时间长度的TTI也可以称为常规TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、常规子帧、标准子帧、或长子帧等。短于常规TTI的TTI也可以称为压缩TTI、短TTI、部分TTI(partial或fractional TTI)、压缩子帧、短子帧、微时隙、或子时隙等。
另外,长TTI(例如常规TTI、子帧等)也可以用具有超过1ms的时间长度的TTI来替换,短TTI(例如压缩TTI等)也可以用具有比长TTI的TTI长度短且1ms以上的TTI长度的TTI来替换。
资源块(RB,Resource Block)是时域和频域的资源分配单元,在频域中,可以包括一个或多个连续的副载波(子载波(subcarrier))。此外,RB在时域中可以包括一个或多个符号,也可以为一个时隙、一个微时隙、一个子帧或一个TTI的长度。一个TTI、一个子帧可以分别由一个或多个资源块构成。另外,一个或多个RB也可以称为物理资源块(PRB,Physical RB)、子载波组(SCG,Sub-Carrier Group)、资源单元组(REG,Resource Element Group)、PRG对、RB对等。
此外,资源块也可以由一个或多个资源单元(RE,Resource Element)构成。例如,一个RE可以是一个子载波和一个符号的无线资源区域。
另外,上述的无线帧、子帧、时隙、微时隙以及符号等的结构仅仅为示例。例如,无线帧中包括的子帧数、每个子帧或无线帧的时隙数、时隙内包括的微时隙数、时隙或微时隙中包括的符号和RB的数目、RB中包括的子载波数、以及TTI内的符号数、符号长度、循环前缀(CP,Cyclic Prefix)长度等的结构可以进行各种各样的变更。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户设备(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的基站也可以用用户设备来替换。例如,对于将基站和用户设备间的通信替换为多个用户设备间(D2D,Device-to-Device)的通信的结构,也可以应用本发明的各方式/实施方式。此时,可以将上述的基站10所具有的功能当作用户设备20所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户设备也可以用基站来替换。此时,可以将上述的用户设备20所具有的功能当作基站10所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入2000(CDMA2000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的 便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本发明进行了详细说明,但对于本领域技术人员而言,显然,本发明并非限定于本说明书中说明的实施方式。本发明在不脱离由权利要求书的记载所确定的本发明的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本发明而言并非具有任何限制性的意义。

Claims (28)

  1. 一种由基站执行的混合自动重发请求确认HARQ-ACK反馈方法,用于向多个用户设备反馈对应的HARQ-ACK,所述方法包括:
    利用与所述多个用户设备对应的多个HARQ-ACK产生至少一条下行链路控制信息,其中对于每个用户设备,在该用户设备与所述下行链路控制信息中的一个或多个信息位之间存在隐式映射关系;以及
    将所述下行链路控制信息传送至所述多个用户设备。
  2. 根据权利要求1所述的方法,其中:
    对于每个用户设备,基于由所述基站向该用户设备分配的用于上行链路数据传输的资源位置,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间存在隐式映射关系。
  3. 根据权利要求2所述的方法,其中:
    所述下行链路控制信息中的一个信息位对应于单个资源位置或一个资源位置组。
  4. 根据权利要求1所述的方法,其中:
    对于每个用户设备,基于由所述基站向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE索引,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间存在隐式映射关系。
  5. 根据权利要求2所述的方法,其中所述至少一条下行链路控制信息为多条下行链路控制信息,所述多条下行链路控制信息分别对应于不同的资源位置组。
  6. 根据权利要求5所述的方法,其中产生至少一条下行链路控制信息的步骤进一步包括:
    根据固定的加扰标识(HARQ-RNTI)对循环冗余校验码进行加扰,用于标识所述下行链路控制信息是用于向所述多个用户设备反馈对应的HARQ-ACK的信息;以及
    在每条所述下行链路控制信息中设置资源位置组标识,用于标识所述下行链路控制信息所对应的资源位置组。
  7. 根据权利要求5所述的方法,其中产生至少一条下行链路控制信息 的步骤进一步包括:
    根据所述资源位置组特定的加扰标识(HARQ-RNTI)对循环冗余校验码进行加扰,用于标识所述下行链路控制信息是用于向所述多个用户设备反馈对应的HARQ-ACK的信息,并且标识所述下行链路控制信息所对应的资源位置组。
  8. 一种由用户设备执行的混合自动重发请求确认HARQ-ACK提取方法,包括:
    接收基站发送的用于向多个用户设备反馈对应的HARQ-ACK的至少一条下行链路控制信息,其中所述多个用户设备包括该用户设备和其他用户设备;以及
    基于该用户设备与所述下行链路控制信息的一个或多个信息位的隐式映射关系,确定与该用户设备对应的HARQ-ACK。
  9. 根据权利要求8所述的方法,其中所述隐式关系为基于由所述基站向该用户设备分配的用于上行链路数据传输的资源位置,而在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立的隐式映射关系,
    其中确定与该用户设备对应的HARQ-ACK包括:基于由所述基站向该用户设备分配的用于上行链路数据传输的资源位置,确定所述下行链路控制信息中与该用户设备对应的所述一个或多个信息位,从而提取与该用户设备对应的HARQ-ACK。
  10. 根据权利要求9所述的方法,其中所述下行链路控制信息中的一个信息位对应于单个资源位置或一个资源位置组。
  11. 根据权利要求8所述的方法,其中所述隐式关系为基于由所述基站向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE的索引,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立的隐式映射关系,
    其中确定与该用户设备对应的HARQ-ACK包括:基于由所述基站向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE的索引,确定所述下行链路控制信息中与该用户设备对应的所述一个或多个信息位,从而提取与该用户设备对应的HARQ-ACK。
  12. 根据权利要求9所述的方法,其中所述至少一条下行链路控制信息为多条下行链路控制信息,所述多条下行链路控制信息分别对应于不同的资源位置组。
  13. 根据权利要求12所述的方法,其中每条所述下行链路控制信息包括根据固定的加扰标识(HARQ-RNTI)加扰后的循环冗余校验码,用于标识所述下行链路控制信息是用于向用户设备反馈对应的HARQ-ACK的信息,并且所述不同的资源位置组通过所述下行链路控制信息中的资源位置组标识来标识,并且
    其中确定与该用户设备对应的HARQ-ACK包括:
    基于该用户设备的资源位置,确定其所对应的资源位置组标识;
    基于所述资源位置组标识,确定该用户设备对应的下行链路控制信息,并确定对应的下行链路控制信息中对应的信息位。
  14. 根据权利要求12所述的方法,其中每条所述下行链路控制信息包括根据所述资源位置组特定的加扰标识(HARQ-RNTI)加扰后的循环冗余校验码,用于标识所述下行链路控制信息是用于向用户设备反馈对应的HARQ-ACK的信息,并且所述不同的资源位置组通过所述资源位置组特定的加扰标识来标识,并且
    其中确定与该用户设备对应的HARQ-ACK包括:
    基于该用户设备的资源位置,确定该用户设备所属的资源位置组特定的加扰标识;
    对于每条下行链路控制信息,利用所确定的加扰标识、以及经加扰的循环冗余校验码进行校验;如果校验通过,则确定所述下行链路控制信息对应于该用户设备所属的资源位置组,并进一步基于该用户设备的所述资源位置确定对应的下行链路控制信息中对应的信息位。
  15. 一种基站,用于执行向多个用户设备的混合自动重发请求确认HARQ-ACK的反馈,包括:
    产生单元,用于利用与所述多个用户设备对应的多个HARQ-ACK产生至少一条下行链路控制信息,其中对于每个用户设备,在该用户设备与所述下行链路控制信息中的一个或多个信息位之间存在隐式映射关系;以及
    发送单元,用于将所述下行链路控制信息传送至所述多个用户设备。
  16. 根据权利要求15所述的基站,进一步包括:
    分配单元,用于向所述多个设备中的每一个分配用于上行链路数据传输的资源位置,
    其中所述产生单元进一步被配置为:
    对于每个用户设备,基于由所述分配单元向该用户设备分配的用于上行链路数据传输的资源位置,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立隐式映射关系。
  17. 根据权利要求16所述的基站,其中所述下行链路控制信息中的一个信息位对应于单个资源位置或一个资源位置组。
  18. 根据权利要求15所述的基站,进一步包括:
    分配单元,用于向所述多个设备中的每一个分配用于上行链路共享信道传输的增强控制信道单元ECCE索引,
    其中所述产生单元进一步被配置为:
    对于每个用户设备,基于由所述分配单元向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE索引,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立隐式映射关系。
  19. 根据权利要求16所述的基站,其中所述至少一条下行链路控制信息为多条下行链路控制信息,所述多条下行链路控制信息分别对应于不同的资源位置组。
  20. 根据权利要求19所述的基站,其中所述产生单元进一步包括:
    加扰单元,用于根据固定的加扰标识(HARQ-RNTI)对循环冗余校验码进行加扰,用于标识所述下行链路控制信息是用于向所述多个用户设备反馈对应的HARQ-ACK的信息;以及
    资源位置组标识设置单元,用于在所述下行链路控制信息中设置资源位置组标识,用于标识所述下行链路控制信息所对应的资源位置组。
  21. 根据权利要求19所述的基站,其中所述产生单元进一步包括:
    加扰单元,用于根据所述资源位置组特定的加扰标识(HARQ-RNTI)对循环冗余校验码进行加扰,用于标识所述下行链路控制信息是用于向所述多个用户设备反馈对应的HARQ-ACK的信息,并且标识所述下行链路控制信息所对应的资源位置组。
  22. 一种用户设备,用于执行来自基站的混合自动重发请求确认HARQ-ACK的提取,包括:
    接收单元,用于接收所述基站发送的用于向多个用户设备反馈对应的HARQ-ACK的至少一条下行链路控制信息,其中所述多个用户设备包括该用户设备和其他用户设备;以及
    确定单元,用于基于该用户设备与所述下行链路控制信息的一个或多个信息位的隐式映射关系,确定与该用户设备对应的HARQ-ACK。
  23. 根据权利要求22所述的用户设备,其中所述隐式映射关系为基于由所述基站向该用户设备分配的用于上行链路数据传输的资源位置,而在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立的隐式映射关系,
    其中所述确定单元进一步被配置为:基于由所述基站向该用户设备分配的用于上行链路数据传输的资源位置,确定所述下行链路控制信息中与该用户设备对应的所述一个或多个信息位,从而提取与该用户设备对应的HARQ-ACK。
  24. 根据权利要求23所述的用户设备,其中所述下行链路控制信息中的一个信息位对应于单个资源位置或一个资源位置组。
  25. 根据权利要求22所述的用户设备,其中所述隐式关系为基于由所述基站向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE的索引,在该用户设备与所述下行链路控制信息中的所述一个或多个信息位之间建立的隐式映射关系,
    其中所述确定单元进一步被配置为:基于由所述基站向该用户设备分配的用于上行链路共享信道传输的增强控制信道单元ECCE的索引,确定所述下行链路控制信息中与该用户设备对应的所述一个或多个信息位,从而提取与该用户设备对应的HARQ-ACK。
  26. 根据权利要求25所述的用户设备,其中所述至少一条下行链路控制信息为多条下行链路控制信息,所述多条下行链路控制信息分别对应于不同的资源位置组。
  27. 根据权利要求26所述的用户设备,其中每条所述下行链路控制信息包括根据固定的加扰标识(HARQ-RNTI)加扰后的循环冗余校验码,用 于标识所述下行链路控制信息是用于向用户设备反馈对应的HARQ-ACK的信息,并且所述不同的资源位置组通过所述下行链路控制信息中的资源位置组标识来标识,并且
    其中所述确定单元进一步被配置为:
    基于该用户设备的资源位置,确定其所对应的资源位置组标识;以及
    基于所述资源位置组标识,确定该用户设备对应的下行链路控制信息,并确定对应的下行链路控制信息中对应的信息位。
  28. 根据权利要求26所述的用户设备,其中每条所述下行链路控制信息包括根据所述资源位置组特定的加扰标识(HARQ-RNTI)加扰后的循环冗余校验码,用于标识所述下行链路控制信息是用于向用户设备反馈对应的HARQ-ACK的信息,所述不同的资源位置组通过所述资源位置组特定的加扰标识来标识,并且
    其中所述确定单元进一步被配置为:
    基于该用户设备的资源位置,确定该用户设备所属的资源位置组特定的加扰标识;
    对于每条下行链路控制信息,利用所确定的加扰标识、以及经加扰的循环冗余校验码进行校验;
    如果校验通过,则确定所述下行链路控制信息对应于该用户设备所属的资源位置组,并进一步基于该用户设备的所述资源位置确定对应的下行链路控制信息中对应的信息位。
PCT/CN2018/078232 2017-05-04 2018-03-07 Harq-ack反馈方法、harq-ack提取方法、基站和用户设备 WO2018201789A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880027167.3A CN110583070A (zh) 2017-05-04 2018-03-07 Harq-ack反馈方法、harq-ack提取方法、基站和用户设备
US16/609,594 US11356207B2 (en) 2017-05-04 2018-03-07 HARQ-ACK feedback method, a HARQ-ACK extraction method, a base station, and a user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710308732.0 2017-05-04
CN201710308732.0A CN108809525A (zh) 2017-05-04 2017-05-04 Harq-ack反馈方法、harq-ack提取方法、基站和用户设备

Publications (1)

Publication Number Publication Date
WO2018201789A1 true WO2018201789A1 (zh) 2018-11-08

Family

ID=64016427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078232 WO2018201789A1 (zh) 2017-05-04 2018-03-07 Harq-ack反馈方法、harq-ack提取方法、基站和用户设备

Country Status (3)

Country Link
US (1) US11356207B2 (zh)
CN (2) CN108809525A (zh)
WO (1) WO2018201789A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199229A1 (en) * 2019-04-05 2020-10-08 Qualcomm Incorporated Techniques for implementing ack/nack in wireless communications

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436130B (zh) * 2019-01-11 2023-07-18 中兴通讯股份有限公司 组下行控制信息的发送方法及装置
WO2020147133A1 (zh) * 2019-01-18 2020-07-23 株式会社Ntt都科摩 用户设备和基站以及由用户设备、基站执行的方法
CN111756500B (zh) * 2019-03-29 2023-06-27 中国移动通信有限公司研究院 信息传输方法、装置、通信设备及存储介质
WO2021048991A1 (ja) * 2019-09-12 2021-03-18 株式会社Nttドコモ 端末及び通信方法
WO2022027195A1 (zh) * 2020-08-03 2022-02-10 北京小米移动软件有限公司 Harq反馈的处理方法及装置、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101940046A (zh) * 2008-02-04 2011-01-05 诺基亚西门子通信公司 将循环移位映射到用于ack/nack资源分配的信道索引
CN104125045A (zh) * 2013-04-25 2014-10-29 上海贝尔股份有限公司 一种用于传输ack/nack消息的方法
US20170064694A1 (en) * 2015-09-02 2017-03-02 Qualcomm Incorporated Techniques for allocating time and frequency resources to an uplink channel to carry uplink control information used for narrowband communication
CN106559187A (zh) * 2015-09-25 2017-04-05 北京三星通信技术研究有限公司 Harq-ack信息的反馈和接收方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477012C2 (ru) * 2007-08-03 2013-02-27 Нокиа Сименс Нетворкс Ой Агрегирование подтверждений приема и отрицательных подтверждений приема мобильной станции в беспроводных сетях
CN102055552B (zh) * 2009-11-05 2014-07-30 华为技术有限公司 传输控制信息的方法、接收控制信息的方法及设备
JP5941305B2 (ja) * 2012-03-14 2016-06-29 シャープ株式会社 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
CN104243109B (zh) * 2013-06-07 2018-08-24 工业和信息化部电信传输研究所 一种对上行数据的混合自动重传请求信息指示的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101940046A (zh) * 2008-02-04 2011-01-05 诺基亚西门子通信公司 将循环移位映射到用于ack/nack资源分配的信道索引
CN104125045A (zh) * 2013-04-25 2014-10-29 上海贝尔股份有限公司 一种用于传输ack/nack消息的方法
US20170064694A1 (en) * 2015-09-02 2017-03-02 Qualcomm Incorporated Techniques for allocating time and frequency resources to an uplink channel to carry uplink control information used for narrowband communication
CN106559187A (zh) * 2015-09-25 2017-04-05 北京三星通信技术研究有限公司 Harq-ack信息的反馈和接收方法及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199229A1 (en) * 2019-04-05 2020-10-08 Qualcomm Incorporated Techniques for implementing ack/nack in wireless communications

Also Published As

Publication number Publication date
CN108809525A (zh) 2018-11-13
US20200067652A1 (en) 2020-02-27
US11356207B2 (en) 2022-06-07
CN110583070A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2018201789A1 (zh) Harq-ack反馈方法、harq-ack提取方法、基站和用户设备
EP3661282B1 (en) User terminal and radio communication method
AU2017425066B2 (en) User terminal, base station apparatus, and radio communication method
JP7201433B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7107845B2 (ja) 端末、無線通信方法及び無線通信システム
JPWO2019193700A1 (ja) ユーザ端末及び無線基地局
WO2018158923A1 (ja) ユーザ端末及び無線通信方法
CN110249692B (zh) 用户终端以及无线通信方法
WO2017194000A1 (zh) 针对上行数据传输的反馈方法及装置
WO2017194001A1 (zh) 针对上行数据传输的反馈方法及装置
CN112514476A (zh) 用户终端以及无线通信方法基站
WO2018171655A1 (zh) 参考信号发送方法、信道测量方法、无线基站及用户终端
WO2020222281A1 (ja) ユーザ装置
WO2018173237A1 (ja) ユーザ端末及び無線通信方法
US11979875B2 (en) Method, user equipment unit and base station for transmitting and receiving uplink data
WO2019062539A1 (zh) Sps的激活确定方法以及用户设备
US20220217764A1 (en) User equipment and communication method
WO2020194733A1 (ja) 無線ノード、及び、無線通信制御方法
JP7046816B2 (ja) 端末、無線通信方法、無線基地局及び無線通信システム
WO2018202058A1 (zh) 一种混合信道质量测量方法和用户设备
WO2018171394A1 (zh) 无授权传输方法、用户终端和基站
WO2019056974A1 (zh) 上行链路调度方式确定方法、用户设备和基站
JP7288514B2 (ja) 端末、無線通信方法及び無線通信システム
US20220225413A1 (en) User apparatus
WO2018084212A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794693

Country of ref document: EP

Kind code of ref document: A1