WO2017194001A1 - 针对上行数据传输的反馈方法及装置 - Google Patents

针对上行数据传输的反馈方法及装置 Download PDF

Info

Publication number
WO2017194001A1
WO2017194001A1 PCT/CN2017/084147 CN2017084147W WO2017194001A1 WO 2017194001 A1 WO2017194001 A1 WO 2017194001A1 CN 2017084147 W CN2017084147 W CN 2017084147W WO 2017194001 A1 WO2017194001 A1 WO 2017194001A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
uplink data
feedback
enb
harq
Prior art date
Application number
PCT/CN2017/084147
Other languages
English (en)
French (fr)
Inventor
牟勤
刘柳
蒋惠玲
武田和晃
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN201780022400.4A priority Critical patent/CN109075917B/zh
Priority to JP2018555607A priority patent/JP6679753B2/ja
Publication of WO2017194001A1 publication Critical patent/WO2017194001A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to a wireless communication system, and more particularly to a feedback method and corresponding apparatus for uplink data transmission in a wireless communication system.
  • 5G In the rapid development of the fourth generation of mobile communication (4G), the fifth generation of mobile communication (5G) standards have also been put on the agenda.
  • ITU International Telecommunication Union
  • 5G will have three typical application scenarios: First, enhanced mobile broadband (eMBB, Enhanced Mobile Broadband).
  • eMBB enhanced mobile broadband
  • 20Gbps which can support the development of large-bandwidth applications such as virtual reality, live video and sharing, and cloud access anytime and anywhere
  • MTC Massive Machine Type Communication
  • the number of connections reaches 1 million / square kilometers; the third is Ultra Reliable and Low Latency Communication (URLLC), which means that the delay of 5G networks can reach 1 millisecond, which promotes such as intelligent manufacturing, remote Development of low-latency services such as mechanical control, assisted driving and autonomous driving.
  • URLLC Ultra Reliable and Low Latency Communication
  • the number of connections between people and objects supported by the 5G network should reach 1 million/square kilometers.
  • the amount of uplink traffic in the 5G network will be greatly increased.
  • the signaling overhead when the base station performs uplink scheduling in the 5G network will also increase greatly. Therefore, in the 5G network, how to carry out uplink data transmission is one of the current research hotspots.
  • An embodiment of the present invention provides a feedback method for uplink data transmission, including: after receiving and demodulating uplink data sent by a user terminal UE, according to a demodulation result of uplink data of the UE, by using a downlink for feedback
  • the control information DCI sends feedback to the UE.
  • the foregoing DCI may include: one or more hybrid automatic retransmission HARQ fields and an identification field.
  • One or more HARQ fields in the DCI respectively carry uplink data transmission feedback for a UE packet including one or more UEs; the identification field is used to identify the UE packet corresponding to the DCI; at this time, according to the demodulation of the uplink data of the UE
  • sending the feedback to the UE by using the DCI includes: grouping the UE; assigning one HARQ field to each UE in the UE packet as a HARQ field corresponding to the UE; according to the UE from the UE according to a period of time Demodulating results of uplink data of each UE in the packet respectively determining values of the one or more HARQ fields; and transmitting the DCI to the one or more UEs in the UE packet through a physical downlink control channel.
  • One or more HARQ fields in the DCI respectively carry feedback for one uplink data transmission of one UE; at this time, according to the demodulation result of the uplink data of the UE, sending feedback to the UE by using the DCI includes: Determining, by the demodulation result of more than one uplink data transmission from the UE, a value of the one or more HARQ fields; and transmitting the DCI to the UE by using a physical downlink control channel.
  • the DCI may further include: a hybrid automatic retransmission HARQ field and an identification field.
  • the HARQ field in the DCI points to a physical downlink data channel; the identifier field is used to identify the UE corresponding to the DCI; Demodulating the result, sending the feedback to the UE by using the DCI includes: determining an identifier of the UE corresponding to the uplink data that has been correctly demodulated in a period of time; and transmitting by using a physical downlink data channel pointed by the HARQ field in the DCI The identified identity of the UE.
  • An embodiment of the present invention provides a feedback method for uplink data transmission, including: receiving downlink control information DCI for feedback after transmitting uplink data; and determining, according to the DCI, whether the eNB has correctly received the current transmission. Upstream data.
  • the DCI may include: one or more hybrid automatic retransmission HARQ fields and an identification field.
  • One or more HARQ fields in the DCI respectively carry feedback for a UE packet uplink data transmission including one or more UEs; the identifier field is used to identify the UE packet corresponding to the DCI; at this time, downlink control information for feedback is received.
  • the DCI includes: receiving the DCI delivered by the eNB, determining, according to the identifier field of the received DCI, whether the DCI corresponding to the UE group in which the UE is located, and if yes, receiving the DCI; determining whether the eNB has correctly received the current transmission.
  • the uplink data includes: determining a corresponding HARQ field in the received DCI; and determining whether the eNB has correctly received the uplink data of the current transmission according to the value of the corresponding HARQ field in the received DCI.
  • One or more HARQ fields in the DCI respectively carry feedback for one uplink data transmission of one UE; the identifier field is used to identify the UE corresponding to the DCI; at this time, receiving downlink control information DCI for feedback includes: receiving eNB The delivered DCI determines whether it is the DCI corresponding to the DCI according to the identifier field of the received DCI, and if yes, receives the DCI; determines whether the eNB has correctly received the uplink data of the current transmission, including: according to the received The value of the HARQ field in the DCI determines whether the eNB has correctly received the uplink data transmitted by itself more than once.
  • the DCI includes: a hybrid automatic retransmission HARQ field and an identification field.
  • One or more HARQ fields in the DCI point to a physical downlink data channel.
  • determining whether the eNB has correctly received the uplink data of the current transmission includes: receiving data carried by the physical downlink data channel pointed by the HARQ field in the DCI. If the data carried by the physical downlink data channel includes its own identifier, it is determined that the eNB has correctly received the uplink data of the current transmission.
  • An embodiment of the present invention provides a base station, including:
  • a data receiving module configured to receive and demodulate uplink data sent by the user terminal UE
  • a feedback module configured to send, by using the downlink control information DCI for feedback, feedback to the UE for uplink data transmission of the UE according to a demodulation result of the uplink data of the UE.
  • An embodiment of the present invention provides a user terminal, including:
  • An uplink transmission module configured to send uplink data
  • a downlink control information DCI receiving module configured to receive a DCI for feedback
  • a feedback receiving module configured to determine, according to the DCI, whether the eNB has correctly received the uplink data of the current transmission.
  • the feedback is sent to the UE by using the downlink control information DCI for feedback.
  • Embodiments of the present invention provide a non-transitory machine readable storage medium having machine readable instructions stored thereon, the machine readable instructions being executable by a processor to:
  • An embodiment of the present invention provides a base station, including:
  • Non-volatile machine readable storage medium
  • the program module is used to:
  • the feedback is sent to the UE by using the downlink control information DCI for feedback.
  • Embodiments of the present invention provide a non-transitory machine readable storage medium having machine readable instructions stored thereon, the machine readable instructions being executable by a processor to:
  • An embodiment of the present invention provides a user terminal, including:
  • Non-volatile machine readable storage medium
  • the program module is used to:
  • the eNB may separately feed back the UE for performing uplink data transmission, so that no more than two UEs occupy the same downlink resource for feedback, and thus The situation that the eNB and the UE are out of synchronization can be effectively avoided.
  • FIG. 1 shows a process in which an eNB performs feedback after receiving uplink data of a UE in an embodiment of the present invention
  • FIG. 2 shows a process in which a UE receives feedback after transmitting uplink data in an embodiment of the present invention
  • FIG. 3 shows a configuration method of a resource library according to an embodiment of the present invention
  • FIG. 4 is a diagram of a method for receiving uplink data transmission feedback by a UE according to an embodiment of the present invention
  • FIG. 5 is a diagram of a method for performing uplink data transmission feedback by an eNB according to an embodiment of the present invention
  • FIG. 6 is a diagram of a method for receiving uplink data transmission feedback by a UE according to an embodiment of the present invention
  • FIG. 7 is a diagram of a method for performing uplink data transmission feedback by an eNB according to an embodiment of the present invention.
  • Figure 8 shows an example of such a DCI structure for HARQ feedback
  • Figure 9 shows an example of applying DCI for HARQ feedback
  • Figure 10 shows an example of applying DCI for HARQ feedback
  • Figure 11 shows an example of a DCI structure for HARQ feedback
  • Figure 12 shows an example of applying DCI for HARQ feedback
  • Figure 13 shows the structure of an eNB in one embodiment of the present invention
  • Figure 14 shows the structure of a UE in one embodiment of the present invention
  • Figure 15 shows the structure of an eNB in one embodiment of the present invention
  • Figure 16 shows the structure of a UE in one embodiment of the present invention.
  • 17 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the uplink traffic of the 5G network will be greatly increased.
  • the signaling overhead when the base station performs uplink scheduling will also be greatly increased.
  • how to carry out uplink data transmission in 5G networks has become a hot research technology.
  • a base station In a traditional Long Term Evolution (LTE) system, a base station (eNB) needs to perform the following signaling interaction with a user terminal (UE) in an uplink scheduling process.
  • eNB base station
  • UE user terminal
  • the UE establishes a connection with the eNB through a random access procedure; after that, when the uplink data needs to be transmitted, the UE sends a scheduling request (SR) to the eNB, requesting the eNB to allocate an uplink resource thereto; and then, the eNB according to the resource requested by the UE
  • SR scheduling request
  • the corresponding uplink resources are allocated, including: uplink time-frequency resources, reference signals (RS), and modulation and coding schemes (MCS); and then, the eNB allocates the uplink scheduling grant (UL GRANT) to The UE's uplink resource informs the UE; subsequently, the UE will transmit uplink data on the uplink resource allocated by the eNB.
  • SR scheduling request
  • MCS modulation and coding schemes
  • the UE can transmit uplink data after receiving the uplink scheduling grant (UL GRANT). Then, if this method is still used in the application scenario of the 5G large connected Internet of Things, as the uplink traffic increases, the signaling overhead will become very large, which will bring a huge burden to the 5G network.
  • the eNB may configure the uplink resource pool for transmitting uplink data and the selectable MCS set to the UE.
  • the UE will first select an appropriate uplink time-frequency resource and RS from the uplink resource pool configured by the eNB, and determine the MCS in the selectable MSC set. Therefore, the uplink resource and the MCS that are selected by the eNB can be directly used for uplink data transmission without the eNB transmitting the uplink scheduling grant.
  • the eNB determines the location of the downlink resource for which the eNB performs HARQ feedback on the uplink data transmission of the UE according to the frequency used by the UE to transmit the uplink data and the RS.
  • the eNB and the UE may be out of synchronization.
  • the eNB can correctly demodulate the uplink data of the UE1 (the interference caused by the UE2 is small), but the uplink data of the UE2 cannot be correctly demodulated.
  • the eNB only knows that the UE1 sends the uplink data, but does not know that the UE2 also sends the uplink data on the same resource. Therefore, according to the HARQ feedback scheme of the traditional LTE, the eNB uses the uplink data according to the UE1.
  • the frequency f1 and the reference signal RS1 determine the downlink resource location for performing HARQ feedback, and feedback acknowledge receipt (ACK) at the resource location.
  • ACK feedback acknowledge receipt
  • the UE1 determines the location of the downlink resource for which the eNB performs HARQ feedback according to the frequency f1 and the reference signal RS1 used by itself, in the same manner as the eNB, and at the location.
  • the uplink HARQ feedback is received, and finally the ACK fed back by the eNB is obtained, and it is confirmed that the uplink data eNB transmitted by the eNB has been correctly received.
  • the UE2 after transmitting the uplink data at the frequency f1, the UE2 also determines the location of the downlink resource for which the eNB performs HARQ feedback according to the frequency f1 and the reference signal RS1 used by itself, and also receives the HARQ feedback at the location, in the same manner as the eNB. Finally, the ACK fed back by the eNB is obtained, and it is erroneously confirmed that the uplink data eNB transmitted by itself has been correctly received, and data retransmission is not performed.
  • the eNB and the UE2 are out of synchronization, that is, the eNB does not receive the uplink data of the UE2, but the UE2 considers that the eNB correctly received its own uplink data.
  • the eNB does not correctly receive the uplink data of any one UE. Therefore, in the corresponding HARQ feedback, Feedback DTX/NACK. The same downlink resource location of both UEs will detect DTX/NACK, so that data retransmission is performed separately.
  • embodiments of the present invention provide a feedback method for uplink data transmission, which can implement feedback for uplink data transmission of the UE in a contention-based uplink transmission method. This method can be applied to 5G large connection IoT application scenarios.
  • the eNB may perform HARQ feedback by using a Physical Hybrid ARQ Indicator Channel (PHICH), and determine downlink resources carrying the PHICH (determining that the eNB performs uplink data transmission for the UE).
  • PHICH Physical Hybrid ARQ Indicator Channel
  • parameters related to the channel state of the UE such as the SINR of the UE and the reference signal received power (RSRP) may be further considered when considering the downlink resources occupied by the HARQ feedback.
  • the channel quality indicator (CQI) or the MCS used by the UE for uplink data transmission may characterize the channel state of the UE.
  • the eNB may perform HARQ on the uplink data transmission of the UEs by using different downlink resources. Feedback, thereby effectively avoiding out-of-synchronization between the eNB and the UE.
  • FIG. 1 shows a process in which an eNB performs feedback after receiving uplink data of a UE in an embodiment of the present invention.
  • 2 shows a process in which a UE receives feedback after transmitting uplink data in an embodiment of the present invention.
  • the eNB after detecting and demodulating the uplink data sent by the UE, the eNB performs the following operations:
  • Step 101 Determine, according to the frequency, the reference signal, and the channel state parameter of the UE, the downlink resource used for feedback of the current uplink data transmission of the UE.
  • the channel state parameter in this step may be a parameter that can characterize the channel state, such as the SINR, RSRP, CQI of the UE or the MCS used by the UE for uplink data transmission.
  • the feedback for uplink data transmission described in this step may be HARQ feedback.
  • Step 102 Transmit corresponding feedback to the UE on the determined downlink resource according to the demodulation result of the uplink data of the received UE.
  • an acknowledgment may be fed back to the UE through the PHICH on the determined downlink resource; and the uplink data of the UE is not demodulated or the UE may not be correctly demodulated.
  • the UE may be fed back non-acknowledgement (DTX or NACK) through the PHICH on the determined downlink resource.
  • DTX or NACK non-acknowledgement
  • Step 201 Determine, according to the frequency, the reference signal, and the channel state parameter of the current uplink data, the downlink resources occupied by the eNB when performing feedback on the current uplink data transmission.
  • the UE determines, according to the frequency, reference signal, and its own channel state parameter used for transmitting the current uplink data, the eNB provides feedback for the current uplink data transmission.
  • the method of occupying downlink resources should be consistent with the method used by the eNB in FIG.
  • the feedback for uplink data transmission described in this step may be HARQ feedback.
  • Step 202 Receive feedback of the eNB for the current uplink data transmission on the determined downlink resource, and determine whether the eNB has correctly received the uplink data of the current transmission.
  • the eNB successfully receives the uplink data of the current transmission; and if the DTX or NACK is received on the determined downlink resource, or no ACK is detected, the eNB does not have The uplink data of this transmission is successfully received, and thus data retransmission is required.
  • the eNB and the UE may determine downlink resources for feedback by using various methods.
  • the following will be for uplink data transmission
  • the HARQ feedback is taken as an example for detailed description.
  • all downlink resources for HARQ feedback may be divided into multiple orthogonal resource pools in advance, and UEs with different channel states are mapped into different resource pools. That is, for UEs with different channel states, the eNB will use the downlink resources in different resource pools for HARQ feedback, thereby avoiding Between the eNB and the UE caused by the UEs with different channel states using the same downlink resources for HARQ feedback. Lost step.
  • Figure 3 shows a method of configuring a repository. As shown in FIG. 3, the method includes:
  • Step 301 dividing all downlink resources used for HARQ feedback into N groups, and obtaining N resource pools.
  • N is a natural number greater than one.
  • Step 302 The value space of the channel state parameter that characterizes the channel state of the UE is divided into N consecutive intervals.
  • the parameter for characterizing the channel state of the UE may be the RSRP, the SINR measured by the UE, or the MCS used when the UE uplinks the data.
  • the set of the N intervals is the value space of the channel state parameter, and the N intervals are also not intersected, that is, orthogonal.
  • step 303 the N resource pools are in one-to-one correspondence with the N channel state parameter intervals.
  • mapping between the resource library and the channel state parameters is completed, and then the UEs with different channel states can be mapped into different resource pools.
  • Step 304 After completing the mapping, configure mapping relationships between the N resource pools and N channel state parameter intervals at the eNB and the UE.
  • the UE can determine the resource pool used by itself according to its own channel state.
  • the eNB may also determine a resource pool used for performing HARQ feedback on the UE according to its channel state fed back by the UE, so as to map UEs with different SINRs to different resource pools.
  • the downlink resources used for HARQ feedback can be divided into two groups of orthogonal and non-intersecting, including the resource library 1 and the resource library 2.
  • one SINR threshold th1 is set, a section in which the SINR is greater than or equal to th1 is set as the section 1 and corresponds to the resource pool 1, and a section in which the SINR is less than th1 is associated with the resource pool 2 as the section 2.
  • the eNB will use the resource pool 1 for HARQ feedback; and for a UE with an SINR less than th1, the eNB will use the resource pool 2 for HARQ feedback.
  • the UE can complete the reception of the uplink data transmission feedback by the process as shown in FIG. 4.
  • the eNB can complete the feedback for the uplink data transmission by the process as shown in FIG.
  • the receiving uplink data transmission feedback process of the UE shown in FIG. 4 includes:
  • step 401 the UE measures its own channel state.
  • the UE can obtain its own channel state by measuring RSRP, SINR or CQI.
  • Step 402 The UE feeds back the measurement result of the channel state to the eNB.
  • the UE may feed back the result of the channel measurement to the eNB through various existing channel measurement result feedback methods.
  • Step 403 After the UE transmits the uplink data to the eNB, the UE determines the resource pool corresponding to the current channel state according to the measured channel state and the relationship between the channel state parameter interval configured by the UE and the resource library.
  • the UE may use the contention-based uplink data transmission scheme to transmit uplink data, that is, select an appropriate uplink resource in the uplink resource pool configured by the eNB, and then transmit the uplink data on the selected uplink resource.
  • Step 404 The UE determines, according to the frequency used by the uplink data and the reference signal, the location of the downlink resource used for receiving the HARQ feedback in the resource pool corresponding to the UE;
  • the UE may determine, according to the following formula (1), the location of the downlink resource used for receiving the HARQ feedback in the resource pool corresponding to the UE:
  • PHICH Physical Hybrid Automatic Repeat Transfer Indication Channel
  • I PRB_RA is a lowest index of a physical resource block used by the UE for uplink data transmission
  • n RS is an index of an RS used by the UE for uplink data transmission
  • the total number of PHICH groups that represent the system configuration The total number of orthogonal sequences available in a PHICH group on behalf of the system configuration.
  • the UE can determine the downlink resource that the eNB performs HARQ feedback for the current uplink transmission.
  • Step 405 The UE receives the HARQ feedback from the eNB at the location of the downlink resource used for receiving the HARQ feedback in the determined self-corresponding resource pool.
  • the UE may determine whether the eNB correctly received the uplink data of the current transmission, thereby determining whether retransmission is needed.
  • the process of the eNB receiving the uplink data transmission feedback shown in FIG. 5 includes:
  • Step 501 The eNB receives a channel state of the UE reported by the UE.
  • Step 502 After receiving the uplink data sent by the UE, and performing demodulation, the eNB determines the resource pool corresponding to the UE according to the channel state of the UE reported by the UE and the relationship between the channel state parameter interval configured by the UE and the resource pool.
  • Step 503 The eNB determines, according to the frequency used by the UE to transmit the uplink data, and the reference signal, the location of the downlink resource used for performing HARQ feedback in the resource pool corresponding to the UE.
  • the eNB will also determine the location of the downlink resource used for performing HARQ feedback in the resource pool corresponding to the UE by using the above formula (1).
  • the eNB can determine the downlink resource for performing HARQ feedback on the uplink transmission of the UE.
  • Step 504 The eNB performs HARQ feedback at the location of the downlink resource that performs HARQ feedback in the determined resource pool corresponding to the UE.
  • the downlink resources for HARQ feedback are divided into two groups of orthogonal and non-intersecting, including the resource library 1 and the resource library 2, by the resource library configuration method.
  • one SINR threshold th1 is set, a section in which the SINR is greater than or equal to th1 is set as the section 1 and corresponds to the resource pool 1, and a section in which the SINR is less than th1 is associated with the resource pool 2 as the section 2.
  • UE1 and UE2 transmit uplink data with the same frequency and PS
  • SINR of UE1 is greater than th1 and the SINR of UE2 is less than th1
  • UE1 will be mapped to resource library 1, and UE2 Will be mapped to the repository 2.
  • the eNB is actually Performing HARQ feedback on uplink data transmissions of UE1 and UE2 on different downlink resources; the two UEs also detecting HARQ feedback for themselves on different downlink resources. of.
  • the UE can directly feed back the measurement result of the channel state to the eNB by means of display.
  • the UE can also feed back the measurement result of the channel state to the eNB in an implicit manner.
  • An example in which a UE feeds back measurement results of channel states to an eNB in an implicit manner will be given below.
  • the preamble sequence used when the UE performs random access is further divided into N groups, thereby obtaining N. Group leader sequence.
  • N resource pools and N channel state parameter intervals are required to be in one-to-one correspondence with the N group leader sequences.
  • the UE After the UE performs signal measurement and determines its own channel state, it determines the preamble sequence group used for random access according to the correspondence between the channel state parameter interval and the preamble sequence group, and corresponds to itself.
  • the preamble sequence is selected in the preamble sequence group for random access.
  • the UE After transmitting the uplink data, the UE will receive the HARQ feedback of the eNB for its own uplink data transmission on the downlink resource in the resource pool corresponding to its own channel state.
  • the eNB will also determine the preamble sequence group to which the preamble sequence belongs according to the preamble sequence used by the UE in the random access procedure, thereby determining the resource pool used for performing HARQ feedback on the UE according to the mapping relationship.
  • downlink resources for HARQ feedback can be divided into two groups, including resource library 1 and resource library 2.
  • the preamble sequence used when the UE performs random access is also divided into two groups, and the preamble sequence group 1 and the preamble sequence group 2 are obtained.
  • the resource pool 1 is associated with the preamble sequence group 1; and the resource pool 2 is associated with the preamble sequence 2.
  • one SINR threshold th1 is set, a section in which the SINR is greater than or equal to th1 is set as the section 1 and corresponds to the resource pool 1, and a section in which the SINR is less than th1 is associated with the resource pool 2 as the section 2.
  • the mapping between the resource library 1 - the preamble sequence group 1 - the interval 1 and the mapping between the resource library 2 - the preamble sequence group 2 - the interval 2 are completed.
  • the preamble sequence in the preamble sequence group 1 is used for random access, and the HARQ feedback is received on the downlink resources in the resource library 1; when the channel state falls into the interval 2
  • the preamble sequence in the preamble sequence group 2 will be used for random access, and the HARQ feedback is received on the downlink resources in the resource pool 2.
  • the UE will use the downlink resources in the resource bank 1 for HARQ feedback; if one UE uses the preamble sequence The preamble sequence in group 2 is randomly accessed, and the UE will use the downlink resources in resource pool 2 for HARQ feedback.
  • the eNB side can only configure the mapping relationship between the N resource pools and the N preamble sequence groups without recording the mapping relationship with the N channel state parameter intervals. Therefore, after receiving the random access request of the UE, the resource pool corresponding to the UE may be directly determined.
  • FIG. 3 to FIG. 5 show a method in which the eNB and the UE determine downlink resources for performing HARQ feedback.
  • UEs with different channel states are mapped into different resource pools by dividing all downlink resources for HARQ feedback into multiple orthogonal resource pools.
  • the UEs for different channel states are implemented, and the downlink resources in different resource pools are used for HARQ feedback. It can also be seen from the previous examples that this method can effectively avoid the out-of-synchronization between the eNB and the UE.
  • the eNB and the UE determine the downlink resources for performing HARQ feedback will be given below by way of a specific example.
  • the downlink resources used for HARQ feedback need not be divided, that is, the same downlink resource pool is used for all UEs.
  • HARQ feedback is not be divided, that is, the same downlink resource pool is used for all UEs.
  • FIG. 6 shows a method for a UE to receive feedback for uplink data transmission in an embodiment of the present invention. As shown in FIG. 6, the method includes:
  • step 601 the UE determines its own channel state.
  • the above channel state information may include RSRP, CQI, SINR, and the like.
  • the UE can directly obtain its own channel state through channel measurement.
  • the above channel state may also be the MCS used by the UE for uplink data transmission.
  • the UE needs to perform channel measurement first and report channel measurement results to the eNB. Then, the eNB configures the appropriate MCS for the subsequent uplink data transmission according to the channel measurement result reported by the UE. At this time, the UE can determine the MCS configured by the eNB for subsequent uplink data transmission.
  • Step 602 After transmitting the uplink data to the eNB, the UE determines the location of the downlink resource that receives the HARQ feedback according to the channel state of the channel, the frequency used by the UE to transmit the uplink data, and the reference signal.
  • the UE may determine the location of the downlink resource that receives the HARQ feedback by using the following formula (2) or (3):
  • Step 603 The UE receives the HARQ feedback of the eNB at the determined location of the downlink resource.
  • the UE may determine whether the eNB correctly received the uplink data of the current transmission, thereby determining whether retransmission is needed.
  • FIG. 7 shows a method for an eNB to perform uplink data transmission feedback in an embodiment of the present invention. As shown in FIG. 7, the method includes:
  • step 701 the eNB determines a channel state of the UE.
  • the foregoing channel states may include RSRP, CQI, SINR, and the like of the UE.
  • the UE will report after measuring its own channel state parameters.
  • the eNB determines the channel state of the UE by receiving the channel state parameter reported by the UE.
  • the foregoing channel state may also be an MCS used when the UE performs uplink data transmission.
  • the eNB may first receive the channel measurement result reported by the UE, and then further configure the appropriate MCS for the subsequent uplink data transmission according to the channel measurement result of the received UE.
  • Step 702 After receiving the uplink data sent by the UE and performing demodulation, the eNB determines, according to the channel state of the UE, the frequency used by the UE to transmit the uplink data, and the reference signal, the location of the downlink resource used for performing HARQ feedback on the UE.
  • the eNB may determine by using the above formula (2) or (3). The location of the downlink resource used for HARQ feedback for the UE.
  • step 703 the eNB performs HARQ feedback at the determined location of the downlink resource.
  • the same downlink resource pool is used for all UEs for HARQ feedback, in addition to the frequency used to transmit uplink data with the UE when determining the location of the specific HARQ feedback.
  • the reference signal it is also directly related to the channel state parameters of the UE. Therefore, even if two or more UEs use the same frequency and RS to transmit uplink data, when performing HARQ feedback, the eNB may distinguish the two or more UEs according to the channel states of the two or more UEs, and avoid multiple The UE occupies the same downlink resource to perform HARQ feedback, thereby causing the eNB and the UE to lose synchronization.
  • the eNB performs HARQ feedback through the PHICH regardless of whether the downlink resources for performing the HARQ feedback are grouped, but only considers the frequency used by the UE to transmit the uplink data when determining the downlink resource carrying the PHICH.
  • the channel state information of the UE is also considered, so as to achieve the purpose of distinguishing UEs of different channel states, and the eNB and the UE are effectively prevented from being out of synchronization.
  • embodiments of the present invention also provide other feedback schemes for UE uplink data transmission. These methods will be described in detail below by way of examples.
  • a new downlink control information (DCI, Downlink Control Information) dedicated to feedback (for example, for performing HARQ feedback) is designed.
  • the eNB will perform feedback for uplink data transmission, such as HARQ feedback, through such DCI dedicated for feedback.
  • Figure 8 shows an example of such a DCI structure dedicated to HARQ feedback.
  • this DCI dedicated to HARQ feedback includes: The above HARQ field and an identification field.
  • the above HARQ field is used to carry HARQ feedback for a certain uplink transmission of a certain UE.
  • each HARQ field may identify HARQ feedback with a 1-bit binary bit, for example, "1" to identify the ACK and "0" to identify the NACK/DTX.
  • a 1-bit binary bit for example, "1" to identify the ACK and "0" to identify the NACK/DTX.
  • the eNB and the UE pre-arrange and configure the meaning representation of each field value.
  • the identifier field is used to carry a cyclic redundancy check (CRC) value of the one or more HARQ fields and a Radio Network Temporary Identifier (RNTI) of the HARQ, where the RNTI is mainly used to identify that the DCI is used for The DCI fed back by the HARQ and the DCI used to identify the HARQ feedback for which or which group of UEs the DCI is.
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identifier
  • multiple RNTIs may be defined in the standard for identifying DCIs for HARQ feedback, and then the eNB further configures a group of UEs by using higher layer signaling to specifically use multiple RNTIs. Which one of them is identified.
  • each of the HARQ fields in the DCI shown in FIG. 8 respectively carries HARQ feedback for each UE in one UE group.
  • the UEs need to be first grouped, and after the packets are performed, the eNB allocates one RNTI for each UE packet. Different RNTIs are used for distinguishing between different UE packets.
  • each UE in the packet is also allocated a HARQ field in the DCI for feedback as its corresponding HARQ field.
  • the UE may be grouped according to channel state information of the UE, and users with similar channel states are grouped into one group.
  • 10 UEs with similar channel states are divided into one UE packet, and the UE packet is assigned an identifier RNTI1.
  • the DCI used for feedback The HARQ field is further allocated to the 10 UEs, and the HARQ field is further allocated to the 10 UEs, that is, which HARQ field is corresponding to the 10 UEs. In this way, after the UE performs uplink data transmission, it receives the DCI sent by the eNB for feedback.
  • the DCI After receiving the DCI identified as RNTI1, the DCI is known to be the DCI sent to itself, and then receives the feedback of the eNB for its own uplink data transmission on the HARQ field corresponding to the eNB, and determines whether the eNB correctly received the self-transmitted transmission. Upstream data to determine if data retransmission is required.
  • the eNB may receive, according to each UE within the UE packet, within a period of time (within a system-set time window)
  • the uplink data determines the value of each HARQ field in the UE packet, generates a DCI for feedback, and carries the DCI feedback for each UE in the UE packet by carrying the DCI through a Physical Downlink Control Channel (PDCCH).
  • PDCCH Physical Downlink Control Channel
  • the HARQ feedback for which UE is grouped by the DCI may be identified by the RNTI in the identification field.
  • Figure 9 shows an example of applying DCI for HARQ feedback.
  • the UE packet includes three UEs of UE1, UE2, and UE3, and within one time window, all three users transmit uplink data.
  • the eNB can correctly demodulate the data of UE1 and UE3, but cannot correctly demodulate the data of UE2. Therefore, the eNB will feed back "1", "0", "" in the HARQ field of DCI for HARQ feedback for the UE packet.
  • 1" (“1" identifies ACK, "0" identifies NACK/DTX), and uses the RNTI carried in the identification field to identify that the DCI is sent to the UE packet.
  • the HARQ field corresponding to UE1 is the first field.
  • the HARQ field corresponding to UE3 is the third field. Therefore, after receiving the DCI, UE3 will determine that the eNB has successfully received the uplink data transmitted by itself.
  • the HARQ field corresponding to UE2 is the second one. The field, therefore, after receiving the DCI, UE2 will determine that the eNB has not successfully received the uplink data of its own transmission, and thus will perform retransmission.
  • each of the HARQ fields in the DCI carries HARQ feedback for multiple uplink data transmissions of the same UE over a period of time (within a system-set time window).
  • the HARQ feedback for which UE the DCI is for the UE may be identified by the RNTI in the identification field.
  • the eNB may determine the value of each HARQ field in the DCI used for feedback according to multiple uplink data from one UE received within a period of time (within a time window set by a system), and generate The fed back DCI, and carrying the DCI through the Physical Downlink Control Channel (PDCCH) to complete the HARQ feedback for the UE.
  • PDCCH Physical Downlink Control Channel
  • the HARQ feedback for which UE the DCI is for the UE may be identified by the RNTI in the identification field. After the UE transmits the uplink data multiple times, the UE will listen to and receive the DCI for feedback, and determine whether the eNB correctly receives the uplink data that it transmits multiple times according to the respective HARQ fields in the DCI for feedback.
  • FIG. 10 shows an example of applying DCI for HARQ feedback.
  • UE1 transmits a total of 4 uplink data for a period of time.
  • the eNB can correctly demodulate the uplink data of the first to third transmissions, but cannot correctly demodulate the uplink data of the fourth transmission. Therefore, the eNB will feed back "1" in the HARQ field of the DCI dedicated to the HARQ feedback for UE1.
  • ”, “1”, “1”, “0” (“1” identifies ACK, “0” identifies NACK/DTX), and uses the RNTI carried in the identification field to identify that the DCI is sent to the UE.
  • the UE1 After receiving the DCI dedicated to the HARQ feedback for the UE1, the UE1 determines that the eNB has successfully received the uplink data of the first to third transmissions according to the HARQ field, but cannot correctly demodulate the uplink data of the fourth transmission. Therefore, the uplink data of the fourth transmission is retransmitted.
  • the eNB performs HARQ feedback directly through the above-described DCI for HARQ feedback.
  • DCI of other structures can also be designed to perform HARQ feedback.
  • FIG. 11 shows an example of a DCI structure for HARQ feedback.
  • this DCI includes an identification field for identifying a DCI that is dedicated to HARQ feedback.
  • the DCI also includes a HARQ field that points to a physical downlink data channel, such as a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the UE identifier corresponding to the uplink data that the eNB has correctly received in a period of time will be carried. In this way, after transmitting the uplink data, the UE can monitor the DCI for the HARQ feedback and determine the physical downlink data channel pointed to by the HARQ field in the DCI according to the HARQ field therein.
  • PDSCH Physical Downlink Shared Channel
  • the eNB And monitoring the physical downlink data channel, receiving data carried by the physical downlink data channel, and determining whether the data transmitted by the channel includes its own UE identifier. If so, the eNB has correctly received its own uplink data. If the data of the physical downlink data channel does not include its own UE identifier, it indicates that the eNB does not correctly receive its own uplink data, and thus needs to retransmit the uplink data.
  • Figure 12 shows an example of applying DCI for HARQ feedback.
  • three UEs of UE1, UE2, and UE3 transmit uplink data for a period of time.
  • the eNB can correctly demodulate the uplink data transmitted by UE1 and UE3, but cannot correctly demodulate the uplink data transmitted by UE2. Therefore, only the UEs of UE1 and UE3 will be included in the PDSCH pointed to by the HARQ field of DCI dedicated for HARQ feedback. Identifies, not including the UE identity of UE2.
  • UE1, UE2, and UE3 will listen to the DCI dedicated to HARQ feedback after transmitting the uplink data, and will be redirected to the PDSCH pointed to by the DCI after receiving the HARQ field of the DCI dedicated for HARQ feedback, and receive the PDSCH.
  • UE1 and UE3 may detect the UE identity of the UE in the PDSCH, so that the eNB may have successfully received the uplink data transmitted by itself, but the UE2 does not detect its own UE identity in the PDSCH, so that it can be determined that the eNB cannot be correct. Demodulate the uplink data transmitted by itself and retransmit it.
  • the eNB can separately feed back the UE for performing uplink data transmission, so that no situation occurs in which two or more UEs occupy the same downlink resource for feedback, thereby effectively avoiding The case where the eNB and the UE are out of synchronization.
  • an embodiment of the present invention further provides an eNB and a UE that implement the foregoing method.
  • the structure of the eNB and the UE will be specifically described as follows.
  • Figure 13 shows the structure of an eNB in one embodiment of the present invention.
  • the eNB includes:
  • a data receiving module configured to receive and demodulate uplink data sent by the UE
  • a feedback resource determining module configured to determine, according to a frequency, a reference signal used by the UE to send uplink data, and a channel state parameter of the UE, a downlink resource used for feeding back the current uplink data transmission of the UE;
  • the feedback module is configured to send feedback to the UE on the determined downlink resource according to the demodulation result of the uplink data of the UE.
  • the feedback resource determining module may include:
  • a configuration unit configured to configure a correspondence between one or more channel state parameter intervals and one or more resource pools; wherein the one or more resource pools are orthogonal resource pools obtained by dividing all downlink resources used for feedback ;
  • a status information receiving unit configured to receive a channel status reported by the UE
  • a resource base determining unit configured to use, according to the channel status reported by the UE, and the configured Determining a correspondence between the channel state parameter interval and the resource library, and determining a resource pool corresponding to the UE;
  • the feedback resource determining unit is configured to determine, according to a frequency used by the UE to transmit uplink data, and a reference signal, a location of a downlink resource used for performing feedback in a resource pool corresponding to the UE.
  • the feedback resource determining unit may determine the location of the downlink resource according to the above formula (1).
  • the status information receiving unit may receive the channel status reported by the UE in multiple manners, such as explicit or implicit, as described above.
  • the feedback resource determining module may further determine, by using the foregoing formula (2) or (3), downlink resources occupied when the current uplink data transmission of the UE is fed back.
  • Figure 14 shows the structure of a UE in one embodiment of the present invention.
  • the UE may include:
  • An uplink transmission module configured to send uplink data.
  • the uplink transmission module may send uplink data by using a contention-based uplink transmission scheme.
  • the UE may also include:
  • a second feedback resource determining module configured to determine, according to a frequency, a reference signal, and a channel state parameter used for sending the uplink data, a downlink resource occupied by the eNB when performing feedback on the current uplink data transmission;
  • the feedback receiving module is configured to receive feedback of the eNB for the current uplink data transmission on the determined downlink resource, and determine whether the eNB has correctly received the uplink data of the current transmission.
  • the foregoing second feedback resource determining module may include:
  • a second configuration unit configured to configure a correspondence between one or more channel state parameter intervals and one or more resource pools; wherein the one or more resource pools are orthogonally obtained by dividing all downlink resources used for feedback Resource library
  • a channel state measuring unit configured to measure a channel state of the channel, and feed back a measurement result of the channel state to the eNB;
  • a second resource library determining unit configured to determine, according to the measured channel state and the relationship between the channel state parameter interval configured by itself and the resource library, the resource pool corresponding to the current channel state;
  • the second feedback resource determining unit is configured to determine, according to the frequency used by the uplink data and the reference signal, the location of the downlink resource used for receiving the feedback in the corresponding resource pool.
  • the second feedback resource determining unit may determine the location of the downlink resource according to the above formula (1).
  • the channel state measurement unit may feed back the measured channel state to the eNB by explicit or implicit methods.
  • the second feedback resource determining module may further determine, according to formula (2) or (3), downlink resources occupied by the base station eNB when performing hybrid automatic repeat request feedback for the current uplink data transmission. .
  • a data receiving module configured to receive and demodulate uplink data sent by the UE
  • the second feedback module is configured to send feedback to the UE by using a DCI for feedback according to a demodulation result of the uplink data of the UE.
  • the structure of the UE is as shown in FIG. 16, and includes:
  • An uplink transmission module configured to send uplink data
  • a DCI receiving module for receiving DCI for feedback
  • the second feedback receiving module is configured to determine, according to the HARQ field of the DCI, whether the eNB has correctly received the uplink data of the current transmission.
  • each functional block may be implemented by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated, directly and/or indirectly (eg, This is achieved by a plurality of devices as described above by a wired and/or wireless connection.
  • the radio base station, the user terminal, and the like in one embodiment of the present invention can function as a computer that performs processing of the radio communication method of the present invention.
  • 17 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the radio base station 10 and the user terminal 20 described above may be configured as a computer device that physically includes the processor 1001, the memory 1002, the memory 1003, the communication device 1004, the input device 1005, the output device 1006, the bus 1007, and the like.
  • the hardware structures of the wireless base station 10 and the user terminal 20 may include one or more of the devices shown in the figures, or may not include some of the devices.
  • the processor 1001 only illustrates one, but may be multiple processors.
  • the processing may be performed by one processor, or may be performed by one or more processors simultaneously, sequentially, or by other methods.
  • the processor 1001 can be installed by more than one chip.
  • the functions of the wireless base station 10 and the user terminal 20 are realized, for example, by reading a predetermined software (program) into hardware such as the processor 1001 and the memory 1002, thereby causing the processor 1001 to perform an operation, and the communication device
  • the communication performed by 1004 is controlled, and the reading and/or writing of data in the memory 1002 and the memory 1003 is controlled.
  • the processor 1001 causes the operating system to operate to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the feedback resource determination module, the second feedback resource determination module, and the like described above may be implemented by the processor 1001.
  • the processor 1001 reads out programs (program codes), software modules, data, and the like from the memory 1003 and/or the communication device 1004 to the memory 1002, and executes various processes in accordance therewith.
  • programs program codes
  • the program a program for causing a computer to execute at least a part of the operations described in the above embodiments can be employed.
  • the second feedback resource determination module of the user terminal 20 can be implemented by a feedback resource determination program stored in the memory 1002 and operated by the processor 1001, and can be similarly implemented for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and may be, for example, a read only memory (ROM), an EEPROM (Erasable Programmable ROM), an electrically programmable read only memory (EEPROM), or an electrically programmable read only memory (EEPROM). At least one of a random access memory (RAM) and other suitable storage medium is used.
  • the memory 1002 may also be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store an executable program (program code), a software module, and the like for implementing the wireless communication method according to the embodiment of the present invention.
  • the memory 1003 is a computer readable recording medium, and may be, for example, a flexible disk, a soft (registered trademark) disk, or a magneto-optical disk (for example, a compact disk (CD-ROM) (Compact Disc ROM), etc., digital versatile disc, Blu-ray (Blu-ray, registered trademark) disc, removable disk, hard disk drive, smart card, flash memory device (for example, card, stick, key driver (key At least one of a driver, a magnetic strip, a database, a server, and other suitable storage medium.
  • the memory 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission and reception device) for performing communication between computers through a wired and/or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like, for example.
  • the communication device 1004 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to implement, for example, Frequency Division Duplex (FDD) and/or Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the data receiving module, the feedback module, the uplink transmission module, the feedback receiving module, and the like described above may be implemented by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs an output to the outside.
  • the input device 1005 and the output device 1006 may also be an integrated structure (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected via a bus 1007 for communicating information.
  • the bus 1007 may be composed of a single bus or a different bus between devices.
  • the wireless base station 10 and the user terminal 20 may include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a programmable logic device (PLD). Field Programmable Gate Array (FPGA) Such hardware can be used to implement some or all of the functional blocks.
  • the processor 1001 can be installed by at least one of these hardwares.
  • the channel and/or symbol can also be a signal (signaling).
  • the signal can also be a message.
  • the reference signal may also be simply referred to as an RS (Reference Signal), and may also be referred to as a pilot (Pilot), a pilot signal, or the like according to applicable standards.
  • a component carrier may also be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may also be referred to as a subframe.
  • a subframe may be composed of one or more time slots in the time domain.
  • the subframe may be a fixed length of time (eg, 1 ms) that is independent of the numerology.
  • the time slot may have one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM), Single Carrier Frequency Division Multiple Access (SC-FDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA) Symbols, etc.).
  • the time slot can also be a time unit based on parameter configuration.
  • the time slot may also include a plurality of minislots. Each minislot may be composed of one or more symbols in the time domain.
  • a minislot can also be referred to as a subslot.
  • Radio frames, subframes, time slots, mini-slots, and symbols all represent time units when signals are transmitted. Radio frames, subframes, time slots, mini-slots, and symbols can also use other names that correspond to each other.
  • one subframe may be referred to as a Transmission Time Interval (TTI), and a plurality of consecutive subframes may also be referred to as a TTI.
  • TTI Transmission Time Interval
  • One slot or one minislot may also be referred to as a TTI. That is, the subframe and/or the TTI may be a subframe (1 ms) in the existing LTE, or may be a period shorter than 1 ms (for example, 1 to 13 symbols), or Therefore, it is longer than 1ms.
  • a unit indicating a TTI may also be referred to as a slot, a minislot, or the like instead of a subframe.
  • TTI refers to, for example, a minimum time unit scheduled in wireless communication.
  • the radio base station performs scheduling for all user terminals to allocate radio resources (bandwidth, transmission power, etc. usable in each user terminal) in units of TTIs.
  • the definition of TTI is not limited to this.
  • the TTI may be a channel-coded data packet (transport block), a code block, and/or a codeword transmission time unit, or may be a processing unit such as scheduling, link adaptation, or the like.
  • the time interval e.g., the number of symbols
  • actually mapped to the transport block, code block, and/or codeword may also be shorter than the TTI.
  • TTI time slot or one mini time slot
  • more than one TTI ie, more than one time slot or more than one micro time slot
  • the number of slots (the number of microslots) constituting the minimum time unit of the scheduling can be controlled.
  • a TTI having a length of 1 ms may also be referred to as a regular TTI (TTI in LTE Rel. 8-12), a standard TTI, a long TTI, a regular subframe, a standard subframe, or a long subframe.
  • TTI shorter than a conventional TTI may also be referred to as a compressed TTI, a short TTI, a partial TTI (partial or fractional TTI), a compressed subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, a regular TTI, a subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • a short TTI eg, a compressed TTI, etc.
  • TTI length of the TTI may be replaced with 1 ms.
  • a resource block is a resource allocation unit of a time domain and a frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the RB may include one or more symbols in the time domain, and may also be one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe can be respectively One or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB, Physical RB), a sub-carrier group (SCG), a resource element group (REG, a resource element group), a PRG pair, an RB pair, and the like. .
  • the resource block may also be composed of one or more resource elements (REs, Resource Elements).
  • REs resource elements
  • Resource Elements For example, one RE can be a subcarrier and a symbol of a radio resource area.
  • radio frames, subframes, time slots, mini-slots, symbols, and the like are merely examples.
  • the number of subframes included in the radio frame, the number of slots of each subframe or radio frame, the number of microslots included in the slot, the number of symbols and RBs included in the slot or minislot, and the number of RBs included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, and the length of the cyclic prefix (CP, Cyclic Prefix) can be variously changed.
  • the information, parameters, and the like described in the present specification may be expressed by absolute values, may be represented by relative values with predetermined values, or may be represented by other corresponding information.
  • wireless resources can be indicated by a specified index.
  • the formula or the like using these parameters may be different from those explicitly disclosed in the present specification.
  • the information, signals, and the like described in this specification can be expressed using any of a variety of different techniques.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. which may be mentioned in all of the above description, may pass voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. Combined to represent.
  • information, signals, and the like may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via a plurality of network nodes.
  • Information or signals input or output can be stored in a specific place (such as memory) or managed by a management table. Information or signals input or output may be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
  • the notification of the information is not limited to the mode/embodiment described in the specification, and may be performed by other methods.
  • the notification of the information may be through physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), and upper layer signaling (for example, radio resource control).
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Media Access Control
  • the physical layer signaling may be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may also be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • the MAC signaling can be notified, for example, by a MAC Control Unit (MAC CE).
  • MAC CE MAC Control Unit
  • the notification of the predetermined information is not limited to being explicitly performed, and may be performed implicitly (for example, by not notifying the predetermined information or by notifying the other information).
  • the determination can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (boolean value) represented by true (true) or false (false), and can also be compared by numerical values ( For example, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, should be interpreted broadly to mean commands, command sets, code, code segments, program code, programs, sub- Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, steps, functions, and the like.
  • software, commands, information, and the like may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) from a website, server, or other remote source
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • base station (BS, Base Station)", “radio base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier”, and “component carrier”
  • BS Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell a cell
  • cell group a carrier
  • component carrier a component carrier
  • the base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can also pass through the base station subsystem (for example, a small indoor base station (RFH, remote head (RRH), Remote Radio Head))) to provide communication services.
  • the term "cell” or “sector” refers to a portion or the entirety of the coverage area of a base station and/or base station subsystem that performs communication services in the coverage.
  • the base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
  • eNB eNodeB
  • Mobile stations are also sometimes used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless Terminals, remote terminals, handsets, user agents, mobile clients, clients, or several other appropriate terms are used.
  • the wireless base station in this specification can also be replaced with a user terminal.
  • each mode/embodiment of the present invention can be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user-to-device (D2D) devices.
  • D2D user-to-device
  • the function of the above-described wireless base station 10 can be regarded as a function of the user terminal 20.
  • words such as "upstream” and "downstream” can also be replaced with "side”.
  • the uplink channel can also be replaced with a side channel.
  • the user terminal in this specification can also be replaced with a wireless base station.
  • the function of the user terminal 20 described above can be regarded as a function of the wireless base station 10.
  • the node may be considered, for example, but not limited to, a Mobility Management Entity (MME), a Serving-Gateway (S-GW, etc.), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-B Long-Term Evolution
  • LTE-Beyond Long-Term Evolution
  • Super 3rd generation mobile communication system SUPER3G
  • IMT-Advanced advanced international mobile communication
  • 4th generation mobile communication system (4G, 4th generation mobile communication system
  • 5th generation mobile communication system (5G, 5th generation mobile communication) System
  • Future Radio Access FX
  • GSM registered trademark
  • GSM Global System for Mobile Communications
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra Wideband (UWB, Ultra-WideBand
  • any reference to a unit using the names "first”, “second”, etc., as used in this specification, does not fully limit the number or order of the units. These names can be used to distinguish between two or more A convenient method of the unit is used in this specification. Thus, reference to a first element and a second element does not mean that only two elements may be employed or that the first element must prevail in the form of the second unit.
  • determination used in the present specification sometimes includes various actions. For example, regarding “judgment (determination)", calculation, calculation, processing, deriving, investigating, looking up (eg, table, database, or other) may be performed. Search in the data structure, ascertaining, etc. are considered to be “judgment (determination)”. Further, regarding “judgment (determination)”, reception (for example, receiving information), transmission (for example, transmission of information), input (input), output (output), and access (for example) may also be performed (for example, Accessing data in memory, etc. is considered to be “judgment (determination)”.
  • judgment (determination) it is also possible to consider “resolving”, “selecting”, selecting (choosing), establishing (comparing), comparing (comparing), etc. as “judging (determining)”. That is to say, regarding "judgment (determination)", several actions can be regarded as performing "judgment (determination)".
  • connection means any direct or indirect connection or combination between two or more units, This includes the case where there is one or more intermediate units between two units that are “connected” or “coupled” to each other.
  • the combination or connection between the units may be physical, logical, or a combination of the two.
  • connection can also be replaced with "access”.
  • two units may be considered to be electrically connected by using one or more wires, cables, and/or printed, and as a non-limiting and non-exhaustive example by using a radio frequency region.
  • the electromagnetic energy of the wavelength of the region, the microwave region, and/or the light is "connected” or "bonded” to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明提供了针对上行数据传输的反馈方法及装置。在本发明中,通过下行控制信息来针对上行数据传输进行反馈。这样,可以针对不同的用户终端使用不同的下行资源进行上行数据传输的反馈,从而避免基站和用户终端在上行数据传输过程中的失步。

Description

针对上行数据传输的反馈方法及装置 技术领域
本发明涉及无线通信系统,特别涉及无线通信系统中针对上行数据传输的反馈方法及相应装置。
发明背景
在第四代移动通信(4G)飞速发展的今天,第五代移动通信(5G)标准制定也提上了日程。根据国际电信联盟(ITU)的定义,5G将拥有三大类典型的应用场景:一是增强型的移动宽带(eMBB,Enhanced Mobile Broadband),在这一场景下智能终端用户上网峰值速率可以达到10Gbps甚至20Gbps,从而能够支撑虚拟现实、视频直播和分享以及随时随地云接入等大带宽应用的发展;二是大连接物联网(mMTC,Massive Machine Type Communication),这要求5G网络支撑的人和物的联接数量达到100万个/平方公里;三是低时延超可靠通信(uRLLC,Ultra Reliable and Low Latency Communication),这意味着5G网络的时延可达1毫秒,从而推动诸如智能制造、远程机械控制、辅助驾驶以及自动驾驶等低时延业务的发展。
如前所述,在上述大连接物联网的应用场景下,5G网络支撑的人和物的联接数量要达到100万个/平方公里。在如此海量的终端需要接入的情况下,5G网络中上行的业务量将大大增加。相对应地,5G网络中基站进行上行调度时的信令开销也将大大增加。因此,在5G网络中,如何进行上行数据传输,是目前的研究热点之一。
发明内容
本发明的实施例提供了一种针对上行数据传输的反馈方法,包括:接收并解调用户终端UE发送的上行数据后,根据对所述UE上行数据的解调结果,通过用于反馈的下行控制信息DCI向所述UE发送反馈。
其中,上述DCI可以包括:一个以上的混合自动重传HARQ字段以及一个标识字段。
DCI中一个以上的HARQ字段分别承载针对一个包含一个以上UE的UE分组的上行数据传输反馈;标识字段用于标识所述DCI对应的UE分组;此时,根据对所述UE上行数据的解调结果,通过所述DCI向所述UE发送反馈包括:将UE分组;为所述UE分组内每个UE分配一个HARQ字段,作为所述UE对应的HARQ字段;根据一段时间内针对来自所述UE分组内各个UE的上行数据的解调结果分别确定所述一个以上HARQ字段的值;以及将所述DCI通过物理下行控制信道发送给所述UE分组内的所述一个以上UE。
DCI中一个以上的HARQ字段分别承载针对一个UE一次以上上行数据传输的反馈;此时,根据对所述UE上行数据的解调结果,通过所述DCI向所述UE发送反馈包括:根据一段时间内针对来自所述UE的一次以上上行数据传输的解调结果分别确定所述一个以上HARQ字段的值;以及将所述DCI通过物理下行控制信道发送给所述UE。
上述DCI还可以包括:一个混合自动重传HARQ字段以及一个标识字段。
DCI中的HARQ字段指向一个物理下行数据信道;所述标识字段用于标识所述DCI对应的UE;此时,根据对所述UE上行数据的 解调结果,通过所述DCI向所述UE发送反馈包括:确定一段时间内已正确解调的上行数据所对应的UE的标识;以及通过所述DCI中HARQ字段所指向的物理下行数据信道发送所确定的UE的标识。
本发明的实施例提供了一种针对上行数据传输的反馈方法,包括:发送上行数据后接收用于反馈的下行控制信息DCI;以及根据所述DCI确定所述eNB是否已正确接收了本次传输的上行数据。
其中,DCI可以包括:一个以上的混合自动重传HARQ字段以及一个标识字段。
DCI中一个以上的HARQ字段分别承载针对一个包含一个以上UE的UE分组上行数据传输的反馈;所述标识字段用于标识所述DCI对应的UE分组;此时,接收用于反馈的下行控制信息DCI包括:接收eNB下发的DCI,根据所接收DCI的标识字段判断是否为自身所在UE分组对应的DCI,如果是,则接收所述DCI;确定所述eNB是否已正确接收了本次传输的上行数据包括:确定在所接收DCI中自身对应HARQ字段;以及根据所接收DCI中自身对应HARQ字段的值,确定所述eNB是否已正确接收了本次传输的上行数据。
DCI中一个以上的HARQ字段分别承载针对一个UE一次以上上行数据传输的反馈;所述标识字段用于标识所述DCI对应的UE;此时,接收用于反馈的下行控制信息DCI包括:接收eNB下发的DCI,根据所接收DCI的标识字段判断是否为自身所对应的DCI,如果是,则接收所述DCI;确定所述eNB是否已正确接收了本次传输的上行数据包括:根据所接收DCI中HARQ字段的值,确定所述eNB是否已正确接收了自身一次以上传输的上行数据。
或者,DCI包括:一个混合自动重传HARQ字段以及一个标识字段。
DCI中一个以上的HARQ字段指向一个物理下行数据信道;此时,确定所述eNB是否已正确接收了本次传输的上行数据包括:接收所述DCI中HARQ字段指向的物理下行数据信道承载的数据;如果该物理下行数据信道承载的数据中包含自身的标识,则确定所述eNB已正确接收了本次传输的上行数据。
本发明的实施例提供了一种基站,包括:
数据接收模块,用于接收并解调用户终端UE发送的上行数据;以及
反馈模块,用于根据对所述UE上行数据的解调结果,通过用于反馈的下行控制信息DCI向所述UE发送针对所述UE上行数据传输的反馈。
本发明的实施例提供了一种用户终端,包括:
上行传输模块,用于发送上行数据;
下行控制信息DCI接收模块,用于接收用于反馈的DCI;以及
反馈接收模块,用于根据所述DCI确定所述eNB是否已正确接收了本次传输的上行数据。
本发明的实施例提供了一种程序,用于使计算机执行以下操作:
接收并解调用户终端UE发送的上行数据后,根据对所述UE上行数据的解调结果,通过用于反馈的下行控制信息DCI向所述UE发送反馈。
本发明的实施例提供了一种非易失性机器可读存储介质,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
接收并解调用户终端UE发送的上行数据后,根据对所述UE上行数据的解调结果,通过用于反馈的下行控制信息DCI向所述UE发 送反馈。
本发明的实施例提供了一种基站,包括:
处理器;
非易失性机器可读存储介质;以及
存储在该非易失性机器可读存储介质中、由该处理器执行的程序模块;
所述程序模块用于:
接收并解调用户终端UE发送的上行数据后,根据对所述UE上行数据的解调结果,通过用于反馈的下行控制信息DCI向所述UE发送反馈。
本发明的实施例提供了一种程序,用于使计算机执行以下操作:
发送上行数据后接收用于反馈的下行控制信息DCI;以及
根据所述DCI确定所述eNB是否已正确接收了本次传输的上行数据。
本发明的实施例提供了一种非易失性机器可读存储介质,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
发送上行数据后接收用于反馈的下行控制信息DCI;以及
根据所述DCI确定所述eNB是否已正确接收了本次传输的上行数据。
本发明的实施例提供了一种用户终端,包括:
处理器;
非易失性机器可读存储介质;以及
存储在该非易失性机器可读存储介质中、由该处理器执行的程序模块;
所述程序模块用于:
发送上行数据后接收用于反馈的下行控制信息DCI;以及
根据所述DCI确定所述eNB是否已正确接收了本次传输的上行数据。
在本发明的实施例中,通过设计用于反馈的DCI,eNB可以为每个进行上行数据传输的UE分别进行反馈,因而不会出现两个以上UE占用相同下行资源进行反馈的情况,从而也可以有效避免eNB和UE失步的情况。
附图简要说明
图1显示了在本发明的实施例中,eNB在接收UE上行数据后进行反馈的过程;
图2显示了在本发明的实施例中,UE在发送上行数据后接收反馈的过程;
图3显示了本发明实施例所述的一种资源库的配置方法;
图4显示了本发明实施例所述的UE接收上行数据传输反馈的方法;
图5显示了本发明实施例所述的eNB进行上行数据传输反馈的方法;
图6显示了本发明实施例所述的UE接收上行数据传输反馈的方法;
图7显示了本发明实施例所述的eNB进行上行数据传输反馈的方法;
图8显示了这种用于HARQ反馈的DCI结构的一种示例;
图9显示了应用DCI进行HARQ反馈的一个示例;
图10显示了应用DCI进行HARQ反馈的一个示例;
图11显示了用于HARQ反馈的DCI结构的一种示例;
图12显示了应用DCI进行HARQ反馈的一个示例;
图13显示了本发明一个实施例中eNB的结构;
图14显示了本发明一个实施例中UE的结构;
图15显示了本发明一个实施例中eNB的结构;以及
图16显示了本发明一个实施例中UE的结构。
图17是示出本发明的一实施方式所涉及的无线基站和用户终端的硬件结构的一例的图。
实施本发明的方式
如前所述,在大连接物联网的应用场景下,5G网络的上行业务量将大大增加,相对应地,基站进行上行调度时的信令开销也将大大增加。为此,如何在5G网络中进行上行数据传输,已成为目前的研究热点技术。
在传统的长期演进(LTE)系统中,基站(eNB)在上行调度过程中需要与用户终端(UE)进行如下的信令交互。
首先,UE通过随机接入过程与eNB建立连接;此后,在需要传输上行数据时,UE向eNB发出调度请求(SR),请求eNB为其分配上行资源;接下来,eNB根据UE所请求的资源的情况,按照一定的调度原则,分配相应的上行资源,包括:上行时频资源、参考信号(RS)及调制编码方式(MCS)等;然后,eNB通过上行调度授权(UL GRANT)将分配给该UE的上行资源通知UE;随后,UE将在eNB分配的上行资源上传输上行数据。
通过上述上行数据的调度以及传输过程可以看出,在传统的LTE 系统中,UE要在收到上行调度授权(UL GRANT)后才能传输上行数据。那么,如果在5G的大连接物联网的应用场景下仍然沿用这样的方式,随着上行业务量的激增,信令的开销将会变得非常巨大,从而给5G网络带来巨大的负担。
为了解决这样的问题,很多企业以及研究机构已经提出了一些无需基站下发上行调度授权的新的基于竞争的上行传输方案。在这样的基于竞争的上行传输方案中,在UE与eNB通过随机接入过程建立了连接之后,eNB可以向UE配置用于传输上行数据的上行资源库以及可选择的MCS集合。UE在有上行数据需要传输时,将首先从eNB配置的上行资源库中选择适合的上行时频资源以及RS,同时在可选择的MSC集合中确定MCS。从而可以直接使用自己选择确定的上行资源以及MCS进行上行数据传输,而无需eNB下发上行调度授权。很显然,如果采用这样的传输方案,可以大大减少信令的开销,从而极大地减小网络的负担。但是这种情况下,不同的UE可能会同时选择相同的上行资源进行上行传输,从而可能会发生上行数据之间的碰撞。因此,在这种基于竞争的上行传输方案中,在eNB接收到上行数据之后如何进行上行数据的反馈成为需要解决的问题之一。
在传统LTE系统中,是通过混合自动重传(HARQ)机制完成针对上行数据传输的反馈的。具体而言,eNB是根据UE传输上行数据所使用的频率以及RS来确定eNB对UE上行数据传输进行HARQ反馈的下行资源的位置。但是,如果在基于竞争的上行传输方案中沿用传统LTE系统的HARQ方案,就可能会带来eNB和UE失步的情况。
具体而言,假设UE1和UE2同时选择了相同的频率f1以及相同的参考信号RS1传输上行数据,且UE1信号的信号干扰噪声比(SINR)要明显优于UE2信号的SINR。在这种情况下,从eNB侧 来看,即使UE1的数据与UE2的数据发生了碰撞,eNB通常也能正确解调出UE1的上行数据(UE2带来的干扰小),但是不能正确解调出UE2的上行数据。在这种情况下,eNB只知道UE1发送了上行数据,而并不知道UE2也在相同的资源上发送了上行数据,因此,按照传统LTE的HARQ反馈方案,eNB会根据UE1传输上行数据所使用的频率f1以及参考信号RS1确定进行HARQ反馈的下行资源位置,并在该资源位置上反馈确认收到(ACK)。然而,从终端侧来看,UE1在频率f1发送了上行数据后,会使用与eNB相同的方法根据频率f1以及自身使用的参考信号RS1确定eNB进行HARQ反馈的下行资源的位置,并在该位置上接收HARQ反馈,最终得到eNB反馈的ACK,确认自身传输的上行数据eNB已经正确收到。同样,UE2在频率f1传输上行数据后,也会使用与eNB相同的方法根据频率f1以及自身使用的参考信号RS1确定eNB进行HARQ反馈的下行资源的位置,并且也在该位置上接收HARQ反馈,也最终得到eNB反馈的ACK,并错误确认自身传输的上行数据eNB已经正确收到,而不会进行数据重传。由此可以看出,在这种场景下,eNB和UE2之间出现了失步,即eNB并未收到UE2的上行数据,但是UE2认为eNB正确收到了自己的上行数据。同样的情况下,如果UE1和UE2的信道状态差不多,则由于两个UE之间的干扰很大,通常eNB不会正确接收到任何一个UE的上行数据,因而,在相应的HARQ反馈时,将反馈DTX/NACK。两个UE同样的下行资源位置,都将检测到DTX/NACK,从而都分别进行数据重传。
为此,本发明的实施例提供了针对上行数据传输的反馈方法,可以在基于竞争的上行传输方法中实现针对UE的上行数据传输的反馈。该方法可应用到5G的大连接物联网应用场景中。
在本发明的实施例中,eNB可以通过物理混合自动重传指示信道(PHICH,Physical Hybrid ARQ Indicator Channel)来进行HARQ反馈,并且在确定承载PHICH的下行资源(确定eNB针对UE的上行数据传输进行HARQ反馈时所占用的下行资源)时,除了考虑UE传输上行数据所使用的频率以及参考信号之外,还可以进一步考虑与UE信道状态有关的参数,例如UE的SINR、参考信号接收功率(RSRP)、信道质量指示(CQI)或UE进行上行数据传输时所使用的MCS等可以表征UE信道状态的参数。这样,即使两个以上的UE选择相同的上行资源并使用相同的参考信号发送上行数据,一旦这些UE的信道状态有差异,则eNB可以使用不同的下行资源分别对这些UE的上行数据传输进行HARQ反馈,从而有效避免eNB和UE之间的失步。
具体而言,图1显示了在本发明的实施例中,eNB在接收UE上行数据后进行反馈的过程。图2显示了在本发明的实施例中,UE在发送上行数据后接收反馈的过程。
如图1所示,eNB在检测并解调UE发送的上行数据后,将执行如下操作:
步骤101:根据UE发送上行数据所使用的频率、参考信号以及该UE的信道状态参数确定针对该UE的本次上行数据传输进行反馈时所占用的下行资源。
本步骤中的信道状态参数可以是UE的SINR、RSRP、CQI或UE进行上行数据传输时所使用的MCS等可以表征信道状态的参数。
本步骤所述的针对上行数据传输的反馈可以是HARQ反馈。
步骤102:根据对所接收UE上行数据的解调结果,在所确定的下行资源上向该UE传输相应的反馈。
例如,在正确解调得到该UE的上行数据时,可以在确定的下行资源上通过PHICH向该UE反馈确认(ACK);而在没有解调到该UE的上行数据或者无法正确解调该UE的上行数据时,可以在确定的下行资源上通过PHICH向该UE反馈非确认(DTX或NACK)。
相对应地,如图2所示,UE在自身选择的上行资源上发送了上行数据之后,将执行如下操作:
步骤201:根据发送本次上行数据所使用的频率、参考信号以及自身的信道状态参数确定eNB针对本次上行数据传输进行反馈时所占用的下行资源。
需要说明的是,为保持eNB和UE之间的同步,在本步骤中,UE根据发送本次上行数据所使用的频率、参考信号以及自身的信道状态参数确定eNB针对本次上行数据传输进行反馈所占用的下行资源的方法应当与图1中eNB所使用的方法是一致的。
本步骤所述的针对上行数据传输的反馈可以是HARQ反馈。
步骤202:在确定的下行资源上接收eNB针对本次上行数据传输的反馈,确定eNB是否已正确接收了本次传输的上行数据。
例如,如果在确定的下行资源上收到ACK,则说明eNB成功接收了本次传输的上行数据;而如果在确定的下行资源上收到DTX或NACK,或者没有检测到ACK,则说明eNB没有成功接收本次传输的上行数据,因而需要进行数据重传。
在实际的应用中,在上述步骤101和201中,eNB以及UE可以通过多种方法确定进行反馈的下行资源。下面将以针对上行数据传输 进行HARQ反馈为例分别举例进行详细说明。
在本发明的一个实施例中,可以预先将用于HARQ反馈的全部下行资源划分成多个正交的资源库,并将具有不同信道状态的UE映射到不同的资源库中。也就是说,针对不同信道状态的UE,eNB将使用不同资源库中的下行资源进行HARQ反馈,从而避免由于具有不同信道状态的UE使用相同的下行资源进行HARQ反馈而造成的eNB和UE之间的失步。
具体而言,可以通过如下图3所示的方法将具有不同信道状态的UE映射到不同的资源库中。图3显示了一种资源库的配置方法。如图3所示,该方法包括:
步骤301,将用于HARQ反馈的全部下行资源分成N组,得到N个资源库。
其中,N为大于1的自然数。这N个资源库是没有交集的,也即是正交的。
步骤302,将表征UE信道状态的信道状态参数的取值空间划分为N个连续的区间。
如前所述,在本例中,上述表征UE信道状态的参数可以是UE测量得到的RSRP、SINR或者是UE上行传输数据时所使用的MCS等。这N个区间的集合即为上述信道状态参数的取值空间,且这N个区间也是没有交集的,也即是正交的。
步骤303,将N个资源库与N个信道状态参数区间一一对应。
通过上述步骤即完成了资源库以及信道状态参数之间的映射,随后就可以将具有不同信道状态的UE映射到不同的资源库中。
步骤304,在完成上述映射后,在eNB和UE处配置上述N个资源库和N个信道状态参数区间的映射关系。
此后,UE就可以根据自身的信道状态确定自身使用的资源库。同理,eNB也可以根据UE反馈的其信道状态确定针对该UE进行HARQ反馈时使用的资源库,从而将不同SINR的UE映射到不同的资源库。
例如,通过上述资源库配置方法,可以将用于HARQ反馈的下行资源分成正交没有交集的两组,包括资源库1和资源库2。与此同时,设置一个SINR门限th1,将SINR大于或等于th1的区间作为区间1,与资源库1对应;而将SINR小于th1的区间作为区间2与资源库2对应。从而完成资源库1——区间1之间的映射以及资源库2——区间2之间的映射。通过这样的对应,针对SINR大于或等于th1的UE,eNB将使用资源库1进行HARQ反馈;而针对SINR小于th1的UE,eNB将使用资源库2进行HARQ反馈。
在完成资源库配置之后,在UE侧,UE可以通过如图4所示的过程完成针对上行数据传输反馈的接收。在eNB侧,eNB可以通过如图5所示的过程完成针对上行数据传输的反馈。
图4所示的UE的接收上行数据传输反馈过程包括:
步骤401,UE测量自身的信道状态。
在本步骤中,UE可以通过测量RSRP、SINR或者CQI来得到自身的信道状态。
步骤402,UE将信道状态的测量结果反馈给eNB。
在本步骤中,UE可以通过现有的各种信道测量结果反馈方法将信道测量的结果反馈给eNB。
步骤403,UE传输上行数据到eNB后,UE根据测量得到的信道状态以及自身配置的信道状态参数区间与资源库的关系,确定自身在当前信道状态下对应的资源库;
在本步骤中,UE可以采用基于竞争的上行数据传输方案传输上行数据,也即在eNB配置的上行资源库中选择适合的上行资源,然后在所选择的上行资源上传输上行数据。
步骤404,UE根据自身传输上行数据所使用的频率以及参考信号确定在自身对应的资源库中用于接收HARQ反馈的下行资源的位置;
具体而言,在本步骤中,UE可以根据如下的公式(1)确定在自身对应的资源库中用于接收HARQ反馈的下行资源的位置:
Figure PCTCN2017084147-appb-000001
其中,
Figure PCTCN2017084147-appb-000002
代表计算得到的物理混合自动重传指示信道(PHICH)组的索引;
Figure PCTCN2017084147-appb-000003
代表在所述PHICH组内正交序列的索引;IPRB_RA是UE进行上行数据传输时使用的物理资源块的最低索引;nRS是UE进行上行数据传输使用的RS的索引;
Figure PCTCN2017084147-appb-000004
代表系统配置的PHICH组的总数;
Figure PCTCN2017084147-appb-000005
代表系统配置的在一个PHICH组中可用的正交序列的总数。
通过上述步骤401-404,UE即可确定eNB针对自身本次上行传输所进行HARQ反馈的下行资源。
步骤405,UE在确定的自身对应资源库中用于接收HARQ反馈的下行资源的位置处接收来自eNB的HARQ反馈。
在接收到来自eNB的HARQ反馈后,UE可以确定eNB是否正确接收了本次传输的上行数据,从而判断是否需要重传。
图5所示的eNB接收上行数据传输反馈的过程包括:
步骤501,eNB接收UE上报的UE的信道状态;
步骤502,eNB接收UE发送的上行数据,并进行解调后,根据UE上报的UE的信道状态以及自身配置的信道状态参数区间与资源库的关系,确定该UE对应的资源库;
步骤503,eNB根据UE传输上行数据所使用的频率以及参考信号确定在该UE对应的资源库中进行HARQ反馈所使用的下行资源的位置;
在本步骤中,eNB也将通过上述公式(1)确定在该UE对应的资源库中进行HARQ反馈所使用的下行资源的位置。
且通过上述步骤501-503,eNB即可确定针对该UE的上行传输进行HARQ反馈的下行资源。
步骤504,eNB在确定的该UE对应的资源库中进行HARQ反馈的下行资源的位置处进行HARQ反馈。
例如,在前面的例子中,通过资源库配置方法,将用于HARQ反馈的下行资源分成正交没有交集的两组,包括资源库1和资源库2。与此同时,设置一个SINR门限th1,将SINR大于或等于th1的区间作为区间1,与资源库1对应;而将SINR小于th1的区间作为区间2与资源库2对应。从而完成资源库1——区间1之间的映射以及资源库2——区间2之间的映射。在这种情况下,如果两个UE,UE1和UE2以相同的频率以及PS发送上行数据,如果UE1的SINR大于th1,而UE2的SINR小于th1,则UE1将被影射到资源库1,而UE2将被影射到资源库2。通过这样的映射,即使通过上述公式(1)计算得到的针对UE1和UE2的HARQ反馈的下行资源的位置的计算结果是相同的,但是由于UE1和UE2对应不同的资源库,因此,实际上eNB是在不同的下行资源上对UE1和UE2的上行数据传输进行HARQ反馈的;两个UE也是在不同的下行资源上检测针对自身的HARQ反馈 的。
在实际的应用中,UE可以通过显示的方式直接将信道状态的测量结果反馈给eNB。此外,UE也可以通过隐性的方式将信道状态的测量结果反馈给eNB。下面将给出一个UE通过隐性的方式将信道状态的测量结果反馈给eNB的例子。
在本例中,除了将用于HARQ反馈的全部下行资源以及信道状态参数的取值空间分成N组之外,还要进一步将UE进行随机接入时使用的前导序列分成N组,从而得到N组前导序列。同时还需将N个资源库、N个信道状态参数区间与N组前导序列一一对应。从而完成资源库、前导序列以及信道状态参数之间的映射。并且,在进行上述映射之后,将在eNB和UE处配置上述N个资源库、N个前导序列组以及N个信道状态参数区间的映射关系。
接下来,在UE进行信号测量,确定自身的信道状态后,将根据信道状态参数区间与前导序列组之间的对应关系确定自身进行随机接入时所使用的前导序列组,并在自身对应的前导序列组中选择前导序列进行随机接入。然后,UE在传输上行数据之后将在与自身信道状态对应的资源库中的下行资源上接收eNB针对自身上行数据传输的HARQ反馈。相对应地,eNB也将反过来根据UE在随机接入过程中所使用的前导序列确定该前导序列所属的前导序列组,从而根据映射关系确定针对该UE进行HARQ反馈时所使用的资源库。
例如,在上述过程中,可以将用于HARQ反馈的下行资源分成两组,包括资源库1和资源库2。将UE进行随机接入时使用的前导序列也分成2组,得到前导序列组1和前导序列组2。然后,将资源库1与前导序列组1对应;而将资源库2与前导序列2对应。与此同 时,设置一个SINR门限th1,将SINR大于或等于th1的区间作为区间1,与资源库1对应;而将SINR小于th1的区间作为区间2与资源库2对应。从而完成资源库1——前导序列组1——区间1之间的映射以及资源库2——前导序列组2——区间2之间的映射。从UE侧来看,信道状态落入区间1时,将使用前导序列组1中的前导序列进行随机接入,并在资源库1中的下行资源上接收HARQ反馈;信道状态落入区间2时,将使用前导序列组2中的前导序列进行随机接入,并在资源库2中的下行资源上接收HARQ反馈。相对应地,从eNB侧来看,如果一个UE使用前导序列组1中的前导序列进行随机接入,则针对该UE将使用资源库1中的下行资源进行HARQ反馈;如果一个UE使用前导序列组2中的前导序列进行随机接入,则针对该UE将使用资源库2中的下行资源进行HARQ反馈。
作为简化,eNB侧可以只配置N个资源库和N个前导序列组的映射关系,而无需记录和N个信道状态参数区间的映射关系。从而,在接收到UE的随机接入请求后,可以直接确定该UE对应的资源库。
上述图3-图5给出了eNB以及UE确定进行HARQ反馈的下行资源的一种方法。在该方法中,通过将用于HARQ反馈的全部下行资源划分成多个正交的资源库,并将具有不同信道状态的UE映射到不同的资源库中。从而实现针对不同信道状态的UE,使用不同资源库中的下行资源进行HARQ反馈。从前面的例子也可以看出,这种方法可以有效避免eNB和UE之间的失步。
下面将通过具体示例给出eNB以及UE确定进行HARQ反馈的下行资源的另一种方法。在本例中,无需对用于HARQ反馈的下行资源进行划分,也即针对所有UE都使用同一个下行资源库进行 HARQ反馈。
图6显示了本发明实施例中,UE接收针对上行数据传输的反馈的方法。如图6所示,该方法包括:
步骤601,UE确定自身的信道状态。
上述信道状态信息可以包括RSRP、CQI、SINR等等。在这种情况下,UE可以通过信道测量直接得到自身的信道状态。
此外,上述信道状态也可以是UE进行上行数据传输是所使用的MCS。在这种情况下,UE需要首先进行信道测量,并向eNB上报信道测量结果。然后,eNB会根据UE上报的信道测量结果为UE配置合适的MCS用于后续的上行数据传输。此时,UE即可确定eNB为后续上行数据传输所配置的MCS。
步骤602,UE传输上行数据到eNB后,根据自身的信道状态、自身传输上行数据所使用的频率以及参考信号确定接收HARQ反馈的下行资源的位置。
例如,在上述信道状态为eNB配置的UE传输上行数据的MCS的情况下,在本步骤中,UE可以通过如下的公式(2)或(3)确定接收HARQ反馈的下行资源的位置:
Figure PCTCN2017084147-appb-000006
Figure PCTCN2017084147-appb-000007
其中,
Figure PCTCN2017084147-appb-000008
代表计算得到的物理混合自动重传指示信道PHICH 组的索引;
Figure PCTCN2017084147-appb-000009
代表在所述PHICH组内正交序列的索引;IPRB_RA是UE进行上行数据传输时使用的物理资源块的最低索引;nRS是UE进行上行数据传输使用的RS的索引;
Figure PCTCN2017084147-appb-000010
代表系统配置的PHICH组的总数;
Figure PCTCN2017084147-appb-000011
代表系统配置的在一个PHICH组中可用的正交序列的总数;以及Tre为系统配置的MCS的一个门限值。
步骤603,UE在确定的下行资源的位置处接收eNB的HARQ反馈。
在接收到来自eNB的HARQ反馈后,UE可以确定eNB是否正确接收了本次传输的上行数据,从而判断是否需要重传。
图7显示了本发明实施例中,eNB进行上行数据传输反馈的方法。如图7所示,该方法包括:
步骤701,eNB确定UE的信道状态。
本步骤中,上述信道状态可以包括UE的RSRP、CQI、SINR等等。在这种情况下,UE在测量自身的信道状态参数后会进行上报。eNB通过接收UE上报的信道状态参数确定UE的信道状态。
此外,上述信道状态还可以是UE进行上行数据传输时使用的MCS。在这种情况下,eNB可以首先接收UE上报的信道测量结果,然后再进一步根据接收到的UE的信道测量结果为用户配置合适的MCS用于后续的上行数据传输。
步骤702,eNB接收UE发送的上行数据并进行解调后,根据UE的信道状态、UE传输上行数据所使用的频率以及参考信号确定针对该UE进行HARQ反馈所使用的下行资源的位置;
例如,在上述信道状态为eNB配置的UE传输上行数据的MCS的情况下,在本步骤中,eNB可以通过上述的公式(2)或(3)确定 针对该UE进行HARQ反馈所使用的下行资源的位置。
步骤703,eNB在确定的下行资源的位置处进行HARQ反馈。
从上述图6和图7所示的方法可以看出,虽然针对所有UE都使用同一个下行资源库进行HARQ反馈,但是在确定具体的HARQ反馈的位置时除了与UE传输上行数据所使用的频率以及参考信号有关外,还直接与UE的信道状态参数有关。因此,即使两个以上的UE使用相同的频率以及RS传输上行数据,在进行HARQ反馈时,eNB也可以根据这两个以上的UE的信道状态对这两个以上的UE进行区分,避免多个UE占用同一个下行资源进行HARQ反馈,从而造成eNB和UE的失步的情况。
在前面的实施例中,无论是否对进行HARQ反馈的下行资源进行分组,eNB都是通过PHICH来进行HARQ反馈的,只是在确定承载PHICH的下行资源时除了考虑UE传输上行数据所使用的频率以及参考信号之外,还会考虑UE的信道状态信息,从而达到区分不同信道状态的UE的目的,有效避免eNB和UE的失步。
除了上述实施例之外,本发明的实施例还提供了其他针对UE上行数据传输的反馈方案。下面将通过示例详细说明这些方法。
在本发明实施例的方法中,将设计一种新的专门用于反馈(例如用于进行HARQ反馈)的下行控制信息(DCI,Downlink Control Information)。eNB将通过这种专门用于反馈的DCI进行针对上行数据传输的反馈,例如HARQ反馈。
图8显示了这种专门用于HARQ反馈的DCI结构的一种示例。
从图8可以看出,这种专门用于HARQ反馈的DCI包括:一个 以上的HARQ字段以及一个标识字段。上述HARQ字段用于承载针对某个UE的某次上行传输的HARQ反馈。具体地,每个HARQ字段可以用1位二进制比特来标识HARQ反馈,例如,用“1”来标识ACK,而用“0”来标识NACK/DTX。当然,反过来用“0”来标识ACK,用“1”来标识NACK/DTX也是可以的。eNB和UE预先约定并配置好每个字段值的意思表示即可。上述标识字段用于承载上述一个以上的HARQ字段的循环冗余校验(CRC)值以及HARQ的无线网络临时标识(RNTI,Radio Network Temporary Identifier),上述RNTI主要用于标识此DCI是一个用于HARQ反馈的DCI以及用于标识该DCI是针对哪个或哪一组UE的HARQ反馈的DCI。当一个小区中所有UE共用一个用于HARQ反馈的DCI时,此时在标准中可只定义唯一一个RNTI用于标识用于HARQ反馈的DCI。当一个小区中的UE分组大于一组时,此时在标准中可定义多个RNTI用于标识用于HARQ反馈的DCI,再由eNB通过高层信令进一步配置某一组UE具体用多个RNTI中的哪一个进行标识。
在本发明的一个实施例中,上述图8所示的DCI中的各个HARQ字段分别承载的是针对一个UE组内各个UE的HARQ反馈。在本实施例中,首先需要将UE分组,并且在进行分组后,eNB会为每一个UE分组分配一个RNTI。不同UE分组之间,使用不同的RNTI进行区分。在得到UE分组后,还要为该分组内每个UE分配一个上述用于反馈的DCI中的HARQ字段,作为其对应的HARQ字段。具体而言,可以根据UE的信道状态信息对UE进行分组,将信道状态相似的用户分为一组。例如,将10个信道状态相近的UE分为一个UE分组,并为该UE分组分配标识RNTI1。同时,用于反馈的DCI中至 少包括10个HARQ字段,进一步为这10个UE分别分配一个HARQ字段,即确定这10个UE分别对应哪个HARQ字段。这样,在UE进行上行数据传输后,会接收eNB下发的用于反馈的DCI。在接收到标识为RNTI1的DCI后即可知道该DCI是发送给自身的DCI,然后,再在自身对应的HARQ字段上接收eNB针对自身上行数据传输的反馈,确定eNB是否正确接收到了自身传输的上行数据,从而确定是否需要进行数据重传。
对基站侧而言,一旦确定了UE的分组以及分组内每个UE对应的HARQ字段,则eNB可以根据在一段时间内(一个系统设置的时间窗内)接收的来自该UE分组内各个UE的上行数据确定这个UE分组内各个HARQ字段的值,生成用于反馈的DCI,并通过物理下行控制信道(PDCCH)承载该DCI完成针对该UE分组内各个UE的HARQ反馈。在本实施例中,如前所述,可以通过标识字段中的RNTI标识此DCI是针对哪个UE分组的HARQ反馈。
图9显示了应用DCI进行HARQ反馈的一个示例。在图9的示例中,该UE分组包括UE1、UE2和UE3三个UE,且在一个时间窗内,三个用户都有传输上行数据。eNB可以正确解调UE1和UE3的数据,但是不能正确解调UE2的数据,因此,在针对该UE分组的用于HARQ反馈的DCI的HARQ字段,eNB将反馈“1”、“0”、“1”(“1”标识ACK,“0”标识NACK/DTX),同时使用标识字段中携带的RNTI标识该DCI是发送给该UE分组的。UE1对应的HARQ字段是第一个字段,因此,UE1在收到DCI之后将会确定eNB已经成功的接收了自身传输的上行数据。同理,UE3对应的HARQ字段是第三个字段,因此,UE3在收到DCI之后将会确定eNB已经成功的接收了自身传输的上行数据。而UE2对应的HARQ字段是第二个 字段,因此,UE2在收到DCI之后将会确定eNB没有成功的接收了自身传输的上行数据,从而会进行重传。
在本发明的另一个实施例中,上述DCI中的各个HARQ字段承载的是针对同一个UE在一段时间内(一个系统设置的时间窗内)多次上行数据传输的HARQ反馈。在本实施例中,可以通过标识字段中的RNTI标识此DCI是针对哪个UE的HARQ反馈。如此,对基站侧而言,eNB可以根据在一段时间内(一个系统设置的时间窗内)接收的来自一个UE多次上行数据确定该用于反馈的DCI中各个HARQ字段的值,生成用于反馈的DCI,并通过物理下行控制信道(PDCCH)承载该DCI完成针对该UE的HARQ反馈。在本实施例中,如前所述,可以通过标识字段中的RNTI标识此DCI是针对哪个UE的HARQ反馈。而UE在多次传输上行数据后,将监听并接收针对自己的用于反馈的DCI,并根据该用于反馈的DCI中的各个HARQ字段确定eNB是否正确接收到了自身多次传输的上行数据。
图10显示了应用DCI进行HARQ反馈的一个示例。在图10的示例中,UE1在一段时间内共传输了4次上行数据。eNB可以正确解调第1~3次传输的上行数据,但是不能正确解调第4次传输的上行数据,因此,在针对UE1的专门用于HARQ反馈的DCI的HARQ字段,eNB将反馈“1”、“1”、“1”、“0”(“1”标识ACK,“0”标识NACK/DTX),同时使用标识字段中携带的RNTI标识该DCI是发送给该UE的。UE1在收到针对自身的专门用于HARQ反馈的DCI之后将会根据HARQ字段确定eNB已经成功的接收了第1~3次传输的上行数据,但是不能正确解调第4次传输的上行数据,从而会重传第4次传输的上行数据。
在上述实施例中,eNB直接通过上述用于HARQ反馈的DCI来进行HARQ反馈。作为上述实施例的一种变形,还可以设计其他结构的DCI来完成HARQ反馈。
图11显示了用于HARQ反馈的DCI结构的一种示例。如图11所示,这种DCI包括一个标识字段,用于标识自身是专门用于HARQ反馈的DCI。这种DCI还包括一个HARQ字段,该字段指向一个物理下行数据信道,例如,一个物理下行共享信道(PDSCH)。在该物理下行数据信道中,将承载eNB在一段时间内已正确接收的上行数据所对应的UE标识。这样,UE在传输了上行数据之后,就可以监听上述用于HARQ反馈的DCI,根据其中的HARQ字段确定该DCI中HARQ字段指向的物理下行数据信道。再监听该物理下行数据信道,接收该物理下行数据信道承载的数据,判断该信道传输的数据中是否包含自身的UE标识。如果有,则说明eNB已正确接收了自身的上行数据。如果该物理下行数据信道的数据中没有包含自身的UE标识,则说明eNB没有正确接收自身的上行数据,从而需要重传上行数据。
图12显示了应用DCI进行HARQ反馈的一个示例。在图12的示例中,UE1、UE2以及UE3三个UE在一段时间都传输了上行数据。eNB可以正确解调UE1和UE3传输的上行数据,但是不能正确解调UE2传输的上行数据,因此,在专门用于HARQ反馈的DCI的HARQ字段所指向的PDSCH中将仅包含UE1和UE3的UE标识,而不包含UE2的UE标识。UE1、UE2以及UE3在传输了上行数据之后将监听专门用于HARQ反馈的DCI,在监听到专门用于HARQ反馈的DCI的HARQ字段后将会重定向至该DCI指向的PDSCH,接收该PDSCH 的数据。UE1和UE3可以在该PDSCH中检测到自身的UE标识,从而可以确定eNB已经成功的接收了自身传输的上行数据,但是UE2在该PDSCH中没有检测到自身的UE标识,从而可以确定eNB不能正确解调自身传输的上行数据,从而会重传。
在上述实施例中,通过设计用于反馈的DCI,eNB可以为每个进行上行数据传输的UE分别进行反馈,因而不会出现两个以上UE占用相同下行资源进行反馈的情况,从而可以有效避免eNB和UE失步的情况。
与上述上行数据传输方法相对应,本发明的实施例还提供了实现上述方法的eNB以及UE。eNB和UE的结构将具体描述如下。
图13显示了本发明一个实施例中eNB的结构。如图13所示,该eNB包括:
数据接收模块,用于接收并解调UE发送的上行数据;
反馈资源确定模块,用于根据所述UE发送上行数据所使用的频率、参考信号以及所述UE的信道状态参数确定针对所述UE本次上行数据传输进行反馈时所占用的下行资源;以及
反馈模块,用于根据对所述UE上行数据的解调结果,在所确定的下行资源上向所述UE发送反馈。
根据本发明的一个实施例,上述反馈资源确定模块可以包括:
配置单元,用于配置一个以上信道状态参数区间与一个以上资源库之间的对应关系;其中,所述一个以上资源库是通过将用于反馈的全部下行资源进行划分得到的正交的资源库;
状态信息接收单元,用于接收所述UE上报的信道状态;
资源库确定单元,用于根据所述UE上报的信道状态以及配置的 信道状态参数区间与资源库的对应关系,确定所述UE对应的资源库;以及
反馈资源确定单元,用于根据所述UE传输上行数据所使用的频率以及参考信号确定在所述UE对应的资源库中进行反馈所使用的下行资源的位置。
具体而言,上述反馈资源确定单元可以根据上述公式(1)确定下行资源的位置。
如前所述,状态信息接收单元可以通过前面描述的显式或者隐性等多种方式接收UE上报的信道状态。
在本发明的另一个实施例中,上述反馈资源确定模块还可以通过上述公式(2)或(3)确定针对所述UE的本次上行数据传输进行反馈时所占用的下行资源。
图14显示了本发明一个实施例中UE的结构。如图14所示,该UE可以包括:
上行传输模块,用于发送上行数据。具体而言,该上行传输模块可以采用基于竞争的上行传输方案发送上行数据。
该UE还可以包括:
第二反馈资源确定模块,用于根据发送所述上行数据所使用的频率、参考信号以及自身的信道状态参数确定eNB针对本次上行数据传输进行反馈时所占用的下行资源;以及
反馈接收模块,用于在确定的下行资源上接收所述eNB针对本次上行数据传输的反馈,确定所述eNB是否已正确接收了本次传输的上行数据。
在本发明的一个实施例中,上述第二反馈资源确定模块可以包括:
第二配置单元,用于配置一个以上信道状态参数区间与一个以上资源库之间的对应关系;其中,所述一个以上资源库是通过将用于反馈的全部下行资源进行划分得到的正交的资源库;
信道状态测量单元,用于测量自身的信道状态,并将信道状态的测量结果反馈给eNB;
第二资源库确定单元,用于根据测量得到的信道状态以及自身配置的信道状态参数区间与资源库的关系,确定自身在当前信道状态下对应的资源库;
第二反馈资源确定单元,用于根据自身传输上行数据所使用的频率以及参考信号确定在自身对应的资源库中用于接收反馈的下行资源的位置。
具体而言,上述第二反馈资源确定单元可以根据上述公式(1)确定下行资源的位置。
如前所述,上述信道状态测量单元可以通过显式或者隐性等方式将测量得到的信道状态反馈给eNB。
在本发明的另一个实施例中,上述第二反馈资源确定模块还可以根据公式(2)或(3)确定基站eNB针对本次上行数据传输进行混合自动重传请求反馈时所占用的下行资源。
如前所述,在本发明的实施例中,还可以通过DCI来进行反馈。在这种设计思路下,eNB的结构如图15所示,包括:
数据接收模块,用于接收并解调UE发送的上行数据;以及
第二反馈模块,用于根据对所述UE上行数据的解调结果,通过用于反馈的DCI向所述UE发送反馈。
UE的结构如图16所示,包括:
上行传输模块,用于发送上行数据;
DCI接收模块,用于接收用于反馈的DCI;以及
第二反馈接收模块,用于根据所述DCI的HARQ字段确定所述eNB是否已正确接收了本次传输的上行数据。
<硬件结构>
另外,上述实施方式的说明中使用的框图示出了以功能为单位的块。这些功能块(结构单元)通过硬件和/或软件的任意组合来实现。此外,各功能块的实现手段并不特别限定。即,各功能块可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本发明的一实施方式中的无线基站、用户终端等可以作为执行本发明的无线通信方法的处理的计算机来发挥功能。图17是示出本发明的一实施方式所涉及的无线基站和用户终端的硬件结构的一例的图。上述的无线基站10和用户终端20可以作为在物理上包括处理器1001、内存1002、存储器1003、通信装置1004、输入装置1005、输出装置1006、总线1007等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。无线基站10和用户终端20的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器1001仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器1001可以通过一个以上的芯片来安装。
无线基站10和用户终端20中的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器1001、内存1002等硬件上,从而使处理器1001进行运算,对由通信装置1004进行的通信进行控制,并对内存1002和存储器1003中的数据的读出和/或写入进行控制。
处理器1001例如使操作系统进行工作从而对计算机整体进行控制。处理器1001可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的反馈资源确定模块、第二反馈资源确定模块等可以通过处理器1001实现。
此外,处理器1001将程序(程序代码)、软件模块、数据等从存储器1003和/或通信装置1004读出到内存1002,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,用户终端20的第二反馈资源确定模块可以通过保存在内存1002中并通过处理器1001来工作的反馈资源确定程序来实现,对于其它功能块,也可以同样地来实现。
内存1002是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存1002也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存1002可以保存用于实施本发明的一实施方式所涉及的无线通信方法的可执行程序(程序代码)、软件模块等。
存储器1003是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM (Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器1003也可以称为辅助存储装置。
通信装置1004是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置1004为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的数据接收模块、反馈模块、上行传输模块、反馈接收模块等可以通过通信装置1004来实现。
输入装置1005是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1006是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置1005和输出装置1006也可以为一体的结构(例如触控面板)。
此外,处理器1001、内存1002等各装置通过用于对信息进行通信的总线1007连接。总线1007可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,无线基站10和用户终端20可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array) 等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器1001可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,无线帧在时域中可以由一个或多个期间(帧)构成。构成无线帧的该一个或多个期间(帧)中的每一个也可以称为子帧。进而,子帧在时域中可以由一个或多个时隙构成。子帧可以是不依赖于参数配置(numerology)的固定的时间长度(例如1ms)。
进而,时隙在时域中可以由一个或多个符号(正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号、单载波频分多址(SC-FDMA,Single Carrier Frequency Division Multiple Access)符号等)构成。此外,时隙也可以是基于参数配置的时间单元。此外,时隙还可以包括多个微时隙。各微时隙在时域中可以由一个或多个符号构成。此外,微时隙也可以称为子时隙。
无线帧、子帧、时隙、微时隙以及符号均表示传输信号时的时间单元。无线帧、子帧、时隙、微时隙以及符号也可以使用各自对应的其它名称。例如,一个子帧可以被称为传输时间间隔(TTI,Transmission Time Interval),多个连续的子帧也可以被称为TTI,一个时隙或一个微时隙也可以被称为TTI。也就是说,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是短于1ms的期间(例如1~13个符号),还可 以是长于1ms的期间。另外,表示TTI的单元也可以称为时隙、微时隙等而非子帧。
在此,TTI例如是指无线通信中调度的最小时间单元。例如,在LTE系统中,无线基站对各用户终端进行以TTI为单位分配无线资源(在各用户终端中能够使用的频带宽度、发射功率等)的调度。另外,TTI的定义不限于此。
TTI可以是经过信道编码的数据包(传输块)、码块、和/或码字的发送时间单元,也可以是调度、链路适配等的处理单元。另外,在给出TTI时,实际上与传输块、码块、和/或码字映射的时间区间(例如符号数)也可以短于该TTI。
另外,一个时隙或一个微时隙被称为TTI时,一个以上的TTI(即一个以上的时隙或一个以上的微时隙)也可以成为调度的最小时间单元。此外,构成该调度的最小时间单元的时隙数(微时隙数)可以受到控制。
具有1ms时间长度的TTI也可以称为常规TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、常规子帧、标准子帧、或长子帧等。短于常规TTI的TTI也可以称为压缩TTI、短TTI、部分TTI(partial或fractional TTI)、压缩子帧、短子帧、微时隙、或子时隙等。
另外,长TTI(例如常规TTI、子帧等)也可以用具有超过1ms的时间长度的TTI来替换,短TTI(例如压缩TTI等)也可以用具有比长TTI的TTI长度短且1ms以上的TTI长度的TTI来替换。
资源块(RB,Resource Block)是时域和频域的资源分配单元,在频域中,可以包括一个或多个连续的副载波(子载波(subcarrier))。此外,RB在时域中可以包括一个或多个符号,也可以为一个时隙、一个微时隙、一个子帧或一个TTI的长度。一个TTI、一个子帧可以分别由 一个或多个资源块构成。另外,一个或多个RB也可以称为物理资源块(PRB,Physical RB)、子载波组(SCG,Sub-Carrier Group)、资源单元组(REG,Resource Element Group)、PRG对、RB对等。
此外,资源块也可以由一个或多个资源单元(RE,Resource Element)构成。例如,一个RE可以是一个子载波和一个符号的无线资源区域。
另外,上述的无线帧、子帧、时隙、微时隙以及符号等的结构仅仅为示例。例如,无线帧中包括的子帧数、每个子帧或无线帧的时隙数、时隙内包括的微时隙数、时隙或微时隙中包括的符号和RB的数目、RB中包括的子载波数、以及TTI内的符号数、符号长度、循环前缀(CP,Cyclic Prefix)长度等的结构可以进行各种各样的变更。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)、物理下行链路控制信道(PDCCH,Physical Downlink Control Channel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、系统信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子系统(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本发明的各方式/实施方式。此时,可以将上述的无线基站10所具有的功能当作用户终端20所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端20所具有的功能当作无线基站10所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入2000(CDMA2000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上 单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本发明进行了详细说明,但对于本领域技术人员而言,显然,本发明并非限定于本说明书中说明的实施方式。本发明在不脱离由权利要求书的记载所确定的本发明的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本发明而言并非具有任何限制性的意义。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (20)

  1. 一种针对上行数据传输的反馈方法,其特征在于,包括:
    接收并解调用户终端UE发送的上行数据后,根据对所述UE上行数据的解调结果,通过用于反馈的下行控制信息DCI向所述UE发送反馈。
  2. 根据权利要求1所述的方法,其特征在于,所述DCI包括:一个以上的混合自动重传HARQ字段以及一个标识字段。
  3. 根据权利要求2所述的方法,其特征在于,所述DCI中一个以上的HARQ字段分别承载针对一个包含一个以上UE的UE分组的上行数据传输反馈;所述标识字段用于标识所述DCI对应的UE分组;
    所述根据对所述UE上行数据的解调结果,通过所述DCI向所述UE发送反馈包括:
    将UE分组;
    为所述UE分组内每个UE分配一个HARQ字段,作为所述UE对应的HARQ字段;
    根据一段时间内针对来自所述UE分组内各个UE的上行数据的解调结果分别确定所述一个以上HARQ字段的值;以及
    将所述DCI通过物理下行控制信道发送给所述UE分组内的所述一个以上UE。
  4. 根据权利要求2所述的方法,其特征在于,所述DCI中一个以上的HARQ字段分别承载针对一个UE一次以上上行数据传输的反馈;
    所述根据对所述UE上行数据的解调结果,通过所述DCI向所述UE发送反馈包括:
    根据一段时间内针对来自所述UE的一次以上上行数据传输的解 调结果分别确定所述一个以上HARQ字段的值;以及
    将所述DCI通过物理下行控制信道发送给所述UE。
  5. 根据权利要求1所述的方法,其特征在于,所述DCI包括:一个混合自动重传HARQ字段以及一个标识字段。
  6. 根据权利要求5所述的方法,其特征在于,所述DCI中的HARQ字段指向一个物理下行数据信道;所述标识字段用于标识所述DCI对应的UE;
    所述根据对所述UE上行数据的解调结果,通过所述DCI向所述UE发送反馈包括:
    确定一段时间内已正确解调的上行数据所对应的UE的标识;以及
    通过所述DCI中HARQ字段所指向的物理下行数据信道发送所确定的UE的标识。
  7. 一种针对上行数据传输的反馈方法,其特征在于,包括:
    发送上行数据后接收用于反馈的下行控制信息DCI;以及
    根据所述DCI确定所述eNB是否已正确接收了本次传输的上行数据。
  8. 根据权利要求7所述的方法,其特征在于,所述DCI包括:一个以上的混合自动重传HARQ字段以及一个标识字段。
  9. 根据权利要求8所述的方法,其特征在于,所述DCI中一个以上的HARQ字段分别承载针对一个包含一个以上UE的UE分组上行数据传输的反馈;所述标识字段用于标识所述DCI对应的UE分组;
    所述接收用于反馈的下行控制信息DCI包括:接收eNB下发的DCI,根据所接收DCI的标识字段判断是否为自身所在UE分组对应的DCI,如果是,则接收所述DCI;
    所述确定所述eNB是否已正确接收了本次传输的上行数据包括:
    确定在所接收DCI中自身对应HARQ字段;以及
    根据所接收DCI中自身对应HARQ字段的值,确定所述eNB是否已正确接收了本次传输的上行数据。
  10. 根据权利要求8所述的方法,其特征在于,所述DCI中一个以上的HARQ字段分别承载针对一个UE一次以上上行数据传输的反馈;所述标识字段用于标识所述DCI对应的UE;
    所述接收用于反馈的下行控制信息DCI包括:接收eNB下发的DCI,根据所接收DCI的标识字段判断是否为自身所对应的DCI,如果是,则接收所述DCI;
    所述确定所述eNB是否已正确接收了本次传输的上行数据包括:
    根据所接收DCI中HARQ字段的值,确定所述eNB是否已正确接收了自身一次以上传输的上行数据。
  11. 根据权利要求7所述的方法,其特征在于,所述DCI包括:一个混合自动重传HARQ字段以及一个标识字段。
  12. 根据权利要求11所述的方法,其特征在于,所述DCI中一个以上的HARQ字段指向一个物理下行数据信道;
    所述确定所述eNB是否已正确接收了本次传输的上行数据包括:
    接收所述DCI中HARQ字段指向的物理下行数据信道承载的数据;
    如果该物理下行数据信道承载的数据中包含自身的标识,则确定所述eNB已正确接收了本次传输的上行数据。
  13. 一种基站,其特征在于,包括:
    数据接收模块,用于接收并解调用户终端UE发送的上行数据;以及
    反馈模块,用于根据对所述UE上行数据的解调结果,通过用于反馈的下行控制信息DCI向所述UE发送针对所述UE上行数据传输的反馈。
  14. 一种用户终端,其特征在于,包括:
    上行传输模块,用于发送上行数据;
    下行控制信息DCI接收模块,用于接收用于反馈的DCI;以及
    反馈接收模块,用于根据所述DCI确定所述eNB是否已正确接收了本次传输的上行数据。
  15. 一种程序,其特征在于,用于使计算机执行以下操作:
    接收并解调用户终端UE发送的上行数据后,根据对所述UE上行数据的解调结果,通过用于反馈的下行控制信息DCI向所述UE发送反馈。
  16. 一种非易失性机器可读存储介质,其特征在于,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
    接收并解调用户终端UE发送的上行数据后,根据对所述UE上行数据的解调结果,通过用于反馈的下行控制信息DCI向所述UE发送反馈。
  17. 一种基站,其特征在于,包括:
    处理器;
    非易失性机器可读存储介质;以及
    存储在该非易失性机器可读存储介质中、由该处理器执行的程序模块;
    所述程序模块用于:
    接收并解调用户终端UE发送的上行数据后,根据对所述UE上 行数据的解调结果,通过用于反馈的下行控制信息DCI向所述UE发送反馈。
  18. 一种程序,其特征在于,用于使计算机执行以下操作:
    发送上行数据后接收用于反馈的下行控制信息DCI;以及
    根据所述DCI确定所述eNB是否已正确接收了本次传输的上行数据。
  19. 一种非易失性机器可读存储介质,其特征在于,所述存储介质中存储有机器可读指令,所述机器可读指令可以由处理器执行以完成以下操作:
    发送上行数据后接收用于反馈的下行控制信息DCI;以及
    根据所述DCI确定所述eNB是否已正确接收了本次传输的上行数据。
  20. 一种用户终端,其特征在于,包括:
    处理器;
    非易失性机器可读存储介质;以及
    存储在该非易失性机器可读存储介质中、由该处理器执行的程序模块;
    所述程序模块用于:
    发送上行数据后接收用于反馈的下行控制信息DCI;以及
    根据所述DCI确定所述eNB是否已正确接收了本次传输的上行数据。
PCT/CN2017/084147 2016-05-12 2017-05-12 针对上行数据传输的反馈方法及装置 WO2017194001A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780022400.4A CN109075917B (zh) 2016-05-12 2017-05-12 针对上行数据传输的反馈方法及装置
JP2018555607A JP6679753B2 (ja) 2016-05-12 2017-05-12 上りデータ伝送に対するフィードバック方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610318143.6A CN107370574A (zh) 2016-05-12 2016-05-12 针对上行数据传输的反馈方法及装置
CN201610318143.6 2016-05-12

Publications (1)

Publication Number Publication Date
WO2017194001A1 true WO2017194001A1 (zh) 2017-11-16

Family

ID=60267654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084147 WO2017194001A1 (zh) 2016-05-12 2017-05-12 针对上行数据传输的反馈方法及装置

Country Status (3)

Country Link
JP (1) JP6679753B2 (zh)
CN (2) CN107370574A (zh)
WO (1) WO2017194001A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11063705B2 (en) 2018-06-18 2021-07-13 Google Llc Methods and apparatus for HARQ in NOMA transmission for 5G NR
US11424799B2 (en) 2018-06-12 2022-08-23 Google Llc Beamforming-based grant-free non-orthogonal multiple access transmission
US11425699B2 (en) 2018-06-15 2022-08-23 Google Llc CBG-based NOMA transmission for a wireless network
US11469866B2 (en) 2018-09-26 2022-10-11 Google Llc Non-orthogonal multiple access configuration in split base station architectures
US11711194B2 (en) 2018-06-22 2023-07-25 Google Llc Multi-branch NOMA wireless communication
US11910391B2 (en) 2018-08-10 2024-02-20 Google Llc Methods and apparatus for an uplink control channel in NOMA asynchronous transmissions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178942A (zh) * 2011-12-21 2013-06-26 华为技术有限公司 信令传输方法、基站和用户设备
US20140092788A1 (en) * 2012-09-28 2014-04-03 Samsung Electronics Co. Ltd. Method and apparatus for transmitting and receiving data in mobile communication system
CN104811284A (zh) * 2014-01-29 2015-07-29 上海贝尔股份有限公司 为mtc ue进行上行链路传输反馈的方法和装置
CN105122712A (zh) * 2013-03-15 2015-12-02 Lg电子株式会社 在无线通信系统中接收ack/nack的方法和设备
CN106455113A (zh) * 2015-08-11 2017-02-22 电信科学技术研究院 一种随机接入方法、设备和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004989A2 (ko) * 2009-07-08 2011-01-13 한국전자통신연구원 공유 무선 자원을 이용한 기지국의 상향링크 수신 방법 및 단말기의 상향링크 송신 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178942A (zh) * 2011-12-21 2013-06-26 华为技术有限公司 信令传输方法、基站和用户设备
US20140092788A1 (en) * 2012-09-28 2014-04-03 Samsung Electronics Co. Ltd. Method and apparatus for transmitting and receiving data in mobile communication system
CN105122712A (zh) * 2013-03-15 2015-12-02 Lg电子株式会社 在无线通信系统中接收ack/nack的方法和设备
CN104811284A (zh) * 2014-01-29 2015-07-29 上海贝尔股份有限公司 为mtc ue进行上行链路传输反馈的方法和装置
CN106455113A (zh) * 2015-08-11 2017-02-22 电信科学技术研究院 一种随机接入方法、设备和系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424799B2 (en) 2018-06-12 2022-08-23 Google Llc Beamforming-based grant-free non-orthogonal multiple access transmission
US11425699B2 (en) 2018-06-15 2022-08-23 Google Llc CBG-based NOMA transmission for a wireless network
US11700612B2 (en) 2018-06-15 2023-07-11 Google Llc CBG-based NOMA transmission for a wireless network
US11063705B2 (en) 2018-06-18 2021-07-13 Google Llc Methods and apparatus for HARQ in NOMA transmission for 5G NR
US11711194B2 (en) 2018-06-22 2023-07-25 Google Llc Multi-branch NOMA wireless communication
US11910391B2 (en) 2018-08-10 2024-02-20 Google Llc Methods and apparatus for an uplink control channel in NOMA asynchronous transmissions
US11469866B2 (en) 2018-09-26 2022-10-11 Google Llc Non-orthogonal multiple access configuration in split base station architectures

Also Published As

Publication number Publication date
JP2019521542A (ja) 2019-07-25
JP6679753B2 (ja) 2020-04-15
CN109075917B (zh) 2021-07-23
CN107370574A (zh) 2017-11-21
CN109075917A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
JP7157512B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018201784A1 (zh) 资源配置和调度方法、基站以及用户设备
WO2017194000A1 (zh) 针对上行数据传输的反馈方法及装置
US11310779B2 (en) Method and apparatus for transmitting/receiving control information in wireless communication system
JP7078625B2 (ja) 端末、無線通信方法及びシステム
JP7074757B2 (ja) 端末、無線通信方法、基地局及びシステム
JP2022177217A (ja) 端末、無線通信方法、基地局及びシステム
US20210204328A1 (en) Terminal, radio communication method, base station, and system
WO2017194001A1 (zh) 针对上行数据传输的反馈方法及装置
US11012982B2 (en) User terminal and radio communication method
US11356207B2 (en) HARQ-ACK feedback method, a HARQ-ACK extraction method, a base station, and a user equipment
US10750527B2 (en) User terminal and radio communication method
JPWO2018056338A1 (ja) ユーザ端末及び無線通信方法
WO2018173237A1 (ja) ユーザ端末及び無線通信方法
US11245498B2 (en) User terminal and radio communication method
US11979875B2 (en) Method, user equipment unit and base station for transmitting and receiving uplink data
JP7144399B2 (ja) 端末、無線通信方法及びシステム
JPWO2019049279A1 (ja) 端末、無線通信方法及び基地局
EP3518592B1 (en) User terminal, radio communication method, radio base station and radio communication system
JP7335375B2 (ja) 端末、無線通信方法及びシステム
WO2019052462A1 (zh) 一种用于免授权的上行链路的信息传输方法及装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018555607

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795619

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795619

Country of ref document: EP

Kind code of ref document: A1