WO2020147133A1 - 用户设备和基站以及由用户设备、基站执行的方法 - Google Patents

用户设备和基站以及由用户设备、基站执行的方法 Download PDF

Info

Publication number
WO2020147133A1
WO2020147133A1 PCT/CN2019/072439 CN2019072439W WO2020147133A1 WO 2020147133 A1 WO2020147133 A1 WO 2020147133A1 CN 2019072439 W CN2019072439 W CN 2019072439W WO 2020147133 A1 WO2020147133 A1 WO 2020147133A1
Authority
WO
WIPO (PCT)
Prior art keywords
signature
user equipment
activation
base station
information
Prior art date
Application number
PCT/CN2019/072439
Other languages
English (en)
French (fr)
Inventor
叶能
李祥明
刘文佳
侯晓林
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN201980089079.0A priority Critical patent/CN113303006A/zh
Priority to PCT/CN2019/072439 priority patent/WO2020147133A1/zh
Priority to US17/423,792 priority patent/US20220124843A1/en
Publication of WO2020147133A1 publication Critical patent/WO2020147133A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of wireless communication, and specifically to user equipment and base stations that can be used in wireless communication systems, or methods executed by the user equipment and base stations.
  • Non-Orthogonal Multiple Access (NOMA) technology is a radio access technology proposed in the Long Term Evolution (LTE) version R-13 studied by the Third Generation Partnership Project (3GPP), and can also be further applied In the 5G New Radio (NR) scenario.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • the uplink data transmission mode under NOMA may include grant-based transmission and grant-free transmission.
  • a user equipment UE, User Equipment
  • the base station can pre-configure data transmission resources to the UE, and when the UE needs to perform uplink data transmission, use the resources pre-configured by the base station for data transmission; or, the UE can directly perform data transmission resources without pre-configuration of the base station.
  • Uplink data transmission when transmitting based on authorization, a user equipment (UE, User Equipment) may first send an uplink data transmission request to the base station, and then the base station configures corresponding data transmission resources to the UE so that the UE can use the allocated resources for data transmission.
  • the base station can pre-configure data transmission resources to the UE, and when the UE needs to perform uplink data transmission, use the resources pre-configured by the base station
  • each UE can use the UE-specific multiple access signature (MA signature) for data transmission to distinguish different UEs and reduce the number of different UEs. Interference.
  • a multiple-access signature can be used to indicate the configuration of logical resources and/or physical resources of the uplink data to be sent.
  • the multiple-access signature can include information indicating the transmission power used by the user equipment when sending data.
  • Information about the interleaving method used by the user equipment when sending data information indicating the scrambling method used by the user equipment when sending data, information indicating the spread spectrum method used by the user equipment when sending data, and information indicating the user equipment when sending data
  • One or more of the used bit-to-symbol mapping information One or more of the used bit-to-symbol mapping information.
  • the UE In the current unlicensed transmission process, the UE generally uses the MA signature based on authorized transmission to transmit uplink data. However, in the unlicensed transmission, the UE has a random activation feature, and the interference received by each UE is random.
  • the interference distribution function The specific form of is related to UE activation information such as UE activation probability.
  • UE activation information such as UE activation probability.
  • this MA signature design/grouping/distribution method does not adapt to the characteristics of sparse transmission in unauthorized transmission, which will reduce the accuracy of symbol detection and affect the performance of the wireless communication system.
  • a user equipment including: a control unit configured to obtain a multiple address signature, the multiple address signature is determined from a multiple address pool according to the activation information of the user equipment, so The activation information of the user equipment is related to the activation of the user equipment; the sending unit is configured to send data using the multiple address signature.
  • control unit obtains the activation information of the user equipment; obtains the multiple-access signature determined by the user equipment from the multiple-access signature pool according to the activation information.
  • the user equipment further includes: a receiving unit configured to receive information about a multiple-access signature group sent by a base station, where the information about the multiple-access signature group is used to indicate at least one of the multiple-access signature pools A multiple-access signature group, each of the multiple-access signature groups includes at least one multiple-access signature; the control unit determines the multiple-access signature according to the activation information of the user equipment and the information about the multiple-access signature group .
  • control unit obtains the activation information of the user equipment;
  • sending unit sends the activation information of the user equipment to the base station, so that the base station obtains the activation information of the user equipment from the multiple access signature At least one of the multiple-access signature and the multiple-access signature group is determined in the pool;
  • user equipment further includes: a receiving unit configured to receive at least one of the information about the multiple-access signature and the multiple-access signature group determined by the instruction base station One to obtain the multiple signature.
  • the sending unit sends an indication signal instructing the base station to estimate the activation information of the user equipment to the base station;
  • the user equipment further includes: a receiving unit configured to receive information about the multiple access signature from the base station Information, the information about the multiple-access signature is used to indicate the multiple-access signature, and the multiple-access signature is determined by the base station from the pool of multiple-access signatures according to the estimation result of the activation information of the user equipment.
  • control unit obtains the activation information of the user equipment according to at least one of historical activation information and high-level activation information, wherein the historical activation information indicates information related to the historical activation behavior of the user equipment, the
  • the high-level activation information is information related to the activation of the user equipment notified by the high-level.
  • the multiple access signature includes at least one of bit-to-symbol mapping and spreading sequence.
  • the multiple signatures in the multiple signature pool are constructed based on the symbol detection error rate and the user equipment activation state detection error rate through a deep learning algorithm; or at least part of the multiple signatures in the multiple signature pool It is obtained based on another multi-signature pool.
  • a base station including: a control unit configured to obtain activation information of user equipment, where the activation information of the user equipment is related to the activation of the user equipment; at least according to the user equipment At least one of the multiple-access signature group and the multiple-access signature used by the user equipment to send data is determined from the multiple-access signature pool, and each of the multiple-access signature groups includes at least one multiple-access signature; the sending unit , Configured to send at least one of the information about the multiple-access signature group and the information about the multiple-access signature.
  • the base station further includes: a receiving unit configured to receive activation information sent by the user equipment; and the control unit obtains the activation information received by the receiving unit.
  • the base station further includes: a receiving unit configured to receive an indication signal sent by the user equipment instructing the base station to estimate the activation information of the user equipment; the control unit estimates the user equipment according to the indication signal The activation information of the device.
  • control unit estimates the activation information of the user equipment according to at least one of historical activation information of the user equipment and high-level activation information, wherein the historical activation information indicates that the historical activation behavior of the user equipment is related to
  • the high-level activation information is information related to the activation of the user equipment notified by the high-level.
  • the multiple access signature includes at least one of bit-to-symbol mapping and spreading sequence.
  • the multiple signatures in the multiple signature pool are constructed based on the symbol detection error rate and the user equipment activation state detection error rate through a deep learning algorithm; or at least part of the multiple signatures in the multiple signature pool It is obtained based on another multi-signature pool.
  • control unit determines the multiple access signature group and the multiple access signature group used by the user equipment to send data from the multiple access signature pool according to the activation information of the user equipment and the number of user equipment in the cell corresponding to the base station. At least one of the multiple signatures.
  • a method executed by a user equipment comprising: obtaining a multiple signature, the multiple signature being determined from a pool of multiple signatures according to activation information of the user equipment ,
  • the activation information of the user equipment is related to the activation of the user equipment; the data is sent using the multiple access signature.
  • the obtaining of the multiple-access signature includes: obtaining the activation information of the user equipment; and obtaining the multiple-access signature determined by the user equipment from the multiple-access signature pool according to the activation information.
  • the obtaining of the multiple-access signature further includes: receiving information about the multiple-access signature group sent by the base station, where the information about the multiple-access signature group is used to indicate at least one multiple-access signature in the multiple-access signature pool Group, each of the multiple-access signature groups includes at least one multiple-access signature; the multiple-access signature is determined according to the activation information of the user equipment and the information about the multiple-access signature group.
  • the obtaining of the multiple access signature includes: obtaining activation information of the user equipment; sending the activation information of the user equipment to a base station, so that the base station obtains information from the multiple access signature according to the activation information of the user equipment. At least one of the multiple-access signature and the multiple-access signature group is determined in the pool; at least one of the information about the multiple-access signature and the multiple-access signature group determined by the instruction base station is received to obtain the multiple-access signature.
  • the obtaining the multiple access signature includes: sending an indication signal to the base station instructing the base station to estimate the activation information of the user equipment; receiving information about the multiple access signature from the base station, and the information about the multiple access signature The information is used to indicate the multiple-access signature, and the multiple-access signature is determined by the base station from the multiple-access signature pool according to the estimation result of the activation information of the user equipment.
  • the obtaining the activation information of the user equipment includes: obtaining the activation information of the user equipment according to at least one of historical activation information and high-level activation information, wherein the historical activation information indicates the history of the user equipment Information related to activation behavior, where the high-level activation information is information related to the activation of the user equipment notified by a high-level.
  • the multiple access signature includes at least one of bit-to-symbol mapping and spreading sequence.
  • the multiple signatures in the multiple signature pool are constructed based on the symbol detection error rate and the user equipment activation state detection error rate through a deep learning algorithm; or at least part of the multiple signatures in the multiple signature pool It is obtained based on another multi-signature pool.
  • a method executed by a base station comprising: acquiring activation information of a user equipment, the activation information of the user equipment being related to the activation of the user equipment; at least according to the The activation information of the user equipment, determining at least one of a multiple-access signature group and a multiple-access signature used by the user equipment to send data from a multiple-access signature pool, and each of the multiple-access signature groups includes at least one multiple-access signature; At least one of the information about the multiple signature group and the information about the multiple signature is sent.
  • the acquiring activation information of the user equipment includes: receiving activation information sent by the user equipment.
  • the obtaining the activation information of the user equipment includes: receiving an indication signal sent by the user equipment instructing the base station to estimate the activation information of the user equipment; and estimating the activation information of the user equipment according to the indication signal.
  • the estimating the activation information of the user equipment according to the indication signal includes: estimating the activation information of the user equipment according to at least one of historical activation information of the user equipment and high-level activation information, wherein the The historical activation information indicates information related to the historical activation behavior of the user equipment, and the high-level activation information is information related to the activation of the user equipment notified by a high-level.
  • the multiple access signature includes at least one of bit-to-symbol mapping and spreading sequence.
  • the multiple signatures in the multiple signature pool are constructed based on the symbol detection error rate and the user equipment activation state detection error rate through a deep learning algorithm; or at least part of the multiple signatures in the multiple signature pool It is obtained based on another multi-signature pool.
  • the determining at least one of a multiple-access signature group and a multiple-access signature used by the user equipment to send data from a multiple-access signature pool at least according to the activation information of the user equipment further includes: The activation information of the device and the number of user equipments in the cell corresponding to the base station determine at least one of the multiple access signature group and the multiple access signature used by the user equipment to send data from the multiple access signature pool.
  • UE activation information reflecting UE activation characteristics can be considered to provide MA signatures suitable for unlicensed transmission, thereby reducing interference in data transmission between UEs, improving symbol detection accuracy, and improving wireless communication systems Performance.
  • Fig. 1 shows a schematic diagram of a wireless communication system according to an embodiment of the present invention
  • Figure 2 shows the implementation process of the base station configuring data transmission resources to the UE through RRC signaling to enable the UE to perform unlicensed transmission;
  • Figure 3 shows the implementation process of the base station configuring data transmission resources to the UE through RRC and L1 signaling, so that the UE can perform unlicensed transmission;
  • Figure 4 shows the implementation process of unlicensed transmission based on competition
  • Fig. 5 shows a flowchart of a method executed by a user equipment according to an embodiment of the present invention
  • Figure 6 shows an example of a multi-signature pool constructed by a deep learning algorithm
  • Figure 7 shows an implementation process of unauthorized transmission according to an embodiment of the present invention
  • Figure 8 shows an implementation process of unauthorized transmission according to an embodiment of the present invention
  • Figure 9 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • Figure 10 shows an implementation process of unauthorized transmission according to an embodiment of the present invention
  • FIG. 11A shows an example of the MA signature pool
  • FIG. 11B shows an example of the MA signature pool of FIG. 11A after quantization
  • FIG. 12A shows an example of the MA signature pool
  • FIG. 12B shows an example of the MA signature pool of FIG. 12A after quantization
  • FIG. 13A shows an example of the MA signature pool
  • FIG. 13B shows an example of the MA signature pool of FIG. 13A after quantization
  • Figure 14 shows an example of the MA signature pool
  • Figure 15 shows an example of the MA signature pool
  • Figure 16 shows an example of the MA signature pool
  • Figure 17 shows an example of the MA signature pool
  • Figure 18 shows an example of the MA signature pool
  • Figure 19 shows a schematic diagram of constellation point mapping of the MA signature pool
  • FIG. 20 shows a schematic diagram of constellation point mapping of the MA signature pool
  • Figure 21 shows a schematic diagram of constellation point mapping of the MA signature pool
  • Figure 22A shows a schematic diagram of the cross-correlation between each MA signature in the MA signature pool (or the MA signature group therein) obtained based on the WBE (Welch-Bound Equality) quantification algorithm for authorized transmission
  • Figure 22B shows an embodiment according to the present invention The obtained schematic diagram of the cross-correlation between each MA signature in the MA signature pool;
  • Figure 23 shows a flow chart of a method executed by a base station according to an embodiment of the present invention
  • FIG. 24 shows a structural block diagram of user equipment according to an embodiment of the present invention.
  • FIG. 25 shows a structural block diagram of a base station according to an embodiment of the present invention.
  • Fig. 26 is a diagram showing an example of the hardware structure of a user equipment and a base station according to an embodiment of the present invention.
  • the wireless communication system may include a base station 10 and a user equipment (UE) 20.
  • the UE 20 can communicate with the base station 10. It should be recognized that although one base station and one UE are shown in FIG. 1, this is only illustrative, and the wireless communication system may include one or more base stations and one or more UEs.
  • the unlicensed transmission under NOMA can include multiple interaction modes between the base station and the UE.
  • FIG. 2 shows the implementation process of the base station configuring the data transmission resources to the UE through Radio Resource Control (RRC) signaling, so that the UE can perform unlicensed transmission.
  • RRC Radio Resource Control
  • the base station can first configure the UE through RRC signaling, such as configuration information of unlicensed data transmission resources, unlicensed data transmission period, demodulation reference signal (Demodulation Reference Signal, DMRS), and transport block size (Transport block).
  • RRC signaling such as configuration information of unlicensed data transmission resources, unlicensed data transmission period, demodulation reference signal (Demodulation Reference Signal, DMRS), and transport block size (Transport block).
  • TBS demodulation reference signal
  • MCS Modulation and Coding Scheme
  • transmission power and MA signature.
  • the UE After the UE receives the RRC signaling configuration from the base station, when the uplink data reaches the UE, it needs to be During uplink data transmission, the UE may use one or more of the above-mentioned parameters pre-configured by the base station for uplink data transmission.
  • FIG. 3 shows the implementation process of the base station configuring data transmission resources to the UE through Radio Resource Control (RRC) signaling and L1 signaling at the L1 layer so that the UE can perform unlicensed transmission.
  • RRC Radio Resource Control
  • the base station can first use RRC signaling and L1 signaling to jointly configure, for example, unlicensed data transmission resource configuration information, unlicensed data transmission period, demodulation reference signal (Demodulation Reference Signal, DMRS), and transmission to the UE.
  • RRC signaling and L1 signaling to jointly configure, for example, unlicensed data transmission resource configuration information, unlicensed data transmission period, demodulation reference signal (Demodulation Reference Signal, DMRS), and transmission to the UE.
  • One or more parameters of the block size Transport block size, TBS), Modulation and Coding Scheme (MCS), transmission power, and MA signature.
  • TBS Transmission block size
  • MCS Modulation and Coding Scheme
  • the base station can configure the configuration information of the unlicensed data transmission resource, the unlicensed data transmission period and the transmission power to the UE through RRC signaling, and configure the DMRS, TBS/MCS, and MA signatures to the UE through L1 signaling, but it is not limited to this. .
  • the UE After the UE receives the RRC signaling and L1 signaling configuration of the base station, when the uplink data reaches the UE and needs to perform uplink data transmission, the UE can use one or more of the above parameters configured by the base station for uplink data transmission.
  • Figure 4 shows the implementation process of contention-based unauthorized transmission.
  • the base station does not need to configure data transmission resources for the UE in advance.
  • the UE can directly perform uplink data transmission.
  • each UE has the characteristic of random activation, that is, the interference received by each UE is random, and the specific form of its interference distribution function is different from that of the UE. It is related to the activation probability reflected by the activation information of other UEs. If the unlicensed transmission data is transmitted using the authorized transmission-based MA signature, it will only be considered when all UEs are activated at the same time, that is, only the situation where each UE is interfered by the signals of all other UEs is considered. The worst state estimation for uplink data transmission cannot accurately reflect the influence of UE activation information on MA signature design and/or allocation. The foregoing case of using an MA signature based on authorized transmission to transmit data for unauthorized transmission may increase the interference of data transmission between UEs and reduce the accuracy of symbol detection.
  • UE activation information reflecting UE activation characteristics it is desirable to consider UE activation information reflecting UE activation characteristics to provide MA signatures suitable for unlicensed transmission, thereby reducing interference in data transmission between UEs, improving symbol detection accuracy, and improving wireless communication system performance performance.
  • FIG. 5 shows a flowchart of a method 500 executed by a user equipment according to an embodiment of the present invention.
  • a multi-site signature is obtained.
  • the multi-site signature is determined from a pool of multi-site signatures according to the activation information of the user equipment.
  • the activation of the device is related.
  • the multi-site signature pool may include at least two multi-site signatures.
  • the multi-site signatures in the multi-site signature pool can be obtained in multiple ways.
  • the multi-site signatures in the multi-site signature pool may be constructed using a deep learning algorithm, for example, a deep learning algorithm may be used to construct offline using a neural network.
  • the multiple access signature can be constructed based on the symbol detection error rate and the user equipment activation state detection error rate.
  • the multiple access signature can be constructed by minimizing the weighted sum of the symbol detection error rate and the user equipment activation state detection error rate .
  • the multiple access signature constructed by the deep learning algorithm may include at least one of bit-to-symbol mapping and spreading sequence.
  • the deep learning algorithm can be used to design a neural network structure to parameterize the variational function in the variational optimization problem, so as to detect the error rate and the activation state of the user equipment by introducing symbols
  • the error rate is detected to obtain a multiple signature based on the activation information of the user device.
  • the variational optimization problem P1 aimed at reducing the error rate of detection (which may include symbol detection and user equipment activation state detection) in unauthorized transmission can be expressed as:
  • a deep learning algorithm can be used to introduce a neural network (for example, Deep Neural Networks (DNN)) to parameterize the aforementioned encoders respectively And/or decoder And get separately Parameters ⁇ and/or in the encoder The parameter ⁇ in the decoder.
  • a neural network for example, Deep Neural Networks (DNN)
  • DNN Deep Neural Networks
  • the neural network may be trained based on at least one of the symbol detection error rate and the user equipment activation state detection error rate.
  • the total loss function of the neural network can be Expressed as:
  • the symbol detection error rate for example, the symbol detection error rate of the base station
  • ⁇ A and ⁇ B are respectively with
  • the corresponding weight may be a value between 0-1, for example.
  • the total loss function of the neural network It can be expressed as the weighted sum of the symbol detection error rate and the user equipment activation state detection error rate.
  • the neural network can be trained by, for example, a gradient descent method, and the corresponding values of ⁇ and/or ⁇ can be obtained.
  • N sub-neural networks corresponding to N UEs can be used to parameterize Let the nth sub-neural network for:
  • P n is the transmission power of the nth user
  • diag(h n ) is a diagonal matrix
  • the diagonal element is the channel parameter of the nth UE.
  • Is the Gaussian distribution function Is the mean of the Gaussian distribution
  • Is the variance of the Gaussian distribution where Is the noise variance
  • the value range of ⁇ can be equivalent to the value range of the neural network parameter W f .
  • bit-to-symbol mapping (or linear spreading sequence) can be obtained by the value of ⁇ and/or ⁇ That is And the corresponding multi-signature pool.
  • Figure 6 shows an example of a multi-signature pool constructed by the above-mentioned deep learning algorithm.
  • the multi-access signature pool can be divided into multiple multi-access signature groups, and the multi-access signature groups can respectively correspond to the total number of user equipment N in the cell and the user equipment activation probability.
  • the number of user equipment N and the user equipment activation probability are both related to p(x), which can be used to generate the specific form of p(x), thereby obtaining Specific form, and further get bit-to-symbol mapping or spreading sequence
  • p(x) which can be used to generate the specific form of p(x), thereby obtaining Specific form, and further get bit-to-symbol mapping or spreading sequence
  • the number of UEs N is 6, and there is only a UE activation probability of -1, it can correspond to the multiple access signature group -1; and the number of UEs N is 20, and there is a UE activation probability of -1 and a UE activation probability At -2, it can correspond to multiple-access signature group-9, and multiple-access signature group-9 can include subgroup 1 corresponding to a high activation probability and subgroup 2 corresponding to a low activation probability.
  • the activation probability of all UEs is UE activation probability-1 (for example, 75%)
  • the activation probability of some UEs is UE activation probability-1 (such as 75%)
  • the activation probability of another part of UEs is UE activation probability-2 (For example, 50%)
  • Subgroup 2 of a UE with a low activation probability (eg 50%).
  • the specific correspondence of the MA signature (group) that takes into account the UE activation probability and the number of UEs in the cell as shown in Figure 6 can be used Way to select the corresponding MA signature to improve the performance of the wireless communication system.
  • the representation of the MA signature pool shown in FIG. 6 and the corresponding manners of the MA signature group and the number of UEs and the UE activation probability are only examples. In practical applications, any correspondence manner of the MA signature group and related parameters can be used. It is not limited to the number of UEs and UE activation probability here.
  • the correspondence between the MA signature group and the parameter may also be arbitrary.
  • a certain MA signature group may correspond to one or more value ranges of a certain parameter, not just a certain parameter value.
  • UE activation probability-1 can be the activation probability range of 50%-75%, and correspond to high activation probability
  • UE activation probability-2 can be the activation probability range of 25%-50%, and correspond to low activation Probability.
  • the above describes in detail the specific implementation of constructing MA signatures through deep learning algorithms and obtaining MA signature pools and MA signature groups, and lists the correspondence between MA signature groups in the MA signature pool and related parameters (such as the number of UEs, UE activation probability) Relationships and selection methods.
  • at least part of the multi-site signatures in the multi-site signature pool may also be obtained based on another multi-site signature pool, wherein the other multi-site signature pool may be a known multi-site signature pool.
  • the pool for example, may be a multi-site signature pool obtained according to a multi-site signature based on authorized transmission.
  • the MA signature corresponding to the UE can be obtained from the MA signature pool according to the activation information of the user equipment.
  • the activation information of the user equipment is related to the activation of the user equipment.
  • the activation information of the user equipment may be the activation probability of the user equipment.
  • the time axis is divided into multiple time units, and the probability that the UE has data arriving (there is data to be sent) in a certain time unit is defined as the activation probability of the UE.
  • the probability that the UE performs uplink data transmission on the physical resource block may be defined as the activation probability of the UE.
  • the activation probability of the UE may be any value in the interval [0,1], for example, the activation probability of the UE may be 25%.
  • the activation information of the user equipment may also be the activation mode of the user equipment.
  • the UE may have a periodic pattern with an average transmission period T, and accordingly, the relationship with the activation probability of the UE may be obtained indirectly, for example, it may be expressed as 1/T.
  • the UE may have an active mode of Poisson arrival mode. Specifically, the probability density function in the Poisson arrival mode is expressed as: the probability distribution of the number of events occurring in the interval [t, t+ ⁇ ]:
  • P[A] represents the probability of event A
  • t represents time
  • N(t) represents the number of events that occurred at time t
  • is a parameter representing time
  • k represents the number of events (the value can be 0 or Other positive integers)
  • is a positive number, called the arrival rate.
  • the activation information of the UE may be obtained by the UE or may be obtained by the base station.
  • the UE may obtain the activation information of the user equipment according to at least one of historical activation information and high-level activation information.
  • the historical activation information indicates information related to the historical activation behavior of the user equipment, such as an average activation probability or an average transmission period of the UE within a certain preset time.
  • the high-level activation information may be information related to the activation of the user equipment notified by the high-level. In an example, it may be the service transmission information of the UE acquired by the UE through the service layer (application layer), for example, The average period or frequency of service transmission required for one or more applications (apps) acquired by the UE.
  • the base station can also obtain activation information of a certain user equipment according to at least one of historical activation information and high-level activation information.
  • the historical activation information indicates information related to the historical activation behavior of the user equipment, such as the activation probability or average transmission period of the UE within a certain preset period of time.
  • the high-level activation information may also be information related to the activation of the user equipment notified by the high-level, for example, it may be the service transmission information of the UE obtained by the base station through the service layer (application layer).
  • the base station obtains the UE's activation information, it may be actively obtained, or it may be triggered by an indication signal sent by the UE instructing the base station to estimate the UE's activation information, which is not limited here.
  • the activation information of the UE may be transmitted through signaling.
  • the UE may obtain the activation information and send it to the base station.
  • the UE may explicitly transmit the activation information through, for example, a Physical Uplink Shared Channel (PUSCH).
  • the UE may explicitly transmit the quantized bit value of the activation information through specific bit positions in pre-appointed radio resource control (Radio Resource Control, RRC) signaling, MAC CE, data report, etc. For example, the UE may use the bit "11001" to transmit the activation probability of 25%.
  • RRC Radio Resource Control
  • the UE can use the bit “0" to indicate the "Poisson Arrival Mode” and "111" to indicate that the parameter ⁇ is 4; and the bit “1" to indicate the "Periodic Mode” and the "110” to indicate Indicates that its average transmission period T is 3.
  • the UE transmits "0111" in a specific bit position of the PUSCH it can be used to indicate that its activation information is a Poisson arrival pattern with a parameter ⁇ of 4.
  • the UE can also pass the physical random access channel (Physical Random Access Channel, PRACH) and the physical uplink control channel (Physical Uplink Control Channel) through the preset activation mode and its corresponding index value.
  • PRACH Physical Random Access Channel
  • Physical Uplink Control Channel Physical Uplink Control Channel
  • PUCCH Physical Random Access Channel
  • SRS channel sounding reference signal
  • the index value 1 can be specified as the activation probability [0, 1/3)
  • the index value 2 can be specified as the activation probability [1/3, 2/3)
  • the index value 3 can be specified as [2/3,1].
  • the UE when transmits the index value through PRACH, for example, Msg.1 or PUCCH, it can indicate the range of the corresponding UE activation probability, or the UE can also transmit the corresponding index value through the specific configuration of SRS in the sequence or resource.
  • the corresponding activation probability For another example, when transmitting UE activation modes and corresponding parameters, different index values can also be selected to correspond to different activation modes and parameters, and these index values can be transmitted through PRACH, PUCCH, or SRS.
  • the UE may also send, for example, a 1-bit indication signal at a specific bit position through PRACH or PUCCH to instruct the base station to estimate the activation information of the UE.
  • the base station receives the indication signal, it can obtain the UE's activation information according to at least one of historical activation information and high-level activation information, and can send it to the UE during downlink transmission.
  • the base station informs the UE of its activation information, its specific explicit or implicit representation is similar to the representation on the UE side, and will not be repeated here.
  • the specific operation of obtaining the MA signature from the MA signature pool according to the activation information of the UE may be performed by the UE or the base station.
  • the MA signature group in the MA signature pool may correspond to the number of UEs and UE activation information (UE activation probability or corresponding UE activation mode and related parameters) .
  • the base station can obtain the corresponding MA signature group from the MA signature pool according to the total number of UEs in the cell and/or UE activation information, and then use random selection or other selection methods, for example, the minimum
  • the MA signatures that can be used by the UE are obtained from the MA signature group.
  • the UE may also select the used MA signature from the MA signature pool or one or more MA signature groups according to the UE activation information, using, for example, a random selection method, or further use the UE activation information to select the used MA signature.
  • the UE or the base station can obtain the UE and MA signatures by solving the following optimization problem
  • the optimization problem is:
  • E represents the case where the total number of UEs is N, where the active UE group I satisfies the p(I) distribution, Find the mean; ⁇ (i) is the sequence mapping function, that is, the s ⁇ (i) sequence is mapped to the i UE; Is the conjugate transpose of s ⁇ (i) ; Indicates the correlation (interference) between the i-th UE when the j-th UE is interfered.
  • the MA signature obtained from another MA signature pool such as a known MA signature pool
  • the interference between activated UEs can be minimized, thereby further improving wireless The performance of the communication system. Therefore, the method of the embodiment of the present invention can not only reduce the interference of data transmission between UEs by constructing a new MA signature, but can also reduce the interference and improve the accuracy of symbol detection by re-adjusting the correspondence between the known MA signature and the UE.
  • the UE can directly use the MA signature to send data in the subsequent steps.
  • the base station needs to notify the UE through downlink transmission so that the UE can use the selected MA signature, or in the selected MA signature.
  • the MA signature for data transmission is further selected in the MA signature group.
  • the MA signature pool, the MA signature group contained in it, and the relevant UE activation parameters corresponding to the MA signature group may be stored in advance on both sides of the UE and the base station; or, alternatively, the base station may also broadcast signaling
  • the system information block (System Information Block, SIB)/Master Information Block (Master Information Block, MIB) is pre-configured to the UE.
  • the base station can send the selected MA signature group and/or MA signature through RRC signaling for static configuration or L1 layer signaling for semi-dynamic configuration (DCL)) To the UE.
  • the base station may use index 1 to indicate the index of the selected MA signature group, and use index 2 to indicate the index of the MA signature in this MA signature group.
  • the base station can send index 6 to indicate the MA signature group-6 through RRC signaling, and at the same time send index 2 to indicate the second MA signature in the MA signature group-6.
  • the base station can also directly inform the UE of the selected MA signature.
  • the base station when it sends the selected MA signature, it can also inform the UE in an implicit manner.
  • the base station may quantify the selected MA signature into an M-QAM constellation diagram representation, and notify the UE of the result through corresponding signaling.
  • the base station can also inform the UE of the corresponding constellation model and related parameter values of the MA signature selected by the UE. For example, when the MA signature has a parallelogram shape, the base station can notify the UE through a predetermined related position or bit value.
  • the UE constellation diagram is a parallelogram, and the UE can be informed of the two side lengths of the parallelogram and the angle between them.
  • the UE may first obtain the activation information of the user equipment; then, the UE sends the activation information of the user equipment to the base station, so that the base station obtains the activation information from the user equipment according to the activation information of the user equipment.
  • the multiple-access signature is determined in the multiple-access signature pool; finally, the UE receives the information about the multiple-access signature indicating the multiple-access signature determined by the base station to obtain the multiple-access signature.
  • the UE may first send an indication signal instructing the base station to estimate the activation information of the user equipment to the base station, so that the base station can estimate the activation information of the UE; Receive the multiple-access signature determined from the multiple-access signature pool according to the estimation result of the activation information of the user equipment from the base station.
  • Fig. 7 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE may first send the activation of the UE to the base station through PRACH before receiving the RRC signaling.
  • Information or an indication signal used to instruct the base station to estimate the UE's activation information, so that the base station selects the MA signature used by the UE from the MA signature pool according to the UE's activation information or the estimation result.
  • the base station may send information about the MA signature through RRC signaling, so that the UE uses the MA signature to send uplink data.
  • Fig. 8 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE can firstly before receiving RRC signaling and L1 signaling to configure data transmission resources to the UE and realize unlicensed transmission.
  • the activation information of the UE or the indication signal used to instruct the base station to estimate the activation information of the UE are sent to the base station through the PRACH, so that the base station selects the MA signature used by the UE from the MA signature pool according to the activation information or the estimation result of the UE.
  • the base station can send information about the MA signature through RRC signaling or L1 signaling, so that the UE uses the MA signature to send uplink data.
  • Fig. 9 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE can pass the RRC signaling and L1 signaling through
  • the uplink data sends the UE activation information or an indication signal for instructing the base station to estimate the UE activation information to the base station, so that the base station selects the MA signature used by the UE from the MA signature pool according to the UE activation information or estimation result.
  • the base station can send information about the MA signature through RRC signaling or L1 signaling, so that the UE uses the updated MA signature to send uplink data during the next uplink data transmission.
  • the UE may first obtain the activation information of the user equipment; and the UE may obtain the multiple-access signature determined from the multiple-access signature pool according to the activation information.
  • the UE can obtain its own activation information.
  • the UE may also send an indication signal instructing the base station to estimate the activation information of the user equipment to the base station, so that the base station estimates the activation information of the UE; subsequently, the UE may receive the estimated activation information from the base station.
  • the activation information of the UE may be used to obtain the activation information of the user equipment.
  • the UE may not only acquire the activation information of the user equipment, but also receive the information about the multiple access signature group sent by the base station; subsequently, the UE may obtain the activation information of the user equipment and the information about the multiple access signature group.
  • the information of the address signature group determines the multiple address signature.
  • the information of the multiple access signature group may be determined by the base station itself, or may be triggered by the indication information of the UE, and determined by estimating the activation information of the UE.
  • Fig. 10 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the base station can first send one or more MA signature groups through the Physical Broadcast Channel (PBCH) Then, the UE selects the used MA signature from the MA signature group sent by the base station according to its activation information.
  • PBCH Physical Broadcast Channel
  • the base station when the base station knows the number of UEs in the corresponding cell and the UE activation information, it can select one of the MA signature groups and send it to the UE; When the base station only knows one of the number of UEs in its corresponding cell and the UE’s activation information, it can select one column or row of the MA signature group in Figure 6 and send it to the UE; when the base station determines the number of UEs in the corresponding cell When the activation information of the UE and the UE are unknown, the entire MA signature pool can be sent to the UE for the UE to choose from.
  • the UE may further select an appropriate MA signature from the MA signature group according to the activation information; or, the UE may randomly select an MA signature from the MA signature group, which is not limited here.
  • step S502 the UE uses the multiple access signature to send data.
  • the UE can use the previously acquired MA signature, process the data to be sent based on the MA signature, and send the processed data.
  • the following shows an example of the MA signature pool obtained by the method according to the embodiment of the present invention.
  • the set used to describe the MA signature (that is, the MA signature pool or the MA signature group) may also be referred to as the matrix or codebook of the MA signature.
  • the set used to determine the description of the MA signature (that is, the MA signature pool or the MA signature group) can also be called the MA signature codebook or codebook.
  • the MA signature determined according to the MA signature pool or MA signature group is also It can be called a codeword or codeword.
  • the spreading sequence set (ie, the MA signature pool or the MA signature group) used to determine the spreading sequence can also be referred to as a spreading sequence matrix or a codebook of a spreading sequence.
  • the spreading sequence set (ie, MA signature pool or MA signature group) used to determine the spreading sequence can also be called the codebook or codebook of the spreading sequence.
  • the spreading sequence determined according to the spreading sequence set The sequence can also be called a codeword or codeword.
  • the total number of UEs in the cell is 6, and 4 Resource Elements (RE) are used for NOMA transmission.
  • the transmitted data can range from 2 bits to 4 bits, and the obtained
  • the MA signature pools are all linear codebooks, that is, linear spreading sequences.
  • 11A shows an example of an MA signature pool with a total number of UEs of 6, using 4 REs to transmit 2-bit data, and 6 UEs with an activation probability of 0.5
  • FIG. 11B shows the MA signature pool quantification of FIG. 11A After the example.
  • the linear spreading sequence pools shown in FIGS. 11A and 11B are 4 ⁇ 6, where each row corresponds to an RE, and each column corresponds to a linear spreading sequence codebook in the MA signature pool.
  • each UE may correspond to a column of codebooks in FIG. 11A or FIG. 11B, and send data based on its corresponding codebook.
  • each UE may correspond to a column of codebooks in FIG. 11A or FIG. 11B, and send data based on its corresponding codebook.
  • multiple UEs can correspond to one of the codebooks, or one UE can select different codebooks to transmit.
  • the data is not limited here.
  • FIG. 12A shows an example of an MA signature pool where the total number of UEs is 6, using 4 REs to transmit 2-bit data, and the activation probability of 6 UEs is 0.75
  • FIG. 12B shows the quantized MA signature pool of FIG. 12A Example.
  • Figure 13A shows an example of an MA signature pool with a total number of UEs of 6, using 4 REs to transmit 2-bit data, and 3 UEs with an activation probability of 0.75, and another 3 UEs with an activation probability of 0.5.
  • Figure 13B shows Figure 13A shows the quantified example of the MA signature pool.
  • two or more MA signature groups can be divided in the MA signature pool, and different MA signature groups correspond to different UE activation probabilities. For example, the codebook of the first three columns of linear spreading sequence in FIG.
  • 13A can be made to correspond to the UE with a high activation probability (0.75), and the codebook of the last three columns of linear spreading sequence can correspond to the UE with a low activation probability (0.5).
  • a UE with an activation probability of 0.75 can be arbitrarily selected from the first three linear spreading sequences, and a UE with an activation probability of 0.5 can be arbitrarily selected from the last three linear spreading sequences, and
  • This MA signature selection method takes into account the activation characteristics of the UE, which can minimize the interference of data transmission between UEs and improve the accuracy of symbol detection.
  • the following shows an example of the MA signature pool or the MA signature group obtained by the method of the embodiment of the present invention.
  • the total number of UEs in the cell is 6, and 4 Resource Elements (RE) are used for NOMA transmission.
  • the transmitted data can range from 2 bits to 4 bits, and the obtained
  • the MA signature pools are all non-linear bit-to-symbol mappings.
  • FIG. 14 shows an example of an MA signature pool in which the total number of UEs is 6, using 4 REs to transmit 2-bit data, and the activation probability of 6 UEs is 0.5.
  • FIG. 15 shows an example of an MA signature pool in which the total number of UEs is 6, using 4 REs to transmit 2-bit data, and the activation probability of 6 UEs is 0.75.
  • FIG. 16 shows an example of an MA signature pool where the total number of UEs is 6, using 4 REs to transmit 2-bit data, and the activation probability of 3 UEs is 0.75, and the activation probability of the other 3 UEs is 0.5.
  • Fig. 17 shows an example of an MA signature pool with a total number of UEs of 6, using 4 REs to transmit 3-bit data, and 6 UEs with an activation probability of 0.5.
  • FIG. 18 shows an example of an MA signature pool where the total number of UEs is 6, 4 REs are used to transmit 4-bit data, and the activation probability of 6 UEs is 0.5.
  • Figures 14-18 both show the mapping relationship of 6 codebooks on 4 REs.
  • each UE may correspond to any codebook in Figs. 14-18, and send data based on its corresponding codebook.
  • multiple UEs can be made to correspond to one of the codebooks, or one UE can select different codes respectively.
  • two or more MA signature groups can be divided in the MA signature pool, and different MA signature groups correspond to different UE activation probabilities.
  • the first three codebooks in FIG. 16 correspond to UEs with a high activation probability (0.75), and the last three codebooks correspond to UEs with a low activation probability (0.5).
  • a UE with an activation probability of 0.75 can be arbitrarily selected from the first three codebooks, and a UE with an activation probability of 0.5 can be arbitrarily selected from the last three codebooks.
  • This MA signature selection method takes into account the activation characteristics of the UE, which can minimize the interference of data transmission between UEs and improve the accuracy of symbol detection.
  • FIG. 11 to 18 show the MA signature pool obtained by the method according to the embodiment of the present invention in the form of a codebook list.
  • the MA signature pool shown above can also be represented by a constellation diagram.
  • Fig. 19 shows a schematic diagram of constellation point mapping of one codebook on 4 REs when the total number of UEs is 6, using 4 REs to transmit 2-bit data, and the activation probability of 6 UEs is 0.5.
  • the corresponding modulation order M is 4, and different shapes on each RE represent different data (including 4 sets of bit sequences (0,0), (0,1), (1,0), (1,1)) The position of the mapped constellation point.
  • the positions of the constellation points mapped on the 4 REs can be represented by squares; and when the transmitted 2-bit data is (0, 1), the constellation points are The positions of the constellation points respectively mapped on the RE can be represented by diamonds. That is to say, the constellation diagram in FIG. 19 may correspond to the mapping manner of one codebook in the MA signature pool in FIG. 14 on 4 REs.
  • Figure 20 shows a schematic diagram of constellation point mapping of one codebook on 4 REs when the total number of UEs is 6, using 4 REs to transmit 3 bits of data, and the activation probability of 6 UEs is 0.5.
  • the corresponding modulation order M is 8, and different shapes on each RE represent the positions of constellation points mapped by different data (including 8 sets of bit sequences composed of 3 bits).
  • the constellation point positions mapped on the 4 REs can be represented by inverted triangles; and when the transmitted 3-bit data is (1,0,1)
  • the constellation point positions respectively mapped on the 4 REs can be represented by a plus sign. That is to say, the constellation diagram in FIG. 20 may correspond to the mapping manner of one codebook in the MA signature pool in FIG. 17 on 4 REs.
  • FIG. 21 shows a schematic diagram of constellation point mapping of one codebook on 4 REs when the total number of UEs is 6, 4 REs are used to transmit 4-bit data, and the activation probabilities of 6 UEs are all 0.5.
  • the corresponding modulation order M is 16, and different shapes on each RE represent the positions of constellation points mapped by different data (including 16 sets of bit sequences composed of 4 bits).
  • the constellation point positions mapped on the 4 REs can be represented by a five-pointed star; and when the transmitted 4-bit data is (1,0, When 1,0), the constellation point positions mapped on the 4 REs can be represented by regular triangles. That is to say, the constellation diagram in FIG. 21 may correspond to the mapping manner of one codebook in the MA signature pool in FIG. 18 on 4 REs.
  • FIGS. 22A-22B show the comparison result of the MA signature acquisition method based on authorized transmission and the MA signature acquisition method according to an embodiment of the present invention.
  • the total number of UEs in the cell is 6, and the activation probability of 3 UEs is 0.8, and the activation probability of 3 UEs is 0.4.
  • FIG. 22A shows a schematic diagram of the cross-correlation between the MA signatures in the MA signature pool composed of 6 MA signatures obtained based on the WBE quantization algorithm for authorized transmission.
  • FIG. 22A shows a schematic diagram of the mutual correlation between each MA signature in an MA signature pool composed of 6 MA signatures obtained according to an embodiment of the present invention.
  • the cross-correlation between the same MA signature is also shown as 1 (for example, the cross-correlation between MA signature 1 and MA signature 1 is 1), and the different MA signatures obtained according to the embodiment of the present invention
  • the level of cross-correlation is quite different.
  • the cross correlation between MA signature 2 and MA signature 3 is 0.27
  • the cross correlation between MA signature 4 and MA signature 5 is 0.59.
  • the MA signatures in the MA signature pool can be grouped according to the different activation probabilities of the UE.
  • the MA signatures with relatively low cross-correlation can be 1-MA signature 3.
  • UE activation information reflecting UE activation characteristics in unlicensed transmission can be considered to provide an MA signature suitable for unlicensed transmission, thereby reducing interference in data transmission between UEs and improving the accuracy of symbol detection. Improve the performance of wireless communication systems.
  • FIG. 23 shows a flowchart of a method 2300 executed by a base station according to an embodiment of the present invention.
  • step S2301 the activation information of the user equipment is acquired, and the activation information of the user equipment is related to the activation of the user equipment.
  • the activation information of the user equipment may be the activation probability of the user equipment.
  • the time axis is divided into multiple time units, and the probability that the UE has data arriving (there is data to be sent) in a certain time unit is defined as the activation probability of the UE.
  • the probability that the UE performs uplink data transmission on the physical resource block may be defined as the activation probability of the UE.
  • the activation probability of the UE may be any value in the interval [0,1], for example, the activation probability of the UE may be 25%.
  • the activation information of the user equipment may also be the activation mode of the user equipment.
  • the UE may have a periodic pattern with an average transmission period T, and accordingly, the relationship with the activation probability of the UE may be obtained indirectly, for example, it may be expressed as 1/T.
  • the UE may have an active mode of Poisson arrival mode. Specifically, the probability density function in the Poisson arrival mode is expressed as: the probability distribution of the number of events occurring in the interval [t, t+ ⁇ ]:
  • P[A] represents the probability of event A
  • t represents time
  • N(t) represents the number of events that occurred at time t
  • is a parameter representing time
  • k represents the number of events (the value can be 0 or Other positive integers)
  • is a positive number, called the arrival rate.
  • the activation information of the UE may be obtained by the UE or may be obtained by the base station.
  • the UE may obtain the activation information of the user equipment according to at least one of historical activation information and high-level activation information.
  • the historical activation information indicates information related to the historical activation behavior of the user equipment, such as an average activation probability or an average transmission period of the UE within a certain preset time.
  • the high-level activation information may be information related to the activation of the user equipment notified by the high-level. In an example, it may be the service transmission information of the UE acquired by the UE through the service layer (application layer), for example, The average period or frequency of service transmission required for one or more applications (apps) acquired by the UE.
  • the base station can also obtain activation information of a certain user equipment according to at least one of historical activation information and high-level activation information.
  • the historical activation information indicates information related to the historical activation behavior of the user equipment, such as the activation probability or average transmission period of the UE within a certain preset period of time.
  • the high-level activation information may also be information related to the activation of the user equipment notified by a high-level, such as service transmission information of the UE obtained by the base station through the service layer (application layer), etc.
  • the base station obtains the UE's activation information, it may be actively obtained, or it may be triggered by an indication signal sent by the UE instructing the base station to estimate the UE's activation information, which is not limited here.
  • the activation information of the UE may be transmitted through signaling.
  • the UE may obtain the activation information and send it to the base station.
  • the UE may explicitly transmit the activation information through, for example, a Physical Uplink Shared Channel (PUSCH).
  • the UE may explicitly transmit the quantized bit value of the activation information through specific bit positions in pre-appointed radio resource control (Radio Resource Control, RRC) signaling, MAC CE, data report, etc. For example, the UE may use the bit "11001" to transmit the activation probability of 25%.
  • RRC Radio Resource Control
  • the UE can use the bit “0" to indicate the "Poisson Arrival Mode” and "111" to indicate that the parameter ⁇ is 4; and the bit “1" to indicate the "Periodic Mode” and the "110” to indicate Indicates that its average transmission period T is 3.
  • the UE transmits "0111" in a specific bit position of the PUSCH it can be used to indicate that its activation information is a Poisson arrival pattern with a parameter ⁇ of 4.
  • the UE can also pass the physical random access channel (Physical Random Access Channel, PRACH) and the physical uplink control channel (Physical Uplink Control Channel) through the preset activation mode and its corresponding index value.
  • PRACH Physical Random Access Channel
  • Physical Uplink Control Channel Physical Uplink Control Channel
  • PUCCH Physical Random Access Channel
  • SRS channel sounding reference signal
  • the index value 1 can be specified as the activation probability [0, 1/3)
  • the index value 2 can be specified as the activation probability [1/3, 2/3)
  • the index value 3 can be specified as [2/3,1].
  • the UE when transmits the index value through PRACH, for example, Msg.1 or PUCCH, it can indicate the range of the corresponding UE activation probability, or the UE can also transmit the corresponding index value through the specific configuration of SRS in the sequence or resource.
  • the corresponding activation probability For another example, when transmitting UE activation modes and corresponding parameters, different index values can also be selected to correspond to different activation modes and parameters, and these index values can be transmitted through PRACH, PUCCH, or SRS.
  • the UE may also send, for example, a 1-bit indication signal at a specific bit position through PRACH or PUCCH to instruct the base station to estimate the activation information of the UE.
  • the base station receives the indication signal, it can obtain the UE's activation information according to at least one of historical activation information and high-level activation information, and can send it to the UE during downlink transmission.
  • the base station informs the UE of its activation information, its specific explicit or implicit representation is similar to the representation on the UE side, and will not be repeated here.
  • step 2302 at least one of the multiple-access signature group and the multiple-access signature used by the user equipment to send data is determined from the multiple-access signature pool at least according to the activation information of the user equipment, and each of the multiple-access signatures
  • the signature group includes at least one multi-site signature.
  • the multi-site signature pool may include at least two multi-site signatures.
  • the multi-site signatures in the multi-site signature pool can be obtained in multiple ways.
  • the multi-site signatures in the multi-site signature pool may be constructed by a deep learning algorithm, for example, a deep learning algorithm may be used for offline construction using a neural network.
  • the multiple access signature can be constructed based on the symbol detection error rate and the user equipment activation state detection error rate.
  • the multiple access signature can be constructed by minimizing the weighted sum of the symbol detection error rate and the user equipment activation state detection error rate .
  • the multiple access signature constructed by the deep learning algorithm may include at least one of bit-to-symbol mapping and spreading sequence.
  • the deep learning algorithm can be used to design a neural network structure to parameterize the variational function in the variational optimization problem, so as to detect the error rate and the activation state of the user equipment by introducing symbols
  • the error rate is detected to obtain a multiple signature based on the activation information of the user device.
  • the variational optimization problem P1 aimed at reducing the error rate of detection (which may include symbol detection and user equipment activation state detection) in unauthorized transmission can be expressed as:
  • a deep learning algorithm can be used to introduce a neural network (for example, Deep Neural Networks (DNN)) to parameterize the aforementioned encoders respectively And/or decoder And get separately Parameters ⁇ and/or in the encoder The parameter ⁇ in the decoder.
  • a neural network for example, Deep Neural Networks (DNN)
  • DNN Deep Neural Networks
  • the neural network may be trained based on at least one of the symbol detection error rate and the user equipment activation state detection error rate.
  • the total loss function of the neural network can be Expressed as:
  • the symbol detection error rate for example, the symbol detection error rate of the base station
  • ⁇ A and ⁇ B are respectively with
  • the corresponding weight may be a value between 0-1, for example.
  • the total loss function of the neural network It can be expressed as the weighted sum of the symbol detection error rate and the user equipment activation state detection error rate.
  • the neural network can be trained by, for example, a gradient descent method, and the corresponding values of ⁇ and/or ⁇ can be obtained.
  • N sub-neural networks corresponding to N UEs can be used to parameterize Let the nth sub-neural network for:
  • P n is the transmission power of the nth user
  • diag(h n ) is a diagonal matrix
  • the diagonal element is the channel parameter of the nth UE.
  • Is the Gaussian distribution function Is the mean of the Gaussian distribution
  • Is the variance of the Gaussian distribution where Is the noise variance
  • the value range of ⁇ can be equivalent to the value range of the neural network parameter W f .
  • bit-to-symbol mapping (or linear spreading sequence) can be obtained by the value of ⁇ and/or ⁇ That is And the corresponding multi-signature pool.
  • Figure 6 shows an example of a multi-signature pool constructed by the above-mentioned deep learning algorithm.
  • the multi-access signature pool can be divided into multiple multi-access signature groups, and the multi-access signature groups can respectively correspond to the total number of user equipment N in the cell and the user equipment activation probability.
  • the number of user equipment N and the user equipment activation probability are both related to p(x), which can be used to generate the specific form of p(x), thereby obtaining Specific form, and further get bit-to-symbol mapping or spreading sequence
  • p(x) which can be used to generate the specific form of p(x), thereby obtaining Specific form, and further get bit-to-symbol mapping or spreading sequence
  • the number of UEs N is 6, and there is only a UE activation probability of -1, it can correspond to the multiple access signature group -1; and the number of UEs N is 20, and there is a UE activation probability of -1 and a UE activation probability At -2, it can correspond to multiple-access signature group-9, and multiple-access signature group-9 can include subgroup 1 corresponding to a high activation probability and subgroup 2 corresponding to a low activation probability.
  • the activation probability of all UEs is UE activation probability-1 (for example, 75%)
  • the activation probability of some UEs is UE activation probability-1 (such as 75%)
  • the activation probability of another part of UEs is UE activation probability-2 (For example, 50%)
  • Subgroup 2 of a UE with a low activation probability (eg 50%).
  • the specific correspondence of the MA signature (group) that takes into account the UE activation probability and the number of UEs in the cell as shown in Figure 6 can be used Way to select the corresponding MA signature to improve the performance of the wireless communication system.
  • the representation of the MA signature pool shown in FIG. 6 and the corresponding manners of the MA signature group and the number of UEs and the UE activation probability are only examples. In practical applications, any correspondence manner of the MA signature group and related parameters can be used. It is not limited to the number of UEs and UE activation probability here.
  • the correspondence between the MA signature group and the parameter may also be arbitrary.
  • a certain MA signature group may correspond to one or more value ranges of a certain parameter, not just a certain parameter value.
  • UE activation probability-1 can be the activation probability range of 50%-75%, and correspond to high activation probability
  • UE activation probability-2 can be the activation probability range of 25%-50%, and correspond to low activation Probability.
  • the above describes in detail the specific implementation of constructing MA signatures through deep learning algorithms and obtaining MA signature pools and MA signature groups, and lists the correspondence between MA signature groups in the MA signature pool and related parameters (such as the number of UEs, UE activation probability) Relationships and selection methods.
  • at least part of the multi-site signatures in the multi-site signature pool may also be obtained based on another multi-site signature pool, wherein the other multi-site signature pool may be a known multi-site signature pool.
  • the pool for example, may be a multi-site signature pool obtained according to a multi-site signature based on authorized transmission.
  • the MA signature corresponding to the UE can be obtained from the MA signature pool according to the activation information of the user equipment.
  • the activation information of the user equipment is related to the activation of the user equipment.
  • the activation information of the user equipment may be the activation probability of the user equipment, and may also be the activation mode of the user equipment.
  • the UE may have a periodic pattern with an average transmission period T, and accordingly, the relationship with the activation probability of the UE may be obtained indirectly, for example, it may be expressed as 1/T.
  • the UE may have an active mode of Poisson arrival mode.
  • the base station can obtain the corresponding MA signature group from the MA signature pool according to the total number of UEs in the cell and/or UE activation information, and then use random selection or other selection methods, for example, the minimum
  • the MA signatures that can be used by the UE are obtained from the MA signature group.
  • the UE may also select the used MA signature from the MA signature pool or one or more MA signature groups according to the UE activation information, using, for example, a random selection method, or further use the UE activation information to select the used MA signature.
  • the UE or the base station can obtain the UE and MA signatures by solving the following optimization problem
  • the optimization problem is:
  • E represents the case where the total number of UEs is N, where the active UE group I satisfies the p(I) distribution, Find the mean; ⁇ (i) is the sequence mapping function, that is, the s ⁇ (i) sequence is mapped to the i UE; Is the conjugate transpose of s ⁇ (i) ; Indicates the correlation (interference) between the i-th UE when the j-th UE is interfered.
  • the MA signature obtained from another MA signature pool such as a known MA signature pool
  • the interference between activated UEs can be minimized, thereby further improving wireless The performance of the communication system. Therefore, the method of the embodiment of the present invention can not only reduce the interference of data transmission between UEs by constructing a new MA signature, but can also reduce the interference and improve the accuracy of symbol detection by re-adjusting the correspondence between the known MA signature and the UE.
  • step S2303 at least one of the information about the multi-site signature group and the information about the multi-site signature is sent.
  • the base station needs to notify the UE through downlink transmission, so that the UE can use the selected MA signature, or in the selected MA signature.
  • the MA signature for data transmission is further selected in the signature group.
  • the MA signature pool, the MA signature group contained in it, and the relevant UE activation parameters corresponding to the MA signature group may be stored in advance on both sides of the UE and the base station; or, alternatively, the base station may also broadcast signaling
  • the system information block System Information Block, SIB
  • MIB Master Information Block
  • the base station can send the selected MA signature group and/or MA signature through RRC signaling for static configuration or L1 layer signaling for semi-dynamic configuration (DCL)) To the UE.
  • the base station may use index 1 to indicate the index of the selected MA signature group, and use index 2 to indicate the index of the MA signature in this MA signature group.
  • the base station may send index 6 to indicate the MA signature group-6 through RRC signaling, and at the same time send index 2 to indicate the second MA signature in the MA signature group-6.
  • the base station can also directly inform the UE of the selected MA signature.
  • the base station when it sends the selected MA signature, it can also inform the UE in an implicit manner.
  • the base station may quantify the selected MA signature into an M-QAM constellation diagram representation, and notify the UE of the result through corresponding signaling.
  • the base station can also inform the UE of the corresponding constellation model and related parameter values of the MA signature selected by the UE. For example, when the MA signature has a parallelogram shape, the base station can notify the UE through a predetermined related position or bit value.
  • the UE constellation diagram is a parallelogram, and the UE can be informed of the two side lengths of the parallelogram and the angle between them.
  • the UE may first obtain the activation information of the user equipment; then, the UE sends the activation information of the user equipment to the base station, so that the base station obtains the activation information from the user equipment according to the activation information of the user equipment.
  • the multiple-access signature is determined in the multiple-access signature pool; finally, the UE receives the information about the multiple-access signature indicating the multiple-access signature determined by the base station to obtain the multiple-access signature.
  • the UE may first send an indication signal instructing the base station to estimate the activation information of the user equipment to the base station, so that the base station can estimate the activation information of the UE; Receive the multiple-access signature determined from the multiple-access signature pool according to the estimation result of the activation information of the user equipment from the base station.
  • Fig. 7 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE may first send the activation of the UE to the base station through PRACH before receiving the RRC signaling.
  • Information or an indication signal used to instruct the base station to estimate the UE's activation information, so that the base station selects the MA signature used by the UE from the MA signature pool according to the UE's activation information or the estimation result.
  • the base station may send information about the MA signature through RRC signaling, so that the UE uses the MA signature to send uplink data.
  • Fig. 8 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE can firstly before receiving RRC signaling and L1 signaling to configure data transmission resources to the UE and realize unlicensed transmission.
  • the activation information of the UE or the indication signal used to instruct the base station to estimate the activation information of the UE are sent to the base station through the PRACH, so that the base station selects the MA signature used by the UE from the MA signature pool according to the activation information or the estimation result of the UE.
  • the base station can send information about the MA signature through RRC signaling or L1 signaling, so that the UE uses the MA signature to send uplink data.
  • Fig. 9 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE can pass the RRC signaling and L1 signaling through
  • the uplink data sends the UE activation information or an indication signal for instructing the base station to estimate the UE activation information to the base station, so that the base station selects the MA signature used by the UE from the MA signature pool according to the UE activation information or estimation result.
  • the base station can send information about the MA signature through RRC signaling or L1 signaling, so that the UE uses the updated MA signature to send uplink data during the next uplink data transmission.
  • the UE may first obtain the activation information of the user equipment; and the UE may obtain the multiple-access signature determined from the multiple-access signature pool according to the activation information.
  • the UE can obtain its own activation information.
  • the UE may also send an indication signal instructing the base station to estimate the activation information of the user equipment to the base station, so that the base station estimates the activation information of the UE; subsequently, the UE may receive the estimated activation information from the base station.
  • the activation information of the UE may be used to obtain the activation information of the user equipment.
  • the UE may not only acquire the activation information of the user equipment, but also receive the information about the multiple access signature group sent by the base station; subsequently, the UE may obtain the activation information of the user equipment and the information about the multiple access signature group.
  • the information of the address signature group determines the multiple address signature.
  • the information of the multiple-access signature group may be determined by the base station itself, or may be triggered by the indication information of the UE, so as to determine the activation information of the UE.
  • Fig. 10 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the base station can first send one or more MA signature groups through the Physical Broadcast Channel (PBCH) Then, the UE selects the used MA signature from the MA signature group sent by the base station according to its activation information.
  • PBCH Physical Broadcast Channel
  • the base station when the base station knows the number of UEs in the corresponding cell and the UE activation information, it can select one of the MA signature groups and send it to the UE; When the base station only knows one of the number of UEs in its corresponding cell and the UE’s activation information, it can select one column or row of the MA signature group in Figure 6 and send it to the UE; when the base station determines the number of UEs in the corresponding cell When the activation information of the UE and the UE are unknown, the entire MA signature pool can be sent to the UE for the UE to choose from.
  • the UE may further select an appropriate MA signature from the MA signature group according to the activation information; or, the UE may randomly select an MA signature from the MA signature group, which is not limited here.
  • the UE can use the multiple-access signature to process the data and send the processed data.
  • UE activation information reflecting UE activation characteristics in unlicensed transmission can be considered to provide an MA signature suitable for unlicensed transmission, thereby reducing interference in data transmission between UEs and improving the accuracy of symbol detection. Improve the performance of wireless communication systems.
  • the user equipment according to the embodiment of the present application is described below with reference to FIG. 24.
  • the user equipment may execute the method performed by the user equipment. Since the operation of the user equipment is basically the same as the steps of the method described above, it is only briefly described here, and repeated description of the same content is omitted.
  • the user equipment 2400 includes a control unit 2410 and a sending unit 2420. It needs to be realized that FIG. 24 only shows components related to the embodiment of the present application, and other components are omitted, but this is only illustrative, and the user equipment 2400 may include other components as required.
  • the control unit 2410 obtains a multiple-access signature, which is determined from a multiple-access signature pool according to the activation information of the user equipment, and the activation information of the user equipment is related to the activation of the user equipment.
  • the multi-site signature pool may include at least two multi-site signatures.
  • the multi-site signatures in the multi-site signature pool can be obtained in multiple ways.
  • the multi-site signatures in the multi-site signature pool may be constructed by a deep learning algorithm, for example, a deep learning algorithm may be used for offline construction using a neural network.
  • the multiple access signature can be constructed based on the symbol detection error rate and the user equipment activation state detection error rate.
  • the multiple access signature can be constructed by minimizing the weighted sum of the symbol detection error rate and the user equipment activation state detection error rate .
  • the multiple access signature constructed by the deep learning algorithm may include at least one of bit-to-symbol mapping and spreading sequence.
  • the deep learning algorithm can be used to design a neural network structure to parameterize the variational function in the variational optimization problem, so as to detect the error rate and the activation state of the user equipment by introducing symbols
  • the error rate is detected to obtain a multiple signature based on the activation information of the user device.
  • the variational optimization problem P1 aimed at reducing the error rate of detection (which can include symbol detection and user equipment activation state detection) in unauthorized transmission can be expressed as:
  • a deep learning algorithm can be used to introduce a neural network (for example, Deep Neural Networks (DNN)) to parameterize the aforementioned encoders respectively And/or decoder And get separately Parameters ⁇ and/or in the encoder The parameter ⁇ in the decoder.
  • a neural network for example, Deep Neural Networks (DNN)
  • DNN Deep Neural Networks
  • the neural network may be trained based on at least one of the symbol detection error rate and the user equipment activation state detection error rate.
  • the total loss function of the neural network can be Expressed as:
  • the symbol detection error rate for example, the symbol detection error rate of the base station
  • ⁇ A and ⁇ B are respectively with
  • the corresponding weight may be a value between 0-1, for example.
  • the total loss function of the neural network It can be expressed as the weighted sum of the symbol detection error rate and the user equipment activation state detection error rate.
  • the neural network can be trained by, for example, a gradient descent method, and the corresponding values of ⁇ and/or ⁇ can be obtained.
  • N sub-neural networks corresponding to N UEs can be used to parameterize Let the nth sub-neural network for:
  • P n is the transmission power of the nth user
  • diag(h n ) is a diagonal matrix
  • the diagonal element is the channel parameter of the nth UE.
  • Is the Gaussian distribution function Is the mean of the Gaussian distribution
  • Is the variance of the Gaussian distribution where Is the noise variance
  • the value range of ⁇ can be equivalent to the value range of the neural network parameter W f .
  • bit-to-symbol mapping (or linear spreading sequence) can be obtained by the value of ⁇ and/or ⁇ That is And the corresponding multi-signature pool.
  • Figure 6 shows an example of a multi-signature pool constructed by the above-mentioned deep learning algorithm.
  • the multi-access signature pool can be divided into multiple multi-access signature groups, and the multi-access signature groups can respectively correspond to the total number of user equipment N in the cell and the user equipment activation probability.
  • the number of user equipment N and the user equipment activation probability are both related to p(x), which can be used to generate the specific form of p(x), thereby obtaining Specific form, and further get bit-to-symbol mapping or spreading sequence
  • p(x) which can be used to generate the specific form of p(x), thereby obtaining Specific form, and further get bit-to-symbol mapping or spreading sequence
  • the number of UEs N is 6, and there is only a UE activation probability of -1, it can correspond to the multiple access signature group -1; and the number of UEs N is 20, and there is a UE activation probability of -1 and a UE activation probability At -2, it can correspond to multiple-access signature group-9, and multiple-access signature group-9 can include subgroup 1 corresponding to a high activation probability and subgroup 2 corresponding to a low activation probability.
  • the activation probability of all UEs is UE activation probability-1 (for example, 75%)
  • the activation probability of some UEs is UE activation probability-1 (such as 75%)
  • the activation probability of another part of UEs is UE activation probability-2 (For example, 50%)
  • Subgroup 2 of a UE with a low activation probability (eg 50%).
  • the specific correspondence of the MA signature (group) that takes into account the UE activation probability and the number of UEs in the cell as shown in Figure 6 can be used Way to select the corresponding MA signature to improve the performance of the wireless communication system.
  • the representation of the MA signature pool shown in FIG. 6 and the corresponding manners of the MA signature group and the number of UEs and the UE activation probability are only examples. In practical applications, any correspondence manner of the MA signature group and related parameters can be used. It is not limited to the number of UEs and UE activation probability here.
  • the correspondence between the MA signature group and the parameter may also be arbitrary.
  • a certain MA signature group may correspond to one or more value ranges of a certain parameter, not just a certain parameter value.
  • UE activation probability-1 can be the activation probability range of 50%-75%, and correspond to high activation probability
  • UE activation probability-2 can be the activation probability range of 25%-50%, and correspond to low activation Probability.
  • the above describes in detail the specific implementation of constructing MA signatures through deep learning algorithms and obtaining MA signature pools and MA signature groups, and lists the correspondence between MA signature groups in the MA signature pool and related parameters (such as the number of UEs, UE activation probability) Relationships and selection methods.
  • at least part of the multi-site signatures in the multi-site signature pool may also be obtained based on another multi-site signature pool, wherein the other multi-site signature pool may be a known multi-site signature pool.
  • the pool for example, may be a multi-site signature pool obtained according to a multi-site signature based on authorized transmission.
  • the MA signature corresponding to the UE can be obtained from the MA signature pool according to the activation information of the user equipment.
  • the activation information of the user equipment is related to the activation of the user equipment.
  • the activation information of the user equipment may be the activation probability of the user equipment.
  • the time axis is divided into multiple time units, and the probability that the UE has data arriving (there is data to be sent) in a certain time unit is defined as the activation probability of the UE.
  • the probability that the UE performs uplink data transmission on the physical resource block may be defined as the activation probability of the UE.
  • the activation probability of the UE may be any value in the interval [0,1], for example, the activation probability of the UE may be 25%.
  • the activation information of the user equipment may also be the activation mode of the user equipment.
  • the UE may have a periodic pattern with an average transmission period T, and accordingly, the relationship with the activation probability of the UE may be obtained indirectly, for example, it may be expressed as 1/T.
  • the UE may have an active mode of Poisson arrival mode. Specifically, the probability density function in the Poisson arrival mode is expressed as: the probability distribution of the number of events occurring in the interval [t, t+ ⁇ ]:
  • P[A] represents the probability of event A
  • t represents time
  • N(t) represents the number of events that occurred at time t
  • is a parameter representing time
  • k represents the number of events (the value can be 0 or Other positive integers)
  • is a positive number, called the arrival rate.
  • the activation information of the UE may be obtained by the UE or may be obtained by the base station.
  • the UE may obtain the activation information of the user equipment according to at least one of historical activation information and high-level activation information.
  • the historical activation information indicates information related to the historical activation behavior of the user equipment, such as an average activation probability or an average transmission period of the UE within a certain preset time.
  • the high-level activation information may be information related to the activation of the user equipment notified by the high-level. In an example, it may be the service transmission information of the UE acquired by the UE through the service layer (application layer), for example, The average period or frequency of service transmission required for one or more applications (apps) acquired by the UE.
  • the base station can also obtain activation information of a certain user equipment according to at least one of historical activation information and high-level activation information.
  • the historical activation information indicates information related to the historical activation behavior of the user equipment, such as the activation probability or average transmission period of the UE within a certain preset period of time.
  • the high-level activation information may also be information related to the activation of the user equipment notified by a high-level, such as service transmission information of the UE obtained by the base station through the service layer (application layer), etc.
  • the base station obtains the UE's activation information, it may be actively obtained, or it may be triggered by an indication signal sent by the UE instructing the base station to estimate the UE's activation information, which is not limited here.
  • the activation information of the UE may be transmitted through signaling.
  • the UE may obtain the activation information and send it to the base station.
  • the UE may explicitly transmit the activation information through, for example, a Physical Uplink Shared Channel (PUSCH).
  • the UE may explicitly transmit the quantized bit value of the activation information through specific bit positions in pre-appointed radio resource control (Radio Resource Control, RRC) signaling, MAC CE, data report, etc. For example, the UE may use the bit "11001" to transmit the activation probability of 25%.
  • RRC Radio Resource Control
  • the UE can use the bit “0" to indicate the "Poisson Arrival Mode” and "111" to indicate that the parameter ⁇ is 4; and the bit “1" to indicate the "Periodic Mode” and the "110” to indicate Indicates that its average transmission period T is 3.
  • the UE transmits "0111" in a specific bit position of the PUSCH it can be used to indicate that its activation information is a Poisson arrival pattern with a parameter ⁇ of 4.
  • the UE can also pass the physical random access channel (Physical Random Access Channel, PRACH) and the physical uplink control channel (Physical Uplink Control Channel) through the preset activation mode and its corresponding index value.
  • PRACH Physical Random Access Channel
  • Physical Uplink Control Channel Physical Uplink Control Channel
  • PUCCH Physical Random Access Channel
  • SRS channel sounding reference signal
  • the index value 1 can be specified as the activation probability [0, 1/3)
  • the index value 2 can be specified as the activation probability [1/3, 2/3)
  • the index value 3 can be specified as [2/3,1].
  • the UE when transmits the index value through PRACH, for example, Msg.1 or PUCCH, it can indicate the range of the corresponding UE activation probability, or the UE can also transmit the corresponding index value through the specific configuration of SRS in the sequence or resource.
  • the corresponding activation probability For another example, when transmitting UE activation modes and corresponding parameters, different index values can also be selected to correspond to different activation modes and parameters, and these index values can be transmitted through PRACH, PUCCH, or SRS.
  • the UE may also send, for example, a 1-bit indication signal at a specific bit position through PRACH or PUCCH to instruct the base station to estimate the activation information of the UE.
  • the base station receives the indication signal, it can obtain the UE's activation information according to at least one of historical activation information and high-level activation information, and can send it to the UE during downlink transmission.
  • the base station informs the UE of its activation information, its specific explicit or implicit representation is similar to the representation on the UE side, and will not be repeated here.
  • the specific operation of obtaining the MA signature from the MA signature pool according to the activation information of the UE may be performed by the UE or the base station.
  • the MA signature group in the MA signature pool may correspond to the number of UEs and UE activation information (UE activation probability or corresponding UE activation mode and related parameters) .
  • the base station can obtain the corresponding MA signature group from the MA signature pool according to the total number of UEs in the cell and/or UE activation information, and then use random selection or other selection methods, for example, the minimum
  • the MA signatures that can be used by the UE are obtained from the MA signature group.
  • the UE may also select the used MA signature from the MA signature pool or one or more MA signature groups according to the UE activation information, using, for example, a random selection method, or further use the UE activation information to select the used MA signature.
  • the UE or the base station can obtain the UE and MA signatures by solving the following optimization problem
  • the optimization problem is:
  • E represents the case where the total number of UEs is N, where the active UE group I satisfies the p(I) distribution, Find the mean; ⁇ (i) is the sequence mapping function, that is, the s ⁇ (i) sequence is mapped to the i UE; Is the conjugate transpose of s ⁇ (i) ; Indicates the correlation (interference) between the i-th UE when the j-th UE is interfered.
  • the MA signature obtained from another MA signature pool such as a known MA signature pool
  • the interference between activated UEs can be minimized, thereby further improving wireless The performance of the communication system. Therefore, the method of the embodiment of the present invention can not only reduce the interference of data transmission between UEs by constructing a new MA signature, but can also reduce the interference and improve the accuracy of symbol detection by re-adjusting the correspondence between the known MA signature and the UE.
  • the UE can directly use the MA signature to send data in the subsequent steps.
  • the base station needs to notify the UE through downlink transmission so that the UE can use the selected MA signature, or in the selected MA signature.
  • the MA signature for data transmission is further selected in the MA signature group.
  • the MA signature pool, the MA signature group contained in it, and the relevant UE activation parameters corresponding to the MA signature group may be stored in advance on both sides of the UE and the base station; or, alternatively, the base station may also broadcast signaling
  • the system information block (System Information Block, SIB)/Master Information Block (Master Information Block, MIB) is pre-configured to the UE.
  • the base station can send the selected MA signature group and/or MA signature through RRC signaling for static configuration or L1 layer signaling for semi-dynamic configuration (DCL)) To the UE.
  • the base station may use index 1 to indicate the index of the selected MA signature group, and use index 2 to indicate the index of the MA signature in this MA signature group.
  • the base station may send index 6 to indicate the MA signature group-6 through RRC signaling, and at the same time send index 2 to indicate the second MA signature in the MA signature group-6.
  • the base station can also directly inform the UE of the selected MA signature.
  • the base station when it sends the selected MA signature, it can also inform the UE in an implicit manner.
  • the base station may quantify the selected MA signature into an M-QAM constellation diagram representation, and notify the UE of the result through corresponding signaling.
  • the base station can also inform the UE of the corresponding constellation model and related parameter values of the MA signature selected by the UE. For example, when the MA signature has a parallelogram shape, the base station can notify the UE through a predetermined related position or bit value.
  • the UE constellation diagram is a parallelogram, and the UE can be informed of the two side lengths of the parallelogram and the angle between them.
  • the UE may first obtain the activation information of the user equipment; then, the UE sends the activation information of the user equipment to the base station, so that the base station obtains the activation information from the user equipment according to the activation information of the user equipment.
  • the multiple-access signature is determined in the multiple-access signature pool; finally, the UE receives the information about the multiple-access signature indicating the multiple-access signature determined by the base station to obtain the multiple-access signature.
  • the UE may first send an indication signal instructing the base station to estimate the activation information of the user equipment to the base station, so that the base station can estimate the activation information of the UE; Receive the multiple-access signature determined from the multiple-access signature pool according to the estimation result of the activation information of the user equipment from the base station.
  • Fig. 7 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE may first send the activation of the UE to the base station through PRACH before receiving the RRC signaling.
  • Information or an indication signal used to instruct the base station to estimate the UE's activation information, so that the base station selects the MA signature used by the UE from the MA signature pool according to the UE's activation information or the estimation result.
  • the base station may send information about the MA signature through RRC signaling, so that the UE uses the MA signature to send uplink data.
  • Fig. 8 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE can firstly before receiving RRC signaling and L1 signaling to configure data transmission resources to the UE and realize unlicensed transmission.
  • the activation information of the UE or the indication signal used to instruct the base station to estimate the activation information of the UE are sent to the base station through the PRACH, so that the base station selects the MA signature used by the UE from the MA signature pool according to the activation information or the estimation result of the UE.
  • the base station can send information about the MA signature through RRC signaling or L1 signaling, so that the UE uses the MA signature to send uplink data.
  • Fig. 9 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE can pass the RRC signaling and L1 signaling through
  • the uplink data sends the UE activation information or an indication signal for instructing the base station to estimate the UE activation information to the base station, so that the base station selects the MA signature used by the UE from the MA signature pool according to the UE activation information or estimation result.
  • the base station can send information about the MA signature through RRC signaling or L1 signaling, so that the UE uses the updated MA signature to send uplink data during the next uplink data transmission.
  • the UE may first obtain the activation information of the user equipment; and the UE may obtain the multiple-access signature determined from the multiple-access signature pool according to the activation information.
  • the UE can obtain its own activation information.
  • the UE may also send an indication signal instructing the base station to estimate the activation information of the user equipment to the base station, so that the base station estimates the activation information of the UE; subsequently, the UE may receive the estimated activation information from the base station.
  • the activation information of the UE may be used to obtain the activation information of the user equipment.
  • the UE may not only acquire the activation information of the user equipment, but also receive the information about the multiple access signature group sent by the base station; subsequently, the UE may obtain the activation information of the user equipment and the information about the multiple access signature group.
  • the information of the address signature group determines the multiple address signature.
  • the information of the multiple-access signature group may be determined by the base station itself, or may be triggered by the indication information of the UE, so as to determine the activation information of the UE.
  • Fig. 10 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the base station can first send one or more MA signature groups through the Physical Broadcast Channel (PBCH) Then, the UE selects the used MA signature from the MA signature group sent by the base station according to its activation information.
  • PBCH Physical Broadcast Channel
  • the base station when the base station knows the number of UEs in the corresponding cell and the UE activation information, it can select one of the MA signature groups and send it to the UE; When the base station only knows one of the number of UEs in its corresponding cell and the UE’s activation information, it can select one column or row of the MA signature group in Figure 6 and send it to the UE; when the base station determines the number of UEs in the corresponding cell When the activation information of the UE and the UE are unknown, the entire MA signature pool can be sent to the UE for the UE to choose from.
  • the UE may further select an appropriate MA signature from the MA signature group according to the activation information; or, the UE may randomly select an MA signature from the MA signature group, which is not limited here.
  • the sending unit 2420 uses the multiple signature to send data.
  • the sending unit 2420 may use the previously acquired MA signature, process the data to be sent based on the MA signature, and send the processed data.
  • UE activation information reflecting UE activation characteristics in unlicensed transmission can be considered to provide an MA signature suitable for unlicensed transmission, thereby reducing the interference of data transmission between UEs and improving the accuracy of symbol detection , Improve the performance of wireless communication systems.
  • the base station may perform the above method performed by the base station. Since the operation of the base station is basically the same as the steps of the method described above, it is only briefly described here, and repeated description of the same content is omitted.
  • the base station 2500 includes a control unit 2510 and a sending unit 2520. It needs to be realized that FIG. 25 only shows components related to the embodiments of the present application, and other components are omitted, but this is only illustrative, and the base station 2500 may include other components as required.
  • the control unit 2510 obtains activation information of the user equipment, where the activation information of the user equipment is related to the activation of the user equipment.
  • the activation information of the user equipment may be the activation probability of the user equipment.
  • the time axis is divided into multiple time units, and the probability that the UE has data arriving (there is data to be sent) in a certain time unit is defined as the activation probability of the UE.
  • the probability that the UE performs uplink data transmission on the physical resource block may be defined as the activation probability of the UE.
  • the activation probability of the UE may be any value in the interval [0,1], for example, the activation probability of the UE may be 25%.
  • the activation information of the user equipment may also be the activation mode of the user equipment.
  • the UE may have a periodic pattern with an average transmission period T, and accordingly, the relationship with the activation probability of the UE may be obtained indirectly, for example, it may be expressed as 1/T.
  • the UE may have an active mode of Poisson arrival mode. Specifically, the probability density function in the Poisson arrival mode is expressed as: the probability distribution of the number of events occurring in the interval [t, t+ ⁇ ]:
  • P[A] represents the probability of event A
  • t represents time
  • N(t) represents the number of events that occurred at time t
  • is a parameter representing time
  • k represents the number of events (the value can be 0 or Other positive integers)
  • is a positive number, called the arrival rate.
  • the activation information of the UE may be obtained by the UE or may be obtained by the base station.
  • the UE may obtain the activation information of the user equipment according to at least one of historical activation information and high-level activation information.
  • the historical activation information indicates information related to the historical activation behavior of the user equipment, such as an average activation probability or an average transmission period of the UE within a certain preset time.
  • the high-level activation information may be information related to the activation of the user equipment notified by the high-level. In an example, it may be the service transmission information of the UE acquired by the UE through the service layer (application layer), for example, The average period or frequency of service transmission required for one or more applications (apps) acquired by the UE.
  • the base station can also obtain activation information of a certain user equipment according to at least one of historical activation information and high-level activation information.
  • the historical activation information indicates information related to the historical activation behavior of the user equipment, such as the activation probability or average transmission period of the UE within a certain preset period of time.
  • the high-level activation information may also be information related to the activation of the user equipment notified by a high-level, such as service transmission information of the UE obtained by the base station through the service layer (application layer), etc.
  • the base station obtains the UE's activation information, it may be actively obtained, or it may be triggered by an indication signal sent by the UE instructing the base station to estimate the UE's activation information, which is not limited here.
  • the activation information of the UE may be transmitted through signaling.
  • the UE may obtain the activation information and send it to the base station.
  • the UE may explicitly transmit the activation information through, for example, a Physical Uplink Shared Channel (PUSCH).
  • the UE may explicitly transmit the quantized bit value of the activation information through specific bit positions in pre-appointed radio resource control (Radio Resource Control, RRC) signaling, MAC CE, data report, etc. For example, the UE may use the bit "11001" to transmit the activation probability of 25%.
  • RRC Radio Resource Control
  • the UE can use the bit “0" to indicate the "Poisson Arrival Mode” and "111" to indicate that the parameter ⁇ is 4; and the bit “1" to indicate the "Periodic Mode” and the "110” to indicate Indicates that its average transmission period T is 3.
  • the UE transmits "0111" in a specific bit position of the PUSCH it can be used to indicate that its activation information is a Poisson arrival pattern with a parameter ⁇ of 4.
  • the UE can also pass the physical random access channel (Physical Random Access Channel, PRACH) and the physical uplink control channel (Physical Uplink Control Channel) through the preset activation mode and its corresponding index value.
  • PRACH Physical Random Access Channel
  • Physical Uplink Control Channel Physical Uplink Control Channel
  • PUCCH Physical Random Access Channel
  • SRS channel sounding reference signal
  • the index value 1 can be specified as the activation probability [0, 1/3)
  • the index value 2 can be specified as the activation probability [1/3, 2/3)
  • the index value 3 can be specified as [2/3,1].
  • the UE when transmits the index value through PRACH, for example, Msg.1 or PUCCH, it can indicate the range of the corresponding UE activation probability, or the UE can also transmit the corresponding index value through the specific configuration of SRS in the sequence or resource.
  • the corresponding activation probability For another example, when transmitting UE activation modes and corresponding parameters, different index values can also be selected to correspond to different activation modes and parameters, and these index values can be transmitted through PRACH, PUCCH, or SRS.
  • the UE may also send, for example, a 1-bit indication signal at a specific bit position through PRACH or PUCCH to instruct the base station to estimate the activation information of the UE.
  • the base station receives the indication signal, it can obtain the UE's activation information according to at least one of historical activation information and high-level activation information, and can send it to the UE during downlink transmission.
  • the base station informs the UE of its activation information, its specific explicit or implicit representation is similar to the representation on the UE side, and will not be repeated here.
  • the control unit 2510 determines at least one of the multiple-access signature group and the multiple-access signature used by the user equipment to send data from the multiple-access signature pool at least according to the activation information of the user equipment, and each of the multiple-access signature groups Include at least one multi-site signature.
  • the multi-site signature pool may include at least two multi-site signatures.
  • the multi-site signatures in the multi-site signature pool can be obtained in multiple ways.
  • the multi-site signatures in the multi-site signature pool may be constructed by a deep learning algorithm, for example, a deep learning algorithm may be used for offline construction using a neural network.
  • the multiple access signature can be constructed based on the symbol detection error rate and the user equipment activation state detection error rate.
  • the multiple access signature can be constructed by minimizing the weighted sum of the symbol detection error rate and the user equipment activation state detection error rate .
  • the multiple access signature constructed by the deep learning algorithm may include at least one of bit-to-symbol mapping and spreading sequence.
  • the deep learning algorithm can be used to design a neural network structure to parameterize the variational function in the variational optimization problem, so as to detect the error rate and the activation state of the user equipment by introducing symbols
  • the error rate is detected to obtain a multiple signature based on the activation information of the user device.
  • the variational optimization problem P1 aimed at reducing the error rate of detection (which may include symbol detection and user equipment activation state detection) in unauthorized transmission can be expressed as:
  • a deep learning algorithm can be used to introduce a neural network (for example, Deep Neural Networks (DNN)) to parameterize the aforementioned encoders respectively And/or decoder And get separately Parameters ⁇ and/or in the encoder The parameter ⁇ in the decoder.
  • a neural network for example, Deep Neural Networks (DNN)
  • DNN Deep Neural Networks
  • the neural network may be trained based on at least one of the symbol detection error rate and the user equipment activation state detection error rate.
  • the total loss function of the neural network can be Expressed as:
  • the symbol detection error rate for example, the symbol detection error rate of the base station
  • ⁇ A and ⁇ B are respectively with
  • the corresponding weight may be a value between 0-1, for example.
  • the total loss function of the neural network It can be expressed as the weighted sum of the symbol detection error rate and the user equipment activation state detection error rate.
  • the neural network can be trained by, for example, a gradient descent method, and the corresponding values of ⁇ and/or ⁇ can be obtained.
  • N sub-neural networks corresponding to N UEs can be used to parameterize Let the nth sub-neural network for:
  • P n is the transmission power of the nth user
  • diag(h n ) is a diagonal matrix
  • the diagonal element is the channel parameter of the nth UE.
  • Is the Gaussian distribution function Is the mean of the Gaussian distribution
  • Is the variance of the Gaussian distribution where Is the noise variance
  • the value range of ⁇ can be equivalent to the value range of the neural network parameter W f .
  • bit-to-symbol mapping (or linear spreading sequence) can be obtained by the value of ⁇ and/or ⁇ That is And the corresponding multi-signature pool.
  • Figure 6 shows an example of a multi-signature pool constructed by the above-mentioned deep learning algorithm.
  • the multi-access signature pool can be divided into multiple multi-access signature groups, and the multi-access signature groups can respectively correspond to the total number of user equipment N in the cell and the user equipment activation probability.
  • the number of user equipment N and the user equipment activation probability are both related to p(x), which can be used to generate the specific form of p(x), thereby obtaining Specific form, and further get bit-to-symbol mapping or spreading sequence
  • p(x) which can be used to generate the specific form of p(x), thereby obtaining Specific form, and further get bit-to-symbol mapping or spreading sequence
  • the number of UEs N is 6, and there is only a UE activation probability of -1, it can correspond to the multiple access signature group -1; and the number of UEs N is 20, and there is a UE activation probability of -1 and a UE activation probability At -2, it can correspond to multiple-access signature group-9, and multiple-access signature group-9 can include subgroup 1 corresponding to a high activation probability and subgroup 2 corresponding to a low activation probability.
  • the activation probability of all UEs is UE activation probability-1 (for example, 75%)
  • the activation probability of some UEs is UE activation probability-1 (such as 75%)
  • the activation probability of another part of UEs is UE activation probability-2 (For example, 50%)
  • Subgroup 2 of a UE with a low activation probability (eg 50%).
  • the specific correspondence of the MA signature (group) that takes into account the UE activation probability and the number of UEs in the cell as shown in Figure 6 can be used Way to select the corresponding MA signature to improve the performance of the wireless communication system.
  • the representation of the MA signature pool shown in FIG. 6 and the corresponding manners of the MA signature group and the number of UEs and the UE activation probability are only examples. In practical applications, any correspondence manner of the MA signature group and related parameters can be used. It is not limited to the number of UEs and UE activation probability here.
  • the correspondence between the MA signature group and the parameter may also be arbitrary.
  • a certain MA signature group may correspond to one or more value ranges of a certain parameter, rather than only corresponding to a certain parameter value.
  • UE activation probability-1 can be the activation probability range of 50%-75%, and correspond to high activation probability
  • UE activation probability-2 can be the activation probability range of 25%-50%, and correspond to low activation Probability.
  • the above describes in detail the specific implementation of constructing MA signatures through deep learning algorithms and obtaining MA signature pools and MA signature groups, and lists the correspondence between MA signature groups in the MA signature pool and related parameters (such as the number of UEs, UE activation probability) Relationships and selection methods.
  • at least part of the multi-site signatures in the multi-site signature pool may also be obtained based on another multi-site signature pool, wherein the other multi-site signature pool may be a known multi-site signature pool.
  • the pool for example, may be a multi-site signature pool obtained according to a multi-site signature based on authorized transmission.
  • the MA signature corresponding to the UE can be obtained from the MA signature pool according to the activation information of the user equipment.
  • the activation information of the user equipment is related to the activation of the user equipment.
  • the activation information of the user equipment may be the activation probability of the user equipment; or, it may also be the activation mode of the user equipment.
  • the UE may have a periodic pattern with an average transmission period T, and accordingly, the relationship with the activation probability of the UE may be obtained indirectly, for example, it may be expressed as 1/T.
  • the UE may have an active mode of Poisson arrival mode.
  • the base station can obtain the corresponding MA signature group from the MA signature pool according to the total number of UEs in the cell and/or UE activation information, and then use random selection or other selection methods, for example, the minimum
  • the MA signatures that can be used by the UE are obtained from the MA signature group.
  • the UE may also select the used MA signature from the MA signature pool or one or more MA signature groups according to the UE activation information, using, for example, a random selection method, or further use the UE activation information to select the used MA signature.
  • the UE or the base station can obtain the UE and MA signatures by solving the following optimization problem
  • the optimization problem is:
  • E represents the case where the total number of UEs is N, where the active UE group I satisfies the p(I) distribution, Find the mean; ⁇ (i) is the sequence mapping function, that is, the s ⁇ (i) sequence is mapped to the i UE; Is the conjugate transpose of s ⁇ (i) ; Indicates the correlation (interference) between the i-th UE when the j-th UE is interfered.
  • the MA signature obtained from another MA signature pool such as a known MA signature pool
  • the interference between activated UEs can be minimized, thereby further improving the wireless The performance of the communication system. Therefore, the method of the embodiment of the present invention can not only reduce the interference of data transmission between UEs by constructing a new MA signature, but also can reduce the interference and improve the accuracy of symbol detection by re-adjusting the correspondence between the known MA signature and the UE.
  • the sending unit 2520 sends at least one of the information about the multiple signature group and the information about the multiple signature.
  • the UE can directly use the MA signature to send data in the subsequent steps.
  • the base station needs to notify the UE through downlink transmission so that the UE can use the selected MA signature, or in the selected MA signature.
  • the MA signature for data transmission is further selected in the MA signature group.
  • the MA signature pool, the MA signature group contained in it, and the relevant UE activation parameters corresponding to the MA signature group may be stored in advance on both sides of the UE and the base station; or, alternatively, the base station may also broadcast signaling
  • the system information block (System Information Block, SIB)/Master Information Block (Master Information Block, MIB) is pre-configured to the UE.
  • the base station can send the selected MA signature group and/or MA signature through RRC signaling for static configuration or L1 layer signaling for semi-dynamic configuration (DCL)) To the UE.
  • the base station may use index 1 to indicate the index of the selected MA signature group, and use index 2 to indicate the index of the MA signature in this MA signature group.
  • the base station can send index 6 to indicate the MA signature group-6 through RRC signaling, and at the same time send index 2 to indicate the second MA signature in the MA signature group-6.
  • the base station can also directly inform the UE of the selected MA signature.
  • the base station when it sends the selected MA signature, it can also inform the UE in an implicit manner.
  • the base station may quantify the selected MA signature into an M-QAM constellation diagram representation, and notify the UE of the result through corresponding signaling.
  • the base station can also inform the UE of the corresponding constellation model and related parameter values of the MA signature selected by the UE. For example, when the MA signature has a parallelogram shape, the base station can notify the UE through a predetermined related position or bit value.
  • the UE constellation diagram is a parallelogram, and the UE can be informed of the two side lengths of the parallelogram and the angle between them.
  • the UE may first obtain the activation information of the user equipment; then, the UE sends the activation information of the user equipment to the base station, so that the base station obtains the activation information from the user equipment according to the activation information of the user equipment.
  • the multiple-access signature is determined in the multiple-access signature pool; finally, the UE receives the information about the multiple-access signature indicating the multiple-access signature determined by the base station to obtain the multiple-access signature.
  • the UE may first send an indication signal instructing the base station to estimate the activation information of the user equipment to the base station, so that the base station can estimate the activation information of the UE; Receive the multiple-access signature determined from the multiple-access signature pool according to the estimation result of the activation information of the user equipment from the base station.
  • Fig. 7 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE may first send the activation of the UE to the base station through PRACH before receiving the RRC signaling.
  • Information or an indication signal used to instruct the base station to estimate the UE's activation information, so that the base station selects the MA signature used by the UE from the MA signature pool according to the UE's activation information or the estimation result.
  • the base station may send information about the MA signature through RRC signaling, so that the UE uses the MA signature to send uplink data.
  • Fig. 8 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE can firstly before receiving RRC signaling and L1 signaling to configure data transmission resources to the UE and realize unlicensed transmission.
  • the activation information of the UE or the indication signal used to instruct the base station to estimate the activation information of the UE are sent to the base station through the PRACH, so that the base station selects the MA signature used by the UE from the MA signature pool according to the activation information or the estimation result of the UE.
  • the base station can send information about the MA signature through RRC signaling or L1 signaling, so that the UE uses the MA signature to send uplink data.
  • Fig. 9 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the UE can pass the RRC signaling and L1 signaling through
  • the uplink data sends the UE activation information or an indication signal for instructing the base station to estimate the UE activation information to the base station, so that the base station selects the MA signature used by the UE from the MA signature pool according to the UE activation information or estimation result.
  • the base station can send information about the MA signature through RRC signaling or L1 signaling, so that the UE uses the updated MA signature to send uplink data during the next uplink data transmission.
  • the UE may first obtain the activation information of the user equipment; and the UE may obtain the multiple-access signature determined from the multiple-access signature pool according to the activation information.
  • the UE can obtain its own activation information.
  • the UE may also send an indication signal instructing the base station to estimate the activation information of the user equipment to the base station, so that the base station estimates the activation information of the UE; subsequently, the UE may receive the estimated activation information from the base station.
  • the activation information of the UE may be used to obtain the activation information of the user equipment.
  • the UE may not only acquire the activation information of the user equipment, but also receive the information about the multiple access signature group sent by the base station; subsequently, the UE may obtain the activation information of the user equipment and the information about the multiple access signature group.
  • the information of the address signature group determines the multiple address signature.
  • the information of the multiple access signature group may be determined by the base station itself, or may be triggered by the indication information of the UE, and determined by estimating the activation information of the UE.
  • Fig. 10 shows an implementation process of unauthorized transmission according to an embodiment of the present invention.
  • the base station can first send one or more MA signature groups through the Physical Broadcast Channel (PBCH) Then, the UE selects the used MA signature from the MA signature group sent by the base station according to its activation information.
  • PBCH Physical Broadcast Channel
  • the base station when the base station knows the number of UEs in the corresponding cell and the UE activation information, it can select one of the MA signature groups and send it to the UE; When the base station only knows one of the number of UEs in its corresponding cell and the UE’s activation information, it can select one column or row of the MA signature group in Figure 6 and send it to the UE; when the base station determines the number of UEs in the corresponding cell When the activation information of the UE and the UE are unknown, the entire MA signature pool can be sent to the UE for the UE to choose from.
  • the UE may further select an appropriate MA signature from the MA signature group according to the activation information; or, the UE may randomly select an MA signature from the MA signature group, which is not limited here.
  • the UE can use the multiple-access signature to process the data and send the processed data.
  • the base station can consider UE activation information reflecting UE activation characteristics in unlicensed transmission to provide an MA signature suitable for unlicensed transmission, thereby reducing interference in data transmission between UEs and improving the accuracy of symbol detection. Improve the performance of wireless communication systems.
  • FIG. 26 is a diagram showing an example of the hardware configuration of a user equipment and a base station according to an embodiment of the present invention.
  • the aforementioned user equipment 2400 and base station 2500 may be constituted as computer devices that physically include a processor 2610, a memory 2620, a memory 2630, a communication device 2640, an input device 2650, an output device 2660, a bus 2670, and the like.
  • the word “device” may be replaced with a circuit, a device, a unit, or the like.
  • the hardware structure of the user equipment 2400 and the base station 2500 may include one or more of the devices shown in the figure, or may not include some devices.
  • processor 2610 For example, only one processor 2610 is shown in the figure, but it may be multiple processors.
  • processing may be executed by one processor, or may be executed by more than one processor simultaneously, sequentially, or by other methods.
  • processor 2610 may be installed by more than one chip.
  • Each function in the user equipment 2400 and the base station 2500 is realized by, for example, the following way: by reading prescribed software (programs) into hardware such as the processor 2610 and the memory 2620, the processor 2610 is allowed to perform calculations, and the communication device 2640 The communication performed is controlled, and the reading and/or writing of data in the memory 2620 and the memory 2630 are controlled.
  • the processor 2610 operates, for example, an operating system to control the entire computer.
  • the processor 2610 may be constituted by a central processing unit (CPU, Central Processing Unit) including interfaces with peripheral devices, control devices, computing devices, registers, and the like.
  • CPU Central Processing Unit
  • the processor 2610 reads programs (program codes), software modules, data, and the like from the memory 2630 and/or the communication device 2640 to the memory 2620, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data data, and the like
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments can be adopted.
  • the memory 2620 is a computer readable recording medium, for example, it can be composed of read only memory (ROM, ReadOnlyMemory), programmable read only memory (EPROM, ErasableProgrammableROM), electrically programmable read only memory (EEPROM, Electrically EPROM), random access memory ( RAM, RandomAccessMemory), and at least one of other appropriate storage media.
  • the memory 2620 may also be referred to as a register, a cache, a main memory (main storage device), and the like.
  • the memory 2620 can store executable programs (program codes), software modules, and the like for implementing the wireless communication method according to an embodiment of the present invention.
  • the memory 2630 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a CD-ROM (CompactDiscROM), etc.), a digital universal CD, Blu-ray (registered trademark) CD), removable disk, hard disk drive, smart card, flash memory device (for example, card, stick, key driver), magnetic stripe, database, server , At least one of other suitable storage media.
  • the memory 2630 may also be referred to as an auxiliary storage device.
  • the communication device 2640 is hardware (transmitting and receiving device) used for communication between computers through a wired and/or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, etc., for example.
  • the communication device 2640 may include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc.
  • the input device 2650 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 2660 is an output device (for example, a display, a speaker, a light emitting diode (LED, Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 2650 and the output device 2660 may also be an integrated structure (such as a touch panel).
  • bus 2670 for communicating information.
  • the bus 2670 may be composed of a single bus, or may be composed of different buses between devices.
  • the user equipment 2400 and the base station 2500 may include a microprocessor, a digital signal processor (DSP, Digital Signal Processor), an application specific integrated circuit (ASIC, Application Specific Integrated Circuit), a programmable logic device (PLD, Programmable Logic Device), and a field programmable gate array (FPGA). , FieldProgrammableGateArray) and other hardware, through which part or all of the functional blocks can be realized.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the processor 2610 may be installed by at least one of these hardwares.
  • the channel and/or symbol may be a signal (signaling).
  • the signal may also be a message.
  • the reference signal can also be referred to as RS (Reference Signal) for short, and can also be referred to as pilot (Pilot), pilot signal, etc., according to applicable standards.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • the radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may also be called a subframe.
  • the subframe may be composed of one or more time slots in the time domain.
  • the subframe may be a fixed time length (for example, 1 ms) that does not depend on a parameter configuration (numerology).
  • the time slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA, Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • the time slot can also be a time unit based on parameter configuration.
  • the time slot may also include multiple mini-slots. Each mini-slot may be composed of one or more symbols in the time domain.
  • the mini-slot may also be called a sub-slot.
  • Radio frames, subframes, time slots, mini-slots, and symbols all represent time units when transmitting signals. Radio frames, subframes, time slots, mini-slots, and symbols can also use other corresponding names.
  • one subframe may be referred to as a transmission time interval (TTI, TransmissionTimeInterval)
  • TTI TransmissionTimeInterval
  • multiple consecutive subframes may also be referred to as TTI
  • one time slot or one mini-slot may also be referred to as TTI.
  • the subframe and/or TTI may be a subframe (1ms) in the existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms.
  • the unit representing TTI may also be called a time slot, mini-slot, etc. instead of a subframe.
  • TTI refers to, for example, the smallest time unit scheduled in wireless communication.
  • the radio base station performs scheduling of allocating radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in units of TTIs.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), code block, and/or codeword, or a processing unit such as scheduling and link adaptation.
  • the time interval for example, the number of symbols
  • actually mapped to the transport block, code block, and/or codeword may also be shorter than the TTI.
  • TTI time slot or one mini-slot
  • more than one TTI that is, more than one time slot or more than one mini-slot
  • the number of slots (mini-slots) constituting the minimum time unit of the scheduling can be controlled.
  • a TTI with a time length of 1 ms may also be called a conventional TTI (TTI in LTE Rel. 8-12), a standard TTI, a long TTI, a regular subframe, a standard subframe, or a long subframe, etc.
  • the TTI shorter than the conventional TTI may also be called compressed TTI, short TTI, partial TTI (partial or fractional TTI), compressed subframe, short subframe, mini-slot, or sub-slot, and so on.
  • long TTIs such as regular TTIs, subframes, etc.
  • short TTIs such as compressed TTIs, etc.
  • TTI of TTI length is replaced.
  • a resource block is a resource allocation unit in the time domain and the frequency domain. In the frequency domain, it may include one or more consecutive subcarriers (subcarriers). In addition, the RB may include one or more symbols in the time domain, and may also be the length of one slot, one mini-slot, one subframe, or one TTI. One TTI and one subframe may be composed of one or more resource blocks, respectively. In addition, one or more RBs may also be called a physical resource block (PRB, PhysicalRB), sub-carrier group (SCG, Sub-CarrierGroup), resource element group (REG, Resource ElementGroup), PRG pair, RB pair, and so on.
  • PRB physical resource block
  • SCG sub-carrier group
  • RAG Resource ElementGroup
  • the resource block may also be composed of one or more resource elements (RE, ResourceElement).
  • RE resource elements
  • ResourceElement resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • the above-mentioned structures of radio frames, subframes, time slots, mini-slots, symbols, etc. are merely examples.
  • the number of subframes included in the radio frame, the number of slots in each subframe or radio frame, the number of mini-slots included in the slot, the number of symbols and RBs included in the slot or mini-slot, the RB The structure including the number of subcarriers, the number of symbols in the TTI, the symbol length, and the length of the cyclic prefix (CP) can be changed in various ways.
  • the information, parameters, etc. described in this specification may be represented by absolute values, relative values to predetermined values, or other corresponding information.
  • radio resources can be indicated by a prescribed index.
  • formulas and the like using these parameters may be different from those explicitly disclosed in this specification.
  • the information, signals, etc. described in this specification can be expressed using any of a variety of different technologies.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. that may be mentioned in all the above descriptions can pass voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or their Any combination to represent.
  • information, signals, etc. can be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via multiple network nodes.
  • Input or output information, signals, etc. can be stored in a specific place (for example, memory), or can be managed through the management table.
  • the input or output information, signals, etc. can be overwritten, updated or supplemented.
  • the output information, signals, etc. can be deleted.
  • the input information, signals, etc. can be sent to other devices.
  • the notification of information is not limited to the method/embodiment described in this specification, and may be performed by other methods.
  • the notification of information may be through physical layer signaling (e.g., Downlink Control Information (DCI, Downlink Control Information), Uplink Control Information (UCI, Uplink Control Information)), upper layer signaling (e.g., Radio Resource Control (RRC, RadioResource Control) ) Signaling, broadcast information (Master Information Block (MIB, Master Information Block), System Information Block (SIB, System Information Block), etc.), media access control (MAC, Medium Access Control) signaling), other signals, or a combination of them.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • RRC RadioResource Control
  • Signaling broadcast information
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may also be referred to as an RRC message, for example, an RRC connection establishment (RRC Connection) Setup message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, etc.
  • MAC signaling may be notified by a MAC control unit (MAC CE (Control Element)), for example.
  • the notification of the predetermined information is not limited to explicit, but may be implicitly (for example, by not notification of the predetermined information or notification of other information).
  • the determination can be made by a value represented by 1 bit (0 or 1), by a true or false value (Boolean) represented by true (true) or false (false), or by comparison of values ( For example, comparison with a predetermined value).
  • software, commands, information, etc. may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coaxial cable, optical cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.) and/or wireless technology (infrared, microwave, etc.) to send software from a website, server, or other remote resource
  • wired technology coaxial cable, optical cable, twisted pair, digital subscriber line (DSL, Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” used in this manual can be used interchangeably.
  • radio base station BS, BaseStation
  • radio base station eNB
  • gNB gNodeB
  • cell eNodeB
  • cell group eNodeB
  • carrier femtocell
  • small cell femtocell
  • the wireless base station can accommodate one or more (for example, three) cells (also called sectors). When the wireless base station accommodates multiple cells, the entire coverage area of the wireless base station can be divided into multiple smaller areas, and each smaller area can also be passed through the wireless base station subsystem (for example, indoor small wireless base stations (remote radio frequency) Head (RRH, RemoteRadioHead))) to provide communication services.
  • the term "cell” or “sector” refers to a part or the whole of the coverage area of a radio base station and/or a radio base station subsystem that performs communication services in the coverage.
  • Wireless base stations are sometimes also referred to by terms such as fixed station, NodeB, eNodeB (eNB), access point (accesspoint), transmission point, reception point, femtocell, and small cell.
  • Mobile stations are sometimes referred to by those skilled in the art as user stations, mobile units, user units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile user stations, access terminals, mobile terminals, wireless A terminal, a remote terminal, a handheld, a user agent, a mobile client, a client, or some other appropriate terminology.
  • both the user equipment 2400 and the base station 2500 in this specification can be replaced with wireless base stations or user terminals.
  • the specific operation performed by the wireless base station may be performed by its upper node (upper node) depending on the situation.
  • various operations performed for communication with the terminal can pass through the wireless base station, one or more than the wireless base station Network nodes (such as Mobility Management Entity (MME, MobilityManagementEntity), Serving-Gateway (S-GW, etc., but not limited to this), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each mode/embodiment described in this specification can be used alone or in combination, and can also be switched during execution.
  • the order can be changed.
  • various step units are given in an exemplary order, and are not limited to the specific order given.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • LTE-B Long Term Evolution Beyond
  • LTE-Beyond Long Term Evolution Beyond
  • SUPER 3G Super First 3rd generation mobile communication system
  • IMT-Advanced 4th generation mobile communication system
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access Future Radio Access
  • New Radio Access Technology New-RAT, Radio Access Technology
  • NR New Radio
  • NX New Radio Access
  • Next-generation wireless access FX, Future generation radio access
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • any reference to units using names such as "first” and “second” used in this specification does not comprehensively limit the number or order of these units. These names can be used in this specification as a convenient method to distinguish two or more units. Therefore, the reference of the first unit and the second unit does not mean that only two units can be used or that the first unit must precede the second unit in several forms.
  • determining used in this specification may include various actions. For example, with regard to “judgment (determination)", calculation, calculation, processing, deriving, investigating, and lookingup (such as tables, databases, or other data can be (Search in the structure), confirmation (ascertaining), etc. are regarded as “judgment (determination)”. In addition, with regard to “judgment (determination)”, it is also possible to combine receiving (for example, receiving information), transmitting (for example, sending information), input, output, and accessing (for example, Access to the data in the memory), etc. are regarded as “judgment (confirmation)”. In addition, regarding “judgment (determination)”, resolving, selecting, choosing, establishing, comparing, etc. can also be regarded as “judging (determination)”. That is to say, regarding “judgment (determination)", several actions can be regarded as “judgment (determination)”.
  • connection refers to any direct or indirect connection or combination between two or more units, which can be It includes the following situations: between two units that are “connected” or “combined” with each other, there is one or more intermediate units.
  • the combination or connection between the units may be physical, logical, or a combination of the two. For example, "connect” can also be replaced with "access”.
  • two units can be considered to be connected through the use of one or more wires, cables, and/or printed electrical connections, and as several non-limiting and non-exhaustive examples, through the use of radio frequency areas , Microwave region, and/or light (both visible light and invisible light) region wavelength electromagnetic energy, etc., are “connected” or “combined” with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例提供了可以在无线通信系统中使用的用户设备和基站、或者由用户设备和基站执行的方法。根据本发明实施例的用户设备包括:控制单元,配置为获取多址签名,所述多址签名是根据所述用户设备的激活信息从多址签名池中确定的,所述用户设备的激活信息与所述用户设备的激活有关;发送单元,配置为使用所述多址签名发送数据。

Description

用户设备和基站以及由用户设备、基站执行的方法 技术领域
本申请涉及无线通信领域,并且具体涉及可以在无线通信系统中使用的用户设备和基站、或者由用户设备和基站执行的方法。
背景技术
非正交多址(Non-Orthogonal Multiple Access,NOMA)技术是在第三代合作伙伴计划(3GPP)研究的长期演进(LTE)版本R-13中提出的无线接入技术,也可以进一步应用于5G新空口(New Radio,NR)场景中。
NOMA下的上行数据传输方式可以包括基于授权(grant-based)传输和无授权(grant-free)传输。其中,在基于授权传输时,用户设备(UE,User Equipment)可以首先向基站发送上行数据传输的请求,随后基站向UE配置相应的数据传输资源,以便UE利用所分配的资源进行数据传输。在无授权传输时,基站可以预先向UE配置数据传输资源,在UE需要进行上行数据传输时,利用基站预先所配置的资源进行数据传输;或者,UE可以无需基站预先配置数据传输资源,直接进行上行数据传输。
在上述基于授权传输和无授权传输的过程中,每个UE均可利用此UE特定的多址签名(Multiple Access signature,MA signature)进行数据传输,以区分不同的UE,并减少不同UE之间的干扰。一般而言,多址签名可以用于指示所发送的上行数据的逻辑资源和/或物理资源的配置方式,例如,多址签名可以包括指示用户设备在发送数据时采用的发射功率的信息、指示用户设备在发送数据时采用的交织方式的信息、指示用户设备在发送数据时采用的加扰方式的信息、指示用户设备在发送数据时采用的扩频方式的信息、指示用户设备在发送数据时采用的比特到符号映射方式的信息中的一个或多个。在目前的无授权传输过程中,UE一般采用基于授权传输的MA签名进行上行数据的传输,然而在无授权传输中,UE存在随机激活特性,每个UE受到的干扰是随机的,干扰分布函数的具体形式与例如UE激活概率的UE激活信息有关。在MA签名设计中,如果假定所有UE同时发送数据,则每个UE将受到其它所有UE信号的干扰,这是针对最坏情况设计得到的。 可见,这种MA签名设计/分组/分配方法并没有适配无授权传输中稀疏传输的特点,会降低符号检测的准确率,影响无线通信系统的性能。
考虑到上述的应用场景,希望提供一种适用于无授权传输过程的用户设备和基站执行的方法,挖掘UE稀疏激活的特性,以降低UE间数据传输的干扰,提高符号检测的准确率,增进无线通信系统的性能。
发明内容
根据本发明的一个方面,提供了一种用户设备,包括:控制单元,配置为获取多址签名,所述多址签名是根据所述用户设备的激活信息从多址签名池中确定的,所述用户设备的激活信息与所述用户设备的激活有关;发送单元,配置为使用所述多址签名发送数据。
进一步地,所述控制单元获取所述用户设备的激活信息;获取由用户设备根据所述激活信息从所述多址签名池中确定的所述多址签名。
进一步地,所述用户设备还包括:接收单元,配置为接收基站所发送的关于多址签名组的信息,所述关于多址签名组的信息用于指示所述多址签名池中的至少一个多址签名组,每个所述多址签名组中包括至少一个多址签名;所述控制单元根据所述用户设备的激活信息和关于所述多址签名组的信息,确定所述多址签名。
进一步地,所述控制单元获取所述用户设备的激活信息;所述发送单元向基站发送所述用户设备的激活信息,以使所述基站根据所述用户设备的激活信息从所述多址签名池中确定所述多址签名和多址签名组中的至少一个;所述用户设备还包括:接收单元,配置为接收指示基站所确定的关于多址签名和多址签名组的信息中的至少一个,以获取所述多址签名。
进一步地,所述发送单元向基站发送指示所述基站对所述用户设备的激活信息进行估计的指示信号;所述用户设备还包括:接收单元,配置为从基站接收关于所述多址签名的信息,所述关于多址签名的信息用于指示所述多址签名,所述多址签名是基站根据对用户设备的激活信息的估计结果,从所述多址签名池中所确定的。
进一步地,所述控制单元根据历史激活信息和高层激活信息中的至少一种获取所述用户设备的激活信息,其中所述历史激活信息指示所述用户设备 的历史激活行为有关的信息,所述高层激活信息是通过高层通知的与所述用户设备激活有关的信息。
进一步地,所述多址签名包括比特到符号的映射和扩频序列中的至少一种。
进一步地,所述多址签名池中的多址签名是通过深度学习算法,基于符号检测错误率和用户设备激活状态检测错误率构建的;或所述多址签名池中的至少部分多址签名是基于另一多址签名池获取的。
根据本发明又一实施例,提供了一种基站,包括:控制单元,配置为获取用户设备的激活信息,所述用户设备的激活信息与所述用户设备的激活有关;至少根据所述用户设备的激活信息,从多址签名池中确定所述用户设备发送数据所使用的多址签名组和多址签名中的至少一个,每个所述多址签名组包括至少一个多址签名;发送单元,配置为发送关于所述多址签名组的信息和关于所述多址签名的信息中的至少一个。
进一步地,所述基站还包括:接收单元,配置为接收所述用户设备发送的激活信息;所述控制单元获取所述接收单元接收的所述激活信息。
进一步地,所述基站还包括:接收单元,配置为接收用户设备发送的指示所述基站对所述用户设备的激活信息进行估计的指示信号;所述控制单元根据所述指示信号估计所述用户设备的激活信息。
进一步地,所述控制单元根据所述用户设备的历史激活信息和高层激活信息中的至少一种估计所述用户设备的激活信息,其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,所述高层激活信息是通过高层通知的与所述用户设备激活有关的信息。
进一步地,所述多址签名包括比特到符号的映射和扩频序列中的至少一种。
进一步地,所述多址签名池中的多址签名是通过深度学习算法,基于符号检测错误率和用户设备激活状态检测错误率构建的;或所述多址签名池中的至少部分多址签名是基于另一多址签名池获取的。
进一步地,所述控制单元根据所述用户设备的激活信息和与所述基站对应的小区内的用户设备数量,从多址签名池中确定所述用户设备发送数据所使用的多址签名组和多址签名中的至少一个。
根据本发明又一实施例,提供一种由用户设备执行的方法,所述方法包括:获取多址签名,所述多址签名是根据所述用户设备的激活信息从多址签名池中确定的,所述用户设备的激活信息与所述用户设备的激活有关;使用所述多址签名发送数据。
进一步地,所述获取多址签名包括:获取所述用户设备的激活信息;获取由用户设备根据所述激活信息从所述多址签名池中确定的所述多址签名。
进一步地,所述获取多址签名还包括:接收基站所发送的关于多址签名组的信息,所述关于多址签名组的信息用于指示所述多址签名池中的至少一个多址签名组,每个所述多址签名组中包括至少一个多址签名;根据所述用户设备的激活信息和关于所述多址签名组的信息,确定所述多址签名。
进一步地,所述获取多址签名包括:获取所述用户设备的激活信息;向基站发送所述用户设备的激活信息,以使所述基站根据所述用户设备的激活信息从所述多址签名池中确定所述多址签名和多址签名组中的至少一个;接收指示基站所确定的关于多址签名和多址签名组的信息中的至少一个,以获取所述多址签名。
进一步地,所述获取多址签名包括:向基站发送指示所述基站对所述用户设备的激活信息进行估计的指示信号;从基站接收关于所述多址签名的信息,所述关于多址签名的信息用于指示所述多址签名,所述多址签名是基站根据对用户设备的激活信息的估计结果,从所述多址签名池中所确定的。
进一步地,所述获取所述用户设备的激活信息包括:根据历史激活信息和高层激活信息中的至少一种获取所述用户设备的激活信息,其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,所述高层激活信息是通过高层通知的与所述用户设备激活有关的信息。
进一步地,所述多址签名包括比特到符号的映射和扩频序列中的至少一种。
进一步地,所述多址签名池中的多址签名是通过深度学习算法,基于符号检测错误率和用户设备激活状态检测错误率构建的;或所述多址签名池中的至少部分多址签名是基于另一多址签名池获取的。
根据本发明又一实施例,提供了一种由基站执行的方法,所述方法包括:获取用户设备的激活信息,所述用户设备的激活信息与所述用户设备的激活 有关;至少根据所述用户设备的激活信息,从多址签名池中确定所述用户设备发送数据所使用的多址签名组和多址签名中的至少一个,每个所述多址签名组包括至少一个多址签名;发送关于所述多址签名组的信息和关于所述多址签名的信息中的至少一个。
进一步地,所述获取用户设备的激活信息包括:接收所述用户设备发送的激活信息。
进一步地,所述获取用户设备的激活信息包括:接收用户设备发送的指示所述基站对所述用户设备的激活信息进行估计的指示信号;根据所述指示信号估计所述用户设备的激活信息。
进一步地,所述根据所述指示信号估计所述用户设备的激活信息包括:根据所述用户设备的历史激活信息和高层激活信息中的至少一种估计所述用户设备的激活信息,其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,所述高层激活信息是通过高层通知的与所述用户设备激活有关的信息。
进一步地,所述多址签名包括比特到符号的映射和扩频序列中的至少一种。
进一步地,所述多址签名池中的多址签名是通过深度学习算法,基于符号检测错误率和用户设备激活状态检测错误率构建的;或所述多址签名池中的至少部分多址签名是基于另一多址签名池获取的。
进一步地,所述至少根据所述用户设备的激活信息,从多址签名池中确定所述用户设备发送数据所使用的多址签名组和多址签名中的至少一个还包括:根据所述用户设备的激活信息和与所述基站对应的小区内的用户设备数量,从多址签名池中确定所述用户设备发送数据所使用的多址签名组和多址签名中的至少一个。
可见,根据本发明实施例,能够考虑反映UE激活特性的UE激活信息,以提供适用于无授权传输的MA签名,从而降低UE间数据传输的干扰,提高符号检测的准确率,增进无线通信系统的性能。
附图说明
通过结合附图对本发明的实施例进行详细描述,本发明的上述和其它目 的、特征、优点将会变得更加清楚。
图1示出根据本发明一个实施例的无线通信系统的示意图;
图2示出了基站通过RRC信令向UE配置数据传输资源,以使UE进行无授权传输的实现过程;
图3示出了基站通过RRC和L1信令向UE配置数据传输资源,以使UE进行无授权传输的实现过程;
图4示出了基于竞争的无授权传输的实现过程;
图5示出根据本发明一个实施例由用户设备执行的方法的流程图;
图6示出了通过深度学习算法构建的多址签名池的一个示例;
图7示出了根据本发明一个实施例的无授权传输的实现过程;
图8示出了根据本发明一个实施例的无授权传输的实现过程;
图9示出了根据本发明一个实施例的无授权传输的实现过程;
图10示出了根据本发明一个实施例的无授权传输的实现过程;
图11A示出MA签名池的示例,图11B示出图11A的MA签名池量化后的示例;
图12A示出MA签名池的示例,图12B示出图12A的MA签名池量化后的示例;
图13A示出MA签名池的示例,图13B示出图13A的MA签名池量化后的示例;
图14示出MA签名池的一个示例;
图15示出MA签名池的一个示例;
图16示出MA签名池的一个示例;
图17示出MA签名池的一个示例;
图18示出MA签名池的一个示例;
图19示出MA签名池的星座点映射的一个示意图;
图20示出MA签名池的星座点映射的一个示意图;
图21示出MA签名池的星座点映射的一个示意图;
图22A表示基于授权传输的WBE(Welch-Bound Equality)量化算法得到的MA签名池(或其中的MA签名组)中各个MA签名之间的互相关性的示意图,图22B表示根据本发明实施例得到的MA签名池中各个MA签名 之间的互相关性的示意图;
图23示出根据本发明一个实施例由基站执行的方法的流程图;
图24示出根据本发明一个实施例的用户设备的结构框图;
图25示出根据本发明一个实施例的基站的结构框图;
图26示出根据本发明的一个实施例所涉及的用户设备和基站的硬件结构的示例的图。
具体实施方式
下面将参照附图来描述根据本发明实施例的由用户设备、基站执行的方法以及用户设备和基站。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本发明的范围。
首先,参照图1来描述根据本发明一个实施例的无线通信系统。如图1所示,该无线通信系统可以包括基站10和用户设备(UE)20。UE 20可以与基站10通信。需要认识到,尽管在图1中示出了一个基站和一个UE,但这只是示意性的,该无线通信系统可以包括一个或多个基站和一个或多个UE。
如前所述,NOMA下的无授权传输可以包括多种基站和UE之间的交互方式。图2示出了基站通过无线资源控制(Radio Resource Control,RRC)信令向UE配置数据传输资源,以使UE进行无授权传输的实现过程。如图2所示,基站可以首先通过RRC信令向UE配置例如无授权数据传输资源的配置信息、无授权数据传输周期、解调参考信号(Demodulation Reference Signal,DMRS)、传输块尺寸(Transport block size,TBS)、调制与编码方案(Modulation and Coding Scheme,MCS)、传输功率、MA签名中的一个或多个参数,在UE接收基站的RRC信令配置之后,当上行数据到达UE,需要进行上行数据传输时,UE可采用基站预先所配置的上述参数中的一个或多个进行上行数据传输。
图3示出了基站通过无线资源控制(Radio Resource Control,RRC)信令和L1层的L1信令向UE配置数据传输资源,以使UE进行无授权传输的实现过程。如图3所示,基站可以首先通过RRC信令和L1信令共同向UE 配置例如无授权数据传输资源的配置信息、无授权数据传输周期、解调参考信号(Demodulation Reference Signal,DMRS)、传输块尺寸(Transport block size,TBS)、调制与编码方案(Modulation and Coding Scheme,MCS)、传输功率、MA签名中的一个或多个参数。例如,基站可以通过RRC信令向UE配置无授权数据传输资源的配置信息、无授权数据传输周期和传输功率,而通过L1信令向UE配置DMRS、TBS/MCS、MA签名,但不限于此。在UE接收基站的RRC信令和L1信令配置之后,当上行数据到达UE,需要进行上行数据传输时,UE可采用基站所配置的上述参数中的一个或多个进行上行数据传输。
图4示出了基于竞争(contention based)的无授权传输的实现过程。在图4所示的过程中,基站无需预先为UE配置数据传输资源,在上行数据到达UE时,UE可直接进行上行数据传输。
在上述图2-图4所示的各种无授权传输过程中,各个UE存在随机激活的特性,也就是说,每个UE受到的干扰是随机的,其干扰分布函数的具体形式与该UE和其他UE的激活信息所反映的激活概率等相关。如果针对无授权传输的数据采用基于授权传输的MA签名进行传输,则会导致仅能够考虑所有UE均同时激活的情况,即仅考虑每个UE均受到其他所有UE的信号干扰的情况,这是针对上行数据传输的最坏的状态估计的,并不能够准确反映UE激活信息对MA签名设计和/或分配的影响。上述对无授权传输的数据采用基于授权传输的MA签名进行传输的情况,可能提高UE间数据传输的干扰,并降低符号检测的准确率。
在本发明实施例中,希望考虑反映UE激活特性的UE激活信息,以提供适用于无授权传输的MA签名,从而降低UE间数据传输的干扰,提高符号检测的准确率,增进无线通信系统的性能。
图5示出根据本发明一个实施例由用户设备执行的方法500的流程图。
如图5所示,在步骤S501中,获取多址签名,所述多址签名是根据所述用户设备的激活信息从多址签名池中确定的,所述用户设备的激活信息与所述用户设备的激活有关。
在本步骤中,多址签名池中可以包括至少两个多址签名。多址签名池中的多址签名可以具有多种获取方式。在一个示例中,所述多址签名池中的多 址签名可以是通过深度学习算法构建的,例如,可以通过深度学习算法,利用神经网络离线构建。可选地,多址签名可以基于符号检测错误率和用户设备激活状态检测错误率构建,例如,多址签名可以通过使得符号检测错误率和用户设备激活状态检测错误率的加权和最小化而构建。通过深度学习算法构建的多址签名可以包括比特到符号的映射和扩频序列中的至少一种。
在利用深度学习算法的具体的构建过程中,可选地,可以利用深度学习算法设计神经网络结构来参数化变分优化问题中的变分函数,以通过引入符号检测错误率和用户设备激活状态检测错误率来获取基于用户设备的激活信息的多址签名。其中,旨在减少无授权传输中的检测(可以包括符号检测和用户设备激活状态检测)错误率的变分优化问题P1可以表示为:
P1:min θ,φE p(x)[L(θ,φ|x)]
其中,上述变分优化问题P1表示通过改变θ和φ,使得E p(x)[L(θ,φ|x)]最小。向量x=[x 1,…x n,…x N]中的每个元素分别表示N个UE中每个UE的信源信号(取0时表示此UE未激活),E表示使得x满足p(x)的分布的情况下对L(θ,φ|x)求均值,L(θ,φ|x)可以具体表示为:
Figure PCTCN2019072439-appb-000001
其中
Figure PCTCN2019072439-appb-000002
表示给定x,使得
Figure PCTCN2019072439-appb-000003
满足
Figure PCTCN2019072439-appb-000004
分布的情况下对
Figure PCTCN2019072439-appb-000005
求均值,
Figure PCTCN2019072439-appb-000006
表示
Figure PCTCN2019072439-appb-000007
Figure PCTCN2019072439-appb-000008
之间的KL距离(Kullback-Leibler Divergence),L(θ,φ|x)表示给定x,由θ和φ决定的函数。式中的
Figure PCTCN2019072439-appb-000009
表示编码器,φ为编码器中的可调参数;
Figure PCTCN2019072439-appb-000010
为解码器,θ为解码器中的可调参数。
Figure PCTCN2019072439-appb-000011
Figure PCTCN2019072439-appb-000012
的先验分布,通常设置为高斯分布。
Figure PCTCN2019072439-appb-000013
可指示比特到符号的映射,当所得到的为线性扩展时,可以指示线性的扩频序列。在得到
Figure PCTCN2019072439-appb-000014
时,在遍历所有的信源信号x n可能的取值之后,可以得到
Figure PCTCN2019072439-appb-000015
的集合,即为相应的多址签名池。
为了解决上述变分优化问题P1,可以采用深度学习算法,引入神经网络(例如可以为深度神经网络(Deep Neural Networks,DNN))分别参数化上述编码器
Figure PCTCN2019072439-appb-000016
和/或解码器
Figure PCTCN2019072439-appb-000017
并分别获取
Figure PCTCN2019072439-appb-000018
编码器中的参数φ和/或
Figure PCTCN2019072439-appb-000019
解码器中的参数θ。可选地,可以基于符号检测错误率和用户设备激活状态检测错误率中的至少一个来训练上述神经网络。例如,可以将神经网络的总损失函数
Figure PCTCN2019072439-appb-000020
表示为:
Figure PCTCN2019072439-appb-000021
其中,
Figure PCTCN2019072439-appb-000022
表示符号检测错误率,例如可以为基站对符号检测的错误率,
Figure PCTCN2019072439-appb-000023
表示用户设备激活状态检测错误率,γ A和γ B分别为
Figure PCTCN2019072439-appb-000024
Figure PCTCN2019072439-appb-000025
对应的权重,例如可以为0-1之间的值。也就是说,神经网络的总损失函数
Figure PCTCN2019072439-appb-000026
可以表示为符号检测错误率和用户设备激活状态检测错误率的加权和。
在引入上述总损失函数对神经网络进行训练优化时,可以采用例如梯度下降方法训练所述神经网络,并得到相应的θ和/或φ的值。例如,可以采用对应于N个UE的N个子神经网络来参数化
Figure PCTCN2019072439-appb-000027
令第n个子神经网络
Figure PCTCN2019072439-appb-000028
为:
Figure PCTCN2019072439-appb-000029
其中
Figure PCTCN2019072439-appb-000030
是具有输入x n和神经网络参数
Figure PCTCN2019072439-appb-000031
的典型全连接(fully-connected)深度神经网络。N个子网络的输出相加,从而获得复合符号序列为:
Figure PCTCN2019072439-appb-000032
其中
Figure PCTCN2019072439-appb-000033
其中,P n为第n个用户的发射功率,diag(h n)为对角阵,其中对角线元素为第n个UE的信道参数。
随后,可以将
Figure PCTCN2019072439-appb-000034
近似为如下所示的概率编码器:
Figure PCTCN2019072439-appb-000035
其中,
Figure PCTCN2019072439-appb-000036
为高斯分布函数,
Figure PCTCN2019072439-appb-000037
为高斯分布的均值,
Figure PCTCN2019072439-appb-000038
为高斯分布方差,其中
Figure PCTCN2019072439-appb-000039
为噪声方差,I为单位阵。
根据上式,φ的取值范围可以等价于神经网络参数W f的取值范围。
在获取神经网络的训练结果之后,可以通过θ和/或φ的值获取比特到符号的映射(或线性的扩频序列)
Figure PCTCN2019072439-appb-000040
也即
Figure PCTCN2019072439-appb-000041
以及相应的多址签名池。
图6示出了通过上述深度学习算法构建的多址签名池的一个示例。如图6所示,多址签名池可以被划分为多个多址签名组,所述多址签名组可以分别与小区内总的用户设备数量N和用户设备激活概率相对应。其中,用户设备数量N和用户设备激活概率均与p(x)有关,可以用于生成p(x)的具体形式,从而由此获取
Figure PCTCN2019072439-appb-000042
的具体形式,并进一步得到比特到符号的映射或扩频序列
Figure PCTCN2019072439-appb-000043
在图6中,例如,UE数量N为6,且仅存在UE激活概率-1时,可以对应多址签名组-1;而UE数量N为20,且存在UE激活概率-1和UE激活 概率-2时,可以对应多址签名组-9,并且多址签名组-9可包括对应高激活概率的子组1和对应低激活概率的子组2。也就是说,如果小区内共包含6个UE,且所有UE的激活概率均为UE激活概率-1(例如75%),可以对应多址签名池中的多址签名组-1。如果小区内共包含20个UE,且一部分UE(如12个)的激活概率为UE激活概率-1(例如75%),而另一部分UE(如8个)的激活概率为UE激活概率-2(例如50%)时,可以对应多址签名池中的多址签名组-9,并且多址签名组-9可包括对应12个高激活概率(例如75%)UE的子组1和对应8个低激活概率UE(例如50%)的子组2。在后续根据MA签名池和/或MA签名组确定某个UE对应的MA签名时,即可采用如图6所示的考虑了UE激活概率和小区内UE数量的MA签名(组)的具体对应方式,来选择相应的MA签名,以增进无线通信系统的性能。图6所示的MA签名池的表示方式,及其中的MA签名组和UE数量、UE激活概率的对应方式仅为示例,在实际应用中,可以采用任何MA签名组与相关参数的对应方式,并不限于这里的UE数量和UE激活概率。此外,MA签名组与参数的对应关系也可以是任意的,在一个示例中,某个MA签名组可以对应某一参数的一个或多个取值范围,而不仅仅对应于某个参数值。例如,UE激活概率-1可以为激活概率取值范围为50%-75%,并对应高激活概率;UE激活概率-2可以为激活概率取值范围为25%-50%,并对应低激活概率。
上面详细描述了通过深度学习算法构建MA签名及得到MA签名池、MA签名组的具体实施方式,并列举了MA签名池中的MA签名组与相关参数(例如UE数量、UE激活概率)的对应关系及选择方式。在另一个示例中,所述多址签名池中的至少部分多址签名还可以是基于另一多址签名池获取的,其中,所述另一多址签名池可以是已知的多址签名池,例如,可以是根据基于授权传输的多址签名获取的多址签名池。在一个示例中,可以将从所述另一MA签名池中获取的至少一部分MA签名池表示为S={s 1,s 2…s N},其中的每个元素表示一个MA签名,所述MA签名池可以用于N个UE,当然也不限于此。
在根据如上任何一种方式获得MA签名池之后,可以根据用户设备的激活信息从MA签名池中获取此UE对应的MA签名。用户设备的激活信息与所述用户设备的激活有关。可选地,用户设备的激活信息可以为用户设备的 激活概率。例如,可以假定将时间轴划分为多个时间单元,将UE在某个时间单元有数据到达(有数据需要发送)的概率定义为此UE的激活概率。又例如,也可以针对某个可以进行上行数据传输的物理资源块,将UE在该物理资源块上进行上行数据传输的概率定义为此UE的激活概率。在一个示例中,UE的激活概率可以是[0,1]区间内的任意值,例如,UE的激活概率可以为25%。
可选地,用户设备的激活信息还可以为用户设备的激活模式。在一个示例中,UE可以具有平均传输周期T的周期模式,相应地,可以据此间接获取与此UE的激活概率的关系,例如可以表示为1/T。在另一个示例中,UE可以具有泊松到达模式的激活模式。具体地,将泊松到达模式中的概率密度函数表示为:在区间[t,t+τ]内发生的事件的数目的概率分布:
Figure PCTCN2019072439-appb-000044
其中P[A]代表事件A发生的概率,t代表时间,N(t)代表截止t时间点发生的事件数目,τ为表示时间的参数,k代表事件发生的数目(取值可为0或其它正整数),λ为一个正数,被称作到达率。在τ为1的情况下,上述公式可以用来表示单位时间内事件发生数目的概率分布。由此可知,不发生事件(即令k=0)的概率可以表示为exp(-λ);而相应地,此UE的激活概率,也即发生事件的概率可以间接地获取,例如可以表示为1-exp(-λ)。
根据本发明一个实施方式,UE的激活信息可以由UE获取,也可以由基站获取。可选地,UE可以根据历史激活信息和高层激活信息中的至少一种获取所述用户设备的激活信息。其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,如在某段预设时间之内UE的例如平均激活概率或平均传输周期等。所述高层激活信息可以是通过高层通知的与所述用户设备激活有关的信息,在一个示例中,可以是UE通过服务层(应用层)所获取的例如UE的业务传输信息,例如,可以是UE获取的其中的某一个或多个应用程序(app)需要进行业务传输的平均周期或频率等。可选地,基站也同样可以根据历史激活信息和高层激活信息中的至少一种获取某个用户设备的激活信息。其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,如在某段预设时间之内该UE的激活概率或平均传输周期等。所述高层激活信息也可以是通过高层通知的与所述用户设备激活有关的信 息,如可以是基站通过服务层(应用层)所获取的该UE的业务传输信息等。基站在获取UE的激活信息时,其可以是主动获取的,也可以是通过UE发送的指示基站对所述UE的激活信息进行估计的指示信号而触发的,在此不做限制。
在通过UE或基站获取UE的激活信息之后,可以通过信令对UE的激活信息进行传输。在一个实施方式中,UE可以获取激活信息,并发送给基站。在一个示例中,UE可以通过例如物理上行共享信道(Physical Uplink Shared Channel,PUSCH)显式地传输所述激活信息。可选地,UE可以通过预先约定好的无线资源控制(Radio Resource Control,RRC)信令、MAC CE、数据报告等中的特定比特位置,来显式地传输激活信息的量化比特值。例如,UE可以利用比特“11001”来传输激活概率25%。再例如,UE可以利用比特“0”来表示“泊松到达模式”,并用“111”来表示其中的参数λ为4;而利用比特“1”来表示“周期模式”,并用“110”来表示其平均传输周期T为3。也就是说,当UE在PUSCH的特定比特位置传输了“0111”,可以用来表示其激活信息为具有参数λ为4的泊松到达模式。
在另一个示例中,UE还可以通过预设的激活模式及其对应的索引值,来通过物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)或信道探测参考信号(Sounding Reference Signal,SRS)等隐式地传输激活信息。例如,当传输UE激活概率时,可以将索引值1规定为激活概率[0,1/3),将索引值2规定为激活概率[1/3,2/3),将索引值3规定为[2/3,1]。从而,当UE通过PRACH的例如Msg.1或PUCCH传输索引值时,可以表示相应的UE激活概率的范围,或者,UE也可以通过SRS在序列或资源中的特定配置来传输相应的索引值以及对应的激活概率。再例如,当传输UE激活模式及其对应的参数时,也可以选择不同的索引值来对应不同的激活模式和参数,并通过PRACH、PUCCH或SRS来传输这些索引值。
此外,UE还可以通过PRACH或PUCCH等,在特定的比特位置发送例如1比特的指示信号,来指示基站对所述UE的激活信息进行估计。在基站接收到此指示信号时,可以根据历史激活信息和高层激活信息中的至少一种获取UE的激活信息,并且可以在下行传输时发送给此UE。当基站告知 UE其激活信息时,其具体的显式或隐式的表示方式与UE侧的表示方式类似,在此不再赘述。
根据UE的激活信息从MA签名池中获取MA签名的具体操作可以由UE执行,也可以由基站执行。当所述MA签名池是通过深度学习算法构建时,可选地,MA签名池中的MA签名组可以与UE数量和UE激活信息(UE激活概率或相应的UE激活模式及相关参数)相对应。在这一示例中,可以由基站根据小区内总的UE数量和/或UE激活信息从MA签名池中获取相应的MA签名组,并可以随后使用例如随机选择或者其他选择方式,例如可以为最小化UE间MA签名碰撞概率的方式,从MA签名组中获取该UE可以使用的MA签名。或者,也可以由UE根据UE激活信息从MA签名池或一个或多个MA签名组中,使用例如随机选择的方式,或进一步使用UE的激活信息选择所使用的MA签名。
当所述MA签名池是从另一MA签名池中获取的,并表示为S={s 1,s 2…s N}时,可以由UE或基站通过求解如下优化问题来获取UE和MA签名池中的MA签名的对应关系,以得到UE所使用的MA签名。所述优化问题为:
Figure PCTCN2019072439-appb-000045
其中E表示使得总的UE数量为N的情况下,其中激活的UE组I满足p(I)分布时,对
Figure PCTCN2019072439-appb-000046
求均值;π(i)为序列映射函数,即将第s π(i)个序列映射至第i个UE;
Figure PCTCN2019072439-appb-000047
为s π(i)的共轭转置;
Figure PCTCN2019072439-appb-000048
表示第i个UE受到第j个UE的干扰时,二者之间的相关性(干扰)。可见,通过求解上述优化问题,可以将从另一MA签名池(如已知的MA签名池)中获取的MA签名与UE对应,并使得激活的UE之间的干扰最小化,从而进一步提升无线通信系统的性能。因此本发明实施例的方法不仅能够通过构建新的MA签名以降低UE间数据传输的干扰,还能够通过重新调整已知MA签名与UE的对应关系,来降低干扰,提高符号检测的准确率。
根据本发明一个实施方式,如果UE所使用的MA签名是由UE本身获取的,UE可以直接在后续步骤中使用此MA签名发送数据。根据本发明另一个实施方式,如果UE所使用的MA签名或MA签名组是由基站确定的,则基站需要通过下行传输来告知UE,以使UE使用所选择的MA签名,或 者在所选择的MA签名组中进一步选择用于数据传输的MA签名。可选地,MA签名池及其中所包含的MA签名组、MA签名组对应的相关UE激活参数可以均预先保存在UE和基站两侧;或者,可选地,也可以由基站通过广播信令,例如系统信息块(System Information Block,SIB)/主系统信息块(Master Information Block,MIB)预先配置给UE。随后,基站可以通过用于静态配置的RRC信令或用于半动态配置的L1层信令(如下行控制信息(Downlink Control,DCL)),将其选择的MA签名组和/或MA签名发送给UE。例如,基站可以使用索引1表示所选择的MA签名组的索引,并用索引2表示在此MA签名组中的MA签名的索引。在图6所示的MA签名池的示例中,基站可以通过RRC信令发送索引6表示MA签名组-6,并同时发送索引2表示在MA签名组-6中的第2个MA签名。当然,在另一个示例中,基站还可以将所选择的MA签名直接告知UE。
可选地,在基站发送所选择的MA签名时,还可以通过隐式的方式告知UE。在一个示例中,基站可以将所选择的MA签名量化为M-QAM的星座图表示方式,并将结果通过相应的信令告知UE。在另一个示例中,基站还可以告知UE所选择的MA签名相应的星座模型及相关参数值,例如,当MA签名具有平行四边形形状,基站可以通过预先约定好的相关位置或比特值,来告知UE星座图为平行四边形,并可以随后告知UE此平行四边形的两个边长及其之间的夹角。
在图2-图4所示的各种无授权传输过程中,当考虑到上述UE激活信息传输和MA签名的获取时,UE和基站之间可以具有相应的更新的信令交互过程。根据本发明的一个实施方式,可以首先由UE获取所述用户设备的激活信息;随后,UE向基站发送所述用户设备的激活信息,以使所述基站根据所述用户设备的激活信息从所述多址签名池中确定所述多址签名;最后,UE接收指示基站所确定的多址签名的关于多址签名的信息,以获取所述多址签名。或者,根据本发明的另一个实施方式,可以首先由UE向基站发送指示所述基站对所述用户设备的激活信息进行估计的指示信号,以使基站对UE的激活信息进行估计;随后,UE从基站接收根据对用户设备的激活信息的估计结果,从所述多址签名池中所确定的多址签名。
图7示出了根据本发明一个实施例的无授权传输的实现过程。如图7所 示,以前述图2所示的基站通过RRC信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令之前,首先通过PRACH向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令发送关于MA签名的信息,以使UE使用此MA签名发送上行数据。
图8示出了根据本发明一个实施例的无授权传输的实现过程。如图8所示,以前述图3所示的基站通过RRC信令和L1信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令和L1信令之前,首先通过PRACH向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令或L1信令发送关于MA签名的信息,以使UE使用此MA签名发送上行数据。
图9示出了根据本发明一个实施例的无授权传输的实现过程。如图9所示,以前述图3所示的基站通过RRC信令和L1信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令和L1信令之后,通过上行数据向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令或L1信令发送关于MA签名的信息,以使UE在下次上行数据传输时,使用此更新的MA签名发送上行数据。
根据本发明的另一个实施方式,可以首先由UE获取所述用户设备的激活信息;并由UE获取根据所述激活信息从所述多址签名池中确定的所述多址签名。在一个示例中,UE可以获取其自身的激活信息。在另一个示例中,UE也可以向基站发送指示所述基站对所述用户设备的激活信息进行估计的指示信号,以使基站对UE的激活信息进行估计;随后,UE可以从基站接收所估计的UE的激活信息。
此外,可选地,UE可以不仅获取所述用户设备的激活信息,还可以接收基站所发送的关于多址签名组的信息;随后,UE可以根据所述用户设备的激活信息和关于所述多址签名组的信息,确定所述多址签名。所述多址签 名组的信息可以是基站自行确定的,也可以是由UE的指示信息触发,以通过估计UE的激活信息进而确定的。图10示出了根据本发明一个实施例的无授权传输的实现过程。如图10所示,以前述图4所示的基于竞争(contention based)的无授权传输的实现过程为基础,基站可以首先通过广播信道(Physical Broadcast Channel,PBCH)发送一个或多个MA签名组的信息,随后,UE根据其激活信息从基站发送的MA签名组中选择所使用的MA签名。可选地,在例如图6所示的MA签名池的表现形式中,当基站已知其对应的小区内的UE数量和UE的激活信息时,可以选择其中的一个MA签名组发送给UE;当基站仅已知其对应的小区内的UE数量和UE的激活信息中的一个时,可以选择图6中的一列或者一行MA签名组发送给UE;当基站对其对应的小区内的UE数量和UE的激活信息均未知时,可以发送整个MA签名池给UE,以供UE从中选择。可选地,UE可以根据激活信息从MA签名组中进一步选择适当的MA签名;或者,UE可以从MA签名组中随机选择MA签名,在此不做限制。
回到图5,在步骤S502中,UE使用所述多址签名发送数据。
在本步骤中,UE可以使用之前获取的MA签名,基于MA签名处理要发送的数据,并发送处理后的数据。
以下示出根据本发明实施例的方法所获取的MA签名池的示例。在本发明实施例中,针对非线性的比特到符号映射表示的MA签名,用于描述MA签名的集合(即MA签名池或MA签名组)也可以称为MA签名的矩阵或码本。可替换地,用于确定描述MA签名的集合(即MA签名池或MA签名组)还可以称为MA签名的码书或者Codebook,相应地,根据MA签名池或MA签名组确定的MA签名也可以称为码字或Codeword。此外,针对线性的扩频序列表示的MA签名,用于确定扩频序列的扩频序列集合(即MA签名池或MA签名组)也可以称为扩频序列矩阵或扩频序列的码本。可替换地,用于确定扩频序列的扩频序列集合(即MA签名池或MA签名组)还可以称为扩频序列的码书或者Codebook,相应地,根据扩频序列集合确定的扩频序列也可以称为码字或Codeword。
在如下示例中,小区内总的UE数量均为6,并且均使用4个资源元素(Resource Element,RE)进行NOMA传输,所传输的数据可以为2比特-4 比特不等,并且所得到的MA签名池均为线性码本,即线性扩频序列。其中,图11A示出总的UE数量为6,使用4个RE传输2比特数据,并且6个UE的激活概率均为0.5的MA签名池的示例,图11B示出图11A的MA签名池量化后的示例。图11A和图11B中所显示的均为4×6的线性扩频序列池,其中每一行对应于一个RE,每一列对应于MA签名池中的一个线性扩频序列的码本。在实际应用中,每个UE可以对应于图11A或图11B中的一列码本,并基于其对应的码本发送数据。当然,每个UE和每个码本之间不一定是一一对应的关系,在具体的数据发送过程中,可以多个UE对应其中一个码本,也可以一个UE分别选择不同的码本发送数据,在此均不作限制。图12A示出总的UE数量为6,使用4个RE传输2比特数据,并且6个UE的激活概率均为0.75的MA签名池的示例,图12B示出图12A的MA签名池量化后的示例。图13A示出总的UE数量为6,使用4个RE传输2比特数据,并且3个UE的激活概率为0.75,而另3个UE的激活概率为0.5的MA签名池的示例,图13B示出图13A的MA签名池量化后的示例。在图13A和图13B所示的示例中,考虑到UE激活概率不同,可以在MA签名池中划分两个或更多个MA签名组,并使得不同的MA签名组对应不同的UE激活概率。例如,可以使得图13A中的前三列线性扩频序列的码本对应高激活概率(0.75)的UE,而后三列线性扩频序列的码本对应低激活概率(0.5)的UE。这样,在具体的数据发送过程中,具有0.75的激活概率的UE可以从前三列线性扩频序列中任意选择,具有0.5的激活概率的UE可以从后三列线性扩频序列中任意选择,并且,这种MA签名选择方式考虑了UE的激活特性,可以尽量降低UE间数据传输的干扰,提高符号检测的准确率。
以下示出根据本发明实施例的方法所获取的MA签名池或其中的MA签名组的示例。在如下示例中,小区内总的UE数量均为6,并且均使用4个资源元素(Resource Element,RE)进行NOMA传输,所传输的数据可以为2比特-4比特不等,并且所得到的MA签名池均为非线性的比特到符号映射。其中,图14示出总的UE数量为6,使用4个RE传输2比特数据,并且6个UE的激活概率均为0.5的MA签名池的示例。图15示出总的UE数量为6,使用4个RE传输2比特数据,并且6个UE的激活概率均为0.75的MA签名池的示例。图16示出总的UE数量为6,使用4个RE传输2比特数据, 并且3个UE的激活概率为0.75,而另3个UE的激活概率为0.5的MA签名池的示例。图17示出总的UE数量为6,使用4个RE传输3比特数据,并且6个UE的激活概率均为0.5的MA签名池的示例。图18示出总的UE数量为6,使用4个RE传输4比特数据,并且6个UE的激活概率均为0.5的MA签名池的示例。
与前述基于线性扩频序列的MA签名池类似,图14-图18均表示了6个码本在4个RE上的映射关系。在实际应用中,每个UE可以对应于图14-图18中的任一个码本,并基于其对应的码本发送数据。当然,每个UE和每个码本之间不一定是一一对应的关系,在具体的数据发送过程中,可以使得多个UE对应其中一个码本,也可以使得一个UE分别选择不同的码本发送数据,在此均不作限制。当然,在考虑到UE激活概率不同的情况下,如图16所示,可以在MA签名池中划分两个或更多个MA签名组,并使得不同的MA签名组对应不同的UE激活概率。例如,可以使得图16中的前三个码本对应高激活概率(0.75)的UE,而后三个码本对应低激活概率(0.5)的UE。这样,在具体的数据发送过程中,具有0.75的激活概率的UE可以从前三个码本中任意选择,具有0.5的激活概率的UE则可以从后三个码本中任意选择。这种MA签名选择方式考虑了UE的激活特性,可以尽量降低UE间数据传输的干扰,提高符号检测的准确率。
以上图11-图18通过码本列表的表示形式示出了根据本发明实施例的方法得到的MA签名池。在另一示例中,上面示出的MA签名池,特别是非线性的比特到符号的映射还可以采用星座图的方式来表示。图19示出总的UE数量为6,使用4个RE传输2比特数据,并且6个UE的激活概率均为0.5时,其中一个码本在4个RE上的星座点映射示意图。在图19中,对应的调制阶数M为4,每个RE上的不同的形状代表不同的数据(包括4组比特序列(0,0)、(0,1)、(1,0)、(1,1))所映射的星座点的位置。例如,当所传输的2比特数据为(0,0)时,在4个RE上分别映射的星座点位置可以由正方形表示;而当所传输的2比特数据为(0,1)时,在4个RE上分别映射的星座点位置可以由菱形表示。也就是说,图19中的星座图可以对应于图14中的MA签名池中其中一个码本在4个RE上的映射方式。
图20示出总的UE数量为6,使用4个RE传输3比特数据,并且6个 UE的激活概率均为0.5时,其中一个码本在4个RE上的星座点映射示意图。在图20中,对应的调制阶数M为8,每个RE上的不同的形状代表不同的数据(包括3个比特组成的8组比特序列)所映射的星座点的位置。例如,当所传输的3比特数据为(0,0,1)时,在4个RE上分别映射的星座点位置可以由倒三角表示;而当所传输的3比特数据为(1,0,1)时,在4个RE上分别映射的星座点位置可以由加号表示。也就是说,图20中的星座图可以对应于图17中的MA签名池中其中一个码本在4个RE上的映射方式。
图21示出总的UE数量为6,使用4个RE传输4比特数据,并且6个UE的激活概率均为0.5时,其中一个码本在4个RE上的星座点映射示意图。在图21中,对应的调制阶数M为16,每个RE上的不同的形状代表不同的数据(包括4个比特组成的16组比特序列)所映射的星座点的位置。例如,当所传输的3比特数据为(0,0,1,1)时,在4个RE上分别映射的星座点位置可以由五角星表示;而当所传输的4比特数据为(1,0,1,0)时,在4个RE上分别映射的星座点位置可以由正三角表示。也就是说,图21中的星座图可以对应于图18中的MA签名池中其中一个码本在4个RE上的映射方式。
图22A-22B示出基于授权传输的MA签名获取方式和根据本发明实施例的MA签名获取方式的比较结果。在图22A-22B所示的场景中,小区内总的UE数量为6,并且其中3个UE的激活概率为0.8,3个UE的激活概率为0.4。图22A表示基于授权传输的WBE量化算法得到的6个MA签名组成的MA签名池中,各个MA签名之间的互相关性的示意图。如图22A所示,相同MA签名之间的互相关性示为1(如MA签名1与MA签名1之间的互相关性为1),而根据WBE量化算法得到的不同MA签名之间的互相关性水平大致相同。例如,MA签名2和MA签名4之间的互相关性为0.24,MA签名4和MA签名5之间的互相关性为0.26。不同MA签名之间的互相关性大致在0.2~0.4的区间之内,没有显著差异。图22B表示根据本发明实施例得到的6个MA签名组成的MA签名池中,各个MA签名之间的互相关性的示意图。如图22B所示,相同MA签名之间的互相关性同样示为1(如MA签名1与MA签名1之间的互相关性为1),而根据本发明实施例得到的不同MA签名之间的互相关性水平差异较大。例如,MA签名2和MA签名3之间的互相关性为0.27,而MA签名4和MA签名5之间的互相关性为 0.59。在将图22B所示MA签名与UE对应时,可以将MA签名池中的MA签名根据UE的不同激活概率进行分组,例如,可以将具有相对较低互相关性的MA签名1-MA签名3分配给激活概率大(0.8)的3个UE,而将具有相对较高互相关性的MA签名4-MA签名6分配给激活概率小(0.4)的3个UE,从而降低UE间数据传输的干扰,提高符号检测的准确率,增进无线通信系统的性能。
根据本发明实施例的方法,能够考虑无授权传输中反映UE激活特性的UE激活信息,以提供适用于无授权传输的MA签名,从而降低UE间数据传输的干扰,提高符号检测的准确率,增进无线通信系统的性能。
图23示出根据本发明一个实施例由基站执行的方法2300的流程图。
如图23所示,在步骤S2301中,获取用户设备的激活信息,所述用户设备的激活信息与所述用户设备的激活有关。
可选地,用户设备的激活信息可以为用户设备的激活概率。例如,可以假定将时间轴划分为多个时间单元,将UE在某个时间单元有数据到达(有数据需要发送)的概率定义为此UE的激活概率。又例如,也可以针对某个可以进行上行数据传输的物理资源块,将UE在该物理资源块上进行上行数据传输的概率定义为此UE的激活概率。在一个示例中,UE的激活概率可以是[0,1]区间内的任意值,例如,UE的激活概率可以为25%。
可选地,用户设备的激活信息还可以为用户设备的激活模式。在一个示例中,UE可以具有平均传输周期T的周期模式,相应地,可以据此间接获取与此UE的激活概率的关系,例如可以表示为1/T。在另一个示例中,UE可以具有泊松到达模式的激活模式。具体地,将泊松到达模式中的概率密度函数表示为:在区间[t,t+τ]内发生的事件的数目的概率分布:
Figure PCTCN2019072439-appb-000049
其中P[A]代表事件A发生的概率,t代表时间,N(t)代表截止t时间点发生的事件数目,τ为表示时间的参数,k代表事件发生的数目(取值可为0或其它正整数),λ为一个正数,被称作到达率。在τ为1的情况下,上述公式可以用来表示单位时间内事件发生数目的概率分布。由此可知,不发生事件(即令k=0)的概率可以表示为exp(-λ);而相应地,此UE的激活概率,也即发生事件的概率可以间接地获取,例如可以表示为1-exp(-λ)。
根据本发明一个实施方式,UE的激活信息可以由UE获取,也可以由基站获取。可选地,UE可以根据历史激活信息和高层激活信息中的至少一种获取所述用户设备的激活信息。其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,如在某段预设时间之内UE的例如平均激活概率或平均传输周期等。所述高层激活信息可以是通过高层通知的与所述用户设备激活有关的信息,在一个示例中,可以是UE通过服务层(应用层)所获取的例如UE的业务传输信息,例如,可以是UE获取的其中的某一个或多个应用程序(app)需要进行业务传输的平均周期或频率等。可选地,基站也同样可以根据历史激活信息和高层激活信息中的至少一种获取某个用户设备的激活信息。其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,如在某段预设时间之内该UE的激活概率或平均传输周期等。所述高层激活信息也可以是通过高层通知的与所述用户设备激活有关的信息,如可以是基站通过服务层(应用层)所获取的该UE的业务传输信息等。基站在获取UE的激活信息时,其可以是主动获取的,也可以是通过UE发送的指示基站对所述UE的激活信息进行估计的指示信号而触发的,在此不做限制。
在通过UE或基站获取UE的激活信息之后,可以通过信令对UE的激活信息进行传输。在一个实施方式中,UE可以获取激活信息,并发送给基站。在一个示例中,UE可以通过例如物理上行共享信道(Physical Uplink Shared Channel,PUSCH)显式地传输所述激活信息。可选地,UE可以通过预先约定好的无线资源控制(Radio Resource Control,RRC)信令、MAC CE、数据报告等中的特定比特位置,来显式地传输激活信息的量化比特值。例如,UE可以利用比特“11001”来传输激活概率25%。再例如,UE可以利用比特“0”来表示“泊松到达模式”,并用“111”来表示其中的参数λ为4;而利用比特“1”来表示“周期模式”,并用“110”来表示其平均传输周期T为3。也就是说,当UE在PUSCH的特定比特位置传输了“0111”,可以用来表示其激活信息为具有参数λ为4的泊松到达模式。
在另一个示例中,UE还可以通过预设的激活模式及其对应的索引值,来通过物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)或信道探 测参考信号(Sounding Reference Signal,SRS)等隐式地传输激活信息。例如,当传输UE激活概率时,可以将索引值1规定为激活概率[0,1/3),将索引值2规定为激活概率[1/3,2/3),将索引值3规定为[2/3,1]。从而,当UE通过PRACH的例如Msg.1或PUCCH传输索引值时,可以表示相应的UE激活概率的范围,或者,UE也可以通过SRS在序列或资源中的特定配置来传输相应的索引值以及对应的激活概率。再例如,当传输UE激活模式及其对应的参数时,也可以选择不同的索引值来对应不同的激活模式和参数,并通过PRACH、PUCCH或SRS来传输这些索引值。
此外,UE还可以通过PRACH或PUCCH等,在特定的比特位置发送例如1比特的指示信号,来指示基站对所述UE的激活信息进行估计。在基站接收到此指示信号时,可以根据历史激活信息和高层激活信息中的至少一种获取UE的激活信息,并且可以在下行传输时发送给此UE。当基站告知UE其激活信息时,其具体的显式或隐式的表示方式与UE侧的表示方式类似,在此不再赘述。
在步骤2302中,至少根据所述用户设备的激活信息,从多址签名池中确定所述用户设备发送数据所使用的多址签名组和多址签名中的至少一个,每个所述多址签名组包括至少一个多址签名。
在本步骤中,多址签名池中可以包括至少两个多址签名。多址签名池中的多址签名可以具有多种获取方式。在一个示例中,所述多址签名池中的多址签名可以是通过深度学习算法构建的,例如,可以通过深度学习算法,利用神经网络离线构建。可选地,多址签名可以基于符号检测错误率和用户设备激活状态检测错误率构建,例如,多址签名可以通过使得符号检测错误率和用户设备激活状态检测错误率的加权和最小化而构建。通过深度学习算法构建的多址签名可以包括比特到符号的映射和扩频序列中的至少一种。
在利用深度学习算法的具体的构建过程中,可选地,可以利用深度学习算法设计神经网络结构来参数化变分优化问题中的变分函数,以通过引入符号检测错误率和用户设备激活状态检测错误率来获取基于用户设备的激活信息的多址签名。其中,旨在减少无授权传输中的检测(可以包括符号检测和用户设备激活状态检测)错误率的变分优化问题P1可以表示为:
P1:min θ,φE p(x)[L(θ,φ|x)]
其中,上述变分优化问题P1表示通过改变θ和φ,使得E p(x)[L(θ,φ|x)]最小。向量x=[x 1,…x n,…x N]中的每个元素分别表示N个UE中每个UE的信源信号(取0时表示此UE未激活),E表示使得x满足p(x)的分布的情况下对L(θ,φ|x)求均值,L(θ,φ|x)可以具体表示为:
Figure PCTCN2019072439-appb-000050
其中
Figure PCTCN2019072439-appb-000051
表示给定x,使得
Figure PCTCN2019072439-appb-000052
满足
Figure PCTCN2019072439-appb-000053
分布的情况下对
Figure PCTCN2019072439-appb-000054
求均值,
Figure PCTCN2019072439-appb-000055
表示
Figure PCTCN2019072439-appb-000056
Figure PCTCN2019072439-appb-000057
之间的KL距离(Kullback-Leibler Divergence),L(θ,φ|x)表示给定x,由θ和φ决定的函数。式中的
Figure PCTCN2019072439-appb-000058
表示编码器,φ为编码器中的可调参数;
Figure PCTCN2019072439-appb-000059
为解码器,θ为解码器中的可调参数。
Figure PCTCN2019072439-appb-000060
Figure PCTCN2019072439-appb-000061
的先验分布,通常设置为高斯分布。
Figure PCTCN2019072439-appb-000062
可指示比特到符号的映射,当所得到的为线性扩展时,可以指示线性的扩频序列。在得到
Figure PCTCN2019072439-appb-000063
时,在遍历所有的信源信号x n可能的取值之后,可以得到
Figure PCTCN2019072439-appb-000064
的集合,即为相应的多址签名池。
为了解决上述变分优化问题P1,可以采用深度学习算法,引入神经网络(例如可以为深度神经网络(Deep Neural Networks,DNN))分别参数化上述编码器
Figure PCTCN2019072439-appb-000065
和/或解码器
Figure PCTCN2019072439-appb-000066
并分别获取
Figure PCTCN2019072439-appb-000067
编码器中的参数φ和/或
Figure PCTCN2019072439-appb-000068
解码器中的参数θ。可选地,可以基于符号检测错误率和用户设备激活状态检测错误率中的至少一个来训练上述神经网络。例如,可以将神经网络的总损失函数
Figure PCTCN2019072439-appb-000069
表示为:
Figure PCTCN2019072439-appb-000070
其中,
Figure PCTCN2019072439-appb-000071
表示符号检测错误率,例如可以为基站对符号检测的错误率,
Figure PCTCN2019072439-appb-000072
表示用户设备激活状态检测错误率,γ A和γ B分别为
Figure PCTCN2019072439-appb-000073
Figure PCTCN2019072439-appb-000074
对应的权重,例如可以为0-1之间的值。也就是说,神经网络的总损失函数
Figure PCTCN2019072439-appb-000075
可以表示为符号检测错误率和用户设备激活状态检测错误率的加权和。
在引入上述总损失函数对神经网络进行训练优化时,可以采用例如梯度下降方法训练所述神经网络,并得到相应的θ和/或φ的值。例如,可以采用对应于N个UE的N个子神经网络来参数化
Figure PCTCN2019072439-appb-000076
令第n个子神经网络
Figure PCTCN2019072439-appb-000077
为:
Figure PCTCN2019072439-appb-000078
其中
Figure PCTCN2019072439-appb-000079
是具有输入x n和神经网络参数
Figure PCTCN2019072439-appb-000080
的典型全连接 (fully-connected)深度神经网络。N个子网络的输出相加,从而获得复合符号序列为:
Figure PCTCN2019072439-appb-000081
其中
Figure PCTCN2019072439-appb-000082
其中,P n为第n个用户的发射功率,diag(h n)为对角阵,其中对角线元素为第n个UE的信道参数。
随后,可以将
Figure PCTCN2019072439-appb-000083
近似为如下所示的概率编码器:
Figure PCTCN2019072439-appb-000084
其中,
Figure PCTCN2019072439-appb-000085
为高斯分布函数,
Figure PCTCN2019072439-appb-000086
为高斯分布的均值,
Figure PCTCN2019072439-appb-000087
为高斯分布方差,其中
Figure PCTCN2019072439-appb-000088
为噪声方差,I为单位阵。
根据上式,φ的取值范围可以等价于神经网络参数W f的取值范围。
在获取神经网络的训练结果之后,可以通过θ和/或φ的值获取比特到符号的映射(或线性的扩频序列)
Figure PCTCN2019072439-appb-000089
也即
Figure PCTCN2019072439-appb-000090
以及相应的多址签名池。
图6示出了通过上述深度学习算法构建的多址签名池的一个示例。如图6所示,多址签名池可以被划分为多个多址签名组,所述多址签名组可以分别与小区内总的用户设备数量N和用户设备激活概率相对应。其中,用户设备数量N和用户设备激活概率均与p(x)有关,可以用于生成p(x)的具体形式,从而由此获取
Figure PCTCN2019072439-appb-000091
的具体形式,并进一步得到比特到符号的映射或扩频序列
Figure PCTCN2019072439-appb-000092
在图6中,例如,UE数量N为6,且仅存在UE激活概率-1时,可以对应多址签名组-1;而UE数量N为20,且存在UE激活概率-1和UE激活概率-2时,可以对应多址签名组-9,并且多址签名组-9可包括对应高激活概率的子组1和对应低激活概率的子组2。也就是说,如果小区内共包含6个UE,且所有UE的激活概率均为UE激活概率-1(例如75%),可以对应多址签名池中的多址签名组-1。如果小区内共包含20个UE,且一部分UE(如12个)的激活概率为UE激活概率-1(例如75%),而另一部分UE(如8个)的激活概率为UE激活概率-2(例如50%)时,可以对应多址签名池中的多址签名组-9,并且多址签名组-9可包括对应12个高激活概率(例如75%)UE的子组1和对应8个低激活概率UE(例如50%)的子组2。在后续根据MA签名池和/或MA签名组确定某个UE对应的MA签名时,即可采用如图6所示的考虑了UE激活概率和小区内UE数量的MA签名(组)的具体对应方式,来选择相应的MA签名,以增进无线通信系统的性能。图6所示的 MA签名池的表示方式,及其中的MA签名组和UE数量、UE激活概率的对应方式仅为示例,在实际应用中,可以采用任何MA签名组与相关参数的对应方式,并不限于这里的UE数量和UE激活概率。此外,MA签名组与参数的对应关系也可以是任意的,在一个示例中,某个MA签名组可以对应某一参数的一个或多个取值范围,而不仅仅对应于某个参数值。例如,UE激活概率-1可以为激活概率取值范围为50%-75%,并对应高激活概率;UE激活概率-2可以为激活概率取值范围为25%-50%,并对应低激活概率。
上面详细描述了通过深度学习算法构建MA签名及得到MA签名池、MA签名组的具体实施方式,并列举了MA签名池中的MA签名组与相关参数(例如UE数量、UE激活概率)的对应关系及选择方式。在另一个示例中,所述多址签名池中的至少部分多址签名还可以是基于另一多址签名池获取的,其中,所述另一多址签名池可以是已知的多址签名池,例如,可以是根据基于授权传输的多址签名获取的多址签名池。在一个示例中,可以将从所述另一MA签名池中获取的至少一部分MA签名池表示为S={s 1,s 2…s N},其中的每个元素表示一个MA签名,所述MA签名池可以用于N个UE,当然也不限于此。
在根据如上任何一种方式获得MA签名池之后,可以根据用户设备的激活信息从MA签名池中获取此UE对应的MA签名。用户设备的激活信息与所述用户设备的激活有关。如前所述,用户设备的激活信息可以为用户设备的激活概率,还可以为用户设备的激活模式。在一个示例中,UE可以具有平均传输周期T的周期模式,相应地,可以据此间接获取与此UE的激活概率的关系,例如可以表示为1/T。在另一个示例中,UE可以具有泊松到达模式的激活模式。
根据UE的激活信息从MA签名池中获取MA签名组或MA签名的具体操作可以由基站执行。当所述MA签名池是通过深度学习算法构建时,可选地,MA签名池中的MA签名组可以与UE数量和UE激活信息(UE激活概率或相应的UE激活模式及相关参数)相对应。在这一示例中,可以由基站根据小区内总的UE数量和/或UE激活信息从MA签名池中获取相应的MA签名组,并可以随后使用例如随机选择或者其他选择方式,例如可以为最小化UE间MA签名碰撞概率的方式,从MA签名组中获取该UE可以使用的 MA签名。或者,也可以由UE根据UE激活信息从MA签名池或一个或多个MA签名组中,使用例如随机选择的方式,或进一步使用UE的激活信息选择所使用的MA签名。
当所述MA签名池是从另一MA签名池中获取的,并表示为S={s 1,s 2…s N}时,可以由UE或基站通过求解如下优化问题来获取UE和MA签名池中的MA签名的对应关系,以得到UE所使用的MA签名。所述优化问题为:
Figure PCTCN2019072439-appb-000093
其中E表示使得总的UE数量为N的情况下,其中激活的UE组I满足p(I)分布时,对
Figure PCTCN2019072439-appb-000094
求均值;π(i)为序列映射函数,即将第s π(i)个序列映射至第i个UE;
Figure PCTCN2019072439-appb-000095
为s π(i)的共轭转置;
Figure PCTCN2019072439-appb-000096
表示第i个UE受到第j个UE的干扰时,二者之间的相关性(干扰)。可见,通过求解上述优化问题,可以将从另一MA签名池(如已知的MA签名池)中获取的MA签名与UE对应,并使得激活的UE之间的干扰最小化,从而进一步提升无线通信系统的性能。因此本发明实施例的方法不仅能够通过构建新的MA签名以降低UE间数据传输的干扰,还能够通过重新调整已知MA签名与UE的对应关系,来降低干扰,提高符号检测的准确率。
在步骤S2303中,发送关于所述多址签名组的信息和关于所述多址签名的信息中的至少一个。
根据本发明一个实施方式,如果UE所使用的MA签名或MA签名组是由基站确定的,则基站需要通过下行传输来告知UE,以使UE使用所选择的MA签名,或者在所选择的MA签名组中进一步选择用于数据传输的MA签名。可选地,MA签名池及其中所包含的MA签名组、MA签名组对应的相关UE激活参数可以均预先保存在UE和基站两侧;或者,可选地,也可以由基站通过广播信令,例如系统信息块(System Information Block,SIB)/主系统信息块(Master Information Block,MIB)预先配置给UE。随后,基站可以通过用于静态配置的RRC信令或用于半动态配置的L1层信令(如下行控制信息(Downlink Control,DCL)),将其选择的MA签名组和/或MA签名发送给UE。例如,基站可以使用索引1表示所选择的MA签名组的索引,并用索引2表示在此MA签名组中的MA签名的索引。在图6所示的 MA签名池的示例中,基站可以通过RRC信令发送索引6表示MA签名组-6,并同时发送索引2表示在MA签名组-6中的第2个MA签名。当然,在另一个示例中,基站还可以将所选择的MA签名直接告知UE。
可选地,在基站发送所选择的MA签名时,还可以通过隐式的方式告知UE。在一个示例中,基站可以将所选择的MA签名量化为M-QAM的星座图表示方式,并将结果通过相应的信令告知UE。在另一个示例中,基站还可以告知UE所选择的MA签名相应的星座模型及相关参数值,例如,当MA签名具有平行四边形形状,基站可以通过预先约定好的相关位置或比特值,来告知UE星座图为平行四边形,并可以随后告知UE此平行四边形的两个边长及其之间的夹角。
在图2-图4所示的各种无授权传输过程中,当考虑到上述UE激活信息传输和MA签名的获取时,UE和基站之间可以具有相应的更新的信令交互过程。根据本发明的一个实施方式,可以首先由UE获取所述用户设备的激活信息;随后,UE向基站发送所述用户设备的激活信息,以使所述基站根据所述用户设备的激活信息从所述多址签名池中确定所述多址签名;最后,UE接收指示基站所确定的多址签名的关于多址签名的信息,以获取所述多址签名。或者,根据本发明的另一个实施方式,可以首先由UE向基站发送指示所述基站对所述用户设备的激活信息进行估计的指示信号,以使基站对UE的激活信息进行估计;随后,UE从基站接收根据对用户设备的激活信息的估计结果,从所述多址签名池中所确定的多址签名。
图7示出了根据本发明一个实施例的无授权传输的实现过程。如图7所示,以前述图2所示的基站通过RRC信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令之前,首先通过PRACH向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令发送关于MA签名的信息,以使UE使用此MA签名发送上行数据。
图8示出了根据本发明一个实施例的无授权传输的实现过程。如图8所示,以前述图3所示的基站通过RRC信令和L1信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令和L1信令之前,首 先通过PRACH向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令或L1信令发送关于MA签名的信息,以使UE使用此MA签名发送上行数据。
图9示出了根据本发明一个实施例的无授权传输的实现过程。如图9所示,以前述图3所示的基站通过RRC信令和L1信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令和L1信令之后,通过上行数据向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令或L1信令发送关于MA签名的信息,以使UE在下次上行数据传输时,使用此更新的MA签名发送上行数据。
根据本发明的另一个实施方式,可以首先由UE获取所述用户设备的激活信息;并由UE获取根据所述激活信息从所述多址签名池中确定的所述多址签名。在一个示例中,UE可以获取其自身的激活信息。在另一个示例中,UE也可以向基站发送指示所述基站对所述用户设备的激活信息进行估计的指示信号,以使基站对UE的激活信息进行估计;随后,UE可以从基站接收所估计的UE的激活信息。
此外,可选地,UE可以不仅获取所述用户设备的激活信息,还可以接收基站所发送的关于多址签名组的信息;随后,UE可以根据所述用户设备的激活信息和关于所述多址签名组的信息,确定所述多址签名。所述多址签名组的信息可以是基站自行确定的,也可以是由UE的指示信息触发,以通过估计UE的激活信息进而确定的。图10示出了根据本发明一个实施例的无授权传输的实现过程。如图10所示,以前述图4所示的基于竞争(contention based)的无授权传输的实现过程为基础,基站可以首先通过广播信道(Physical Broadcast Channel,PBCH)发送一个或多个MA签名组的信息,随后,UE根据其激活信息从基站发送的MA签名组中选择所使用的MA签名。可选地,在例如图6所示的MA签名池的表现形式中,当基站已知其对应的小区内的UE数量和UE的激活信息时,可以选择其中的一个MA签名组发送给UE;当基站仅已知其对应的小区内的UE数量和UE的激活信息中 的一个时,可以选择图6中的一列或者一行MA签名组发送给UE;当基站对其对应的小区内的UE数量和UE的激活信息均未知时,可以发送整个MA签名池给UE,以供UE从中选择。可选地,UE可以根据激活信息从MA签名组中进一步选择适当的MA签名;或者,UE可以从MA签名组中随机选择MA签名,在此不做限制。UE在获取MA签名后,可以使用所述多址签名对数据进行处理,并发送处理后的数据。
根据本发明实施例的方法,能够考虑无授权传输中反映UE激活特性的UE激活信息,以提供适用于无授权传输的MA签名,从而降低UE间数据传输的干扰,提高符号检测的准确率,增进无线通信系统的性能。
以下参照图24来描述根据本申请实施例的用户设备。该用户设备可以执行上述由用户设备执行的方法。由于该用户设备的操作与上文所述的方法的各个步骤基本相同,因此在这里只对其进行简要的描述,而省略对相同内容的重复描述。
如图24所示,用户设备2400包括控制单元2410和发送单元2420。需要认识到,图24仅示出与本申请的实施例相关的部件,而省略了其他部件,但这只是示意性的,根据需要,用户设备2400可以包括其他部件。
控制单元2410获取多址签名,所述多址签名是根据所述用户设备的激活信息从多址签名池中确定的,所述用户设备的激活信息与所述用户设备的激活有关。
多址签名池中可以包括至少两个多址签名。多址签名池中的多址签名可以具有多种获取方式。在一个示例中,所述多址签名池中的多址签名可以是通过深度学习算法构建的,例如,可以通过深度学习算法,利用神经网络离线构建。可选地,多址签名可以基于符号检测错误率和用户设备激活状态检测错误率构建,例如,多址签名可以通过使得符号检测错误率和用户设备激活状态检测错误率的加权和最小化而构建。通过深度学习算法构建的多址签名可以包括比特到符号的映射和扩频序列中的至少一种。
在利用深度学习算法的具体的构建过程中,可选地,可以利用深度学习算法设计神经网络结构来参数化变分优化问题中的变分函数,以通过引入符号检测错误率和用户设备激活状态检测错误率来获取基于用户设备的激活信息的多址签名。其中,旨在减少无授权传输中的检测(可以包括符号检测 和用户设备激活状态检测)错误率的变分优化问题P1可以表示为:
P1:min θ,φE p(x)[L(θ,φ|x)]
其中,上述变分优化问题P1表示通过改变θ和φ,使得E p(x)[L(θ,φ|x)]最小。向量x=[x 1,…x n,…x N]中的每个元素分别表示N个UE中每个UE的信源信号(取0时表示此UE未激活),E表示使得x满足p(x)的分布的情况下对L(θ,φ|x)求均值,L(θ,φ|x)可以具体表示为:
Figure PCTCN2019072439-appb-000097
其中
Figure PCTCN2019072439-appb-000098
表示给定x,使得
Figure PCTCN2019072439-appb-000099
满足
Figure PCTCN2019072439-appb-000100
分布的情况下对
Figure PCTCN2019072439-appb-000101
求均值,
Figure PCTCN2019072439-appb-000102
表示
Figure PCTCN2019072439-appb-000103
Figure PCTCN2019072439-appb-000104
之间的KL距离(Kullback-Leibler Divergence),L(θ,φ|x)表示给定x,由θ和φ决定的函数。式中的
Figure PCTCN2019072439-appb-000105
表示编码器,φ为编码器中的可调参数;
Figure PCTCN2019072439-appb-000106
为解码器,θ为解码器中的可调参数。
Figure PCTCN2019072439-appb-000107
Figure PCTCN2019072439-appb-000108
的先验分布,通常设置为高斯分布。
Figure PCTCN2019072439-appb-000109
可指示比特到符号的映射,当所得到的为线性扩展时,可以指示线性的扩频序列。在得到
Figure PCTCN2019072439-appb-000110
时,在遍历所有的信源信号x n可能的取值之后,可以得到
Figure PCTCN2019072439-appb-000111
的集合,即为相应的多址签名池。
为了解决上述变分优化问题P1,可以采用深度学习算法,引入神经网络(例如可以为深度神经网络(Deep Neural Networks,DNN))分别参数化上述编码器
Figure PCTCN2019072439-appb-000112
和/或解码器
Figure PCTCN2019072439-appb-000113
并分别获取
Figure PCTCN2019072439-appb-000114
编码器中的参数φ和/或
Figure PCTCN2019072439-appb-000115
解码器中的参数θ。可选地,可以基于符号检测错误率和用户设备激活状态检测错误率中的至少一个来训练上述神经网络。例如,可以将神经网络的总损失函数
Figure PCTCN2019072439-appb-000116
表示为:
Figure PCTCN2019072439-appb-000117
其中,
Figure PCTCN2019072439-appb-000118
表示符号检测错误率,例如可以为基站对符号检测的错误率,
Figure PCTCN2019072439-appb-000119
表示用户设备激活状态检测错误率,γ A和γ B分别为
Figure PCTCN2019072439-appb-000120
Figure PCTCN2019072439-appb-000121
对应的权重,例如可以为0-1之间的值。也就是说,神经网络的总损失函数
Figure PCTCN2019072439-appb-000122
可以表示为符号检测错误率和用户设备激活状态检测错误率的加权和。
在引入上述总损失函数对神经网络进行训练优化时,可以采用例如梯度下降方法训练所述神经网络,并得到相应的θ和/或φ的值。例如,可以采用对应于N个UE的N个子神经网络来参数化
Figure PCTCN2019072439-appb-000123
令第n个子神经网络
Figure PCTCN2019072439-appb-000124
为:
Figure PCTCN2019072439-appb-000125
其中
Figure PCTCN2019072439-appb-000126
是具有输入x n和神经网络参数
Figure PCTCN2019072439-appb-000127
的典型全连接(fully-connected)深度神经网络。N个子网络的输出相加,从而获得复合符号序列为:
Figure PCTCN2019072439-appb-000128
其中,P n为第n个用户的发射功率,diag(h n)为对角阵,其中对角线元素为第n个UE的信道参数。
随后,可以将
Figure PCTCN2019072439-appb-000129
近似为如下所示的概率编码器:
Figure PCTCN2019072439-appb-000130
其中,
Figure PCTCN2019072439-appb-000131
为高斯分布函数,
Figure PCTCN2019072439-appb-000132
为高斯分布的均值,
Figure PCTCN2019072439-appb-000133
为高斯分布方差,其中
Figure PCTCN2019072439-appb-000134
为噪声方差,I为单位阵。
根据上式,φ的取值范围可以等价于神经网络参数W f的取值范围。
在获取神经网络的训练结果之后,可以通过θ和/或φ的值获取比特到符号的映射(或线性的扩频序列)
Figure PCTCN2019072439-appb-000135
也即
Figure PCTCN2019072439-appb-000136
以及相应的多址签名池。
图6示出了通过上述深度学习算法构建的多址签名池的一个示例。如图6所示,多址签名池可以被划分为多个多址签名组,所述多址签名组可以分别与小区内总的用户设备数量N和用户设备激活概率相对应。其中,用户设备数量N和用户设备激活概率均与p(x)有关,可以用于生成p(x)的具体形式,从而由此获取
Figure PCTCN2019072439-appb-000137
的具体形式,并进一步得到比特到符号的映射或扩频序列
Figure PCTCN2019072439-appb-000138
在图6中,例如,UE数量N为6,且仅存在UE激活概率-1时,可以对应多址签名组-1;而UE数量N为20,且存在UE激活概率-1和UE激活概率-2时,可以对应多址签名组-9,并且多址签名组-9可包括对应高激活概率的子组1和对应低激活概率的子组2。也就是说,如果小区内共包含6个UE,且所有UE的激活概率均为UE激活概率-1(例如75%),可以对应多址签名池中的多址签名组-1。如果小区内共包含20个UE,且一部分UE(如12个)的激活概率为UE激活概率-1(例如75%),而另一部分UE(如8个)的激活概率为UE激活概率-2(例如50%)时,可以对应多址签名池中的多址签名组-9,并且多址签名组-9可包括对应12个高激活概率(例如75%)UE的子组1和对应8个低激活概率UE(例如50%)的子组2。在后续根据MA签名池和/或MA签名组确定某个UE对应的MA签名时,即可采用如图 6所示的考虑了UE激活概率和小区内UE数量的MA签名(组)的具体对应方式,来选择相应的MA签名,以增进无线通信系统的性能。图6所示的MA签名池的表示方式,及其中的MA签名组和UE数量、UE激活概率的对应方式仅为示例,在实际应用中,可以采用任何MA签名组与相关参数的对应方式,并不限于这里的UE数量和UE激活概率。此外,MA签名组与参数的对应关系也可以是任意的,在一个示例中,某个MA签名组可以对应某一参数的一个或多个取值范围,而不仅仅对应于某个参数值。例如,UE激活概率-1可以为激活概率取值范围为50%-75%,并对应高激活概率;UE激活概率-2可以为激活概率取值范围为25%-50%,并对应低激活概率。
上面详细描述了通过深度学习算法构建MA签名及得到MA签名池、MA签名组的具体实施方式,并列举了MA签名池中的MA签名组与相关参数(例如UE数量、UE激活概率)的对应关系及选择方式。在另一个示例中,所述多址签名池中的至少部分多址签名还可以是基于另一多址签名池获取的,其中,所述另一多址签名池可以是已知的多址签名池,例如,可以是根据基于授权传输的多址签名获取的多址签名池。在一个示例中,可以将从所述另一MA签名池中获取的至少一部分MA签名池表示为S={s 1,s 2…s N},其中的每个元素表示一个MA签名,所述MA签名池可以用于N个UE,当然也不限于此。
在根据如上任何一种方式获得MA签名池之后,可以根据用户设备的激活信息从MA签名池中获取此UE对应的MA签名。用户设备的激活信息与所述用户设备的激活有关。可选地,用户设备的激活信息可以为用户设备的激活概率。例如,可以假定将时间轴划分为多个时间单元,将UE在某个时间单元有数据到达(有数据需要发送)的概率定义为此UE的激活概率。又例如,也可以针对某个可以进行上行数据传输的物理资源块,将UE在该物理资源块上进行上行数据传输的概率定义为此UE的激活概率。在一个示例中,UE的激活概率可以是[0,1]区间内的任意值,例如,UE的激活概率可以为25%。
可选地,用户设备的激活信息还可以为用户设备的激活模式。在一个示例中,UE可以具有平均传输周期T的周期模式,相应地,可以据此间接获取与此UE的激活概率的关系,例如可以表示为1/T。在另一个示例中,UE 可以具有泊松到达模式的激活模式。具体地,将泊松到达模式中的概率密度函数表示为:在区间[t,t+τ]内发生的事件的数目的概率分布:
Figure PCTCN2019072439-appb-000139
其中P[A]代表事件A发生的概率,t代表时间,N(t)代表截止t时间点发生的事件数目,τ为表示时间的参数,k代表事件发生的数目(取值可为0或其它正整数),λ为一个正数,被称作到达率。在τ为1的情况下,上述公式可以用来表示单位时间内事件发生数目的概率分布。由此可知,不发生事件(即令k=0)的概率可以表示为exp(-λ);而相应地,此UE的激活概率,也即发生事件的概率可以间接地获取,例如可以表示为1-exp(-λ)。
根据本发明一个实施方式,UE的激活信息可以由UE获取,也可以由基站获取。可选地,UE可以根据历史激活信息和高层激活信息中的至少一种获取所述用户设备的激活信息。其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,如在某段预设时间之内UE的例如平均激活概率或平均传输周期等。所述高层激活信息可以是通过高层通知的与所述用户设备激活有关的信息,在一个示例中,可以是UE通过服务层(应用层)所获取的例如UE的业务传输信息,例如,可以是UE获取的其中的某一个或多个应用程序(app)需要进行业务传输的平均周期或频率等。可选地,基站也同样可以根据历史激活信息和高层激活信息中的至少一种获取某个用户设备的激活信息。其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,如在某段预设时间之内该UE的激活概率或平均传输周期等。所述高层激活信息也可以是通过高层通知的与所述用户设备激活有关的信息,如可以是基站通过服务层(应用层)所获取的该UE的业务传输信息等。基站在获取UE的激活信息时,其可以是主动获取的,也可以是通过UE发送的指示基站对所述UE的激活信息进行估计的指示信号而触发的,在此不做限制。
在通过UE或基站获取UE的激活信息之后,可以通过信令对UE的激活信息进行传输。在一个实施方式中,UE可以获取激活信息,并发送给基站。在一个示例中,UE可以通过例如物理上行共享信道(Physical Uplink Shared Channel,PUSCH)显式地传输所述激活信息。可选地,UE可以通过预先约定好的无线资源控制(Radio Resource Control,RRC)信令、MAC CE、 数据报告等中的特定比特位置,来显式地传输激活信息的量化比特值。例如,UE可以利用比特“11001”来传输激活概率25%。再例如,UE可以利用比特“0”来表示“泊松到达模式”,并用“111”来表示其中的参数λ为4;而利用比特“1”来表示“周期模式”,并用“110”来表示其平均传输周期T为3。也就是说,当UE在PUSCH的特定比特位置传输了“0111”,可以用来表示其激活信息为具有参数λ为4的泊松到达模式。
在另一个示例中,UE还可以通过预设的激活模式及其对应的索引值,来通过物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)或信道探测参考信号(Sounding Reference Signal,SRS)等隐式地传输激活信息。例如,当传输UE激活概率时,可以将索引值1规定为激活概率[0,1/3),将索引值2规定为激活概率[1/3,2/3),将索引值3规定为[2/3,1]。从而,当UE通过PRACH的例如Msg.1或PUCCH传输索引值时,可以表示相应的UE激活概率的范围,或者,UE也可以通过SRS在序列或资源中的特定配置来传输相应的索引值以及对应的激活概率。再例如,当传输UE激活模式及其对应的参数时,也可以选择不同的索引值来对应不同的激活模式和参数,并通过PRACH、PUCCH或SRS来传输这些索引值。
此外,UE还可以通过PRACH或PUCCH等,在特定的比特位置发送例如1比特的指示信号,来指示基站对所述UE的激活信息进行估计。在基站接收到此指示信号时,可以根据历史激活信息和高层激活信息中的至少一种获取UE的激活信息,并且可以在下行传输时发送给此UE。当基站告知UE其激活信息时,其具体的显式或隐式的表示方式与UE侧的表示方式类似,在此不再赘述。
根据UE的激活信息从MA签名池中获取MA签名的具体操作可以由UE执行,也可以由基站执行。当所述MA签名池是通过深度学习算法构建时,可选地,MA签名池中的MA签名组可以与UE数量和UE激活信息(UE激活概率或相应的UE激活模式及相关参数)相对应。在这一示例中,可以由基站根据小区内总的UE数量和/或UE激活信息从MA签名池中获取相应的MA签名组,并可以随后使用例如随机选择或者其他选择方式,例如可以为最小化UE间MA签名碰撞概率的方式,从MA签名组中获取该UE可以 使用的MA签名。或者,也可以由UE根据UE激活信息从MA签名池或一个或多个MA签名组中,使用例如随机选择的方式,或进一步使用UE的激活信息选择所使用的MA签名。
当所述MA签名池是从另一MA签名池中获取的,并表示为S={s 1,s 2…s N}时,可以由UE或基站通过求解如下优化问题来获取UE和MA签名池中的MA签名的对应关系,以得到UE所使用的MA签名。所述优化问题为:
Figure PCTCN2019072439-appb-000140
其中E表示使得总的UE数量为N的情况下,其中激活的UE组I满足p(I)分布时,对
Figure PCTCN2019072439-appb-000141
求均值;π(i)为序列映射函数,即将第s π(i)个序列映射至第i个UE;
Figure PCTCN2019072439-appb-000142
为s π(i)的共轭转置;
Figure PCTCN2019072439-appb-000143
表示第i个UE受到第j个UE的干扰时,二者之间的相关性(干扰)。可见,通过求解上述优化问题,可以将从另一MA签名池(如已知的MA签名池)中获取的MA签名与UE对应,并使得激活的UE之间的干扰最小化,从而进一步提升无线通信系统的性能。因此本发明实施例的方法不仅能够通过构建新的MA签名以降低UE间数据传输的干扰,还能够通过重新调整已知MA签名与UE的对应关系,来降低干扰,提高符号检测的准确率。
根据本发明一个实施方式,如果UE所使用的MA签名是由UE本身获取的,UE可以直接在后续步骤中使用此MA签名发送数据。根据本发明另一个实施方式,如果UE所使用的MA签名或MA签名组是由基站确定的,则基站需要通过下行传输来告知UE,以使UE使用所选择的MA签名,或者在所选择的MA签名组中进一步选择用于数据传输的MA签名。可选地,MA签名池及其中所包含的MA签名组、MA签名组对应的相关UE激活参数可以均预先保存在UE和基站两侧;或者,可选地,也可以由基站通过广播信令,例如系统信息块(System Information Block,SIB)/主系统信息块(Master Information Block,MIB)预先配置给UE。随后,基站可以通过用于静态配置的RRC信令或用于半动态配置的L1层信令(如下行控制信息(Downlink Control,DCL)),将其选择的MA签名组和/或MA签名发送给UE。例如,基站可以使用索引1表示所选择的MA签名组的索引,并用索引2表示在此MA签名组中的MA签名的索引。在图6所示的MA签名池 的示例中,基站可以通过RRC信令发送索引6表示MA签名组-6,并同时发送索引2表示在MA签名组-6中的第2个MA签名。当然,在另一个示例中,基站还可以将所选择的MA签名直接告知UE。
可选地,在基站发送所选择的MA签名时,还可以通过隐式的方式告知UE。在一个示例中,基站可以将所选择的MA签名量化为M-QAM的星座图表示方式,并将结果通过相应的信令告知UE。在另一个示例中,基站还可以告知UE所选择的MA签名相应的星座模型及相关参数值,例如,当MA签名具有平行四边形形状,基站可以通过预先约定好的相关位置或比特值,来告知UE星座图为平行四边形,并可以随后告知UE此平行四边形的两个边长及其之间的夹角。
在图2-图4所示的各种无授权传输过程中,当考虑到上述UE激活信息传输和MA签名的获取时,UE和基站之间可以具有相应的更新的信令交互过程。根据本发明的一个实施方式,可以首先由UE获取所述用户设备的激活信息;随后,UE向基站发送所述用户设备的激活信息,以使所述基站根据所述用户设备的激活信息从所述多址签名池中确定所述多址签名;最后,UE接收指示基站所确定的多址签名的关于多址签名的信息,以获取所述多址签名。或者,根据本发明的另一个实施方式,可以首先由UE向基站发送指示所述基站对所述用户设备的激活信息进行估计的指示信号,以使基站对UE的激活信息进行估计;随后,UE从基站接收根据对用户设备的激活信息的估计结果,从所述多址签名池中所确定的多址签名。
图7示出了根据本发明一个实施例的无授权传输的实现过程。如图7所示,以前述图2所示的基站通过RRC信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令之前,首先通过PRACH向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令发送关于MA签名的信息,以使UE使用此MA签名发送上行数据。
图8示出了根据本发明一个实施例的无授权传输的实现过程。如图8所示,以前述图3所示的基站通过RRC信令和L1信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令和L1信令之前,首 先通过PRACH向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令或L1信令发送关于MA签名的信息,以使UE使用此MA签名发送上行数据。
图9示出了根据本发明一个实施例的无授权传输的实现过程。如图9所示,以前述图3所示的基站通过RRC信令和L1信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令和L1信令之后,通过上行数据向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令或L1信令发送关于MA签名的信息,以使UE在下次上行数据传输时,使用此更新的MA签名发送上行数据。
根据本发明的另一个实施方式,可以首先由UE获取所述用户设备的激活信息;并由UE获取根据所述激活信息从所述多址签名池中确定的所述多址签名。在一个示例中,UE可以获取其自身的激活信息。在另一个示例中,UE也可以向基站发送指示所述基站对所述用户设备的激活信息进行估计的指示信号,以使基站对UE的激活信息进行估计;随后,UE可以从基站接收所估计的UE的激活信息。
此外,可选地,UE可以不仅获取所述用户设备的激活信息,还可以接收基站所发送的关于多址签名组的信息;随后,UE可以根据所述用户设备的激活信息和关于所述多址签名组的信息,确定所述多址签名。所述多址签名组的信息可以是基站自行确定的,也可以是由UE的指示信息触发,以通过估计UE的激活信息进而确定的。图10示出了根据本发明一个实施例的无授权传输的实现过程。如图10所示,以前述图4所示的基于竞争(contention based)的无授权传输的实现过程为基础,基站可以首先通过广播信道(Physical Broadcast Channel,PBCH)发送一个或多个MA签名组的信息,随后,UE根据其激活信息从基站发送的MA签名组中选择所使用的MA签名。可选地,在例如图6所示的MA签名池的表现形式中,当基站已知其对应的小区内的UE数量和UE的激活信息时,可以选择其中的一个MA签名组发送给UE;当基站仅已知其对应的小区内的UE数量和UE的激活信息中 的一个时,可以选择图6中的一列或者一行MA签名组发送给UE;当基站对其对应的小区内的UE数量和UE的激活信息均未知时,可以发送整个MA签名池给UE,以供UE从中选择。可选地,UE可以根据激活信息从MA签名组中进一步选择适当的MA签名;或者,UE可以从MA签名组中随机选择MA签名,在此不做限制。
发送单元2420使用所述多址签名发送数据。
发送单元2420可以使用之前获取的MA签名,基于MA签名处理要发送的数据,并发送处理后的数据。
根据本发明实施例的用户设备,能够考虑无授权传输中反映UE激活特性的UE激活信息,以提供适用于无授权传输的MA签名,从而降低UE间数据传输的干扰,提高符号检测的准确率,增进无线通信系统的性能。
以下参照图25来描述根据本申请实施例的基站。该基站可以执行上述由基站执行的方法。由于该基站的操作与上文所述的方法的各个步骤基本相同,因此在这里只对其进行简要的描述,而省略对相同内容的重复描述。
如图25所示,基站2500包括控制单元2510和发送单元2520。需要认识到,图25仅示出与本申请的实施例相关的部件,而省略了其他部件,但这只是示意性的,根据需要,基站2500可以包括其他部件。
控制单元2510获取用户设备的激活信息,所述用户设备的激活信息与所述用户设备的激活有关。
可选地,用户设备的激活信息可以为用户设备的激活概率。例如,可以假定将时间轴划分为多个时间单元,将UE在某个时间单元有数据到达(有数据需要发送)的概率定义为此UE的激活概率。又例如,也可以针对某个可以进行上行数据传输的物理资源块,将UE在该物理资源块上进行上行数据传输的概率定义为此UE的激活概率。在一个示例中,UE的激活概率可以是[0,1]区间内的任意值,例如,UE的激活概率可以为25%。
可选地,用户设备的激活信息还可以为用户设备的激活模式。在一个示例中,UE可以具有平均传输周期T的周期模式,相应地,可以据此间接获取与此UE的激活概率的关系,例如可以表示为1/T。在另一个示例中,UE可以具有泊松到达模式的激活模式。具体地,将泊松到达模式中的概率密度函数表示为:在区间[t,t+τ]内发生的事件的数目的概率分布:
Figure PCTCN2019072439-appb-000144
其中P[A]代表事件A发生的概率,t代表时间,N(t)代表截止t时间点发生的事件数目,τ为表示时间的参数,k代表事件发生的数目(取值可为0或其它正整数),λ为一个正数,被称作到达率。在τ为1的情况下,上述公式可以用来表示单位时间内事件发生数目的概率分布。由此可知,不发生事件(即令k=0)的概率可以表示为exp(-λ);而相应地,此UE的激活概率,也即发生事件的概率可以间接地获取,例如可以表示为1-exp(-λ)。
根据本发明一个实施方式,UE的激活信息可以由UE获取,也可以由基站获取。可选地,UE可以根据历史激活信息和高层激活信息中的至少一种获取所述用户设备的激活信息。其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,如在某段预设时间之内UE的例如平均激活概率或平均传输周期等。所述高层激活信息可以是通过高层通知的与所述用户设备激活有关的信息,在一个示例中,可以是UE通过服务层(应用层)所获取的例如UE的业务传输信息,例如,可以是UE获取的其中的某一个或多个应用程序(app)需要进行业务传输的平均周期或频率等。可选地,基站也同样可以根据历史激活信息和高层激活信息中的至少一种获取某个用户设备的激活信息。其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,如在某段预设时间之内该UE的激活概率或平均传输周期等。所述高层激活信息也可以是通过高层通知的与所述用户设备激活有关的信息,如可以是基站通过服务层(应用层)所获取的该UE的业务传输信息等。基站在获取UE的激活信息时,其可以是主动获取的,也可以是通过UE发送的指示基站对所述UE的激活信息进行估计的指示信号而触发的,在此不做限制。
在通过UE或基站获取UE的激活信息之后,可以通过信令对UE的激活信息进行传输。在一个实施方式中,UE可以获取激活信息,并发送给基站。在一个示例中,UE可以通过例如物理上行共享信道(Physical Uplink Shared Channel,PUSCH)显式地传输所述激活信息。可选地,UE可以通过预先约定好的无线资源控制(Radio Resource Control,RRC)信令、MAC CE、数据报告等中的特定比特位置,来显式地传输激活信息的量化比特值。例如,UE可以利用比特“11001”来传输激活概率25%。再例如,UE可以利用比 特“0”来表示“泊松到达模式”,并用“111”来表示其中的参数λ为4;而利用比特“1”来表示“周期模式”,并用“110”来表示其平均传输周期T为3。也就是说,当UE在PUSCH的特定比特位置传输了“0111”,可以用来表示其激活信息为具有参数λ为4的泊松到达模式。
在另一个示例中,UE还可以通过预设的激活模式及其对应的索引值,来通过物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)或信道探测参考信号(Sounding Reference Signal,SRS)等隐式地传输激活信息。例如,当传输UE激活概率时,可以将索引值1规定为激活概率[0,1/3),将索引值2规定为激活概率[1/3,2/3),将索引值3规定为[2/3,1]。从而,当UE通过PRACH的例如Msg.1或PUCCH传输索引值时,可以表示相应的UE激活概率的范围,或者,UE也可以通过SRS在序列或资源中的特定配置来传输相应的索引值以及对应的激活概率。再例如,当传输UE激活模式及其对应的参数时,也可以选择不同的索引值来对应不同的激活模式和参数,并通过PRACH、PUCCH或SRS来传输这些索引值。
此外,UE还可以通过PRACH或PUCCH等,在特定的比特位置发送例如1比特的指示信号,来指示基站对所述UE的激活信息进行估计。在基站接收到此指示信号时,可以根据历史激活信息和高层激活信息中的至少一种获取UE的激活信息,并且可以在下行传输时发送给此UE。当基站告知UE其激活信息时,其具体的显式或隐式的表示方式与UE侧的表示方式类似,在此不再赘述。
控制单元2510至少根据所述用户设备的激活信息,从多址签名池中确定所述用户设备发送数据所使用的多址签名组和多址签名中的至少一个,每个所述多址签名组包括至少一个多址签名。
多址签名池中可以包括至少两个多址签名。多址签名池中的多址签名可以具有多种获取方式。在一个示例中,所述多址签名池中的多址签名可以是通过深度学习算法构建的,例如,可以通过深度学习算法,利用神经网络离线构建。可选地,多址签名可以基于符号检测错误率和用户设备激活状态检测错误率构建,例如,多址签名可以通过使得符号检测错误率和用户设备激活状态检测错误率的加权和最小化而构建。通过深度学习算法构建的多址签 名可以包括比特到符号的映射和扩频序列中的至少一种。
在利用深度学习算法的具体的构建过程中,可选地,可以利用深度学习算法设计神经网络结构来参数化变分优化问题中的变分函数,以通过引入符号检测错误率和用户设备激活状态检测错误率来获取基于用户设备的激活信息的多址签名。其中,旨在减少无授权传输中的检测(可以包括符号检测和用户设备激活状态检测)错误率的变分优化问题P1可以表示为:
P1:min θ,φE p(x)[L(θ,φ|x)]
其中,上述变分优化问题P1表示通过改变θ和φ,使得E p(x)[L(θ,φ|x)]最小。向量x=[x 1,…x n,…x N]中的每个元素分别表示N个UE中每个UE的信源信号(取0时表示此UE未激活),E表示使得x满足p(x)的分布的情况下对L(θ,φ|x)求均值,L(θ,φ|x)可以具体表示为:
Figure PCTCN2019072439-appb-000145
其中
Figure PCTCN2019072439-appb-000146
表示给定x,使得
Figure PCTCN2019072439-appb-000147
满足
Figure PCTCN2019072439-appb-000148
分布的情况下对
Figure PCTCN2019072439-appb-000149
求均值,
Figure PCTCN2019072439-appb-000150
表示
Figure PCTCN2019072439-appb-000151
Figure PCTCN2019072439-appb-000152
之间的KL距离(Kullback-Leibler Divergence),L(θ,φ|x)表示给定x,由θ和φ决定的函数。式中的
Figure PCTCN2019072439-appb-000153
表示编码器,φ为编码器中的可调参数;
Figure PCTCN2019072439-appb-000154
为解码器,θ为解码器中的可调参数。
Figure PCTCN2019072439-appb-000155
Figure PCTCN2019072439-appb-000156
的先验分布,通常设置为高斯分布。
Figure PCTCN2019072439-appb-000157
可指示比特到符号的映射,当所得到的为线性扩展时,可以指示线性的扩频序列。在得到
Figure PCTCN2019072439-appb-000158
时,在遍历所有的信源信号x n可能的取值之后,可以得到
Figure PCTCN2019072439-appb-000159
的集合,即为相应的多址签名池。
为了解决上述变分优化问题P1,可以采用深度学习算法,引入神经网络(例如可以为深度神经网络(Deep Neural Networks,DNN))分别参数化上述编码器
Figure PCTCN2019072439-appb-000160
和/或解码器
Figure PCTCN2019072439-appb-000161
并分别获取
Figure PCTCN2019072439-appb-000162
编码器中的参数φ和/或
Figure PCTCN2019072439-appb-000163
解码器中的参数θ。可选地,可以基于符号检测错误率和用户设备激活状态检测错误率中的至少一个来训练上述神经网络。例如,可以将神经网络的总损失函数
Figure PCTCN2019072439-appb-000164
表示为:
Figure PCTCN2019072439-appb-000165
其中,
Figure PCTCN2019072439-appb-000166
表示符号检测错误率,例如可以为基站对符号检测的错误率,
Figure PCTCN2019072439-appb-000167
表示用户设备激活状态检测错误率,γ A和γ B分别为
Figure PCTCN2019072439-appb-000168
Figure PCTCN2019072439-appb-000169
对应的权重,例如可以为0-1之间的值。也就是说,神经网络的总损失函数
Figure PCTCN2019072439-appb-000170
可以表示为符 号检测错误率和用户设备激活状态检测错误率的加权和。
在引入上述总损失函数对神经网络进行训练优化时,可以采用例如梯度下降方法训练所述神经网络,并得到相应的θ和/或φ的值。例如,可以采用对应于N个UE的N个子神经网络来参数化
Figure PCTCN2019072439-appb-000171
令第n个子神经网络
Figure PCTCN2019072439-appb-000172
为:
Figure PCTCN2019072439-appb-000173
其中
Figure PCTCN2019072439-appb-000174
是具有输入x n和神经网络参数
Figure PCTCN2019072439-appb-000175
的典型全连接(fully-connected)深度神经网络。N个子网络的输出相加,从而获得复合符号序列为:
Figure PCTCN2019072439-appb-000176
其中,P n为第n个用户的发射功率,diag(h n)为对角阵,其中对角线元素为第n个UE的信道参数。
随后,可以将
Figure PCTCN2019072439-appb-000177
近似为如下所示的概率编码器:
Figure PCTCN2019072439-appb-000178
其中,
Figure PCTCN2019072439-appb-000179
为高斯分布函数,
Figure PCTCN2019072439-appb-000180
为高斯分布的均值,
Figure PCTCN2019072439-appb-000181
为高斯分布方差,其中
Figure PCTCN2019072439-appb-000182
为噪声方差,I为单位阵。
根据上式,φ的取值范围可以等价于神经网络参数W f的取值范围。
在获取神经网络的训练结果之后,可以通过θ和/或φ的值获取比特到符号的映射(或线性的扩频序列)
Figure PCTCN2019072439-appb-000183
也即
Figure PCTCN2019072439-appb-000184
以及相应的多址签名池。
图6示出了通过上述深度学习算法构建的多址签名池的一个示例。如图6所示,多址签名池可以被划分为多个多址签名组,所述多址签名组可以分别与小区内总的用户设备数量N和用户设备激活概率相对应。其中,用户设备数量N和用户设备激活概率均与p(x)有关,可以用于生成p(x)的具体形式,从而由此获取
Figure PCTCN2019072439-appb-000185
的具体形式,并进一步得到比特到符号的映射或扩频序列
Figure PCTCN2019072439-appb-000186
在图6中,例如,UE数量N为6,且仅存在UE激活概率-1时,可以对应多址签名组-1;而UE数量N为20,且存在UE激活概率-1和UE激活概率-2时,可以对应多址签名组-9,并且多址签名组-9可包括对应高激活概率的子组1和对应低激活概率的子组2。也就是说,如果小区内共包含6个UE,且所有UE的激活概率均为UE激活概率-1(例如75%),可以对应多址签名池中的多址签名组-1。如果小区内共包含20个UE,且一部分UE(如 12个)的激活概率为UE激活概率-1(例如75%),而另一部分UE(如8个)的激活概率为UE激活概率-2(例如50%)时,可以对应多址签名池中的多址签名组-9,并且多址签名组-9可包括对应12个高激活概率(例如75%)UE的子组1和对应8个低激活概率UE(例如50%)的子组2。在后续根据MA签名池和/或MA签名组确定某个UE对应的MA签名时,即可采用如图6所示的考虑了UE激活概率和小区内UE数量的MA签名(组)的具体对应方式,来选择相应的MA签名,以增进无线通信系统的性能。图6所示的MA签名池的表示方式,及其中的MA签名组和UE数量、UE激活概率的对应方式仅为示例,在实际应用中,可以采用任何MA签名组与相关参数的对应方式,并不限于这里的UE数量和UE激活概率。此外,MA签名组与参数的对应关系也可以是任意的,在一个示例中,某个MA签名组可以对应某一参数的一个或多个取值范围,而不仅仅对应于某个参数值。例如,UE激活概率-1可以为激活概率取值范围为50%-75%,并对应高激活概率;UE激活概率-2可以为激活概率取值范围为25%-50%,并对应低激活概率。
上面详细描述了通过深度学习算法构建MA签名及得到MA签名池、MA签名组的具体实施方式,并列举了MA签名池中的MA签名组与相关参数(例如UE数量、UE激活概率)的对应关系及选择方式。在另一个示例中,所述多址签名池中的至少部分多址签名还可以是基于另一多址签名池获取的,其中,所述另一多址签名池可以是已知的多址签名池,例如,可以是根据基于授权传输的多址签名获取的多址签名池。在一个示例中,可以将从所述另一MA签名池中获取的至少一部分MA签名池表示为S={s 1,s 2…s N},其中的每个元素表示一个MA签名,所述MA签名池可以用于N个UE,当然也不限于此。
在根据如上任何一种方式获得MA签名池之后,可以根据用户设备的激活信息从MA签名池中获取此UE对应的MA签名。用户设备的激活信息与所述用户设备的激活有关。可选地,用户设备的激活信息可以为用户设备的激活概率;或者,还可以为用户设备的激活模式。在一个示例中,UE可以具有平均传输周期T的周期模式,相应地,可以据此间接获取与此UE的激活概率的关系,例如可以表示为1/T。在另一个示例中,UE可以具有泊松到达模式的激活模式。
根据UE的激活信息从MA签名池中获取MA签名的具体操作可以由基站执行。当所述MA签名池是通过深度学习算法构建时,可选地,MA签名池中的MA签名组可以与UE数量和UE激活信息(UE激活概率或相应的UE激活模式及相关参数)相对应。在这一示例中,可以由基站根据小区内总的UE数量和/或UE激活信息从MA签名池中获取相应的MA签名组,并可以随后使用例如随机选择或者其他选择方式,例如可以为最小化UE间MA签名碰撞概率的方式,从MA签名组中获取该UE可以使用的MA签名。或者,也可以由UE根据UE激活信息从MA签名池或一个或多个MA签名组中,使用例如随机选择的方式,或进一步使用UE的激活信息选择所使用的MA签名。
当所述MA签名池是从另一MA签名池中获取的,并表示为S={s 1,s 2…s N}时,可以由UE或基站通过求解如下优化问题来获取UE和MA签名池中的MA签名的对应关系,以得到UE所使用的MA签名。所述优化问题为:
Figure PCTCN2019072439-appb-000187
其中E表示使得总的UE数量为N的情况下,其中激活的UE组I满足p(I)分布时,对
Figure PCTCN2019072439-appb-000188
求均值;π(i)为序列映射函数,即将第s π(i)个序列映射至第i个UE;
Figure PCTCN2019072439-appb-000189
为s π(i)的共轭转置;
Figure PCTCN2019072439-appb-000190
表示第i个UE受到第j个UE的干扰时,二者之间的相关性(干扰)。可见,通过求解上述优化问题,可以将从另一MA签名池(如已知的MA签名池)中获取的MA签名与UE对应,并使得激活的UE之间的干扰最小化,从而进一步提升无线通信系统的性能。因此本发明实施例的方法不仅能够通过构建新的MA签名以降低UE间数据传输的干扰,还能够通过重新调整已知MA签名与UE的对应关系,来降低干扰,提高符号检测的准确率。
发送单元2520发送关于所述多址签名组的信息和关于所述多址签名的信息中的至少一个。
根据本发明一个实施方式,如果UE所使用的MA签名是由UE本身获取的,UE可以直接在后续步骤中使用此MA签名发送数据。根据本发明另一个实施方式,如果UE所使用的MA签名或MA签名组是由基站确定的,则基站需要通过下行传输来告知UE,以使UE使用所选择的MA签名,或 者在所选择的MA签名组中进一步选择用于数据传输的MA签名。可选地,MA签名池及其中所包含的MA签名组、MA签名组对应的相关UE激活参数可以均预先保存在UE和基站两侧;或者,可选地,也可以由基站通过广播信令,例如系统信息块(System Information Block,SIB)/主系统信息块(Master Information Block,MIB)预先配置给UE。随后,基站可以通过用于静态配置的RRC信令或用于半动态配置的L1层信令(如下行控制信息(Downlink Control,DCL)),将其选择的MA签名组和/或MA签名发送给UE。例如,基站可以使用索引1表示所选择的MA签名组的索引,并用索引2表示在此MA签名组中的MA签名的索引。在图6所示的MA签名池的示例中,基站可以通过RRC信令发送索引6表示MA签名组-6,并同时发送索引2表示在MA签名组-6中的第2个MA签名。当然,在另一个示例中,基站还可以将所选择的MA签名直接告知UE。
可选地,在基站发送所选择的MA签名时,还可以通过隐式的方式告知UE。在一个示例中,基站可以将所选择的MA签名量化为M-QAM的星座图表示方式,并将结果通过相应的信令告知UE。在另一个示例中,基站还可以告知UE所选择的MA签名相应的星座模型及相关参数值,例如,当MA签名具有平行四边形形状,基站可以通过预先约定好的相关位置或比特值,来告知UE星座图为平行四边形,并可以随后告知UE此平行四边形的两个边长及其之间的夹角。
在图2-图4所示的各种无授权传输过程中,当考虑到上述UE激活信息传输和MA签名的获取时,UE和基站之间可以具有相应的更新的信令交互过程。根据本发明的一个实施方式,可以首先由UE获取所述用户设备的激活信息;随后,UE向基站发送所述用户设备的激活信息,以使所述基站根据所述用户设备的激活信息从所述多址签名池中确定所述多址签名;最后,UE接收指示基站所确定的多址签名的关于多址签名的信息,以获取所述多址签名。或者,根据本发明的另一个实施方式,可以首先由UE向基站发送指示所述基站对所述用户设备的激活信息进行估计的指示信号,以使基站对UE的激活信息进行估计;随后,UE从基站接收根据对用户设备的激活信息的估计结果,从所述多址签名池中所确定的多址签名。
图7示出了根据本发明一个实施例的无授权传输的实现过程。如图7所 示,以前述图2所示的基站通过RRC信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令之前,首先通过PRACH向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令发送关于MA签名的信息,以使UE使用此MA签名发送上行数据。
图8示出了根据本发明一个实施例的无授权传输的实现过程。如图8所示,以前述图3所示的基站通过RRC信令和L1信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令和L1信令之前,首先通过PRACH向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令或L1信令发送关于MA签名的信息,以使UE使用此MA签名发送上行数据。
图9示出了根据本发明一个实施例的无授权传输的实现过程。如图9所示,以前述图3所示的基站通过RRC信令和L1信令向UE配置数据传输资源并实现无授权传输为基础,UE可以在接收RRC信令和L1信令之后,通过上行数据向基站发送UE的激活信息或用于指示基站对UE的激活信息进行估计的指示信号,以使基站根据UE的激活信息或估计结果,从MA签名池中选择UE使用的MA签名。随后,基站可以通过RRC信令或L1信令发送关于MA签名的信息,以使UE在下次上行数据传输时,使用此更新的MA签名发送上行数据。
根据本发明的另一个实施方式,可以首先由UE获取所述用户设备的激活信息;并由UE获取根据所述激活信息从所述多址签名池中确定的所述多址签名。在一个示例中,UE可以获取其自身的激活信息。在另一个示例中,UE也可以向基站发送指示所述基站对所述用户设备的激活信息进行估计的指示信号,以使基站对UE的激活信息进行估计;随后,UE可以从基站接收所估计的UE的激活信息。
此外,可选地,UE可以不仅获取所述用户设备的激活信息,还可以接收基站所发送的关于多址签名组的信息;随后,UE可以根据所述用户设备的激活信息和关于所述多址签名组的信息,确定所述多址签名。所述多址签 名组的信息可以是基站自行确定的,也可以是由UE的指示信息触发,以通过估计UE的激活信息进而确定的。图10示出了根据本发明一个实施例的无授权传输的实现过程。如图10所示,以前述图4所示的基于竞争(contention based)的无授权传输的实现过程为基础,基站可以首先通过广播信道(Physical Broadcast Channel,PBCH)发送一个或多个MA签名组的信息,随后,UE根据其激活信息从基站发送的MA签名组中选择所使用的MA签名。可选地,在例如图6所示的MA签名池的表现形式中,当基站已知其对应的小区内的UE数量和UE的激活信息时,可以选择其中的一个MA签名组发送给UE;当基站仅已知其对应的小区内的UE数量和UE的激活信息中的一个时,可以选择图6中的一列或者一行MA签名组发送给UE;当基站对其对应的小区内的UE数量和UE的激活信息均未知时,可以发送整个MA签名池给UE,以供UE从中选择。可选地,UE可以根据激活信息从MA签名组中进一步选择适当的MA签名;或者,UE可以从MA签名组中随机选择MA签名,在此不做限制。UE在获取MA签名后,可以使用所述多址签名对数据进行处理,并发送处理后的数据。
根据本发明实施例的基站,能够考虑无授权传输中反映UE激活特性的UE激活信息,以提供适用于无授权传输的MA签名,从而降低UE间数据传输的干扰,提高符号检测的准确率,增进无线通信系统的性能。
<硬件结构>
本发明的一实施方式中的发送设备和接收设备等可以作为执行本发明的无线通信方法的处理的计算机来发挥功能。图26是示出本发明的一实施方式所涉及的用户设备和基站的硬件结构的一例的图。上述的用户设备2400和基站2500可以作为在物理上包括处理器2610、内存2620、存储器2630、通信装置2640、输入装置2650、输出装置2660、总线2670等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。用户设备2400和基站2500的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器2610仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、 或采用其它方法来执行处理。另外,处理器2610可以通过一个以上的芯片来安装。
用户设备2400和基站2500中的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器2610、内存2620等硬件上,从而使处理器2610进行运算,对由通信装置2640进行的通信进行控制,并对内存2620和存储器2630中的数据的读出和/或写入进行控制。
处理器2610例如使操作系统进行工作从而对计算机整体进行控制。处理器2610可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。
此外,处理器2610将程序(程序代码)、软件模块、数据等从存储器2630和/或通信装置2640读出到内存2620,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。
内存2620是计算机可读取记录介质,例如可以由只读存储器(ROM,ReadOnlyMemory)、可编程只读存储器(EPROM,ErasableProgrammableROM)、电可编程只读存储器(EEPROM,ElectricallyEPROM)、随机存取存储器(RAM,RandomAccessMemory)、其它适当的存储介质中的至少一个来构成。内存2620也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存2620可以保存用于实施本发明的一实施方式所涉及的无线通信方法的可执行程序(程序代码)、软件模块等。
存储器2630是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(CompactDiscROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器2630也可以称为辅助存储装置。
通信装置2640是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置2640为了实现例如频分双工(FDD,FrequencyDivisionDuplex) 和/或时分双工(TDD,TimeDivisionDuplex),可以包括高频开关、双工器、滤波器、频率合成器等。
输入装置2650是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置2660是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,LightEmittingDiode)灯等)。另外,输入装置2650和输出装置2660也可以为一体的结构(例如触控面板)。
此外,处理器2610、内存2620等各装置通过用于对信息进行通信的总线2670连接。总线2670可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,用户设备2400和基站2500可以包括微处理器、数字信号处理器(DSP,DigitalSignalProcessor)、专用集成电路(ASIC,ApplicationSpecificIntegratedCircuit)、可编程逻辑器件(PLD,ProgrammableLogicDevice)、现场可编程门阵列(FPGA,FieldProgrammableGateArray)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器2610可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或码元也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(ReferenceSignal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,ComponentCarrier)也可以称为小区、频率载波、载波频率等。
此外,无线帧在时域中可以由一个或多个期间(帧)构成。构成无线帧的该一个或多个期间(帧)中的每一个也可以称为子帧。进而,子帧在时域中可以由一个或多个时隙构成。子帧可以是不依赖于参数配置(numerology)的固定的时间长度(例如1ms)。
进而,时隙在时域中可以由一个或多个码元(正交频分复用(OFDM,OrthogonalFrequencyDivisionMultiplexing)码元、单载波频分多址(SC-FDMA,SingleCarrierFrequencyDivisionMultipleAccess)码元等)构成。此外,时隙 也可以是基于参数配置的时间单元。此外,时隙还可以包括多个微时隙。各微时隙在时域中可以由一个或多个码元构成。此外,微时隙也可以称为子时隙。
无线帧、子帧、时隙、微时隙以及码元均表示传输信号时的时间单元。无线帧、子帧、时隙、微时隙以及码元也可以使用各自对应的其它名称。例如,一个子帧可以被称为传输时间间隔(TTI,TransmissionTimeInterval),多个连续的子帧也可以被称为TTI,一个时隙或一个微时隙也可以被称为TTI。也就是说,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是短于1ms的期间(例如1~13个码元),还可以是长于1ms的期间。另外,表示TTI的单元也可以称为时隙、微时隙等而非子帧。
在此,TTI例如是指无线通信中调度的最小时间单元。例如,在LTE系统中,无线基站对各用户终端进行以TTI为单位分配无线资源(在各用户终端中能够使用的频带宽度、发射功率等)的调度。另外,TTI的定义不限于此。
TTI可以是经过信道编码的数据包(传输块)、码块、和/或码字的发送时间单元,也可以是调度、链路适配等的处理单元。另外,在给出TTI时,实际上与传输块、码块、和/或码字映射的时间区间(例如码元数)也可以短于该TTI。
另外,一个时隙或一个微时隙被称为TTI时,一个以上的TTI(即一个以上的时隙或一个以上的微时隙)也可以成为调度的最小时间单元。此外,构成该调度的最小时间单元的时隙数(微时隙数)可以受到控制。
具有1ms时间长度的TTI也可以称为常规TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、常规子帧、标准子帧、或长子帧等。短于常规TTI的TTI也可以称为压缩TTI、短TTI、部分TTI(partial或fractional TTI)、压缩子帧、短子帧、微时隙、或子时隙等。
另外,长TTI(例如常规TTI、子帧等)也可以用具有超过1ms的时间长度的TTI来替换,短TTI(例如压缩TTI等)也可以用具有比长TTI的TTI长度短且1ms以上的TTI长度的TTI来替换。
资源块(RB,ResourceBlock)是时域和频域的资源分配单元,在频域中,可以包括一个或多个连续的副载波(子载波(subcarrier))。此外,RB在时 域中可以包括一个或多个码元,也可以为一个时隙、一个微时隙、一个子帧或一个TTI的长度。一个TTI、一个子帧可以分别由一个或多个资源块构成。另外,一个或多个RB也可以称为物理资源块(PRB,PhysicalRB)、子载波组(SCG,Sub-CarrierGroup)、资源单元组(REG,Resource ElementGroup)、PRG对、RB对等。
此外,资源块也可以由一个或多个资源单元(RE,ResourceElement)构成。例如,一个RE可以是一个子载波和一个码元的无线资源区域。
另外,上述的无线帧、子帧、时隙、微时隙以及码元等的结构仅仅为示例。例如,无线帧中包括的子帧数、每个子帧或无线帧的时隙数、时隙内包括的微时隙数、时隙或微时隙中包括的码元和RB的数目、RB中包括的子载波数、以及TTI内的码元数、码元长度、循环前缀(CP,Cyclic Prefix)长度等的结构可以进行各种各样的变更。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,PhysicalUplink ControlChannel)、物理下行链路控制信道(PDCCH,PhysicalDownlink ControlChannel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、码元、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补 充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,DownlinkControlInformation)、上行链路控制信息(UCI,UplinkControlInformation))、上层信令(例如,无线资源控制(RRC,RadioResourceControl)信令、广播信息(主信息块(MIB,MasterInformationBlock)、系统信息块(SIB,SystemInformationBlock)等)、媒体存取控制(MAC,MediumAccessControl)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,DigitalSubscriberLine)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“无线基站(BS,BaseStation)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。无线基站有时也以固定台(fixedstation)、NodeB、eNodeB(eNB)、接入点(accesspoint)、发送点、接收点、毫微微小区、小小区等用语来称呼。
无线基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当无线基站容纳多个小区时,无线基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过无线基站子系统(例如,室内用小型无线基站(射频拉远头(RRH,RemoteRadioHead)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的无线基站和/或无线基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,MobileStation)”、“用户终端(userterminal)”、“用户装置(UE,UserEquipment)”以及“终端”这样的用语可以互换使用。无线基站有时也以固定台(fixedstation)、NodeB、eNodeB(eNB)、接入点(accesspoint)、发送点、接收点、毫微微小区、小小区等用语来称呼。
移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的用户设备2400和基站2500均可以用无线基站或用户终端来替换。
在本说明书中,设为通过无线基站进行的特定动作根据情况有时也通过其上级节点(uppernode)来进行。显然,在具有无线基站的由一个或多个网络节点(networknodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过无线基站、除无线基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,MobilityManagementEntity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如, 关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,LongTermEvolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入2000(CDMA2000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(lookingup)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中 的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本发明进行了详细说明,但对于本领域技术人员而言,显然,本发明并非限定于本说明书中说明的实施方式。本发明在不脱离由权利要求书的记载所确定的本发明的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本发明而言并非具有任何限制性的意义。

Claims (10)

  1. 一种用户设备,包括:
    控制单元,配置为获取多址签名,所述多址签名是根据所述用户设备的激活信息从多址签名池中确定的,所述用户设备的激活信息与所述用户设备的激活有关;
    发送单元,配置为使用所述多址签名发送数据。
  2. 如权利要求1所述的用户设备,其中,
    所述控制单元获取所述用户设备的激活信息;
    获取由用户设备根据所述激活信息从所述多址签名池中确定的所述多址签名。
  3. 如权利要求2所述的用户设备,其中,
    所述用户设备还包括:接收单元,配置为接收基站所发送的关于多址签名组的信息,所述关于多址签名组的信息用于指示所述多址签名池中的至少一个多址签名组,每个所述多址签名组中包括至少一个多址签名;
    所述控制单元根据所述用户设备的激活信息和关于所述多址签名组的信息,确定所述多址签名。
  4. 如权利要求1所述的用户设备,其中,
    所述控制单元获取所述用户设备的激活信息;
    所述发送单元向基站发送所述用户设备的激活信息,以使所述基站根据所述用户设备的激活信息从所述多址签名池中确定所述多址签名和多址签名组中的至少一个;
    所述用户设备还包括:接收单元,配置为接收指示基站所确定的关于多址签名和多址签名组的信息中的至少一个,以获取所述多址签名。
  5. 如权利要求1所述的用户设备,其中,
    所述发送单元向基站发送指示所述基站对所述用户设备的激活信息进行估计的指示信号;
    所述用户设备还包括:接收单元,配置为从基站接收关于所述多址签名的信息,所述关于多址签名的信息用于指示所述多址签名,所述多址签名是基站根据对用户设备的激活信息的估计结果,从所述多址签名池中所确定的。
  6. 如权利要求2-4中任一项所述的用户设备,其中,
    所述控制单元根据历史激活信息和高层激活信息中的至少一种获取所述用户设备的激活信息,其中所述历史激活信息指示所述用户设备的历史激活行为有关的信息,所述高层激活信息是通过高层通知的与所述用户设备激活有关的信息。
  7. 如权利要求1所述的用户设备,其中,所述多址签名包括比特到符号的映射和扩频序列中的至少一种。
  8. 如权利要求1所述的用户设备,其中,
    所述多址签名池中的多址签名是通过深度学习算法,基于符号检测错误率和用户设备激活状态检测错误率构建的;或
    所述多址签名池中的至少部分多址签名是基于另一多址签名池获取的。
  9. 一种基站,包括:
    控制单元,配置为获取用户设备的激活信息,所述用户设备的激活信息与所述用户设备的激活有关;
    至少根据所述用户设备的激活信息,从多址签名池中确定所述用户设备发送数据所使用的多址签名组和多址签名中的至少一个,每个所述多址签名组包括至少一个多址签名;
    发送单元,配置为发送关于所述多址签名组的信息和关于所述多址签名的信息中的至少一个。
  10. 一种由用户设备执行的方法,所述方法包括:
    获取多址签名,所述多址签名是根据所述用户设备的激活信息从多址签名池中确定的,所述用户设备的激活信息与所述用户设备的激活有关;
    使用所述多址签名发送数据。
PCT/CN2019/072439 2019-01-18 2019-01-18 用户设备和基站以及由用户设备、基站执行的方法 WO2020147133A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980089079.0A CN113303006A (zh) 2019-01-18 2019-01-18 用户设备和基站以及由用户设备、基站执行的方法
PCT/CN2019/072439 WO2020147133A1 (zh) 2019-01-18 2019-01-18 用户设备和基站以及由用户设备、基站执行的方法
US17/423,792 US20220124843A1 (en) 2019-01-18 2019-01-18 User equipment and base station, and method executed by user equipment and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072439 WO2020147133A1 (zh) 2019-01-18 2019-01-18 用户设备和基站以及由用户设备、基站执行的方法

Publications (1)

Publication Number Publication Date
WO2020147133A1 true WO2020147133A1 (zh) 2020-07-23

Family

ID=71613247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072439 WO2020147133A1 (zh) 2019-01-18 2019-01-18 用户设备和基站以及由用户设备、基站执行的方法

Country Status (3)

Country Link
US (1) US20220124843A1 (zh)
CN (1) CN113303006A (zh)
WO (1) WO2020147133A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230115064A1 (en) * 2021-09-30 2023-04-13 Dell Products L.P. Securing data transmissions using split messages

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666373A (zh) * 2016-07-27 2018-02-06 北京三星通信技术研究有限公司 一种harq传输的方法和设备
US20180139774A1 (en) * 2016-11-15 2018-05-17 Huawei Technologies Co., Ltd. Systems and methods for grant-free uplink transmissions
US20180288746A1 (en) * 2017-04-03 2018-10-04 Huawei Technologies Co., Ltd. Methods and Systems for Resource Configuration of Wireless Communication Systems

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3328149B1 (en) * 2015-08-28 2019-11-27 Huawei Technologies Co., Ltd. Method and device for uplink transmission in random access process
CN108024366A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 一种基于免调度的数据传输方法和设备
WO2018124026A1 (ja) * 2016-12-27 2018-07-05 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2020031260A (ja) * 2016-12-28 2020-02-27 シャープ株式会社 基地局装置、端末装置およびその通信方法
CN108809525A (zh) * 2017-05-04 2018-11-13 株式会社Ntt都科摩 Harq-ack反馈方法、harq-ack提取方法、基站和用户设备
CN111466132B (zh) * 2017-12-22 2023-08-11 中兴通讯股份有限公司 用于非正交多址接入传输的序列选择
WO2019139861A1 (en) * 2018-01-10 2019-07-18 Idac Holdings, Inc. Unified non-orthogonal multiple access
WO2019205073A1 (en) * 2018-04-27 2019-10-31 Zte Corporation Signaling of multiple access resources
KR102543222B1 (ko) * 2018-11-02 2023-06-13 삼성전자 주식회사 무선 통신 시스템에서 비직교 다중접속 신호 송수신 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666373A (zh) * 2016-07-27 2018-02-06 北京三星通信技术研究有限公司 一种harq传输的方法和设备
US20180139774A1 (en) * 2016-11-15 2018-05-17 Huawei Technologies Co., Ltd. Systems and methods for grant-free uplink transmissions
US20180288746A1 (en) * 2017-04-03 2018-10-04 Huawei Technologies Co., Ltd. Methods and Systems for Resource Configuration of Wireless Communication Systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Evaluations for NOMA", 3GPP DRAFT; R1-1810378, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 6, XP051517787 *

Also Published As

Publication number Publication date
CN113303006A (zh) 2021-08-24
US20220124843A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
US20200252917A1 (en) Methods and Systems for Resource Configuration of Wireless Communication Systems
WO2018201784A1 (zh) 资源配置和调度方法、基站以及用户设备
US11115165B2 (en) Method and apparatus for multiple transmit/receive point (TRP) operations
JP7035073B2 (ja) 端末、無線通信方法、基地局及びシステム
CN112771785A (zh) 用于经由物理共享信道传送用户数据的方法和设备
US9929902B2 (en) Wireless communication system with single-subband user equipment
CN113169778A (zh) 用于多时隙通信信道的波束分集
WO2019029635A1 (zh) 波束选择方法、基站和用户设备
JP7007399B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019224876A1 (ja) 送信装置及び受信装置
WO2018229928A1 (ja) ユーザ端末及び無線通信方法
JPWO2019092856A1 (ja) ユーザ端末及び無線通信方法
CN115336367A (zh) 确定无线通信系统中的信道接入过程的方法及装置
WO2019222907A1 (zh) 预编码方法、解码方法、发送设备和接收设备
CN109845319B (zh) 用户装置
WO2019062539A1 (zh) Sps的激活确定方法以及用户设备
CN110291733B (zh) 无授权传输方法、用户终端和基站
WO2018228554A1 (zh) 用于测量信道状态的方法和装置
WO2018202058A1 (zh) 一种混合信道质量测量方法和用户设备
WO2019029405A1 (zh) 通信方法与设备
WO2020147133A1 (zh) 用户设备和基站以及由用户设备、基站执行的方法
WO2022147735A1 (zh) 确定发送功率的方法及装置
WO2022174389A1 (en) Sidelink channel state information reference signal triggering and resource selection
CN111279736B (zh) 一种用于生成扩展符号的方法及装置
WO2019064537A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909959

Country of ref document: EP

Kind code of ref document: A1